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Summary

Rivers have been a lifeline for civilization throughout human history. It is
therefore not surprising that so many cities and villages can be found around
these locations. Dikes have been used in the past to protect these cities from
floodrisk, however the combination of climate change and land subsidence have
created a technological lock-in; dikes can no longer be heightened but it is also
impossible to migrate entire cities. As a result the Room for the River policy
plan was developed in the Netherlands which aims to increase protection against
floods by allowing rivers to reclaim their natural course.

A direct result of this is that floodplains will see more frequent inundations
as they will be used to temporarily store and transport water. Since floodplains
are not inundated at all times, plants and trees can grow, which will alter the
transportation capacity of these floodplains because these forms of vegetation
induce resistance to the flow. Hydraulic model computations are used to assess
the impact of hydraulic measures and use the resistance to flow as an input
parameter. These calculations are typically performed for large spatial scales
due to computational limitations, which therefore requires an aggregated rough-
ness value for the entire region as small scale processes are not accounted for.
There is however little known about the aspects of floodplains and vegetation
that influence this aggregated roughness parameter. Several methods, based on
fitting WAQUA simulation results, have been developed for this purpose.

A new method, based on an analytical rather than a numerical approach, was
developed to investigate how spatial scales and various system parameters af-
fect aggregate roughness as induced by vegetation patches. It is based on steady
nonlinear depth-averaged shallow water equations while closing turbulence using
a spatially constant horizontal eddy viscosity and allowing spatial variations in
bed resistance. A weakly non-linear analysis was performed where small changes
in resistance and the corresponding response in the flow were approximated up
to the second order in a small parameter quantifying these variations. At sec-
ond order, a spatially invariant contribution to the downstream flow velocity is
obtained. This second order spatially invariant contribution is used to calculate
the aggregate resistance over a floodplain. Model application is restricted to
large spatial scales or small differences in roughness due to the solution method
used.

The flow response to a variety of roughness patch characteristics was inves-
tigated and an increase in flow resistance was always found. Dominant mecha-
nisms were identified in case of parallel roughness variations only (lateral shear),
serial variations only (backwater effects) and combined variations (lateral shear,
backwater effects and lateral redistribution of longitudinal momentum). Results
show that larger spatial scales lead to a reduction in aggregate roughness. Ad-
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ditionally, the influence of the eddy viscosity on model results is significant but
it is difficult to recommend a certain input value as sources disagree. However,
higher values of eddy viscosity lead to a greater energy loss to turbulent ed-
dies, resulting in a greater aggregate resistance. Furthermore, it is found that
near-diagonally oriented patches minimize the overall flow resistance.

The idealized approach allows a quick assessment of the influence of various
system parameters on the mean river flow velocity as caused by spatially vary-
ing resistance. It also provides insight into the physical mechanisms that lead
to a difference between the aggregate resistance and the average resistance of a
river section. No explanation has been found yet regarding the unexpected in-
fluence of patch orientation on aggregate resistance and this will require further
investigation.
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Chapter 1

Introduction

River management in the Netherlands has undergone rapid change in the past
two decades. Where originally rivers were controlled and regulated using civil
structures, current approaches emphasize the importance of providing a river
with the necessary room for natural processes to occur. This paradigm shift was
initiated by a combination of changing European Union environmental policy
and the realization that Dutch water management was subjected to a techno-
logical lock-in (Wesselink, 2007).

The changes in river management have led to larger floodplain dimensions
and more frequent inundations. Floodplains have become an integral part of a
river’s discharge capacity, leading to more research regarding the flow processes
over these floodplains (Werner et al., 2005). Herein the modelling of hydraulic
roughness, specifically as caused by vegetation rather than bedforms, is of key
importance for changing water levels due to resistance (Forzieri et al., 2011).
Recent research has shown that a parameter value change of 50% in roughness
can lead to a 40% change in peak water level (Ballesteros et al., 2011).

This chapter will briefly introduce the current state of water management in
conjunction with hydraulic roughness modelling, specifically oriented towards
the Netherlands. From there the research aim is presented followed by the re-
search questions. Finally the methodology is discussed briefly. Then an overview
will be given of the contents of this report.

1.1 Background

In this section a brief background is provided concerning the causes of changing
water management in the Netherlands, specifically surrounding floodplains, and
the significance of this change concerning roughness modelling.

1.1.1 Water management practice in the Netherlands

Recent studies have shown that the water regulation measures taken in
the past may not have sustainably prepared the Netherlands for the fu-
ture (Makaske et al., 2011). The continued pumping of water for the creation of
polders, and the construction of increasingly high levees has amplified the risks
associated with a potential flooding event. Figure 1.1 shows how the history of
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Figure 1.1: Influence of water management throughout history in the Nether-
lands on land level compared to sea level rise. Source: Huisman et al. (1998)

water management in the Netherlands has led to an increased risk due to the
increasing difference between ground datum and mean sea level.

While the urban landscape subsides, peak water levels in the rivers poten-
tially increase due to the effects of climate change. Additionally the continued
urbanization of lower reaches of the Netherlands due to economical prospects
in urban areas has led to zones where societal risk is extremely high1. There is
a large gap between perceived safety and real safety in the Netherlands where
water regulation is concerned (Wesselink, 2007).

This technological lock-in2 is a vicious cycle that the Dutch government is
trying to break as the height of levees cannot be increased indefinitely and the
possible consequences of flooding in certain regions are becoming insurmount-
able. A paradigm shift occurred in the 1970s in the water management sector;
water should not be controlled, but it should be accommodated (RWS, 2006).
Two primary goals were set by the government that read as follows:

1. “To bring flood protection for the riverine area to the required level;

2. To contribute to improving the spatial quality of the riverine area.”

- RWS (2006)

1Ichem (1985) defines societal risk as “the relationship between frequency and the number
of people suffering from a specified level of harm in a given population from the realization of
specified hazards”

2Urbanization, caused by good economic prospects, requires higher safety levels to reduce
consequences of a potential disaster. This leads to a higher perception of safety causing more
people to migrate to the urban areas. The current system is stuck in this cycle, also termed
a technological lock-in (Wesselink, 2007)

- 3 -



1.1: Background

Main Channel

Summer DikeWinter Dike

Floodplain

Summer Dike
Relocation

Floodplain
Excavation

Figure 1.2: Simplified cross section of a river illustrating the main channel,
floodplain with vegetation and summer- & winter dikes. Additionally the two
most frequently applied measures from the Room for the River project are illus-
trated: (i)Floodplain excavation and (ii) summer dike relocation.

Improving spatial quality is described by RWS (2006) as the enhancement
of economical, ecological and scenic values of the riverine area, which leads to
the emphasis on the protection of nature values and other spatial functions.
In combination with the flood protection measures this has led to various (at
the time) unconventional measures such as the excavation of floodplains and
the relocation of summer dikes (RVR, 2010); these measures are illustrated in
Figure 1.2. Specifically the natural characteristics of river branches are to be
preserved.

The main reasons for this approach are the previously mentioned techno-
logical lock-in complemented by the European Union Natura 2000 directive.
Herein an underlying European network of nature is described (EU, 2010). The
vast coverage of the river system in the Netherlands makes floodplains an ideal
choice for this nature network. Therefore this leads to the restoration of natu-
ral functions of floodplains and river branches. By extending the width of the
floodplains and by removing the summer dikes, a more natural water system is
allowed to develop.

1.1.2 Floodplains

Floodplains are the strip of land bordering the main channel of a river that
usually undergoes inundation during high discharges. They are formed and
altered through sediment transport overland by water during high water levels,
which then settles when the discharge lowers to a state where flow only occurs
through the main channel (Bridge, 2003). This dynamic environment defines a
special ecological regime wherein a large biodiversity can exist, which is precisely
what the EU Natura 2000 plans aim to stimulate.

Floodplains house a large variety of plant and animal species, but also hu-
mans and man-made artefacts can be discovered throughout. The functions
of floodplains are numerous, but lately an emphasis is placed on the natural
functions of floodplains. These are the discharge of water and development of
nature. This is made possible by increased recreational functionality of flood-
plains. These policy plans are outlined in the Room for the River policy docu-
ment (RWS, 2006).

The characteristics of floodplains have been captured extensively using aerial
photography in order to allow the continued investigation of biological functions
of floodplains (RWS, 2007). Figure 1.3 shows how these photographs are trans-
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(a) (b)

Figure 1.3: Illustration of the conversion of (a) aerial imagery to (b) ecotope
maps. This specific case is taken from the maps concerning the eastern tribu-
taries of the Rhine in the Netherlands. Source: RWS (2007)

(a) (b) (c)

Figure 1.4: The three types of vegetation as modelled in WAQUA by
van Velzen and Klaassen (1999): (a) vegetation parallel to the flow, (b) vege-
tation perpendicular to the flow (serial) and (c) randomly placed vegetation in
the area.

formed to land-use characteristics. This practice has the added benefit that the
land-use values can be used to investigate the discharge capacity of a river as
land-use can be an important indicator to determine the resistance to flow.
Many different coverings coincide with different intensities of hydraulic rough-
ness which may reduce or increase the floodplain discharge capacity.

1.1.3 Modelling vegetation resistance

Hydraulic models are used in the Netherlands to evaluate and design measures
that are aimed at increasing safety against flooding. Vegetation resistance is a
very important parameter in hydraulic modelling, although not much is under-
stood about how vegetation resistance should be incorporated. Two methods of
vegetation resistance calculations are briefly discussed here.

- 5 -



1.1: Background

Aggregate values of roughness combinations

The method currently used by the Dutch Ministry of Infrastructure and the
Environment to determine aggregate roughness values of areas with roughness
combinations is based on the study by van Velzen and Klaassen (1999). The
roughness values are represented in terms of a Chézy value, C, with dimensions
m1/2 s−1. It was found analytically that the roughness values of completely
serial, parallel and randomly placed vegetation can be determined by:

Cparallel =
∑
i

xiCri, Cserial =
1√∑
i

xi

C2
ri

, Crand =
1√

cDArhxi

2g + 1
C2

b

,

where Cparallel is the aggregate roughness of patterns parallel to the flow, xi

shows a coverage fraction of vegetation type i, Cri is the aggregate roughness of
vegetation type i, Cserial is the roughness of serially placed vegetation and Crand
is the aggregate roughness of randomly placed vegetation. WAQUA simulations
were used to determine the effect of combinations of serial, parallel and randomly
placed vegetation patches (Figure 1.4). A weighted average model that combines
the formulas of serial and parallel vegetation patterns was found and calibrated
for general use. The total hydraulic roughness in terms of Chézy can then be
defined as:

Crc = φCserial − (1− φ)Cparallel,

where Crc is the aggregated Chézy value for combined patterns and φ is a
weighing parameter (0 < φ < 1). It was found that a weighing parameter value
φ = 0.6 gave the most accurate WAQUA results in general (van Velzen et al.,
2003b), and therefore this value is the norm.

Extension by ter Haar (2010)

Ter Haar (2010) extended the method of van Velzen and Klaassen (1999) to
account for various shortcomings of the weighted average method. The model
did not account for the influence of flow depth, and also only a limited number of
vegetation patterns were modelled. The influence of patterns was subsequently
also over- or underestimated, most likely due to the fixed weighing parameter φ.
The study of ter Haar (2010) has lead to a new aggregate roughness equation,
which was found by fitting model results obtained from WAQUA. The resistance
formulation as found by ter Haar (2010) is given by:

Cr = Csmooth − xroughCsmooth [1 + γ] + xroughCrough [1− γ] ,

where Csmooth and Crough are the Chézy values of the smooth and rough zones
respectively, xrough is the fraction of the area covered by rough vegetation, and
where γ is given by:

γ = 0.19
δ ·Nδ

Wp ·Np

+ 1.31
λadap ·min

(
1,

Lf

λadap

)
Lp

,

where δ is the width of a mixing layer, Nδ is the total number of mixing layers,
Wp is average width of the vegetation patches, Np is the total number of patches,
λadap is the adaptation length of the flow, Lf is the average free length behind
the patches and Lp is the length of a patch.
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The model by ter Haar (2010) was applied to many more patch situations
in WAQUA than the weighted average method as proposed by van Velzen et al.
(2003b). It was found that the new model predicted the roughness of
the patterns as simulate in WAQUA better than the model currently
used to determine aggregate resistance that is based on the original study
by van Velzen and Klaassen (1999).

1.1.4 Limitations

The two methods described have both used WAQUA as a basis for the aggre-
gate roughness parameterization. Numerical calculations were performed and
the results were fitted to obtain the most reliable and accurate roughness pa-
rameterization. Model calculations show mixing layers and flow adaptation, but
these processes are not isolated easily. It is thus difficult to distinguish which
flow processes affect what type of patch most. Furthermore, due to the fact that
WAQUA is a grid based numerical model several limitations arise. The shape
and layout of roughness patches are dictated by this model property.

An idealized model, based on the same flow equations that WAQUA uses,
may provide additional insight concerning the flow processes and how these
affect aggregate roughness. Idealized models generally require extremely sim-
plified spatial geometries, but this will not differ from the numerical approaches
previously discussed. Furthermore, a more flexible roughness pattern descrip-
tion can be used to investigate more complex patch shapes and properties (i.e.
orientation). An additional benefit is the fact that calculation time is generally
much faster for analytical solutions.

A fully analytical solution may not be obtainable due to the complexity of the
nonlinearities in the flow equations. It is therefore suggested to attempt a weakly
nonlinear analysis where the dynamics of the flow in response to a roughness
disturbance are approximated using an expansion series. Although the solution
will always be an approximation, it may be suggested that higher orders of the
solution are negligible. This approach may provide additional insight into the
dynamics leading to different aggregate roughnesses while allowing a greater
freedom in describing roughness patch configurations.

1.2 Goal

The aim of this research is to improve aggregate roughness parameterization
through investigating how physical processes around roughness patches are in-
fluenced by different vegetative roughness patch characteristics. An idealized
model will be used that allows quick assessment of flow disturbance and aggre-
gate roughness as caused by different patch characteristics. In order to achieve
this goal the following central question needs to be answered:

What characteristics of roughness patches influence what flow processes as
caused by spatially varying roughness in a river section?

The following questions serve to answer this research question:

- 7 -



1.3: Research plan

1. How can aggregated roughness for a floodplain section be determined using
an idealized model?

(a) What flow equations should be used to determine the flow over flood-
plains with spatially varying roughness?

(b) How can spatially varying roughness be incorporated in an idealized
model?

(c) How does the idealized model lead to a single aggregated roughness
value for an entire floodplain section?

2. What is the influence of various patch characteristics on the mean flow
over the floodplain section?

(a) What characteristics can be attributed to vegetation patches?

(b) What characteristics of vegetation patches have the largest influence
on aggregate roughness?

3. How can the new insights regarding the characteristics of vegetation
patches be incorporated into an aggregated roughness parameterization
method?

1.3 Research plan

In order to accomplish the above goal and to answer the questions stated, the
following research plan is followed:

• An idealized steady non-linear depth-averaged hydrodynamic model is for-
mulated, which allows for the spatial variation in roughness. The equa-
tions of flow are scaled so that different processes can be compared on a
similar general scale.

• A weakly non-linear steady state depth-averaged flow model is developed
that allows for spatial variation in roughness. It will be assumed that
spatial roughness variations are a small perturbation of a spatially uniform
background roughness. An analytical solution of the flow response is found
up to the second order in the small parameter that quantifies the roughness
variations. The main goal of this model is to investigate the spatially
averaged, or aggregated resistance for a river section as caused by smaller
scale roughness variations. A flat river bed is considered where roughness
may vary spatially.

• The limits of the models applicability is investigated. The weakly non-
linear analysis imposes limitations on model applicability. The limitations
of the size of the perturbation is found in this analysis.

• Next the influence of the model input variables is analysed. The relative
importance of input parameters is investigated to find what influences
aggregated roughness the most utilizing this approach. Simple patch de-
scriptions are used to keep the analysis transparent.

- 8 -
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• The influence of patch orientation on the flow retardation is investigated
using more complex patches. A Fast Fourier Transform algorithm is used
to extract the patch description from an input image, for which the ag-
gregate roughness is then determined.

1.4 Outline
In chapter 2 the foundation of the model and the solution technique is outlined.
The spatial geometry of the system analysed is explained and the flow equa-
tions relevant to this investigation are scaled. Chapter 3 describes the solution
method used and provides an equation that can be used to calculate the aggre-
gated flow retardation as caused by the spatially varying roughness. Chapter 4
describes the possible input variables used in the analysis and investigates the
limitations of the weakly non-linear flow model derived. In chapter 5, simple
patch descriptions are used to analyse the influence of the input variables on
the aggregated flow velocity. More complex patches are then discussed in chap-
ter 6. After this the discussion and conclusions are presented in chapters 7 and 8
respectively.

- 9 -



Chapter 2

Model

In this chapter the formulation of the model is described. The theoretical basis
for the model is briefly outlined, thereafter some assumptions are stated that
allow the application of the flow equations on the problem as described in the
previous chapter. Once the model equations have been formulated a scaling
operation is performed, which enables the identification of the more important
processes.

2.1 Theoretical Background
Modelling river flow is generally done using some adaptation of the Navier-
Stokes equations. These equations describe the conservation of mass and the
conservation of momentum in a viscous fluid. The mass balance or continuity
equation for water can be given by (Fox et al., 2004):

∇∗ · �u∗ = 0, (2.1)

where ∇∗ is the nabla operator used to determine the gradient of a quantity in all
three directions ( ∂

∂x∗ ,
∂

∂y∗ ,
∂

∂z∗ ) and �u∗ is the velocity vector in three directions
(u∗, v∗, w∗) in the x∗, y∗ and z∗ directions respectively in m s−1. Please note
that the ∗ denotes that a value is dimensional.

The Navier-Stokes equations for incompressible flow of Newtonian fluids are
given by (Acheson, 1990):

Substantial Derivative︷ ︸︸ ︷
ρ∗(

∂�u∗

∂t∗︸︷︷︸
Inertia

+ �u∗ · ∇∗�u∗︸ ︷︷ ︸
Advection

) =

Divergence of stress︷ ︸︸ ︷
−∇∗p∗︸ ︷︷ ︸
Pressure
gradient

+ µ∗∇∗2�u∗︸ ︷︷ ︸
Viscosity

+ N ∗︸︷︷︸
Additional

forces

, (2.2)

where ρ∗ is the density of water in kg/m3, t∗ is time in s, p∗ is the total pressure
in the system, µ∗ is the molecular viscosity and N ∗ is any additional forcing to
the system.

Equation (2.2) can be adapted to model various forms of fluid flow. The
required level of detail plays a crucial role in determining how this general
function should be applied. Different hydraulic models are based on different
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kN,p

kN,b

L∗

B∗

Figure 2.1: Illustration of the geometry of the system considered for this analysis;
a straight channel with constant slope i0, width B∗ and recurrent roughness
patches after a certain length scale L∗ with no slip boundaries at both banks.
Additionally the Nikuradse roughness of the background vegetation is described
by kN,b and the roughness of the patch is given as kN,p

assumptions. Especially the required level of detail of turbulence calculations
is a primary decision when determining what method to apply. Full scale tur-
bulence calculations are the most accurate, but have incredible computational
costs whereas simplifications of the turbulent effects leads to faster but less ac-
curate results. Appendix B gives an overview of different adaptations of the
Navier-Stokes equations.

