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Management summary

In this paper we develop a holistic model which enables Ziekenhuis Groep Twente, ZGT,
to predict patient volumes and occupancy rates of (sub)specialisms at outpatient clinics,
operating theaters and nursing wards at least one month ahead. Moreover, ZGT is in-
terested in how patients transfer from one (sub)specialisms to another in the outpatients
clinics and the nursing wards. The estimation of patient volumes and occupancy rates
is useful for allocating nursing beds and staff. Currently, ZGT uses common sense and
experience of employees to predict the number of beds, operating time and staff.

The model we propose, consists of three components: the arrival of patients at the
three departments, outpatient clinics, operating theaters and nursing wards, the trans-
fers between (sub)specialisms in the departments and the average service time. The first
component is modeled by autoregressive integrated moving average (ARIMA) models.
The second component is modeled by using Markov theory. The average service times
are computed by statistical analysis.

For the arrivals at outpatient clinics (first and repeated visit), operating theaters and
nursing wards (one day-admission and more than one day admission), we propose ARIMA-
models, which can predict weekly patient arrivals. We compute monthly transition prob-
abilities for transfers between subspecialisms of surgery and the remaining part of the
hospital for in- and outpatients. Also we compute weekly transition probabilities for
transfers between 11 specialisms for inpatients. We demonstrate that for estimating pa-
tient volumes, the subdivision in 11 specialisms is more useful than the subdivision in
several small subspecialisms of surgery and one large part, which represents the remain-
ing part of the hospital. Also we argue that weekly transfers yield a better computation
of transition probabilities than monthly transfers. This is due to the fact that the aver-
age nursing time of a single patient is much closer to one week than one month. We see
this confirmed, as we compute the average service times. For 299 of 980 treatments, the
nursing time is three days or more, for 181 treatments 5 days or more, for 60 treatments
10 days or more and for 0 treatments of 30 days or more.

The input model for the arrivals and the transition probability matrix can be used for
computing patient volumes at a combination of department and (sub)specialism. If we
use the average service times, we can also compute the occupancy rates. In Chapter 8
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we pay special attention to the applicability and the possibility of the implementation of
the model with respect to ZGT. Also we briefly explain the ins and outs of the model in
this chapter.

The transition probabilities matrix demonstrates that more than 70% of the inpatients
arriving at a specific specialism are also discharged within this specialism within one
week. Thus less than 30% of the patients transfer from one specialism to another in the
nursing ward, or stay in the hospital for a period longer than one week.

We back-test our model for 20 weeks in 2011 by estimating the expected weekly patient
volumes at the nursing wards for 11 specialisms and comparing them with the actual
values. Approximately 40% of the weekly patient volume estimates, differ less than 10
patients in comparison with the actual data. About 25% of the estimations are in the
range of a difference between 10 and 20 patients in comparison with the actual data. As
said, ZGT uses common sense to allocate staff and nursing beds. Since these estimations
are not entirely comparable, we also construct a simple measure and compare our model
to this measure. This measure uses the 4 year average arrivals. In 53% of the cases, our
model estimates the arrivals better than the 4 year average model. Moreover, our model
predicts 14% more cases than the 4 year average model, in which the difference between
the estimate and the actual data is only 10 patients or less. The 4 year average model
estimates 8% more cases than our model, in which the difference is more than 25 patients
compared to the actual data.

To illustrate what these findings imply with respect to potential savings, we make a
cost comparison of the two models. We calculate costs of wrongly planned nursing beds
and staff per group of ten patients per week in case of an over- and underestimation by
our model. We compare these costs to the cost estimates of the 4 year average model.
For this purpose we use arbitrarily cost estimates of €1,200.— per patient per nursing
day. In a scenario in which five of the ten planned beds are really used, the comparison
shows a potential costs saving of 2.3 million euro for a period of 20 weeks in favor of
our model. In the case of a worst case estimation, this is even higher: a cost reduction
of approximately 4.6 million euro in 20 weeks. In these calculations, we assume that
the capacity is available for five days a week and that no transfers between specialisms
are allowed. We are well aware that we use several assumptions which should be val-
idated with the real world and this may bring down the calculated cost savings estimates.

Overall, we construct a model which adequately models the patient flows within ZGT
and estimates patient volumes and occupancy rates at the combination of department
and (sub)specialisms and which has the potential to lower future costs.
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Chapter 1

Introduction

1.1 Motivation

Staff, nursing beds and operating theatres are scarce and expensive resources in a hos-
pital. This is why management of hospitals would like to allocate these resources as
efficient as possible. Furthermore, health care is a complex product: the demand for
care is stochastic and the course of a medical treatment is not predetermined. Often
multiple specialisms are involved in one treatment. As the health care process is a com-
plex process and can be described in an abundance of details, we develop in this paper
a holistic model which uses concepts from Finance in order to model patients arrivals
at and patient flows between specialisms in the hospitals of Ziekenhuis Groep Twente,
ZGT. A patient path is defined as the successive treatments a single patient undergoes
at a specific combination of specialisms and departments of a hospital. These specialisms
are e.g. surgery or cardiology. The departments are outpatient clinics, operating the-
aters and nursing wards. A patient flow is defined as the visits to combinations of a
department and a (sub)specialisms of a group of patients in a certain time period. Each
department has his own function, the outpatient clinics are for diagnoses purposes and
simple treatments, operating theaters for (complex) operations and nursing wards for
clinical admissions. The various specialisms are represented at these departments. Cur-
rently ZGT uses common sense, historical averages and planned appointments as the
basis for allocating staff, operating theaters and nursing beds. Moreover, ZG'T has no
insight in how patients transfer from one specialism to another specialism. Forecasting
demand for care and having insight into transitions of patients through the hospital in a
certain time period, should enable the management of ZGT to allocate staff, nursing beds
and operating theaters more efficiently than the current manner of allocation, yielding a
better occupancy rate and lower costs.

First, we introduce the research problem and research questions. Next, we discuss the
relevance and methodology of the study. Also we provide a social and economical context
and elaborate on changes in the health care market. Finally, we provide some background
information on ZGT.
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1.2 Research question

ZGT is interested in predicting patient volumes at the various departments: outpatient
clinics, operating theaters and nursing wards of the hospital, at least one month ahead.
These estimates of patient volumes enables ZGT to allocate resources as staff, operating
theaters and nursing beds more efficiently. Moreover, ZGT is interested in which share
of patients transfer from one(sub)specialism to another (sub)specialism in the hospital
within a certain time period. Insight into future patient volumes and patient transfers
between (sub)specialisms, provides the management of ZGT information required for
using resources more efficiently. The research problem is as follows:

What is an adequate model to predict future patient volumes at least one month
ahead at a (sub)specialism at the various departments within ZGT?

Next to the problem statement, we define a research objective, which is:

Develop a model that enables Ziekenhuis Groep Twente to predict patient vol-
umes at least one month ahead at specific departments within the hospital, tak-
ing into account the transition from patients from one (sub)specialism to another
(sub)specialism in a certain time period.

In order to answer the research objective, we define the following research questions:

1. Can we develop a model that can predict the number of patient arrivals in a
certain time period of (sub)specialisms in the

a. Outpatient clinics?
b. Operating theaters?

c¢. Nursing wards?
This research question is answered in Section 6.3.1.

2. Can we develop a model that can compute the probability that a patient will
transfer from one (sub)specialism to another(sub)specialism in a certain time
period in the

a. Outpatient clinics?
b. Operating theaters?

c. Nursing wards?
This research question is answered in Section 6.3.2.

3. Can we develop a model that can estimate the service time of patients in the



1.3 Relevance of the research 3

a. Operating theaters?

b. Nursing wards?
This research question is answered in Section 6.3.3.

4. How can we combine the estimation of the expected number of arrivals at a
certain (sub)specialism, the probability of a patient transferring from one
(sub)specialism to another (sub)specialism and the average service time to
estimate the occupancy rate of specialisms at

a. Operating theaters?

b. Nursing wards?
This research question is answered in Section 6.1.

The modeling part is given in Chapter 3, the results are provided in Chapter 5.

1.3 Relevance of the research

The health care environment is rapidly changing. Social, political and economical causes
ask for a more efficient use of resources as nursing wards and staff in the health care
industry. The government tries to control the health care expenditures by allowing more
competition between health care providers and by reforming the health care market.
Until 2003 the health care market was mainly capacity and volume driven. The more
capacity a health care provider possessed, the more health care budget the provider re-
ceived. After the reform of 2003, a health care provider receives a fixed sum of money
per treatment per patient. This requires a fundamental reorganization of the health care
industry: the usage of nursing beds and operating rooms should be more efficient. That
is avoiding over- and undercapacity of operating theaters and nursing beds as much as
possible, given the capacity and time constraints. With respect to staff this is allocating
staff such that there is neither a shortfall nor an abundance of staff, given the demand
for care and a time constraint. Sections 1.5, 1.6 and 1.7 explain in some more detail the
different interests of society and the changing health care market.

At this moment in ZGT there is no direct link in the planning process between op-
erating theaters on the one hand and nursing departments on the other hand. The data
available is sufficient to forecast the occupancy of the nursing wards, however the current
predicting methods are not really sophisticated but based on common sense and expe-
rience. Differences in occupancy rates of beds yields financial effects. At this moment
the department nursing wards within a hospital is one of the most costly departments.
A more efficient usage of nursing wards yields cost reductions. That is why the manage-
ment would like to have estimates of future patient volumes as accurate as possible.

In this research we combine knowledge from other disciplines, in particular from Finance,
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in order to model patient flows and predict patient volumes. We develop a holistic model
which provides ZGT insight into patient flows trough the various departments of the
hospital, taking transitions from one (sub)specialism to another (sub)specialism into ac-
count. The model enables them to predict patient volumes at (sub)specialisms at least
one month ahead. Insight into patient flows and expected patient volumes can be used
for allocating staff, nursing wards and operating theaters more efficiently. Moreover, the
model gives insight what proportion of patients transfers from one (sub)specialism to an-
other (sub)specialism within a certain time period. The model we develop in this study
uses the strengths of two different theories, namely ARIMA and Markov theory. The
integration of these theories enables one to develop a holistic model of a hospital, which
one can use to predict patient volumes of (sub)specialisms at the various departments at
least one month ahead. Relatively little studies focus on using financial models in health
care optimization and efficiency issues. By far, most studies use theories as queuing the-
ory and the theory of petri nets. This research investigates the applicability of finance
theories in health care. This can be seen as the scientific relevance of the study.

1.4 Methodology

The research questions deal with modeling the patient flow within a hospital. Aim is to
construct a holistic model which predict patient volumes and keeps track of transitions of
patients between (sub)specialisms. We develop a holistic view of the hospital in order to
avoid a too much detailed view of a hospital and to deal with the complexity of the health
care process in a hospital. A holistic approach is often used in Economics and Finance.
In these disciplines the complex reality is described by a holistic model. Consider for
instance how in Economics the Keynesian theory models the economy and society.

We use Financial theories in order to model the various aspects of the holistic model. We
model patient admissions using ARIMA theory. In Finance, ARIMA-models are used in
order to estimate indices and prices of commodities. We use Markov chains for modeling
the transition probabilities between different departments in the hospital. Markov chains
are the basis of many principles in Finance. The Markov property is again one of the
key principles with respect to pricing: the property claims that the future price of a
commodity only depends on its current price, irrelevant of the historical prices. In fact,
it is one of the key assumptions of the efficient markets ( , ). In the Efficient
market theory it is assumed that the price at this moment, reflects all information and
that only this price is necessary to compute the price some small time instant later. In
this research, part of the model we develop, also only requires the current information
of a patient and not all historic information to compute the next step in his/her patient
path. Finally, we use statistical analysis for computing the average service times. We
introduce the model in Chapter 3.

In order to validate the model, it requires analysis of data. We use historical data for
investigating the patient volumes per specialism and its inter and intra transitions. Also
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we use historical data in order to develop a time series which can be used for forecasting
future admissions. Finally, we use historical data to compute the average service time of
patients.

1.5 Urge from society, a changing world

There is an urge from society to organize health care more cost-efficient. Population aging
and co-morbidity have resulted in rising health care expenditures. Statistics Netherlands
computed that there is a rising increase in health care expenditures in the period 2004-
2008 ( ) ). In 2009 the health care expenditures amount to 83.8 billion euro,
an increase of 5.8% compared to 2008. Next, Statistics Netherlands computed that the
health expenditures in 2009 per capita increased with 5.2% compared to 2008, confirming
the trend that also the health care expenditures per capita are increasing over the years.

Furthermore, there is a shortage of staff in health care. Estimations of the SCP' demon-
strates that the demand for health care staff will increase from 220.000 vacancies in 2005

to 300.000 vacancies in 2030 ( , ). The Dutch government
has realized the need for more health care staff. In 2012 recruitment funds will increase
to 852 million euro ( ; ). These developments ask for a more efficient allocation

of health care budget. To achieve this, the Dutch government designed a reform of the
health care market, in which a more liberal market is introduced. Furthermore, the cur-
rent economic situation and the introduction of a new expenses claim system have led
to uncertainty on the health care market, which has made banks reserved with financing
hospitals.

1.6 Changing health insurance market and expenses claim
system

One can distinguish three players on the health care market. First there are the patients
(demand side), second the health care providers (supply side) and finally the financing
institutions, such as health care insurers or government. Often the market is regulated
by a health care authority. In the Netherlands major reforms in the health care market
have taken place. Both the health insurance market and the expenses claim system have
been reformed, the former in 2003, the latter in 2005.

In the Netherlands the health insurance market is a dual system. The non insurable
health care risks are financed by a special act and are totally paid by the Dutch gov-
ernment. The government finances this act from tax incomes, paid by employees and
employers. This is regulated in the AWBZ.? The AWBZ is a collective and obligatory

!SCP: Sociaal Cultureel Planbureau, English: Bureau for Social and Cultural Studies.
2AWBZ: Algemene Wet Bijzondere Ziektekosten, English: General Act on Exceptional Health Care
Expenditures.
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health care insurance which covers non insurable health care risks, as e.g. long stay care
or nursing homes. Until 2003, every now and then, the law was amended to accommodate
wishes from society, resulting in much bureaucracy and non transparency. The intensity
of adaptations called for a reform of the act. The redefined act has legislative power as
of 2003. The reform allowed more participants on the health care market in order to
increase competition. Moreover, before the reform, patients were not confronted with
the costs of health care. The new reform should make both patients and health care
providers more cost-conscious.

The other demand for health care should be covered in an obligatory private health
insurance. Health insurers are obliged to offer a by the government predefined package
with treatments, which covers minimum health care benefits. Next to this health in-
surance one can take an additional health insurance. This part of the health insurance
market is liberalized, such that insurers can compete.

The foundation of the insurance system is health equity: all people are allowed admission
to health care, regardless their age, mental or physical condition. In the Netherlands an
equalization pool and risk pool are used in order to reconcile differences in the customer
population of health insurers. These funds are regulated by the government, which pools
the risk of the various insured, by transferring funds to the insurer of the more risky
insured from the insurer of the less risky insured. This measure should overcome moral
hazard by insurance companies.

1.7 New expenses claim system in the Netherlands

The expenses claim system has been reformed. The reason for the reform is trying to
change the incentives of the health care providers. The new expenses claim should make
the providers more cost-efficient, as they are only compensated per treatment, instead
of available capacity. A major reform has taken place in 2005 by the introduction of
DBCs® and a smaller one in 2012, in which DBC was replaced by DOT.* These reforms
are an additional challenge for the health care market. The Dutch government tries to
introduce a health care system on a free market basis.

A DBC is the total care trajectory starting with a diagnosis and finally ending with
some treatment from a specialist in a certain time period (maximum one year). With
the introduction of DBC the Dutch health care market became partially competitive.
For several treatments, often ‘less complex’ treatments (or B-segment), a free market
has been introduced. The diagnosis and the treatments are administrated in one spe-
cific code, the DBC performance code. For complex treatments and some very rare and
specific treatments (often in academic hospitals) the Dutch Care authority (NZa® deter-

*DBC: Diagnose BehandelingsCombinatie, English: DTC, Diagnose Treatment Combination.
‘DOT: DBC Op weg naar Transparantie, English: DTC, a Road map for more Transparency.
®NZa: Nederlandse Zorgautoriteit, English: Dutch Health care authority.
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mines the prices (A segment). Over time, the authority will shift more treatments from
the A segment to the B segment, so that the number of treatments on which hospitals
can compete, will increase. The aim of introducing DBCs is making both hospitals and
patients more cost conscious about how much health care actually costs.

Before the DBC expenses claim system and the reform of the AWBZ, hospitals were
financed on basis of fixed prices, volume agreements and on basis of the number of in-
habitants a hospital served. The hospitals received a fixed sum covering interest expenses,
housing expenses and a variable part, depending on the number of admissions, nursing
days, outpatient clinic consultations and day care treatments. This way of financing has
led to a system in which compensations did not match the executed health care produc-
tion. Also there was no incentive to organize health care efficient or that is to discharge
patients as quickly as possible. The urge for a more transparent compensation system
was born. One of the purposes of introducing DBCs was to overcome this problem.

However, the introduction of DBCs has led to an abundance of combinations of perfor-
mance codes (each combination of outpatient visits, operating theater visits and clinical
visits has for each diagnose its own performance code). Therefore, there was a desire for
a more uniform system: DOT. DOT is derived from DBCs however; they are more uni-
form than DBC. In DOT the specific care is divided in several ‘DBC care products’. The
ultimate combination of care products determines the specific DOT. In DOT a health
care provider will receive a fixed price for a care product, regardless the specialism which
has executed the treatment, in DBC these prices could have been different. Also the
introduction of DOT has led to another expenses claim method towards the health care
insurer. DBCs are checked on administrative errors by hospitals themselves and then
submitted as a claim to the health insurer, DOTs are approved by an approval authority
(grouper) and can then be paid out by a health insurer.

1.8 Ziekenhuisgroep Twente

Ziekenhuisgroep Twente, or short ZGT, is a health care organization in the east of the
Netherlands. ZGT has two hospitals, one located in Hengelo and one in Almelo. Fur-
thermore, the group has five outpatient clinics in Geesteren, Goor, Nijverdal, Rijssen and
Westerhaar. ZGT was founded in 1998 as a merger of the two hospitals, Streekziekenhuis
Midden-Twente in Hengelo and the Twenteborg Ziekenhuis in Almelo. This merger has
made ZGT the largest hospital in Twente, only somewhat larger than Medisch Spec-
trum Twente, Enschede. The service area of ZGT covers the municipalities of Almelo,
Hengelo, Borne, Dinkelland, Rijssen-Holten, Twenterand, Tubbergen, Hof van Twente,
Hellendoorn and Wierden. Other hospitals nearby, are in Fnschede, Deventer, Harden-
berg, Winterswijk, Zutphen and Zwolle. In 2010 the capacity of the hospital was 1085
beds. Furthermore, the production of DBCs in the A-segment equaled 213.524 and in
the B-segment: 79,965 ( ) ). ZGT accommodates 25 different specialisms, from
which surgery is the largest.
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PATIEMTS ARRIVAL: referral of general practitioner or emergency department

Emergency Outpatient Outpatient Outpatient P'! Outpatient
department clinic A clinicB clinicC clinic D

Tactical =

- Operating theaters
planning p o .

Intensive Mursing Mursing Mursing Mursing
care wardA wardB wardC ward D

Limits: staff and capacity of clinics
Twotypes of wards: day care and long stay care

Figure 1.1: Patient flow within ZGT hospital, also general for Dutch hospitals.

In the ZGT a system, called tactical planning, is used in order to optimize the allo-
cation of patients and specialists to operating theaters. This system is used to gain
insight into the patient flows, their arrival processes and service times. Historical data
and the expertise of specialists are used for optimizing the master schedule of the oper-
ation theaters. The patient flow within ZGT is given in Figure 1.1. In a hospital there
are two types of patients: outpatients and inpatients. Outpatients are patients who only
visit the hospital for a short treatment or diagnosis in an outpatient clinic. Inpatients
are admitted at the hospital for a longer treatment. This can be a treatment of several
hours (one day admission) or several days (more than one day admission). Both type of
admissions require a nursing bed in a nursing ward.

ZGT is in the mid of a reorganization. The board of the hospital would like to make
the hierarchical structure of the organization less stratified. Currently there are three
divisions in the organization, two divisions deal with the health care process, the third
division is facility management. These divisions are lead by managers, reporting to the
board of directors. Next to these divisions a Financial and Information department,
a Human Resource department and a Board Supporting department exist. All these
departments directly report to the board of directors. Figure 1.2 shows the current or-
ganization structure.

In order to make the organization less stratified, the board would like to introduce a
RVE-structure.® RVEs are organized around one specialism. This can be a clinical

SRVE, Resultaat Verantwoordelijke Eenheid, English Profit Responsible Unit.
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Figure 1.2: The current organization of ZGT hospital, until April 2012.
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(porter) or a supporting specialism. Figure 1.3 shows the different porter and supporting
specialisms’ in the new RVE-structure. These entities will directly report to the board
of directors. The RVEs could be compared with business units in an ordinary company.
Goal of the introduction of the RVEs is to introduce a more entrepreneurial attitude
within the different specialisms. Currently, in ZGT the entities determine their budget
on cost basis principle. The RVEs structure should also make the different units revenue
conscious. The reorganization is completed in May 2012.

1.9 Outline of report

The outline of the remainder of the report is as follows. In Chapter 2 we investigate the
literature with regard to modeling patient flows in hospitals. In Chapter 3 we introduce
a mathematical model in which we model patient flows through a hospital. The model
consists of three components. First, we discuss how to model patient arrivals at the three
departments. Next, we introduce a model in which the transfers of out- and inpatients
between (sub)specialisms are modeled. Finally, we discuss techniques to obtain average
service times. Chapter 4 discusses the data requirements as well as the data used in
the holistic model. Chapter 5 elaborates on the results. Chapter 6 concludes. Chapter
7 provides a discussion and considers limitations of our research and suggestions for
further research. Finally, in Chapter 8 we briefly explain the ins and outs of the model
and discuss the applicability and implementation of the model and do recommendations
to ZGT.

"Porter specialisms, e.g. cardiology, are specialisms where a patient is referred to in order to receive a
medical specialist-oriented care; supporting specialisms, e.g. radiology, supports the porter specialisms
by e.g. diagnosing and treatment of a patient.



Chapter 2

Theoretical framework

In this chapter we investigate relevant literature. We enlarge on the various disciplines
and theories. The existing structure of the hospital is assumed to be given. The aim is
not to propose changes in the structure of the hospital which could make the organization
of the health care process within ZGT more efficient. Aim of the research is however to
provide a holistic view of a hospital which enables one to predict future patient volumes
at various combinations of departments and (sub)specialisms, given the current structure
of the hospital. The required theory concerns mathematical models of a hospital such
that we are able to reconstruct patient paths through a hospital and to compute future
patient volumes at combinations of departments and (sub)specialisms. Predicting patient
volumes and monitoring patient flows between specialisms requires three components:

1. Modeling patient arrivals in a certain time period.
2. Modeling transitions of patients between (sub)specialisms in a certain time period.

3. Computing average service times of treatments for specific treatments.

The first two require a consideration of various theories and models. The last item
only requires a statistical analysis of historical service times. First, we consider theory
concerning arrivals at specific departments of a hospital. Second, we focus on how to
model transfers of patients between (sub)specialisms in a hospital. Finally, we motivate
which theory we select for model building.

2.1 Patient arrivals

There are many ways of modeling patient arrivals at hospitals. In health care research
queuing theory is one of the most dominant theories to model arrivals. ARIMA-models
can also be used for predicting future arrivals. This section discusses both theories.

2.1.1 ARIMA theory

Autoregressive integrated moving average (ARIMA) models can be used for forecasting.
The principle is based on time series analysis. A time series is a sequence of data points
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measured at equidistant time intervals. The applicability of time series analysis is wide,
for instance in Finance many time series models are used in order to predict the behavior
of certain commodity prices. ARIMA-models can yield good predictions in the short
term.

