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Chapter 1

Introduction

Photonic crystals (PhC) can radically control the propagation and emission of light [1]. This has
been utilized to control the emission properties of embedded light sources, such as quantum dots
[2–6]. PhC lasers have been set-up using this control to demonstrate unique lasers, showing e.g.,
ultrafast modulation of spontaneous emission rates and edge emitting quantum cascade lasers [7,8].
However, the wavelength of PhC lasers is still controlled by the embedded emitters as the light
emission occurs due to electronic transitions between discrete energy levels of bound electrons [9].

Essentially any wavelength can be emitted by free electrons propagating through a vacuum as
continuous electron levels provide the emitting transitions [9]. These so-called free-electron lasers
emit coherent radiation when close synchronism between the interacting electromagnetic wave and
a plasma wave on the electron beam exists [10,11]. By adjusting the initial velocity of the electron
the synchronism shifts to a different wavelength. This wavelength control allows to cover a wide
spectral range, ranging from microwaves to X-rays [12]. In traditional FELs this synchronism is
achieved by using an alternating static magnetic field of a so-called undulator to convert the kinetic
energy of relativistic electrons into coherent radiation. The drawback of undulator based FELs is
their extremely large size (facility scale) due to the requirement of relativistic electron energies,
e.g., GeV electron beam energies which are used for generation of XUV radiation (LCLS, FLASH).

A compact alternative to undulator-based FELs are slow-wave FELs, which allow for table-top
lasers. Only a small electron energy of several keV is required, similar to the cathode ray tubes
that were used as televisions [13]. To achieve synchronism between the electromagnetic wave and
the electron beam, the phase velocity of the electromagnetic field is reduced by a so-called slow-
wave structure. Many different types of structures such as dielectric lined waveguides, gratings
or electrical circuits are employed. The resulting lasers are called Cherenkov FEL, Smith-Purcell
FEL or microwave tube [14–21].

Each of the aforementioned lasers have very specific properties due to the pattern of the electro-
magnetic field inside the structure. By controlling the shape of the structure in the aforementioned
lasers the gain, frequency and tuning range can be controlled. However, all these devices show a
strong decrease in output power as the operating frequency is increased [22–24]. The reason for
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CHAPTER 1. INTRODUCTION

this is that the interaction requires sufficiently good beam quality and sufficiently large electron
beam current. An increase in operating frequency is associated with a decrease in structure size,
and therefore also with a decrease in total current. The beam quality limits the maximum electron
density in the beam [23], and therefore the output power drops as it depends on the total beam
current. Typically, slow-wave structures supports only a single electron beam.

Multiple electron beams would allow to increase the total beam current to increase the output
power. Hence, what would be desired is a slow-wave free-electron laser providing multiple vacuum
channels for multiple electron beams. The output power is controlled by the number of electron
beams where the wavelength is controlled by the velocity of the electrons and periodicity of the
PhC. Also, other properties like gain bandwidth and tuning range can be controlled through PhC
design.

A PhC naturally provides many vacuum channels. However, the working principle of coherent
Cherenkov emission into photonic crystal modes has not been studied, yet. Only spontaneous
Cherenkov emission from a single electron has been described [25]. Recent measurements using
a low electron current provided by an electron microscope demonstrated very weak and incoher-
ent emission in the single electron limit [26]. Further, photonic crystals modeled as an effective
dielectric medium have been proposed to operate as a slow-wave FEL [27].

In this thesis we numerically study the working principle of a novel photonic crystal laser
based on the coherent emission of free electrons, which we call: the photonic free-electron laser
(pFEL). In Chapter 2 we summarize the theory of slow-wave FELs and photonic crystals. Next,
in Chapter 3 we show how the small-signal theory of slow-wave FELs can be applied to design
a photonic crystal for a pFEL. Chapter 4 will focus on the nonlinear dynamics of the pFEL, for
the example of a single-beam device. Amongst others, output power and frequency tuning will be
investigated. Subsequently, we will expand the single-beam pFEL to a two-beam pFEL. As the
noise in both electron beams is uncorrelated, the radiation generated by the two beams will initially
be uncorrelated. As the electron beams will influence each other through the combined radiation
field, correlation between the beams will be established. This process is studied in Chapter 5.
Finally, in Chapter 6 we will summarize the conclusions.
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Chapter 2

Theory

When a charged particle is propagating alongside an object, e.g., a small post, the charged particle
induces a dipole in that post. As the particle passes along the post the dipole rotates accordingly.
Subsequently, when an electric dipole rotates, it emits an electromagnetic wave. If such an effect is
repeated with a charged particle propagating alongside a row of posts, the particle induces a dipole
in every post and every posts emits a wave. Such an experiment can be done by using multiple
charged particle passing along the posts, each separated by a same distance, exactly matching the
wavelength of the generated radiation, and propagating with the same velocity. The generated
waves would then constructively interfere if the propagating particles have the same velocity as
the phase velocity of the generated wave. To decrease the phase velocity of a wave to the velocity
of the electron one can use for example so-called slow-wave structures, e.g., photonic crystals.

When the stream of orderly charged particles is replaced by an electron beam where the particles
are ordered in a random manner, and numerous electrons are present within one wavelength, the
same result of constructively interfering waves can be achieved when bunches are formed in the
electron beam. Bunches can form when the electrons co-propagate with a wave possessing a
longitudinal electric field component. In the rest frame of the electron beam, part of the electrons
which experience an electric field in the backward direction are accelerated. The other part of the
electrons which experience an electric field in the forward direction are decelerated. This effect
provides a bunching mechanism for the electron beam.

The combination of both effect described above is the basis for the working principle of the
pFEL. This chapter will focus in more depth on the theory of such a laser, which is used in the
latter chapters to investigate the pFEL in more detail.

2.1 Cherenkov effect

In a vacuum, the speed of a propagating electromagnetic wave is a universal constant, namely
the speed of light, c. The speed of light acts as an upper limit of the velocity attainable by
objects possessing a mass [28, 29]. When a light wave is propagating inside a material, its phase
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CHAPTER 2. THEORY

velocity is usually reduced to c/n, where n > 1 is the index of refraction of the medium [30]. The
phase velocity is defined as 2πν/k, where ν and k are the frequency and the wave number of the
electromagnetic field, respectively. For example, the index of refraction of silica glass at visible
light wavelengths is approximately 1.5, meaning that the phase velocity of light inside the glass is
2
3c.

When a charged particle, e.g., an electron is traveling through a medium, its Coulomb field
displaces the bound electrons in atoms around the position of the particle and induce a transient
polarization in the atoms. Therefore, as a response to a passing electron the polarized atoms act
as an oscillating dipole which leads to the emission of radiation [31]. Two separate cases can be
distinguished based on the velocity of the electron. The first case is when the velocity of the
electron is lower than the phase velocity of the electromagnetic field. In this case the radiation
field emitted by the oscillating dipoles precedes the electron exciting the dipoles. At a distance,
no propagating electromagnetic field is observed in this case, as the emitted fields destructively
interfere.

Figure 2.1: Huygens diagram to illustrate the angle of emission of Cherenkov radiation

The second case is when the electron is traveling faster than the phase velocity inside the
medium, which was first observed by Cherenkov [32] and described subsequently by Frank and
Tamm [33]. In this case the radiation field of the electron can not propagate in front of the
electron, since the velocity of the electron exceeds the velocity of the radiation field. This means
that the electric field around the electron becomes asymmetric. It turns out that a propagating
electromagnetic field is generated by the oscillating dipoles, with a phase front under an angle θ
with respect to the propagation direction of the electron as shown in Figure 2.1.

In the figure, the electron is moving along the direction of the horizontal arrow with velocity
vel = AI/4∆t, where AI is the distance traveled by the electron in time 4∆t. Along this path,
radiation is emitted by dipoles at position A, B, C and D when the electron passes these positions,
each a time interval ∆t after each other. All dipoles emit radiation which propagates with the
phase velocity inside the material, vph = c/n, in all directions with respect to the emitting dipole.
In the same time as the electron travels a distance AI in 4∆t, the emitted wave at A travels a
distance AE. However, since we consider vel > vph, the phase front emitted by A, B, C and D form
a cone around the particle trajectory. From the diagram, the so-called Cherenkov emission angle
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CHAPTER 2. THEORY

can be calculated using
sin(θ) = AE

AI
= 4∆tvph

4∆tvel
= vph
vel

(2.1)

Note that no such phase front is formed if the velocity of the particle is too low, vel < vph.
Mathematically this corresponds to the angle θ becoming imaginary. The radiation emitted for
vel > vph is named Cherenkov radiation, after its first observer.

When inserting n = c/vph into Equation 2.1, we see that all materials where the refractive index
is larger than unity enable Cherenkov emission. Materials like gases with a refractive index very
close to unity need extremely relativistic electrons for Cherenkov emission to occur. In solid or
liquid media with higher refractive index a lower electron velocity is sufficient. A typical example
where Cherenkov radiation is observed is the blue glow in the cooling water of a nuclear fission
reactor [34]. In principle, low or mildly relativistic electrons propagating through bulk material
can also produce Cherenkov radiation. However, this process is suppressed by other effects taking
place, such as electron scattering or bremsstrahlung.

To avoid these effects and obtain Cherenkov radiation, electrons can be passed very close over
the surface of a dielectric material. The Coulomb field of the electron still can polarize the atoms
in the material. This effect is utilized in a Cherenkov FEL, which enables interaction with mildly
relativistic electrons (Ekin,el > 70 keV). However, the electric field inside the material decreases
as a function of distance from the surface of the dielectric and on the scale of a wavelength, which
makes it very difficult to realize Cherenkov lasers with short wavelengths.

To utilize even slower electrons, effective dielectrics such as electrical circuits are applied at
microwave frequencies. An other class of effective dielectrics are photonic crystals whose use is
studied in this thesis. Photonic crystals are discussed in more detail in Section 2.3.