2.2 Model Formulation

In this section the model formulation is discussed. First the considered geometry
is described and it is explained how this geometry may lead to an aggregate
roughness calculation that accounts for spatially varying roughness patches.
From there the flow equations are presented. The basis for this model was
formulated by Roos (2011) in the research outline.

2.2.1 Geometry

The goal of this research is to determine an aggregated friction value for a
river segment, which accounts for spatially varying roughness within that river
segment. For this research a straight channel is considered with a constant
width and energy slope. The patch patterns recur periodically in space but
should provide the same aggregate value per segment, allowing the analysis of
a single river segment.

Figure 2.1 shows the geometry of the system described where B∗ is the
width of the channel and L∗ is the length of a singular patch pattern that
repeats infinitely. Additionally the Nikuradse roughness of both the patch and
the background vegetation are given as kN,p and kN,b respectively.

- 11 -



2.2: Model Formulation

2.2.2 Equations of Flow
The Navier-Stokes equations (momentum) and the continuity equation are the
starting points for the model formulation. Several assumptions are made in the
formulation of this model. These are:

• Turbulence can be accounted for using a spatially constant horizontal eddy
viscosity ν∗h to close the turbulence problem as described in appendix B.

• Flow in the system is steady and non-linear.

• The vertical component of the flow velocity is much smaller than the hor-
izontal components allowing for the simplification where depth-averaged
flow is considered eliminating the vertical component of flow while signif-
icantly simplifying the analysis.

The steady-state momentum equations in a generalized form can then be
written as (Acheson, 1990):

�u∗ · ∇�u∗ = − 1

ρ∗
∇p∗ + ν∗h∇∗2�u∗ +N ∗, (2.3)

where �u∗ = (u∗, v∗) is the depth averaged flow velocity in the downstream
x∗ and transverse y∗ directions, ∇∗ is the horizontal nabla operator ∇∗ =
(∂/∂x∗, ∂/∂y∗), ρ∗ is the density of water, p∗ is the pressure in the system, ν∗h is
the spatially and temporally constant eddy viscosity and N ∗ is any additional
forcing on the system. The pressure in the system consists of an energy slope
and the pressure as caused hydrostatically by free surface elevations.

The only additional force acting on the system will be the spatially vary-
ing resistance, which is accounted for in N ∗, all other forms of resistance are
ignored1. The friction at the bed is formulated as:

N ∗ = − τ∗b
ρ∗h∗ ,

where h∗ is the water depth in meters and τ∗b is the bed shear stress in N/m2. τ∗b
is defined using the quadratic bottom friction formulation, which defines shear
stress as:

τ∗b = ρg∗
|�u∗|�u∗

C∗2 ,

where g∗ is the gravitation constant and C∗ is the Chézy coefficient in m1/2 s−1.
It is important to note here that this formulation of friction requires variations
in flow to be gradual. The Chézy coefficient can be translated to a dimensionless
drag coefficient through:

cD =
g∗

C∗2 ,

and thus friction is incorporated as:

N ∗ = −cD
|�u∗|�u∗

h∗ .

1There are many other forms of friction that normally influence flow through a channel.
Some examples of this are wind friction at the surface, bank friction, friction caused by the
curvature of a river etc.
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B* u*(y*)u*(y*)

No Slip Free slip

y*=0

y*=B*

Figure 2.2: Schematization of the difference between free slip and non free slip
boundary conditions with regards to the flow velocity in the downstream direc-
tion. A transverse flow velocity profile u(y) is shown for both cases.

A last step is to define the water depth as h∗ = H∗+ζ∗ where H∗ is the mean
water depth and ζ∗ is the free surface elevation. The nonlinear depth-averaged
shallow water equations are then formulated as:

(�u∗ · ∇∗)�u∗ + cD
|�u∗|�u∗

H∗ + ζ∗
= −g∗(∇∗ζ∗ − i0ex) + ν∗h∇∗2�u∗, (2.4)

∇∗ · ([H∗ + ζ∗]�u∗) = 0, (2.5)

where i0 is the energy slope and ex is the unit vector in the streamwise direction.
Here equation (2.5) describes the conservation of mass and the following terms
can be identified in the momentum equations:

(�u∗ · ∇∗)�u∗ = advection;

cD
|�u∗|�u∗

H∗ + ζ∗
= the spatially varying bed resistance;

−g∗∇∗ζ∗ = the free surface elevation pressure gradient;
g∗i0ex = the energy slope;

ν∗h∇∗2�u∗ = the viscous effects including turbulence.

It is important to note that cD in this formulation is space dependent, i.e.
cD = cD(x

∗, y∗). To complete the model formulation boundary conditions must
be set.

Figure 2.2 shows a schematized difference between a free slip condition and
a no slip condition. In the latter case the boundaries influence the flow velocity
in the downstream direction, which leads to a lower average flow velocity. This
resistance is not of interest in this analysis and therefore a free slip condition
is imposed. By imposing free slip, boundary layers will be ignored that are the
result of the system boundaries. Consequently only the the spatially varying
bed roughness will affect the flow velocity, which is what is of interest in this
research. The boundary conditions are formulated as:

v∗ =
∂u∗

∂y∗
= 0 at y∗ = 0 and B∗. (2.6)
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These boundary conditions state that water cannot enter or exit through the
river banks, nor can boundary layers form near the side-walls.

2.3 Scaling
Now that the model has been formulated a scaling operation will be performed to
expose the relative importance of different flow processes in the system. Typical
scales for this system are identified and substituted into the flow equations given
by (2.4) and (2.5).

A typical length scale for the system can be identified in the geometric defi-
nition of the problem. The length of a single patch (pattern) before recurrence
L∗ is used to scale all distances in the problem. Secondly a velocity scale for
the system can be determined by balancing the energy slope and the resistance
in the undisturbed case (i.e. without roughness patches). This gives (analogous
to equation (2.15)):

cD,0
U∗2

H∗ = g∗i0 → U∗ =

√
g∗i0H∗

cD,0
, (2.7)

where U∗ is the newly found velocity scale and cD,0 is the drag coefficient of
the undisturbed or mean vegetation. Finally an elevation scale can also be
determined using this equation where:

Z∗ =
U∗2

g∗
=

i0H
∗

cD,0
, (2.8)

where Z∗ is the elevation scale. These three scales are used to determine di-
mensionless quantities relevant to this analysis, which are given by:

�x =
�x∗

L∗ , �u =
�u∗

U∗ , ζ =
ζ∗

Z∗ . (2.9)

These dimensionless quantities and the scales can be used to scale the problem.
This leads to the following scaled equations of flow:

(�u · ∇) �u+∇ζ − ν∇2�u = µbex − µ|�u|�u
1 + F 2ζ

, (2.10)

∇ · [(1 + F 2ζ
)
�u
]
= 0, (2.11)

with the following dimensionless quantities:

F =
U∗

√
g∗H∗ , ν =

ν∗h
U∗L∗ , µ =

cDL
∗

H∗ , and µ0 =
cD,0L

∗

H∗ .

(2.12)
The full derivation of these equations can be found in Appendix C. Note

that the Froude number F becomes an important scale in both the momentum
and the mass balance. Finally also the boundary conditions must be scaled,
giving

v =
∂u

∂y
= 0 at y = 0, B

where B = B∗/L∗, which is the last dimensionless quantity found for the scaling
of the system. Note that B refers to an aspect ratio of the river section analyzed.
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2.4 Typical Parameter Values

In this section the input variables for the model are briefly discussed. Some ref-
erence values that will be used throughout the calculations are provided below.

Mean water depth H∗: The mean water depth in this model is of a significant
influence on model output. It influences all model scales (equations (2.7),
(2.9)), and thus influences all results greatly depending on the value cho-
sen. For all calculations reasonable water levels over floodplains will be
used ranging between 0.1 meters to a maximum of 7 meters, based on the
results of ter Haar (2010). This range will not be applicable in all cases
due to the nature of the analysis. In chapter 4 the limitations regarding
the input values is discussed in more detail.

Patch pattern length L∗: The length scale of the vegetation patches influ-
ences the scales defined in equation (2.9) and also the width scale B. Due
to the fact that this research aims to investigate small scale disturbances
on aggregated roughness, small values will be used for L∗ where possible.
In the research performed by ter Haar (2010) it is stated that typical model
calculation resolutions of several hundreds of square meters are used. It is
therefore especially interesting to investigate the flow response to patches
that are smaller than these dimensions, i.e. shorter than 100 meters.

Similarly to H∗, the patch length is required to meet certain requirements,
which are also discussed in chapter 4.

Channel width B∗: Throughout model calculations realistic floodplain
widths will be used while bearing in mind that specifically small spa-
tial scales are of interest to the analysis. The floodplain width is allowed
to vary from 50 meters to 250 meters based on a quickscan using Google
Earth of the Rhine river in the Netherlands. It is found that the width of
the river varies greatly over short distances. An example of this can be
found around the city Arnhem, where the Rhine is restricted to 50 meter
wide floodplains inside the city and 300 meter wide floodplains just after
the city.

Horizontal eddy viscosity ν∗h : Determining what values to use for the hori-
zontal eddy viscosity in this analysis was difficult as values range greatly
in literature. A range for ν∗h between 0 and 10 m2 s−1 has been chosen
based on the research performed by ter Haar (2010).

Energy slope i0: The energy slope drives the flow in the model and will be
set to a value representing a typical energy slope in the Netherlands of
1× 10−4 m/m.

Roughness kN,b and kN,p: Two roughness values are required as input for
this model. These are the roughness of the background vegetation and
the roughness of the vegetation patch. It has been chosen to implement
roughness in the form of a Nikuradse roughness height as this form of
roughness is independent of water depth. Table 2.1 shows a range of
roughness values as found in van Velzen et al. (2003a)
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Table 2.1: Roughness values in terms of Nikuradse roughness height kN
and corresponding Chézy values for water with a depth of 3 meters.
Source: van Velzen et al. (2003a)

Vegetation kN [m] C∗ at H∗ = 3m
[m1/2 / s]

Sand 0.10 46.0
Ditch 0.15 42.8
Field 0.20 40.6
Pioneer vegetation 0.28 38.0
Natural grasslands 0.39 35.4
Wet brushwood 0.47 33.9
Sedge marsch 0.73 30.5
Dry brushwood 1.45 25.1
Dewberry brushwood 1.58 24.4
Reed Grass 2.23 21.7
Reed brushwood 11.4 9.0
Reed 12.4 8.3
Softwood alluvial forest 12.9 8.0

2.4.1 Roughness input transformation
The roughness input of the model calculations is in terms of the Nikuradse
roughness height kN due to the availability of specific roughness input values for
different types of vegetation. Table 2.1 shows some typical roughness values as
found by in van Velzen et al. (2003a). However, the model formulation and scal-
ing require the roughness to be tranformed to a dimensionless drag coefficient.
This is done in two steps. First, the kN is tranformed to a Chézy equivalent,
based on the water depth used for a particular calculation. The equation used
will be:

C∗ = 18 log

(
12H∗

kN

)
, (2.13)

where C∗ is the Chézy value in m1/2 s−1, H∗ is the water depth in m and kN
is the Nikuradse roughness height in m as found in van Velzen et al. (2003a).
This value is then transformed to a dimensionless drag coefficient using:

cD =
g

C∗2 . (2.14)

2.5 Determining the spatially averaged resis-
tance

The scaled problem will be solved for �u and ζ in the following chapter using
a weakly non-linear analysis. The solution can then be used to determine the
spatially averaged change in the downstream flow velocity. The roughness of a
river segment in general can be calculated by balancing the stream wise com-
ponent of the gravitational acceleration and the force of friction. In this model,
this is represented by:

cD,eff〈u∗〉2
H∗ = g∗i0ex, (2.15)
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where 〈u∗〉 is the spatially averaged flow velocity and cD,eff is an effective drag
coefficient for a river section. The flow velocity can be determined by averaging
over the length of a channel segment L∗, which is typical for the roughness patch
(pattern) length, and the width of the channel B∗.

〈u∗〉 = 1

L∗B∗

∫ L∗

0

∫ B∗

0

u∗ (x∗, y∗) dy∗dx∗.

This allows the calculations of an effective (or aggregate) drag coefficient
for a river section when the average flow velocity is determined. This average
downstream flow velocity 〈u∗〉 can be determined analytically for this simplified
geometry using the scaled problem as outlined in the previous section. The
next chapter discusses the analytical solution up to the second order. A weakly
nonlinear analysis is performed, and it is found that a spatially invariant contri-
bution to the flow velocity arises in the second order as caused by interactions
of the first order solution.
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Chapter 3

Weakly Non-Linear Analysis

In this chapter the problem is analysed using a weakly non-linear analysis. First
the linear problem is defined. From there an eigenfunction representation of the
problem is formulated which is subsequently solved in the first and second order.
Specifically the second order is of interest as it reveals a spatially independent
contribution to the downstream velocity as a result of spatially varying rough-
ness. The formula for this contribution is provided, which will form the basis
for the analysis in the following chapters.

3.1 Linearization
In order to find a spatially averaged downstream velocity, which is required
in equation (2.15), the model is solved analytically. The method used in this
investigation is a weakly-non linear analysis. This approach assumes that the
non-linear terms can be linearized, as long as the changes are gradual. This is
therefore in effect a small perturbation model where the changes, in this case
in bed roughness, are small compared to the mean. This deviation from the
mean will be quantified using a small parameter ε, which can be found in the
roughness formulation (3.1) and the expansion series (3.2).

The resistance term found in equation (2.10) is redefined in order to describe
the spatially varying roughness as small variations with respect to a mean rough-
ness. This reformulation is given by:

µ(x, y) = µ0 + εµ1(x, y), (3.1)

where µ0 is a spatially constant mean resistance for the disturbed case (i.e.
with roughness patches), µ1(x, y) is the spatially varying roughness and ε is a
small parameter that describes the magnitude of the disturbance. Figure 3.1
illustrates this situation. µ1 will be defined so that |µ1| = 1.

The solution of this problem will be symbolically represented by φ = (u, v, ζ).
Due to the fact that |µ1| = 1, and if we require ε � µ0, a power series expansion
in ε may be performed where the contributions to flow velocity and free surface
elevation in the nth order are given by φn.

φ =

∞∑
n=0

εnφn = φ0 + εφ1 + ε2φ2 + . . . (3.2)
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kN,p

kN,b

L∗

B∗

(a)

kN,p

kN,b

L∗

µp

µ0

µb

(b)

Figure 3.1: This figure illustrates how each patch is described after the scaling
procedure. (a) shows a random roughness patch from the top view. (b) shows the
same patch from the side with the different roughnesses (scaled and unscaled)
displayed. Specifically µ0 is of interest, which is the mean roughness of the
disturbed system.

In the lowest order, where no vegetation patches are present (ε = 0) the
solution is given by:

φ0 = (u0, v0, ζ0) = (1, 0, 0),

which describes only basic flow in the x-direction.

3.2 The first order solution
In this section the first order solution will be found to the system using the
weakly nonlinear analysis. First the linear problem is found. Then the spatially
varying roughness and the problem are represented using a Fourier series projec-
tion. This representation allows the problem to be solved using linear algebra,
leading to the first order solution.

3.2.1 The First Order Linear Problem
In the first order the following linear problem is formulated:

Lφ1 = b1, (3.3)

where L is a linear operator describing the effects on the flow properties φ1 as
caused by the forcing b1, which in the first order is known to be the spatially
varying roughness. The first order solution is given by the coefficients φ1, which
alter the flow properties as given by equation (3.2).

In order to calculate φ1 it is important to determine what L and b1 repre-
sent in equation (3.3). This is done by substituting the expansion series as given
by equation (3.2) and the reformulated spatially varying roughness as given by
equation (3.1) into the scaled model defined by equations (2.10) and (2.11).
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After this substitution the function is differentiated with respect to ε and sub-
sequently evaluated for ε = 0 to find only the operators acting on the quantities
in the first order (i.e. the first order effects). The full derivation of the linear
problem can be found in Appendix D. The following momentum equations:

∂

∂x
u1 +

∂

∂x
ζ1 − ν∇2u1 + 2µ0u1 − µ0F

2ζ1 = −µ1(x, y),

∂

∂x
v1 +

∂

∂y
ζ1 − ν∇2v1 + µ0v1 = 0,

x and y respectively, and mass balance:

∂

∂x

(
u1 + F 2ζ1

)
+

∂

∂y
(v1) = 0,

are found int he first order. L and b1 are thus given by:

L =

⎛
⎝ ∂

∂x − ν∇2 + 2µ0 0 ∂
∂x − µ0F

2

0 ∂
∂x − ν∇2 + µ0

∂
∂y

∂
∂x

∂
∂y F 2 ∂

∂x

⎞
⎠ , b1 =

⎛
⎝−µ1

0
0

⎞
⎠ .

(3.4)

3.2.2 Fourier series representation

In this section the spatially varying roughness as well as the first order linear
problem are rewritten using a Fourier series representation. A result of this is
that finding the first order solution as given by φ1 becomes much simpler as the
solution can be found using matrix multiplication in the frequency domain. It
will be assumed that the spatially varying roughness can be represented using
a Fourier series as follows:

µ1(x, y) =
∑
m,n

Cmn exp(iαmx) cos βny + c.c., (3.5)

where Cmn are the dimensionless complex amplitudes of the m and nth mode,
αm = m, βn = nπ/B and c.c. is the complex conjugate. The amplitudes can
be obtained analytically or using a Fast Fourier Transform in MATLAB.

It will be assumed that the solution holds a similar structure as seen in
equation (3.5), introducing complex amplitudes Φ1mn = (U1mn, V1mn, Z1mn)
where the first order solution can be written as:

φ1 =

⎛
⎝u1

v1
ζ1

⎞
⎠ =

∑
m,n

⎛
⎝U1mn cosβny
V1mn sinβny
Z1mn cosβny

⎞
⎠ exp(iαmx) + c.c.. (3.6)

This transverse structure stems from the boundary conditions of the system
that must be met. By choosing U1mn as a cosine function of y and V1mn as
a sine function of y the boundary conditions can be met for all values of x
along both boundaries of the floodplain. Equation (3.6) can be used to rewrite
equation (3.3) into a linear problem for the m,nth mode. This will be done
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by substituting equation (3.6) into the original linear problem. The full deriva-
tion can be found in Appendix E. The first order linear problem as posed by
equation (3.3) for the m and nth mode in the frequency domain is given by:

AmnΦ1mn = S1mn, (3.7)

where Amn is the Fourier series representation of the linear operator L and
S1mn is the Fourier series representation of the forcing b1. These two terms are
given by:

Amn =

⎛
⎝X2 0 iαm − µ0F

2

0 X1 −βn

iαm βn iαmF 2

⎞
⎠ and S1mn =

⎛
⎝−Cmn

0
0

⎞
⎠ , (3.8)

where Xp = iαm+ν(α2
m+β2

n)+pµ0 for p = 1, 2 has been introduced for shorter
notation.