( ) have described the data conditions under which an ARIMA-
model can be used for forecasting: the data generating process should be stationary. The
stationarity of the data generating process can be tested using a unit root test.

Several authors have used ARIMA-models in order to forecast patient volumes in hospi-
tals. ( ) use an ARIMA-model which predicts demand of inpatients
in a large public hospital. The authors propose an ARIMA-model for forecasting the
monthly admissions per specialism for the next twelve months. They find promising
results in predicting the demand as they compare it with the actual demand.

( ) predict the monthly patient volume of a primary health care
clinic using an ARIMA-model, which also accounts for seasonal effects. Abdel-Aal and
Mangoud propose a ARIMA(4,2,0) model which fits best in forecasting the patient vol-
umes of this particular clinic. Finally, ( ) also uses an ARIMA-model in order to
forecast monthly patient volumes. For several hospitals in the United States the author
develops ARIMA-models for forecasting admission, discharge of patients and gains of a
hospital. Furthermore, the paper provides some tests in order to check the outcome of
the prediction with actual demand.

2.1.2 Queuing theory

Queuing theory is a mathematical theory about waiting lines. It observes a server which
can serve persons or objects and a waiting line in front of this server. The theory requires
a specific arrival distribution and service distribution. The length of the queue can be
either finite or infinite. Network of queues is a modification of queuing theory. In a net-
work of queues multiple queues are linked in a network. Applications of queuing theory
are used in all sort of processes in which customers are served at a counter, as. e.g. shops
and banks. Moreover, it has applications in traffic engineering and telecommunication.
Queuing theory is mainly used to describe the arrivals at hospitals, but could also be
used to model consecutive queues in a health care process.

( ) model a hospital in Belgium using a network of queues.
The authors consider the health care process as a consecutive chain of locations in a
hospital a patient visits. They link the outpatient clinic, the operating theater and the
nursing wards, using queuing theory. The authors propose a model in which these lo-
cations have a G|G|n-structure.! The authors determine the arrival and service process
for the several locations in the health care process. Figure 2.2 provides an example of

!In this case: the arrival process has a general distribution, the service process has a general distri-
bution and the length of the waiting line is n.
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Figure 2.1: Network of queues of a hospital in Belgium (Creemers & Lambrecht, 2007).

network of queues, applied to hospitals. Queuing models assume that the arrival process
possesses the memoryless property. Poisson and Erlang distributions have this property.
It is the question however, whether patient admissions at a hospital are distributed as
a Poisson or Erlang distribution. ( ) models patients arrivals, using
a Poisson distribution. ( ) however claim that patient arrivals do not
necessarily possess the memoryless property.

2.2 Patient transitions between (sub)specialisms

There are also several theories with regard to modeling patient transitions from one
(sub)specialism to another (sub)specialism. Markov theory seems natural as it comes
to model system transitions. Also the theory of Petri nets is used to model transitions
within a system. Both theories are explained in more detail in this section.

2.2.1 Markov models

Markov chains represent a system subject to going from one state to another state (tran-
sition) with a certain probability. A Markov chain has a finite number of states and
transitions. Markov chains are used in order to compute the one-step transition prob-
ability of going from omne state to another state, but becomes more powerful as it is a
convenient method for computing the long run transition probability of going from one
state to another. Markov chains have an abundance of applications, e.g. Economics,
Operations research or Game theory.

Several authors have used Markov chains in order to model patient transfers between
specific locations within a hospital. A patient transfer can be seen as a single patient
transferring from one physical location to another physical location and can be described
by a system transition in a Markov chain.? ( ) use Markov models in or-

2We choose physical locations, one particular treatment can occur at different specialisms. Moreover,
this also enables one to model transitions within one (sub)specialism or process.
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Figure 2.2: A Petri net as in the paper of Leite. The red Tj indicates that it is activated
(Leite et al., 2010).

der to model patients transfers in an intensive care unit in a hospital in Colombia. They
consider different steps in the process and provide an approximation of the likelihood
that events occur in some order. Furthermore, they provide an estimate for the average
length of stay. ( ) also use Markov models in order to give an
estimation of the length of stay at a cardiac surgery department of a Dutch hospital.

2.2.2 Petri nets

A Petri net is a bipartite graph® in which the vertices represent transitions and places.
In the representations of Petri nets, the vertices representing transitions are depicted
by bars, the places are depicted by circles. The edges are always directed arcs. At
circles tokens are stored; the transition is only activated if the input at places (circles)
is equal or larger than the weight of the directed arc. Petri nets are used to model
systems in which transitions can take only place if a minimum input is satisfied. In
health care, for instance: a patient can only go to the next step in a health care process
if all preconditions, e.g. several small medical examinations, are met. Other applications
of Petri nets are in software engineering. Research in the field of health care and petri
nets aims at improving data mining. ( ) use a Petri net model in order
to model the successive events in a health care process. The Petri net model is designed
in order to model successive events in patient flows of a single patient. For specific
treatments the authors develop a Petri net which is used for representing the patient
flow within one specialism. Further research will deal with modeling the patient flow of
multi multidisciplinary patients. ( ) model an intensive care unit using
stochastic Petri nets. The authors conclude that Petri nets are useful for checking manual
processes within the successive chain of events in a patient flow. As much hospitals still
use manual processes the authors conclude that the use of Petri nets can prevent the

3 A graph in which the vertices can be divided in two disjoint sets A and B, in other words every edge
connects a vertex in set A to one in set B.
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occurrence of deadlocks.

2.3 Selection of theory: ARIMA and Markov theory

ZGT would like to have an indication of future patient volumes and insight into the
transfers of patients between specialisms in a certain time period. A single theory de-
scribed above is not sufficient to provide a holistic model. To approach our goal, we
choose ARIMA and Markov theory.

Time series are applied to forecast future patient volumes. This manner of forecast-
ing also allows us to account for patient fluctuations. It is known that patient volumes
vary over time. Time series have the opportunity to include this effect as it uses historical
data for predicting the next value. Queuing theory is less useful for this purpose as it
assumes a fixed arrival distribution. Historical data allows one to provide an ARIMA-
model which can predict future patient volumes.

Petri nets are useful for modeling processes in which there is a necessity to specify a
set of minimum conditions before a system can undergo a transition from one state to
another. Petri nets however are not useful for forecasting purposes and computing transi-
tion probabilities. ZG'T is interested in the transfers a patient can make between several
(sub)specialisms. The abundance of possible transitions, makes queuing theories less ap-
propriate. A matrix representing all transitions is more efficient and elegant and this is
where Markov chains become interesting. Predicting patient volume and the occupancy
rate of a combination of departments and (sub)specialisms, it is indispensable to keep
track of how a patient transfers from one (sub)specialism to another (sub)specialism dur-
ing his patient path. We define a patient path as the consecutive chain of (sub)specialisms
a patient visits for the treatment of one disease. A patient path can exist of several visits.
Taking the whole patient history of one patient into account, requires an abundance of
data storage and computation efficiency. If one is able to develop a model which only
requires the last visit in order to determine the next visit, one can save a lot of compu-
tation time. This is one of the aspects in which lies the power of Markov theory. The
Markov property states that the probability of going from one state to another state’
only depends on the last state and not on the history of all its predecessors. Moreover,
Markov chains can possess a limiting distribution. The limiting distribution is a powerful
tool to compute the transfers between (sub)specialisms in the long run.

To conclude we use the combination of ARIMA-models and Markov models to model
patient arrivals and patient transfers between (sub)specialisms at departments.

*In this study going from one (sub)specialism to another (sub)specialism in a certain time period.
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Chapter 3

Model

In this chapter we introduce mathematical theory, models and assumptions used in order
to model the patient flow within a hospital. The model we use consists of three com-
ponents: patient arrivals at various combinations of departments and (sub)specialisms,
transfers of patients between (sub)specialisms within a department and the average ser-
vice time for specific treatments. For the arrival process we use ARIMA theory, for
modeling patient transfers between (sub)specialisms we use Markov theory and finally
we use statistical analysis for computing the average service times.

Data limitations require to subdivide the hospital into three departments: outpatient
clinics, operating theaters and nursing wards. The data at the three departments have
other characteristics which makes it impossible to reconstruct a patient path by using
the data of the various departments in one model. However if we split the model, we
can reconstruct the patient path.! This is explained in more detail in Chapter 4. The
specialisms are represented at the three departments. Figure 3.1 provides a schematic
overview of the hospital in the three departments and depicts where the three differ-
ent model components, are applied. The red bars in the picture represent the arrivals
and are modeled by ARIMA theory. The blue boxes are the three departments and the
green boxes are the (sub)specialisms within the departments. The black arrows within
and between the departments represent the transition probabilities of a Markov chain.
The number of specialisms and black arrows depicted in Figure 3.1, are not exhaus-
tive. Finally, the orange box depicts the computation of the average service times of
(sub)specialisms at the operating theaters and nursing wards.

Patient arrivals are modeled using ARIMA theory. Due to the stochastic character of
the incidence of the demand for health care, one would like to have a model that can

!Recall that a patient path is defined as the consecutive (sub)specialisms a single patient sees, during
a treatment of one disease. A patient flow is defined as the visits to combinations of a department
and (sub)specialisms of a group of patients in a certain time period. For determining a patient flow
we have to know the patient paths of individual patients. The sum of transfers of single patients from
one (sub)specialism to another (sub)specialism in a certain period is equal to the patient flow from this
(sub)specialism to the other (sub)specialism in this period.
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Patient transfers: Markowv theory is used to model outpatient transfers between the different
outpatient clinics and the operating theaters and to model inpatient transfers between the
different nursing wards and operating theaters / ““-\\
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operating theaters and nursing wards

Figure 3.1: A graphical representation of the subdivision of the hospital ZGT in the
three departments. The numbers at the green boxes in the departments represent the
specialisms. In the figure we indicate where we apply ARIMA theory, Markov theory
and statistical analysis.

predict the number of arrivals at a specific combination of a department and specialism
in a certain time period. One can fit an ARIMA-model onto historical data points and
use this model to predict future patient arrivals at a certain combination of department
and specialism. At ZGT there is an abundance of historical data about patient arrivals
at several departments and specialisms. For the combination of a specific department
and (sub)specialism, we use the ARIMA theory to estimate an ARIMA-model which pre-
dicts the future patient arrivals at this combination. The theory about ARIMA-models
is discussed in Section 3.1. In this section we introduce an ARIMA-model for ZGT.

Typically, a patient arrives at a hospital after a referral of a general practitioner. In
a hospital elective patients first visit an outpatient clinic. Emergency patients are admit-
ted at the emergency department, but this can be seen as special type of an outpatient
clinic. At this point a decision will be made for further treatment. This decision is one of
the following: an outpatient treatment in the same (sub)specialism, a referral to another
(sub)specialism in the outpatient clinics, an appointment for an operation, an admission
to a nursing ward or the discharge of the patient. Patients enter a nursing ward after
being referred from an outpatient clinic or after being operated. The intensive care could
be seen as a special nursing ward. The transfers are considered to be the transitions from
one state to another state of a Markov chain.

We use two Markov chains in order to model transfer of patients from one (sub)specialism
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to another (sub)specialism. This is due to data limitations which are discussed in Chap-
ter 4 and Chapter 7. The first process describes the transfers of outpatients between
specialisms in the outpatient clinics and the operating theaters. Figure 3.2 depicts the
transfers of the outpatients. The second process deals with the transfers of inpatients
between operating theaters and nursing wards. The transfers of the inpatients is shown
in Figure 3.3. For simplicity, in both figures just one outpatient ward or hospital ward
is considered. It assumes that patients can flow to and from a finite number of other
outpatient clinics/nursing wards. As the transitions between various (sub)specialisms
are of interest, the choice to use Markov theory seems natural. Section 3.2.1 provides
the Markov chain for outpatient transfers and Section 3.2.2 for the inpatient transfers.

The last component of our model concerns the computation of average service times.
The average service times are necessary when it comes to computing the occupancy rate
of different combinations of (sub)specialisms and departments. The first two compo-
nents: arrivals and transfer probabilities, are sufficient to compute the expected number
of arrivals at a combinations of departments and (sub)specialisms. The last component:
service time, adds a time dimension. Incorporating the average service times provide
an estimate for how long a specific combination of department and (sub)specialism is
occupied. The equations for computing the average service time are in Section 3.3.

Since ZGT, uses common sense and experience to estimate the number of nursing beds
and operating time per (sub)specialism, we construct another simple performance mea-
sure to compare the results of our model to another model. We can compare the perfor-
mance of both models using back-testing. Also we develop a method for a cost comparison
between the two models. This is explained in Section 3.4.

3.1 Patient arrivals and ARIMA theory

The incidence of demand for care is uncertain. One cannot predict with certainty at
which moment a person requires medical care within a hospital. However, using histor-
ical data, one can predict future patient volumes. ARIMA theory is suitable for this
purpose. We require the number of arrivals at a certain combination of department
and (sub)specialism at consecutive time periods. The number of arrivals are called data
points. The ARIMA-model is used to provide a fit? onto this data points. The ARIMA-
model can be used to predict the patient volumes of a next time period. In Figure 3.1,
the figure with an overview of the holistic model, the prediction of patient arrivals, is
illustrated by the red arrows.

ARIMA-models are used in Statistics and Econometrics in order to predict future points
of a time series {W;} for time ¢t = 1,...,7T. ( ) provides a theoretical
framework for ARIMA-models and time series analysis. ARIMA-models are denoted

2The ARIMA-model describes an equation which should fit the data points best. ARIMA can be
used to predict patient volumes at a combination of department and specialism in the next time period.
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as ARIMA(p, d, ¢)-models in which p is the number of autoregressive terms, d denotes
which difference of the original series {W;} we take and ¢ is the number of moving average
terms. The application of ARIMA-models requires that the data are stationary. Station-
arity can be obtained by taking differences of the original series. Also, the residuals of
the estimated ARIMA series should follow a normal distribution and should not possess
autocorrelation. Often, we compute for one series of arrivals, several ARIMA-models.
We can use the Akaike criterion to identify the best fit among the estimated ARIMA
series. We explain all this, in the next paragraphs.

Data can possess seasonal patterns. ARIMA-models can deal with seasonality by in-
corporating seasonal autoregressive and/or moving average terms. We can investigate
whether data possess seasonal effects. This is described in Section 3.1.1.

Stationarity

A time series is said to be strongly stationary if and only if for the joint density function
Fy the following holds:

Fow(Wisr, s Wigkir) = Fw(We, o, W), (3.1)

for all 7 and all Wy, t = 1,...,T. For a time series, however, it is sufficient to have a
weakly stationary process. A time series is weakly stationary if the expected value and
its variance are finite and independent of ¢, moreover the autocovariance function should
only depend on k£ and not on t¢:

Yk = cov(Wy, Wy_g) = E(Wi — E(W)) (Wi — E(Wi—t))) = V- (3.2)

Unit roots tests, or Dickey-Fuller tests are performed in order to establish whether a time
series is weakly stationary. To explain the usage of the test, we require the difference
operator:

AWy = c+ BWi + a1 AWi_1 + ... + o AWi_p + &4 (3.3)

The test checks the significance of the appearance of 5 in the model of Equation 3.3.
The null hypothesis denotes 8 = 0, whereas the alternative hypothesis is 8 < 0. The
Dickey-Fuller test can only be applied to AR(1) models.® A moving average process is
always stationary. An autoregressive process can be weakly stationary from upon some
lag 7. The augmented Dickey-Fuller test is a portmanteau test of the Dickey-Fuller test
and enables one to test the significance of all coefficients in Equation 3.3 and to determine
the number of lags m to include in the model.

One can check that the expected value and the variance of W} are finite whenever 8 < 0
in Equation 3.3. Often, an original time series is not stationary, but the differenced
series is. For instance, once modeling stock prices, the log returns of stock prizes are not
stationary, but their difference are. Equation 3.3 is used in order to establish the d*?
differences of the original series.

3AR is an abbreviation of autoregressive, AR(1) denotes an autoregressive process with one autore-
gressive term. MA is the abbreviation of moving average.
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ARMA equation

If the data series is (weakly) stationary, an ARIMA-model can be applied. It is sufficient
to use an ARMA (autoregressive moving average) model if the data series is stationary.”
The ARMA model is given by:

p q
Wt = Z aiLth + Z eiLiEt + E¢. (34)
i=1 i=1

in which L is the lag operator:
LFW, = Wiy, (3.5)

and in which «; are the coefficients of the ith autoregressive terms and 6; are the ith co-
efficients of the moving average terms. ¢; are the residuals. Residuals are the observable
estimates of the unobservable statistical errors. ; is an independent and identically dis-
tributed random variable with mean zero and variance 0. This is exactly the definition
of a white noise process. A white noise process implies no autocorrelation. Sometimes a
constant term is also included in Equation 3.4.

Autocorrelation in the residuals

Box-Pierce or Ljung-Box tests are statistical tests for checking the white noise condition.
The Ljung-Box test is preferred over the Box-Pierce test. The test investigates whether
any group of autocorrelations at lag j of a time series are different from zero for a fixed
number of k£ legs. The null hypothesis is the assumption that the data are independently
distributed. The alternative hypothesis is that the series is not. The test is applied to the
residuals of the fitted series, e.g. the e;, t = 1,..,7 in Equation 3.4. The Ljung-Box test
statistic® follows a chi-squared distribution with 7" degrees of freedom and is a number
for testing the autocorrelation up to order k, or that is corr(Wy, Wiyy,) = 0form = 1...k
and m < k<T.

Normality of the residuals

A Jarque-Bera® test can be performed in order to check whether the residuals in Equa-
tion 3.4 are normally distributed. For large samples the test statistic has a chi-squared
distribution with two degrees of freedom. The null hypothesis of the statistical test is
that the error terms are normally distributed. If it is rejected we may conclude the data
are not.

“We drop the "I" from ARIMA, I only indicates which difference we take in order to make the data
stationary.

2
"The Ljung-Box statistic is T'(T + 2) Z?zl Tp—jj, in which p; is the sample correlation at lag j.

2)2
SA Jarque-Bera test whether data is normally distributed, the test statistic is JB = %(52 + @)
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Identifying the best fit

Finally, the Akaike or Schwarz criteria are used for indicating the goodness of fit of a
model. Statisticians prefer the Akaike information criterion. The Akaike criterion is
based on the number of parameters and the maximum value of the likelihood function
of a fit and is just a number. The smaller the number, the better the fit. The lowest
Akaike criterion among several fits of one series, indicates the best fit.

Software packages, like Eviews and Matlab, can do statistical tests, as the Ljung-Box
test, the Jarque-Bera tests and compute the Akaike criterion.

3.1.1 Seasonality effects

Data might possess seasonal effects. For instance an ice cream vendor sees an increased
sales during the summer months and lower sales during the other months. ARIMA-
models can account for seasonal effects. If one suspects a cyclical effect after n periods
one should take the nth difference to take this seasonal effect into account. The nth
difference of a series W; can be obtained by using the difference operator:

d(Wy,n) = (1 — L)"W, (3.6)

in which L is the lag operator as in Equation 3.5. The notation of a seasonal ARIMA-
model is (p,d,q)X (P, D,Q), in which p, d, ¢ are as before. P denotes the number of
the seasonal autoregressive terms, () the number of seasonal moving average terms, D
the number of seasonal differences. Often we add a single number to this notation to
indicate which seasonal difference we take, e.g. if we observe monthly data and one ex-
pects a yearly pattern, one could take the 12¢" difference for investigating this suspicion.”

( ) provide an action plan for investigating whether a series con-
tains seasonal effects. One can do this by looking at the (0,0,0)-ARIMA series. Sea-
sonality events occur at regular time intervals, e.g. monthly or quarterly. By eyeballing,
one might discover a cyclic pattern in the residual plot of the (0,0,0)X(0,0,0)-ARIMA
series.® Next, one can compare the residual plot of both the (0,1,0)X(0,0,0)- and the
(0,0,0)X(0,1,0)-ARIMA series” in order to observe a seasonal pattern. Finally, by look-
ing at the plot of the autocorrelation function one might indicate at which lag we observe
autocorrelation. Typically, we find strong autocorrelation at the lag at which we sus-
pect a cyclic pattern and no autocorrelation at other lags. For instance, while analyzing
monthly data in which one suspects a yearly pattern, one will find strong autocorrelation
at the 12" lag.

“An ARIMA-model in which the seasonal components are first differenced and we subsequently take
the 12!" difference, is denoted by (0,0,0)X(0,1,0)12.

8That is a plot in which the residuals are plotted. For comparing it also contains the actual data and
the proposed model.

9We compare the first ordinary difference to the first seasonal difference.
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3.1.2 Action plan for determining an ARIMA-model for a series

This subsection containg an action plan or summary of how to find an ARIMA-model
for a time series Wy, t = 1,..,T. For a series Wy, t = 1,..,T one does the following.

1. Investigate seasonality effects as described in Section 3.1.1.

2. Determine whether Wy, t = 1,..,T is (weakly) stationary. This can be done by
using an Augmented Dickey-Fuller test.

3. If the series is stationary, the ARMA equation (Equation 3.4) can be applied. If the
data is not stationary, take d® difference until stationarity is obtained and apply
the ARMA equation to the stationary series.

4. Test whether the residuals are white noise. This can be done by using the Ljung-
Box test.

5. Test whether the residuals are normally distributed. This can be done by using the
Jarque-Bera test.

6. Presumably for different values of p and q the conditions of steps 2-5 are satisfied.
Now compute the Akaike criterion in order to identify the best fit. The fit with the
lowest Akaike criterion indicates the best fit.

As a rule one tries to find the simplest ARIMA-model which can forecast a series ac-
curately. That is, one would like to have the least possible autoregressive and moving
average terms possible. Also including a seasonal component increases the complexity
of the ARIMA-model. If one finds no evidence for a seasonal pattern, one should not
incorporate a seasonal component in the ARIMA-model.

3.1.3 Validation of estimated arrival series

One would like to know whether the series forecasts the expected number of patients
reliably. Mean squared errors are used for indicating the error in the measurement
between the actual values and the predicted values. As we use historic data we can
compare the estimated series with the actual (or historic) data. Let W; be the estimated
series by time series analysis of W;. The error between the computation of W, and W; is
denoted by e; and is called the bias.'” The mean squared error is a measure indicating
the difference between an estimator and the actual data ( ) ). The
MSE of an estimator 6 with respect to the estimated parameter 6 is defined as follows:

MSE(§) =E[) — 6)? (3.7)

Now if we are interested in the MSE of the mean of a series W; , we compute the MSE
as follows:

MSE(W) = B[(W — 2] = (-=)2 = = (3.8)

- -
O¢r = Wy — W
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For our study we are thus interested in the difference of the actual and the predicted data,
or also known as M SE(e;). A MSE of zero implies a perfect fit between the estimated
value and the actual value. The MSE developed here only checks to what extent the
proposed ARIMA-model fits onto the series of arrivals. The MSE is also equal to the
sum of the variance of the errors and the bias squared. The smaller MSE, the smaller
the variance of the error terms and the bias. Whenever MSE is close to zero, the error
between the true value and the estimation is also small, and thus the deviation in the
error with respect to the mean is small.

3.2 Patient transfers and Markov chains

We use a Markov chain in order to model the process of patient transfers between
(sub)specialisms between the outpatient clinics and/or the operating theaters and the
nursing wards and/or the operating theaters. Markov chains are a mathematical descrip-
tion of a system in which a transition from one state to another can be described with
a certain probability. The transition probability does not depend on the previous states.
A Markov process is said to be memoryless.

