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Chapter 1

Introduction

Photonic crystals (PhC) are periodic dielectric or metallo-dielectric struc-
tures engineerd to manipulate the properties of light. Photonic crystals can
be designed to e.g. slowing down light to extremely low values[1], bend light
through sharp corners [2] or prevent certain frequencies light of any polar-
ization from propagating in one or more directions [3]. PhC are therefore
proposed for many applications like optical fibers [4], optical computers [5],
electron accelerators [6] and free-electron lasers [7, 8] (FEL).

Investigating of the behavior of a PhC usually requires measuring the
transmission and reflection spectra. It is possible to derive the band struc-
ture from these measurements and hence characterize the PhC. However, as
only fields outside the PhC structure are measured, no information is avail-
able about the internal field. Numerous applications would benefit from a
precise knowledge about this internal field.

Surface near field optical scanning microscopy[9] is often used to mea-
sure the optical very close to the surface of the PhC. Although this still
measures the field outside the structure, some information can be obtained
from the internal field near the surface. Another method uses monopole
antennas that are inserted at discrete positions into the PhC along one of
the propagation directions of the light[10]. These can then be used to probe
propagating and evanescent modes. Although this method allows one to
probe the fields deeper inside the PhC, the depth is still limited as the
antennas will otherwise significantly disturb the field it measures.

This thesis focusses on a measurement method that allows all the six
components of the electromagnetic field (Ex,Ey,Ez and Hx,Hy,Hz) to be
mapped at every accessible position inside a PhC. This technique is well
known for characterizing fields inside microwave structures[11, 12]. Surpris-
ingly it has never been used to measure fields inside a PhC. The technique
relies on placing the PhC inside a resonator and measure the resonance fre-
quencies. If one inserts a sub-wavelength object inside the PhC, the resonant
frequencies slightly shift depending on the local field, shape, size and ma-
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terial (susceptibility and permeability) of the object. Thus by choosing an
appropriate shape, material and orientation each particular field component
can be mapped by varying the position of the sub-wavelength object in the
PhC.

Here we apply the technique in a PhC designed for a photonic free elec-
tron laser (pFEL) under development at the Laser Physics and Nonlinear
Optics group from the University of Twente. pFELs are developed to pro-
vide a compact, powerful and tunable THz source [8]. Inside a pFEL a
continuous stream of electrons pass through a PhC. By the interaction of
the electrons with the electric fields inside the crystal the electron beam gets
bunched. The bunched electron beam then emits coherent laser light.

The electric field inside the PhC is crucial to the operation of pFEL. Due
to inevitable limitations of the manufacturing accuracy an experimental PhC
will possess disorder. To investigate the disorders influence on the electric
field the PhC properties inside the PhC need to be measured.

The remainder of this thesis is organized as follows. In the first chapter,
the pFEL is briefly discussed to provide the requirements for the PhC. The
second chapter elaborates on the theoretical basics of waveguiding struc-
tures and presents the PhC in more detail. We then continue with the
measurement setup used to characterize the PhC. The structure has been
characterized in two ways, first the band structure has been measured and
second the internal field has been determined. Both type of measurements
are compared to numerical calculations using a FDTD field solver. We con-
clude with a discussion of the results and recommendation for future work.



Chapter 2

Photonic Free Electron
Lasers

2.1 Introduction to FELs and pFELs

Free-electron lasers (FEL) are very different to photonic free-electron lasers
(pFEL). FELs are devices that use a alternating static magnetic field to con-
vert kinetic energy of relativistic electrons into coherent radiation energy.
These devices have the extremely useful property that the wavelength gen-
erated depends on the velocity of the electrons. FELs can therefore fill the
gaps in the electromagnetic spectrum where no other coherent light sources
exist. Examples are the THz gap (FELIX1, FLARE2) and in the soft- and
hard X-ray regime (FLASH, LCLS, FERMI@Elettra). However, the scaling
is such that shorter wavelengths require higher electron energies, e.g., a few
tens MeV for a THz source and a few GeV for the soft X-ray wavelengths.
Consequently FELs are very big and expensive facilities.

In a photonic free electron lasers (pFEL) electrons propagate with ve-
locities much smaller then the speed of light through a photonic crystal
(PhC). The electrons emit radiation inside the PhC through the Cherenkov
effect. Cerenkov radiation is emitted whenever charge particles move faster
than phase velocity3 of the radiation. Therefore, Cerenkov radiation is only
emitted when the particles move through a medium, as in a vacuum the
radiation always moves faster than the electrons. When the medium is a
photonic crystal (PhC), one can take full advantage of the PhC to engineer
the propagation of the light. For example, the light can be slowed down
considerably [1] and this allows the use of low energy electrons i.e. the ve-
locity of electrons is a small fraction of the speed of light in vacuum. Before
discussing the two main physics principles behind the pFEL we will first

1Part of GUTHz research at FOM Institute for Plasma Physics Rijnhuizen
2Build at the Radboud University Nijmegen
3See Appendix A at pag. 35 for a small review on phase velocities
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4 2.1. Introduction to FELs and pFELs

Figure 2.1: pFEL scheme

briefly present an overview of the device.
Fig. 2.1 shows the schematical overview of a pFEL. The electrons are

produced in the electron gun shown on the left in fig. 2.1. The electron gun
produces one or multiple low energy electrons beams that stream through
the PhC, shown in the fig. on the right. Depending on the size and number
of electron beams, thermionic emission or field emission can be used. The
latter is shown schematically in fig. 2.1).

The pFEL at LPNO however initially uses a single beam produced by
a thermionic electron gun. Here the cathode surface is heated, so that only
a small energy is required to overcome the surface binding force i.e., work
function4. The external applied voltage between cathode and anode is now
sufficient to extract the electrons and accelerate them from cathode to anode.
Efficient operation requires a low work function and thus the device needs
to be operated under a vacuum of 10−8 mbar. The electron gun nominally
operates at 15-20 kV, i.e., electrons stream at approx. 0.3 times c, where c
is the speed of light in vacuum.

Alternatively, when a large number of separate electron beams are re-
quired, a field emission cathode can be used (see fig. 2.1). Here the cathode
consists of regular array of cones with very sharp tips placed in front of small
holes in the extraction electrode. A small voltage between the cathode and
anode creates a high field at the tip due to field enhancement. This high
field extracts the electrons from the tip which are subsequently accelerated
towards the anode. This type of cathode allows for a regular array of finely
spaced electron beams.

In both cases an external guiding field must be provided to prevent
electron beam divergence in the PhC caused by Coulomb repulsion. Here
a solenoid is used (see fig. 2.2) as this magnetic field converts the radial

4In solid state physics, the work function is the minimum energy (usually presented in
electron volts) needed to remove an electron from a solid to a point immediately outside
the solid surface.
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Figure 2.2: Overview

expansion in a circular motion around the axis of propagation. Behind the
PhC, at the vacuum window in fig. 2.2, the radiation is coupled out of the
device.

The PhC has two functions. First it slows down the phase velocity
of the electrons so that Cerenkov emission is possible. Second, the electron
beam gets bunched by the scattering of the light emitted from the individual
electrons at the periodic structure, eventually leading to coherent emission.
Both processes will be described in more detail in the following sections.