3.2.3 First order solution

The next step is to find the first order solution. Now that the problem has been
posed in the Fourier space, solving it has become a matter of matrix algebra.
The system as defined by equation (3.7) can be solved by multiplying both sides
by the inverse of Amn:

Φ1mn = A−1
mnS1mn. (3.9)

This leads to complex amplitudes that, when substituted into equation (3.6),
provide the first order influence on the flow properties. The derivation of the
inverse of matrix Amn can be found in Appendix F. Utilizing equation (3.9) it
can be stated that the complex amplitudes of the m,nth mode are given by:

Φ1mn =

⎛
⎝U1mn

V1mn

Z1mn

⎞
⎠ =

−Cmn

Dmn

⎛
⎝X1iαmF 2 + β2

n

−βniαm

−X1iαm

⎞
⎠ , (3.10)

with determinant:

Dm,n = X1α
2
m +X2β

2
n +X1X3iαmF 2, (3.11)

where Xp = iαm + ν(α2
m + β2

n) + pµ0 for p = 1, 2, 3. The first order solution is
then given by substituting these amplitudes into equation (3.6).

3.3 Second order solution

In this section the second order solution is found. First the linear problem is
defined for the second order. It is found that the forcing of the second order
linear problem consists of convolutions of the first order solution. The forcing of
the system is used to identify terms that lead to a spatially invariant contribution
to the flow velocity. Finally, spatial averaging is performed, which leads to a
spatially invariant contribution to the flow velocity in the second order. This
contribution can be used to determine the aggregate roughness.
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3.3.1 The second order linear problem
In the second order a similar problem is found as in the first order. By taking
the second order derivative (instead of the first order) of ε after substitution
and then evaluating for ε = 0 only the contribution of the second order remains.
This leads to the following linear problem:

L · φ2 = b2, (3.12)

where L is the same linear operator as found in the first order, φ2 = (u2, v2, ζ2)
contains the second order effects and b2 contains the forcing of the second order
solution. This last part also contains the most significant difference between
the first and the second order solution. Specifically the non-linear terms in the
momentum equations and the continuity equation leave contributions of the
first order as forcing for the second order. Appendix G shows how the following
forcing terms have been derived for the second order problem:

Lφ2 = b2 where b2 = −
⎛
⎝Ax +Rx

Ay +Ry

M

⎞
⎠ , (3.13)

and:

Ax = u1
∂u1

∂x
+ v1

∂u1

∂y
,

Ay = u1
∂v1
∂x

+ v1
∂v1
∂y

,

Rx = µ0

(
u1 − F 2ζ1

)2
+ µ0

1

2
v21 + µ1

(
2u1 − F 2ζ1

)
,

Ry = µ0v1
(
u1 − F 2ζ1

)
+ µ1v1,

M = F 2∇ · (ζ1�u1) .

In the previous definition A refers to source terms arising from the non-
linearity of the advective processes in both the x and y direction, R refers to
the source terms arising from the non-linearities in the resistance term and M
refers to the combined variations in free surface and flow velocity as found in
the mass balance.

By rewriting the forcing in the second order using similar Fourier series as
in the first order, individual contributions can be calculated. These rewritten
forcing terms can also be found in appendix G. However, this still leads to a
spatially dependent solution while the goal of this research is to find an aggregate
roughness value for a region based on the smaller disturbances within. To this
end, a spatially invariant contribution to the flow velocity can be determined in
the second order, which is derived in the following section.

3.3.2 Spatially invariant contribution
In Fourier space, the second order forcing terms, as derived in the previous
section, are found to be convolutions of the solutions of the first order problem.
As a result the forcing in the second order can be projected onto the same set of
eigenfunctions given by equation (3.6). This allows the evaluation of a spatially
invariant part of the solution denoted by Φ2,00.
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For the spatially invariant part Φ2,00 = (U2,00, V2,00, Z2,00), the problem as
given by equation (3.13) after projection onto the eigenfunctions is given by:⎛

⎝2µ0 0 −µ0F
2

0 µ0 0
0 0 0

⎞
⎠

⎛
⎝U200

V200

Z200

⎞
⎠ = −

⎛
⎝〈Ax +Rx〉
〈Ay +Ry〉

〈M〉

⎞
⎠ .

Please note that this simplification is caused solely by substituting in α0 = β0 =
0 as ∂/∂x = 0 and ∂/∂y = 0 for the spatially invariant part.

From a more physical perspective, it can be stated that due to the conser-
vation of mass that there may be no spatially invariant rise or lowering of the
water level meaning that Z2,00 = 01. Furthermore, the boundary conditions
state that the transverse flow at the boundaries must be zero. This leads to the
result that V2,00 = 0. The spatially independent flow velocity contributions as
caused by a roughness patch can then be found by taking the spatial average of
U2,00, which is found to be:

U2,00 = −〈Ax +Rx〉
2µ0

, V2,00 = 0, Z2,00 = 0. (3.14)

This spatially invariant contribution to the mean flow in the second order is
a particularly interesting mode, as it offers a means to use convolutions of the
flow properties in the first order to determine an aggregated flow resistance. The
terms describing these convolutions have been found both in real values and as
their projections onto the proposed eigenfunctions. By spatially averaging these
terms a base contribution can be found that affects the mean flow in the flow
channel. A quick scan of the projections can show whether a spatially invariant
contribution of that terms exists. The spatial average is defined as:

〈u∗〉 = 1

B∗L∗

∫ L∗

0

∫ B∗

0

u∗(x∗, y∗)dy∗dx∗.

Due to the fact that αm is chosen so that the patches recur after a length of
2π, it can be stated that 〈exp 2iαmx〉 = 0. Similarly, any term where a double
angle is found in the real part of the solution, spatially averaging this would lead
to a trivial result: 〈sin(2βny)〉 = 〈cos(2βny)〉 = 0. These two conclusions allow
a quick assessment of all eigenfunction projection (as found in appendix G) and
allow the conclusion that only the following terms contribute to the mean flow
after the spatial averaging:

v1
∂u1

∂y︸ ︷︷ ︸
Ax

, µ0

(
u1 − F 2ζ1

)2
,

1

2
µ0v

2
1 , µ1

(
2u1 − F 2ζ1

)
︸ ︷︷ ︸

Rx

. (3.15)

This corresponds to the conclusion made earlier where it was stated that
the spatially invariant contribution is only found in the downstream direction.
The contributions to the flow in the transverse direction and the free surface
elevation are trivial after spatial averaging.

The spatial average of each of these terms is subsequently evaluated to find
the base contribution to U2,00 as described in equation (3.14). Note that these

1Note that the mean water level H∗ remains constant in this analysis and not the discharge.
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contributing terms are all in the downstream direction. Two important trigono-
metric identities will be used in all four cases, which are:

cos2 βny =
1

2
+

1

2
cos(2βny) and sin2 βny =

1

2
− 1

2
cos(2βny).

Through spatially averaging these terms only the 1
2 will remain as the double

angle terms equal zero as stated previously.

3.3.3 Spatial average of contributing terms
This final section of the weakly non-linear analysis discusses the spatial average
of the four contributing terms as found in the previous chapter. Together these
four terms describe the change of the flow in the second order. The derivation
of the spatial invariant contribution in the second order can be found in ap-
pendix H. The following relationship is found, which can be used to calculate
an aggregated flow velocity for a river section based on smaller patch distur-
bances:

U2,00 =
∑
mn

− |Cmn|2
4µ0|Dmn|2 [α

2
mβ2

nF
2
(
X1,mn +X1,mn

)
+ . . .

2µ0

(
4α2

mF 4|X1,mn|2 − 3α2
mβ2

nF
2 + β4

n

)
+ . . .

µ0α
2
mβ2

n + . . .(
3α2

mF 2 − 2β2
n

) (
Dmn +Dmn

)
], (3.16)

where an overline such as found in Dmn denotes the complex conjugate of that
variable.

Equation (3.16) shows how the four contributions in the downstream di-
rection influence the spatially invariant flow velocity in the second order. The
four terms share a common factor, which depends on the redistributed average
roughness µ0, and the spatially varying roughness in the Fourier space Cmn.
In chapter 5 a simple patch description2 is used, in order to understand how
each of the terms in this equation influences the downstream flow velocity. The
following relationship describes, in general terms, the spatially invariant flow
velocity change in the second order when such a patch is considered:

U2,00 = − |C|2
4µ0|D|2 [

v1
∂u1
∂y︷ ︸︸ ︷

α2β2F 2
(
X1 +X1

)
+

µ0(u1−F 2ζ1)
2︷ ︸︸ ︷

2µ0

(
4α2F 4|X1|2 − 3α2β2F 2 + β4

)
. . .

+ µ0α
2β2︸ ︷︷ ︸

1
2µ0v2

1

+
(
3α2F 2 − 2β2

) (
D +D

)︸ ︷︷ ︸
µ1(2u1−F 2ζ1)

] . (3.17)

Several processes can be identified in the equation above. Each of the term
can be related to one or more physical processes. They are briefly outlined here:

• v1
∂u1

∂y is identified as the lateral redistribution of longitudinal momentum.

2A simple patch description is considered to be a roughness patch that can be described
using only one complex amplitude Cmn
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• 0.5µ0v
2
1 is identified as the transverse component of the resistance to flow

of the first order solution as caused by the background roughness.

• µ0

(
u1 − F 2ζ1

)2 consists of three distinguishable terms, which are: i) the
streamwise component of the resistance ot flow of the first order solution
as caused by the background roughness mu0u

2
1, ii) the backwater effects

with respect to the background roughness µ0F
4ζ21 and iii) ???

• µ1

(
2u1 − F 2ζ1

)
consists of two terms, which are: i) the backwater effects

with respect to the spatially varying roughness and ii) ???

It is of interest to note that the solution for U2,00 consists entirely of
real contributions. Using equation (3.6) it can be concluded that 〈u2〉 =
U2,00 cos 0 exp 0 = U2,00. As a result, the spatially independent influence of
a vegetation patch up to the second order in ε can be represented as:

〈u∗〉 = U∗ (1 + ε2〈u2〉
)

(3.18)

where 〈u∗〉 is the spatially averaged dimensional flow velocity, U∗ is the velocity
scale as found in equation (2.7) before the roughness disturbance and ε is the
linearization parameter. This result can be used to estimate the aggregated
roughness induced by the roughness patch(es) through:

cD,eff =
g∗H∗i0
〈u∗〉2 (3.19)

3.4 Summary
In this chapter the weakly nonlinear analysis was performed. It was assumed
that the spatially varying roughness and the solution can be seen as small dis-
turbances with respect to some background or base value. In the second order
a spatially invariant contribution to the downstream flow velocity is found that
consists of terms which are interactions of the first order solution. This con-
tribution can be used to determine a new aggregate resistance for the entire
section as induced by the spatially varying roughness.

Before continuing on to the model results, an analysis will be performed to
identify the limitations of the proposed methods. The linearization allows only
small difference is roughness and the advection term in the momentum balance
should not have a greater influence than the resistance terms for the model to
be applicable. These limitations are explored in the next chapter before the
solution to the problem is presented.

- 25 -



Chapter 4

Model applicability
restrictions

In this chapter the restrictions of model application caused by the linearization
approach are discussed. It is of importance to understand what input variables
influence model output and for what regions of these input values the analysis
may be used. The restrictions of the method used for this analysis will be
analyzed to identify where the model is valid, and where it is not. Recalling
that the linearization occurs in:

µ(x, y) = µ0 + εµ1(x, y),

and that an expansion of the solution is performed in ε for
∞∑

n=0

εnφn = φ0 + εφ1 + ε2φ2 + . . .

The method used leads to two main restrictions that need to be kept in
mind when analysing certain combinations of input values. These restrictions
are caused by two conditions:

1. The linearization parameter ε must be sufficiently small in order to allow
truncation of the solution after the second order.

2. When expanded the nonlinear terms in the momentum equations and
the continuity equations must be of the same order or smaller than the
resistance term in order to guarantee weakly nonlinear behaviour for the
entire system of equations.

In order to understand the origin of these input restrictions, the scales of
the system are reiterated here briefly. The scales used to perform the scaling
operation were a typical velocity scale and an elevation scale, which are give by:

U∗ =

√
g∗i0H∗

cD,0
and Z∗ =

U∗2

g∗
=

i0H
∗

cD,b
(4.1)

respectively. The scaling procedure then leads to four dimensionless scales:

F =
U∗

√
g∗H∗ , ν =

ν∗h
U∗L∗ , µ =

cDL
∗

H∗ , and µ0 =
cD,0L

∗

H∗ , (4.2)
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which are the Froude number, the scaled spatially constant horizontal eddy
viscosity, the scaled spatially varying resistance and the scaled resistance when
no patches are present, respectively. These scales allow the identification of
the input parameters relevant to this system. These are a total of seven system
parameters that influence the calculations, which are: the water depth H∗, patch
pattern recurrence length L∗, channel width B∗, eddy viscosity ν∗h , energy slope
i0, the background roughness kN,b and the vegetation patch roughness kN,p

1.
The scaled mean roughness µ0 is calculated using these two roughness inputs.

4.1 Perturbation model limitations

The small perturbation model leads to two limitations that will be discussed
in this section. The first restriction is caused by the truncation of the solution
after the second order and the second restriction is found in the reformulation
of the roughness; here it is assumed that the roughness variations are small
perturbations from some mean roughness. It is found that the first restriction
is limiting for the model application and that the second restriction can be used
to determine a minimum value for H∗ and L∗.

4.1.1 Truncation of the solution

The expansion series used in this analysis uses higher orders of the solution (i.e.
ε2φ2, ε3φ3 etc.) to ‘correct’ the approximation of the cumulative result of the
lower orders. As the order number increases, the adjustments needs to become
smaller in order to allow truncation of the expansion series. As a result it can
be stated that ε needs to be a small parameter (i.e. ε � 1). If this condition
is not met, higher orders of the solution will significantly influence the solution.
This would require their consideration for the analysis.

Figure 4.1(b) shows a contour line for different values of H∗ and L∗ where
ε = 0.25. The combinations of H∗ and L∗ above this line are acceptable with
respect to this restriction. Note that this line in combination with the line
in figure 4.1(a) leads to a field of applicability for the model. In retrospect it
appears that the linearization parameter ε may have been an unfortunate choice.
The reason for this can be found in the reformulated roughness. The expansion
used requires ε to be small in an absolute sense, while the reformulation of
the roughness assumes that the roughness variations are small compared to the
mean. If the roughness formulation were divided by µ0 this latter condition
would be represented also in the expansion series:

µ(x, y)

µ0
=

µ0

µ0
+

ε

µ0
µ1(x, y) = 1 + ε̃µ1(x, y),

where ε̃ could be used in the expansion series so that the relative difference
between µ0 and µ1 is used in the expansion and not the absolute difference.
This would require all of the model equations (momentum and continuity) to
be divided by µ0.

1Recalling that the roughness is translated to a dimensionless drag coefficient by first
calculating the Chézy value corresponding to the water level using C∗ = 18 log(12H∗/kN),
which can subsequently be translated using cD = g∗/C∗2
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Figure 4.1: Restrictions as caused by the analysis. (a) shows the contour line
at the value µ0 = 1 and (b) shows the contour line where ε = 0.25. These two
conditions lead to a field of application for which the model may be used.

4.1.2 Small perturbation

A second condition imposed by the linearization can found in the definition of
the spatially varying roughness as given by equation (3.1). This requires the
variations to be approximately an order of magnitude smaller than the base
case. This can be symbolically represented as:

εµ1(x, y) � µ0

The small parameter ε is defined such that the scaled spatially varying roughness
|µ1(x, y)| is of order 1. This leads to the fact that there is a maximum value for ε
that this analysis permits. This maximum value for epsilon will be symbolically
represented by εmax and the following statement must then always be true in
the case of small perturbations:

ε ≤ εmaxµ0

This limitation can be used to find the water depth required for a certain
patch length2. As a result, a minimum water depth H∗

min for a particular com-
bination of background and patch roughness can be found. The following two
equations are used to determine ε and µ0 and can be used to find H∗

min analyt-
ically.

ε =
µp − µb

2
and µ0 = µb + εC00

There are two cases that are be considered based on the methodology of
this study; these are the simple patches and the complex patches. The simple
patches are constructed using only one Fourier mode and in those cases µ0 lies
exactly between µb and µp. In those cases H∗

min can be found using the following

2This restriction results in limiting conditions for H∗ and L∗ due to the fact that µ is
determined using the ratio L∗/H∗.
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relationship:

H∗
min =

1

12

(
kN,p

kN,b

) 1
2

1−εmax+

√
1−ε2max

εmax

kN,p. (4.3)

The complex patterns can have any number of modes and thus adhere to
a more general formula. The Fourier transformation of complex patches will
return a base mode C00 that can be used to correct the offset caused by the
Fourier transformation. This minimum water depth is then defined as:

H∗
min =

1

12

(
kN,p

kN,b

)− 1
2

C00−2+C00εmax−
√

(1+εmax)(C2
00εmax−2C00εmax+C2

00−4C00+4)

εmax

kN,p.

(4.4)
Therefore it can be stated that H∗

min depends solely on kN,b, kN,p E, and
C00. The first three are input parameters and the C00 depends on the coverage
fraction of the vegetation types in the complex patch patterns. The minimum
water depth can be used to find a minimum patch length. This allows the iden-
tification of the smallest spatial scales for which certain roughness combinations
can be modelled.

4.2 Linearization limitations

The weakly nonlinear analysis requires the roughness term in the momentum
equation to be of equal magnitude or larger than the other nonlinear terms in
the equations. This is a restriction caused by the assumption that individual
orders of the solution are not severely influenced by other orders of the solution,
which would be deemed strong nonlinear behaviour. The expansion as seen in
equation (3.2) would not be valid if any of the nonlinear terms in the scaled
equations do not behave linearly enough. In other words, in order to allow
the superposition of individual orders, it is required that each of the terms
behaves in a linear fashion. This can be accomplished by setting a minimum
requirement for the magnitude of the scaled roughness so that it is larger than
all other nonlinear terms in the equations.

Due to the fact that the advective term is the only other nonlinear term in
the flow equations it will be stated that the magnitude of the advective term
needs to be smaller or of the same order as the resistance formulation.