2.2 Fundamental equations

The effective dielectric medium approach for photonic crystals can successfully explain the emission
of radiation due to propagating electrons inside photonic crystals. However, this approach does
not take into account the actual spatial shape of the electromagnetic field distribution inside a
photonic crystal. As has been discussed in literature, the electromagnetic field distribution and
polarization inside photonic crystals is clearly different from that in a homogeneous dielectric and
lead, e.g., to an enhanced or suppressed spontaneous emission rate [2, 6].

To describe the actual electromagnetic fields inside a photonic crystal a full field analysis of the
pFEL is required. Electromagnetic fields are described by the Maxwell equations [30]

∇×H(r, t) = J(r, t) + ∂D(r, t)
∂t

; (2.2)

∇×E(r, t) = −∂B(r, t)
∂t

; (2.3)

∇ ·B(r, t) = 0; (2.4)

∇ ·D(r, t) = ρ(r, t). (2.5)
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CHAPTER 2. THEORY

Here ρ(r, t) is the space charge density, J(r, t) the current density, E(r, t) the electric and H(r, t)
the magnetic field. All quantities can explicitly dependent on the location r and the time t.
Throughout this thesis the electric displacement field D(r, t) is assumed to be linearly dependent
on the electric field

D(r, t) = ε0ε(r)E(r, t), (2.6)

where ε0 is the vacuum permittivity and ε is a scalar describing the dielectric material properties.
Note that in a photonic crystal, ε usually depends explicitly on the location r mostly in a periodic
manner. For the magnetic flux density we find generally

B(r, t) = µ0µ(r)H(r, t) (2.7)

where µ0 is the vacuum permeability and µ is describing the magnetic material properties. However,
in this thesis we discuss only non-magnetic materials and we set µ to unity.

The Maxwell equations also include the continuity equation:

∇J(r, t) + ∂ρ(r, t)
∂t

= 0 (2.8)

which expresses that the total electric charge of an isolated system remains constant regardless of
temporal or local changes within the system itself.

To describe the interaction of the electrons with the electric and magnetic fields we use the
Newton-Lorentz equation:

m
d[γ(r, t)v(r, t)]

dt = qe [E(r, t) + v(r, t)×B(r, t)] . (2.9)

Here, m is the electron mass, γ is the relativistic factor, v is the electron velocity and qe = −e is the
electron charge. By self-consistently analyzing the set of nonlinear differential equations (2.2)–(2.9)
one can fully describe the generation of coherent Cerenkov emission inside photonic crystals. These
equations form a system of nonlinear, coupled differential equations which is mathematically very
complex to solve. A first approach to solve them is to use a linear approximation using coupled
mode theory. In this approximation the waves propagating in the photonic crystal are investigated
separately from the motion of the electrons (space-charge waves). Note that this approximation is
only valid for a sufficiently weak interaction of the electrons with the electromagnetic field, i.e., at
low field strengths and low electron densities. In a second step this approximation will be given
up for the calculation of strongly interacting electron densities and electromagnetic fields.

2.3 Photonic crystals

Materials in which the dielectric constant varies periodically in space on the order of an optical
wavelength are called photonic crystals [35]. Photonic crystals offer an unprecedented control of
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the optical properties of light with such wavelengths, such as photonic waveguides.

The simplest model of a photonic crystal would be to describe it as an effective dielectric ma-
terial. This approach explains the emission of Cerenkov radiation from electrons inside a photonic
crystal, but it can not explain the strength of the light emission. For such description the spatial
shape (distribution and polarization) of the electromagnetic fields inside the photonic crystals must
be included, which is neglected by effective dielectric approaches. The shortcomings of effective
dielectric material models are clearly demonstrated by Cerenkov emission of a single electron [25].

Three different classifications of photonic crystals can be distinguished, each relating to the
number of spatial dimensions showing translational symmetry [35]. A widely used example of a
one-dimensional photonic crystal, assuming that the non-periodic dimensions of the crystal extend
into infinity, is a multilayer dielectric mirror, such as a quarter-wave stack. Such a dielectric
mirror consists of alternating layers of materials with different dielectric constants. In a similar
manner we can define a two-dimensional photonic crystal. In a two-dimensional crystal two out
of three spatial dimensions have translational symmetry. Again we assume that the non-periodic
dimension extends to infinity. An example of such a two dimensional photonic crystal can be an
infinite array of posts of infinite length. A three dimensional photonic crystal would be a crystal
with translational symmetry in all three spatial dimensions, such as a cubic crystal or a so-called
body-centered cubic, well-know from solid state crystals. Throughout this thesis, only photonic
crystals with one-dimensional translational symmetry (here z-direction) are considered. Therefore,
all later discussions will be limited to a one-dimensional approach.

For photonic crystals consisting of metals, the Maxwell equations (2.2–2.7) are linear because
the current density J(r, t) and space-charge density ρ(r, t) are zero. In this case it has been shown
that solving the Maxwell equations is equivalent to an eigenvalue problem [35]. Furthermore,
numerous numerical methods exist to solve such eigenvalue problems [36]. Because of the periodic
nature of the photonic crystal, numerical calculations can be limited to a single unit cell by applying
periodic boundary conditions to the edge of the unit cell. For the one-dimensional photonic crystals
considered here, if applying periodic boundary conditions in the z-direction, this implies that
the considered structure is infinitely long in the z-direction. Using readily available numerical
techniques together with proper boundary conditions, the shape and frequencies of characteristic,
orthonormal electric field distributions, i.e., eigenmodes and eigenfrequencies, inside a photonic
crystal can be retrieved [35,37,38].

The collection of all eigenfrequencies as a function of wave number can be plotted in the form
of a band diagram of the photonic crystal, analogous to the band diagram found for electrons in
solids [39, 40]. Due to the periodic nature of the photonic crystal, the band diagram is periodic,
i.e., it repeats itself every 2πm/az, where az is the lattice constant along z and m is an integer.

The resulting eigenmodes are also spatially periodic in the direction in which the photonic
crystal is periodic [35]. It is well known that all periodic functions can be expressed as an infinite
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Fourier series [39]. Expressing the electric field in a photonic crystal yields:

E(x, y, z) =
∞∑

m=−∞
Em(x, y)e−ikzz (2.10)

with
kz = k0 + 2πm

az
. (2.11)

Here, k0 is the fundamental wave number, i.e., the wave number within the 0th order spatial har-
monic, also called the Brillouin zone. Note that each so-called spatial eigenmode has a different
phase velocity. For any type of FEL, amplification occurs close to synchronism (vel = vph with
vph = 2πν/kz and ν is the eigenfrequency at wave number kz) [11]. Hence, the Fourier decompo-
sition of the periodic eigenmode and the field amplitude at the synchronized wave number turns
out to be required to calculate the small signal gain of a pFEL, as explained in Section 2.5

2.4 Plasma waves

A collection of neutral particles, mobile ions and unbound electrons is known as a plasma [41].
The long range nature of the electric and magnetic interactions between individual particles can
induce collective motions in a plasma called plasma or space-charge density waves. The electron
beam of a pFEL is also a plasma and space-charge density waves can propagate on the beam.
Space-charge density waves are longitudinal waves with a spatial modulation of the charge density.
For example, let us consider a stationary electron beam in the rest frame of the electron beam
which is infinitely long, analogous to the explanation used by Gilmour [42]. We assume that
stationary positively charged ions cancel out the space charge of the beam. When all electrons
are placed equidistantly to each other, all repelling forces cancel out and all electrons stay fixed
at their initial position. However, when electrons are displaced by a tiny amount, this stability is
disturbed and the Coulomb force pulls the displaced electrons back, acting as a restoring force.
Hence, an oscillation around their stationary position results. The frequency of that oscillation is
the so-called plasma frequency:

νp = 1
2π

√
−eρ
meε0

, (2.12)

which increases with the charge density ρ.
For a moving electron beam with a spatially non-uniform charge density a further effect appears.

Even with a charge density so small that electrons effectively do not influence each other, a spatial
variation along z in the electron beam is seen by a standing observer as a propagating wave. The
dispersion of that wave, i.e., the relation between the spatial and temporal periodicities, is given
by the velocity with which the beam passes the observer as 2πν = velk.

Following Gilmours description [42] of a space-charge wave on a moving electron beam, we can
derive the wave equation from Maxwell’s equations (2.2–2.7) in the presence of space charge and
current density. Concentrating on the electric field component in the longitudinal direction this
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results in
∂2Ez
∂z2 −

ε

c2
∂2

∂t2
Ez = −µ0

∂

∂t
Jz −

1
ε0

∂ρz
∂z

. (2.13)

Even though we limit ourselves to the z-component alone, the current density, Jz = ρ(z, t)vz,e(z, t),
still forms a non-linear term in the equations. The standard procedure to find a solution is to
linearize all equations. To linearize them Jz is split into a DC and an RF component:

Jz(z, t) = Jz,DC + Jz,RF (z, t) (2.14)

= (ρDC + ρRF (z, t)) (vz,DC + vz,RF (z, t)) (2.15)

= ρDCvz,DC + ρRF (z, t)vz,DC + ρDCvz,RF (z, t) + ρRF (z, t)vz,RF (z, t). (2.16)

To obtain a linear approximation, the first and last term in Equation 2.16 are neglected. Because
we assume an interaction at a certain frequency (ei2πνt) and with a certain wavelength (eikzz), we
rewrite all oscillating terms as:

Az(z, t) = ADC + ÃRF e
i(2πνt−kzz). (2.17)

where only the RF term is taken into account.

Using 2.13 and the continuity equation (2.8) an expression describing how the beam current
density is related to the oscillating longitudinal electric field can be obtained:

J̃z,RF = i2πνε0
4π2ν2

p

(2πν − kzvz,0)2 Ẽz,RF , (2.18)

Alternatively, Equation 2.18 describes how the electric field can be driven by an oscillating beam
current density. This is what we are going to use in the small signal gain calculations of the pFEL
in the next section.