2.2 Cherenkov Radiation

The electron interaction with the photonic crystals is based on the Cherenkov
radiation principle. Cherekov radiation was first characterized by Pavel
Alekseyevich Cherenkov(1904–1990) who shared the Nobel prize in Physics
in 1958 for his work on this subject. The radiation is well known from
nuclear facilities where high velocity charged particles travel through the
cooling water. The charged particles, mostly electrons, produce light creat-
ing a glow around radioactive materials.

Electrons carry a negative charge. When an electron comes along a water
molecule of the cooling water, it polarizes the water molecule. When the
electron has passed the molecule depolarizes again. This process induces
an oscillating dipole. During the dampening out dipole radiation is emitted
from the water molecule. Constructive interferrence of all the emissions
induced by a single electron occur only when the phase velocity of light in
the surrounding medium vph is less or equal to the speed of the electron ve.
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Figure 2.3: Cherenkov wavefront

Fig. 2.3 illustrates this by showing the emission process for electrons
being slower, faster or having the same velocity as the phase velocity in
water. The blue beads marked ’e’ depict an electron (or any other charged
particle) traveling towards the right. Each circle is a spherical elementary
wavelet due to the dipole emission. The wavelet is generated by a water
molecule in the center of that circle and expands in all directions over time
with a phase velocity vph. Thus a larger circle radius means an earlier
emission. Black lines, denoted by the number 4, are Cherenkov wavefronts
which constructively interfere. These wavefronts form the radiation which
are observed in nuclear plants.

Illustration 1 in fig. 2.3, shows an electron with ve < vph having passed
5 water molecules, i.e. 5 molecules emitted radiation earlier. The radiation
travels faster than the electron. Therefore new wavelets are always trailing
behind older ones and no constructive interference occurs between succes-
sively emitted waves. Thus if the ve < vph no constructive interference
occurs and no net light emission is observed. The electron velocity stays
unchanged.

Illustration 2 in fig. 2.3, shows an electron moving at exactly the speed
of the emitted dipole radiation ve = vph. The overlapping circles show that
each emitted wavelet constructively interferes just in front of the electron.
Therefore a wavefront along the vertical line marked by number 4 forms and
light is observed. The electrons slow down a little bit.

When ve is even higher, e.g. the electron traveling over twice the speed
of light in the medium ve > vph, a cone is formed, see illustration 3 in fig.
2.3. Along the cone the individual wavelets are in phase with eachother.
This wavefront has an angle θ to the normal of propagation. To calculate
the angle θ we draw a triangle as in fig. 2.4. The left corner of the triangle
represents the initial location of the electron. After a time t the electron is
at the right corner. The electron has traveled a distance Le = ve t while
the wavefront has traveled Lph = vph t. Taking the cosine of the left angle
results in the time independent solution
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Figure 2.4: Cherenkov wavefront geometry

cosθ =
vph
ve

(2.1)

The shown emission occurs only for ve ≥ vph. When ve = vph the angle θ is
0 resulting in a flat wavefront normal to the direction of propagation. As the
velocity of the electron increases, so does the angle θ. Note that for every
electron velocity higher than the phase velocity an angle θ exists between 0
and 90 degrees.

Relativity theory states that the speed of light c in vacuum is a constant,
meaning the Cherenkov emission does not occur in vacuum as electrons
cannot be accelerated above c. The lights phase velocity in a dielectric is
reciprocal to the refractive index of the medium[13], eq. 2.2:

vph =
c

n
(2.2)

Here vph is the lights phase velocity, n the refractive index of the medium
and c the speed of light in vacuum. For example, water has a refractive
index of n ≈ 1.33 for the visible light. The speed of light in water then
is c/1.33 = 0.75c. Thus a charged particle propagating with relativistic
velocity is then much faster than the speed of light, leading to Cherenkov
emission.

The refractive index n is either a constant or varies with the light’s
frequency, depending on the material. The phenomenon where the refractive
index is frequency dependant is called dispersion. Dispersion can be caused
by material properties or by geometric properties. An example for dispersion
is the working of a prism. The dispersion of the glass causes different colors
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Figure 2.5: Dispersion in glass medium

of light to refract at different angles, splitting white light into a rainbow of
colors.

Fig: 2.5 shows a dispersion diagram where the angular frequency of the
incident light ω is plotted against the wavenumber k. The black line is the
dispersion of glass. The red graph red line shows the dispersion of vacuum.
This line is also named lightline. The general expression of dispersion[13] is
given by eq. 2.3

vph =
c

n(ω)
=
ω

k
(2.3)

The phase velocity of light can be read from the dispersion diagram
when the wave number is known. The slope of a line, pointing out from
the origin towards the dispersion diagram is the phase velocity. This makes
clear why the red line of fig: 2.5 is called the lightline. The graph starts at
the origin and its slope is exactly c. Thus all points on this line have phase
velocities equal to the light velocity in vacuum. Points below the lightline
denote velocities less than c and above the line greater than c.

The equivalents of water molecules in the coolingwater are metal posts
of the investigated PhC. Inside a metal the electric field must be 0. Metals
shift surface charges to counteract infringing electric fields. In fig: 2.6 the
response of metal posts due to a passing electron is shown. The metal posts
are depicted in yellow, the electron in blue. All dipoles point toward the
passing charge. When the electron has passed along the metal posts they
depolarize to their neutral states. Just like the water molecules a short
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Figure 2.6: Induced dipoles in a PhC

wavelet is generated[14] when this happens. A single electron generates a
single wavelet at each post it passes.

To reduce divergence losses the PhC is embedded in a rectangular waveg-
uide. Waveguides cause dispersion change due to their geometry. A disper-
sion graph of a rectangular waveguide is shown in fig: 2.7(a). The red graph
is the lightline, the grey graph the dispersion characteristic of the rectangular
waveguide. Note that the graph always lies above the lightline. The phase
velocity is higher than the speed of light. An electron can never reach such
velocities and no Cherenkov emission occurs in a rectangular waveguide.

However, the metal posts of the PhC induce an artificial increase of the
refractive index. Each wavelet is reflected between the metal posts a great
number of times along a complex path, slowing the effective propagation
velocity of the wavelet down. In fig: 2.7(b) an example of the dispersion
characteristic of a fictious PhC loaded rectangular waveguide is shown. The
dashed red line is the lightline and again the gray line the rectangular waveg-
uide dispersion. The green line is the dispersion graph of a PhC waveguide.
The blue line is an isovelocity line indicating 0.67c, or two thirds lightspeed.
With increasing k the phase velocity inside a PhC slows down. From about
5 inverse meters and up, the phase velocity inside the example is slower
than the speed of light in vacuum. In this region the Cherenkov condition
is fulfilled and emission occurs.

The possible emission frequencies are determined by the electron velocity.
The velocity is plotted in the dispersion diagram. If e.g. electrons where to
travel at 0.67c, the electron velocity would be equal to the velocity indicated
by the blue line in fig. 2.7(b). The point where the electron velocity line
and the dispersion graph intersect, indicated by the arrow, determines the
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(a) Empty waveguide (b) With and without PhC

Figure 2.7: Dispersion characteristic of a rectangular waveguide

frequency emitted due to the Cherenkov effect. The emissions are incoherent
unless bunching is achieved.