U∗2

L∗ ≤ cD0
U∗2

H∗

where cD0 is the mean drag coefficient of the disturbed state. The velocity scale
may be elimated from this equation as it contributes both terms equally leaving:

1

L∗ ≤ cD0

H∗

Simplifying this further leads to an equation for one of the typical scales of the
system as defined in the previous section:

cD0
L∗

H∗ = µ0 ∴ µ0 ≥ 1 (4.5)
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0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Patch length [m]

W
at

er
 d

ep
th

 [
m

]

0.28 0.39 0.47

μ  = 1
ε   = 0.25

0.730

Figure 4.2: Illustration of the combinations of L∗ and H∗ allowed with kN,b =
0.20 and kN,p = 0.28, 0.39, 0.47 and 0.73 and εmax = 0.25. The thin line shows
the restriction imposed by the relative importance of advection and friction; the
thick line shows the lower boundary as a result of the small perturbation model.
The colored fields illustrate what region of this figure is usable for analysis. Note
the point where kN,p = 0.73 can be analyzed lies outside of the axis of this figure.
The two lines intersect outside of this image.

There are many input variables that have an effect on the magnitude of the
scaled dimensionless friction. These are the water depth H∗ and the length of
the patch pattern L∗ as can be seen from its definition, but also the Nikuradse
roughness of the patch kN,p and the background kN,b vegetation influences this
value as can be seen in Figure 3.1.

Figure 4.1(a) shows the contour line where µ0 = 1 for the specific case where
kN,b = 0.20 m and kN,p = 0.39 m. All combinations of L∗ and H∗ underneath
this curve are feasible options (i.e. µ0 > 1) with regards to this constraint.

4.3 Range of applicability

These restrictions can be combined in a single figure to illustrate for what com-
binations of H∗ and L∗ the model can be applied. Figure 4.2 shows a range of
values where the model is applicable. In this figure the base roughness is that
of a field with patches in the form of pioneer vegetation, natural grasslands and
wet brushwood. A maximum value for epsilon of 0.25 is set, which leads to the
ranges displayed. Note that small values of H∗ and L∗ are only acceptable for
very small differences in roughness and only for very small variations.
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Table 4.1: This table shows for what combinations of roughness types the model
is applicable while also showing the minimum required values for L∗ and H∗ at
εmax = 0.25

E = 0.25
Back-

ground

k
Patch k H L H L H L H L H L H L H L H L H L H L H L H L H L

Sand 0.10 0 0
Nevengeul 0.15 0.1 0.8 0 0

Field 0.20 0.2 8 0 0.4 0 0
Pioneer Vegeta�on 0.28 0.8 77 0.2 7.2 0.1 0.8 0 0

Natural grasslands 0.39 3.5 575 0.9 72 0.3 13 0.1 1.1 0 0
Wet brushwood 0.47 8 #### 2 233 0.7 49 0.2 5.8 0.1 0.2 0 0

Sedge Marsch 0.73 56 #### 14 #### 5.2 779 1.6 137 0.5 19 0.3 5 0.1 0
Dry brushwood 1.45 294 #### 109 #### 34 #### 11 #### 5.8 663 1.3 56 0.1 ####

Dewberry brushwood 1.58 430 #### 160 #### 50 #### 16 #### 8.5 #### 1.9 103 0.2 0.1 0.1 ####
Reed grass 2.23 738 #### 232 #### 74 #### 39 #### 8.6 969 0.8 14 0.6 6.8 0.2 0

Reed brushwood 11.4 845 #### 259 #### 1 ####
Reed 12.4 376 #### 1.4 0.9 1 ####

So�wood Alluvial Forest 12.9 448 #### 1.6 2.4 1.2 0.2 1.1 ####

1.58 2.23 11.4 12.4 12.9

Reed
So�wood 
Al luvia l  
Forest

0.10 0.15 0.20 0.28 0.39 0.47 0.73 1.45

Wet 
brush-
wood

Sedge 
Marsch

Dry brush-
wood

Dewberry 
brush-
wood

Reed 
grass

Reed 
brush-
wood

Sand Ditch Field
Pioneer 
Vegeta-

�on

Natura l  
grass -
lands

The minimum values for H∗ and L∗ that may be used in an analysis, shown
in the bottom left corner of any range in Figure 4.2, can be found analytically.
Table 4.1 shows the minimum values for all combinations of roughness types
found in Table 2.1 at εmax = 0.20. Colour coding has been used to identify
ranges that are useful, less useful and useless based on the aim of this research.
Green represents that a combination is useful (0 ≤ H∗ ≤ 5 and 0 ≤ L∗ ≤ 250),
yellow shows that the usefulness is marginal as patch lengths and water depths
are already too high for the analysis of roughness patches on a small scales while
the values are still realistic (5 < H∗ ≤ 10 and 250 < L∗ ≤ 500) and red marks
all values outside of these two ranges, which thus carry no significance for the
analysis.

Additional tables can be found in appendix I for different values of εmax. In
these tables it becomes evident that smaller values of epsilon further restrict the
applicability of the model.

4.4 Summary

In this chapter the ranges of application of the model have been discussed as
caused by the solution method. It has been shown that certain ranges of H∗

and L∗ may be modelled for specific combinations of background and patch
vegetation. Additionally minimum values H∗

min and L∗
min were found for which

the model applies.
Some modelling choices will be made as a result of this analysis. It is sug-

gested that εmax = 0.25 is used for the analysis as it still allows relatively short
patch lengths and shallow water depths for a base roughness value of kN,b = 0.20
m (field). This allows the use of up to 3 other roughness types for the vegetation
patches. It is important to investigate patches specifically at small spatial scales
as this is the region for which aggregated roughness values are sought.

Finally, it is important to note that relatively large patch length and water
depths are required, even at very small differences in roughness. At L∗ = 100
for kN,b = 0.20 and kN,b = 0.28 the water depth is only allowed to vary between
0.55 ≤ H∗ ≤ 1 meter. Similarly, in order to model a water depth of 5 meters,
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4.4: Summary

as done by ter Haar (2010), a patch lengths L∗ of approximately 1200 meters
is required. These lengths are beyond the usefulness of this modelling approach
and therefore no modelling will be done at larger water depths.
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Chapter 5

Results: Simple roughness
patch patterns

In this chapter a relatively simple single mode roughness patch decription is
used to identify principal physical processes and phenomenon that may be more
difficult to distinguish using more complex patch shapes or patterns. Three
individual roughness patterns will be modelled through defining a fixed value
to the complex coefficient Cmn, which is used to describe the spatially varying
roughness while setting all remaining modes in Cmn = 0. The three cases that
will be considered are C10 = 1

2 , C01 = 1
2 and C11 = 1

2 which describe serial,
parallel and alternating roughness respectively. Roughness changes are gradual
due to the fact that only one mode is considered.

For the analysis in this chapter, five variables were used as input to investi-
gate how they each affect the model output. These variable were H∗, L∗, B∗, ν∗h
and i0. For each calculation all variables were kept at a constant value with the
exception of the variable to be investigated. The input values of the variables
can be seen in table 5.1.

The ranges are based on the allowable ranges found in the chapter 4 and
ter Haar (2010). Finally kN,b = 0.20 m during model calculations and the
vegetation patch roughness was set to kN,p = 0.28 m in order to allow a the
largest range of input values for H∗ and L∗ while retaining relatively short
spatial scales.

Table 5.1: Input variable values for the model calculations for the simple patch
descriptions.

Constant Range
H∗ [m] 1 0.5− 1.2
L∗ [m] 100 90− 250
B∗ [m] 100 10− 250
ν∗h [m2 s−1] 5 0− 10
i0 [m] 1× 10−4 1× 10−5 − 1× 10−3
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Figure 5.1: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b). The roughness pattern is described by the mode C01 = 1/2.
kN,b = 0.20 and kN,p = 0.28. The axes show a scaled length scale as the patch
stretches in the streamwise and transverse direction depending on the input for
L∗ and B∗. The lines in the top figure are the streamlines of the flow up to the
first order, the vectors in the bottom plot show the first order velocities (u1, v1).
The arrows clearly show that the flow velocity reduces over the roughness patch
and accelerates over the base roughness.
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5.1: Parallel roughness patches
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Figure 5.2: Influence of the eddy viscosity on the flow velocity for different mode
number n describing the layout of the parallel roughness patches. A higher mode
number n corresponds with a greater number parallel patches in the river seg-
ment. There are two interesting results that may be observed in this figure: i) a
maximum change in velocity can be found as a result of shear effects irrespective
of the eddy viscosity value and ii) this maximum is reached sooner when the
number of parallel patches in a river segment of equal dimensions increases.

5.1 Parallel roughness patches
Parallel (or transverse) roughness can be described by setting the complex coeffi-
cient C01 = 1

2 while setting all other values for Cmn = 0. Utilizing equation (3.5)
it can be stated that the spatially varying roughness is defined using:

µ1(x, y) =
1

2
exp(0) cos(βy) + c.c. = cos(βy).

In this case the wave number α = 0 and the wave number β = π/B. The
system shows a patch pattern (see figure 5.1(a)) where the roughness is high at
one side of the channel and low at the opposing side. The spatially averaged
flow contribution in the second order can be found utilizing equation (3.17).
Substitution, expansion and subsequent simplification allows the solution for
〈u2〉 to be simplified to:

〈u2〉 = −1

8

(3µ0 + 2νβ2)

µ0(2µ0 + νβ2)2
. (5.1)

What becomes clear is that the terms v1
∂u1

∂y and 1
2µ0v1 are reduced to zero

and do not contribute to the flow velocity in the second order for such a patch
description. The cause of this is that there is no transverse velocity contribution
v1 in the first order. This only arises, as can be seen in equation (3.10), when
the roughness patch description has both a streamwise and transverse structure,
i.e. αm 	= 0 and βn 	= 0.

Equation (3.10) also shows that no free surface elevation arises when α = 0,
which can also be seen in figure 5.1(b). As a result no backwater effects occur,
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which therefore allows the conclusion that the only influence found in the second
order originates from interactions in the resistance terms 2µ1u1 and µ0u

2
1. These

terms describe the resistance in the downstream direction of the disturbed flow
for both the background roughness and the spatially varying roughness.

A final simplification to the solution can be made for the case where the
eddy viscosity is ignored. This leads to the following relationship for the second
order spatially invariant contribution:

〈u2〉 = − 3

32µ2
0

= −3

8

|C|2
µ2
0

, (5.2)

where the last term has been added to provide a more general formulation of the
roughness based on the patch description. It is particularly of interest to note
that this final formulation is independent of wave numbers in the streamwise and
transverse direction. As a result it can be concluded that some base roughness
increase always arises for spatially varying roughness irrespective of the layout
of these patches. This base roughness increase depends solely on the mean
roughness µ0 and the amplitude (or magnitude) of the independent components
of the spatially varying roughness Cmn.

Consequently, it means that additional roughness (on top of this background
roughness) of roughness patches oriented parallel to the principal flow direction
can be attributed solely to viscous effects. The influence of the shearing effects,
as encompassed in the eddy viscosity, can be seen in figure 5.2. There are two
interesting conclusions that can be drawn from this figure. The first is that
there appears to be a maximum influence of the shearing effects on the flow
velocity reduction.

Secondly, this maximum influence of shearing effects is reached at a lower
eddy viscosity when the wave number n increases, i.e. when more parallel
patches occur within the same channel section. This can be explained by the
fact that a high ν∗h represents a more turbulent flow, which results in larger
shear layers. A slow transitions from smooth to rough allows the flow to adapt
fully, but more rapid transitions (higher values of n) will lead to overlapping
shear layers preventing full flow adaptation. This overlapping occurs sooner
when the eddy viscosity is higher as the shear layers increase in width. This in-
teraction, where turbulent flow cannot fully adapt, is observed as the maximum
flow velocity influence.

Model calculations have been performed in order to find what input variables
affect the mean flow velocity in the channel. Figure 5.3 and Figure 5.4 show how
the average velocity over the roughness patch changes with respect to various
input variables. From these figures it can be seen that the pattern length L∗,
the channel width B∗ and the eddy viscosity ν∗h appear to have very little effect
on the mean flow velocity in the channel in comparison to the water depth H∗

and the energy slope i0. This influence of H∗ and i0 is easily explained using
the Chézy relationship, which directly relates water depth and energy slope
to roughness. This relationship shows that as H and i0 increase so will the
smoothness, which is what the model shows.

Figure 5.4 shows how the change in the spatially averaged flow velocity is
influenced by L∗, B∗ and ν∗h . The patch length has no influence on the model
outcome as expected; there is no change in roughness in the downstream di-
rection, i.e. α = 0. The influence of the eddy viscosity has been described
extensively but the influence of the width is also of interest.
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5.2: Serial roughness patches
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Figure 5.3: Change in the mean velocity as caused by a change in H∗ and i0 for
parallel roughness patches. Both parameters directly influence the velocity scale
and it can be concluded that when the velocity scale of the system increases, so
does the aggregated resistance.

As B∗ increases, the gradient ∂u1/∂y decreases allowing flow to adapt to
the roughness variation more gradually. Effectively, when the width is changed,
similar processes occur as previously described for the influence of n on the flow
velocity regarding the eddy viscosity. Increasing n, reduces B and vice versa.
Therefore the width of the channel will have an influence on the relationship
between n and ν∗h as seen in figure 5.2. A higher width of the channel will lead
to a lower resistance when n and ν∗h are kept constant.

5.1.1 Summary
In summary this section has pointed out some interesting results regarding a
transverse structure of roughness patches. The following points have been iden-
tified:

• When concerning parallel roughness a resistance increase is always found
independent of the roughness layout in comparison to the mean roughness.

• Shear effects are found to cause an increased flow resistance up to a certain
maximum. This maximum occurs when different shear layers overlap.

• The influence of the shear effects depends on the eddy viscosity and how
gradual the roughness change is. A smooth transition, n is large or B∗ is
small, or a low eddy viscosity reduce the shear effects and thus the overall
roughness increase.

5.2 Serial roughness patches
Serial roughness can be described by setting the complex coefficient C10 = 1

2
while setting all other values for Cmn = 0. Utilizing equation (3.5) it can be
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Figure 5.4: Change in the mean velocity as caused by a change in L∗, B∗ and
ν∗h for parallel roughness patches. The ranges of the values are shown in the
legend of the figure. The patch length has no influence on the mean velocity in
the channel as expected; there is no variation in roughness along x.

concluded that the spatially varying roughness is defined using:

µ1(x, y) =
1

2
exp(iαx) cos(0) + c.c. = cos(αx).

Figure 5.5(a) visualizes the roughness pattern that this function describes.
Note that the roughness transition in the downstream direction is very gradual
using this roughness description. Utilizing equation (3.17) the solution can
easily be found for the spatially averaged contribution in the second order. This
function then reduces to:

〈u2〉 = α2F 2

8µ0|D|2 (
µ0(u1−F 2ζ1)

2︷ ︸︸ ︷
4µ0F

2|X1|2 +
µ1(2u1−F 2ζ1)︷ ︸︸ ︷

3
{D} ), (5.3)

where D is the complex determinant defined in equation (3.11) and X1 = iα+
να2 + µ0. Similarly to the parallel patterns it can be seen that the transverse
velocity v1 = 0 as found in equation (3.10) remains zero as the patches do
not have a transverse and streamline structure. This again leads to the fact
that the contributions arising from this velocity are trivial, i.e. v1

∂u1

∂y = 0 and
0.5µ0v

2
1 = 0.

However, the free surface elevation does not remain trivial for serial rough-
ness patches. This causes backwater effects to occur. Momentum and mass are
only driven by the change in free surface elevation and the downstream velocity
gradient determined in the first order. The eddy viscosity is set to zero analo-
gous to the parallel roughness pattern. This leads to the following solution for
the spatially averaged flow velocity contribution in the second order:

〈u2〉 = − F 2

4|D|2
[
2F 2µ2

0 + 10α2F 2 + 3α2
]
, (5.4)
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Figure 5.5: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b). The roughness pattern is described by the mode C10 = 1/2.
kN,b = 0.20 and kN,p = 0.28. The axes show a scaled length scale as the patch
stretches in the streamwise and transverse direction depending on the input for
L∗ and B∗. The lines in the top figure are the streamlines of the flow up to the
first order, the vectors in the bottom plot show the first order velocities (u1, v1).
The bottom figure clearly shows a negative lag in the free surface elevation where
the water level increases before a roughness patch. This is typical for low Froude
numbers.
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Figure 5.6: This figure shows the effect of variations in L∗, B∗ and ν∗h on the flow
velocity in the channel for serially oriented roughness. Note that the channel
width has no influence on the flow velocity as expected (there are no transverse
variations in roughness). The eddy viscosity has a very small and opposite
effect in a streamwise roughness patch structure when compared to a transverse
roughness patch structure. When the flow becomes more viscous, i.e. when more
turbulence is accounted for, less resistance occurs.

where |D|2 = (α2 + µ2
0)(9F

4µ2
0 − 2α2F 2 + α2F 4 + α2). Note that for serial

patches, unlike parallel patches, reducing the eddy viscosity to zero does not
cause the influence of the spatial structure of the patches given by α to become
trivial. This is caused by the fact that the backwater effects as given by F 2ζ1
become dominant for serial patches and not the eddy viscosity. The backwater
effects are clear visualized in figure 5.5(b).

In figure 5.5 it can be seen that the first order velocity change in the down-
stream direction is a direct result of the roughness description. The system
accelerates over the base friction and decelerates at the roughness peaks. As
there is no change in roughness along the width of the river, no change in ve-
locity will be found in this direction (i.e. v1 = 0). It can therefore be seen that
the width of the river also has no influence on the spatially averaged velocity.
Figure 5.6 shows this effect.

From equation (5.3) it can be seen that the spatially averaged change in
the flow velocity is proportional to the Froude number of the system. This
also emphasizes that the aggregate roughness is defined in its entirety by the
backwater effects that arise due to the downstream roughness variations.

Figure 5.6 shows how the patch length, channel width and eddy viscosity
influence the mean flow velocity. Note that the scale of the variations is par-
ticularly small. The width of the channel has no influence on the aggregate
roughness and the influence of the eddy viscosity also appears to be negligible
(no shearing occurs). It appears that increasing the patch length also increases
the aggregate roughness. This can be explained by the fact that the backwater
effects can develop more fully when the length scale is increased.
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5.2.1 Summary

This section investigated patches with a streamwise structure. The most inter-
esting findings are:

• The aggregate resistance found for patches with a streamwise structure is
caused entirely by backwater effects. Equation (5.3) shows this because a
rigid lid (i.e. F 2 = 0) results in no aggregate roughness.

• Longer patch lengths allow backwater effects to develop causing a higher
aggregate resistance.

5.3 Checkerboard roughness patches

The last single mode patch pattern that is to be considered is described by
C11 = 1/2 while all other possible values of Cmn = 0. This mode describes an
alternating pattern of roughness in the transverse and downstream direction,
which has been visualized in the top plot of figure 5.7. The spatially varying
roughness is then given by:

µ1 =
1

2
exp(iαx) cos(βy) = cos(αx) cos(βy).