Definition of a Markov chain

( ) provides a mathematical definition of the Markov chain. Let {Zy,n =
0,1,2,...} be a stochastic process which can take on a finite or countable number of
possible values. Z,, = ¢ means that the process is in state ¢ at time n. Furthermore, it
supposes that whenever the process is in state ¢, there is a fixed probability M;; that it
will be in the next state j. Formally, a Markov chain is defined as follows:

M{Zn—l—l = ,7|Zn = 7;7 Zn—l = in—ly Zl = Z.17ZO = 'LO} = M{Zn+1 = j‘Zn = Z} = Mz'j

(3.9)
for all states ig,41,...,in—1,%,7 and all n > 0. The process described in Equation 3.9
is known as a Markov chain. The equation states that the conditional distribution of a
future state Z,11, given the past states Zgy, Z1, .. ., Z,, only depends on the previous state

Z,. This condition is known as the Markov condition.!! For the transition probability,
M;;, the following holds:

(o.¢]
520 My>0 Y My=1 ij=01. (3.10)
j=0

Or equivalently, we require 4, j to be nonnegative. The transition probabilities should
be greater or equal to zero for all 4,7 and in matrix representation a row sum should be
equal to one.'? The transition probabilities M;; are denoted in a transition matrix M.

" The Markov condition is also known as the memoryless property of a Markov chain.
12The sum of the probabilities of starting in a state fixed i and ending and a fixed state j should sum
to one.
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Homogeneity and limiting distribution

A Markov chain is homogeneous if the transition probabilities do not change over time.
That is the probability of going from state ¢ to state j at time ¢ = 1, is equal to the
probability of going from state i to state j in some future period. A Markov chain
is said to be an ergodic chain if it is possible to go from every state to every state.
Moreover, a Markov chain is called regular if some power of the transition matrix has
only strictly positive elements. ( ) provides theory on limiting distributions
of Markov chains. Let the limiting distribution be L. We require the Markov kernel'?
to be primitive. A Markov kernel is primitive if there exists an n such that M™(i,j) > 0
for all 4,7."* Now if M has a primitive Markov kernel on a finite space with invariant
(or limiting) distribution L, then uniformly for all distributions v

lim vM" = L. (3.11)

n—oo

L is also known as the stationary distribution. A Markov process should possess the
Markov property, as defined in Equation 3.9. According to the literature, there are no
known tests in order to test the Markov property directly. Some indirect tests could be
done, as the order of dependence ( , ). Furthermore, the process should
contain the stationary property. ( ) provide some statistical
tests to examine the reliability of estimated Markov transition matrices. Furthermore,
they discuss tests for spatial independence and homogeneity. The authors propose a like-
lihood ratio and Pearson y? test in order to test the Markov property. Also they provide
a method for constructing the transition probabilities, using maximum likelihood.

Measure whether homogeneity property holds

As this requires huge and complex computations, we use the notion of independence for
testing the Markov property. In probability theory, two events are said to be independent
if the occurrence of one of the events is neither more, nor less probable, than the other
event. The definition is as follows:

P(y Nw) = P(¢))P(w). (3.12)

If two events ¢ and w are independent, the conditional probability becomes P(¢|w) =
P(3)'® and the Markov equation (Equation 3.9) reduces to:

M{Zp1 = j} = Mj;. (3.13)

13A function p: S x S — R is called a Markov kernel if 1) For each 2 € S, the mapping A — p(z, A)
is a probability function on (S,S) and 2) For each A € S, the mapping = — p(z, A) is a S measurable
function.

14 A regular Markov chain and a primitive Markov chain coincides when the Markov kernel coincides
with the transition kernel of the Markov chain.

15Formally P(w|w) _ % by independence % = P(l/})
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For a homogeneous Markov chain one can demonstrate that Equation 3.9 can be rewritten
as follows:

M{Zi1 = j|Zn =1, Zn-1 = in—1,...21 = 01,20 =0} = M{Zpy1 = j|Zn =i} =
M{Zn = j‘Zn—l =1, 4p-2 = in-2,.-41 =11, 20 = iO} = M{Zn = j|Zn—1 = 7/} =

M{Zs = §|1 21 = i, Zo =i} = M{Zs = j|Z1 = i} =
MA{Zy = j|Zo = i} = M. (3.14)

If we are able to demonstrate that we deal with an independent probability process or
that is the condition in Equation 3.12 is satisfied, the following holds:

M{Zn—i-l = J‘Zn = 'L} = M{Zn—l-l:j} =
M{Zy = j|Zo = i} = M{Z, = j}. (3.15)

In this research we shall compute the transition probability of transferring from one
(sub)specialism to another (sub)specialism in the outpatient clinics/nursing wards for
different time intervals. The different transition probabilities are called realizations. The
computed transition probabilities are derived from time intervals which are disjoint. Since
the time intervals are disjoint the independence assumption follows. If the different real-
izations over time do not differ too much, we may assume the homogeneity property holds.

Now we shall introduce a criterion which is useful for measuring this difference. This
criterion is also useful in investigating the Markov property. Assume that we compute
different realizations t = 1,..,T of the transition probabilities. Each realization concerns
another time interval and thus the intersection of the time intervals is an empty set.
16" The transition probability realizations at different time intervals ¢, 1 < ¢t < T, are
denoted by M;;(t). As criterion whether the Markov property holds, we use the following
equation:

lim max || M;;(t) — M| <e j > 07 fixed (3.16)

t—00 1<t<T

in which Mij is defined as follows:

=l

_ 1 E
My = =S Myt). (3.17)
t=1

Equation 3.16 states that the maximum over t of the different T" transition probabilities
realizations and its average for a certain fixed ¢ should be less or equal than . For
this paper we assume two epsilons, namely € = 0.05 and € = 0.10. The two epsilons
are sufficiently small for accepting the homogeneity property. In practice we also use

Formally, for all t: t=1Nt=2N...Nt=T = 0.
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somewhat different criterion. In this criterion we exclude n-highest and m-lowest number
of a series of realizations M;;(t), t = 1,..,T and apply the adapted series to Equation
3.16. As we suspect that the data contains measurement errors due to for instance wrong
data processing, we can exclude these externalities if computing the norm in Equation
3.16.

Measure for existence of the limiting distribution

The Chapman-Kolmogorov equations enables one to compute the M;J‘*m transition prob-
abilities. These equations should be interpreted as computing the probability of starting
in state ¢ and ending in state j in exactly n + m transitions through a path which takes
into state k at the nth transition. The equation is:

x
ME™ = ZM[,;M,:; for all n,m > 0, all i, j. (3.18)
=0

We use the Chapman-Kolmogorov equations in order to test the limiting probabilities of
the Markov chains. We compute the M™ transition probabilities for ¢ = 7 and k£ = 0.
We assume that the time periods are indifferent.!”

3.2.1 Markov chains and the transfers of outpatients

First we consider the transfers of outpatients. In Figure 3.1 the transfers of outpatients
are depicted by the black arrows between the green marked specialisms in the depart-
ments outpatient clinics and operating theaters. A more detailed view is provided in
Figure 3.2. There are n states S; which represents the various locations an outpatient
can be referred to, namely an outpatient clinic of another (sub)specialisms, the depart-
ment operation theaters, the department nursing wards or discharge. ¢ = 1,2,....n — 3
denotes an outpatient clinics of a (sub)specialism. n — 2 represents the department op-
erating theaters, n — 1 the department nursing wards and n represents discharge. We
observe the transitions during some time interval t. The number of patients are thus
considered in a certain time interval, ¢, which is defined as follows: [t;4+1 — t;). The
time points t,41 and ¢, are the two time points, between which we measure an inflow
and outflow of patients from one location to another location. The transition probability
thus denotes the probability that a patient will transfer from state S; to state S; within
[tr+1 — t-), and has formal definition:

P{Sn+1 =17|Sn =1, Sn—1 = in—1,...51 = 1,80 = io} = P{Sn+1 = j|Sn =i} = ay;
(3.19)

or

a;j(t) := the probability that a patient is sent from state i to state j in [t, 11 — t;)

"For now we assume that the data should not necessarily be gathered from consecutive periods.
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Patients who transfer from state i to state j somewhere in time interval [t; — t;41)
contribute to the transition probability. This allows patients to enter, to leave the system
or to transfer from one state to another on an arbitrary time point ¢; during the time
interval ¢.'® We can not distinguish between the time length a patient is in the ¢ interval,
e.g. a patient entering a state at day one of the interval will be seen equally, as a patient
entering the state at the last day of the interval. The estimated transition probability
a;; of the transition probability a;; can be computed as follows:

T
C o 2 ri(t)
dij = ST —n
p Zj:l rij(t)

in which 7;;(t) denotes the number of patients transfered from state i to state j in

(3.20)

~

time period ¢.Y The estimated transition probability a;j(t) is the average of transition
probabilities over all realizations ¢, t =1, ..., T.2Y One obtains the transition probability
a;§(t) of one realization ¢ by dropping the summation from 1 to 7" in both numerator as
the denominator in Equation 3.20. The accompanying transition matrix A is as follows:

[ an a2 Bp-3  @p-2  Glp-1  Glp |
a21 az2 a2 n—3 a2 n—2 a2 n—1 a2.n
A= an-3,1 an-3,2 n—-3n—-3 an—-3n—-2 An-3n—-1 GQGn—-3n
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

The last three rows are special as they only contain 0 or 1. We only consider transfers
of outpatients in the hospital from one (sub)specialisms to another (sub)specialism.

We assume that patients who are operated will always be nursed in a nursing ward
and not in an outpatient clinic, which is why a,—2,-1 = 1.

The elements of the second last row represent the transition probabilities of going from
a nursing ward of (sub)specialism i to an outpatient clinic of (sub)specialism j. As we
have argued that a normal patient path in a hospital exists of subsequently a visit to an
outpatient clinic, (possibly) to an operating theater and finally to a nursing ward, we
assume that patient cannot transfer from a nursing ward to an outpatient clinic and thus
p—1n—1 = 1.2

18We also check whether a patient, who is in the hospital during interval ¢ remains in the hospital
during interval ¢ 4 1.

19.5(t) is equal to the patient flow from (sub)specialism i to (sub)specialism j in the interval ¢ =
[tre1 —tr).

2ONote that a realization coincides with an interval in this case.

210Of course also, patients could transfer from a nursing ward to an operating theater, however as this
transition matrix concerns the transfer of outpatients, we do not incorporate these transition probabilities
here.
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Finally, the last row represents the transition probabilities of going home®? to an out-
patient clinic of (sub)specialism j. We do however estimate the arrivals using ARIMA
theory. We incorporate the state ’discharge’, to model the transition probability of a
transfer of an outpatient from (sub)specialism to the state ’discharge’.

The probabilities of the last three rows are not estimated, since they are all logical
Zero or one.

Now the total number of expected outpatients T"AO; in the outpatients clinic of (sub)specialism
J in interval t are:

n—3
E[TAO;] =Y XPdi; + XP[ajn-2+ aji1+ ajn] (3.21)
=1

in which X¢ is a specific number of outpatients for (sub)specialism. X has mean
,uio. We use time series analysis in order to estimate this parameter u?. This is
explained in section 3.1. on[aj,g,Q + ajn—1 + ajn] in Equation 3.21 deals with the
transfers of patients from the outpatient clinic to respectively an operating theater, a
nursing ward of (sub)specialism j and discharge. The total number of expected out-
patients in (sub)specialism is equal to the sum of new outpatients arriving from other
(sub)specialisms and outpatients already being in this (sub)specialism. E[T'AO;] can be

seen as the patient volumes in the department outpatient clinics at (sub)specialism j.

Assumptions for the transfers of outpatients

This subsection lists the assumptions for the Markov process describing the transfers of
outpatients. These assumptions are specific for modeling the patient paths through the
hospital.

e Patients can enter an outpatient clinic by a referral from a general practitioner and
a referral from another outpatient clinic.

e For clinical admissions there exists one unique number. However, for successive
outpatient clinic visits of one patient path, there exists non unique number. We
assume that outpatient clinic visits occurring the same or adjacent time state are
part of the same patient path. Also, if the patient visits an outpatient clinic in the
next time period, this will be seen as part of the same patient path.

3.2.2 Markov chains and the transfers of inpatients

We construct a similar model for the transfers of the inpatients. In Figure 3.1 the transfers
of inpatients are depicted by the black arrows between the green marked specialisms in

22We assume home is the opposite of a discharge.
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the departments operating theaters and nursing wards. A more detailed view is provided
in Figure 3.3. We define similar states for the Markov chain of the transfers of the
outpatients. Let denote U; the states of this process, i =1,..,n,in whichi=1,....n—3
are the several nursing wards of a (sub)specialism, ¢ = n — 2 the department operation
theaters, © = n — 1 the intensive care and ¢« = n discharge. The formal Markov chain is:

P{UnJrl = j|Un = i, Un,1 = Z'nfl, U1 = ’il, Uo = ’io} = P{Un+1 = j|Un = Z} = bZ]
(3.22)
The transition probability b;; can be interpreted as follows:

b;j(t) := the probability that a patient is sent from state ¢ to state j in [t;11 — t,)

Note that the last state is an absorbing state. The estimate b;j of the transition proba-
bility b;;(¢) is computed as follows:
T
bA L ZtZI Sij (t)
iy — T
> i1 Z}Ll sij(t)

in which s;;(¢) is the number of patients transferred from location ¢ to location j in
interval t.>> The transition matrix B for this process is:

(3.23)

b11 bio ... bip-3 bin—2 bin—1 bin |
bo1 bao ... byp—3 ba pn—2 ba pn—1 ba
B= 10,31 bi32 ... bu3n3 bpsn2 buzn1 busn
bp—21 bn—22 ... bn_2n-3 0 bp—2n-1 bn_2n
bn—l,l bn—172 cee bn—l,n—3 bn—l,n—2 bn—l,n—l 0
0 0 ... 0 0 0 1

The transition probability b,_2 ,—2 is equal to zero as we assume that a patient can not
stay within an operating theater during the whole time interval ¢t. Next we assume that
a patient in the intensive care unit cannot directly be discharged. That is why b,,—3 -3
and b,—1, are both equal to zero. Again, the last row is an absorbing state, representing
the discharge process.

The total expected number of inpatients TAH; for a nursing ward j in interval ¢ is:

n—1
E[TAH;] =Y Xbij+ XN bjn. (3.24)
i=1
i=1,...,n. XiN represents the number of inpatients at a nursing ward for (sub)specialism

J and has mean \; which is estimated using time series. X jN bj:n of Equation 3.24 repre-
sents the expected number of inpatients who transfer from (sub)specialism j to the state
'discharge’. E[T'AH,] can be seen as the expected number of patients in the department
nursing wards at (sub)specialism j.

23 Again, we also check whether a patient, who is in the hospital during interval ¢ remains in the
hospital during interval ¢ + 1.
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Assumptions for the transfers of inpatients

This subsection lists the various assumptions for the Markov process describing the trans-
fer of inpatients.

e A patient can enter a nursing ward through a transfer from another nursing ward,
or from an operation in an operation theater or a referral from an outpatient clinic.
A patient can not enter the nursing ward otherwise.

e An admission is used in order to determine transfers from the various specialisms.
This means that a patient who is admitted more than once, will be seen as two
different patients.

e The origin of a patient at a new arrival or transfer is determined by linking the pro-
cess of transfers of outpatients to the process of the transfers of inpatients. Unique
combinations of patient numbers, DBC trajectories numbers and registration dates
for operation are used in order to determine the origin.?* If the combination of
patient number and DBC trajectory number is in the outpatient clinic data but
not in the operation data, than this indicates an outpatient clinic referral. If the
combination of patient number, DBC trajectory number and registration number
is in the operation data this indicates surgery in an operation theater, and thus
that its origin is an operation theater. If however, the registration date is missing,
this indicates a surgery in an outpatient clinic and the origin is an outpatient clinic.
Finally, if the physical location of a patient is the intensive care unit, the origin is
intensive care.

e Days will be used as the smallest time interval on which transitions are considered.
A patient can only be at one particular specialism and department during a day.
Thus, if a patient transfers, this occurs at the end of the day exactly, so that at
the start of the new day the patient is at the new specialism.

e Patients on the intensive care can not immediately be discharged. These patients
are first sent back to a normal nursing ward.

3.2.3 Action plan for establishing Markov chains

This section contains the consecutive steps how to construct a Markov chain from the
data. It discusses the construction of states, transitions and state time. Also the concepts
of homogeneity, Markov property and limiting distribution are discussed.

1. First choose the subdivision of states and time length of one state. A state change
is denoted by a transition. In the health care path a (sub)specialism can be such
a state. The transition is then defined as the transfer from one (sub)specialism to
another (sub)specialism during the time length of the state. The right choice of
the length of the time interval and size of the state are of major importance. In

24Gee Section 1.7 for a discussion on DBC, see Chapter 4 for all patient data characteristics.
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Chapter 5, Chapter 6 and Chapter 7 we exhaustively discuss the consequences of
choosing a certain subdivision of the hospital and the length of the time interval.

2. Determine the number of transitions, or transfers from one (sub)specialism to an-
other (sub)specialism, for the independent time intervals.

3. Use Equation 3.20 to compute the transition probabilities for the different realiza-
tions.

4. Use Equation 3.16 to investigate the homogeneity and Markov property of the
Markov chain. If for all computed realizations the condition of Equation 3.16 is
satisfied, than the series is homogeneous, meaning that the transition probabilities
will not differ much over time. Also this indicates that the Markov property holds.

5. Use Equation 3.18 to investigate limiting distribution of the Markov chain.

3.3 Service times and occupancy rate of (sub)specialisms at
operating rooms and nursing wards

The service time of patients is required in order to estimate how long a patient will stay
in the hospital after admission. We subsequently estimate the average service time for
operations and for nursing time. We compute the average time of a series Y;, i = 1,.., N
service times, by computing the sample mean Y, which is:

N

Y =— Y;. 2

~ z; (3.25)
The variance o2 is estimated by S?
1 N
2 o\ 2

= — Y, —Y)“. 2

§? =5 ;< ) (3.26)

The average and the variance for each specialism are determined.

Occupancy rate

Along with the expected patient volume, the estimated service time allows one to estimate
the expected occupancy rate of specialism i. The computation of average service times,
is depicted by the orange box in Figure 3.1. Let b;; be the transition probability an
inpatient transfers from state ¢ to j, as defined in Section 3.2.2, let XiN be the number
of inpatients for specialism ¢ at a nursing ward, determined by time series analysis and
let YjN be the simple mean of the services times for specialism j over all its treatments
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in the department nursing wards. Than for example the expected occupancy rate O;V
for (sub)specialism j at the nursing ward is derived as follows:

n—1
B[0)] = 3 X 0¥} + X 0. (8.21)
=1

The occupancy rate for (sub)specialism j at the outpatient clinics can be obtained sim-
ilarly. Let a;; be the transition probability an outpatient transfers from state ¢ to state
J, as defined in Section 3.2.1, Xio the number of outpatients in the outpatient clinics of
specialism 7 and YP, the average service time of M treatments in the outpatient clin-
ics of specialism 4, than the expected occupancy rate Ojo for (sub)specialism j at the
outpatient clinics is equal to

n—3
E[OF] =Y XPa; YO + X [ajn2 + ajn-1+ ajn] VL. (3.28)
=1

3.4 Back-testing and performance of the model

Back-testing is a technique used in social and natural science in order to test the per-
formance of a model. We use back-testing for comparing the model results with the real
results. Back-testing can be seen as part of the validation process. For this procedure
we use predicted values of the ARIMA-models and the estimated Markov probabilities.

We do not use the average service times as the actual occupancy rate is not registered
sufficiently accurate. Hospitals only register admissions of patients in whole days. So
we can not distinguish between an admission of 1 hour and 23 hours. For performance
purposes one would like to have the most accurate duration of an admission.

Back-testing our model involves the following steps:

1. Compute the series of estimates of arrivals for subsequent values of ¢, using the
proposed ARIMA-model for the combination of departments and (sub)specialisms.
Also estimate the Markov transition probabilities.

2. Compute using either Equation 3.21 the expected number of outpatients at a com-
bination of an outpatient clinic for (sub)specialism j or Equation 3.24 the expected
number of outpatients at a combination of a nursing ward for (sub)specialism j.

3. Compare the outcome of Equation 3.21 and Equation 3.24 at time ¢ with the true
value at time .

4. Compare the difference of the outcomes of Equation 3.21 and Equation 3.24 and
the true value at time t with the difference of another performance measure and
the true value at time ¢.
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Figure 3.4: Overview of back-testing.

For reconstructing the series of estimates of arrivals for subsequent values of ¢ applying
the proposed ARIMA-model, we use the following equation:

p q
Xi=Xi 1+ ) oL'AX +) 6L + e, (3.29)

7 i=1

in which X; is the estimated number of arrivals at ¢. In fact, it is a method to predict
the next arrival estimate for time #, if all values or estimates are known up an till time ¢—1.

We use back-testing for comparing our model values with the true values and comparing
our model with another measure. Figure 3.4 provides an overview of the two different
back-tests and the comparison between the two models. Also, we introduce arbitrarily
costs, so that we can compare both models with respect to the costs of outpatient clinic
space, nursing beds and hiring staff in case of an over- and underestimation of the patient
volume.

Comparing with true values

The estimated arrivals at the outpatient clinics and the nursing wards for (sub)specialisms
are compared with the true values. If the difference between comparison of the model
outcome and the true value is zero, than the model estimates the patient volume at the
combination of department and (sub)specialism correctly. The closer the difference is to
zero, the better the estimation.
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Comparison with another model

Also we compare the estimated patient arrivals at the outpatient clinics and the nursing
wards for (sub)specialism with another performance indicator. Currently, ZGT uses
common sense and experience of employees in order to estimate the required number of
nursing beds and operating time, which is more difficult to replicate. That is why, we
construct a simplified model and use it to compare it with our model. We choose the
average volume over four years at a (sub)specialism as a comparison number, which we
can compare with our predicted model values. This average is calculated by summing
the true number of arrivals of a (sub)specialism at a certain department at the same time
points each year and divide it by four. This step can be seen as a model comparison. We
use this average as we have five years of data.?> We compare the true figures of the last
year with the estimated figures for the last year obtained by our model.

Cost comparison

Finally, we perform a cost comparison. The two models predict patient volumes at the
specialisms in the department outpatient clinics and nursing wards. We introduce arbi-
trary costs for the capacity of the outpatient clinics, the nursing wards and staff.?® We
assume that keeping open an outpatient clinic or nursing ward, costs €60, 000.- per ten
patients per week.?” For opening an extra outpatient clinic /nursing wards, the costs are
also assumed to be €60, 000.—.

In order to get an understanding of the sensitivity of the model, we consider two scenar-
ios. We assume that the capacity for an outpatient clinic and a nursing ward, are both
ten patients. Moreover, we also assume no transfers between the different specialisms
in case of under- or overcapacity. In the first scenario we assume that we don’t use the
planned capacity at all in case of an overestimation. In the case of an underestimation,
we assume the maximum excess of ten patients. We call this the worst case scenario. In a
second scenario we assume that five out of ten are occupied in case of an overestimation.
In case of an underestimation, the excess is five patients. Both scenarios assume a time
horizon of five days. Note that the costs for the average scenario are half of the costs
of the worst case scenario. These two scenarios are very artificial, because we expect in
reality that the planning is more flexible.

2The data we use is described in detail in Chapter 4. Data about inpatients and outpatients are
available for the period 2007-2011, data about operations are available for the period 2008-2011.

26Note the difference between capacity and patient volume. Capacity is the number of patients an
outpatient clinic or nursing ward can hold. Patient volume is the number of patients present in the
outpatient clinic or nursing ward during a certain time period.