For the eigenmodes of the space-charge wave two solutions can be found [43], namely

kz = 2πν ± νp
vz,DC

. (2.19)

If we calculate the phase velocity of both solutions,

vph = vz,DC
1± νp/ν

, (2.20)

we can distinguish two velocities. One of the solutions has a phase velocity which is slightly higher
than the DC velocity of the electron beam. Hence, this solution is called the fast space-charge
wave. To excite it, the electrons need to acquire a slightly higher kinetic energy (on average). For
the other solution, called the slow space-charge wave, the phase velocity is slightly slower than the
DC velocity of the electron beam.

In the pFEL, a radiation field is generated at the expense of the electron beam energy. Initially
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the electron beam is injected in the pFEL with only a DC component. When the electrons emit
radiation, only the slow space-charge wave can be exited. A growing fast space-charge wave is not
possible as it requires an increase in average electron kinetic energy and there is no source for this
energy when there is no radiation field, which is the case when we start from noise.

2.5 Small-signal amplification

Pierce’s small-signal gain theory is valid for slow-wave vacuum electron devices including e.g.,
traveling wave tubes and backward-wave oscillators. In the small-signal gain (amplification) regime,
i.e., the energy of the beam remains unchanged to first approximation, which means that the
application of the coupled mode theory is well justified [42]. In coupled mode theory, the modes
of the propagating electromagnetic field in the PhC and the modes of the space-charge waves on
the electron beam are calculated separately. It is assumed that an interaction between the modes
occurs only when frequency and wave number of the electromagnetic field and the space charge
waves are equal. Therefore, we need to calculate how an electron beam induces an electromagnetic
field and how the electromagnetic field influences the electron beam. According to Pierce [15], the
small signal amplification is given by

G = 47.3 3

√
ZP
ZB

(dB per wavelength), (2.21)

where ZP and ZB are impedances that summarize the properties of the field distribution for the
considered eigenmode and the properties of the electron beam, respectively. The beam impedance
is given by the acceleration voltage U and the beam current I,

ZB = 4U
I
. (2.22)

To take into account the spatial extent of the electron beam, we average over the overlap area
of the electric field of the eigenmode and the electron beam. Therefore, the Pierce impedance is
defined as

ZP =
1
Ab

∫
Ab
|Ez,m(x, y)|2 dA
k2
zPflux

; (2.23)

Pflux = vgEstored
az

. (2.24)

Here, Pflux is the energy propagating through a transverse plane of the photonic crystal within a
certain time, az is the periodic lattice constant, Estored is the stored energy in a single unit cell and
vg is the group velocity at the velocity matched (interaction) wave number kz. The electric field,
|Ez,n(x, y)| is the magnitude of the z-component of the eigenmode field at the velocity matched
wave number calculated by the Fourier decomposition as given in Equation 2.10. Because only the
part of the eigenmode field synchronous to the electron beam can exert an effective force over long
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Figure 2.2: Illustration of a single time cycle for a PIC algorithm.

distances it is solely responsible for bunching.

2.6 Particle-in-cell method

To be able to take nonlinear effects into account, i.e., the full mutual interaction of the electron
beam and the electromagnetic field inside the PhC, we need to solve Maxwell’s equations (2.2–2.7)
and the Newton-Lorentz equation 2.9 for each electron self consistently. A particle-in-cell (PIC)
calculation solves this system of equations self consistently including appropriate geometry, initial
and boundary conditions with as few approximations as possible.

In the pFEL as discussed in this thesis, an electron beam with a current in the order of 1 A
has to be considered. Such a beam current implies that approximately 1 billion electrons are
simultaneously present in the interaction volume. Although computing power has undergone an
enormous growth, such a number of particles require resources not yet available. Therefore, PIC
algorithms make use of so-called super particles, which combine a number of electrons into a
single particle. Due to their relatively large charge compared to electrons, the dynamics of mutual
collisions is affected. To solve this problem, super particles are assumed as electron clouds with a
finite and rigid size which may freely pass through each other.

The PIC algorithm calculates the electric and magnetic fields at each time step. Therefore,
the time step in the PIC algorithm has to be sufficiently small to ensure numerical stability in
the calculation. Each time step, the PIC algorithm calculates the fields from all particles and
subsequently moves them. To illustrate the steps during each time step Figure 2.2 shows the
subsequent steps. The particles are processed each time step ∆t by four sub-steps. If one cycle
is complete, the calculation has been progressed by ∆t. Note that during each time step, all grid
points and all particles need to be processed individually. Despite the use of super particles, both
quantities are still in the order of 105–106, requiring high-end computers to achieve a reasonable
computation time (several days).

To get a better impression of what happens each time step, let us discuss one cycle of the time
step for a single particle in detail. We assume that the position and velocity of that particle is
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known. This is the case when we move from the top box to the right box in Figure 2.2. In the
right box, the charge density and the current density at the field grid points are calculated from
the position and velocity of the particle. This requires a weighting, because the particle space is
continuous and the field grid points are discrete. Subsequently, from the space-charge density and
current density, the Maxwell equations are used to solve for the electric and magnetic fields. From
these fields the force exerted on the particle is calculated by the Newton-Lorentz equation (2.9).
Also here weighting is required for calculating the force at the continuous positions of the particles,
because the fields are only known at the grid points. From the calculated force exerted on the
particle, a new velocity and position can be calculated completing the time cycle. For a typical
calculation, 105–107 time steps are required. For more information, the reader is referred to [44].
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Chapter 3

pFEL structure design

To theoretically study the fundamental physics of a pFEL we first need to devise a PhC which
amplifies Cerenkov radiation. Furthermore, to facilitate an experiment with a footprint below a
few m2, we chose for an electron energy smaller than 20 keV. Thereby, the beam parameters as
typical used for electron guns used in microwave tubes are in the order of 10 to 15 keV. Finally,
a broad tuning range of the laser is desired. In this chapter we devise an appropriate PhC by
calculating the Pierce impedance and subsequently the small-signal gain. The Pierce impedance
can quickly be determined, as only the PhC eigenmodes needs to be calculated. This leads to a
fast initial design method.

An endless variety of PhCs can be taken from literature and studied regarding their gain and
frequency tuning in a pFEL. However, to provide sufficient gain for a start-up of low oscillation, a
suitably slowed phase velocity (synchronism) and a strong longitudinal electric field are required.
Obviously, not every PhC provides such properties. To find an optimal PhC it is useful to define
a measure to compare the different crystals. For such a measure we focus on gain and frequency
tuning.

The small-signal gain, G, expressed as gain per wavelength, is retrieved from the Pierce theory.
Although originally developed for classical slow-wave structures (SWS) far from cut-off, this theory
can estimate the small-signal gain of photonic crystals as well. The Pierce impedance describes how
strong the synchronous spatial harmonic Ez component is per unit power of the total radiation
wave and is a measure for the coupling between wave and field. The gain per wavelength is
calculated from the electron beam parameters through the beam impedance, Zb, and from the
wave properties through the Pierce impedance, Zp.

Further we desire a broad tuning range. Tuning in output frequency of a pFEL is achieved by
changing the acceleration voltage of the electron beam. Due to the PhC dispersion, the matching
between the plasma wave and the eigenmode of the PhC appears at a different wave number
and hence a different frequency is generated. We define the tuning range via the maximum and
minimum frequency accessible by the given acceleration voltage of the electron source (10 - 15 kV)
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Figure 3.1: Unit cell of the truncated post photonic crystal slab. The posts are made out of metal
where the rest of the unit cell is vacuum.

as
T = 2νmax − νmin

νmax + νmin
. (3.1)

In the following we show how we maximize the tuning range, T, and the small-signal gain per
wavelength, G, simultaneously. First we describe the calculation method and then we optimize the
most suited concept.

3.1 The truncated posts photonic crystal

In extensive calculations, we have investigated numerous different PhC designs to find the most
suitable PhC for the pFEL. The investigated structures include dielectric, metallic and metallo-
dielectric types. Here, we limit ourselves to the specific type of PhC that we indentified to show
the best performance regarding gain and frequency tuning. In the unit cell of this PhC shown in
Figure 3.1, two metallic posts are placed in a rectangular pattern inside a metallic waveguide [45].
As the posts do not extend along the entire height, we term this structure the truncated posts
structure. The posts are of equal height, hp, and radius rp. Furthermore, the unit cell dimensions
are determined by the height, h, the width, W = 2ax and the longitudinal lattice constant az.
Table 3.1 gives the set of parameter values which are used in the following of Section 3.1.

To study the truncated posts PhC in terms of gain and frequency tuning we require the dis-
persion and eigenmodes. This can be done by an eigenmode solver [46]. Such calculations are
greatly simplified by applying periodic boundary conditions at the edge of the unit cell (here in
the z-direction), which implies that the structure is considered as infinitely long in the z-direction.
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Design parameter h ax az rp hp
Parameter value 8 4.2 2.5 0.75 5

Table 3.1: Typical parameters for the unit cell shown in Figure 3.1 for a pFEL operating at
microwave frequencies. All units in mm.

To calculate the dispersion of an infinitely long structure, the phase difference, ϕ0, of the electro-
magnetic field between the front and the back of a single unit cell is varied. As ϕ0 = k0az and az
is constant, this means effectively that the wave number is varied. Note that when ϕ0 is set, not
only a phase difference ϕ0 fulfills the boundary conditions, but at the same time also all ϕm with

ϕm = ϕ0 + 2πm,m ∈ Z, ϕ0 ∈ [−π, π) . (3.2)

This is actually required because all spatial harmonics of an eigenmode need to be present to fulfill
all boundary conditions in a periodic structure (see Section 2.3). To solve this eigenmode problem
and retrieve the electromagnetic fields and corresponding frequencies for a given wave number k0

we apply an iterative technique.
As we solve the problem for k0, it is simultaneously also solved for km, because

km = k0 + 2πm
az
,m ∈ Z, (3.3)

hence, the band diagram is periodic. Note that, since gain only appears when eigenmodes with
a longitudinal electric field component overlap with the electron beam, we limit ourselves to such
eigenmodes. Figure 3.2(a) shows the band diagram of the three lowest order eigenmodes which
have a longitudinal field component, Ez, along the PhC central z-axis for the unit cell shown in
Figure 3.1. The −1st to 1st spatial harmonic is depicted in Figure 3.2(a). The vertical dashed
lines mark the edges of the 0th order spatial harmonic. The shaded area indicates the range where
matching between the slow space-charge wave and PhC modes is possible. More specifically, the
lower and upper boundary of the shaded area correspond to the slow space-charge wave dispersion
for a beam energy of 10 keV and 15 keV, respectively. The Pierce impedance is inversely propor-
tional to the group velocity, which is shown in Figure 3.2(b) as a function of wavenumber for a
single Brillouin zone. Since the band diagram of the PhC is periodic, the group velocity is periodic
as well with the same periodicity 2π/az.