Of interest once again is the spatially invariant contribution to the flow in
the second order. In this case all four terms contribute to the change in flow
velocity in the second order; this is given by:

〈u2〉 = − 1

16µ0|D|2 [β2F 2
(
X1 +X1

)
+ 2µ0

(
4F 4|X1|2 − 3β2F 2 + β4

)
+ µ0β

2 +
(
3F 2 − 2β2

) (
D +D

)
] . (5.5)

The additional terms that contribute to the spatially averaged flow velocity
are the lateral distribution of longitudinal momentum and the resistance to the
flow in the transverse direction. Both terms enter the analysis as they require
a transverse velocity in the first order, which only arises when the roughness
varies in the streamwise and transverse direction. This can be seen directly in
equation (3.10), where V1,mn 	= 0 requires both α and β to be nontrivial.

Figure 5.7 shows various effects observed in the previous two cases combined
in a single patch, which is expected considering the patch definition. The free
surface elevation ζ1 observes a similar negative lag as in the serial roughness
case. The changing direction of u1 from the serial patch pattern is combined
with the transverse structure of u1 as found for the parallel patch pattern.

New, however, is the generation of a transverse flow velocity component v1,
which leads to flow routing as visualized by the streamlines in figure 5.7(a). The
combined effect of the new u1 structure and the additional transverse velocity
v1 leads to larger scale flow redirection from rough terrain to smooth terrain.
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Figure 5.7: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b). The roughness pattern is described by the mode C11 = 1/2.
kN,b = 0.20 and kN,p = 0.28. The axes show a scaled length scale as the patch
stretches in the streamwise and transverse direction depending on the input for
L∗ and B∗. The lines in the top figure are slightly exaggerated streamlines of
the flow up to the first order where the vertical component of the flow has been
enlarged, the vectors in the bottom plot show the first order velocities (u1, v1).
The streamlines and velocity vectors show flow routing over the lowest resistance.
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Figure 5.8: Change in the mean velocity in the system as caused by a change in
L∗, B∗ and ν∗h for the checkerboard roughness patches. The alternate patterns
cause both the patch length and the channel width to influence the mean flow
velocity in the channel.

The influence of H∗ and i0 is, similarly to the previous two cases, much larger
than the influence of L∗, B∗ and ν∗h and also shows exactly the same behaviour.
Figure 5.8 shows the model results for these last three system parameters. A
particularly interesting observation is that the effect of the channel width has
a certain optimum for which the spatially averaged downstream flow velocity is
at a minimum. Also, the patch length shows to have a much smaller influence
than both the width and the eddy viscosity on calculation results.

The most interesting observation herein is the fact that there is a channel
width for which the aggregate roughness is lowest. It is to be expected that
this is caused by a competition between two processes: the shear effects as a
result of the transverse roughness variation and the backwater effects as caused
by the streamwise roughness variation. When the patches become sufficiently
wide, the shearing effects are reduced as flow can adapt more easily. In effect it
can ‘follow’ the roughness pattern easier. At a certain point however the shear
effect becomes so small that the existing backwater effects start to play a more
dominant role.

Figure 5.9 shows the values of the four contributing terms for different values
of B∗ and ν∗h. Note that the additional terms that were not present in the serial
and parallel cases (i.e. figure 5.9 (a) and (c)) have a much smaller contribution to
the spatially averaged flow velocity in the second order. However, the behaviour
shown by these two terms is significantly different. The eddy viscosity has a
much smaller effect. The figure also shows that the two larger terms, shown in
figure 5.9 (b) and (d), have opposing effects but show similar behaviour with
respect to the two input parameters. From this figure it can be seen that the
optimum channel width, where resistance is lowest, appears to be dependent
upon the eddy viscosity value as the optimal point scales accordingly.
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Figure 5.9: Influence of each of the four terms in the solution given by equa-
tion (5.5) where (a) is v1

∂u1

∂y (b) is µ0

(
u1 − F 2ζ1

)2 (c) is 1
2µ0v

2
1 and (d) is

µ1

(
2u1 − F 2ζ1

)
. Note the large difference in the order of magnitude of the

particular contributions to U200 and specifically that (d) displays opposing be-
haviour. It can also be seen that the optimum value for B∗ is related to the
influence of ν∗h .

5.3.1 Summary
In this section the checkerboard patches were analysed. Some interesting find-
ings can be identified:

• A roughness pattern that has both streamwise and transverse roughness
variations induces a transverse velocity component. This velocity com-
ponent results in two additional terms that contribute to the aggregate
roughness. These are the transverse redistribution of longitudinal mo-
mentum and a resistance in the transverse direction.

• The induced transverse velocity component results in flow routing effec-
tively increasing the channel length, thus causing an increased aggregate
resistance.

• An minimum roughness can be found for the checkerboard roughness lay-
out at a certain width. It is expected that this is caused by a competition
between the shear and backwater effects.
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Chapter 6

Results: Complex patch
patterns

The previous chapter discussed how various physical scales influenced the ag-
gregated roughness of a patch pattern on a floodplain. Up to this points the
patches discussed have been simple, consisting of only one mode in the Fourier
space. This chapter discusses more complex patch patterns, and how they are
influenced by the same input variables with the addition of rotation.

This chapter first explains how the complex coefficients Cmn are obtained
for more complex patches, allowing almost any shape to be investigated. Then a
similar analysis will be performed as seen in the previous chapter. The relative
importance of five input variables with the addition of rotation are discussed.

6.1 Obtaining roughness patch coefficients

This section discusses the method used to find the complex coefficients Cmn

that define the roughness patch. The two dimensional fast Fourier Transform
algorithm in MATLAB is used to transform bitmap image information into
Fourier coefficients. This allows the greatest freedom in defining the roughness
coefficients as they can literally be drawn any shape fathomable.

6.1.1 Input image

The patterns for which the analysis is performed are shown in figure 6.1. The
image shows a black background with the roughness patches added in white.
These patch shapes were chosen because the elongated shape of the patch leads
to the greatest differences in roughness as caused by the various input parame-
ters. Roughness patches that had a more even aspect ratio lead to results closer
to the averaged roughness value, meaning that spatial characteristics barely in-
fluenced the results. This can be observed in the results for the patch described
by figure 6.1(c).

Using images as input for the roughness patches has the additional benefit
that a patch can be rotated (in a counterclockwise direction) using the image
processing tools in MATLAB. There is however one limitation to this method
that must be considered. Not the whole input image is available for roughness
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Figure 6.1: The three complex patch patterns that are analyzed are shown in
this section. (a) shows a rounded longitudinal roughness patch with a streamwise
orientation at 0 degrees rotation. (b) two rounded rectangular roughness patches
next to each other at 0 degrees rotation and (c) shows a patch in the shape
of the letter C. In these images black represents the background vegetation and
white shows the roughness patches.
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Figure 6.2: This illustration shows that not all patch patterns can be rotated due
to the fact that the image is cropped at rotation. A final patch to be considered
are the random roughness patches as also modelled by van Velzen et al. (2003a)
and ter Haar (2010). In this case, the testpattern shown in figure 6.1(c) has
been rotated by 45 degrees, but some information is lost at the edges.

patches as the rotation in MATLAB crops the image so that an image of the
same size is returned. Figure 6.2 shows an example of a rotation that will not
result in usable model results. The complex patch pattern shown in figure 6.2(a)
cannot be rotated as some information is lost at the edges due to the cropping
effect of the rotation function. As a result, patches may only be placed in the
largest circle that fits inside the input image when the patch needs to be rotated.

6.1.2 Fast Fourier Transform

The complex coefficients Cmn are found using the fast Fourier transform algo-
rithm in MATLAB. This discrete Fourier transform uses a frequency filter to
identify what frequencies can be found in the patch and with what amplitudes.
The coefficients describe the input image better as the number of modes consid-
ered increases. However a greater number of modes also significantly increases
calculation time of the model. It was found that using 20 modes in both m and
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Figure 6.3: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b) for the rounded elongated roughness patch without rotation.

n satisfactorily describes the patches.
A common problem using Fourier transformations is the Gibbs phenomenon,

which occurs at discontinuous points in the input data. The Fourier transforma-
tion (over)compensates for this discontinuity through the superposition of many
frequencies at the place of discontinuity. As a result the transformation over-
estimates the function at both sides of the discontinuity, which leads to erratic
peaks in the function. For this analysis a Gaussian filter is placed over the input
image in order to smooth the input patch before the Fourier transformation is
performed.
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Figure 6.4: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b) for the rounded elongated roughness patch without rotation.

6.2 Input parameter values
The same input parameter values will be used as with the simple patch descrip-
tions with the exception of the fixed water depth and the range of the patch
length. These changes are caused by the limitations of the solution method. A
water depth of 0.8 meters will be used and the length of the roughness patch pat-
tern will be varied from 60 to 250. Furthermore, the rotation of patches occurs
in the counter-clockwise direction and will range between 0 ≤ rotation ≤ 180
degrees.

6.3 Influence of patch rotation
In order to investigate the relative importance of patch orientation with regards
to the aggregated roughness, model calculations have been performed for two
complex patches that allow rotation. The roughness patches used for this anal-
ysis are illustrated in Figure 6.1. When there is no rotation the patches are
oriented in the streamwise direction. Rotating the patch by 90 degrees causes
them to be perpendicular to the flow.

6.3.1 Rounded elongated patch
The first patch considered in this analysis is the patch shown in figure 6.1(a), an
elongated rounded patch. The first order solution has been visualized for three
points of the rotation of the rounded elongated patch. These are: 0 degrees
rotation 6.4, 45 degrees rotation 6.3 and 90 degrees rotation 6.5. It can be seen
that the flow travels the route of least resistance where possible, similarly to
the case with the alternating roughness patch in the previous channel. The
streamlines in all three cases attempt to ’evade’ the roughness patch, but the
flow also bends towards the shortest path over the roughness patch. This is
especially clear in figure 6.3.

As expected, all three components of the solution φ1 = (u1, v1, ζ1) are found
in the complex patch pattern solution, which indicates that all four contributing
terms in equation (3.16) are non-trivial. Figure 6.6 shows the results of the
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Figure 6.5: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b) for the rounded elongated roughness patch after 90 degrees
rotation.
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Figure 6.6: Influence of H∗ and i0 on the change in the mean flow velocity in
the river section.
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Figure 6.7: Influence of L∗, B∗, ν∗h and rotation on the mean flow velocity in
the river section. The results clearly shows how the rotation of the elongated
patch induces the most resistance when perpendicular to the flow, but not the
least when oriented in the streamwise direction. The minimum resistance can
be found visually around 54 degrees of rotation.

model calculations for the water depth and the energy slope. The results are
comparable to the simple patch pattern descriptions with respect to the trend
observed, as well as the difference in magnitude.

Figure 6.7 shows model results for the remaining system parameters:
L∗, B∗, ν∗h and rotation. The trends observed are very similar to those found for
the simple alternating patch pattern with a few exceptions. The length of the
patch appears to have negligible influence on the model output. This can be
explained by the fact the model results are presented for the 0 degree rotation
case, effectively describing a parallel patch pattern, which were also not influ-
enced in the simple case. Secondly, there is no obvious optimal patch width for
which the resistance is lowest.

The influence of the eddy viscosity is the same as in the previous model
calculations. When the eddy viscosity of the flow increases a larger resistance
is found. This is as expected because at higher eddy viscosities more energy is
lost to the small scale vorticity in the flow.

Of particular interest however is the inclusion of patch rotation, which shows
some interesting results. The largest resistance is observed where the patch
pattern is rotated 90 degrees as expected. This describes a roughness patch
perpendicular to the flow field, reducing the flow velocity along the entire width
of the river. What is interesting however is that the point of least resistance is
does not occur where the patch is oriented in a stream wise direction, but rather
at an angle of approximately 54 degrees rotation. This will also be observed for
the other rotation cased discussed hereafter.

The cause of this influence of the patch orientation is unknown and will
require investigation. However, it is expected that it is caused by a competition
between the backwater effects and the shear effects. From the previous chapter
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Figure 6.8: Influence of L∗, B∗, ν∗h and rotation on the mean flow velocity in the
river section with two side by side patches. Interestingly, the change in mean
velocity is almost the same when the patch pattern is placed perpendicular or
streamwise to the flow. Similarly to the single patch case, the lowest amount of
resistance is observed where the patch is rotated at approximately 50 degrees.

it is known that the influence of backwater effects are larger for patches oriented
perpendicular to the flow. As a result it is expected that a transverse or serial
orientation of the roughness patches will cause the greatest backwater effects.
Additionally it is known that a parallel patch orientation leads to shear effects
that cause increased roughness.

The influence of patch orientation is therefore expected to be the result of
a combined minimum contribution by both shear effects and backwater effects,
which in this case is found around 54◦ rotation. Rotating it towards a parallel
orientation will increase shear effects and decrease backwater effects but the
combined effects will be larger than at the obtained ‘optimum’.

6.3.2 Side by side patches

Figure 6.8 shows the results for model calculations where the patch as seen in
figure 6.1(b) is considered. The model results agree with earlier calculations
and show similar trends for all four model parameters considered. Of interest
once again are the model results regarding the patch pattern rotation. In this
case the model results show that the highest flow velocity reduction is attained
when the patch is either perpendicular or streamwise to the flow. The lowest
resistance is again observed at a rotation of approximately 50 degrees.

This is most likely the result of the fact that u1 is much larger than v1 using
this solution technique. In the first order solutions it can be seen that the change
in velocity in the downstream direction is much larger than in the transverse
direction. A streamwise oriented patch therefore cumulatively reduces the flow
velocity in the downstream direction over the entire length of the patch as
almost no momentum is transferred in the transverse direction. In this case,
where two patches are considered side by side the total flow velocity reduction
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Figure 6.9: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b) for the patch with the shape of the letter C when rotated
90 degrees.

is even larger.
Patches that are oriented at an angle to the flow have a shorter downstream

travel distance over the patch, therefore leading to overall lower flow velocity
reduction. It is expected that model results for larger roughness variations at
smaller scales will not show this behaviour because more momentum is expected
to be transferred in the transverse direction.

6.3.3 Patch pattern C

The final patch that is considered that can be rotated is shown in figure 6.1(c).
The first order flow field over the patch has been visualized in figure 6.9 for the
case where the patch has been rotated by 90◦.

Figure 6.10 shows the results for the model calculations for L∗, B∗, ν∗h and
the patch rotation. The trends in the figure correspond to earlier trends observed
for different roughness descriptions. Increased patch lengths and increased width
reduce the flow velocity change as the flow can adapt more gradually. Of interest
once again is the influence of the orientation on the change in velocity. In this
case the influence of rotation appears to be minimal. It is expected that this is
caused by the fact the the patch shape can be approached as a circle. However,
what is unexpected, is the fact that the orientation of the opening of the patch
description appears to have barely any influence on the change in velocity.

6.4 Random roughness patches

The last patch pattern for analysis is shown in figure 6.1 (c), which described
a random distribution of five roughness patches. This analysis was chosen in
order to compare model results to the results obtained by ter Haar (2010) and
van Velzen et al. (2003a), who use a similar setup. The first order solution to
this case is shown in figure 6.11. The velocity vectors appear where expected; at
the location of the roughness patches, and the streamlines follow the path of least
resistance analogously to the alternating pattern in the previous chapter. The
free surface elevation appears in front of the roughness patches. It is important
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Figure 6.10: Influence of L∗, B∗, ν∗h and rotation on the mean flow velocity in
the river section with the C shaped patch. It appears that the patch orientation
has very little influence on the change in mean velocity. It is expected that this
is caused by the fact that the letter C is nearly a circle. The opening appearantly
has very little influence on model results.
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Figure 6.11: Surface plot of the vegetation pattern (a) and the first order free
surface elevation (b) for the randomly placed patches

- 54 -



CHAPTER 6. RESULTS: COMPLEX PATCH PATTERNS

0 50 100 150 200 250

−5

−4.95

−4.9

−4.85

−4.8

−4.75

−4.7
x 10

−3

Patch Length [m]

C
h
a
n
g
e
in

m
ea
n
v
el
o
ci
ty

[m
/
s]

〈u
∗
〉

 

 
Patch length
Channel width
Eddy viscosity

0 2 4 6 8 10
Eddy Viscosity [m2/s]

0 50 100 150 200 250
Channel Width [m]

Figure 6.12: Influence of L∗, B∗ and ν∗h on the mean flow velocity in the river
section with randomly placed patches.

to note however that the free surface elevation appears channel wide, and not
localized at the roughness patches.

Figure 6.12 shows the model results for the randomly placed roughness
patches. The different model parameters show comparable behaviour to the
results found for the alternating simple roughness patch description. Higher
values of ν∗h lead to increased flow retardation while larger spatial scales reduce
the flow retardation as the flow has more space to adjust.

6.5 Summary

This chapter discusses the influence of the input variables on more complex
patch descriptions. Some general conclusions can be drawn from this analysis.
In general, similar to the simple patches, the water depth and the energy slope
contribute most towards a change in downstream velocity. Increased water
depth and slope lead to greater changes in downstream velocity with respect to
the undisturbed velocity scale. The cause for this can be found in the scaling
itself. As the velocity scale increases, so will the deviations proportionally as
these are absolute changes and not relative changes.

Secondly, it can be concluded that increasing the length scale of the system
decreases the flow retardation in the river section. Longer spatial scales allow
the flow to distribute the momentum redirection over longer distances, reducing
the overall impact on the flow velocity. In the third place it can be said that the
eddy viscosity influences the flow as expected; higher values of eddy viscosity
correspond to a greater amount of energy that is dissipated in the flow itself
leading to a lower aggregated downstream flow velocity.

Finally, and most interestingly, is the conclusion that the flow velocity is not
reduced least while patches are streamlined with the flow field, but when they
are placed at an angle of around 50 degrees, depending on the configuration of
the patches used. It is expected that this is caused by a competition between
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backwater and shear effects. If this is the true cause has however not been
determined and more research is required to investigate this phenomenon.
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Chapter 7

Discussion

The previous chapters have outlined an idealized hydrodynamic model which has
been used to analyze the influence of various patch characteristics and system
parameters on the change in mean flow velocity over a river segment/floodplain.
This new mean velocity can then be used to determine the aggregate roughness
of such a river segment using equation (2.15). This chapter discusses the model
used for the analysis, and the results of the analysis performed in this report.

7.1 Regarding the model

The model shows expected behaviour, albeit at extremely small scales. The
permissible ranges of input data cause the variations in the flow to be extremely
small. The constraints as discussed in Chapter 4 cause the models application
at small length scales to be very limited. At the shortest length scales, with
the smallest difference between kN,b and kN,p only a very small range of water
depths can be modelled. Similarly, in order to model very large water depths,
very large length scales are required. The weakly non-linear analysis does not
allow the investigation of patches similar to those researched by ter Haar (2010)
or van Velzen et al. (2003a). The limits imposed by the linearization may
however be different if the small parameter ε is scaled with respect to µ0 as
outlined in chapter 4.