2.3 Bunching Principle

Initially the electron beam is continuous in time. Thus Cherenkov wave
fronts are generated at any time t and the wavelets emitted by different
electrons have a random phase relation. This means only incoherent radi-
ation is produced. To achieve coherent radiation phases must be aligned
through a spatial structuring of the electron beam named bunching.

Assume a co-propagating radiation field with non-zero Ez component
along the axis of propagation, z, of the electrons. For a co-propagating Ez-
field the phase velocity is vph = ve which is the lower limit for Cherenkov
emission. Generally the Ez-field will have a periodicity in z, e.g. a sine-
like function Ψ(z) with a corresponding potential ∇ψ(z) = Ψ(z) Fig. 2.8
schematically shows how the potential ψ(z) leads to electron bunching.

First electrons - both blue and green dots - are continuously distributed
over the potential which is drawn in red. Due to the potential the electrons
are forced into regions of lower potential which is indicated by the blue
arrows in 2.8(b).

After some propagation distance Z1 all electrons get bunched at the po-
tential minimum, see fig. 2.8(c). Each electron in a bunch induces Cherenkov
emission with the same phase as the other electrons in the same bunch. Note,
in the special case where vph = ve, the bunches are formed at the minimum
of the field potential and since the potential minima of the Ez-field are one
wavelength apart, the bunches are also formed one wavelength apart. The
emitted waves from individual bunches constructively interfere with each
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(a) Initial situation (b) Field potential splits stream

(c) Electrons contract to bunches (d) Momentum causes unbunching

Figure 2.8: Bunching process

other and also with all the waves from other bunches. Thereby coherent
light emission is achieved.

At the bottom of the potential, electrons experience no force by the field.
However the electrons still carry momentum at this location due to previous
acceleration/deceleration. This leads again to unbunching as depicted in fig.
2.8(d). When space charge forces between individual electrons are neglected
this leads to a pendulum motion. Like in the pendulum a continuous ex-
change between potential energy (field) and kinetic energy occurs. Thus in
this small signal gain regime5 the pFEL should end after Z1.

So far Ez-field has been assumed to exist. In an actual pFEL the first
Ez-field is generated by spontaneous Cherenkov emission. To ensure actual
gain of the Ez-field, electrons have to be a little faster than the phase velocity
of the radiation field. Due to Newton’s third law of motion, the field not
only exerts force onto the electrons, the electrons exert equal force onto
the field. In the case ve = vph, there are as many electrons accelerated as
decelerated by the field meaning no gain of the lightfield occurs. If electrons
are launched at just above the phase velocity of the field ve > vph, the Ez-
field decelerates more electrons than it accelerates and kinetic energy of the
electrons is transferred to the Ez-field resulting in signal gain.

Obviously an electric field with a strong z-component along the path the

5The small-signal gain of a laser medium is the gain obtained for an input signal which
is not strong enough not to cause gain saturation.
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(a) Gain (b) No gain

Figure 2.9: Transverse modes of an Ez-field

electrons travel is paramount to the bunching process and signal gain. For
high gain the electric field should thus have a maximum at the location of
the electron beam.

Furthermore, waveguides and PhC allow many modes of operation. Some
of these modes have strong maxima in the center of the PhC, others have
nodes. Fig. 2.9 shows two possible transverse mode patterns of the Ez-
field. The red line plots the transverse field pattern of the E-field at a
fixed position taken along the width-axis x of the PhC. A blue electron is
drawn to denote x-position of the electron beam. As seen in fig. 2.9(a),
the electron beam in the spFEL propagates exactly at the maximum of the
mode-pattern. This allows strong interaction and gain. In fig. 2.9(b) the
mode-pattern has a node exactly at the beam path. Electrons have a very
weak interaction and generate no gain.

Deviations in the PhC due to manufacturing can deteriorate the field
leading to reduced gain, making the measuring of the field inevitably nec-
essary. The next chapter introduces the theory of wave propagation in PhC
waveguides.



Chapter 3

PhC and Waveguiding
Principles

3.1 Introduction

The operation of a pFEL relies on a slow phase velocity and a strong z
component of the electric field of the PhC waveguide. Both properties are
determined by the waveguide and embedded PhC geometry. Starting from
the waveguide analysis we will show the electric field solutions and dispersion
of the PhC waveguide used in the LPNO-UT pFEL experiments.

3.2 Wave motion

To illustrate the waveguide and PhC properties we will largely use the con-
cept of modes. To illustrate modes we first discuss a wave on a string which
is fixed on both sides, fig. 3.1.

In fig. 3.1 a string is fixated to a rigid wall at both ends. We assume
the string has been exited somehow. Fig. 3.1(a) shows the longest possible
oscillation that does not decay with time. The string oscillates up and down
forming a stationary wave. Such an steady state oscillation is called a mode
of the structure. It has 1 maximum at the center of the cavity and nodes at
each wall. Meaning a half wavelength λ fits in the cavity. Fig. 3.1(b) shows
the second mode. It has 2 maxima and three nodes, including one in the
center. For this mode one wavelength fits into the cavity. For subsequent
modes more and more half wavelengths fit into the cavity.

The number of oscillations per second determines the frequency of the
wave. As discussed in the previous chapter, to each frequency corresponds
an wavenumber determined by the dispersion of the system. For this rope,
higher frequencies have shorter wavelengths. In this simplified 1D situation
changing from one mode to the other results in discrete frequency steps.
Intermediate frequencies produce wavelengths which do not fit the cavity.

13
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(a) 1st mode (b) 2nd mode

Figure 3.1: Modes in a 1D cavity

These waves will decay exponentially from the point of excitation and thus
do not form a mode.

The frequency belonging to the longest wave fitting the cavity is named
the cut-off frequency fc. For all frequencies lower than fc the corresponding
wavelengths do not fit inside the cavity and decay exponentially.

The discussed waves on a string are 1 dimensional waves, but the waveg-
uide geometry of the pFEL is three dimensional, meaning waves must fit in
three orientations. Waves fitting in the width and height of the waveguide
are called transverse modes. Waves fitting along the length are called longi-
tudinal modes. The waveguide is rectangular and the height and width are
much smaller than its length. So the cut-off frequency is mostly determined
by the transverse size. For more detail we review the wave equation for
rectangular waveguides by using Maxwells equations.

3.3 TM modes in metallic rectangular waveguides

Maxwell’s equations are the basis of electrodynamics. So analysing them
will lead to the modes of the empty rectangular waveguide, including the
phase velocity and field patterns. During derivation the well-known phasor
notation is used to simplify analysis. An electric wave propagating in the
z-direction is shown in eq. 3.1.

E = Ẽ(x, y, z)ejωt+φ (3.1)

With E the electric field, Ẽ a time independent amplitude of the oscillating
field with the angular frequency ω, t time and φ a starting phase. It is
customary to suppress the common phasor term ejωt+φ in field equations to
maintain readability. The starting phase is only shown when relevant.
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Eq. 3.2 shows the source free Maxwell equations.