At the frequencies where the shaded area overlaps with the band diagram, coherent radiation
can be generated and tuned with the electron beam energy. For example, Figure 3.2(a) predicts for
mode 1 a tuning range T = 0.04. Note that slow space-charge wave intersects also with the other
eigenmodes. The electron beam would in principle be able to interact with all modes. However,
the interaction would then take place at higher wave numbers, kz, and higher group velocity, vg. It
turns out that this drastically reduces the small-signal gain and we will thus neglect higher order
modes.

To determine the Pierce impedance it is necessary to calculate the longitudinal electric field
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(a) (b)

Figure 3.2: (a) The band diagram of the truncated posts PhC for the three lowest order modes
with Ez 6= 0. The dashed lines separate the 0th order spatial harmonic from the −1st and 1st order
spatial harmonic. (b) shows the group velocity for the same modes.

strength Ez(k0) from the total electric field E(k0) where the spatial harmonic of the eigenmode is
velocity matched with the slow space-charge wave. Furthermore, only the area of the field that over-
laps with the electron beam will contribute to the interaction. To calculate the velocity matched
field we have to decompose the total longitudinal field, given by the numerical eigenmode calcula-
tions, into a series of spatial harmonics. In general this is required for all transverse coordinates
(x, y). To illustrate this decomposition, we consider the longitudinal field (Ez(x = 0, y = 0, z)),
corresponding to the axis of the electron beam and axis of the waveguide, as a function of z. Fig-
ure 3.3(a) shows the longitudinal electric field Ez(z) versus the normalized longitudinal position
inside the PhC at a phase difference ϕ0 = −0.5π, retrieved from the numerical calculations. Such
a phase represents a wave number of k0 = −.5π/0.0025 = −628.3 m−1, which corresponds to a
wavelength of 4az = 10 mm. Indeed, the wavelength of the electromagnetic field shown in Fig-
ure 3.3(a) is 10 mm. Furthermore, small ripples repeating every 4/3az are visible, which are due
to the 1st spatial harmonic.

To decompose the electric field into different spatial harmonics a spatial Fourier transformation
is performed using a fast Fourier transformation (FFT) algorithm. Figure 3.3(b) shows the resulting
Fourier decomposition of the wave depicted in (a). According to Equation 3.2 in normalized wave
numbers, only a single peak should occur every integer number. However, due to the nature of
the FFT algorithm, which is not fully identical with a standard Fourier transformation, additional
non-physical peaks occur. Because the physical wave number values have to be multiples of 2π/az,
and we know that the fundamental wave number k0 is negative (ϕ0 = k0az = −0.5π), the higher
order spatial wave numbers can be found with Equation 3.3. The physically correct wave numbers
are indicated with the black k’s at the top of Figure 3.3(b). The k’s on the bottom in gray give the
wave numbers which are an artifact of the FFT algorithm. The correct wave numbers k−1, k0, k1

and k2 exactly match the phase differences given by Equation 3.2. Note that the amplitude of the
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−1

(a) (b)

Figure 3.3: (a) The normalized amplitude of the electric field at the transversal center axis of the
PhC (x, y) versus the normalized longitudinal position. The phase difference ϕ0 is −0.5π, so one
wavelength equals 4az. (b) The double sided amplitude spectrum is plotted versus the normalized
wave number.

spatial harmonics drops as kz becomes larger, which is disadvantageous for the Pierce impedance.
Only an interaction with the fundamental or at most the first spatial harmonic leads to a sufficiently
high gain to build useful devices.

To test the fidelity of our decomposition algorithm we reconstruct the original spatial field
by using the calculated spatial Fourier amplitudes for the wave numbers k−1, k0, k1 and k2. In
Figure 3.3(a) the reconstruction (solid line) is in good agreement with the original eigenmode solver
data from CST (data points indicated with crosses).

Using the described decomposition algorithm for all transverse coordinates gives the transverse
amplitude distribution for Ez,km

(x, y) at different spatial harmonics for a given k0. Figure 3.4
shows the transverse amplitude patterns Ez,km

(x, y) for the spatial harmonics n = −1, 0, 1, 2.
The dashed circle in the middle indicates the location of the electron beam. Also, the transverse
location of the truncated posts are indicated in each figure with the dashed rectangles. The
electric field amplitude of the 0th order spatial harmonic is highest at the transverse coordinates
where the posts are positioned. For the higher wave numbers, the electric field is almost entirely
concentrated at the transverse post location. Note that this does not mean that an electric field
is present inside the metallic posts. Figure 3.4 merely shows transverse amplitudes. When the
total Ez field is reconstructed form the Fourier series, this will result in a zero field amplitude
inside the metallic posts. However, for the interaction with an electron beam only a part of the
electric field is responsible. As can be seen in Figure 3.4, the overlap between a particular spatial
harmonic amplitude and the electron beam is maximized for m = 0. Furthermore, the maximum
field amplitude decreases for higher wave numbers (Figure 3.3(b)).

From the Fourier decompositions of the eigenmodes we can calculate the Pierce impedance
(2.23). The Pierce impedance versus normalized wave number is shown in Figure 3.5(a). Note
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Figure 3.4: Transverse electric field patterns Ez,km(x, y) for m is (a) −1, (b) 0, (c) 1 and (d) 2.
k0 = −.5π/az = −628.3 m−1. All amplitude patterns are normalized to it’s own maximum.

that the 0th order spatial harmonic (m = 0) is accessible at the left of the vertical dashed line and
the 1st order spatial harmonic (m = 1) is found at the right of the vertical dashed line. Note that
there is a gap in the curve around the normalized wave numbers where the group velocity is zero
(in Figure 3.5(a) at normalized wave numbers 0, 0.5 and 1). Mathematically this is because as
the group velocity goes to zero, the Pierce impedance goes to infinity, which is non-physical. From
the Pierce impedance, the gain per wavelength is calculated (Equation 2.21), which is shown in
Figure 3.5(b). From the band diagram and the chosen acceleration voltages, we know that velocity
matching can be achieved at normalized wave numbers between 0.6 and 0.7. It can be seen that
in this range the gain is between 1.5 and 2.5 dB per wavelength.

To maximize the Pierce impedance, a velocity matched interaction point at a low wave number
together with a low group velocity is favorable. The wave number at the velocity matched point is
lowest for the lowest order eigenmode (see Figure 3.2(a)). For this eigenmode, the group velocity
is lower than for the higher order eigenmodes (see Figure 3.2(b)). Because the Pierce impedance
is maximized when the longitudinal electric field is maximized, it is favorable to have the velocity
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(a) (b)

Figure 3.5: (a) The absolute value of the Pierce impedance versus wave number. (b) The gain
per wavelength versus wave number. Both (a) and (b) are for the structure shown in Figure 3.1
and parameters from Table 3.1. The solid line is drawn to connect the data points.

matched point in the 0th order harmonic. However, this requires a significantly higher electron
velocity (see Figure 3.2(a)). Therefore, for the chosen acceleration voltages the slow space-charge
wave interacts with the 1st spatial harmonic. From Figure 3.2(a) we observe that for the given
pFEL structure and beam voltages considered, higher order eigenmodes require interaction in
higher spatial harmonics. This means that both the longitudinal wave number increases and the
phase-matched spatial harmonic amplitude decreases. Furthermore, the group velocity usually
increases for higher order eigenmodes as well. Together this means that, for this structure, higher
order eigenmodes will experience a much lower gain and these are therefore not expected to grow.
For this reason only the lowest eigenmode will be considered in the remainder of this thesis.

3.2 Photonic crystal optimization

To optimize the truncated posts PhC, the parameters indicated in Figure 3.1 are varied. Different
parameter configurations are investigated in terms of tuning range and small-signal gain. To
compare the different parameter configurations, only a single parameter is varied at a time.

As we already indicated in the beginning, we optimize the PhC such that we try to simul-
taneously increase the tuning range and small-signal gain. This requires to calculate the band
diagram and eigenmodes for variations of the different parameters. Figure 3.6(a) shows the dis-
persion of the lowest order eigenmode for different post heights together with the dispersion of
the slow space-charge wave. As before, the lower boundary of the shaded area (indicated with
a black line) represents the slow space-charge wave of a 10 kV electron beam. The upper black
line represents the dispersion when the electrons are accelerated to 15 kV. At the intersection of
the radiation wave dispersion with the electron beam slow space-charge wave dispersion we expect
gain. Several interesting features can be observed. First, the operating frequency increases, for
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Figure 3.6: (a) The lowest order eigenmode band diagrams for variations on the post height
together with dispersion of the slow space-charge wave for acceleration voltages between 10-15 kV.
(b) The gain per wavelength as a function of electron acceleration voltage variations on the post
height. Note that the shaded area in (b) represents to the dispersion of the slow space-charge wave
in (a) between 10-15 kV.

a given beam voltage when the post height deceases. Second, for a beam voltage of 15 kV, the
interaction starts out as a forward wave interaction for the largest post height and is a backward
wave interaction for the lowest post height. Third, the tuning range, T, as defined by Equation 3.1,
increases with decreasing post height. This tuning range is plotted in Figure 3.7 as a function of
the post height. Finally, the group velocity increases with decreasing post height. To conclude,
the post height can be used to control the tuning range of the pFEL. As the small-signal gain
per wavelength, G, depends on both the group velocity and phase-matched spatial harmonic wave
number, and Figure 3.6(a) shows that these parameters change in a nonlinear way with the post
height, we expect the gain to be a nonlinear function of the post height. This can be observed in
Figure 3.6(b), where G is plotted as a function of the acceleration voltage for the electrons for var-
ious post heights. Indeed, Figure 3.6(b) shows that gain changes nonlinearly with the post height.
In part this is due to the change in group velocity and in part due to change in phase-matched
spatial harmonic wave number. The gain significantly decreases as the post height is deceased.
Both figures 3.6(a) and (b) show that tuning range can be increased at the expense of gain and
vice versa.