The goal of developing this model was to investigate the influence of veg-
etative roughness patches on aggregate roughness as found in floodplains. As
outlined in the introduction, integrated river management increases the ecolog-
ical development of floodplains, which is expected to lead to higher water levels
during flooding. The differences in roughness discussed in other studies can-
not be approached using this modelling analysis due to the limitations of the
linearization. Different forms of roughness, however, can be approached using
this method. A good example of this would be a river section with different
grainsizes and a flat bed. The model allows the identification of various phys-
ical processes, i.e. backwater effects and shear effects, that may be difficult to
distinguish in more complex models.
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7.2 Regarding the patch characteristics analysis

The influence of the length of a vegetation pattern and the width are predicted
by the model as expected. Larger length scales cause the change in roughness to
be gradual, leading to lower changes in flow velocity. An increased eddy viscosity
increases the aggregate roughness as more energy is dissipated in smaller scale
vortices, which are accounted for in the eddy viscosity.

Of particular interest is the influence of patch orientation on the aggregate
roughness. The maximum resistance as caused by an elongated patch of rough-
ness was found while the roughness was placed perpendicular to the flow field.
The minimum resistance, however, was found at an angle of approximately 50
degrees, and not when it is streamlined with the flow. It is expected that this
result is caused by the competition between backwater and shear effects around
a roughness patch. Model results for the simple patch characteristics show that
parallel roughness induces shear effects and serially placed roughness induces
backwater effects that both affect flow resistance. The ‘optimum’ resistance can
appearantly be found somewhere in between these two extremes. The processes
are however not yet fully understood and will require further investigation.

Model results in general yielded such small values that it must be questioned
whether the conclusions drawn using this solution method have any significance
when regarding real vegetation patches. The model therefore can be used pri-
marily to investigate general trends regarding the influence of input parameters
on certain identifiable physical flow processes. The processes that have been
identified are backwater effects, shear effects and the transverse redistribution
of longitudinal momentum.

7.3 Compared to current parameterizations

In this section the model results will be compared to the current parameteri-
zations as determined by van Velzen et al. (2003a) and ter Haar (2010). It is
of interest to note that both methods distinguish, in their own way, between
the patch orientation by describing a ratio between parallel and serially placed
roughness.

The parameterization by van Velzen et al. (2003a) does this explicitly by
determining how much of the vegetation has a serial orientation and how much
has a parallel orientation. It is stated that determining if patch patterns are
parallel or serial is rather subjective. The two roughnesses are then weighed
using a fixed parameter, which attributes more influence to serial roughness than
to parallel roughness. This is comparable to this research where the velocity
was reduced more for serial roughness than for parallel roughness. However,
this research shows that the serially placed roughness is much less sensitive
to changes in spatial scales than parallel patches. The influence of backwater
effects is larger on the aggregate resistance than the shear effects, but the shear
effects are influenced more by spatial scales.

In the research by ter Haar (2010) a new parameterization was suggested
that takes the complex flow processes into account. The fitted model shows
the influence of average patch width and average patch length as important
parameters for aggregated roughness. Additionally the mixing layers around a
patch and the flow adaptation length behind a patch are considered as parameter
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input. Two ratios are used in the parameterization, which are: i) the width of
the mixing layer compared to the width of the patch and ii) the length of the
flow adaptation compared to the length of the patch. These two ratios, in a
sense, also describe whether a patch is predominantly oriented serial or parallel
to the river flow.

It can be said that in previous research and in this investigation a trend can
be observed where the aggregated roughness largely depends on to what extent
a patch is oriented serial or parallel to the flow field. It is suggested that this
balance is determined by a competition between backwater effects and shear
effects. More research is required in order to fully understand the dynamics of
this relationship.
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Chapter 8

Conclusion

In this final chapter conclusions are drawn by answering the research questions
posed in Chapter 1. The conclusions will be used, in combination with the
discussion from Chapter 7 to formulate recommendations for future research.

8.1 Research questions
The goal of this research was to improve aggregate roughness parameterization
by investigating the importance of various vegetative roughness characteristics.
An idealized model was suggested as an alternative to the current modelling
applications, which is what most similar studies rely on. The first question
aims to answer what such an idealized model should encompass.

How can aggregated roughness for a floodplain section be determined using an
idealized model?

The model formulated was based on the steady non-linear depth-averaged
shallow water equations, which use an eddy viscosity to close the turbulence
problem and allow a spatial variation in roughness. This system of equations
was scaled in order to obtain dimensionless parameters that may be used to
identify the relative importance of various physical processes.

The equations were solved analytically using a weakly-nonlinear analysis. A
small perturbation model was used to approximate three flow properties: the
downstream velocity u, the transverse velocity v and the free surface elevtaion
ζ. The spatially varying roughness was formulated in terms of small deviations
from a mean roughness. A Fourier transformation was performed for both
the resistance description and the weakly-nonlinear problem. This allows the
problem to be solved using matrix multiplication.

A first order contribution was found and used in the subsequent analysis. In
the second order of the approximation, convolutions of the first order solution
were found. These convolutions lead to a spatially invariant contribution to the
downstream flow velocity in the second order U200. This allows a new average
velocity to be calculated, which can be used to determine aggregate roughness
while allowing for a spatial variation in roughness.

This solution, in both the first and second order, was used to analyze vari-
ous roughness patch descriptions. The new idealized modelling approach allows
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a quick assessment of the influence of patchy roughness on mean river flow.
Dominant mechanisms were found in case of parallel roughness variations only
(lateral shear), serial variations only (backwater effects) and combined varia-
tions (lateral shear, backwater effects and lateral redistribution of longitudinal
momentum).

What is the influence of various patch characteristics on the mean flow over
the floodplain section?

A total of eight input parameters was found that influence model results.
These were: the water depth, patch length, channel width, eddy viscosity, energy
slope, patch rotation, background resistance and the roughness of the patch.
First the application limitations of the model were found as caused by the
linearization. It was found that the model may only be applied for very small
variations in roughness but also that the water depth and patch length place
additional restrictions on model applicability.

In general it was found that the water depth and energy slope have the largest
influence on the aggregate roughness, as can be explained using the Chézy rela-
tionship. Furthermore, it was found that the eddy viscosity significantly influ-
ences the resistance caused by transverse variations in the downstream velocity.
In general, larger eddy viscosities lead to higher aggregate resistances as more
energy is lost to turbulent eddies. Also, it was found that increasing the spatial
scales of the floodplain decreases the overall aggregate resistance. It is argued
that flow adaptation can occur more gradually at larger spatial scales, causing
a lower aggregate resistance.

The influence of patch orientation was also simulated using the idealized
model and of particular interest was the result that the aggregate resistance
was not lowest at a streamwise orientation, but rather when the patch was
oriented diagonally to the flow field.

How can the new insights regarding the characteristics of vegetation patches be
incorporated into an aggregated roughness parameterization method?

In general it is very difficult, and possibly unwise, to suggest improvements to
current aggregate roughness parametrizations based on the results of this re-
search. The solution technique used does not allow the simulation of scenarios
as found on floodplains concerning vegetative roughness. The situations simu-
lated by ter Haar (2010) and van Velzen et al. (2003a) cannot be modelled and
therefore it is difficult to even verify modelling results. Similar trends were how-
ever observed. The influence of the parallel and serial structure of patches is
evident in all roughness parameterizations and is also found in this research.

8.2 Recommendations
Based on this research some recommendations can be made. First and foremost
it may be wise to investigate the influence of a different linearization parameter,
which is scaled to with the background roughness, to see if model applicability
can be increased. If the applicability boundaries are still too restrictive it is sug-
gested to attempt a strongly nonlinear solution method. A strongly non-linear
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analysis will most likely result in a semi-numerical model as the problem be-
comes very complicated to solve analytically. It is however suggested to maintain
the idealized modelling approach as this allows the identification of important
system parameters and processes.

A second recommendation that can be made is to investigate the influence
of patch orientation in greater detail. The model calculations show that there
is an optimal angle at which vegetation patches induce the least amount of
resistance to the flow as a whole. It is suggested that this outcome is the result
of a competition between backwater effects and shear effects as induced by
serial and parallel roughness variations respectively. More research is, however,
required to understand these dynamics fully.

A final recommendation is that this modelling structure does allow the in-
vestigation of small differences in roughness such as found for different grain
sizes on a flat river bed. It may be interesting to investigate how model results
compare to experiments where the influence of different grainsizes is concerned.
An example of such an experiment is for example the research performed by
Jesson et al. (2011).
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Appendix A

Notation

The following variables were used in this research

Roman

A Linear operator in the eigenfunction projection
A Second order forcing arising from advection
B Dimensionless channel width
B∗ Dimensional channel width
b Forcing of the system
Cmn Dimensionless complex amplitude of roughness

in eigenfunction projection
C∗ Chézy coefficient
c.c. Complex conjugate
cD Drag coefficient
cD0 Reference drag coefficient
cD,b Background drag coefficient
cD,eff Effective drag coefficient
cD,p Patch drag coefficient
Dmn Determinant of the solution matrix
ex Unit vector in the x direction
F Froude number
N ∗ Additional forcing on the system
g∗ Acceleration due to gravity
H∗ Mean water depth
h∗ Water depth
i0 Energy slope
kN Nikuradse roughness height
kN,b Nikuradse roughness height of the background
kN,p Nikuradse roughness height of the patch
L∗ Typical length of vegetation patch roughness
L Linear operator
M Second order forcing of the mass balance
p∗ Pressure
R Second order forcing arising from resistance
S Forcing in the eigenfunction projection
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U#,mn Dimensionless complex amplitude of the streamwise
velocity in the eigenfunction projection

U∗ Velocity scale
�u Dimensionless velocity vector of u and v
�u∗ Velocity vector of u∗ and v∗

u Scaled downstream velocity of the flow
u∗ Downstream velocity of the flow
V#,mn Dimensionless complex amplitude of the transverse

velocity in the eigenfunction projection
v Scaled transverse velocity of the flow
v∗ Transverse velocity of the flow
�x Directional vector of x and y
�x∗ Directional vector of x∗ and y∗

x Scaled streamwise coordinate
x∗ Streamwise coordinate
y Scaled transverse coordinate
y∗ Transverse coordinate
Z#,mn Dimensionless complex amplitude of the free surface

elevation
Z∗ Elevation scale

Greek

αm Dimensionless streamwise wave number
βn Dimensionless transverse wave number
ε Linearization parameter
ζ Dimensionless free surface elevation
ζ∗ Free surface elevation
µ Dimensionless friction parameter
µ0 Reference value of the scaled roughness
µ1 Spatial variation in the scaled roughness
µb Scaled roughness of background vegetation
µp Scaled roughness of patch vegetation
ν Scaled dimensionless horizontal eddy viscosity
ν∗h Horizontal eddy viscosity
ρ∗ Density of water
τ∗b Bottom shear stress
Φ#,mn Complex amplitudes of the eigenfunction

projection of the solution
φ# Symbolic representation of the solution (u, v, ζ)

Sub - / Super script

∗ Denotes the quantity is dimensional
# The order of the affixed term
m Streamwise mode number
n Transverse mode number
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Appendix B

Hydrodynamic modelling
approaches

Some adaptations of the Navier-Stokes equations will be discussed ordered by
decreasing computational cost:

Direct Numerical Simulation (DNS) consists of solving the Navier-Stokes
equations for all scales of motion numerically. This method was compu-
tationally infeasible until the 1970s due to the limitations of computers
at the time. It provides the most accurate results and is conceptually the
easiest to understand, but the computational costs restrict the methods
applicability. The computational costs increase with Reynolds number
cubeda, and thus the more turbulent a flow is, the less applicable this
method becomes (Pope, 2000). This is due to the fact that increasing
turbulence requires a smaller spatial and temporal scale, increasing the
calculation time.

Large Eddy Simulation (LES) computes only the large-scale eddies in a
flow explicitly and uses simplified turbulence models to model the smaller
scale eddies. It was stated that DNS has as a primary limitation that most
of the computational time is spent on the smallest turbulent effects, a scale
that LES avoids. As a result LES can be applied to a larger number of
situations; it is especially useful in flows over bluff bodiesb, which involve
unsteady flow separation and vortex shedding. Pope (2000) describes four
conceptual steps to LES:

1. A filtering operation is performed where the velocity is decomposed
into a sum of the resolved components and the residual components.
Herein the residual components are the smaller scale velocities that
are not calculated explicitly. The resolved (or filtered) component is

aThe Reynolds number Re is defined by Re = U∗d∗
ν∗ where U∗ is a compartment-averaged

streamwise flow velocity, d∗ is the diameter of a pipe as used by Osborne Reynolds in his
experiments and ν∗ is the kinematic viscosity, which is defined as µ∗/ρ∗. The Reynolds
number gives an indication of the relative importance of viscous and inertial forces (Huthoff,
2007).

bA body having a broad flattened front, the opposite of streamlined
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three-dimensional and time-dependent and represents the motion of
the large eddies.

2. The filtered component of the flow is determined explicitly using the
Navier-Stokes equations. The standard form of the equations is used
and a residual stress tensor accounts for the influence of the smaller
scale eddies.

3. The residual stress tensor is modelled, most frequently using an eddy
viscosity, to obtain closure.

4. The large-scale turbulent flows are approximated by calculating the
filtered velocity field numerically. This leads to only one realization
of the turbulent flow, which is approximate as the direct influence
of the smaller scale turbulence effects has not been accounted for
explicitly.

Reynolds Averaged Navier Stokes (RANS) equations were originally in-
troduced when Osborne Reynolds decided to decompose the velocity field
into a mean flow and fluctuations from this mean. After time averaging
the following Reynolds averaged Navier-Stokes relationship arose for the
flow, incorporating turbulence (e.g. Pope (2000); Huthoff (2007)):

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+

Fi

ρ
+

∂

∂xj

(
ν
∂ui

∂xj
− u′

iu
′
j

)
where ui is the time averaged velocity component in direction i = x, y or z,
xi is the spatial coordinate of this directions, ν is the kinematic viscos-
ity and u′

iu
′
j are Reynolds stresses. These stresses are not a stress in the

conventional sense of the word but they represent momentum fluxes in-
duced by the turbulence and are used to describe the interaction between
turbulence itself and the mean flow (Davidson, 2004).

The Reynolds stresses are generally described through the relationship
between statistical properties in u∗, but the system is not closed. No mat-
ter how many mathematical operations are performed, no solution can be
found to describe these Reynolds stresses. This is generally referred to as
the closure problem of turbulence and is caused by the non-linear advective
term in the Navier-Stokes equations. Therefore an assumption about the
structure of turbulence is required for the system to be solved (Davidson,
2004).

A common assumption herein is that of the eddy viscosity where the
Reynolds Stresses are combined with the stresses caused by the fluids
kinematic viscosity. This was originally proposed by Boussinesq in the
1870s. It is important to note that the eddy viscosity is a property of the
flow and not the fluid, allowing it to vary spatially and temporally. The
eddy viscosity is however often regarded as constant, allowing the RANS
equations to be written as:

∂�u∗

∂t∗
+ �u∗ · ∇∗�u∗ = − 1

ρ∗
∇∗p∗ +∇∗ · (ν∗eddy∇∗�u∗)+ F∗

where νeddy is the eddy viscosity and the kinematic viscosity combined.
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B.0:

Two Dimensional Approaches consider only two spatial dimensions and can
be classified into two distinct categories: 2D horizontal (2DH) and 2D ver-
tical (2DV). In the first case the depth averaged flow velocity is considered
eliminating the depth scale from the calculations. This can be especially
useful when the vertical component of the flow is considered much smaller
than the horizontal components of flow. WAQUA, as used by ter Haar
(2010) is an example of a 2DH model. On the other hand, 2DV mod-
els are commonly used to describe the vertical velocity profile of a flow.
Huthoff et al. (2007) uses a 2DV model to determine the depth-averaged
flow over submerged vegetation.

One Dimensional Approaches consider only one spatial dimension. The
Saint-Venant equations are a good example of 1D flow and are given by:

∂U

∂t
+ U

∂U

∂x
= −g

∂h

∂x
+ gib − gS (B.1)

where U is the depth averaged flow velocity, t is time, x is the downstream
direction, ib is the bed inclination and S is the friction slope as introduced
by Saint-Venant. The modelling software SOBEK is an example of a 1D
model.

0D Approach or lumped approach does not consider spatial scales and may
be applied for example when flow may be considered spatially uniform.
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Appendix C

Scaling operations

In this appendix the scaled form of the flow equations are derived.

C.1 Mass balance
The mass balance as given by equation (2.5) can also be written as:

∂

∂x∗ [(H∗ + ζ∗)u∗] +
∂

∂y∗
[(H∗ + ζ∗) v∗] = 0

By substituting in the relations as defined by equation (2.9) the following is
obtained:

1

L∗
∂

∂x
[(H∗ + Z∗ζ) uU∗] +

1

L∗
∂

∂y
[(H∗ + Z∗ζ) vU∗] = 0

Multiplying both sides by L∗ and dividing by U∗ yields:

∂

∂x
[(H∗ + Z∗ζ) u] +

∂

∂y
[(H∗ + Z∗ζ) v] = 0

Subsequently dividing both sides by H∗ produces:

∂

∂x

[(
H∗

H∗ +
Z∗

H∗ ζ
)
u

]
+

∂

∂y

[(
H∗

H∗ +
Z∗

H∗ ζ
)
v

]
= 0

From the typical elevation scale it is known that Z∗ = U∗2/g∗ and therefore:

Z∗

H∗ =
U∗2

g∗H∗ = F 2

where F is the Froude number defined as F = U∗/
√
g∗H∗. This then leads to:

∂

∂x

[(
1 + F 2ζ

)
u
]
+

∂

∂y

[(
1 + F 2ζ

)
v
]
= 0

which can also be written as:

∇ · [(1 + F 2ζ
)
�u
]
= 0
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C.2 Momentum balance
The momentum equation as given by equation (2.4) can be written in Cartesian
coordinates as:

u∗ ∂u
∗

∂x∗ + v∗
∂u∗

∂y∗
+ cD

u∗√u∗2 + v∗2

H∗ + ζ∗
= −g∗

∂ζ∗

∂x∗ + ν∗h

(
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)
+ g∗i0

u∗ ∂v
∗

∂x∗ + v∗
∂v∗

∂y∗
+ cD

v∗
√
u∗2 + v∗2

H∗ + ζ∗
= −g∗

∂ζ∗

∂y∗
+ ν∗h

(
∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)

The scaling will be performed for the moment balance in the x direction.
First the quantities as defined in equation (2.9) will be substituted into the
problem:

U∗2

L∗ u
∂u

∂x
+

U∗2

L∗ v
∂u

∂y
+ U∗2cD

u
√
u2 + v2

H∗ + Z∗ζ
=

−g∗Z∗

L∗
∂ζ

∂x
+

U∗

L∗2 ν
∗
h

(
∂2u

∂x2
+

∂u2

∂y2

)
+ g ∗ i0

Dividing both sides by U∗2 and multiplying by L∗ produces:

u
∂u

∂x
+v

∂u

∂y
+L∗cD

u
√
u2 + v2

H∗ (1 + Z∗
H∗ ζ

) = −g∗Z∗

U∗2
∂ζ

∂x
+

ν∗h
U∗L∗

(
∂2u

∂x2
+

∂2u

∂y2

)
+g∗i0

L∗

U∗2

From the definition of the elevation scale it is known that Z∗ = U∗2/g∗. This
can be substituted into the previous equation in the term describing the pressure
gradient as caused by the free surface elevation. This eliminates the coefficient
of this term. Additionally the term F 2 = Z∗/H∗ will be substituted into the
denominator of the term describing the resistance. Also, equation (2.7) can be
rearranged to find that i0 = U∗2

g∗H∗ cD0, which can be substituted into the term
describing the energy slope. Finally the problem is rearranged to place all terms
describing resistance on the right hand side of the equation and the remaining
terms on the left hand side:

u
∂u

∂x
+ v

∂u

∂y
+

∂ζ

∂x
− ν∗h

U∗L∗

(
∂2u

∂x2
+

∂2u

∂y2

)
=

cD0L
∗

H∗ − cDL
∗

H∗
u
√
u2 + v2

1 + F 2ζ

The same operations were performed for the y direction; please note that the
energy slope is absent in the transverse direction. This leads to the following:

u
∂v

∂x
+ v

∂v

∂y
+

∂ζ

∂y
− ν∗h

U∗L∗

(
∂2v

∂x2
+

∂2v

∂y2

)
= −cDL

∗

H∗
v
√
u2 + v2

1 + F 2ζ

These two equations can be rewritten in a single equation in vector form as:

(�u · ∇) �u+∇ζ − ν∗h
U∗L∗∇2�u =

cD0L
∗

H∗ ex − cDL
∗

H∗
|�u|�u

1 + F 2ζ

Introducing the dimensionless quantities:

ν =
ν∗h

U∗L∗ , µ =
cDL

∗

H∗ , and µ0 =
cD0L

∗

H∗ (C.1)
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which then leads to the scaled momentum equations using these dimensionless
quantities:

(�u · ∇) �u+∇ζ − ν∇2�u = µ0ex − µ|�u|�u
1 + F 2ζ
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Appendix D

Determining the linear
problem

The linear problem needs to be determined. This appendix shows the steps for
all three flow equations as the linear problem is determined.