2T This figure is based on ten patients. Figures of the NZa demonstrate that in 2008 the average costs
per patient per nursing day are approximately €1, 267.— for a hospital with more than 600 beds ( ,

). For an easy calculation, we choose these costs to be €1,200. The total costs for ten patients per

week are thus 5% 10 €1, 200.— = €60,000.—. The amount includes all costs made for one nursing day
and is an average for all specialisms.
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Data

This chapter describes the data used for the research. We discuss the data itself and the
modifications we make to the data. The reliability of the data is discussed in Chapter
7. First we discuss the data warehouse used in ZGT. Next we discuss the data used
for modeling the arrivals at the combinations of departments and (sub)specialisms using
ARIMA-models. After that, we discuss the data we use for determining the transition
probability that a patient will transfer from one (sub)specialism to another in a certain
time period. We deal with the outpatient and inpatient transfer process separately. At
the end of this chapter, we elaborate on the data used for determining the average service
times for various treatments.

4.1 Data warehouse

The data warehouse of an organization is a database in which all available information
is stored. There are many ways of storing data into the data warehouse and accessing
data from it. In order to determine the transition probabilities of our Markov chains,
we rely on historical patient information obtained from the data warehouse. ZGT uses
Chipsoft-EZIS (EZIS!) registration system to record all patient details, both clinically
and financially, regarding outpatient clinic visits, operations and hospitalization. Chip-
soft is a Dutch software developer which has developed the EZIS patient registration
system. The program is a work flow management system, which supports medical staff
in order to register clinical details about patients. Within ZGT, the program is used in
the outpatient clinics, the operating theaters and the nursing wards for storing patient
details about diagnoses, treatments, visits, operations and admissions. Medical staff can
view the health status of a patient in the system and update it immediately during a
visit /operation/admission in ZGT. Financial and planning support staff use the system
for financial and logistic purposes. This registration system is the backbone supplier of
the data warehouse of ZG'T with respect to clinical patient details. The staff of ZGT
is responsible for entering and updating data in this data warehouse. Nurses, doctors

'EZIS: Elektronisch Zorg Informatie Systeem, English: Electronic Health care information system.
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and supporting employees daily enter patient details in EZIS. EZIS is a software package
which stores information into the data warehouse, but is not principally used for data
analysis within ZGT.

The data warehouse is daily filled with data from information systems such as EZIS,
but also with other information systems. ZG'T uses the software package Business Ob-
jects for analyzing data and retrieving data from the data warehouse. Business Objects
is used worldwide in all sorts of enterprises in order to access and analyze data in a data
warehouse. Business Objects allows one to build queries for analyzing data in the data
warehouse. Users can select characteristics (dimensions) and measures from an universe
in order to compile a certain report. For this research we use Business Objects for ac-
cessing and retrieving data from the data warehouse. The universes we access are mainly
filled with data from the EZIS system. Finally, we use software packages as Eviews and
Matlab for developing ARIMA-models and Excel for constructing the Markov transition
probabilities and computing the average service times.

The data warehouse consists of several universes. The most important database is the
DBC universe. This universe contains data of all closed and open DBC trajectories.
DBC trajectories are specific per patient and treatment. The DBC universe contains in-
formation about treatments in the outpatient clinics, the operating theaters and nursing
wards. More detailed data about outpatients can be found in the universe outpatients,
more detailed data about operations is in the operations universe and finally more de-
tailed data about inpatients is in the nursing wards universe. Figure 4.1 provides an
overview of all software packages used.

Input of data Data warehouse Data analysis

tmﬁﬁ oW Excel for
Markovian

management
e — _ 1 process
Bussiness
Objects

Eviews)
Other Matlab for

registering ARIMA

Systems models

e ",
I Bussiness objects universes e ..
- Outpatient | Oiperation
- [_‘m clinic thaatre -
unnserse unnaErse - -
unicerse unnerse

Figure 4.1: Overview of data mining, gathering data, data warehouse and data analysis
in ZGT.
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4.2 Data

As discussed in Chapter 3 the model we use, consists of three components, namely the
patient arrivals at various combinations of departments and (sub)specialisms, the Markov
transition probabilities that a patient transfers from one (sub)specialism to another and
the average service times. ZGT stores data about outpatient clinics visits and nursing
wards admissions from 2007. Data about operating theaters is stored from 2008 onwards.?
This data is also used in all sorts of other reports within ZGT. For the three components
we use the following data:

e For arrivals at the outpatient clinics and the nursing wards we use data from
2007-2011. The data contains the admissions in the period 2007-2011 for the
sub(specialisms). For the arrivals at the operating theaters we use data from
2008-2011. The data contains the operations of the (sub)specialism in the pe-
riod 2008-2011. Fitting an ARIMA-model onto data points requires sufficient data
points. The more data points available, the better and easier one can obtain an
ARIMA-model. The data characteristics and modifications are discussed in Section
4.3.

e For the determining the transition probabilities that a patient transfers from one
(sub)specialism to another in a given department and time period, we use data from
2010 and 2011. The data contains the dates at which a patient has visited a com-
bination of department and (sub)specialism. Computing transition probabilities
requires a lot of manual effort and time. That is why we only compute transition
probabilities for 2010 and 2011. The details of the data and modifications we make,
are discussed in Section 4.4.

e For determining the average service times we only use 2011 data, as this reflects
the most recent figures about treatments, such that we can take the newest devel-
opments and techniques into account. The data contains the gross operating time
per treatment and of clinical admissions it contains the gross admission time. We
elaborate on the data in Section 4.5.

Subdivision of hospital and time length of interval

We consider two subdivisions of the hospital. We do this in order to identify what the
best subdivision would be for computing transition probabilities in the Markov chain.
With this respect the time length of the interval and the size of the (sub)specialisms
are important. The size of the (sub)specialisms can not be too small. If the size is too
small, there exists a possibility that no or very little transfers will occur between two
subspecialisms. The time length of the interval can not be too long, as the time becomes
too long, most patients will be absorbed in the state ’discharge’. The share of this state

2For the data of the departments outpatient clinics and nursing wards, no accurate or reliable data is
available before 2007, for the department operating theaters this is the case with data which are before
2008.



40 Data

compared to the other states will become very large. Little fluctuations in the other
states are more difficult to detect in that case. In order to investigate the influences
we make two subdivisions. The first subdivision has small subspecialisms and a large
time interval. The second subdivision only concerns specialisms but has a smaller time
interval. The first subdivision is as follows:

1. General surgery and surgery for children.

2. Oncology, lung surgery and gastrointestinal surgery.
3. Traumatology and emergency incidents.

4. Vascular surgery.

5. Other surgery.

The time length for this state is one month. It appears that the time length of the
interval is too large and the size of the subspecialisms are too small. This is also clarified
in Section 5.2.3. The second subdivision is:

1. Cardiology.

2. Gastroenterology.
3. Gynecology.

4. Internal medicine.
5. Neurology.

6. Obstetrics.

7. Pediatrics.

8. Pulmonology.

9. Surgery.

10. Urology.

11. Other.

For this subdivision we use the time period of one week. We shall see in Section 5.2.3
that this subdivision is more suitable. Also the time length of one week is a better
interval than one month. As this subdivision is more suitable for computing Markov
transition probabilities, we only estimated ARIMA-models using weekly arrival figures
for the eleven specialisms mentioned above.
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4.3 Data for patient arrivals and time series analysis

Time series analysis is performed on the three departments of the hospital, namely the
outpatient clinics, the operating theaters and the nursing wards. We use ARIMA-models
to develop a forecasting model for estimating the number of weekly arrivals to the several
(sub)departments at a certain department. The arrivals to the outpatient clinics are di-
vided into a first outpatient clinic visit and a repeated outpatient clinic visit. The arrivals
to a nursing ward are divided into a one day clinical admission (heavy and light) and a
more than one day clinical admission. The length of time interval between two subse-
quent data points of the number of arrivals at a certain department and (sub)specialism
on which we fit the ARIMA-model, should be equal to the length of time interval for
which we compute the Markov transition probabilities. This is done in order to avoid
timing differences, if we compute the estimated patient volumes at the combinations of
department and (sub)specialism.

4.3.1 Data characteristics for patient arrivals and time series analysis

This subsection describes the data characteristics of a data series of patient arrivals at
a combination of a (sub)specialism and a department which we can use for estimating
an ARIMA-model. We use Business Objects for retrieving arrival data from the data
warehouse. We require the characteristics: execution date, patient number, registration
code, (sub)specialism and the number of treatments. The execution date is used for
determining the period in which a treatment takes place. The (sub)specialism denotes
the operator of the treatment, whereas the registration code denotes the type of treatment
and its department. We require patient number and the number of treatments in order
to make sure that we count all patients and treatments at a given time. Time series
analysis requires the establishment of a series of which the data points are one equidistant
time interval e.g. weeks or months. The characteristics allows us to determine the
number of arrivals at a certain (sub)specialism and department in a certain fixed time
interval. We estimate ARIMA-models, using weekly patient arrivals at the combination
of a (sub)specialism and one of the three departments: outpatient clinics, operating
theaters or nursing wards. Estimating an ARIMA-model requires sufficient data points.
That is why we choose weekly data arrivals instead of monthly data points. We shall
see that for computing the transition probabilities, the length of the time interval is also
very important. This is explained in Section 4.4.

4.4 Data for Markov process and transition matrices

The data we use are from 2010 and 2011. Remember that we compute the transition
probabilities for the transfer of outpatients and inpatients. For reconstructing the patient
path we require patient data from the outpatient clinics, operating theaters and nursing
wards. The patient data we use, contains patient information on treatments on a specific
day, performed by a certain (sub)specialism.
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In order to analyze the data, we have to modify the data. Computing the transition
probabilities of the transfers of outpatients, requires different modifications to the data
than for the transfers of inpatients. The Subsections (4.4.2-4.4.3) describe the character-
istics and modifications. The transfers of outpatients and inpatients are modeled as two
separate processes. These processes should be linked to each other. This is discussed in
Section 4.4.4.

4.4.1 Data characteristics for Markov states

In order to compute the transition probabilities a patient transfers from a combination
of a department and a (sub)specialism to another during a time period, we have to know
how a patient transfers from one (sub)specialism to another in a certain time period.
We have to reconstruct a patient path. Remember that a patient path is defined as the
successive treatments a single patient undergoes at a specific combination of specialisms
and departments of a hospital. We can construct the patient path using specific patient
characteristics of visits to outpatient clinics, operations and admissions in nursing wards.
In Business Objects we make a query which retrieves the required data from the data
warehouse. We use the following patient characteristics, such that we can reconstruct
the patient path.

e Start and end date of DBC trajectory. This two dates mark the start and end date
of one DBC trajectory. By law, a DBC trajectory has a maximum length of one
year. Remark that these data not necessarily coincides with the admission dates
of a patient.

e DBC trajectory number. This is an unique number for each specialism and each
treatment. DBCs will be replaced by the DOT structure. See also the discussion
in Section 1.7.

e Patient code. This an unique registration number of a patient within ZGT.

e Specialism (e.g. surgery, neurology etc.) and subcategory of specialism (e.g. on-
cology and traumatology).

e Execution date, this date indicates the specific dates on which a treatment is exe-
cuted.

e Admission number, this an unique number of the admission of a patient at a nursing
ward.

e Registration code, this code indicates the type of care. This can be either a first
outpatient clinic visit or a repeated outpatient clinic visit (the patient already has
seen a specialist at an outpatient clinic) or an operation or an one day clinical
admission (light or heavy) or a more than one day clinical admission. This code
is based on the old expenses claim system for hospitals, in which the number of
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outpatient clinic visits, the number of nursing days and the number of operations
were important. See also the discussion in Section 1.6.

4.4.2 Transfer of outpatients

First we consider the transfers of outpatients. A transition is defined as the transfer of
a single outpatient from one (sub)specialism in the outpatient clinics to another, in a
certain time period. Furthermore, we consider transfers of outpatients to the departments
operating theaters and nursing wards. Also we include discharges. We check which
outpatient clinics a patient has attended during the time period, whether he/she has
been scheduled for an operation, underwent an operation, is redirected to a nursing ward
or is discharged. We proceed as follows as we construct the transition matrix.

e First we filter the outpatient data on the data belonging to the time period for
which we are going to construct the transition probabilities.

e Next, we sort the data of outpatient clinics subsequently on patient code, execution
date and registration code.

e A treatment of a patient is recorded on several lines. Each line indicates for a
specific patient, one treatment at a specific (sub)specialism at a specific date. We
determine for each line whether this is the first, or the last day or some day in
between.

e Next, we determine whether the patient has been transferred from one (sub)specialism
to another (sub)specialism. This is the most important step in reconstructing the
patient path of a single patient. The transfer can be to an outpatient clinic of
a certain (sub)specialism, the department operating theaters, the waiting list for
operating theater, the department nursing wards of a certain (sub)specialism or
discharge. The waiting list procedure is described in Section 4.4.4.

e All transfers are counted and used for the computation of the transition matrix.

e In Excel, we create a pivot table in order to easily obtain the number of patients per
combination of start and end specialism and/or subcategory. From these numbers
we can compute the transition probabilities for this particular time period.

We check whether a patient visits an outpatient clinic in the next period, such that we
can distinguish between discharge on the last day of the length of the time period and a
scheduled visit in the adjacent period. We link the inpatients and operating data to the
data of the outpatients by matching patient numbers. If a patient number is only in the
inpatients data, then a patient in this time period is sent to the nursing ward and the
patient is included in the state ‘nursing ward’. If both the patient number is contained
in the operating and nursing ward data, this indicates that the patient has underwent
surgery. In this case the patient is added to the state 'with operation’.
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4.4.3 Transfer of inpatients

This section deals with the transfers of inpatients. Remember that the transfer an inpa-
tient can make, is between (sub)specialisms in the nursing ward in a certain time period,
but also includes a transfer from the operating room to the nursing wards. Obviously, a
transfer to the state ’discharge’ is also included. Constructing the transition matrix for
this process, we proceed as follows.

e We filter the data on the time period for which we would like to establish the
transition probabilities.

e We sort the data subsequently on patient code, execution date, DBC trajectory
code, admission number and registration code. The admission number is obtained
from the Business Objects universe clinic. Using the unique combination of patient
number and execution date, the admission number is added to the major file.

e Next, we link the operations and the outpatient clinic visits to the nursing wards
admissions. We search in the operations and outpatient clinics data for a specific
patient number. If the patient number is also in the operations data this means
that the patient underwent an operation in the same month. This patient will be
placed in the state ’operation’. A patient who is in the outpatient patient database
and has been scheduled for an operation in an outpatient clinic, is included in the
state ’outpatient clinic’. If a patient is both in the outpatient and the operation
data, then we put this patient in the state including ’operation’, as we assume that
the natural flow of a patient through a hospital is outpatient clinic to operating
theater to nursing ward.

e Again a treatment of several days is registered on more than one line. We determine
for each line whether this is the first or the last day or some day in between.
Each line indicates for a specific patient one treatment at a specific specialism and
subcategory at a specific date.

e Next, we determine whether the patient has been transferred from one (sub)specialism
to another (sub)specialism. The transfer can be to a nursing ward of a certain
(sub)specialism or discharge.

e All transfers are counted and used for the computation of the transition matrix.
e In Excel, we create a pivot table in order to easily obtain the number of patients per
combination of start and end specialism and/or subcategory. From these numbers

we can compute the transition probabilities for this particular time period.

It is checked whether a patient which is in the department nursing wards at the last day
of the period, continues his/her stay in the hospital, or is discharged at this day.
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4.4.4 Linking transfers of outpatients and inpatients and the waiting
list state

We include a waiting list state in order to obtain a more realistic model of a patient
path of a single patient through a hospital. The waiting list state is used in order to
keep track of patients who are registered for operation during some state period, but
however are not operated in the same state period. We also need this information in
order to distinguish whether a patient has been operated in the operating theater or in
an outpatient clinic. The registration date is used for this purpose: only for an operation
in an operation theater this date is registered. For each operation it has been registered
on which date a patient enters the waiting list. We construct a data file which enables us
to determine in which period a patient respectively enters, is on and leaves the waiting
list. This file is constructed as follows.

e First we collect operations details per patient for all specialisms in a specific year.

e The data we use, is obtained from two different Business Objects universes: DBC
universe and operation theaters universe. We use two different universes as we re-
quire information from both universes: DBC universe is necessary for determining
the flow through the hospital. The operating theater universe is used for obtaining
the date of entering the waiting list. The operation details from both universes are
linked by using specific patient characteristics per operation. We use the combina-
tion of patient code and execution date in order to link both universes. Since this
list serves for determining whether a patient in the outpatient clinic is directly or
not directly sent for operation, the DBC universe is filtered only on outpatient clinic
visits. We link the information from the DBC database and the list established,
using the unique combination of patient number and DBC trajectory number.

e The data is sort on patient number, execution date and registering date.

e For each operation it is determined in which period it has taken place. Also if the
entry date of the waiting list is not in the same month in which the operation has
taken place, the states in which the patient is on the waiting list, are determined.

For the waiting list state there are four distinct cases during a time period: a patient
enters the waiting list, is on the waiting list, leaves a waiting list or enters the outpatient
clinic and is operated in the same time period.

4.5 Data for service times

For determining service times of operations and admissions, we use data of 2011. Again
we use Business Objects for retrieving the required data from the data warehouse. We
use the universes DBC, operating theaters and nursing wards, in order to gather the
required information. The operating theater universe contains the gross operation time
per patient or that is the difference a patient leaves and enters an operating theater. As
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we are interested in the time a patient blocks an operation theater, we use these two time
points for computing the service time. For the admission we have the start and end time
of the admission of a patient, this is stored in the nursing wards universe. The times do
have a data-hour-minute format so that we can compute the operation and admission
time per patient on a minute accuracy basis. The specific treatment details are stored
in the DBC universe. We use Excel macros for linking the DBC and admission universe
and DBC and operations figures. We assume that the times are correctly registered by
the hospital staff. As a DBC is a specific treatment, we compute per DBC the average
service time and its standard deviation.
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Results

In this chapter we discuss the results. Recall that our model consists of three pillars:
patient arrivals, transfers of out- and inpatients and average service times. The first pil-
lar is estimated using ARIMA-models, the second using Markov transition probabilities
and the third using statistical analysis. First, we discuss the results for ARIMA-models.
Next, we discuss the results for the transition probabilities that a patient transfers from
one (sub)specialism to another. Moreover, we discuss the results of the average service
times. At the end of the chapter, we discuss the results of a back-test and a cost com-
parison between our model and a simple model which uses the average arrival rates.

Remember that we work with two subdivisions of the hospital. These subdivisions are
listed in 4.2. We use the two subdivisions in order to determine the most adequate size
and time length of the Markov states. The first subdivision is into (sub)specialisms of
surgery and the remaining part of the hospital is in the state ’other’. For this subdivision
the time length is one month. The second subdivision is into 11 specialisms. The time
length is one week.

It appears that the size of (sub)specialisms is too small and that the time length of
one month is too long. We shall discuss this in depth in Section 5.2.3. For time series
analysis, we only consider the subdivision in the 11 specialisms.

5.1 Results for time series analysis

This section discusses the results of the estimation of the arrival process for the 11 spe-
cialisms, using time series analysis. We established ARIMA-models using weekly patient
arrivals for the departments: outpatient clinics, operating theaters and nursing wards.
The outpatient clinic visits are divided in first and repeated visits. The nursing ward
arrivals are divided in a one day admission (light and heavy)' and a more than one day
admission.

!There are only four specialisms which can have a heavy one day clinical admissions.
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Number

Number

MNumber of series with

Number of series satisfying

maost common

of observed specialisms |of stationary series|normal divided residuals  |autocorrelation condition ARIMA model
Outpatient clinics
first arrival 11 11 9 11{7x (3,1,4)
repeated arrival 11 11 5 11|2x (3,1,3)

Operating theater

1

1

3x(3,1,4) and 3x (4,14)

Nursing wards
one day (heavy)
one day (light)
more than one day

1
11

1
11

10

none
2% (3,14) and 2x (4,14)

3x(3,1,2) and 3x (3,1,4)

Figure 5.1: Summary of ARIMA-models for the various departments.

Figure 5.1 lists for the best fits,? the most common number of the autoregressive and
moving average terms and the results for statistical tests, as the Augmented Dickey-Fuller
test, the Jarque-Bera test and the Ljung-Box test. For each series of arrivals we fit 25
models. Determining the best fit of the ARIMA (p, d, ¢)-model,® we start with p = 0 and
then increase g from 0 to 4. Next, we increase p to 1 and again increase g from 0 to 4.
We repeat this until p and g are both 4, so that we obtain 25 series.* We keep d at one.
We shall see in Section 5.1 that it is sufficient to difference data only once, to obtain a
stationary series.

Figures A.1-A.5 of Appendix A contain the details of the ARIMA-models for the best fits
of the 11 specialisms per outpatient clinics (first and repeated visit), operating theaters
and nursing wards (one day admission, heavy or light, or more than one day admission).
The figures contain the coefficients of the autoregressive and moving average terms. Also,
the results for the Augmented Dickey-Fuller test, the Jarque-Bera test and the Ljung-Box
test are provided in these tables. All tests are at a significance level of a = 5%.”

The next paragraphs discuss the results of statistical tests. We perform these tests
in order to make sure that we can use ARIMA-models at all. We elaborate on stationar-
ity of the data, on the normality of the residuals and the existence of no autocorrelation
from a certain lag in the residuals.

2For each arrival series we fit 25 ARIMA-models, we use the Akaike criterion to identify the best fit.
The lowest Akaike criterion indicates the best fit. Figure 5.1 summarizes the results for ARIMA-models
with the lowest Akaike criterion per combination of department and specialisms.

3Recall that p, is the number of autoregressive terms, ¢ the number of moving average terms and d
denotes how many times we have to difference the original series to obtain a stationary series.

“Both p and ¢ can attain the values of 0,1,2,3 and 4. So that we have 52 = 25 different fits.

5Or otherwise stated, some Jarque-Bera tests are at a significance level of alpha equal to 10%.
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Stationarity

All series are stationary if we take the first difference. Augmented Dickey-Fuller tests
show that non of the original series are stationary.

The augmented Dickey-Fuller demonstrates that the original series are not stationary at
a = 5% significance, however, the first difference of all series, are stationary at o = 5%.
The results are given in Figures A.1-A.5.

Normality assumption and autocorrelation of residuals

For many configurations we accept the assumption that the residuals are normally dis-
tributed and that there is no autocorrelation.

We use the Jarque-Bera test in order to test whether the residuals are normally dis-
tributed. The Jarque-Bera test shows that for most series, the assumption that the
residuals are normally distributed, is accepted at o = 5% significance.

Furthermore, we test the autocorrelation of the series by using the Ljung-Box test. We
test whether the series contains no autocorrelation from lag 20 till lag 253. Again, for
most series we accept the assumption of no autocorrelation. However, for some series the
normality and autocorrelation assumption is rejected. The results are in Figures A.1-A.5.

Best fit: Akaike criterion

The Akaike criterion is computed to identify the best fit of 25 computed fits per series of
arrivals. The fit with the lowest criterion is the best. For the ARIMA-models with the
lowest Akaike criterion, details are given in Figures A.1-A.5.

For every series of arrivals, the Akaike criterion for the 25 fits are in Figures A.6-A.11.
We see that the Akaike criterion does not decrease much as we increase p ad ¢ in the
ARIMA(p,d,q). This suggests that the number of autoregressive and moving average
terms is sufficient. We compute per series of arrivals only 25 different ARIMA-models.
We do this to reduce computation time: allowing additional autoregressive or moving
term requires a quadratic increase of series to be estimated. Moreover, for ARIMA-series
with many autoregressive and moving average terms, we face the problem that Matlab
can not compute the inverse matrices which are used in the determination of the Akaike
criterion. In Eviews we have to input all the different fits manually.®

So given the constraint that we only use 25 different fits,” we have found the best fit

5Tf we for instance would like to investigate the best ARIMA-model, using the Akaike criterion, in
which we allow both ten autoregressive and ten moving average terms, we get 121 possible fits for this
ARIMA-model. Using Eviews, this means for all 59 series for which we develop an ARIMA-model that
we have to estimate and judge over 7,000 ARIMA-models manually.
7In‘cherangep:()top:4andq:O‘coq:4.
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for our ARIMA-models. In theory, adding much more ARIMA autoregressive and mov-
ing average terms, might yield a sharp decrease in the Akaike criterion.® However, adding
additional terms do certainly increase the complexity of the ARIMA-model. As arule, we
try to minimize the number of autoregressive and moving average terms in an ARIMA-
model in order to avoid an unnecessarily complicated model. As argued, it is too time
consuming to estimate for all the 11 specialisms at the different departments, ARIMA-
models using Eviews with more than four autoregressive and four moving average terms.