A Similar analysis has been performed for the other structure parameters like az and rp.
However, the value of ax (4.2 mm) is set by the size of the electron beam (beam radius of 1
mm) and a minimum safe distance between electron beam and posts to allow transport of the
electron beam through the structure. For the remainder parameters it was found that variation
had only a minor effect on the tuning range and the small-signal gain (by at least an order of
magnitude smaller change). Finally, for a first experimental demonstration, both a sufficient gain
and a reasonable tuning range is desirable. The final design parameters for the PhC which can be
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Figure 3.7: The frequency tuning range calculated for several post heights.

Design parameter h ax az rp hp
Parameter value 8 4.2 2.5 0.75 4

Table 3.2: Final design parameters for the truncated posts design shown in Figure 3.1. All units
are in mm.

used in an experimental pFEL are shown in Table 3.2.
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Chapter 4

Start-up and oscillation of a pFEL

To demonstrate that start-up of laser oscillation of a pFEL should be possible, and to investigate
the basic physics and properties of this laser, we use the particle-in-cell (PIC) method. For our
investigations, which include also the nonlinear dynamics, such as steady-state operation based on
gain saturation, we consider the PhC we have presented in the previous chapter.

The results from the eigenmode calculations should allow to predict, at least approximately,
the laser oscillation frequency and wave number obtained by the PIC calculations. In addition, the
electron beam dynamics are investigated, i.e., electron bunching, especially in its start-up phase.
We begin by comparing the results obtained from the linear model with results obtained from a
PIC calculation for a single electron beam velocity. Subsequently, we demonstrate the frequency
tuning by varying the acceleration voltage. Using the same model, the beam voltage is varied
between 10 kV and 15 kV. A comparison is made between the expected output frequency from
eigenmode calculations and the PIC calculations.

4.1 Laser output

To investigate start-up and transition to steady-state oscillation of the pFEL a PIC model is set-up
which is shown in Figure 4.1. The gain section of the pFEL is formed by 20 PhC unit cells. The
unit cell is described in detail in Section 3.2. Through the PhC an electron beam is propagating at
the transverse center of the unit cell, as was indicated in Figure 3.4. The radius of the cylindrical
electron beam is 1 mm, the beam current is 1 A and the acceleration voltage is 12.5 kV. An
ideal electron beam is assumed for the PIC calculations. Guiding of such a beam is achieved
by a homogeneous, longitudinal magnetic field Bz, with a strength of 0.5 T. We place the gain
section inside a resonator, which is formed by a flat metallic mirror at A and a partial reflecting
mirror at B. The reflectivity at B is due to the transition from the PhC slab to the empty output
waveguide. Both mirrors at A and B provide the resonator with a total round-trip reflectivity of
approximately 95%. The output waveguide between B and C is twice as wide as the PhC slab to
allow extraction of the generated radiation. We note that, with an output waveguide with the same
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Figure 4.1: The PIC calculation model. Here, two rows of metal posts are place inside a rectan-
gular metallic waveguide. The rest of the volume inside the waveguide is assumed to be vacuum.

width and height as the PhC slab, the generated radiation could not propagate through the output
waveguide. The reason is that the cut-off frequency of a waveguide is lowered by the presence of
metallic rods. At C the output power is sampled at the so-called output port, which pervents any
back-reflections from this plane. Furtermore, in the plane of the output port, the electromagnetic
field is decomposed into the modes of the empty rectangular waveguide between B and C.

The PhC supports only a single mode for frequencies below 20 GHz as illustrated in Fig-
ure 4.2(a). This figure shows the band diagram of the lowest order mode with Ez 6= 0 at the PhC
center. The lowest frequency of the next higher order mode with Ez 6= 0 is higher than 20 GHz.
Furthermore, the cut-off frequencies of the empty waveguide modes in the output waveguide (hor-
izontal dashed lines) and the slow space-charge wave dispersion of the electron beam (tilted solid
line) for an energy of 12.5 keV and 1 A are shown. As the figure shows, the expected operating
frequency of 16 GHz is only supported by the TE10 mode in the output waveguide. Therefore, we
expect any laser output at C only to appear in the TE10 mode.

The average calculated output power versus time in the TE10 mode at the output port is shown
in Figure 4.2(b). Initially no radiation is inside the resonator. Shortly after the electron beam
is slowly turned on at t = 0 with a rise time of 0.1 ns, it can be seen that noise-like radiation is
generated. After about 10 ns an exponential growth is observed, indicated by the straight line in
the logarithmic plot. After 40 ns the growth reduces, indicating that the gain starts to saturate.
Finally the growth stops completely and the output power settles down to a steady-state power of
1475 W. At this point the gain exactly compensates the losses per round trip. We note that the
power versus time in Figure 4.2(b) only represents the temporal development of the envelope of
the laser field. The actually observed field (not shown) consists of a regular, sinusoidal oscillation
growing out of initial noise, with an oscillation frequency of about 16 GHz, following the power
envelope of Figure 4.2(b).
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(a)

 

(b)

Figure 4.2: (a) The band diagram of the PhC together with the cut-off frequencies of the empty
waveguide modes in the output port and the dispersion of the slow space-charge wave. (b) The
output power in the TE10 mode monitored at C.

A small part of the output power is also contained in higher order empty waveguide modes.
However, the total power in higher order empty waveguide modes is at least over four orders of
magnitude lower than in the TE10 mode. Hence, it can be concluded that the output power of
the pFEL is to very good approximation in a single spatial mode of the output waveguide. The
following part of this chapter will focus on the pFEL output in the TE10 mode.

From the eigenmode calculations (linearized model) it is expected (Figure 4.2(a)) that the
operating frequency of the output signal in the TE10 mode is 16 GHz. To investigate the validity
of the linear approximation, we compare this with the results from the PIC calculations (nonlinear
model). Figure 4.3(a) shows the laser output spectrum of the TE10 mode as obtained from the
PIC model. The output spectrum is calculated by performing a Fourier transform of the fully time
resolved signal of the TE10 output. It can be seen that the peak in the amplitude spectrum is
located at 15.96 GHz and has a full width half maximum (FWHM) of 20 MHz. The operating
frequency from the PIC calculation is in good agreement with the expected frequency of 16 GHz
from the eigenmode calculations.

An important feature of the pFEL is its high spectral coherence, which can be seen from
the relatively narrow spectral bandwidth of the output shown in Figure 4.3(a). Such narrow
bandwidth is presumably the result of spectral condensation during the start-up phase of the laser.
To investigate such spectral condensation, we have divided the laser output field into a series of
time windows of 4 ns duration. A Fourier transform is performed on each window. Note that our
choice of the division of the window limits the spectral resolution to 0.25 GHz. Figure 4.3(b) shows
the time evolution of the amplitude spectrum of the signal, in which frequency is plotted versus
time. The color scale represents the normalized amplitude on a Decibel scale, normalized to the
peak amplitude at t = 120 ns. One sees that during the first 10 ns a broad spectrum of output
frequencies is generated as expected from noise-like and thus incoherent emission. After 10 ns until
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(a)

 

(b)

Figure 4.3: (a) Frequency spectrum of the TE10 mode calculated from the complete simulation
time and (b) the time evolution of the frequency spectrum.

40 ns, where the exponential growth region is, the operating frequency grows much stronger than
the neighboring frequencies slightly above and below 16 GHz. When the output power saturates,
the pFEL operates as a stable amplitude laser at a stable frequency and with a stable bandwidth.

In any FEL temporal coherence is observed when the initially continuous stream of electrons
becomes spatially structured in the form of so-called electron bunches, periodic in space and
time. In more detail, the longitudinal electric field of the radiation wave exerts a periodic force
(periodicity is 2π

kz
) on the electrons. This force accelerates and decelerates electrons such that after

some propagation the electrons will form bunches. These bunches are separated by the radiation
wavelength in the PhC. The radiation emitted by successive electron bunches can constructively
interfere, hence coherent radiation is generated. From the eigenmode curve in Figure 4.2(a) we
retrieve a wave number of 0.66 ·2π/az = 1660 m−1, which corresponds to a radiation wavelength of
3.8 mm inside the PhC for a frequency of 16 GHz. For comparison with the results from the PIC
model, Figure 4.4 shows the line charge density as a function of position within the PhC slab for
several instances in time during start-up of the laser. Initially (4.4(a)), the electron charge density
is nearly constant, showing only some small fluctuations due to numerical effects. When the field
starts to grow exponentially, at around t = 33 ns a spatially periodic modulation is observed
(4.4(b)). Subsequently, the modulation is seen to become more pronounced. The modulation
was determined via an auto-correlation method to possess a period length of 3.8 mm (4.4(c)).
At the onset of saturation (4.4(d)), the electron beam is found to exhibit a second, additional
modulation period. As saturation progresses, we observe a shift in the maximum modulation
depth towards low z-coordinates, where the electron beam is injected. The described effects of
bunching and saturation are actually characteristic and typical for free-electron lasers in general.
Close to saturation, numerous additional frequency sidebands are generated in the electron density
modulation. However, as we have limited the calculation frequency of the electromagnetic field

32



CHAPTER 4. START-UP AND OSCILLATION OF A PFEL

to values below 25 GHz in the PIC calculation, we are not able to observe if such high-frequency
sidebands are present in the output of the pFEL.