D.1 Mass Balance

First the mass balance will be evaluated. Recalling that:

0 = ∇ · [(1 + F 2ζ
)
�u
]

=
∂

∂x

[(
1 + F 2ζ

)
u
]
+

∂

∂y

[(
1 + F 2ζ

)
v
]

The expansion as given by equation (3.2) is substituted into this equation and
produces:

∂

∂x

{[
1 + F 2

(
ζ0 + εζ1 + ε2ζ2 + . . .

)] (
u0 + εu1 + ε2u2 + . . .

)}
+

∂

∂y

{[
1 + F 2

(
ζ0 + εζ1 + ε2ζ2 + . . .

)] (
v0 + εv1 + ε2v2 + . . .

)}
= 0

Multiplying out the innermost brackets yields:

∂

∂x

[(
1 + F 2ζ0 + F 2εζ1 + F 2ε2ζ2 + . . .

) (
u0 + εu1 + ε2u2 + . . .

)]
+

∂

∂y

[(
1 + F 2ζ0 + F 2εζ1 + F 2ε2ζ2 + . . .

) (
v0 + εv1 + ε2v2 + . . .

)]
= 0

The multiplication of the next brackets is limited only to the lower orders of ε
as all higher orders will be eliminated in the next step:

∂

∂x

(
u0 + εu1 + ε2u2 + F 2ζ0u0 + F 2ζ0εu1 + F 2εζ1u0 + F 2ε2ζ1u1 + . . .

)
+

∂

∂y

(
v0 + εv1 + ε2v2 + F 2ζ0v0 + F 2ζ0εv1 + F 2εζ1v0 + F 2ε2ζ1v1 + . . .

)
= 0



APPENDIX D. DETERMINING THE LINEAR PROBLEM

Recalling that the lowest order solution showed that u0 = 1, v0 = 0 and ζ0 = 0
the following simplification can be made:

∂

∂x

(
1 + εu1 + ε2u2+ F 2εζ1 + F 2ε2ζ1u1 + . . .

)
+

∂

∂y

(
εv1 + ε2v2 + F 2ε2ζ1v1 + . . .

)
= 0

Taking the derivative with respect to ε and subsequently evaluating the result
for ε = 0 produces:

∂

∂ε

∣∣∣∣
ε=0

⇒ ∂

∂x

(
u1 + F 2ζ1

)
+

∂

∂y
(v1) = 0

which can be written in vector form as:(
∂

∂x
,

∂

∂y
, F 2 ∂

∂x

)
· φ1 = 0 (D.1)

D.2 Momentum in the streamwise direction
The moment balance in both the x and y direction will be treated in a similar
fashion. First the expansion is substituted into the equation. Subsequently the
derivative with respect to ε will be taken after which it is evaluated for ε = 0.
Recalling that the momentum balance in the x direction is given by:

u
∂u

∂x
+ v

∂u

∂y
+

∂ζ

∂x
− ν∇2u = µb − µu

√
u2 + v2

1 + F 2

Due to the fact that applying these steps to the entire problem at once is not
very clear, each term will be evaluated independently.

Advection: First the expansion is substituted into the advection term:

φ → u
∂u

∂x
+ v

∂u

∂y
⇒

(u0 + εu1 + . . .)
∂

∂x
(u0 + εu1 + . . .) + (v0 + εv1 + . . .)

∂

∂x
(u0 + εu1 + . . .)

recalling that u0 = 1 and v0 = 0, and multiplying the brackets out leads to:

∂u0

∂x
+ ε

∂u1

∂x
+ εu1

∂u0

∂x
+ ε2u1

∂u1

∂x
+ εv1

∂u0

∂y
+ ε2v1

∂u1

∂y
+ . . .

Recognizing that ∂u0

∂x = ∂u0

∂y = 0 this simplifies into:

ε
∂u1

∂x
+ ε2u1

∂u1

∂x
+ ε2v1

∂u1

∂y
+ . . .

Subsequently taking the derivate with respect to ε and then evaluating the
expression for ε = 0 yields:

∂

∂ε

∣∣∣∣
ε=0

⇒ ∂

∂x
u1 (D.2)
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Free surface elevation: For the free surface elevation the same steps are
performed. This leads to the following:

φ → ∂ζ

∂x
⇒ ∂

∂x
(ζ0 + εζ1 + ε2ζ2 + . . . )

Taking the derivative with respect to ε and evaluating for ε = 0 while keeping
in mind that ζ0 = 0 yields:

∂

∂ε

∣∣∣∣
ε=0

⇒ ∂

∂x
ζ1 (D.3)

Viscous effects: Analogously:

φ → − ν

(
∂2u

∂x2
+

∂2u

∂y2

)
⇒

− ν

[
∂2

∂x2
(u0 + εu1 + . . .) +

∂2

∂y2
(u0 + εu1 + . . .)

]

− ν

(
∂u0

∂x2
+ ε

∂2u1

∂x2
+

∂u0

∂y2
+ ε

∂2u1

∂y2
+ . . .

)

Noting that ∂2u0

∂x2 = ∂2u0

∂y2 = 0 and taking the derivative with respect to ε and
evaluating for ε = 0 leads to:

∂

∂ε

∣∣∣∣
ε=0

⇒ −ν

(
∂2u1

∂x2
+

∂2u1

∂y2

)
= −ν∇2u1 (D.4)

Energy Slope No substitution of φ is possible into the term describing the
energy slope. This is logical as the energy slope is not affected by the spatially
varying roughness and therefore it only influences the flow in the lowest order.

Spatially varying roughness: The final term in the momentum balance in
the downstream direction is the spatially varying roughness term. Here both
equations (3.1) and (3.2) are substituted into the term. This leads to:

µ and φ → −µu
√
u2 + v2

1 + F 2ζ
⇒

−
[µ0 + µ1(x, y)] (u0 + εu1 + . . .)

√
(u0 + εu1 + . . .)

2
+ (v0 + εv1 + . . .)

2

1 + F 2 (ζ0 + εζ1 + . . .)

Solving this on paper proved to be cumbersome due to the vast amount of terms.
Therefore Maple was used to solve this and lead to:

∂

∂ε

∣∣∣∣
ε=0

⇒ −µ1(x, y)− 2µ0u1 + µ0F
2ζ1 (D.5)

Combining subsolutions (D.2), (D.3), (D.4) and (D.5) produces:

∂

∂x
u1 +

∂

∂x
ζ1 − ν∇2u1 + 2µ0u1 − µ0F

2ζ1 = −µ1(x, y)
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where the roughness has been moved to one side of the equation and the other
terms have been moved to the left hand side of the equation. This can be
rewritten in vector form as:(

∂

∂x
− ν∇2 + 2µ0 , 0 ,

∂

∂x
− µ0F

2

)
· φ1 = −µ1 (D.6)

D.3 Momentum in the transverse direction
The y direction is treated in the same way as the x direction where only the
starting equation is the other momentum equation. As a result only the solutions
are shown here. The result of substitution, derivation with respect to ε and
subsequent evaluation for ε = 0 produces the following results:

∂

∂x
v1 +

∂

∂y
ζ1 − ν∇2v1 + µ0v1 = 0

This can be rewritten in vector form as:(
0 ,

∂

∂x
− ν∇2 + µ0 ,

∂

∂y

)
· φ1 = 0 (D.7)

The solutions as found for the momentum equations in x and y (equa-
tions (D.6) and (D.7)) and for the mass balance (equation (D.1)) can be com-
bined in a single linear problem as defined by equation (3.3). Now that the
Linear operator L and the source term b1 are found the problem is given by:

L · φ1 = b1

⇓⎛
⎝ ∂

∂x − ν∇2 + 2µ0 0 ∂
∂x − µ0F

2

0 ∂
∂x − ν∇2 + µ0

∂
∂y

∂
∂x

∂
∂y F 2 ∂

∂x

⎞
⎠ ·

⎛
⎝u1

v1
ζ1

⎞
⎠ =

⎛
⎝−µ1

0
0

⎞
⎠
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Appendix E

Fourier series representation

In this appendix the problem as defined by equation (3.3) is rewritten in terms
of Fourier coefficients. All three equations of the first order linear problem are
derived individually.

E.1 Mass Balance

Recalling that the first order linear problem derived from the mass balance is
given by:

∂

∂x

(
u1 + F 2ζ1

)
+

∂

∂y
(v1) = 0

In which φ can be substituted for the assumed form (3.6) giving:

∂u1

∂x
=

∑
m,n

iαm · U1mn cosβny exp(iαmx) + c.c.

F 2 ∂ζ1
∂x

=
∑
m,n

F 2iαm · Z1mn cosβny exp(iαmx) + c.c.

∂v1
∂y

=
∑
m,n

βn · V1mn cosβny exp(iαmx) + c.c.

which leads to:

0 =
∑
m,n

(
iαmU1mn + iαmF 2Z1mn + βnV1mn

)
cosβny exp(iαmx) + c.c.

Due to the fact that cosβny exp(iαmx) will not always equal zero it can be
stated that:

iαmU1mn + iαmF 2Z1mn + βnV1mn = 0

(
iαm , βn , iαmF 2

) · Φ1mn = 0 (E.1)
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E.2 Momentum in the streamwise direction
Recalling that the first order linear problem derived from the momentum equa-
tion in x is given by:

∂

∂x
u1 +

∂

∂x
ζ1 − ν∇2u1 + 2µ0u1 − µ0F

2ζ1 = −µ1(x, y)

The assumed solution (3.6) and the roughness as given by (3.5) can be used to
rewrite each term as:

∂u1

∂x
=

∑
m,n

iαm · U1mn cosβny exp(iαmx) + c.c.

∂ζ1
∂x

=
∑
m,n

iαm · Z1mn cosβny exp(iαmx) + c.c.

−ν∇2u1 = −ν

(
∂2u1

∂x2
+

∂2u1

∂y2

)
=

∑
m,n

−ν
[
i2α2

mU1mn cosβny exp(iαmx) + . . .

. . . (−)β2
nU1mn cosβny exp(iαmx)

]
+ c.c.

=
∑
m,n

−ν
(−α2

m − β2
n

)
U1mn cosβny exp(iαmx) + c.c.

=
∑
m,n

ν
(
α2
m + β2

n

)
U1mn cosβny exp(iαmx) + c.c.

2µ0u1 =
∑
m,n

2µ0U1mn cosβny exp(iαmx) + c.c.

−µ0F
2ζ1 =

∑
m,n

−µ0F
2Z1mn cosβny exp(iαmx) + c.c.

When recombined this leads to:∑
m,n

[iαmU1mn + iαmZ1mn + ν
(
α2
m + β2

n

)
U1mn + . . .

. . . 2µ0U1mn − µ0F
2Z1mn

]
cosβny exp(iαmx) + c.c.

= −Cmn cosβny exp(iαmx) + c.c.

Similarly to the mass-balance it can then be concluded that:[
iαmU1mn + iαmZ1mn + ν

(
α2
m + β2

n

)
U1mn + 2µ0U1mn − µ0F

2Z1mn

]
= −Cmn

Which can also be written as:(
iαm + ν

(
α2
m + β2

n

)
+ 2µ0 , 0 , iαm − µ0F

2
) · Φ1mn = −Cmn (E.2)

E.3 Momentum in the transverse direction
The first order linear problem derived from the momentum equation in the y
direction is treated in the same way. Substitution of equation (3.6) into (D.7)
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leads to the following terms:

∂v1
∂x

=
∑
m,n

iαm · V1mn sinβny exp(iαmx) + c.c.

∂ζ1
∂y

=
∑
m,n

−βn · Z1mn sinβny exp(iαmx) + c.c.

−ν∇2v1 =
∑
m,n

ν(α2
m + β2

n) · V1mn sinβny exp(iαmx) + c.c.

µ0v1 =
∑
m,n

µ0V1mn sinβny exp(iαmx) + c.c.

When recombined into the momentum equation this gives:∑
m,n

[iαmV1mn − βnZ1mn + ν(α2
m + β2

n)V1mn

+µ0V1mn] sinβny exp(iαmx) + c.c. = 0

Noting that sinβny exp(iαmx) cannot always be zero it may be stated that:[
iαmV1mn − βnZ1mn + ν(α2

m + β2
n)V1mn + µ0V1mn

]
= 0

(
0 , iαm + ν(α2

m + β2
n) + µ0 , −βn

) · Φ1mn = 0 (E.3)

The linear problem posed by (3.3) then reduces to the following system for
the m,nth mode using equations (E.1), (E.2) and (E.3):

Amn · Φ1mn = S1mn

where Amn is the linear operator for the m,nth mode and S1mn is the first order
source term for that mode; and are given by:

Amn =

⎛
⎝X2 0 iαm − µ0F

2

0 X1 −βn

iαm βn iαmF 2

⎞
⎠ and S1mn =

⎛
⎝−Cmn

0
0

⎞
⎠

where Xp = iαm + ν(α2
m + β2

n) + pµ0 for p = 1, 2, 3.
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Appendix F

Matrix Inverse

In this appendix it is shown how the inverse of the matrix Amn is found.

F.1 Matrix of Minors
The first step in calculating the inverse of Amn is to create a matrix of minors.
This is done by going through each element of the matrix and replacing it by
the determinant of the remaining 2 x 2 matrix that results from deleting the
elements row and column. For the first element this will result in:

m11 = det

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ = a22a33 − a23a32

where a refers to an element in the original matrix, m refers to an element in
the matrix of minors and the subscript denotes its respective row and column
position. For Amn the first element of the matrix of minors is given by:

det

∣∣∣∣X1 −βn

βn iαmF 2

∣∣∣∣ = X1iαmF 2 + β2
n

and the second element is given by:

det

∣∣∣∣ 0 −βn

iαm iαmF 2

∣∣∣∣ = βniαm

All other elements have been determined analogously leading to the matrix of
minors:⎛

⎝ X1iαmF 2 + β2
n βniαm −X1iαm

−βniαm + βnµ0F
2 X2iαmF 2 + α2

m + µ0F
2iαm X2βn

−X1iαm +X1µ0F
2 −X2βn X2X1

⎞
⎠

F.2 Matrix of Cofactors
The next step is to determine the matrix of cofactors by multiplying the elements

in the matrix of minors by the following:
+ − +
− + −
+ − +

which then leads to the
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following matrix of cofactors:⎛
⎝ X1iαmF 2 + β2

n −βniαm −X1iαm

−βn

[
µ0F

2 − iαm

]
iαm

[
X2F

2 − iαm + µ0F
2
] −X2βn

X1

[
µ0F

2 − iαm

]
X2βn X2X1

⎞
⎠

F.3 Determinant
The determinant of the matrix is then determined by multiplying all elements
in single a row or column of the matrix of cofactors with their corresponding
elements in the original matrix. It should not matter which row or column is
selected. In this case the determinant D is thus given by:

Dmn = X2

(
X1iαmF 2 + β2

n

)
+ 0 (−βniαm)−X1iαm

(
iαm − µ0F

2
)

= X2X1iαmF 2 +X2β
2
n +X1α

2
m +X1iαmµ0F

2

= X1α
2
m +X2β

2
n +X1iαmF 2 (X2 + µ0)

= X1α
2
m +X2β

2
n +X1X3iαmF 2

F.4 The resulting inverse of the matrix
The inverse of the matrix is then determined by multiplying the reciprocal of
the determinant with the transpose of the matrix of cofactors. This leads to the
following inverse of Amn:

A−1
mn =

1

Dmn

⎛
⎝X1iαmF 2 + β2

n −βn

[
µ0F

2 − iαm

]
X1

[
µ0F

2 − iαm

]
−βniαm iαm

[
F 2 (X2 + µ0)− iαm

]
X2βn

−X1iαm −X2βn X2X1

⎞
⎠
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Appendix G

Forcing in the second order

This appendix shows how the second order problem is defined. This leads to
the same linear operator L as in the first order, but the forcing of the system,
given by b2 significantly differs from the first order as it contains convolutions
of solutions in the first order.

G.1 Defining the second order problem

The second order problem must first be defined before the same eigenvalue
solution method can be applied.

G.1.1 Mass Balance

The mass balance in the second order is found as:(
∂

∂x
,

∂

∂y
, F 2 ∂

∂x

)
· φ2 = −F 2 ∂

∂x
ζ1u1 − F 2 ∂

∂y
ζ1v1

= −F 2∇ · (ζ1�u1) (G.1)

Where the contribution of the first order in the second order will be written
as:

M = F 2∇ · (ζ1�u1)

G.1.2 Momentum in the streamwise direction

The momentum equations in x has two contributions from the first order as
forcing in the second order. These originate from the non-linear terms in the
momentum equations; namely the advection and the bottom friction formula-
tion:(

∂

∂x
− ν∇2 + 2µ0 , 0 ,

∂

∂x
− µ0F

2

)
φ2 = −

(
u1

∂u1

∂x
+ v1

∂u1

∂y

)
. . .