∇×E =
−∂B
∂t

(3.2a)

∇×H =
∂D

∂t
(3.2b)

∇ ·D = 0 (3.2c)

∇ ·B = 0 (3.2d)

As before E is the electric field, as a function of the geometric variables x,
y, z and time t. Using the same conventions: B is the magnetic flux density
field, H the magnetic field and D the electric flux density field.

Furthermore we will assume linear material properties and thus obtain
the following relations for electric and magnetic flux density.

D = εE (3.3a)

B = μH (3.3b)

Where ε is the complex relative electrical permittivity and μ the complex
relative magnetic permeability. Thus the Maxwell’s eqs. 3.2a and 3.2b
become

∇×E = −μ∂H
∂t

(3.4a)

∇×H = ε
∂E

∂t
(3.4b)

Applying phasor notation to both equations leads to

∇× Ẽ = −jωμH̃ (3.5a)

∇× H̃ = jωεẼ (3.5b)

We take the curl of both sides of eq. 3.5a

∇×∇× Ẽ = −jωμ(∇× H̃) (3.6)

And substituting ∇× H̃ with eq. 3.5b.

∇×∇× Ẽ = ω2εμẼ (3.7)

The resulting equation contains only the vector Ẽ. This equation is simpli-
fied by using the vector calculus identity

∇×∇×X = ∇(∇ ·X)−∇2X (3.8)
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allows eq.3.7 to be rewritten as

∇(∇ · Ẽ)−∇2Ẽ = ω2εμẼ (3.9)

The metallic rectangular waveguide was assumed source free, ∇ · E = 0,
resulting in the Helmholtz equation:

∇2Ẽ+ k2Ẽ = 0 (3.10)

Where k = ω
√
εμ is the propagation constant or wavenumber of the medium.

Now we assume harmonic fields with a wave propagation along the z–
axis. Let e(x, y) = ex · x̂+ey · ŷ and h(x, y) = hx · x̂+hy · ŷ be the transverse
mode pattern for the electric and magnetic field respectively, where ez · ẑ and
hz · ẑ are their respective longitudinal field components. Also assume the
electric field actually has a non-zero z-component, as is required for bunching
and gain. In this case the magnetic field is found in the transverse plane
and the term hz · ẑ = 0 throughout the waveguide. The modes described
here are called transverse magnetic modes (TM-modes) and are written as

Ẽ(x, y, z) = [e(x, y) + ez(x, y)ẑ] e
−jβz+φ (3.11a)

H̃(x, y, z) = [h(x, y) + 0 · ẑ] e−jβz+φ (3.11b)

Here β is the constant of propagation. Reversing the sign of β changes
the direction of propagation. Furthermore, a larger value corresponds to a
shorter wavelength. β is governed by the geometry of the waveguide. φ is
again a starting phase. Using this approach we can rewrite eqs. 3.5a and
3.5b to

∂Ez

∂y
+ jβEy = −jωμHx (3.12a)

−∂Ez

∂x
− jβEx = −jωμHy (3.12b)

∂Ey

∂x
− ∂Ex

∂y
= 0 (3.12c)

jβHy = jωεEx (3.13a)

−jβHx = jωεEy (3.13b)

∂Hy

∂x
− ∂Hx

∂y
= jωεEz (3.13c)

These six equations, (x, y, z for E and H), can be solved for the transverse
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field components rewriting them in terms of Ez and Hz with Hz = 0:

Hx =
j

k2c

(
ωε
∂Ez

∂y

)
(3.14a)

Hy =
−j
k2c

(
ωε
∂Ez

∂x

)
(3.14b)

Ex =
−j
k2c

(
β
∂Ez

∂x

)
(3.14c)

Ey =
j

k2c

(
−β∂Ez

∂y

)
(3.14d)

Where we introduced the cut–off wavenumber kc defined as

k2c = k2 − β2 (3.15)

Equations eq. 3.14a to 3.14d are the solutions for TM-modes in a waveg-
uide. They couple all field components to Ez meaning the Helmholtz equa-
tions need all to be solved for Ez. The other components are easily calculated
from eqs. 3.14.

Next we demonstrate how to solve Ez for the TM-modes equations for
source free rectangular metallic waveguides. The Helmholtz equation for Ez

is written as: (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
Ez = 0 (3.16)

Recall eq. 3.11a, yielding Ez(x, y, z) = ez(x, y)e
−jβz allowing to rewrite the

Helmholtz equation to a two dimensional variant(
∂2

∂x2
+

∂2

∂y2
+ k2c

)
ez(x, y) = 0 (3.17)

Note the constant of propagation is substituted by the cut–off wavenumber
using eq. 3.15, k2c = k2 − β2. To solve eq. 3.17 the method of seperation
of variables is applied

ez(x, y) = X(x)Y (y) (3.18)

Thus equation yields

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+ k2c = 0 (3.19)

Each term in eq. 3.19 must be equal a constant so we seperate the cut–off
wavenumber into two constants k2x + k2y = k2c and can rewrite eq. 3.19 into
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seperate equations

d2X

dx2
+ k2xX = 0 (3.20a)

d2Y

dy2
+ k2yY = 0 (3.20b)

These type of differential equations can be solved for ez(x, y). The general
solution is

ez(x, y) = (Acos(kxx) +Bsin(kxx))(Ccos(kyy) +Dsin(kyy)) (3.21)

The unknown constants can be found by determining the boundry condi-
tions. Metals couteract any infringing electric field, thus the field at the
surface must equal zero. Electric fields near a metal surface are parallel to
the normal direction of that surface. In a rectangular metal waveguide all
electric field vectors near surfaces lie in the transverse plane. For a metal
waveguide of width a and heigth b, the following boundry conditions apply

ez(x, y) = 0 at [x = 0, a, y = 0, b.] (3.22)

Applying the first boundry condition leads to A = 0 and kx = mπ/a
with m a positive integer. In a similair way, applying the second boundry
condition shows C = 0 and ky = nπ/a with n a positive integer.

The general solution now can be rewritten as a solution for Ez

Ez(x, y, z) = Umn sin
mπx

a
sin

nπy

b
e−jβz (3.23)

where Umn is an amplitude constant depending on the strength of the field.

With Ez solved, the TMmn-mode wave equations, eqs. 3.14, from the
previous section for all other components can be written down too

Hx =
jωεnπ

bk2c
Umn sin

mπx

a
cos

nπy

b
e−jβz (3.24a)

Hy =
−jωεmπ
ak2c

Umn cos
mπx

a
sin

nπy

b
e−jβz (3.24b)

Ex =
−jβmπx
ak2c

Umn cos
mπx

a
sin

nπy

b
e−jβz (3.24c)

Ey =
−jβnπy
bk2c

Umn sin
mπx

a
cos

nπy

b
e−jβz (3.24d)

Note that the wave equations are zero if either m or n is zero.