All computations, estimated ARIMA coefficients and outcome of test statistics, are dig-
itally available.

5.1.1 Seasonality of time series

We investigate the presence of seasonal patterns in the data, using the action plan of

( ). We shall see that there is no evidence of the existence of a
seasonal component in the data and we may model the arrivals using an ordinary non-
seasonal ARIMA-model.

We use the action plan as described in Section 3.1.1 in order to determine whether
the patient arrivals at the various specialisms and departments exhibit seasonal effects.
We respectively look at the residual plots of the (0,0,0)X(0,0,0)-, (0,1,0)X(0,0,0)-
, (0,0,0)X(0,1,0)-, (0,0,0)X(0,1,0)50- and (0,1,0)(0,1,0)12-ARIMA® models and at
the plots of the autocorrelations at certain lags, to identify seasonal effects. We research
the possibility that data contains quarterly and yearly patterns.

( ) suggest that one can identify seasonality effects by looking for a cyclic trend at
some equidistant time intervals in the residual plots of the mentioned series. We look
whether we can detect spikes in the data that occur at regular time intervals. Moreover,
if looking at the plots of the autocorrelations at certain lags, one would expect strong
autocorrelation at the lag at which we suspect a seasonal effect and no autocorrelation
at the other lags.

Figures 5.3- 5.7 show the residual plots of the (0,0,0)X(0,0,0)-, (0,1,0)X(0,0,0)-,
(0,0,0)X(0,1,0)12-, (0,0,0)X(0,1,0)50- and (0,1,0)X (0, 1,0)12-ARIMA- model respec-
tively, for the first visits at the outpatient clinics of the specialism surgery. We shall see
that the plots of these ARIMA-models do not contain seasonal components.

8We recommend to do further research in adding more autoregressive and moving average terms.
Possibly, adding more of these terms will lead to a better prediction as more historical data are taken
into account.

“Recall that the notation of seasonal (P, D, Q)X (p,d, ) ARIMA-models is as follows: P denotes the
number of seasonal autoregressive terms, D the seasonal difference, () the number of seasonal moving
average terms, p the number of ordinary autoregressive terms, d the ordinary difference and g the number
of ordinary moving average terms. Often a single number is added to this notation to indicate at which lag
we suspect seasonality. For instance (P, D, Q)X (p,d,q)12 denotes an ARIMA-model with a seasonality
component at lag 12.
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Looking at the plot of the residuals of the (0,0,0)X(0,0,0)-ARIMA-model, Figure 5.3,
we observe that data is certainly not stationary. Moreover, we do not discover a cyclic
trend at some equidistant time points. Now, if we look at Figure 5.4, the non-seasonal
first difference ARIMA series, we see that the data seems stationary. Again we do not
observe a clearly cyclic pattern. This is confirmed in the plots which we see in Figure 5.5
and Figure 5.6 in which we respectively take a monthly and quarterly seasonal difference.
The plot of both a seasonal and ordinary differenced series, Figure 5.7, also does not show
a clear pattern.

We perform a Box Pierce test, to test the influence of autocorrelation at certain lags. The
plots of the residual partial correlation and the residual partial autocorrelation, confirm
the non-seasonal trend. Figures A.12-A.15 respectively contain the plot of Autocorrela-
tion function (ACF) and the Partial correlation function (PCF) of the (0,1,0)X(0,0,0)-,
(0,0,0)X(0,1,0)12-, (0,0,0)X(0,1,0)50- and (0,1,0)X(0,1,0)12 ARIMA-model.

Figure 5.2 summarizes the results for the plots of the Autocorrelation function (ACF)
and the Partial correlation function (PCF) with regard to seasonality. One can see that
in this case, there is no evidence for a seasonal trend, as for all models there is still
autocorrelation at lags other than the lag at which we might suspect autocorrelation.

model should contain  |autocorrelation at lags |seasonal
autocorrelation evidence
at lag ?
(0,0,0)%(0,1,0) |notapplicable |1,13, 16 and 18 no
{0,0,0)X(0,1,0)12 12(2,3,5,11and 14 no
{0,0,0)%(0,1,0)50 50|11, 31, 35 and 50 no
{0,1,0)%(0,1,0)12 12(1,11,12,13,19and 35 |no

Figure 5.2: Summary of plots of the ACF and the PCF for the various ARIMA-models of
arrivals at the department outpatient clinics (first vists) for the specialism surgery. The
second column indicates the lag at which we expect autocorrelation, whereas the third
indicates the lags at which autocorrelation is observed.

Both, the residual plots, as the ACF and PCF plots, do not provide sufficient evidence
for a seasonal pattern. As it is convenient to have the simplest ARIMA-model, we choose
for an ARIMA-model without a seasonal pattern.

In Appendix A.2, Figure A.16-A.33 we provide for the one-day and the more than one
day clinical admission of the specialism surgery and for the more than one day clinical
admission of the specialism cardiology, the comparison between a non seasonal model
and a seasonal model. All comparisons show no evidence of the existence of a seasonal
component in the data, so we may model the arrivals, using an ordinary non-seasonal

ARIMA-model.
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Figure 5.3: Plot of (0,0,0)X(0,0,0) ARIMA-model of arrivals at the department out-
patient clinics (first visits) for the specialism surgery. The red line indicates the actual
data, the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure 5.4: Plot of (0,1,0)X(0,0,0) ARIMA-model of arrivals at the department out-
patient clinics (first visits) for the specialism surgery. The red line indicates the actual
data, the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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patient clinics (first visits) for the specialism surgery. The red line indicates the actual
data, the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure 5.6: Plot of (0,0,0)X(0,1,0)50 ARIMA-model of arrivals at the department out-
patient clinics (first visits) for the specialism surgery. The red line indicates the actual
data, the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure 5.7: Plot of (0,1,0)X(0,1,0)12 ARIMA-model of arrivals at the department out-
patient clinics (first visits) for the specialism surgery. The red line indicates the actual
data, the green line the estimated ARIMA-model and the blue lines depicts the residuals.

5.1.2 Performance of time series analysis

The ARIMA-models enable us to find estimates of the patient volumes which are to a
certain extent accurate. The difference between the real data and estimated data are
small. Moreover, if we look at the plot of the fitted and actual data, we observe that the
ARIMA-models do follow the increases and decreases of the patient arrivals.

First, we compare the time series predictions with actual data. As discussed in Sec-
tion 3.1.3, we can use the mean squared error for analyzing the actual data with the
fitted data. Using Matlab, we compute the MSE. In Figures A.37-A .42 of the Appendix
one can find the MSE for all time series and all scenarios. An MSE of zero indicates a
perfect fit. The maximum MSE for all configurations of all computed series is 1.76. As
the MSE is defined as the sum of the bias squared and the variance of the residuals, a
low MSE indicates also a small difference between the true and the estimated value. The
MSE is computed as the difference between actual number of arrivals and the estimated
number of arrivals. We estimate patient volumes in whole patients, the figure of 1.76
indicates that the difference between the true and estimated is small for all series of
patient arrivals. Moreover, the variance of the residuals is also small.

Figure 5.8 shows the fitted, actual and the residuals for the cardiology of the more
than one day clinical admission, using a (4,1, 2)-ARIMA-model. Figure 5.9 shows the
same plots, but for the specialism urology, first outpatient clinic visits, using a (3,1, 4)-



5.1 Results for time series analysis 55

ARIMA-model. The plots are obtained, using Eviews. Looking at the figures, one can
see that it is impossible to have a perfect fit, however the ARIMA-model can predict the
trend of the arrivals. This is due to the fact that ARIMA-models use historical data.
Increases and decreases of patient volumes can be predicted with ARIMA-models, but
can only be detected somewhat later, as the actual data of the previous time periods are
already slightly decreasing and increasing. Furthermore, one can notice that the fitted
line has less extreme peaks than the actual data. This due to the nature of the fitting
procedure. Matlab and Eviews use the method of ordinary least squares for finding an
ARIMA fit onto the data. The method of ordinary least squares is vulnerable for huge
deviations in the data and will average out the outliers, while obtaining a fit. So the
ARIMA-models have a slight delay in predicting patient volumes and face difficulty in
detecting huge outliers in the patient volumes.
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Figure 5.8: Plot of a (4,1,2)-ARIMA-model for the department nursing wards (more than
one day admission) for the specialism cardiology. The red line indicates the actual data,
the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure 5.9: Plot of a (3,1,4)-ARIMA-model for the department outpatient clinics (first
visit) for the specialism urology. The red line indicates the actual data, the green line
the estimated ARIMA-model and the blue lines depicts the residuals.
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5.2 Results for Markov transition probabilities

The results of the Markov transition probabilities are split in two parts: the transfers
of the outpatients and the transfers of the inpatients. We discuss the subdivision of
the hospital, the time length of the interval and the Markov property, homogeneity and
limiting distribution of the proposed Markov chains.

5.2.1 Transfer of outpatients

Figure 5.10 gives the Markov transition probability matrix of the transfers of outpatients,
using the subdivision in which the specialism surgery is divided in several subspecialisms
and the remaining part of the hospital in the ’other state’. We compute the monthly
transition probabilities in the period 2010-2011, giving us 24 realizations of the transition
probability matrix of the transfers of outpatients. Using Equation 3.20 we obtain the
expected average transition probabilities over the 24 realizations.

The transition matrix provides the monthly transition probabilities. Furthermore, we
distinguish which departments a patient is referred to. This can be: the outpatient
clinics, the operating theaters or the nursing wards. For the operating theaters we pro-
vide separate figures for the patients who are transfered to the operating theaters within
in the same state time period and the patients who have to wait for a transfer to the
operating theater. The last group of patients have to wait for at least one state time
period. Also the transition probabilities of a discharge and being on a waiting list are
given in Figure 5.10. Recall that the waiting list is an absorbing Markov state. We see
this confirmed in Figure 5.10. We see that the transition probability for the transfers of
the patients who are on a waiting list of the various (sub)specialisms, are all equal to one.

All results of the 24 realizations of the transition probabilities for the transfers of outpa-
tients for the five subspecialisms of the specialism surgery, the other part of the hospital,
the waiting list and discharge, are available digitally.

5.2.2 Transfer of inpatients

Figure 5.11 provides the average of 24 realizations of the monthly transition probabilities
of transfers of inpatients between four subspecialisms of surgery'" and the remaining part
of the hospital in one other state. We distinguish between the origin of the patients. This
can be: the outpatient clinics, the operating theater, the nursing wards or the intensive
care. The waiting list state and the discharge state are also provided in Figure 5.11.

Again, all results of the 24 realizations of the transition probabilities for the transfers
of inpatients for the four subspecialisms of the specialism surgery, the other part of the
hospital, the intensive care, the waiting list and discharge, are available digitally.

19Tn the nursing wards the subspecialism ’other surgery’ is not existing. All other subspecialisms of
surgery do exist in the nursing ward.
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The average over the 50 realizations of the expected weekly transition probabilities of
transfers of inpatients is provided in Figure 5.12. These transition probabilities concern
the second subdivision in 11 specialisms.!' The aim is to investigate the inter specialism
transition probabilities. Recall also that the aim of two different subdivisions is to in-
vestigate the influence of the size of the (sub)specialisms on the Markov state. Also the
time period for both computations, is different. This is all explained in Section 5.2.3.
Again, Figure 5.12, distinguishes between the origin of the inpatients, which can be the
outpatients clinics, the operating theaters, the nursing wards or the intensive care. We
compute for 50 realizations the weekly transition probabilities for a transfer of inpatients
from one specialism to another specialism.

All results of the 50 realizations of the eleven specialisms, the waiting list and discharge,
are available digitally.

5.2.3 Subdivision and length of time interval

We recommend to work with a time period of one week. Also we recommend a subdivision
of (sub)specialisms into sufficiently large (sub)specialisms. The subdivision into eleven
specialisms seems more suitable than the subdivision into (sub)specialisms of surgery
and one large other state. We explain this in the next two paragraphs.

The purpose of computing the transition probabilities according to two different sub-
divisions of the hospital and the two different lengths of the time interval of the states, is
twofold. First we would like to know what the influence is of the size of the (sub)specialisms.
The subspecialisms of surgery are small and might face little or no transfers of patients
during the state time. Moreover, we are interested in the influence of the length of a
time interval. The longer the state time, the higher the probability that a patient might
transfer from one (sub)specialism to another. However, the state times can not be too
large, as we than risk that the vast majority of all transfers will occur in the state ’dis-
charge’: the longer the state time, the higher the probability that the patient will also
be discharged within the state time. For example, in Figure 5.11 one can see that the
transition probability that a patient who is already in the nursing ward, transfers from
traumatology to oncology is equal to 0,00%, and so there are many other transition
probabilities. Moreover, one can see that the discharge probabilities in Figure 5.11 are
all very high.'”

Data analysis demonstrates that the subdivision into the subspecialisms of surgery and
one large state 'other’, leads to insufficient transitions per state for some of the subspe-
cialisms. There are too many states with a very low number of, or even no, transitions.
Figure B.1 provides the aggregate number of all transitions per (sub)specialism of surgery

See Section 4.4 for the subdivision.
12For all but the intensive care and waiting list, the estimated discharge probabilities are higher than
75%.
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Surgery
General surgery and surgery for children 0,94% 0,59% 0,00% 0,56% 0,24% 0,00%| 23,93% 0,00% 73,72%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 1,38% 1,12% 0,00% 0,63% 0,00% 0,00%| 31,93% 0,00% 64,94%( 100,00%
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00% 0,00%| 100,00%
Traumatology and ER 0,33%| 0,19%| 0,00%| 2,43%| 0,10%| 0,00%| 13,17%| 0,00%| 83,78%| 100,00%
'Vascular Surgery 0,78% 0,36% 0,00% 0,96% 1,56% 0,00%| 26,89% 0,00% 69,45%| 100,00%
Other
Other 1,04%| 0,78%| 0,01%| 1,34%| 0,88%| 0,00%| 1741%| 0,00%| 78,55%| 100,00%
Surgery
General surgery and surgery for children 0,51% 0,29% 0,00% 0,66% 0,17% 0,00% 9,19% 0,00%| 89,18%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 0,39% 0,56% 0,00% 0,16% 0,11% 0,00%| 11,60% 0,00% 87,17%| 100,00%
Other 0,00%| 0,00% 0,00% 000% 000% 000% 5750%| 0,00%| 42,50%| 100,00%
Traumatology and ER 0,41% 0,07% 0,00% 1,00% 0,07% 0,00% 5,35% 0,00% 93,10%| 100,00%
Vascular Surgery 0,35% 0,16% 0,00% 0,22% 0,58% 0,00%| 20,31% 0,00% 78,38%| 100,00%
Other
Other 0,36% 0,40% 0,00% 0,33% 0,46% 0,00% 9,92% 0,00% 88,54%| 100,00%
Surgery
General surgery and surgery for children 3,23% 0,25% 0,00% 0,12% 0,25% 0,00% 7,64% 0,00% 88,52%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 1,18% 2,46% 0,00% 0,86% 0,53% 0,00% 7,70% 0,00%| 87,27%| 100,00%
Other 0,00% 0,00% 0,00%| 50,00% 0,00% 0,00%| 50,00% 0,00% 0,00%| 100,00%
Traumatology and ER 0,53% 0,05% 0,00% 4,42% 0,16% 0,00% 7,61% 0,00% 87,22%| 100,00%
'Vascular Surgery 2,15% 1,08% 0,00% 2,96% 2,42% 0,00%| 12,37% 0,00% 79,03%| 100,00%
Other
Other 2,70% 2,88% 0,00% 1,72% 1,14% 0,00% 9,20% 0,00% 82,36%| 100,00%
Surgery
General surgery and surgery for children 2,11% 0,91% 0,00% 1,66% 0,15% 0,00%| 14,35% 0,00%| 80,82%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 0,56% 2,39% 0,00% 0,70% 0,14% 0,00%| 18,59% 0,00% 77,61%( 100,00%
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00% 0,00%| 100,00%
Traumatalogy and ER 2,59%| 0,39%| 0,00%| 1,17%| 0,39%| 0,00%| 13,73%| 0,00%| 81,74%| 100,00%
Vascular Surgery 1,62% 0,32% 0,00% 1,29% 1,29% 0,00%| 28,16% 0,00% 67,31%| 100,00%
Other
Other 1,54%| 2,33%| 0,00%| 0,84%| 1,05%| 0,00%| 14,89%| 0,00%| 79,35%| 100,00%
Surgery
General surgery and surgery for children 0,00% 2,42% 0,00% 9,66% 2,07% 0,00%| 83,92% 0,00% 1,93%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 3,44% 0,00% 0,00% 1,69% 1,17% 0,00%| 91,57% 0,00% 2,14%| 100,00%
Other 0,00%| 0,00% 0,00% 0,00% 0,00% @ 0,00% 100,00% @ 0,00% 0,00%| 100,00%
Traumatology and ER 17,75% 1,52% 0,00% 0,00% 1,45% 0,00%| 7745% 0,00% 1,83%| 100,00%
\Vascular Surgery 1,41% 1,17% 0,00% 1,04% 0,00% 0,00%| 95,57% 0,00% 0,80%| 100,00%
Other
Other 4,41% 5,69% 0,04% 3,99% 6,36% 0,00%| 77,61% 0,00% 1,90%| 100,00%
General surgery and surgery for children 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00% 0,00% 0,00%| 100,00%
Oncology, lung surgery and gastrointensinal surgery 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00% 0,00% 0,00%| 100,00%
Traumatalogy and ER 0,00%| 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%| 100,00%
Vascular Surgery 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00% 0,00% 0,00%| 100,00%
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00% 0,00%| 100,00%

Figure 5.10: Average over 24 realizations of the expected monthly transition probabilities
of transfers of outpatients in the period 2010-2011. The transition probabilities are from
to probabilities, thus the origins are the lines, the destinations are the columns. Note
that the probabilities are in %, the percentages represent a probability between 0 and 1.
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Surgery
General surgery and surgery fol 40,00%| 20,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%| 40,00%| 100,00%
Oncology, lung surgery and gas 42,86% 0,00%| 14,29% 0,00% 0,00% 0,00% 0,00% 0,00%| 42,86%| 100,00%
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%| 100,00%| 100,00%
Traumatology and ER 57,14%| 0,00%| 0,00%| 0,00%| 0,00% 0,00% 0,00% 0,00%| 42,86%| 100,00%
Wascular Surgery 50,00% 0,00% 0,00% 0,00% 0,00% 0,00% 25,00% 0,00%| 25,00%| 100,00%
Other
Other 2,28% 1,82%| 8,65% 1,77% 6,67% 0,00% 31,14% 0,00%| 47,67%| 100,00%
Surgery
General surgery and surgery fo 1,72%| 10,34% 0,00% 0,00% 0,86% 0,00% 3,45% 0,00%| 83,62%| 100,00%
Oncology, lung surgery and gas 3,86% 0,00%| 11,20% 0,77% 0,39% 0,00% T.72% 0,00%| 76,06%| 100,00%
Traumatology and ER 0,00%| 0,32%| o000%| s548% 0,32% 0,00% 1,94% 0,00%| 91,94%| 100,00%
Wascular Surgery 2,61% 0,33% 0,65% 0,00% 2,94% 0,00% 1,63% 0,00%| 91,33%| 100,00%
Other
Other 0,45%| 0,03%| o021%| o011%| 018% 0,00% 5,67% 0,00%| 93,35%| 100,00%
Surgery
General surgery and surgery fo 0,98% 2,54% 0,06% 0,02% 0,02% 0,00% 0,54% 0,00%| 95,34%( 100,00%
Oncology, lung surgery and gas 5,81% 0,07% 5,09% 0,02% 0,05% 0,00% 0,63% 0,00%| 88,33%| 100,00%
Traumatology and ER 0,68%| 000%| o000% 48a%| o003% 0,00% 0,78% 0,00%| 93,68%| 100,00%
Wascular Surgery 11,08% 0,00% 0,30% 0,00%| 11,68% 0,00% 1,27% 0,00%| 75,67%| 100,00%
Other
Other 0,30%| 0,03%| o002%| o002% o000% 0,00% 2,29% 0,00%| 97,3a%| 100,00%
Surgery
General surgery and surgery fo 0,24% 3,19% 0,00% 0,04% 0,04% 0,00% 4,35% 0,00%| 92,15%| 100,00%
Oncology, lung surgery and gas 0,56% 0,00% 6,54% 0,11% 0,06% 0,00% 3,38% 0,00%| 89,34%| 100,00%
Traumatology and ER 0,25%| 0,05%| 0,0a% 3,44%| 0,00% 0,00% 1,48% 0,00%| 94,7a%| 100,00%
Wascular Surgery 0,91% 0,12% 0,06% 0,24% 6,33% 0,00% 1,34% 0,00%| 90,99%| 100,00%
Other
Other 0,40%| 0,0a%| o011%| o003% o003% 0,00% 5,65% 0,00%| 93,74%| 100,00%
General surgery and surgery fol 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%| 100,00%
Oncology, lung surgery and gas 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%| 100,00%
Traumatology and ER 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%| 100,00%
Vascular Surgery 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%| 100,00%
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 0,00%| 100,00%

Figure 5.11: Average over 24 realizations of the expected monthly transition probabilities
of transfers of inpatients in the period 2010-2011. The transition probabilities are from
to probabilities, thus the origins are the lines, the destinations are the columns. Note
that the probabilities are in %, the percentages represent a probability between 0 and 1.
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Cardiology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%| _0,00%| 100,00%|
Surgery 0,00% 53,85% 0,00% 23,08% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 23,08%| _0,00%] 100,00%)
Gastroenterology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%| _0,00%] 100,00%|
Internal Medicine 2,73% 1,09% 0,82% 8,17% 1,09% 4,09% 38,96% 0,54% 1,09% 0,27% 0,27% 0,54% 0,27% 40,05%| _0,00%] 100,00%|
Pediatrics 7,14% 0,00% 0,00% 7,14% 0,00% 0,00% 28,57% 0,00% 14,29% 0,00% 0,00% 0,00% 0,00% 42,86%| _0,00%] 100,00%|
Pulmonology 0,00% 20,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 80,00%| _0,00% 100,00%)
Neurology 0,00% 16,67% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 83,33%| 0,00%]100,00%
Other 0,23% 0,11% 1,97% 10,08% 0,77% 1,10% 3,72% 1,31% 3,61% 2,30% 38,44% 0,88% 0,23% 35,27%| _0,00%] 100,00%)
Obstetrics 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 50,00% 50,00%| _0,00%] 100,00%|