−
(
2µ1u1 − µ1F

2ζ1 + µ0u
2
1 − 2µ0F

2u1ζ1 +
1

2
µ0v

2
1 + µ0F

4ζ21

)
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Here two terms will be defined for ease of notation which are:

Ax = u1
∂u1

∂x
+ v1

∂u1

∂y

Rx = µ0

(
u1 − F 2ζ1

)2
+ µ0

1

2
v21 + µ1

(
2u1 − F 2ζ1

)
where Ax is the second order forcing as caused by advection in the momentum
equations and Rx is the second order forcing as caused by the bottom friction.

G.1.3 Momentum in the transverse direction
Similarly, the momentum equation in the y direction can be found, which is
given by:(

0 ,
∂

∂x
−ν∇2 + µ0 ,

∂

∂y

)
φ2 = −

(
u1

∂v1
∂x

+ v1
∂v1
∂y

)
. . .

− (
µ1v1 + µ0v1u1 − µ0v1F

2ζ1
)

Note that the linear operator is still the same and that also for the cross
stream direction only the forcing has changed. Two terms will be introduced
for ease of notation:

Ay = u1
∂v1
∂x

+ v1
∂v1
∂y

Ry = µ0v1
(
u1 − F 2ζ1

)
+ µ1v1

G.2 Eigenfunction projections of the second or-
der forcing

In this section the source term b2 will be rewritten using the eigenfunctions to
eventually determine the effect of the spatially varying resistance on the mean
flow in the channel. The result of this is substituted into the forcing term
to evaluate the second order flow change in U2,00; its spatial average gives a
base contribution to the downstream flow in the second order that is spatially
independent. During the spatial averaging, all other combinations of modes
yield exactly zero contribution to the mean flow found in U200.

As an example the first term in Ax will be determined step by step in this
section; this term is given by u1

∂u1

∂x . Recalling from equation (3.6) that the
downstream flow velocity in the first order can be written as:

u1 =
∑
m,n

[
U1,mn cosβny exp(iαmx) + U1,mn cosβny exp(−iαmx)

]
When the derivative of this function is taken with respect to x this leads to:

∂u1

∂x
=

∑
m,n

[
iαmU1,mn cosβny exp(iαmx)− iαmU1,mn cosβny exp(−iαmx)

]
The two terms are recombined and are spatially averaged. The spatially averag-
ing is performed so that only pairs of modes remain as a contribution. Before the
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spatial averaging, each term in the summation must be multiplied by each term
in the summation of the second part. These combinations, outside of similar
pairs when indexes are considered, lead to trivial contributions.〈

u1
∂u1

∂x

〉
=

∑
m,n

[
iαmU2

1,mn cos
2 βny exp(2iαmx)

− iαmU1,mnU1,mn cos
2 βny

+ iαmU1,mnU1,mn cos
2 βny

− iαmU1,mn
2
cos2 βny exp(−2iαmx)

]
After simplification this leads to:〈

u1
∂u1

∂x

〉
=

∑
m,n

αm cos2 βny
[
iU2

1,mn exp(2iαmx) + c.c.
]

Analogously, all other expressions in the source term b2 have been rewritten
in a similar fashion. This leads to the following contributions:

Forcing of the second order as caused by advection in the downstream di-
rection Ax〈

u1
∂u1

∂x

〉
=

∑
m,n

αm cos2 βny
[
iU2

1,mn exp(2iαmx) + c.c.
]

〈
v1

∂u1

∂y

〉
=

∑
m,n

−βn sin
2 βny

[
V1,mn

(
U1,mn exp(2iαmx) + U1,mn

)
+ c.c.

]
Forcing of the second order as caused by advection in the transverse direction

Ay〈
u1

∂v1
∂x

〉
=

∑
m,n

αm

2
sin(2βny)

[
iV1,mn

(
U1,mn exp(2iαmx) + U1,mn

)
+ c.c.

]
〈
v1

∂v1
∂y

〉
=

∑
m,n

βn

2
sin(2βny)

[
V 2
1,mn exp(2iαmx) + |V1,mn|2 + c.c.

]
Forcing of the second order as caused by flow resistance in the downstream

direction Rx〈
µ0

(
u1 − F 2ζ1

)2〉
=

∑
m,n

µ0 cos
2 βny

[(
U1,mn − F 2Z1,mn

)2
exp(2iαmx)

+
∣∣U1,mn − F 2Z1,mn

∣∣2 + c.c.
]

〈
1

2
µ0v

2
1

〉
=

∑
m,n

1

2
µ0 sin

2 βny
[
V 2
1,mn exp(2iαmx) + |V1,mn|2 + c.c.

]
〈
µ1

(
2u1 − F 2ζ1

)〉
=

∑
m,n

cos2 βny

[(
2U1,mn − F 2Z1,mn

) (
Cmn exp(2iαmx) + Cmn

)
+ c.c

]
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Forcing of the second order as caused by the flow resistance in the transverse
direction Ry〈
µ0v1

(
u1 − F 2ζ1

)〉
=

∑
m,n

µ0

2
sin(2βny)

[(
U1,mn − F 2Z1,mn

) (
V1,mn exp(2iαmx) + V1,mn

)
+ c.c.

]
〈µ1v1〉 =

∑
m,n

1

2
sin(2βny)

[
V1,mn

(
Cmn exp(2iαmx) + Cmn

)
+ c.c.

]
Forcing of the second order as caused by non-linearities in the continuity

equation M〈
F 2 ∂(ζ1u1)

∂x

〉
=

∑
m,n

2αmF 2 cos2 βny [iZ1,mnU1,mn exp(2iαmx) + c.c.]

〈
F 2 ∂(ζ1u1)

∂y

〉
=

∑
m,n

F 2 cos(2βny)
[
Z1,mn

(
V1,mn exp(2iαmx) + V1,mn

)
+ c.c.

]
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Appendix H

Spatial averaging contributing
terms

In this appendix the spatial average is determined of the four terms that con-
tribute to the mean downstream flow velocity in the second order. Recalling
from the first order solution that:

U1,mn =
−Cmn

Dmn

(
X1iαmF 2 + β2

n

)
and U1,mn =

−Cmn

Dmn

(−X1iαmF 2 + β2
n

)
(H.1)

V1,mn =
−Cmn

Dmn
(−βniαm) and V1,mn =

−Cmn

Dmn

(βniαm) (H.2)

Z1,mn =
−Cmn

Dmn
(−X1iαm) and Z1,mn =

−Cmn

Dmn

(
X1iαm

)
(H.3)

For ease of notation the mode indices m and n will be dropped in the follow-
ing analysis, as will the summation over all of the modes. This may be done as
we are purely interested in the spatially invariant contribution, which may be
seen as a superposition of individual contributions from each mode. All other
combinations of mode are trivial.

Advection

First the advection term will be analysed:

〈
v1

∂u1

∂y

〉
= −β

1

2

[
V1U1 + V1U1

]
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Substitution of equations (H.1) and (H.2) leads to:

V1U1 =

(
Cβiα

D

)(
CX1αiF

2 − Cβ2

D

)

=
−CCX1βα

2F 2 − CCβ3iα

DD

V1U1 =

(−Cβiα

D

)(−CX1αiF
2 − Cβ2

D

)

=
−CCX1α

2βF 2 + CCβ3iα

DD

Leading to:

〈
v1

∂u1

∂y

〉
= −β

1

2

− |C|2 X1α
2βF 2 − |C|2 X1α

2βF 2

|D|2

=
1

2

|C|2 α2β2F 2
(
X1 +X1

)
|D|2 (H.4)

Term 2

〈
µ0

(
u1 − F 2ζ1

)2〉
= µ0

1

2

[
2
∣∣U1 − F 2Z1

∣∣2]
= µ0

[(
U1 − F 2Z1

) (
U1 − F 2Z1

)]
= µ0

[
U1U1 − F 2

(
Z1U1 + Z1U1

)
+ F 4Z1Z1

]

Each of these terms will be substituted individually; first U1U1 is considered:

U1U1 =

(−CX1αiF
2 − Cβ2

D

)(
CX1αiF

2 − Cβ2

D

)

=
|C|2|X1|2α2F 4 + |C|2β4 + |C|2αβ2X1iF

2 − |C|2αβ2X1iF
2

|D|2

=
|C|2|X1|2α2F 4 − |C|2α2β2F 2 + |C|2β4

|D|2
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H.0:

Second the term F 2(Z1U1 + Z1U1) is expanded:

−F 2
(
Z1U1 + Z1U1

) →
Z1U1 =

(
CX1iα

D

)(
CX1iαF

2 − Cβ2

D

)

=
−|C|2|X1|2α2F 2 − |C|2X1iαβ

2

|D|2

Z1U1 =

(−CX1iα

D

)(−CX1iαF
2 − Cβ2

D

)

=
−|C|2|X1|2α2F 2 + |C|2X1iαβ

2

|D|2

−F 2
(
Z1U1 + Z1U1

)
= −F 2

(−2|C|2|X1|2α2F 2 + |C|2X1iαβ
2 − |C|2X1iαβ

2

|D|2
)

= −F 2

(−2|C|2|X1|2α2F 2 + 2|C|2α2β2

|D|2
)

=
2|C|2|X1|2α2F 4 − 2|C|2α2β2F 2

|D|2

Finally the last term is combined and is represented by:

F 4Z1Z1 = F 4

(
CX1iα

D

)(−CX1iα

D

)

=
F 4|C|2|X1|2α2

|D|2

When all previous terms are combined the spatially averaged result is given
by:

〈
µ0

(
u1 − F 2ζ1

)2〉
=

µ0|C|2 (4α2F 4|X1|2 − 3α2β2F 2 + β4
)

|D|2 (H.5)

Term 3

〈
1

2
µ0v

2
1

〉
=

1

2
µ0

[
V1V1

]
=

1

2
µ0

(
Ciαβ

D

)(−Ciβα

D

)

=
1

2

µ0α
2β2|C|2
|D|2 (H.6)
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Term 4

〈
µ1(2u1 − F 2ζ1)

〉
=

1

2

[
C

(
2U1 − F 2Z1

)
+ C

(
2U1 − F 2Z1

)]
=

1

2

[−3|C|2X1αiF
2 − 2|C|2β2

D
+

3|C|2X1αiF
2 − 2|C|2β2

D

]

=
|C|2
2

[−3X1αiF
2 − 2β2

D
+

3X1αiF
2 − 2β2

D

]

=
|C|2
2

[−3X1αiF
2D − 2β2D + 3X1αiF

2D − 2β2D

|D|2
]

=
|C|2
2

[
3α2F 2D − 2β2D + 3α2F 2D − 2β2D

|D|2
]

=
|C|2
2

| (3α2F 2 − 2β2
) (

D +D
)

|D|2 (H.7)

These four terms combined can be used to determine U2,00 as given by
equation (3.14):

U2,00 = −〈Ax +Rx〉
2µ0

= − 1

2µ0

〈
v1

∂u1

∂y
+ µ0

(
u1 − F 2ζ1

)2
+

1

2
µ0v

2
1 + µ1

(
2u1 − F 2ζ1

)〉

Substitution of equations (H.4), (H.5), (H.6) and (H.7) leads to the following
general formulation of the second order spatially invariant contribution to the
downstream flow as caused by the roughness patch:

U2,00 = − |C|2
4µ0|D|2 [

v1
∂u1
∂y︷ ︸︸ ︷

α2β2F 2
(
X1 +X1

)
+

µ0(u1−F 2ζ1)
2︷ ︸︸ ︷

2µ0

(
4α2F 4|X1|2 − 3α2β2F 2 + β4

)
. . .

+ µ0α
2β2︸ ︷︷ ︸

1
2µ0v2

1

+
(
3α2F 2 − 2β2

) (
D +D

)︸ ︷︷ ︸
µ1(2u1−F 2ζ1)

]
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Appendix I

Restrictive minimum value
tables

This appendix contains the tables that show the feasibility of combining certain
roughness types in model calculations. Both the minimum values for L∗ and
H∗ are shown for the each combination of vegetation for feasible and useful
combinations. Three colors are used to mark the usefulness. Green represents
that a combination is useful (0 ≤ H∗ ≤ 5 and 0 ≤ L∗ ≤ 250), yellow shows that
the usefulness is marginal as patch lengths and water depths are already too
high for the analysis of roughness patches on a small scales while the values are
still realistic (5 < H∗ ≤ 10 and 250 < L∗ ≤ 500) and red marks all values out of
these two ranges, which thus carry no significance for the analysis. The patches
used in this model consist of only one mode and are thus determined using
equation (4.3). When patches become more complex, different limits apply,
which have been automatically built into the model.

E = 0.05
Back-

ground

k
Patch k H L H L H L H L H L H L H L H L H L H L H L H L H L

Sand 0.10 0 0
Nevengeul 0.15 34 #### 0 0

Field 0.20 4.5 931 0 0
Pioneer Vegeta�on 0.28 16 #### 0 0

Natural grasslands 0.39 21 #### 0 0
Wet brushwood 0.47 1.5 128 0 0

Sedge Marsch 0.73 324 #### 0.1 0
Dry brushwood 1.45 0.1 ####

Dewberry brushwood 1.58 0.7 13 0.1 ####
Reed grass 2.23 817 #### 153 #### 0.2 0

Reed brushwood 11.4 1 ####
Reed 12.4 5.3 93 1 ####

So�wood Alluvial Forest 12.9 12 454 2.3 9 1.1 ####

12.4 12.9

So�wood 
Al luvia l  
Forest

0.10 0.15 0.20 0.28 0.39 0.47 0.73 1.45 1.58

Sedge 
Marsch

Dry brush-
wood

Dewberry 
brush-
wood

Reed 
grass

Reed 
brush-
wood

ReedSand Ditch Field
Pioneer 
Vegeta-

�on

Natura l  
grass -
lands

Wet 
brush-
wood

2.23 11.4

Figure I.1: This table shows for what combinations of roughness types the model
is applicable while also showing the minimum required values for L∗ and H∗ at
εmax = 0.05
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E = 0.10
Back-

ground

k
Patch k H L H L H L H L H L H L H L H L H L H L H L H L H L

Sand 0.10 0 0
Nevengeul 0.15 0.6 59 0 0

Field 0.20 12 #### 0.3 13 0 0
Pioneer Vegeta�on 0.28 403 #### 8.6 #### 0.6 39 0 0

Natural grasslands 0.39 278 #### 18 #### 0.8 51 0 0
Wet brushwood 0.47 128 #### 5.3 870 0.2 4.9 0 0

Sedge Marsch 0.73 534 #### 23 #### 3.9 469 0.1 0
Dry brushwood 1.45 81 #### 0.1 ####

Dewberry brushwood 1.58 198 #### 0.3 1.4 0.1 ####
Reed grass 2.23 11 #### 4.9 355 0.2 0

Reed brushwood 11.4 1 ####
Reed 12.4 2.3 10 1 ####

So�wood Alluvial Forest 12.9 3.5 33 1.6 1.5 1.1 ####

1.58 2.23 11.4 12.4 12.90.10 0.15 0.20 0.28 0.39 0.47 0.73 1.45

Wet 
brush-
wood

Sedge 
Marsch

Dry brush-
wood

Sand Ditch Field
Pioneer 
Vegeta-

�on

Natura l  
grass -
lands

Reed
So�wood 
Al luvia l  
Forest

Dewberry 
brush-
wood

Reed 
grass

Reed 
brush-
wood

Figure I.2: This table shows for what combinations of roughness types the model
is applicable while also showing the minimum required values for L∗ and H∗ at
εmax = 0.10

E = 0.15
Back-

ground

k
Patch k H L H L H L H L H L H L H L H L H L H L H L H L H L

Sand 0.10 0 0
Nevengeul 0.15 0.2 6.6 0 0

Field 0.20 1.2 149 0.1 2.2 0 0
Pioneer Vegeta�on 0.28 13 #### 1.1 111 0.2 5.6 0 0

Natural grasslands 0.39 136 #### 11 #### 1.9 232 0.2 7.4 0 0
Wet brushwood 0.47 515 #### 43 #### 7.4 #### 0.9 67 0.1 1.2 0 0

Sedge Marsch 0.73 991 #### 170 #### 22 #### 2.8 298 0.9 47 0.1 0
Dry brushwood 1.45 378 #### 120 #### 8.1 #### 0.1 ####

Dewberry brushwood 1.58 697 #### 222 #### 15 #### 0.2 0.4 0.1 ####
Reed grass 2.23 174 #### 2.6 130 1.5 49 0.2 0

Reed brushwood 11.4 1 ####
Reed 12.4 1.7 3.3 1 ####

So�wood Alluvial Forest 12.9 2.3 9.5 1.4 0.6 1.1 ####

1.58 2.23 11.4 12.4 12.90.10 0.15 0.20 0.28 0.39 0.47 0.73 1.45

Wet 
brush-
wood

Sedge 
Marsch

Dry brush-
wood

Sand Ditch Field
Pioneer 
Vegeta-

�on

Natura l  
grass -
lands

Reed
So�wood 
Al luvia l  
Forest

Dewberry 
brush-
wood

Reed 
grass

Reed 
brush-
wood

Figure I.3: This table shows for what combinations of roughness types the model
is applicable while also showing the minimum required values for L∗ and H∗ at
εmax = 0.15

E = 0.20
Back-

ground

k
Patch k H L H L H L H L H L H L H L H L H L H L H L H L H L

Sand 0.10 0 0
Nevengeul 0.15 0.1 1.9 0 0

Field 0.20 0.4 26 0.1 0.7 0 0
Pioneer Vegeta�on 0.28 2.3 350 0.4 22 0.1 1.8 0 0

Natural grasslands 0.39 14 #### 2.3 303 0.6 42 0.1 2.3 0 0
Wet brushwood 0.47 38 #### 6.3 #### 1.8 187 0.4 16 0.1 0.5 0 0

Sedge Marsch 0.73 422 #### 69 #### 19 #### 4.3 578 1 58 0.4 12 0.1 0
Dry brushwood 1.45 813 #### 182 #### 42 #### 18 #### 2.6 178 0.1 ####

Dewberry brushwood 1.58 291 #### 67 #### 29 #### 4.1 358 0.2 0.2 0.1 ####
Reed grass 2.23 435 #### 190 #### 27 #### 1.3 35 0.9 15 0.2 0

Reed brushwood 11.4 1 ####
Reed 12.4 1.5 1.6 1 ####

So�wood Alluvial Forest 12.9 1.9 4.3 1.3 0.3 1.1 ####

1.58 2.23 11.4 12.4 12.90.10 0.15 0.20 0.28 0.39 0.47 0.73 1.45

Wet 
brush-
wood

Sedge 
Marsch

Dry brush-
wood

Sand Ditch Field
Pioneer 
Vegeta-

�on

Natura l  
grass -
lands

Reed
So�wood 
Al luvia l  
Forest

Dewberry 
brush-
wood

Reed 
grass

Reed 
brush-
wood

Figure I.4: This table shows for what combinations of roughness types the model
is applicable while also showing the minimum required values for L∗ and H∗ at
εmax = 0.20
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