The phase velocity of a planewave propagating through a non-dispersive
medium in open space is defined as vph = ω/k = 1/

√
με, which equals the
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light velocity in the respective medium1. The phase velocity of TM-mode
waves in the waveguide are given by vph = ω/β. Solving the propagation
constant β

β =
√
k2 − k2c =

√
k2 − mπ

a

2 − nπ

b

2
(3.25)

which is seen to be real, for propagating modes, when k > kc. The cut-off
frequency is given by

fc mn =
kc

2π
√
με

=
1

2π
√
με

√
mπ

a

2 − nπ

b

2
(3.26)

Eq. 3.25 shows β < k which leads to

vph =
ω

β
>
ω

k
(3.27)

the phase velocity of TM–waves in a waveguide is greater then light velocity
c, see also fig. 2.7(a).

3.4 Wave propagation in a PhC

The PhC at hand for demonstrating the measurement technique is the one
designed for the photonic free-electron laser under development at LPNO-
UT. This particular PhC consists of a regular array of metal posts embedded
in a rectangular waveguide. Wave propagation in an empty waveguide has
been discussed in the previous section. Here we present how the PhC affects
the wave propagation.

(a) PhC layout (b) PhC unit cell

Figure 3.2: Photonic crystal slab

The PhC is schematically shown in fig 3.2 and designed to slow the

1In a vacuum vph equals the light speed c = 1/
√
μ0ε0 with μ0 and ε0 the permeability

and permittivity of vacuum respectively
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Figure 3.3: Calculated bandstructure

waves down to phase velocities vph < 0.3c to match the available electron
source. The embedded PhC supports modes with non-zero Ez field compo-
nent, which are required for the pFEL. The PhC consists of a rectangular
lattice of metal posts embedded in a rectangular waveguide. The width of
the waveguide is w = 47.25 mm and height is h = 20 mm. The cylindri-
cal posts, depicted in green, have a diameter of d = 4 mm. The spacing
of the posts is ax = 6.75 mm in the x–direction and az = 7.5 mm in the
z–direction. The center posts along the z–axis have been removed to allow
space for the electron beam to propagate and every third az a row of the
lattice is missing. Thus the pattern repeats every 3az, see fig. 3.2(b).

Wave propagation in a PhC waveguide is far more complex then a rect-
angular waveguide. Thus usually numerical calculation tools, like eigenmode
solvers or FDTD methods, are used to retrieve dispersion and fields of PhC.

In this thesis a finite-difference time-domain (FDTD) numerical method
[15] is applied to calculate the PhC waveguide modes. These types of cal-
culations divide the structure into small mesh cells forming a 3D grid. The
time-dependent Maxwell’s equations are used to calculate the changes from
grid to grid point using central-difference approximations. The resulting
finite-difference equations are solved using leapfrog integration; First the
electric field vectors at a given time and volume in space are calculated,
then the magnetic field vectors are treated in the same volume at the next
time step. This process repeats itself until a steady-state is reached.

Due to the periodicity of a PhC only the points in the first Brillouin zone,

here k =
[
0 . . . 2π

3az

]
, need to be calculated[12]. The results for the 4 lowest

modes having a non-zero Ez-field component are shown in fig. 3.3. Note the
dispersion is very different to the empty waveguides TM-modes. The PhC
dispersion allows much lower phase velocities than the empty waveguide.
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Figure 3.4: Calculated cross sections of the transverse Ez-mode patterns for
mode 1 and mode 2 of the PhC at z = 0.5az (upper fig.) and z = 2.5az
(lower) fig.

The 4th mode overlaps in frequency with other modes. This implies that
at frequencies above 10.4 GHz multiple modes are expected to propagate at
the same time. To prevent confusion the numbering is done where k = 0.

As noted earlier, the dispersion does not give any information on the
electric field, but restricting the FDTD solver to solve a single frequency
allows it to calculate the mode field patterns. Fig. 3.4 shows the Ez-field
calculated for the first two modes at two positions within the unit cell.
To achieve such a z-dependant field pattern the superposition of many so

called spatial harmonics is required. The small range kz =
[
0 . . . 2π

3az

]
is

known as the first partial harmonic. Each following segment of the dispersion

kz =
[
2πm
3az

. . . (m+1)2π
3az

]
is called a higher spatial harmonic.

A single frequency of light thus propagates with multiple different wavenum-
bers and phase velocities at once in a PhC waveguide, however the field
amplitude is usually mainly concentrated at the first partial harmonics [16].

3.5 Field distribution measurement

The method we apply is new to PhC, however, it is known for measuring
fields in microwave resonators and we review the theory here [17].

The field is measured by observing the shift of resonant frequencies when
a sub–wavelength object perturbs the fields. A simplistic way to visualise
this is by representing the electromagnetic waves to be water waves of a
river. The object would then be a wooden post sticking out of the water.
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The waves propagating through the river reflect from and swirl around the
wooden post. A great part of the water wave will move along unaffected by
the small piece of wood. Further down the river the remainder of the wave
has closed the wake behind the wooden post. Thus wave patterns do not
change much if the object is small enough. But some of the water wave’s
momentum is stored or gained2 in the swirl or around the object, meaning
the frequency would change.

The resonant frequencies in a resonator change due to the same reason.
A small amount of energy is stored around the perturbing object, affecting
the resonant frequencies. The perturbed resonant frequency ω is given by

ω2 = ω2
0

(
1 +

∫
(H0(r)

2 − E0(r)
2)dv

)
(3.28)

where ω0 is the unperturbed angular frequency of the cavity. The vector r
defines a spatial position in the PhC.

Assume the PhC is perturbed by an infinitesimal small object which
sticks out of the waveguide wall. The integral in eq. 3.28 is taken over
the perturbed volume. The fields H0 and E0 are normalized:

∫
H(r)2dv =∫

E0(r)
2dv = 1 where the integration is over the whole unperturbed volume.

Thus, when a perturbation is placed inside the PhC the fields at the point
of the perturbation determine the frequency change which can be measured.

Which fields (H and/or E) or which field components (Ez, Ex, Ey, Hz, Hx, Hy)
contribute to the frequency shifts depend on the material, shape, size and
orientation of the object put in the PhC [11]. This allows to separatly
measure each field (components). For a simplification in the experiment a
spherical metal bead is chosen. The bead perturbs both E and H fields as
the metal used has ε �= ε0 and μ �= μ0 where ε0 and μ0 are the permeability
and permitivity in vacuum. The bead selects no specific field component as
a sphere has no preferred orientation.

To calculate the total frequency shift of a larger bead, an infinitly small
bead is assumed at first. Thereby the field near the sphere reduces approx-
imatly to a static field, for which the solutions are easily calculated. The
bead’s size is then altered by an infinitesimal amount, and by integrating
the change in frequency shift is retrieved. This process is repeated to grow
the bead from 0 to its full dimensions.