4.2 Frequency tuning

To study the tuning of the pFEL we varied the acceleration voltage of the electron beam between
10 kV and 15 kV. The black curve in Figure 4.5 gives the operating frequency of the pFEL ex-
pected from the velocity matching between the slow space-charge wave and the PhC dispersion
(synchronized mode). The center frequency obtained form a series of PIC calculations is indicated
by the black crosses.

From the velocity matched operating frequencies we expect a continuous tuning. However, the
frequencies calculated with the PIC model show a stepwise increase of the output frequency. A
possible explanation of such stepwise increment is the following. As discussed in the beginning
of this chapter, the PhC is embedded inside a resonator, which extends form A to B as shown
in Figure 4.1. This limits the possible emission frequencies to the longitudinal resonances of the
resonator and to corresponding longitudinal eigenfrequencies, leading to this stepwise increase in
output frequency tuning. This phenomenon is actually well-known as mode hopping. The same
phenomenon is observed in all other tunable lasers, such as fiber or diode lasers for the optical
range. Also, for all PIC calculations away from the stepwise increments we observed a bandwidth
of 20 MHz.

Figure 4.5 shows that, when neglecting the small deviations caused by longitudinal mode hops,
the Pierce theory is able to predict the operating frequency of the pFEL with a rather high
precision. Because eigenmode calculations of a PhC require far less time to perform than complete
PIC calculations, the Pierce theory offers a powerful tool to quickly investigate the basic tuning
capabilities of PhC used in a pFEL.
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(a)

(b)

(c)

(d)

Figure 4.4: The line charge density versus position at (a) t = 3 ns, (b) t = 33 ns, (c) t = 39 ns
and (d) t = 117 ns.
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Figure 4.5: The output frequency of the TE10 mode for different acceleration voltages. The black
curve shows the frequency predicted by the linear approximation. The black crosses are the laser
operating frequencies from the PIC calculations.
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Chapter 5

Transverse phase dynamics

The radiation produced in a pFEL scales with the number of electrons participating in the inter-
action. One way to increase this number is by increasing the electron density in the electron beam
while keeping all other parameters constant. However, Coulomb forces between the electron will
eventually limit the current density to preserve beam quality and beam transport through the PhC.
The PhC allows for a second method, i.e., by keeping the current density and other parameters
constant and increase the number of electron beams propagating in parallel through the PhC. The
number of electron beams may even range up to tens of thousands, which is required if we want
to scale to much higher frequencies.

Ideally, all electrons contribute constructively to the amplification process, i.e., the emission of
all dipoles excited by the electrons is in phase with the existing field. For the pFEL, this means
that the bunching taking place in all the beams must be phase locked. In case of an amplifier,
a coherent seed injected into the pFEL can provide the locking of all the individual beams to
the phase of the seed. In case of an oscillator, as we are studying here, initially no radiation
field is present and the laser starts from noise. Therefore, initially the individual electron beams
will evolve independently. However, as the electrons induce spontaneous emission, each individual
beam will experience the fields generated by the other beams and it is therefore expected that
this feedback mechanism will eventually result in a single, coherent radiation field, and that the
bunching in every one of the electron beams will be phase-locked by this common radiation field.

In this chapter we study the start-up dynamics in a multi-beam pFEL with emphasize on how
quickly the electron beams become phase-locked to each other by the radiation field. We consider
the most simple case of a two-beam array.

5.1 A two-beam array

For the two-beam pFEL we use a photonic structure as shown in Figure 5.1. The structure consists
of two copies of the single-beam pFEL PhC structure as shown in Figure 3.1, placed at a distance
d (measured from the center of each structure) from each other. For this study, d is taken to be 10
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Figure 5.1: Model used in the phase locking PIC calculations. The posts are modeled as metal
whereas the rest of the volume of the waveguide is vacuum.

mm and the width of the complete waveguide is 30 mm. The waveguide loaded with the PhC is
followed by the output waveguide that has the same transversal dimension as the loaded waveguide
and is sufficiently wide to make the cut-off frequencies of several empty waveguide eigenmodes to
be below the frequency generated by the pFEL. This can be observed in Figure 5.2, where the
band diagram of the PhC is shown for the three lowest order PhC eigenmodes with a non-zero
longitudinal field. Also shown are the cut-off frequencies for various empty waveguide modes
(horizontally dashed lines) and the dispersion of the slow space-charge wave supported by a 12 keV
electron beam having a current of 1 A. Figure 5.2 shows that, a priori, the radiation generated
in the PhC can couple to multiple empty waveguide modes when the power is transported to the
output port.

The transition from the waveguide loaded with the PhC to the empty waveguide at B in
Figure 5.1 again acts as a partial, in general frequency dependent, mirror and forms together with
the metallic mirror at A a resonator.

The gain for this pFEL is provided by two identical electron beams, each having a current
of 1 A at a beam voltage of 12 kV. To guide the electrons through the PhC, a homogeneous
longitudinal magnetic field Bz with a strength of 0.4 T is applied. To analyze the radiation the
field at the output port at C is decomposed into the eigenmodes of the port. However, to obtain
more information about the phase of the field, two additional electric field monitors are placed 1
mm in front of the output port and in line with the electron beams.

To avoid that the field probes also measure the self-field of the electron beam, the guiding
magnetic field is artificially ended at the end of the PhC and a transverse magnetic field Bx is
applied immediately after the PhC to bend the electron beams into the waveguide wall. The
distance from the dump position to the field probes is sufficiently large for the probes to measure
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Figure 5.2: The band diagram of the PhC together with the cut-off frequencies of the empty
waveguide modes at the output port.

only the electric field from the wave propagating through the output waveguide.
The band diagram in Figure 5.2 shows that the electron beam can interact with two closely

spaced PhC eigenmodes at around 16 GHz. Calculating the small-signal gain for each of these
modes shows that the lowest-order eigenmode should dominate the interaction.

5.2 Output power

As discussed in the introduction, the output power of a pFEL is determined by the number of
electrons participating in the interaction. This can also be seen in the expression for the small-
signal gain (Equation 2.21). If all electron beams would experience the same phase-matched field
amplitude, then the Pierce impedance will be independent of the number of electron beams. How-
ever, as the transverse field will change with transverse position, the strength of the field will vary
somewhat from electron beam to electron beam. As we keep the electron beam voltage constant
and increase the total current by increasing the number of electron beams, the beam impedance
will decrease (Equation 2.22). Consequently, the small-signal gain will increase (Equation 2.21),
as we expect the Pierce impedance to decrease much more slowly than the beam impedance when
the number of electron beams is increased for a well designed system.

To verify this line of reasoning, we have taken the pFEL geometry described in Section 5.1
and first turned on one electron beam and then both. The calculated output power is shown in
Figure 5.3 as a function of time. We observe that when one beam is turned on, the saturated
output power is approximately the same as for the single-beam pFEL studied in Chapter 4. The
operating frequency is 15.9 GHz with a FWHM of 40 MHz. Despite the output waveguide being
multi mode for the generated frequency, almost all the power is observed in the TE10 mode. The
power observed in the next higher order mode is at least an order of magnitude lower.

When both beams are turned on, the multi-beam pFEL saturates at about twice the output
power than when the same device is pumped by a single beam. Also, for this case an output
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(a) (b)

Figure 5.3: The output power versus time for a single-beam pFEL and a double-beam pFEL.
Both calculations are performed using the same model as shown in Figure 5.1. For the single beam
calculations only the first beam is turned on. In (a) the output power is plotted in kW on a linear
scale, whereas in (b) the output power is plotted on a logarithmic scale in W.

frequency of 15.9 GHz was produced with a FWHM of 30 MHz. The decomposition of the field
into eigenmodes at the output port shows that almost all the power is in the TE10 mode. It is
observed that the next higher order mode is over two orders of magnitude in power lower than
the TE10 mode. Therefore, we can conclude that increasing the number of beams from one to two
does not change the operating frequency, bandwidth and output mode, but is does approximately
double the output power and actually improves the mode separation for the case studied. However,
Figure 5.3 shows that up to 60 ns, the output of the pFEL pumped by two beams is below that of
the same pFEL pumped by a single beam. Note, that in all these observations it does not matter
which of the two beams is turned on when the device is pumped by a single electron beam. As we
expect the two beam pFEL to have a higher gain, we expect it to grow faster. This is not observed
in Figure 5.3. Also, it takes longer for the two beam case for the exponential growth to kick in,
resulting in a longer time to reach saturation. It is therefore of interest to study the multi-beam
laser dynamics in the start-up phase of the laser in more detail. This will be the subject of future
work.

In the remainder of this chapter we will focus on how the phase front of the generated radiation
is established and more particular, how robuust the wave front is if the electron beams start to
deviate from being “identical”.

5.3 Phase front observation through field probes

As is clear from the previous sections, the dynamics of a multi-beam pFEL can be complicated.
The larger transverse extend required to propagate many electron beams in parallel leads to a
so-called overmoded system. Multiple eigenmodes can interact simultaneously with the electron
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(a) (b)

(c) (d)

Figure 5.4: Ey monitored at (a) probe 1 and (b) probe 2. Figures (c) and (d) show the Fourier
transform respectively.

beams and this may influence the coupling between the beams.
Here we want to investigate one aspect of this complicated dynamics and focus on the robustness

of the phase front of the generated radiation when the electron beams start to deviate from being
identical. A complete analysis could be made if the complete electric field distribution throughout
the PhC and output waveguide would be available at all times during the calculation. However, the
amount of data involved is gigantic and virtually impossible to store and manipulate. We therefore
use two electric probes located in line with the two electron beams and just in front of the output
port (see Figure 5.1). This allows us to record the electric field as a function of time at these two
locations. From Figure 5.2 it is clear that the frequencies of interest generated in the PhC can
only couple to propagating TE modes. Therefore, we can limit ourselves to the analysis of the Ey
component as the Ey component completely describes the radiation in the output waveguide.