Newngwed T T e e e e T
Cardiology 0,09% 0,33% 23,33% 1,04% 0,14% 0,09% 0,80% 0,05% 0,80% 0,09% 0,24% 0,05% 0,00% 73,94%| _0,00% 100,00%
Surgery 0,16% 0,94% 0,47% 37,46% 0,16% 0,00% 0,94% 0,00% 0,16% 0,16% 0,78% 0,16% 0,00% 58,62%| _0,00%] 100,00%|
Gastroenterology 0,00% 0,00% 0,00% 1,02% 18,09% 0,34% 0,34% 0,00% 0,00% 0,00% 0,34% 0,34% 0,00% 79,52%| _0,00% 100,00%)
Gynecology 0,00% 0,00% 0,00% 0,99% 0,00% 15,84% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,99% 82,18%| _0,00%]100,00%)
Internal Medicine 0,07% 0,55% 0,27% 1,03% 1,23% 1,51% 24,67% 0,00% 0,41% 0,34% 0,21% 0,00% 0,00% 69,71%| _0,00%] 100,00%)
Pediatrics 0,00% 0,20% 0,00% 0,10% 0,00% 0,00% 0,20% 24,05% 0,00% 0,00% 0,00% 0,39% 1,17% 73,90%| _0,00% 100,00%)
Pulmonology 0,18% 0,89% 0,53% 0,36% 0,00% 1,42% 1,78% 1,78% 35,52% 0,00% 0,18% 0,00% 0,00% 57,37%|__0,00%] 100,00%|
Neurology 0,11% 0,21% 0,21% 0,21% 0,00% 0,00% 1,07% 0,21% 0,54% 15,79% 0,11% 0,00% 0,00% 81,53%| _0,00%100,00%
Other 0,00% 0,06% 0,12% 0,12% 0,00% 0,06% 0,47% 0,59% 0,35% 0,59% 15,98% 0,06% 0,06% 81,54%| _0,00%100,00%
Urology 0,00% 0,77% 0,00% 0,77% 0,00% 0,00% 0,39% 0,00% 0,00% 0,39% 1,16% 11,58% 0,00% 84,94%| _0,00% 100,00%)
Obstetrics 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,32% 0,00% 0,00% 0,49% 0,00% 0,57% 9,58% 88,64%| 0,00% 100,00%

Opertiogoon [ P T T e e e e T
Cardiology 0,62% 0,62% 1,85% 24,07% 0,00% 0,62% 0,00% 0,00% 0,00% 0,00% 0,62% 0,00% 0,00% 71,60%| _0,00% 100,00%
Surgery 0,70% 1,80% 0,61% 19,30% 0,05% 0,02% 0,15% 0,06% 0,07% 0,00% 0,07% 0,02% 0,02% 77,11%| _0,00%]100,00%)
Gastroenterology 0,00% 0,00% 0,00% 0,00% 9,52% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 90,48%| _0,00% 100,00%)
Gynecology 0,26% 0,62% 0,15% 0,21% 0,00% 12,92% 0,05% 0,05% 0,31% 0,00% 0,38% 0,36% 0,05% 84,14%| 0,00%100,00%)
Internal Medicine 0,00% 2,78% 0,00% 5,56% 2,78% 5,56% 25,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 58,33%| _0,00%] 100,00%|
Pediatrics 0,00% 0,00% 0,00% 15,38% 0,00% 0,00% 7,69% 38,46% 0,00% 0,00% 0,00% 0,00% 0,00% 38,46%| _0,00% 100,00%)
Pulmonology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 50,00% 0,00% 0,00% 0,00% 0,00% 50,00%| _0,00%] 100,00%|
Neurology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 66,67%| _0,00% 100,00%)
Other 0,01% 0,15% 0,11% 0,06% 0,01% 0,01% 0,14% 0,19% 0,24% 0,26% 6,50% 0,01% 0,00% 92,31%| _0,00%]100,00%)
Urology 0,33% 1,10% 0,28% 0,11% 0,00% 0,06% 0,11% 0,00% 0,39% 0,39% 0,44% 8,25% 0,23% 88,34%| _0,00%100,00%)
Obstetrics 0,06% 0,18% 0,00% 0,18% 0,00% 0,00% 0,12% 0,00% 0,00% 0,71% 0,06% 1,12% 17,15% 80,44%| 0,00% 100,00%

Oupetientomes [ T T e e e e e T
Cardiology 0,02% 0,28% 20,09% 0,42% 0,05% 0,07% 0,70% 0,05% 0,63% 0,05% 0,08% 0,03% 0,00% 77,54%| _0,00% 100,00%
Surgery 0,20% 0,16% 0,42% 16,87% 0,16% 0,13% 0,45% 0,13% 0,23% 0,13% 0,49% 0,12% 0,04% 80,48%| _0,00% 100,00%)
Gastroenterology 0,03% 0,17% 0,07% 0,35% 5,52%) 0,14% 0,35% 0,03% 0,10% 0,03% 0,03% 0,03% 0,03% 93,09%| _0,00%] 100,00%)
Gynecology 0,00% 0,18% 0,36% 0,36% 0,00% 5,51% 0,36% 0,00% 0,00% 0,00% 0,00% 0,18% 0,71% 92,36%| _0,00% 100,00%)
Internal Medicine 0,17% 0,37% 0,57% 0,55% 1,20% 1,29% 18,16% 0,04% 0,26% 0,23% 0,17% 0,09% 0,04% 76,88%| _0,00% 100,00%)
Pediatrics 0,02% 0,02% 0,02% 0,00% 0,00% 0,02% 1,55% 22,19% 0,06% 0,00% 0,02% 0,35% 0,83% 74,88%| _0,00% 100,00%)
Pulmonology 0,11% 0,55% 0,98% 0,25% 0,00% 0,30% 1,23% 1,64% 23,04% 0,08% 0,25% 0,00% 0,00% 71,58%| _0,00% 100,00%)
Neurology 0,11% 0,25% 0,18% 0,25% 0,07% 0,36% 0,50% 0,64% 0,85% 20,78% 0,21% 0,04% 0,00% 75,77%| _0,00% 100,00%)
Other 0,07% 0,07% 0,15% 0,17% 0,00% 0,00% 0,32% 0,18% 0,18% 0,43% 9,93% 0,00% 0,00% 88,50%| _0,00% 100,00%)
Urology 0,18% 0,18% 0,09% 0,26% 0,18% 0,09% 0,26% 0,09% 0,00% 0,35% 0,79% 13,37% 0,18% 84,09%| 0,00% 100,00%)
Obstetrics 0,00% 0,02% 0,03% 0,03% 0,00% 0,00% 0,03% 0,02% 0,00% 0,28% 0,02% 0,70% 8,38% 89,98%| 0,00% 100,00%)

Watngnst [ T e e e e T
Cardiology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 100,00%|
Surgery 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Gastroenterology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Gynecology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Internal Medicine 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Pediatrics 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Pulmonology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Neurology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Other 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Urology 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|
Obstetrics 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%] 100,00%] 100,00%|

Figure 5.12: Average over 50 realizations of the expected weekly transition probabilities
of transfers of inpatients in the period 2010. The transition probabilities are from to
probabilities, thus the origins are the lines, the destinations are the columns. Note that
the probabilities are in %, the percentages represent a probability between 0 and 1.
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in the outpatients clinics. Figure B.1 also contains the aggregate number for the state
‘discharge’ and ’other’. We notice that the averages for the four subspecialisms of surgery
are really low, compared to the average of the state ’discharge’. Also the average number
of transitions of the state ‘order’ is much higher than the average number of transitions
of the subspecialisms of surgery.

In Figure B.2 we see the aggregate number of weekly transitions for the subdivision
into specialisms. We see that averages per specialisms are about as high as for the
subdivision in (sub)specialisms of surgery. However, Figure B.2 concerns the aggregated
weekly transitions, whereas Figure B.1 concerns the aggregated monthly transitions. The
increased number of transitions per equal time period, is due to decreasing the length of
the time interval. For the specialisms surgery the average number of monthly transitions
of the five subspecialisms together equals 82.75. If the time period is reduced to one
week, the average number of transitions of surgery is 64.43, or equivalent to more or less,
260 transitions a month.

Moreover, we can see that the share of the patients who are discharged within the state
time period, is reduced. For the subdivision into subspecialisms of surgery and the state
time period of one month, the share of patients who are discharged within the state
time, is equal to 93%. In the subdivision into specialisms and a state time period of one
week, this share decreases to 73,75%. It is not convenient to make the time length of
interval smaller than one week. The data will become too much blurred by the influence
of weekends, as in principal no elective patients are admitted to the hospital during the
weekend.

5.2.4 Markov property, homogeneity and limiting probabilities

In this section we discuss results whether the Markov property, the homogeneity prop-
erties and, limiting probabilities for Markov chains, hold. For the Markov property and
homogeneity, we use Equation 3.16. Using Equation 3.18 we investigate the limiting
probabilities. Although we do not investigate for all realizations the Markov and homo-
geneity property and the existence of a limiting distribution, the investigated realizations
suggest that the properties hold for the two different subdivisions. We thus can conclude
that we can model the transfers of patients from one (sub)specialism to another as a
Markov chain. This is explained in the next two paragraphs. Figures B.3 and Figure
B.4 in the Appendix provide an example in which we test Markov property, homogeneity
property and limiting probabilities.

Investigating all possibilities concerning homogeneity and Markov property, yields an
abundance of computations of Equation 3.16. For 12 different transition probabilities
of transfers of inpatients all realizations are investigated: all do meet the criterion of
Equation 3.16 and 3.18.

For the transfers of outpatients, the realizations of 11 different transition probabilities
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are investigated. Again, all do satisfy the condition of Equation 3.16 and 3.18. So we can
conclude that the Markov property, homogeneity and limiting distribution holds for the
subdivision in subspecialsms of surgery and one state 'other’ for the remaining part of
the hospital, in which the time period of one state is equal to one month. Figure 5.13 pro-
vides an overview of the number of realizations that meets the criterion of Equation 3.16.

Inpatients Qutpatients
year 2010 2011 2010 2011
difference
exceeds 10% 12 7 11 11
5%-10% 27 26 14 13
less than 5% 258 264 191 192
total 297 297 216 216

Figure 5.13: Overview of homogeneity property for the monthly transition probabilities of
the subdivision in subspecialisms of surgery. For each estimation of a certain transition
probability there are 12 realizations. The numbers in the first two rows of the table
indicates the occurrence that of a series of realizations of one transition probability,
there is at least one realization in the category which differs more than 10% or 5-10%
respectively of its average. The third row reflects the series of realizations of one transition
probability in which all realizations differ less than 5% of the average.

For the subdivision into 11 specialisms and the time period of one week, we also investi-
gate the Markov property, homogeneity and limiting distribution. Figure 5.14 provides
an overview of the number of realizations that meets the different criteria. As the dif-
ferences between the different realizations and the average are small, this is also a good
indication that the limiting distribution exists in this case.

Inpatients 2011

madified equation 3.6
difference
exceeds 10% 19 66
5%-10% 25 3
less than 5% 671 646
total 715 715

Figure 5.14: Overview of homogeneity property for the weekly transition probabilities of
the subdivision in 11 specialisms. For each estimation of a certain transition probability
there are 50 realizations. The numbers in the first two rows of the table indicate the
occurrence that of a series of realizations of one transition probability, there is at least
one realization in the category which differs more than 10% or 5-10% respectively of its
average. The third row reflects the series of realizations of one transition probability in
which all realizations differ less than 5% of the average. The first column is the modified
version of Equation 3.16 in which the 10 highest and lowest realizations are excluded,
the second is an evaluation of Equation 3.16, including all realizations.
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5.3 Average service times

The average service times are computed for different operations and admissions (one day
and more than one day).

We compute the average operation times for 479 different operations. We find 232 op-
erations having an average operating time which amount to more than one hour, we
find 15 treatments with an operating time of more than 3 hours and only three treat-
ments with an average operating time of more than 4 hours. The number of operations
which have an operation time longer than one hour, also contains the number of opera-
tions which on average are longer than three and four hours. The number of operations
that is longer than three hours also contains the operations which are longer than 4 hours.

In total we compute the average admission times for 980 types of treatments. We find
for the admissions to the department nursing wards that 0 treatments, have an average
which is 30 days or more, 60 treatments have an average which is 10 days or more, 181
treatments with an average of 5 days or more and 299 treatments with an average of
3 days or more. Again the admissions which are three days or longer, also contain the
5 and 10-day admissions. The number of admissions which is five days or longer also
contains the admissions which are on average longer than 10 days.

The fact that 0 of the clinical treatments have an average service time longer than 30
days and that there are 60 treatments longer than 10 days, 181 treatments longer than
5 days and 299 longer than 3 days, justifies the choice for a one week time interval, in
the Markov chain.

The average service time and the standard deviation are given in Figures C.1-C.8 of
the appendix. Also the number of operations/admissions is included.

5.4 Comparision of the model

We compare our model and the 4 year average model'® with regard to accuracy and costs.
We back-test both models for a period of 20 weeks in 2011. In Section 5.4.1 we explain
that our model predicts the patient volumes more accurate than the 4 year average
model. Our model predicts patient volumes such that it yields lower total costs for
additional /unused staff and nursing beds. In case of the average scenario, the advantage
in costs in favor of our model is approximately 2.3 million euro. We explain this in
Section 5.4.2.

13Recall that the 4 year average model is introduced for comparing the holistic model with another
model. The 4 year average model uses the average of the arrivals of the same period each year.



64 Results

5.4.1 Back-testing

For 117 of 220 estimates, our model provides a more accurate estimate than the 4 year
average model or that is in 53 % of the cases. Moreover, in 86 of the 220 cases our model
estimates a patient volume which differs only a maximum of 10 patients of the true value,
against 74 of 220 cases for the 4 year average model. In 14% of the cases our model is
better with respect to the maximum difference of 10 patients. In 85 of 220 cases, the 4
year average model results in a prediction, which differs at least 25 patients of the true
value. For our model this is only in 78 of 220 the cases, or this is 8% better.

Figure D.1 provides the differences between the 4 year average model and the actual
data and between the outcomes of our model and the actual data of week 5 to 24 of
2011. We notice for the specialisms gastroenterology, gynecology, internal medicine, neu-
rology, pediatrics and surgery that the outcomes of our model are often more accurate
than the estimation by the four year average model.

We back-test our model for the arrivals of inpatients at the various specialisms between
specialisms for 20 weeks of 2011. We use the transition probability matrix for the trans-
fers of inpatients between specialisms, which is given in Figure 5.12 and arrival figures of
2007-2010 to estimate the arrivals for 2011. For estimating arrivals at the combinations
of operating theaters and specialisms and combinations of nursing wards and specialisms,
we use the best fit of the ARIMA-models for these series of arrivals. We apply Equation
3.24 in order to compute the patient volumes at the various specialisms. Finally, we
compare these outcomes of a certain week to the outcomes of the 4 year average model.

5.4.2 Comparison of costs

Using arbitrarily cost estimates for the use of outpatient clinic space, nursing beds and
stafl, and estimations for week 5 till week 24 of 2011, our model results in a cost ad-
vantage of €2,340,000.— compared to the 4 year average model. Also, again we find
evidence that our model is better for planning purposes than the 4 year average.

We use arbitrarily costs estimates per ten patients per week in order to compare the
two models. We assume that the costs for additional nursing beds and staff in the de-
partment nursing wards, are €60,000.—. These additional costs arise if we overestimate
patient capacity. For an underestimation the costs of unused staff and nursing beds we
use the same estimate of €60, 000.—. For simplicity purposes, we expect that there is no
difference in costs between an over- and underestimation.

Figure 5.15 contains a histogram with two scenarios. For both scenarios we assume
that the capacity of a nursing ward is ten patients. The first scenario we call the worst
case scenario. This is the situation in which none of the planned capacity is used in
case of an overestimation. In case of an underestimation, we need the maximum of ten
additional beds. The second scenario is called the average scenario. In this case, we
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assume half of the planned capacity is used in case of an overestimation. In case of
an underestimation only half of the maximum of additional beds, thus five beds, are
needed. The classes are on the horizontal axis, the costs are on the vertical axis. The
blue bars indicate the total costs of our model for the average scenario and the green
bars for the worst case scenario. The red bars indicate the total costs for the average sce-
nario for the 4 year average model, while the orange bars indicate the worst case scenario.

We compose 29 classes. The lowest class is an overestimation of 110-120 patients,
or equivalent to the total costs of €360,000.— per week in the average scenario and
€720,000.— in the worst case scenario. The highest class is an underestimation of 150-
160 patients, or equivalent to the costs of €480.000, — per week in the average scenario
and €960,000.— in the worst case scenario. Figure 5.15 provides the total costs of an
under- and overestimation in patient volumes. The figure contains the total costs for 10
of 11 specialisms'* per class of ten under- or overestimated patients.

Figure D.2 provides the total costs per class of 10 patients for our model and the 4
year average model. Applying the described cost estimation method, we predict that the
extra costs for unused or additional staff for our model amounts to €14, 640,000.— and
for the four-year average model to €12,300,000.— in case of the average scenario. This
is an advantage of €2,340,000— in favor of our model. In the worst case scenario the
advantage amounts to €4, 680, 000.—.

Finally, Figure 5.16 gives the frequencies of each of the 11 classes of 10 patients. The
blue bars indicate our model, the red bars indicate the 4 year average model. We see that
our model estimates in 23% of the cases, the required number of staff and nursing beds,
while the 4 year average model only estimates in 13.5% of the cases, the required number
of staff and nursing beds. Moreover, note that our model estimates in 57% of the cases
patient volumes, which differs 10 patients at the very most from the true values. For the
4 year average model this is only 45.5%. Our model underestimates the patient volumes
per specialism less often than the 4 year average model does (34% of the cases for our
model, against 75% of the cases for the 4 year average model). Our model overestimates
the patient volumes more often than the 4 year average model (43% of the 200 cases for
our model, against 11.5% of the cases for the 4 year average model).

The specialism ’other’ is excluded. Since the specialism ’other’ is composed of several small
specialisms and costs are allocated to specific specialisms, it has no meaning to compute the addi-
tional /unused costs for this group of specialisms.
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Figure 5.15: Histogram of the total costs of the holistic and the 4 year average model
for the two scenarios for additional or unused nursing beds and staff for 10 specialisms

in week 5 to week 24 of 2011.
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Figure 5.16: Overview of frequencies per class of 10 patients for the holistic model and

the 4 year average model.



Chapter 6

Academic conclusions

In this chapter we present the conclusions of the research and pay special attention to the
academic outcomes of the study. In Chapter 8 we discuss the applicability of the research
with respect to ZG'T and do recommendations. ZGT is interested in estimating patient
volumes and occupancy rates of (sub)specialisms at the outpatient clinics, operating
theaters and nursing wards, at least one month ahead. First we discuss the performance
of the model. Next, we elaborate on the academic relevance of the research. We thus
first conclude on the last of the four research questions, listed in Section 1.2. Finally, we
provide answers to the first three research questions. The model we developed, consists
of three components: estimating patient arrivals at departments, the transfers of patients
between (sub)specialisms in the departments and the average service times. The first two
components are necessary to compute the expected patient volumes. All components are
necessary for computing the occupancy rate. Fach of the first three research questions
deals with one of the components.

6.1 Performance of the model

At this moment, ZGT has no model to estimate patient volumes and occupancy rates at
(sub)specialisms in the three departments. The holistic model we develop, is suitable for
estimating patient volumes and occupancy rates at (sub)specialisms at least one month
ahead, in the departments outpatient clinics, operating theaters and nursing wards. The
estimated patient volumes and occupancy rates are a useful tool for allocating nursing
beds and staff. The model we develop can predict four months ahead.! Moreover, the
model which we present, gives ZGT insight into patient flows between (sub)specialisms
in the three departments.

With respect to the transfer of inpatients, the transition probability matrix provides
the insight that more than 70 % of the patients who enter a certain specialism, do not

In Section 5.4 we provide an example in which we forecast for 20 weeks the patient volumes at
specialisms in the nursing wards.
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transfer to another specialism and are discharged within one week. Predicting the ar-
rivals of inpatients accurately, is thus the most essential part if one would like to estimate
the patient volumes at specialisms in the nursing wards in the near future. These esti-
mations can be used for allocating staff and nursing beds. Due to limitations in the data
warehouse of ZGT, we can not draw the same conclusion for the transfer of outpatients
with certainty. However, computations suggest that the same conclusions hold for the
transfers of outpatients. We recommend that ZGT for outpatients also keeps track of
all referrals within one patient path. We present ARIMA-models for 11 specialisms with
which we can predict patient volumes in the outpatient clinics, operating theaters and
nursing wards.

We back-test our model for 20 weeks in 2011 by estimating the expected weekly patient
volumes at the nursing wards for 11 specialisms and comparing them with the actual
values. Approximately 40% of the weekly patient volumes estimates, differ less than 10
patients in comparison with the actual data. About 25% of the estimations are in the
range of a difference between 10 and 20 patients in comparison with the actual data. As
said, ZGT uses common sense to allocate staff and nursing beds. Since these estimations
are not entirely comparable, we also construct a simple measure and compare our model
to this measure. This measure uses the 4 year average arrivals. In 53% of the cases, our
model estimates the arrivals better than the 4 year average model. Moreover, our model
predicts 14% more cases than the 4 year average model, in which the difference between
the estimate and the actual data is only 10 patients or less. The 4 year average model
estimates 8% more cases than our model, in which the difference is more than 25 patients
compared to the actual data.

Finally, we make a cost comparison of the two models. We calculate costs of wrongly
planned nursing beds and staff per group of ten patients per week in case of an over- and
underestimation by our model. Next, we compare these costs to the cost estimates of the
4 year average model. For this purpose we use arbitrarily cost estimates of €1,200.— per
patient per nursing day. In a scenario in which five of the ten planned beds are really
used, the comparison shows a potential costs saving of 2.3 million euro for a period of 20
weeks in favor of our model. In the case of a worst case estimation, this is even higher:
a cost reduction of approximately 4.6 million euro in 20 weeks. We also assume that the
capacity is available for five days a week and that no transfers between specialisms are
allowed. We are well aware that we use several assumptions which should be validated
with real world and this will bring down the calculated cost estimate.

6.2 Academic relevance of the model

We are interested whether we can model patient paths and flows through a hospital
using a holistic model of three pillars: ARIMA-models, Markov chains and statistical
computation of average service times. Our research shows that the combination of the
three pillars is a good method for predicting patient volumes and occupancy rates at
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(sub)specialisms in the near future. Predicting patient volumes and occupancy rates in
this manner is a new concept. As described above, the model predicts patient volumes
at nursing wards quite accurately. The fact that we combine the three components into
one model and obtain accurate estimates, is a valuable scientific result.

In particular, little research has be done with respect to applicability of Markov the-
ory in health care. The model we develop, demonstrates that Markov chains can be
used for modeling patient transfers between outpatient clinics and operating theaters
and between operating theaters and nursing wards. Statistical analysis suggests that
the homogeneity property and Markov property is satisfied and that the limiting distri-
bution exists of the Markov chains we develop in this paper. This is also a valuable result.

Also with regard to patient arrivals, the choice for an ARIMA-model is a good one,
as statistical analysis shows that we can predict patient volumes accurately. The maxi-
mum MSE for all developed ARIMA-models is 1.76. This means that the sum of the bias
squared (difference between true and error) and the variance of the error are relatively
small. Again, statistical tests provide statistical evidence that we may model patient
arrivals by using ARIMA-models.

6.3 Research questions

The next subsection will answer the first three research questions defined in Section 1.2.

6.3.1 Expected number of patient arrivals at departments

For the three departments outpatient clinics, operating theaters and nursing wards, we
propose relatively simple models which use a maximum of four time steps back. We
develop for 11 specialisms ARIMA-models, which estimate the weekly arrivals several
weeks ahead. We find no evidence of seasonal patterns in the data. The results are given
in Figures A.1-A.5. Moreover, given the constraints of the maximum number of four
autoregressive and four moving average terms, the proposed ARIMA-models predict the
weekly patient volume well.