The total frequency shift is then given by [17]

ω2
r0 − ω2

r

ω2
r0

= 4πr3
(
E0(r)

2 − 1

2
H0(r)

2

)
(3.29)

2It is a bit of a stretch to visualise water waves gaining momentum from encounters
with a wooden stick. This is the point where the example reached the limits of its analogy
with EM–waves.
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where ω2
r0 is the unperturbed resonance frequency and ω2

r the perturbed
resonance frequency. For very small frequency shifts Δωr = ωr−ωr0 << ωr0

the resonant frequency shift can be approximated by

Δωr
∼= 2πr3

(
−1

2
H0(r)

2 − E0(r)
2

)
ωr0 (3.30)

Recording Δωr as a function of the position r in the PhC allows a de-
tailed mapping of the field strength term

(−1
2H0(r)

2 − E0(r)
2
)
. For the

specific PhC used in the pFEL experiments all except Ez are zero at the
waveguides center. Meaning, close to the center the measured shift in res-
onance frequency is proportional to E2

z which allows us to measure the Ez

field component using a spherical bead. This is an important quantity as
Ez is responsible for the bunching and hence the pFEL’s gain.

Although this work uses the PhC of a pFEL to demonstrate the mea-
surement technique, it is generally applicable to all types of PhC where the
interior can be accessed to place a sub-wavelength object. This is not only
true for PhC designed for microwave frequencies but the method can also
be applied to all types of PhC, e.g., those designed to function using visible
light, since these can be scaled to crystals functioning at microwave fre-
quencies due to the scale invariances of Maxwell’s laws for electrodynamics.
This technique can therefore map the fields inside PhC and provide valuable
information that is hard if not impossible to get otherwise.
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Chapter 4

Experimental results

4.1 Introduction

Two experiments are designed to verify calculations and to investigate the
experimental PhC. To identify the modes, whose fields are measured later,
the dispersion of a PhC embedded in a metal waveguide is measured and
compared to calculations. After identifying the modes its fields inside the
PhC are measured. The measured field strength might deviate from the
calculated values due to inevitable manufacturing disorder.

To maximize pFEL gain, electrons propagating through the pFEL’s PhC
should coincide with the maxima of the Ez field. The electron beam prop-
agates through the structure’s center. Measuring a field inside a PhC has
never been done before, but we can apply a method previously only known
for measuring microwave cavities.

The method relies on adding a perturbation inside a resonator. When
measuring the resonant frequencies of the perturbed resonator a minute
frequency shift is detected in the transmission and reflection spectra. The
shape, size and material (susceptibility and permeability) of the object even-
tually determine which field components are scanned. This allows mapping
of all components of the fields independently, or a combination of them, in
the PhC.

4.2 Measurement of band structure

By computer calculation and measurements we first identify the different
modes of the PhC.

The measurement relies on measuring cavity resonances of the PhC [12].
By restriciting the light into a resonator we force it to fit into its geometry,
meaning we know the wavelength inside the structure from the geometry1.

1This is only true if we are able to measure the longitudinal modes from the cut-off
frequency and count each resonance.

25
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Figure 4.1: Dispersion measurement schematic

At certain frequencies ωr the cavity is in resonance because the wavelength
matches the resonator geometry exactly, which results in constructive inter-
ference between successive roundtrips.

In the experiment the PhC is placed between two mirrors to create this
resonator. The transmission spectrum of this resonator is then measured by
plotting the frequencies against the wavenumber, which is determined for
the resonant geometry, we retrieve the dispersion ω(k)

A resonator with an embedded periodic structure of N unit cells will
exhibit N+1 discrete resonances[12]. These resonances have phase advances
per unit cell that are equally spaced between 0 and π. The tested PhC is a
slow wave structure of 15 periods (15 repetitions of the same pattern) and
exhibits 16 descrete resonances. For each resonance a wave consisting of
exactly ’r’ half wavelengths forms a standing wave along the z-axis of the
PhC. The resonance with the lowest frequency will have r = 1, the second
resonance r = 2, etc. and corresponds to the r − th longitudinal mode in
the cavity.

In fig: 4.1 a schematic of the dispersion measurement setup is shown.
Between two mirrors, 15 unit cells of the PhC are assembled. The left mirror
is 0.5az away from the first row of posts and the right mirror 1.5az. Thereby
the total resonator length is exactly 15 unit cells. To allow in and out cou-
pling of light into the resonator so called Hertzian dipole launcher/receivers
are placed in the center of both mirrors, see fig.4.2(b). Both launcher and
receiver are connected by coaxial cables to a scalar network analyser. This
apparatus is able to measure transmission and reflection ratio’s of light,
required to determine the resonant frequencies of the PhC.

The PhC waveguide consists of two parts. The bottom part of the rect-
angular waveguide is milled out of a solid block of aluminium. The top is
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closed by an aluminium plate. Both parts contain holes for mounting the
posts. The brass posts have an inner diameter of d = 2 mm and an outer
diameter of d = 4 mm. The spacing of the posts is ax = 6.75 mm in the
x–direction and az = 7.5 mm in the z–direction. Screws extend from the
top plate through the posts into the bottom plate fixating the posts into
position. The total estimated positioning accuracy is 100μm [18]. Two
aluminium blocks are placed into the waveguide acting as highly reflective
mirrors, creating the resonator. Through the center of the center of the
mirrors the launcher sticks into the resonator as shown in fig. 4.2(b)

(a) PhC resonator layout (b) Launcher

Figure 4.2: Resonator layout

A measured transmission from 7.9GHz to 12GHz is shown in fig.4.3(a).
The lower frequency lies 0.1GHz below the cut–off frequency of the TM11

mode of the empty rectangular waveguide. The upper frequency lies on a
level from where on multiple resonances are detected. At these frequencies
multiple modes exist simultaneously. The pFEL’s gain would be divided
between the different modes. Therefore investigations focus on the single–
mode region, 7.9 GHz to 9.8GHz where the highest gain is expected.

Below 8Ghz, see fig. 4.3(a), the transmission is at the equipment’s noise
level –70dBm. This confirms there is no significant transmission below the
TM–mode cut–off frequency of the waveguide. From the calculated disper-
sion fig. 3.3 we deduce the 15 peaks in region A are from the lowest order
transverse mode, which has the lowest cut–off frequency. At around 10GHz,
region B, the next mode is expected to appear, see fig. 3.3. However, the
transmission is very low at this frequency (< -50 dBm). The gap B in the
center of fig. 4.3(a) is due to the mode pattern of mode 2. Recall from chap-
ter 3, the second transverse mode has a node in the center of the waveguide.
Both launcher and receiver are positioned at this node and are therefore
incapable of exiting or receiving mode 2. After region B a few more peaks
appear which we, using fig. 3.3, deduce to be of the 4th transverse mode
before, at point C, the PhC becomes overmoded.

In fig. 4.3(b) the transmission of mode 1 is shown again, between 7.9
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(a) Typical transmission measurement (b) Mode 1 transmission peaks

Figure 4.3: Transmission Readings

GHz and 9.7GHz. Each peak is numbered and belongs to a resonance for a
longitudinal mode of mode 1. Resonance 1 corresponds to the mode pattern
with the lowest wavenumber kz and longest wavelength in the longitudinal
direction. Resonance 15 has the highest wavenumber and shortest wave-
length. According to H. Guo[12], theoretically 16 resonances should appear.
The missing resonance, i.e. kz = 0, is the resonance belonging to an infinite
wavelength which is hardly exited by the short dipole launcher. Further-
more as its frequency is equal to the cut–off frequency it experiences huge
losses inside the structure and is unable to propagate.