To describe the analysis method in more detail, Figures 5.4(a) and (b) show the Ey component
as monitored by probes 1 and 2, respectively. As a reference two identical electron beams, at least
to the extend allowed by the PIC software, are used. Because the period of the oscillation is much
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(a) (b)

Figure 5.5: (a) The time evolving cross correlation between the Ey field monitored at probe 1 and
probe 2. The rise times of the current in both electron beam is equal to 0.1 ns. The correlation is
normalized to the maximum correlation value. Contour lines at a step interval of 0.2 are added.
The thick white line indicates the maximum value of the correlation from 40 ns. In (b) the same
cross-correlation is performed where the rise time of the current for the second electron beam is
equal to 10 ns.

smaller then can be distinguished by eye, only the envelopes are visible in Figures 5.4(a) and (b).

The initially noise-like emission generated by the electrons is not visible on the linear scale
used in these figures. Also, the exponential growth over many orders of magnitude is difficult to
observe. At around 30 ns, saturation sets in and after about 60 ns a stationary output is obtained.
The residual oscillations are due to electron-beam noise generated by bending the bunched electron
beams.

A first analysis of these traces is made by applying a Fourier transform. Figures 5.4(c) and (d)
show the amplitude of the spectrum obtained after the Fourier transformation for the Ey fields
monitored at probe 1 and 2, respectively. Both spectra show the same center frequency of 15.9 GHz
and a FWHM of 30 MHz. The phase of the spectrum at the center frequency can give information
about the phase front of the radiation. However, if one wants to study this dynamically, a moving
time window is required in which the Fourier transform is performed. The reduced length of the
time signal results in a loss of spectral resolution. Hence, we applied a cross-correlation method
to study the time-dependent phase difference between the two probe signals.

Because the operating frequency, ν0, is known and equal for both electric fields monitored at
the probe positions, the phase difference can be calculated from the cross-correlation using

θ = 2πν0∆t. (5.1)

Here, ∆t is the time delay applied to calculate the cross-correlation. The cross-correlation between
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the two probes is calculated as

h(∆t) =
∫ t2

t1

Ey1(t)Ey2(t+ ∆t)dt. (5.2)

To obtain the temporal evolution of the cross-correlation we apply a moving time window to the
calculation of the integral. Figure 5.5(a) shows the cross-correlation function as a function of
time (or phase difference θ) using a temporal window of 4 ns, for the two probe signals shown in
Figures 5.4(a) and (b), respectively. The cross-correlation is shown in a pseudo-color and is nor-
malized to the maximum correlation value. Figure 5.5(a) shows that for the first 10 ns hardly any
correlation is present. For the first 20 ns or so, this is due to the noise-like spontaneous emission
generated by the electrons. After this time, exponential growth sets in and the spectrum starts to
condensate. In this region the correlation is still low. After about 40 ns a correlation is visible,
which becomes more pronounced as the laser reaches saturation. The thick white line in Fig-
ure 5.5(a) corresponds with the maximum in the cross-correlation, i.e., it gives the temporal trace
of the phase difference, θ. From this we conclude that when the radiation has grown significantly
above the spontaneous emission level, the spectrum of the two probes condenses to a single line
and at about 40 ns there is only a small phase difference between the two probes. This phase
difference then quickly drops to zero within 10 to 15 ns time.

It is interesting to investigate how the pFEL responds if the two beams are not identical. As
a first step, we investigate here what happens if the rise time of the second beam will be a factor
100 slower (10 ns instead of 0.1 ns). We again first calculate the Fourier spectrum from the Ey
fields monitored at the probes. As expected, the operating frequency is the same for both field
probes. Again, we use the windowed cross-correlation to investigate the time dependent phase
difference between the two probes. The result is shown in Figure 5.5(b). For the first 40 ns or so,
the behavior is quite similar for the case with two identical beams. Again this is due to the initial
noise-like emission of the dipoles and it takes time to spectrally condensate into a single frequency.
At around 40 ns, a correlation is established between the two probe signals, including a phase
difference of about 60 degrees between the two signals. This phase difference undergoes a damped
oscillation with time and approaches zero at the end of the calculation time interval. Clearly, the
different rise times of the electron beams affect the coupling between the beams, though eventually
both pFELs (identical beams and different beams) produce very similar laser radiation.

5.4 Phase front observation through electron bunching

The phase behavior observed through the field probes only describes the phase difference between
two particular fixed points. To obtain a complete phase front, many field probes need to be
inserted and analyzed. However, it is much simpler instead to investigate the electron behavior.
The bunching in the electron beam is responsible for aligning the dipoles responsible for emission
of the radiation. Hence, for a maximum bunching, i.e., all electrons have the same phase with
respect to the radiation, the dipoles induced by the electron bunches emit in phase and a coherent
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Figure 5.6: The line charge density in the (top) first electron beam and (bottom) second electron
beam at t = 57 ns. Both rise times of the beam current are equal.

field with a single well defined phase will be generated. Thus by inspecting the bunching within
the electron beams, in particular the level and location of the bunches, information of a possible
phase difference between the electron beams can be observed.

As the bunching information is obtained over the whole length of the interaction volume (PhC),
information about phase difference as a function of longitudinal position is obtained at a particular
time. This in contrast to the phase difference as a function of time for a fixed position from the
cross-correlation of the two field probe measurements discussed in the previous section. A so-called
particle position monitor that stores the position of each individual particle at certain moments in
time can be added to the PIC calculation to get information about the bunching. Again, due to
the amount of data stored, the monitor only stores the position of the particles for a few moments
in time. For both electron beams the bunching is investigated separately.

It is assumed that all electrons with x < 0 belong to the first (left) electron beam and all
electrons with x > 0 belong to the second (right) electron beam. For each electron beam, the
particle positions at a given time is condensed into a line charge-density. Figure 5.6 shows the line
charge-density versus longitudinal position for the left beam (top) and the right beam (bottom).
Similar as for the single beam pFEL, bunching occurs in the electron beams with a distance between
successive bunches of 3.73 mm. The location of the bunches in the left beam overlap exactly with
the location of the bunches in the right beam. This is emphasized by the vertical dashed line at z ≈
16 mm, at the location of the fourth electron bunch. The field probe measurement (Figure 5.5(a))
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Figure 5.7: The line charge density in the (top) first electron beam and (bottom) second electron
beam at t = 57 ns. The rise times of the beam current is 0.1 ns and 10 ns for beam 1 and beam 2
respectively.

shows that the phase difference between the two probe signals is about zero just in front of the
output port. Figure 5.6 confirms this and actually shows that, at the time t = 57 ns, the phase
difference is also zero throughout the whole PhC.

Similar to the study with the field probes, we investigate the effect of a different rise time for
the two beams, now using the bunching as a monitor. The field monitors (Figure 5.5(b)) show
that once the spectrum has condensed to a single frequency at about 40 ns and a cross-correlation
calculation becomes meaningful, a phase difference was detected between the field measured by
the two monitors. Figure 5.7 shows the line charge density versus the longitudinal position, again
at t = 57 ns. Similar as in Figure 5.6, the top and bottom graph show the charge density for
the left beam and the right beam, respectively. Figure 5.7 shows two remarkable features. First,
the bunching in the two beams is not identical any more, as illustrated by the fourth bunch in
the beam located at z ≈ 15 mm. Second, comparing Figure 5.7 with Figure 5.6 shows that the
position of all the bunches have shifted, i.e., the fourth bunch is at z ≈ 15 mm for the beams
with different rise times, while they are at z ≈ 16 mm for the beams with equal rise times. Both
bunching profiles are measured at the same time of 57 ns after the start of the simulation. For
the case with different rise times, the second beam reaches it maximum current at 10 ns, which
approximately corresponds to the onset of exponential growth when the structure is pumped by a
single beam. When the structure is pumped by two beams having the same rise time, the onset of
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0

Figure 5.8: The solid line indicates the phase difference calculated with the cross-correlation
between the Ey field as shown in Figure 5.5(b). The diamond markers indicate the phase difference
in the bunches in the two separate electron beams. The phase difference in the Ey field clearly
follows the phase difference between the electron bunches.

exponential growth is shifted to about 20 ns. First we can conclude that when two electron beams
are present, the laser takes longer to reach the exponential growth regime. A second conclusion is
that the longer rise time of the second beam is not sufficient for the first beam to become dominant
and set the phase of the radiation field.

To investigate the bunching behavior in more detail a spatial cross-correlation between the line
charge density of the left electron beam and the right electron beam is calculated as a function of
∆z. The value of ∆z can be converted to a phase difference using the wavelengths of the radiation
field, i.e., the period of bunching, θ = 2π∆z

λ . Because the line-charge density is calculated using
a binning operation on the longitudinal positions of the particles, the resolution is limited by the
binning size. Here we used a 10 µm binning size, therefore the resolution in θ is 0.017 rad.

For various times, we have calculated the cross-correlation and determined the phase difference
at where a maximum cross-correlation is obtained. This phase difference is plotted as a function of
time in Figure 5.8, together with the phase difference obtained in a similar way from the temporal
cross-correlation of the two Ey fields monitored at the probes.