We see that the ARIMA-models predict increases or decreases of arrivals well. How-
ever, since ARIMA uses historical data, the ARIMA-models predict these increases or
decreases about one or two weeks later than they occur in reality. This might be due to
the fact that we do not incorporate sufficient autoregressive and moving average terms
in our model. We do not incorporate additional terms, as the Akaike criterion indicates
that introducing more terms, does not yield a better fit. Moreover, we are restricted due
to limitations in the software packages Matlab and Eviews.? However, we recommend to
do further research in the effect of incorporating additional autoregressive and moving

2Matlab can sometimes not compute the inverse matrix, which is used for computing the Akaike
criterion. In Eviews all models have to be inputted manually.
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average terms in the ARIMA-models. Extreme outliers are difficult to predict. This
is due to the nature of the fitting algorithm we use. Ordinary least square fitting uses
least squares, which are vulnerable for huge deviations from the mean. As the maximum
MSE is 1.76 over all computed ARIMA series, the sum of the variance in the errors and
the bias is also small for all computed series. This demonstrates that the difference in
arrivals between the true value and error is small. Also the closer MSE is to zero, the
better the fit: a MSE of zero indicates a perfect fit.

Finally, statistical tests show that the arrival data of all arrival series satisfy the con-
dition of stationarity if the data are first differenced. We use the Akaike criterion to
identify the best fit. The lowest Akaike criterion indicates the best fit. For each series
of arrivals we compute 25 different ARIMA-models. We note that the Akaike criterion
is not much decreasing as we introduce more autoregressive or moving average terms.
As a rule, one tries to keep the ARIMA-models as simple as possible or that is trying
to get a model with the least possible number of autoregressive and moving average
terms. As the Akaike criterion is not much decreasing as we introduce more terms, we
can thus conclude that the number of autoregressive and moving average terms used in
our ARIMA-models, are sufficient. Finally, from the fits with the lowest Akaike criterion
for each combination of departments and specialisms, almost all models do satisfy the
normality and autocorrelation condition.

6.3.2 Transfer of outpatients and inpatients

For the transfers of outpatients and inpatients we develop transition probabilities that
a patient transfers from one (sub)specialism to another. For the outpatients we develop
monthly transition probabilities for the transfers between outpatient clinics of subspe-
cialisms of surgery and the remainder of the hospital using data of 2010-2011. The results
are given in Figure 5.10.

For the inpatients we develop two transition matrices. The first is with regard to the
intra-specialism monthly transfers of the subspecialisms of surgery and of the remainder
the hospital. We use data of 2010-2011. The results are given in Figure 5.11. The sec-
ond matrix deals with the transition probabilities of the weekly transfers of inpatients
between 11 specialisms, using data of 2010. These results are given in Figure 5.12.

The size of the (sub)specialisms and the time length of the interval are important. The
subdivision in large specialisms yields better figures for estimating the transition proba-
bilities than the subdivision in small (sub)specialisms of surgery. The size should not be
too small: the occurrence of a transition should not be too rare within the state time. For
the subdivision into subspecialisms of surgery there are a lot of time intervals in which
no or very little transitions occur. This is less the case for the subdivision into specialisms.

The time length of one week yields better figures for estimating the transition proba-
bilities than the one month interval. The length of the interval should not be too large:
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as the interval becomes too large, the state ‘discharge’ absorbs most of the transfers. For
the one month interval more than 90 % of the patients is discharged within one month.
If we reduce the period to one week this decreases to approximately 70 %. A further
reduction of the time interval is not recommended as the effect of weekends will trouble
the numbers for computing the transition probabilities.

Finally, statistical tests suggests that homogeneity and Markov property of the pro-
posed Markov chaing hold. Moreover, it suggests the existence of a limiting distribution,
which can be used for determining the long-run transition probabilities.

6.3.3 Service time of patients

The average service times are used to compute the occupancy rate at specialisms. We
compute the average service times of operations and admissions. All results are given in
Figures C.1-C.8. 299 treatments of 980 in the nursing wards are on average longer than
five days. There are only 60 treatments with an average nursing time longer than 10 days
and none with an average longer than 30 days. As the majority of the average service
times of the treatments is less than seven days, the average service times also confirm
that the time period of our Markov chains of one week is better than a time period of
one month.

We provide a model how to compute the occupancy rate at the combination of specialisms
and departments. This involves using the average service times over all treatments of a
certain (sub)specialism. We do not actually compute the occupancy rates. We do this as
there is no actual reference material with which we can compare our outcomes. Moreover,
just taking the average over all treatments might yield a huge over- or underestimation,
as some particular complex treatments have much longer service time than the majority
of the other treatments. The best solution would be that we could predict patient ar-
rivals on basis of the treatments they receive. However, as volumes for many treatments
are very low, the estimation becomes very difficult and unreliable. We recommend to do
further research how to incorporate the service times in the model.
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Chapter 7

Discussion, limitations and
recommendations

In this chapter we discuss the three techniques used in each of the pillars of our model.
We elaborate on why we divide the hospital in the three departments, outpatient clinics,
operating theaters and nursing wards. Also, we discuss whether the results can be applied
to other health care organizations. Next, we consider the limitations of our research.
Finally, we provide recommendations for further research.

7.1 Discussion

First we discuss the implications of the three modeling techniques, ARIMA theory,
Markov theory and the computation of means using statistics, which we use for each
pillar in our model. Next, we discuss the division into three departments and at the end
we elaborate on the applicability to other health care organizations.

7.1.1 Model implications
ARIMA theory

ARIMA theory is widely used in Finance and Economics for forecasting purposes. ARIMA-
models however, face some drawbacks. First, the fact that models use historical data,
leads to a later detection of increases and decreases than in reality occurs. The increases
or decreases can only be detected if the values of previous time periods used for the
estimation, are already increasing or decreasing. The more autoregressive terms are in-
cluded,' the earlier an increase or decrease will be noticed, however the complexity of the
model will increase. As a rule for determining an ARIMA-model, we use the rule that
the simpler the model, the better. That is, we try to estimate an ARIMA-model which

!The autoregressive terms are used, to implement values of the time series at earlier time steps. The
more autoregressive terms are incorporated in the model, the more time points are taken into account,
in order to forecast the next time step value.
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forecasts accurately but includes the least autoregressive and moving average terms as
possible. Also, the Akaike criterion confirms that incorporating more autoregressive or
moving average terms in the ARIMA-model does not yield a better fit, as the Akaike
criterion is not much decreasing if we do so0.?

Moreover, for estimating an ARIMA-model, the method of ordinary least squares, is
used. The method will not interpolate the huge outliers of a set of data points, when
fitting an ARIMA series.

Also, there is no test that can tell you if the found fit, is an ARIMA-model which
can forecast future values of a series accurately. The Akaike criterion can only provide a
decisive answer what the best fit is among several ARIMA-models for the same data set.
However, whether this fit is a good fit at all for the set of data points, is not answered.
For ARIMA theory, there is no underlying theory which describes the selection of the
best model for a given data set ( , ).

In this research, we use weekly figures from 2007-2011° for estimating the arrivals at the
departments, outpatient clinics, operating theaters and nursing wards for 11 specialisms.
The more data points are available, the better one can estimate an ARIMA-model. That
is one reason why we choose our model to provide estimates of patient volumes in weeks,
rather than in months. Reliable data before 2007 are not available in ZGT.

The computation of the MSFE indicates, if comparing the true values with the estimated
values that the differences are relatively small. A comparison with true values and the
fitted values, confirm the image that outliers in the data arrivals are not predicted by
the ARIMA-model. Moreover, increases and decreases are detected one week or two
weeks later than in reality. However, compared with other methods for determining the
arrivals at the departments, the ARIMA-models can give a good and accurate indication
of the arrivals. If, for instance we had used queuing theory, a fixed arrival distribution
is assumed per combination of department and (sub)specialism. The power of ARIMA-
models is that they can cope with fluctuations in arrivals over time. These fluctuations
can be predicted by ARIMA-models as they take into account values of previous periods.
The input distribution in queuing theory, does not support this feature.

’In this research we choose among 25 different fits for one series of arrivals, the best fit for our
ARIMA-model. We allow the maximum number of autoregressive to be four and the maximum number
of moving average terms also be four (also the case of zero terms is considered, so that we obtain 25
different fits). The Akake criterion indicates that adding more terms do not yield a better result. However
adding much more terms (example five of each more) might yield a better result as we can rely on more
historical data for predicting the arrivals at the next time step. We do not research this in this paper,
due to limitations in the software and the rule that we would like to keep the ARIMA-models as simple
as possible. We suggest this for further research.

8For operating theaters only data from 2008-2011.
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Markov theory

As stated before, relatively little research has been done in the applicability of Markov
theory in health care. No framework exists for modeling health care processes as a
Markov chain. In fact, no analytical proof or test is known to provide a decisive answer
whether some data possesses the mathematical properties required to model a Markov
chain. There are some studies in health care, which use Markov theory, although they
do not discuss how to investigate whether the Markov and homogeneity property holds
and how to investigate the existence of a limiting distribution for the Markov chains for
a certain data set.

We provide methods which test the homogeneity and Markov property of a Markov
chain. Also we give a method how to test whether the limiting distribution of a Markov
chain exists. We do however not provide an analytical proof. We recommend to do fur-
ther research for finding an analytical proof for the homogeneity and Markov property
and the existence of a limiting distribution if modeling a Markov chain on a set of data.

We demonstrate that Markov theory is an adequate manner for modeling transfers of
patients between (sub)specialisms in the departments outpatients clinics, operating the-
aters and nursing wards. Also we demonstrate that the transfers of outpatients and
inpatients can be modeled, using Markov theory. The tests we conducted for the homo-
geneity and Markov properties suggest that these properties hold. The same holds for
the existence of a limiting distribution. The tests we conduct suggest the existence of a
limiting distribution of the proposed Markov chains.

Overall, we choose Markov theory for modeling the transfers of outpatients and inpatients
between (sub)specialisms, because it is an elegant way of computing transition proba-
bilities. The transition probabilities provide an overview what the probability is that a
patient transfers from a certain (sub)specialism to another (sub)specialism in a certain
time period. Other theories as queuing theory, can only provide these probabilities for
the stationary or limiting situation.

Computing of average service times

The two model components, ARIMA theory and Markov theory, are necessary for com-
puting the future patient volumes at least one month ahead at a (sub)specialism in one
of the departments, outpatients clinics, operating theaters or nursing wards. The model
component, average service time, should be added to obtain the occupancy rate at the
(sub)specialisms.

The model we propose uses the average service time over all treatments for one cer-
tain (sub)specialism. As some treatments are very complex, their service times might
deviate much from the bulk of treatments for this specialism. This might influence the
average service time of this specialism and thus the occupancy rate significantly. More
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research on the implementation of the service times in the model is recommended.

7.1.2 Division of hospital

In this model we divide the hospital into three departments, namely the outpatients
clinics, the operating theaters and the nursing wards. We consider two Markov chains,
namely the transfers of outpatients and inpatients.* For Markov theory we could have
combined these chains into one, however instead, we choose to work with two Markov
chains. This due to the data limitations within ZGT. The data characteristics for the
three departments, outpatient clinics, operating theaters and nursing wards, are different.

Moreover, the division in the three departments is convenient as it coincides with the de-
partments, outpatient clinics, operating theaters and nursing wards, for which we would
like to estimate the number of arrivals.

Finally, due to data limitations we can not determine with certainty if a transfer of
a single outpatient belongs to his/her patient path. ZGT does not register the visits of
one patient path under one registration number. We assume that the transfers which
occur in the same or the adjacent time period, belong to the same patient path. How-
ever, this is of course not necessarily the case. We require this assumption, since we
otherwise can not model transfers of outpatients at all. For the transfers of inpatients,
this story does not hold: for an admission to nursing wards there is a single registration
number, which is used for all transfers during the admission. We recommend that ZGT
also should use one registration number for all visits to the outpatient clinics for one
patient path, or even better one registration number for all visits during a patient path.

7.1.3 Model comparison

Currently, ZGT uses common sense and experience of employees to estimate the number
of staff and nursing beds. The estimates are based on historical production figures, the
agendas of specialists and planned appointments. ZGT allocates per specialism operation
time and a number of beds for a period of several months ahead. For the operating times
these estimations can be fine-tuned during meetings of tactical planning. For allocat-
ing nursing beds and staff in nursing wards, such meetings do not exist. The estimates
7ZGT uses, do not indicate the occupancy rates during the period, neither the estimated
production. It only indicates the available resources, as operation time and staff for a
certain specialism for a period of several months.

“The first Markov chain considers the transfer of outpatients of a specific (sub)specialism from one
outpatient clinic to another outpatient clinic, to the department operating theater, to the department
nursing wards or to discharge. The second Markov chain considers, the transfers of inpatients of a
specific (sub)specialism from one nursing ward to another nursing ward, the intensive care or discharge.
Moreover, the last Markov chain distinguishes between the origin of the patients: outpatient clinics,
operating theaters or nursing wards.
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As there is no model in ZGT which provides an indication of (estimated) patient vol-
umes or occupancy rate at a certain (sub)specialism in a certain department, we can not
compare the performance of our model to the current model of ZGT.

We introduce another measure, the 4 year average, in order to compare our model to an-
other model. Probably, only partly the 4 year average, replicates the current estimation
procedure of ZGT. We recommend to test our model in a hospital in which more advanced
(estimated) patient volumes and occupancy rates estimation models are available.

7.1.4 Cost comparison

For computing the costs of over- and underestimating patient volumes per week, we dis-
tinguish two different scenarios. In both scenarios, we assume that a planned bed is
available for five days. There will be no coordination between the different specialisms.
The actual cost reduction will be somewhat lower than the estimated difference of 2.3
million euro between our model and the 4 year average model. It is likely that the over-
and undercapacity does not appear for the whole week, but only for parts of this week.
Moreover, presumably management interventions yield a reduction in over- and under-
capacity by coordinating the several specialisms during the week. This leads to a more
efficient use of the staff/outpatient clinic space/nursing beds of all specialisms.

Finally, the cost estimate of €6,000.— per patient per week is obtained by using the
average costs for all hospitals for one nursing day. By order of NZa, Prismant computed
the average price for one nursing day, which is €1,267.— in 2008 ( , ), so for five
days this is approximately €6,000.—. This price reflects all costs made.

7.1.5 Applicability to other health care organizations

We expect that the research can be applied well in other hospitals in the Netherlands.
This is due to the structure of Dutch hospitals. Also, most hospitals store sufficient data.

Other hospitals in the Netherlands have similar structures to ZGT. All hospitals are
divided in the departments, outpatient clinics, operating theaters and nursing wards.

Most hospitals store a lot of data about patients. The hospitals should store the ad-
mission times of patients at the outpatient clinics, operating theaters and nursing wards
for determining ARIMA-models, which can forecast patient arrivals at these depart-
ments. As long as hospitals do have a good registration of the transfers a single patient
undergoes in a patient path, we can compute the transition probabilities for the transfer
from one (sub)specialism to another in a department in a certain time period. Finally,
the hospitals should store the individual service times per patient, per treatment and per
specialism.
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7.2 Limitations

In this section we discuss the data limitations of this research.

7.2.1 Data limitations

As already is discussed in Section 7.1.2, data limitations require to divide the hospital in
three departments: outpatient clinics, operating theaters and nursing wards. The data
characteristics are different for the three departments.

Moreover, a single registration number for visits belonging to one patient path does
not exist. This makes it difficult to reconstruct the patient path for outpatients. For
inpatients this does not hold, as the admission number is an unique number for on ad-
mission and is used by both specialisms if a patient is transferred from one to the other.
Linking the operating theaters department to the department nursing wards, is not a
problem. For most operations, the date of the operation coincides with the first day of
the admission.”

7.2.2 Reliability of the data

One can question whether the data used in this research is reliable. Probably the data
possesses inaccuracies or errors, as most data is manually inputed by the medical staff in
programs as Chipsoft. However, as the data we use are financial figures, we may assume
that there are correct to a very large extent. The financial data is used by ZGT for doing
expenses claims at insurances companies.

7.3 Recommendations for further research

This section provides recommendations for further research.

7.3.1 Incorporation of service times

We recommend to do further research how to adequately incorporate service times of
patients, in order to compute the occupancy rate at a combination of a department
and (sub)specialism. The proposed model uses average service times for estimating the
expected occupancy rate at a specific combination of a department and a (sub)specialism.
As discussed in Section 7.1.1, complex treatments can influence the average service time
over all treatments for a (sub)specialism significantly. This influences the estimation of
the occupancy rate at the various combinations of department and (sub)specialism.

®0Or the operating data is very close to the first day of the admission. In fact we allow two days
between the date of the operation and the first day of the admission.
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7.3.2 Fitting ARIMA-models using more autoregressive and moving
average terms

We recommend to do further research in adding more autoregressive and moving average
terms in the ARIMA-models used for estimating patient arrivals. As argued, the estima-
tions are not entirely accurate, but demonstrate some delay compared to the true values.
Adding more autoregressive and moving average terms might yield a better estimation.
In our study we allow the maximum of autoregressive terms to be four and the maximum
number of moving average terms also to be four. This is due to limitations in the software
we use and the fact that we want to keep the ARIMA-models as simple as possible. It
might be interesting to research whether the allowance of much more autoregressive and
moving average terms, yields much better fits.

7.3.3 Recomputing the transition probabilities for the transfer of out-
patients

We recommend to recompute the transition probabilities for the transfer of outpatients
if there is one unique registration number for a patient path of a single patient. If there
exists one unique registration number for the different visits during one patient path of
a single patient, we can reconstruct with certainty the correct transition probabilities of
transfers of patients. As discussed in Section 7.1.2 this no problem for the transfer of
inpatients. For outpatients there is no registration number and we can not with certainty
reconstruct a patient path.

7.3.4 Markov chains in health care

We recommend to do further research to the applicability of Markov chains in health care.
As discussed in 7.1.1 little research has been done with this respect. Also we recommend
to find a proof/procedure how to check whether data and a proposed Markov chain, do
satisfy the mathematical conditions of a Markov chain.

7.3.5 Coding the model

We recommend to code the model for more validation purposes. Manually the three
components are evaluated. The back-testing procedure provides a performance indication
of the model for 20 weeks in 2011. However, we do not provide a programming code for
our holistic model. In order to implement the model, we recommend to code the model.
Also, this makes the validation of the model for a period extended than 20 weeks, easier.
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Chapter 8

Applicability for ZGT and
recommendations

The content of this paper is at some points rather theoretically. The purpose of this
chapter is to elaborate on the applicability of the research with regard to ZGT. We
explain the logic behind the model and elaborate on the possibility to implement the
model. Moreover, we do recommendations to ZGT with respect to estimating patient
volumes and occupancy rates.

8.1 Relevance: a changing society

Increasing life expectancy, co-morbidity, political and social pressure have urged the
health care industry to become more cost-conscious. High qualitative health care is con-
sidered to be important in the Netherlands, however concerns about the continuously
increasing costs have risen. The general opinion is that health care should be organized
more (cost) efficiently. The health care process is complex: the demand for care is un-
certain. Moreover, resources, as staff and nursing beds, used in the health care industry,
are scarce. One would like to fine-tune demand and supply in hospitals, as ZGT, as
efficiently as possible. Aim is to reduce the occurrence of over- and undercapacity as
much as possible. To make planning more efficient, planners have to estimate better the
future patient volumes and/or occupancy rates in the hospital.

8.2 Estimating patient volumes and occupancy rates

There are many ways to model expected patient volumes and occupancy rates. We pro-
pose a simple and intuitive model providing a helicopter view of patient flows through
ZGT. The model computes the expected patient volumes and occupancy rates at differ-
ent combinations of specialisms and departments: outpatient clinics, operating theaters
and nursing wards, at least one month ahead. Moreover, the model provides transfer
probabilities what the next specialism will be, given the current specialism of the pa-
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tient. Thus, if a patient enters the hospital we can subsequently estimate what the next
treatment in the patient path will be, until the patient will finally be discharged.

Currently, no prediction model for estimating patient volumes and occupancy rates ex-
ists within ZGT. We propose two different methods to compute the patient volumes and
occupancy rates. The first is a holistic model, which takes the transfers of patients be-
tween specialisms into account. The second only uses four year averages for computing
future demands. In this report the focus is on the first model. The model combines
techniques of different disciplines, as Finance, Econometrics and Probability theory in
order to estimate patient volumes and occupancy rates.

The holistic model consists of three components. The model allows us to estimate patient
volumes and occupancy rates. It uses transfer probabilities in order to estimate what the
next step in a patient path will be. These estimations occur on the level of a combination
of department’ and specialism.” As the incidence for the demand for care is uncertain,
we use many aspects of Probability theory in the holistic model. The model is depicted
in Figure 8.1.

Patient transfers: Markowv theory is used to model outpatient transfers between the different
outpatient clinics and the operating theaters and to model inpatient transfers between the
different nursing wards and operating theaters

Outpatient clinics // MNursing wéi’HS'---..,___

Operating theaters,/
/

Servicetime:
statistical analysis is
performed to
compute average
servicetimes at
nursing wards and
operating theaters

Patient arrivals: ARIMA models are used for modeling arrivals at outpatient clinics,
operating theaters and nursing wards

Figure 8.1: A graphical representation of the subdivision of the hospital ZGT in the
three departments. The numbers at the green boxes in the departments represents the
specialisms. In the figure we indicate where we apply the three components.

The transfer probabilities are modeled by a Markov chain. Markov chains are used
in order to model transfers from one state to another. It assumes that the next time step

!These departments are the outpatient clinics, operating theaters and nursing wards.
*E.g. cardiology or surgery.
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only depends on the previous time step and not on its history. We estimate the transition
probabilities of weekly transfer of inpatients between 11 specialisms. The results are in
Figure 5.12. 10 of the 11 specialisms coincides with some of the established RVEs® after
the reorganization of 2012. The advantages of this approach is that we can define as
much transfers as possible. It only requires the storage of one step in a patient path.
Moreover, if we assume that the composition of the specialisms and departments will not
change over time, we do not have to adjust the transition probabilities. Finally, we can
compute the behavior of patients in the long run.

Markov chains are useful for modeling the transfers of patients within the hospital.
However, we should also model the arrivals of the patients. For this purpose we use
ARIMA-models. These models are for instance used in Finance in order to predict what
the price of shares will be in the future. The results for the weekly arrivals of 11 spe-
cialisms are in Figures A.1-A.5. Advantage of ARIMA-models is that it can take into
account fluctuations over time as it will follow a trend. Patient arrivals also possess
fluctuations over time. The first two components are required in order to compute the
expected number of patients at a combination of department and specialism.

Finally, the last component of the model is the computation of the average service time
of treatments and admissions. This component is required so that we can compute the
expected occupancy rates. Occupancy rates are computed by the number of patients
times the indication how long these patients will stay.

8.3 Opportunities and recommendations

Results in this paper show that the holistic model can lead to a potential cost saving. The
potential cost saving can be achieved if the demand for care can be estimated accurately.
The model proposed, estimates patient volumes at different combinations of departments
and specialisms at least one month ahead. Compared to the four year average model
the estimations of the proposed model are more accurate. Moreover, the model provides
insight into the patient flows within ZGT. Results demonstrate that approximately 70%
of the patients enter and leave the hospital within one week at the same specialism.

The outcome of the model could support the planning process within the hospital. Cur-
rently, planning of operating theaters is managed in tactical planning. As far as we
know, for the planning of outpatient clinics and nursing wards, the planning process is
less sophisticated. The outcomes of our model can be used to predict patient volumes at
specialisms of these three departments at least one month ahead. The more accurate the
prediction, the more efficient stafl and medical equipment can be used. Of two proposed
models, the holistic model is the most accurate in its predictions of the patient volumes.

3RVE, Resultaat Verantwoordelijke Eenheid, English Profit Responsible Unit, see Figure 1.3 for the
new structure of ZGT.
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We recommend for the two departments, outpatient clinics and nursing wards to set
up planning meetings, similar to the meetings of tactical planning, in which the planning
and realizations of several months is discussed. In this meetings the outcome of our
model, future patient volumes can be used for determining the usage of staff and medical
equipment. For the department operating theaters, the outcome of our model can be
used to support the planning decision making process of tactical planning.

Recommendations for ZGT

Having researched the patient flow through the three departments, outpatient clinics,
operating theaters and nursing wards, we make the following recommendations to ZGT:

1. Predict patient volumes at specialisms in the department nursing wards using the
model. The outcomes can be used to allocate staff and nursing beds at least one
month ahead.