To compare the measured results with calculations, FDTD calculations
are performed which consist of the PhC waveguide and both launchers.
However, every metal post is assumed to be perfectly electrical conducting.
Fig. 4.4(a) shows the calculation results.

The small deviations stem from simplification in the calculations where
to a lossless waveguide is assumed. This means that differences in transmis-
sion and width of the peaks are to be expected but not in the position of
the resonances. The width predicted by the simulation is not much smaller
than experimentally observed and shows some noise. This is due to the lim-
ited calculation time and as the FDTD solution is not yet fully converged.
For later comparisons this noise is removed using a peak position preserving
FFT2 filter[19].

Fig. 4.4(b) shows the comparison between measured transmission and
the calculated transmission. As can be seen from the graph, calculated
and measured peak positions are in very good agreement with each other,
allowing to conclude area A contains resonances of the lowest order mode
of the PhC and FDTD calculations are able to performance.

Finally, we determine the dispersion based on the measured peak posi-
tions. The total length of the waveguide is 15 periods of the PhC unitcell,

2See Appendix C at pag. 41 for more details
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(a) Typical calculation result (b) TM11-mode calculation vs measured

Figure 4.4: Calculated transmission

L = 15 ∗ 3 ∗ az = 337.5 mm. The 1st resonance (number 1 in fig. 4.3(a))
and 15th resonance cannot reliably be determined from the transmission
due to their low coupling to the launcher. Dispersion is calculated using the
remaining points.

The first resonance which is taken into account has frequency f2 =
8.1078 GHz and wavenumber of

kz =
0.5r

L
= 2.963m−1

corresponding to a standing wave with 2 maxima and 3 nodes along the
length of the waveguide. The remaining resonances are calculated3 in the
same manner leading to fig. 4.5. A very good agreement is found again.

4.3 Field Characterization

In this section we present spatial mapping of field patterns inside a PhC
waveguide. The goal is to map the lowest order transverse mode of the
PhC waveguide to verify its Ez-field close to the waveguide center. This
mode is crucial for pFEL operation because it possesses a strong electric
field throughout the whole length of the waveguide. In order to bunch, i.e.
produce coherent light, the electrons traveling through the center of the
waveguide need to interact with the Ez field. Any deviations would lead to
reduced gain.

To measure the fields we only add the perturbation object to the disper-
sion setup. The resulting setup is shown in fig. 4.6 The object perturbs each
resonance frequency of the longitudinal modes. This is measured by observ-
ing the frequency shift of the transmissions peaks. As eq. 3.30 shows this

3For calculated values refer to the tables in Appendix B on pag. 39.
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Figure 4.5: Comparison of measured and calculated band structure in the
first spatial harmonic

Figure 4.6: Schematic representation of a Field Characterization setup
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(a) Longitudinal Mode 4 (b) Longitudinal Mode 5

(c) Longitudinal Mode 12 (d) Longitudinal Mode 13

Figure 4.7: Frequency shifts for Transverse Mode 1

demonstrates the concept of the field map method. The object, a spherical
bead, is mounted on a dielectric (nylon) string. This string is guided through
the PhC by tiny holes in the waveguide wall. The string has a diameter of
only 0.3mm and a low dielectric constant to have a minimum impact on the
electromagnetic fields inside the PhC. At the end of the string, outside the
PhC, a weight is attached to keep the string under constant tension. The
other end of the string is mounted on a translation stage. By moving the
translation stage the bead can be positioned with an accuracy of about 10
μm.

To confirm maximum field intensities in the center of the waveguide
transverse slices of the waveguide are mapped along one missing row of a
unit cell. Fig. 4.7 shows the shifts of resonances relative to the 3rd unit cell.
The bead is moved by steps of 1mm, starting just outside the waveguide.
At each position the measured resonance frequencies are normalized to the
resonant frequencies with the PhC perturbed only by the nylon string to
determine the relative frequency shifts due to the bead.

Fig. 4.7 shows the location of the bead relative to the center of the
waveguide plotted against the measured resonance frequency shift. The
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measured resonance frequency shifts (black squares) are compared to cal-
culated resonance shifts (red dots) which were retrieved by using a FDTD
method. Recall the resonance shift follows the sum of (12H(r)2 − E(r)2).
Negative shifts indicate dominant electric fields, while positive shifts indi-
cate dominant magnetic fields.

In fig. 4.7(a) and 4.7(b) frequency shifts of longitudinal mode 4 and 5
are shown. The maximum frequency shift is −7.8 MHz, less than a 1/1000th
of the resonant frequency in question. Both longitudinal modes reach quite
a good agreement between measured and calculated results. The differences
are likely due to the simplifications in the FDTD calculations.

Note right at the center the frequency shift is only due to the eigenmode
pattern of the Ez field. This is because close to the center all other field
components are nearly zero. Only further to the side walls do the other field
components significantly contribute to the frequency shift. Therefore the
measurement confirms that the electrons will experience a strong bunching
force by the Ez field.

However higher modes (7–8 and 10–13) show bigger deviations to the
calculations, see fig. 4.7(c) and 4.7(d). Due to PhC symmetry all modes
considered should be symmetric around the zy-plane. As expected the cal-
culations show symmetric shifts, but the measured frequency shifts show a
clear asymmetry. We exclude misalignment of the string and the bead due
to the high mechanical precision of all parts of the setup.

Thus the shown data seems to indicate a disorder of the PhC, due to
e.g. an asymmetric post positioning. The disorder seems to be frequency de-
pendant. A reason might be that lower longitudinal resonances have longer
wavelengths than higher longitudinal resonances. In comparison to the po-
sitioning errors such modes are less sensitive to any disorder than higher
modes. It is therefor expected that disorder has a higher impact for the
higher longitudinal resonances.
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Conclusion

We have demonstrated a technique well known for measuring fields in mi-
crowave structures and applied it for the first time to successfully measure
the internal field of a photonic crystal (PhC). The technique relies on plac-
ing the PhC in a microwave resonator and measure the resonant frequency
shifts when a sub-wavelength object is placed in the PhC. The ammount of
frequency shift is related to the field strength at the objects position, thus
allowing the fields to be mapped at any accessible part of the PhC. This
has not been done before as the methods reported in literature only allow
measurement outside the PhC itself.

The technique has been demonstrated by applying it to a PhC designed
for use in a single beam photonic free electron laser (pFEL), which is a
novel concept to produce laser light in the THz regime. The PhC has been
characterized by measuring its band structure and a field measurement was
performed, using a spherical metal bead, to map all fields and field com-
ponents simultaniously. Results of both measurements are compared with
FDTD calculations of the PhC.

The resonance measurements used to determine the band structure of the
PhC where performed without the object present. The measured resonance
frequencies are in good agreement with the calculated results.

With the sub-wavelength metal sphere present, we measured the fre-
quency shift of the resonances and compared these with the calculated ones.
Again for lower resonanant frequencies belonging to longer wavelengths, a
very good agreement was found. At higher resonant frequencies the the ex-
perimental resuts indicate asymmetries in the field that are not present in
the calculations. This seems to indicate local disorder in the PhC that will
manifest itself more clearly at smaller wavelengths.