The calculated correlations between the bunches in the different electron beams is depicted in
Figure 5.8 and compared to the phase correlation of the electric field we observed in Figure 5.5(b).
Both correlation traces show a similar oscillation period, while the damping of the oscillation in
the phase difference is slightly higher when the phase difference is derived from the bunching.
The difference in damping may be explained by the fact that the field probes monitor the Ey
field component at a particular transverse position, while in determining the line-charge density
the particles are summed over transverse cross-sections. This figure also shows a temporal shift
between the results of the two methods. The shift between the two methods can be explained as
follows. The line-charge density is calculated at a particular time t0. The bunching is determined by
the phase-matched radiation field, and the interaction is with the backward wave (vg < 0, vph > 0).
This means that the radiation field responsible for this bunching first travels towards the electron
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source, is reflected and then travels to the output port. The length of the PhC divided by the
group velocity determines the duration ∆t of the radiation wave observed at the positions of the
field probes. The start of this interval at the position of the field probes is thus t0 + ∆t + ∆τ ,
where ∆τ (∼ 0.1 ns) is the time required for the radiation wave to propagate through the output
waveguide. As the temporal cross-correlation value is allocated to the center of the interval, a phase
difference observed in the spatial cross-correlation at time t0 should be observed in the temporal
cross-correlation at a time t0 + 3∆t

2 + ∆τ . From Figure 5.8 we deduce 3∆t
2 = 6.6 ns, or ∆t =

4.4 ns. From this, the group velocity is 1.1 · 107 m/s (= 0.038c). This value is very close to the
group velocity calculated from the band diagram shown in Figure 5.2 at this frequency (15.9 GHz).
Note that the window used for the spatial cross-correlation (50 mm ∼ 4.4 ns) and the temporal
cross-correlation (4 ns) are very similar. Still, the slight difference in window may also be a reason
for the observed difference in damping of the phase difference oscillation.

So far, the temporal cross-correlation of two field probe signals gives us information about
phase front evolution at only two points in the transverse plane. The spatial cross-correlation of
the line-charge density, which sums all electrons in thin electron slides, give remarkable similar
results, and therefore suggests that this method can also be used to obtain information about the
evolution of the phase front. However, here a transversely integrated measure is obtained. We
therefore apply yet another method to investigate the evolution of the phase front and this will be
discussed in the next section.

5.5 Direct phase front observation

In the previous sections we discussed methods to obtain information about the phase front evolution
in a pFEL. The first method related on measuring the field component as a function of time at two
locations in the transverse plane, just before the output port. These field probes can in principle
be placed everywhere in the device and measure the total electron field at the probe position. The
other method we investigated relied on obtaining the line-charge density in each electron beam.
From the evolution of the bunching, information is obtained about the phase front of the radiation
field, as the field drives the bunching. Because we use the line-charge density, only information at
the location of the electron beams is available.

We therefore investigate yet another method that provides a field map throughout the whole
interaction region at a particular time. However, a 3D map would exceed by far the available
computational resources and we have to limit ourselves to a 2D map of a single field component.
Again, Ey is chosen as the component to register. Even with such measures we can not store many
field patterns during the calculations and we limited the number of snap shots to a few. Figure 5.9
shows the Ey field at the xz-plane at y = 0 of the calculation domain for the case that the two
electron beams have both a rise time of 0.1 ns. The circles indicate the position of the posts. In
the output waveguide, zero crossings of the Ey field are indicated with the black crosses. The
electric field inside the PhC, hence inside the resonator, is much larger than the electric field value
inside the output waveguide, due to the reflection at the interface between the PhC and the output
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Figure 5.9: Ey field for (a) 48 ns, (b) 98 ns and (c) 149 ns. The gray scale indicates the electric
field value, which is clamped to a maximum and minimum value of −105 and 105 respectively. The
circles and the two squares indicate the position of the posts and the probes respectively. The black
crosses together with the dashed white lines indicate the zero-crossings of the electric field, hence
the phase front.

waveguide. Therefore, the electric field values are clamped to a minimum and maximum of −105

V/m and 105 V/m, respectively. The gray scale is merely to illustrate the phase front. The black
squares at the bottom indicate the position of the probes.

As only a limited number of field maps can be produced, the times chosen for the maps in
Figure 5.9 are selected using Figure 5.5 to obtain maps with potentially interesting features. The
first map at t = 48 ns corresponds to the largest phase front observed with the field probes. Indeed,
a tilted wave front is observed in Figure 5.9(a). However, this tilt is not constant throughout the
model. A tilted wavefront in the output waveguide necessarily requires the presence of multiple
modes. A priori, the PhC eigenmode at the transition from the PhC to the output waveguide
can also be described as a super position of propagating and non-propagating empty waveguide
modes. The non-propagating modes decay exponentially and can be ignored after some distance
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from the transition plane and only the propagating modes remain. Note that in Figure 5.9(a) some
contribution from the electron beam to the Ey field is visible at the location where the electrons
are dumped. In Figure 5.9(b) and (c), these contributions are still there, but they are masked by
the overlapping .

If the PhC eigenmodes would be the same at all three times and only differ in power, we would
expect the same decomposition in empty waveguide modes. However, the three maps in Figure 5.9
seem to indicate that this is not the case. This indicates that the radiation field inside the crystal
not only grows in power with time, but also changes in mode content. On the other hand, part
of the propagating radiation field in the output waveguide may also come from the bending of
the bunched electron beams. Because of the difference in radiation power generated inside the
PhC, this contribution may be masked in Figure 5.9(b) and (c), while it is visible in Figure 5.9(a),
leading to higher order modes in the output waveguide. This needs to be further investigated.

A similar field map is made for the other case investigated so far, where the right electron
beam has a rise time of 10 ns in stead of 0.1 ns. Figure 5.10 shows again three 2D field maps of
the Ey component at three times, namely (a) 57 ns, (b) 68 ns and (c) 148 ns, that are now based
on features observed in Figure 5.5(b) or Figure 5.8. The features visible in Figure 5.8 are indeed
confirmed by the phase fronts observed in Figure 5.10(a)-(c). These and other field maps not
shown here, give the impression that the phase front tilt visible in Figures 5.9(a) and 5.10(a),(b)
undergo an oscillation as a function of time, as is also visible in Figure 5.8, and are for this reason
coined as relaxation oscillation of the phase front tilt.

It should be noted that the output power detected in the fundamental mode at the output
port is the same for the two cases studied here. The differences observed in the phase front in the
output waveguide section between Figure 5.9 and Figure 5.10 suggest a different higher-order mode
content for the two cases. Since we do not believe that this can all be attributed to the bending of
the electron beam, we have to conclude that the slower rise time of the right electron beam clearly
affects the interaction and coupling between the electron beams. Still, given sufficient time, the
electron beams become phase-locked and single mode operation is obtained.
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Figure 5.10: Ey field for (a) 57 ns, (b) 68 ns and (c) 148 ns. The gray scale indicates the
electric field value, which is clamped to a maximum and minimum value of −105 V/m and 105

V/m respectively. The circles and the two squares indicate the position of the posts and the probes
respectively. The black crosses together with the dashed white lines indicate the zero-crossings of
the electric field, hence the phase front.
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Chapter 6

Conclusions

In the numerical study performed for this thesis we have demonstrated that free-electrons stream-
ing through a photonic crystal can generate wavelength controllable, high power and coherent
Cherenkov radiation. This so-called pFEL overcomes the fundamental limitation of PhC lasers in
terms of wavelength control, in that principally any desirable wavelength can be generated using
an appropriate photonic crystal structure. We theoretically investigate such a pFEL in the mi-
crowave range (around 16 GHz). We first used the calculation of the photonic crystal eigenmodes
to determine the band diagram of the photonic crystal and used these modes to calculated the
Pierce small-signal gain. By doing this for a number of photonic crystals, we determined a gain-
and tuning range optimized photonic crystal for use in a pFEL.

The strong-signal dynamics of a pFEL are studied using a PIC method, which give a tremendous
insight in the nonlinear dynamics of the pFEL. In contrast, the small-signal calculations are limited
to estimating solely expected gain and approximate emission wavelengths. The PIC simulations
have shown that such pFEL can actually reach the threshold for coherent laser oscillation. We show
that the pFEL is able to generate spectrally narrow band laser output of frequencies around 16
GHz with a bandwidth of at most 20 MHz. We observe an excellent agreement between the tuning
predicted by the PIC calculations and the expected frequency tuning derived from the eigenmode
calculations for the photonic crystal. An oscillation at distinct longitudinal modes are revealed by
the PIC calculations. We predict that the described pFEL can provide an output power of almost
1.5 kW when operated by a single electron beam with a beam energy at around 12.5 keV and a
beam current of 1 A.

After verifying that the single beam pFEL works successfully we showed that by adding a
second identical electron beam, the steady-state output power can be further increased to almost
3 kW. This opens up the general possibility to increase output power of pFELs without the need
for electron beams with higher current densities, simply by using many electron beams in parallel.
This is of fundamental importance because increasing the current density in electron beams leads
to increasingly complicated beam transport (especially at the low beam energies considered here).
However, when pumping a pFEL with many beams, the question arise as to what the spatio-
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temporal properties of the output would be. To pave the way to a pFEL using multiple electron
beams for a wide control of the output power, we investigate these spatio-temporal properties by
studying the phase front dynamics in a pFEL pumped by two electron beams. The various methods
used to retrieve the phase front from the PIC calculations are (i) retrieving one field component
(Ey) as a function of time for two different positions in the transverse plane, (ii) the line charge-
density in each electron beam at a particular time and (iii) a two-dimensional field map of one
field component at a particular time. We associate the observed phase difference with a phase
front tilt oscillation and found that the relaxation oscillations in the wave front tilt have decayed
to zero when a steady state is reached for the output power, even when differences are introduced
between the two beams (in particular a different rise time). All methods investigated support the
conclusion given above, and at the same time they indicate a complicated start-up dynamics that
needs to be investigate further. Still, the observed damping of initial phase differences is promising
for extending the number of electron beams.

The same principle of exploiting the control of optical properties provided by a photonic crystal
in a pFEL can be applied in any other spectral domain due to the scale invariance of the Maxwell
equations. A frequency range with complete lack of powerful, tunable and compact laser sources
is the THz range [22]. To upscale the radiation frequency to that range, one simply would have to
downscale all dimensions of the PhC. Inevitably, the vacuum channels reduce in size, limiting the
volume available for the streaming electrons. In view of the limits in the beam current density, the
output power will reduce if only a single beam is used. However, the concept of the pFEL with
several or many electron beams, as we have shown here with two beams, can compensate for the
power loss by increasing the transverse size of the PhC and the number of electron beams. This
should ultimately allow to build hand held, Watt-level continuous wave THz sources.
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