The pFEL principle was reviewed in the theory and showed that a re-
duced phase velocity is requires for Cherenkov radiation emission. The ra-
diation can only get coherent by bunching of the electron beam by the
longitudinal electric field. The measurements and calculations indicate the

33
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PhC fullfills both conditions and is thus suitable for use in a single beam
pFEL.

The method presented here has succesfully mapped the internal field in
a PhC and is sufficiently sensitivity to detect local disorders.

5.1 Recommendations

The applied method has further potential to investigate specific fields and
field components. The orientation, shape and material (susceptibility and
permeability) of the sub-wavelength object determine which fields or field
components are perturbed, allowing them to be mapped seperatly.

The method is suitable to test any PhC due to the scale invariance of
Maxwell’s laws. I recommend making the rectangular metal waveguide suit-
able for easy replacement of the PhC with a structure of choice. Hereby
other research groups might take interest in the setup to performe measure-
ments in cooperation with LPNO-UT. This would benefit the group in both
knowledge and relations.

Measurement speed can be improved by replacing the scalar network
analyser for a more effective, but also very expensive, vector network anal-
yser. Such an apparatus also provides phase information allowing for even
more accurate resonance readings, improving sensitivity. A more cost ef-
fective solution could be the optimization of currect equipment. The scalar
network analyser and other equipment allow for continues sweep measure-
ments which are less accurate but much faster.



Appendix A

Phase and Group velocity of
light

This appendix is attached as an quick refresher on the subject of phase
and group velocities of light. The velocities are closely related and easily
confused. We set out to discuss the correct interpretation via an example
using a modulated wave.

A.1 Modulated Wave

The amplitude modulated wave is formed by superimposing two harmonic
waves of angular frequency ω and wavelength λ where1

λ1 − λ2 �= ω1 − ω2 and λ1 �= λ2

An example wave is shown in fig. A.1. The amplitude of a higher frequency
wave is multiplied by the amplitude of a lower frequency wave, creating an
amplitude envelope. The 6 pictures show chronological steps an propagating
example wave. The green dots indicate the positions of nodes created by
the wave modulation. The red dot indicates a point of constant phase.

Phase velocity is expressed as the speed at which a point of constant
phase propagates through space. In fig. A.1(a) a phase is chosen and de-
noted by the red dot on the left. The red dot tracks the location of this
phase along the wave as time progresses through figures A.1(b), A.1(c), etc.
The speed at which the red dot moves is the phase velocity.

The group velocity is often thought of as the speed at which energy or
information is conveyed through a wave. It’s given by the speed at which
the amplitude envelope moves through space. The green dot tracks the node
of the amplitude envelope along the wave. The speed at which the green

1For extra clarity in the example a non–zero group velocity is selected by setting
λ1 − λ2 �= ω1 − ω2. To build a modulated wave this not strictly necessary.
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(a)

(b)

(c)

(d)

(e)

Figure A.1: Propagation of a modulated wave

dots move indicate the group velocity. The entirety of waves between two
nodes is called a wavegroup.

As easily can be seen, the phase velocity in this example is higher than
the group velocity. New waves seem to emerge at the back of the wavegroup,
grow in amplitude until they are at the center of the wavegroup, and slowly
disappear as they reach the front of the wavegroup. Group and phase veloc-
ities differ in dispersive media such as glass or in dispersive geometries such
as waveguides. After a time T/2 the point of constant phase has traveled
from one group node to the next, see fig. A.1(e).

A.2 Phase and group velocity relation

Phase and group velocity are related through (angular) frequency ω and
wave vector k as is shown in this section. Phase velocity vph can be written
in relation to wavelength λ and period T using the fact that a 2π phase
change has occured when the crest of a wave has traveled a full wavelength.
The point of constant phase must thus have traveled an equal distance in a
time T as well.

vph =
λ

T
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Rewriting using k = 2π/λ · ẑ with ẑ the propagation direction and ω = 2π/T
gives phase velocity as function frequency ω and wave vector k.

vph =
ω

k

Group velocity is the velocity of the amplitude envelope. For two su-
perimposed waves, wavegroups (amplitude envelopes) arrise whenever the
wavelengths differ. The wavegroups appear to travel when the frequencies
of the waves differ. The ratio of frequency and wavelength differences de-
termine the group velocity.

By use of the wavelength to wavevector relation, the wavelength is ex-
pressed as a difference in wavevector Δk = k1 − k2. The difference in
angular frequency is given by Δω = ω1 − ω2. For infinitessimal small differ-
ences and many super imposed waves the group velocity can be expressed
as the derivate of the phase velocity!

cgr =
δω

δk
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Appendix B

Measured and Calculated
resonance peaks

This apendix presents results of the dispersion measurement demonstated
on pag. 30. A comparison is found in table B.1 between calculated and
measured resonance frequencies.

longitudinal mode wavenumber (m−1) νm (GHz) νc (GHz) Δ (MHz)

2 2.9630 8.1079 8.1343 26.4

3 4.4445 8.1537 8.184 30.3

4 5.9259 8.2216 8.2559 34.3

5 7.4074 8.3071 8.3457 38.6

6 8.8889 8.4113 8.4538 42.5

7 10.370 8.5331 8.5781 45.0

8 11.852 8.6702 8.7177 47.5

9 13.334 8.8205 8.871 50.5

10 14.815 8.9758 9.0363 60.5

11 16.296 9.1655 9.2104 44.9

12 17.778 9.3379 9.3891 51.2

13 19.259 9.5069 9.5624 55.5

14 20.741 9.651 9.7085 57.5

Table B.1: Measured resonant frequencies and corresponding wavenumbers

Here νm and νc are the measured and calculated frequency respectivly,
where Δ = νc − νm.

Measured peak positions have an estimated accuracy of ≤ 500kHz de-
pending on the stability of the mode. The estimated wavelength accuracy
is ±200μm[18].

39



40



Appendix C

FFT Smoothing

This appendix illustrates the effect of FFT smoothing on repeatability of
the dispersion measurement. Two consecutive dispersion measurements are
performed as demonstrated in section 4.2. The measurements are identical
and performed by the same operator. Variations in measured transmission
would indicate a low repeatability and a high uncertainty in the dispersion
results. The test result here is meant to be indicative not conclusive. Gath-
ering statistically significant amounts of data costs excessive ammounts of
time while not a top priority for our research.

Figure C.1: Peak frequency detection variation in 2 consecutive PhC dis-
persion measurements

The variation in measured transmission peak positions of the disper-
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sion measurement is shown in fig. C.1. The frequency resolution is set
to 200kHz. The black and red points show the frequency difference of 13
measured transmission maxima. The black points indicate differences for
each transmission maxima as determined from the raw data. The red points
indicates the frequency differences between two measurements after apply-
ing FFT smoothing [19] at the data. The FFT smoothing removes quick
variations, such as noise, from the data stream while conserving the gen-
eral peak position. The results indicate that FFT smoothing could enhance
repeatability significantly.
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