2. Use the outcomes of our model with regard to the arrivals at specialisms in the
department operating theaters in order to support the decisions made in meetings
of tactical planning to allocate operating times to specific specialisms.

3. Set up similar meetings for planning, as tactical planning, in the departments
outpatient clinics and nursing wards.

4. The use of a uniform system to register details of visits/treatments of patients in
the three departments, outpatient clinics, operating theaters and nursing wards.

5. The use of one unique registration number for the visits/treatments which belong
to the patient path of a single patient. This improves the outcomes of the model, as
we can drop certain modeling assumptions and as a result estimate the transition
probabilities of the transfers of outpatients more reliably.*

8.4 Implementation and usage

The holistic model we propose is only a pilot model. The components for computing
the patient volumes are the output of different software programs. In order to make the
model applicable, it is recommended to integrate the different components of the model
in one program. Implementing the model requires some additional research and effort.
One can choose two different approaches. The Finance and Information Department
of ZGT can use the theory provided in this paper and build this model. This requires
additional time of the current staff members. However, time consuming, this will lead to
the required knowledge of staff for future releases. Another possibility is letting an in-
formatics student code the model. This could be the basis for a master or bachelor thesis.

“We assume that the visits of one single outpatient in one or the adjacent time period belong to one
patient path. If there is one registration number for the visits belonging to one patient path we can with
certainty reconstruct a patient path.
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Estimation of patient volumes and occupancy rates holds the following:

e Estimate the patient arrivals at the various combinations of the departments and
specialisms. One can use the ARIMA models in Figures A.1-A.5.

e Next, multiply the estimated arrivals with the transition probability matrix. That
is for instance if we have the weekly arrivals at the nursing wards and one would like
to compute the transfers of inpatients between specialisms in the nursing wards,
multiplying the arrivals with the transfer matrix in Figure 5.12.

e Finally, for computing the occupancy rate, use the average services times provided
in Figures C.1-C.8.

After the model is implemented, the model can be used for predicting patient volumes.
This requires data input. Monthly data admissions figures of the different specialisms
should be uploaded to the model in order to keep the predictions accurately. One can
update and estimate the patient volume of different specialisms at least one month ahead.
Next, to other planning material, these figures can be used for determining an efficient
allocation decisions of staff to the different specialisms. The model has the opportunity
to predict patient volumes at least one month ahead.

8.5 Summary

To conclude, the results demonstrate that the holistic model provides promising results in
predicting patient volumes at different specialisms. We have established a model which
can estimate the transition probabilities of a transfer of in- and outpatients from one
(sub)specialism to another (sub)specialism in a certain time period. In particular, we
established the transition probabilities for inpatients and arrival rates for 10 specialisms
which coincides with RVEs. Moreover, 70% of the patients entering the hospital at a
given specialism will also leave the hospital at this specialism within one week. So in
essence, the most important task is to determine the arrival process of patients at the
various departments. In this paper we provide a method for continuously updating the
expected arrivals at the various specialisms. However, as this study is only a pilot, the
model proposed can not be implemented immediately.
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Appendix A

Time series analysis data

This appendix contains the results for the ARIMA-models for 11 specialisms, required
for predicting weekly patient arrivals. The data we use, is from the period 2007-2011.
The figures below provide the coefficients of ARMA terms. Notice that for all series we
take the first difference to obtain stationarity. The column ’ADF?’ indicates whether
the data is stationary at significance level « = 5%. A rejection of the null hypothesis
is indicated by 0, an acceptation by 1. Next, we show results whether the residuals are
agssumed to have a normal distribution. This is provided in column 'Jarque-Bera’. For
this test, we used different confidence levels. The number in this column indicates at
which significance level we accept the null hypothesis. Finally, we also provide whether
the series is autocorrelated, this is denoted in the column 'Ljung-Box’. In this column
a zero denotes the acceptation of the null hypothesis at a significance level of a = 5%.
Most data is obtained, using the Matlab software package, however as some Matlab could
not compute some inverse matrices for checking routines, we also used Eviews. The fits
computed by Eviews, are marked yellow.

Figures A.1-A.5 show the results for the best ARIMA fits for each series of arrivals.’
The results of the Augmented Dickey-Fuller test, Jarque-Bera test and Ljung-Box test
respectively are also in these figures. We list the results for 11 specialisms for the depart-
ments outpatient clinics (first and repeated visits), the operating theaters and nursing
wards (one day admission (heavy or light) or more than day).

!For the department operating theaters, the data is from 2008-2011.

2ADF, Augmented Dickey-Fuller.

3The best fit is determined by the Akaike criterion, the lowest Akaike criterion indicates the best fit.
For all series the Akaike criterion are computed. These can be found in Figures A.6-A.8.
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Figure A.4: ARIMA coefficients, ADF, Jarque-Bera and Ljung-Box results for the num-

ber of one-day nursing admission, subdivided in light and heavy.
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Figure A.5: ARIMA coefficients, ADF, Jarque-Bera and Ljung-Box results for the num-

ber of clinical admisions regarding more than one nursing day.
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A.1 Results for Akaike criterion

The Akaike criterion is an indication for the best fit. For a series of fitted ARIMA series,
the lowest Akaike criterion indicates the best fit. Figures A.6-A.11 provide the Akaike
criterion, for the departments outpatient clinics (first and repeated visits), operating
theaters and nursing wards (one day (heavy and light) and more than one day).

21 21

1 2837,15 2977,27 2459,68 2668,63 2758,17 2428,85 2511,25 2722,14 365768 2002,65
2 2720,59 2853,45 2359,92 2574,26 2672,50 235,22 2391,11 2606,13 3583,85 1848,15
3 2721,55 2848,14 2351,55 2561,53 2660,04 2350,75 2392,70 2598, 3564,33 1849,93
4 2722,21 2849,23 2353,04 2563,40 2652,44 235,66 2392,82 589,23 3552,56 151,92
5 2724,18 2850,22 349,85 2565,39 2653,87 2354,22 2393,52 2591,10 3552,14 1851,13
6 2772,79 2926,50 2417,07 2641,52 2704,91 2392,67 2440,85 2648,23 3605,04 1936,58
7 2721,38 2247,50 2350,98 2562,58 2655,73 2341,63 2392,59 259541 3557,24 1849,93
8 2723,12 2849,40 2352,98 2557,40 2657,09 2350,44 237748 2591,83 3557,39 1851,84
9 2724,09 2851,05 2354,79 2549,76 2654,10 2350,21 2379,30 2590,57 3552,95 1853,62

10 2726,06 2852,04 2351,85 2563,41 2655,82 2351,20 2393,59 2590,84 3553,96 1849,76

11 2758,15 2908,29 2397,10 2609,56 2700,16 2373,89 2420,26 2641,80 3601,25 1896,34

12 2722,14 2849,10 2352,66 2563,51 2654,16 2341,34 2332,26 2590,81 3552,99 1851,93

13 2724,00 2851,07 2354,54 2565,32 2654,09 2350,04 2379,35 2592,46 3554,29 1853,61
14 2715,77 2851,52 2354,11 2556,09 265591 2338,61 2392,94 2593,07 3554,90 1849,34
15 2717,77 2853,08 2352,77 2551,17 2657,72 2348,65 2394,81 2592,75 3555,33 1847,17
16 2745,19 2906,16 2397,06 2594,68 2695,05 236,94 2418,01 2636,68 360147 1880,15
17 2724,11 2851,10 2353,78 2564,63 265,30 2340,19 2392,53 2591,95 3553,97 185115
18 2725,99 2854,50 2353,35 2565,80 2656,07 2342,25 2392,95 2591,69 3555,77 1849,55
19 2720,36 2845,95 2352,52 2546,00 2657,88 2339,19 2394,16 2591,77 3555,94 1845,57
20 2607,52 2850,84 2354,52 553,14 646,53 335,65 386,39 2583,77 3547,77 183524

21 2743,26 2903,59 2394,86 2592,72 2695,09 2357,65 2408,21 2629,60 3596,35 1880,29
22 2724,94 2849,82 351,19 2565,32 655,64 2341,83 394,52 2593,84 3552,06 185178

23 2726,45 2848,42 2346,08 256545 2653,37 2343,44 2394,87 2591,88 3554,04 1248,00
24 2723,92 2848,80 2348,01 2552,59 2661,62 2338,98 2393,32 2593,85 3553,35 184934

25 2699,49 2849,27 2345,17 2543,33 2659,32 2337,93 2394,29 2590,52 3549,77 183743,

(s urgery
[l Gastroenterology
[ Gynecoloay

e uimonology

best scenario
scenario

2 2 2

Figure A.6: Akaike numbers for the 25 configurations for the department outpatient

clinics (first visit).
22 15 14 20 20

19
1 3110,25 3368,30 2887,58 2890,23 3232,15 2766,51 2831,92 2863,58 3939,52 3114,06 2584,80
2 2959,26 3221,81 2734,14 2838,12 3101,84 2658,58 2687,04 2722,72 3838,66 2913,04 241711
3 2961,26 3223,49 2735,57 2825,27 3101,82 2660,05 2689,02 2724,34 3839,80 2912,01 2413,60
4 2963,23 3206,86 2736,99 2805,82 3100,05 2661,97 2690,8% 2723,02 3836,69 2912,76 2412,19
5 2965,19 3208,45 2738,83 2807,44 310,03 2663,78 2692,83 272501 3837,19 2914,53 2413,96
6 3029,04 353,20 2816,43 2845,15 159,77 2707,86 2757,50 2785,99 3867,72 3010,06 2463,74
7 2961,26 3223,30 2735,63 2808,95 3101,35 2659,99 2689,02 2724,24 3839,98 2910,81 2412,04
8 2957,46 3222,61 2737,11 2806,94 3103,05 2651,62 2689,40 2722,81 3342,85 2909,61 2412,61
9 2958,75 3208,25 2738,84 2806,07 3102,04 2652,69 2691,33 272502 3835,92 2911,90 2413,87

10 2966,29 3210,03 2740,79 2808,75 3104,02 2662,86 2676,34 2726,41 3837,88 2913,52 2415,86

11 3014,14 3249,36 2785,29 2845,61 3148,10 2688,93 2731,49 2772,09 3857,97 2979,05 2441,68

12 2963,22 3206,94 2737,06 2804,96 3100,06 2661,93 269086 2723,47 3835,05 2912,08 2411,75

13 2964,68 3207,84 2738,89 2304,33 3101,70 2661,02 2691,38 2725,46 3833,29 291161 241336

14 2956,84 3209,57 2736,41 2806,78 2103,67 2659,14 288,20 2718,70 3834,89 291,97 2412,38

15 2954,16 3211,57 2742,83 2808,02 310564 2661,02 2678,29 2725,88 3836,94 291,68 2416,17

16 2987,35 3243,72 2768,33 2842,28 3137,90 2671,61 2717,55 2766,49 3855,88 2961,68 2431,09

17 2962,77 3207,62 2738,93 2804,51 3101,53 2663,89 2692,79 2725,28 3835,06 2914,04 241364

18 2966,53 3209,47 2740,86 2806,28 3103,69 2652,74 2676,33 2722,37 3835,27 2913,54 241529

19 2953,72 3211,65 2742,58 2807,28 3101,91 2661,10 2682,91 2720,58 3836,76 2902,33 2404,97

20 2951,11 3210,32 2740,45 2808,38 097,54 2652,53 2678,45 2722,35 3838,59 291316 2418,78

21 2983,13 3240,27 2762,19 2843,10 3137,81 2668,42 2711,46 2754,23 3852,11 2958,80 2422,41

22 2959,16 3209,39 2740,93 2806,89 2103,53 2651,62 2694,26 2725,58 3835,54 2915,87 2415,40

23 2958,64 3211,24 2742,74 2808,73 3103,99 2659,84 2694,99 2727,51 3837,12 2914,91 2416,74

24 2953,68 3205,85 2743,11 2808,85 3104,75 2664,49 2684,87 2725,19 3838,31 2904,13 2406,39

25 2949,27 3211,95 2740,55 2810,38 3106,24 2664,48 2678,55 2725,75 3840,83 2913,45 2412,42,
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Figure A.7: Akaike numbers for the 25 configurations for the department outpatient
clinics (repeated visit).
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mm
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21 26
scenario

2039,84 1593,40 2824,23 1574,37 1773,41 939,92 2042,90 985,23 1328,15 2332,92 1292,35
1990,60 1516,17 2775,60 1535,23 1665,28 824,09 1904,43 871,59 1206,87 2296,58 1194,17
1932,84 1511,89 2763,12 1516,79 1667,27 825,61 1906,27 872,35 1208,43 2282,35 1195,66
1974,24 1513,50 2760,93 1457,26 1668,43 827,39 1904,92 874,26 1209,86 2276,88 1157,66
1968,85 1513,73 2761,96 1499,24 1669,78 826,73 1904,47 876,25 1211,00 2278,83 1199,36
2000,46 1557,68 2794,38 1537,70 1724,55 892,59 1959,26 941,00 1273,06 2309,52 1245,26
1975,44 1511,39 2758,91 1506,53 1667,27 825,65 1906,22 872,18 1208,48 2277,58 1195,66
1977,24 1513,32 2759,53 1507,52 1661,00 827,48 1896,28 865,42 1204,19 2275,43 1193,50
1972,40 1515,25 2761,36 1499,21 1662,34 829,13 1896,14 866,83 1204,44 2278,85 1195,39
10 1970,74 1515,61 2763,54 1500,07 1664,33 827,73 1898,04 868,16 1211,55 2279,70 1196,07
11 1995,80 1539,94 2788,75 1539,65 1693,92 857,28 1955,13 918,33 1238,92 2307,88 1225,92
12 1997,28 1513,02 2759,86 1504,87 1668,38 827,52 1904,45 874,12 120948 2279,15 1157,66
13 1973,12 151501 2761,51 1499,68 1662,02 829,19 1895,75 867,29 1210,62 2280,42 1195,34
14 1974,38 1509,94 2758,17 1499,67 1661,65 820,55 1897,80 858,56 119447 2280,01 1196,87
15 1972,49 1507,98 2765,54 1501,42 1663,65 829,72 1899,91 862,93 1201,54 2280,47 1193,42
16 1997,79 1537,90 2787,87 1532,64 1686,39 847,78 1938,54 909,12 1226,29 2303,27 1224,47
17 1973,52 1514,31 2761,68 1496,11 1669,87 825,78 1902,24 876,11 1210,85 2279,16 1199,63
18 1973,00 1515,91 2764,05 1497,78 1663,57 824,84 189745 869,21 1212,50 2278,44 1185,70
19 1971,15 1507,32 2758,08 1499,66 1663,65 826,29 1896,66 862,92 1202,22 2282,66 1194,26
20 1962,76 1509,26 2757,72 1498,15 1665,60 827,14 1888,55 861,90 1197,93 2281,20 1194,94
21 1995,87 1538,90 2786,72 1533,63 1682,37 839,59 1939,48 904,40 1224,04 2296,29 1202,23
22 1968,48 1515,82 276245 1497,64 1671,77 825,44 1904,01 878,07 121240 2281,03 1197,52
23 1972,23 1517,05 2760,38 1499,37 1665,96 826,41 1899,40 871,20 1213,56 2278,81 1154,00
24 1971,88 1508,19 2763,70 1498,94 1665,56 827,54 1906,05 862,47 1198,09 2281,04 1154,82
25 1963,73 1506,34 2761,93 1454,92 1667,24 824,29 1889,86 863,67 1199,88 2274,48 1196,72
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Figure A.8: Akaike numbers for the 25 configurations the department operating theaters.
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scenario

1741,25 2301,43 2029,22 174448 2029,39 1770,45 1678,65 1902,29 2680,71 1676,22 2066,81
1618,43 2201,94 1929,49 1648,69 1898,95 1674,52 1562,83 1714,29 2591,74 1531,54 1989,05
1620,38 2198,26 1922,67 1637,35 1500,88 1670,82 1562,69 1713,52 2587,88 1533,40 1987,42
1622,01 2200,05 1923,30 1627,10 1502,88 1671,71 1557,27 1714,06 2579,70 1533,23 1938,16
1623,44 2201,85 1924,85 1626,56 1903,49 1673,70 1557,80 1715,71 2576,19 1534,41 1989,27
1673,11 2256,73 1988,36 1680,86 1962,58 1723,67 1608,91 1796,21 2617,87 1595,16 2023,41
1620,37 2197,84 1921,67 1631,60 1500,86 1670,06 1560,95 1713,06 2581,96 1533,38 1983,53
1614,34 2198,57 1923,63 1628,50 1884,17 1671,83 1552,49 1705,78 2570,26 1535,36 1959,42
1622,98 2199,96 1925,24 1626,13 1885,94 1673,42 1553,32 1706,71 2571,00 1535,03 1961,13
1624,97 2197,25 1926,65 1625,60 1887,87 1675,16 1552,02 1708,51 2572,53 1536,27 1978,45
1656,71 2233,74 1965,04 1673,97 1942,44 1708,12 1595,82 1774,68 2607,07 1572,91 2005,35
1622,02 2199,78 1923,40 1625,32 1902,86 1671,64 1554,30 1713,60 2574,69 1531,75 1981,08
1623,01 2195,36 1924,60 1627,22 1885,99 1673,16 1553,33 1705,77 2572,26 1531,51 1973,59
1624,53 2197,28 1927,12 1625,62 1884,06 1675,14 1558,24 1707,37 2566,86 1534,70 1963,42
1626,49 2199,22 1928,04 1630,36 1879,09 1676,13 1546,38 1709,33 2578,18 1536,54 1985,13
1638,18 2221,03 1950,11 1673,38 1916,01 1697,49 1593,56 1754,15 2607,07 1558,52 1992,17
1623,20 2200,71 1924,58 1626,94 1902,71 1673,63 1555,99 1715,31 2576,23 1532,06 1994,04
1624,95 2201,50 1925,92 1628,73 1887,79 1675,15 1551,01 1707,70 2577,33 1533,81 1973,63
1619,10 2202,15 1920,03 1627,15 1886,18 1674,40 1541,71 1709,34 256846 1531,08 1988,34
1619,44 2203,75 1923,69 1629,85 1881,92 1678,13 1542,14 1701,03 2571,29 1525,26 1962,15
1629,09 2221,91 1950,23 1669,92 1910,79 1694,20 1583,55 1746,37 2607,39 1558,43 1994,05
1616,17 2201,52 1925,33 1626,11 1898,45 1675,47 1557,93 1716,54 257740 1530,72 1966,78
1626,87 2198,04 1924,28 162749 1888,61 1676,91 1552,67 1709,52 2564,04 1531,84 1964,94
1612,31 2199,99 1926,00 1629,92 1887,96 1676,18 1537,64 1711,34 2579,13 1530,83 1961,51
1610,23 2190,70 1925,69 1633,30 1883,90 1670,73 1542,65 1713,32 2573,02 1531,68 1972,09,
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Figure A.9: Akaike numbers for the 25 configurations for the department nursing wards
(one day (light)).
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1831,07
1735,44
1727,47
1727,20
1726,44
1786,82
1724,04
1722,26
1724,01

10 1724,38

1762,45
1724,60
1724,17
1723,32
1725,70
1754,24
1723,41
1725,71
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1750,80
1724,78
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1728,64
1726,85
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1222,37
1107,92
1106,33
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1178,73
1106,62
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110,25
1103,20
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1107,93
1100,58
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1103,83
1140,32
1108,43
1102,58
1104,34
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1107,32
1102,72
1106,56
1091,51
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2457,42
2459,34
2518,18
2456,77
2458,30
2459,33
2461,33
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2492,33
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2460,65
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Figure A.10: Akaike numbers for the 25 configurations for

(one day (heavy)).
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12 2218,37
13 2212,47
14 2210,67
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24 2203,11
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Figure A.11: Akaike numbers for
(more than one day).
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1520,08
1398,58
1397,19
1397,05
1397,67
1456,88
1396,49
1390,08
1389,79
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1396,29
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1862,02
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1732,41
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1729,73
1732,18
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1848,39
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1835,70
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1878,87
1850,38
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1837,69
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1847,28
1709,82
1710,56
1712,50
1713,72
1764,58
1710,50
1711,72
1713,65
1706,79
1733,42
1712,50
1713,56
1713,06
1714,69
1722,49
1713,83
1715,30
1705,20
1708,97
1723,30
1706,41
1710,13
1704,90
1700,09
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1743,77
1584,37
1586,31
1586,66
1588,59
1665,81
1586,17
1587,30
1586,68
1588,65
1644,08
1586,04
1586,61
1579,95
1581,95
1616,69
1587,31
1588,45
1580,97
1582,54
1613,83
1583,63
1585,50
1583,22
1584,39

2409,07
2341,88
2334,85
2331,35
2329,67
2365,94
2329,23
231,75
2323,65
2325,64
2355,89
2324,13
2323,72
2322,73
2324,67
2354,52
2324,66
2324,64
2324,71
2325,91
2353,57
2326,53
2326,%4
2324,92
2326,39

the department nursing wards

1802,85
1683,06
1678,05
1674,58
1676,02
1741,41
1676,20
1677,43
1675,62
1677,62
1734,07
1675,39
1675,68
1677,51
1679,34
1719,46
1676,04
1677,48
1679,48
1679,88
1717,01
1677,60
1679,40
1674,19
1683,64
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1968,89
1859,93
1856,16
1858,15
1857,84
1922,61
1855,77
1856,75
1856,61
1857,48
1892,18
1857,72
1856,19
1838,58
1858,64
1826,26
1856,97
1857,15
1838,54
1846,21
1874,94
1858,97
1858,63
1846,12
1860,64,

25 configurations for the department nursing wards
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A.2 Seasonality

This section deals with checking the data on seasonality. In the paper we provide plots
with the actual data, the fitted ARIMA-model and its residuals for the arrivals at the
department outpatient clinics (first visits) of the the specialism surgery. This appendix
contains the accompanying plots (Figures A.12-A.15) of the autocorrelation (ACF) and
partial autocorrelation functions (PCF).

The bars indicate the extent of autocorrelation at the lags. The lags at which the bars
lay behind the vertical dash, are the lags at which the test statistic identifies that the
series possesses autocorrelation at a significance level a = 5%.*

Moreover, this Appendix contains the comparison whether the data possesses season-
ality components of the arrivals at the department nursing wards (more than one day),
for the specialism cardiology. The results are in Figures A.16-A.19. Also a comparison
for the arrivals at the department nursing wards (more than one day) for the specialism
surgery are provided. The results are in Figures A.23-A.26. Finally, a comparison for the
arrivals at the department nursing wards (one day) for the specialisms surgery is given.
The results are in Figures A.23-A.26.

We provide plots of the (0,0,0)-, (0,1,0)-, (0,0,0)X(0,1,0)12- and (0,0,0)X(0,1,0)50-
ARIMA-models and its residuals. Also for (0, 1,0)-, (0,0,0)X (0, 1,0)12- and (0,0,0)X (0, 1,0)50-
ARIMA-models, we provide the plot of the autocorrelation functions (ACF) and partial
correlation functions (PCF). We only expect autocorrelation at the lag at which we
suspect the season pattern. We see that for (0,0,0)X(0,1,0)12- and (0,0,0)X (0, 1,0)50-
ARIMA-models there is still autocorrelation at lags other than lag 12 and 50.

“The Q test statistic is the output of a Box-Pierce test.
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Date: 06/27/12 Time: 09:35
Sample: 2 254
Included observations: 253

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

-0.433 -0.433 48.085 0.000
-0.035 -0.274 48.392 0.000
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Figure A.12: Autocorrelation function and partial correlation function plot of
(0,1,0)X(0,0,0) ARIMA-model of arrivals at the department outpatient clinics (first
visits) for the specialism surgery. The bars indicate the extent of correlation, bars be-
hind the vertical dash indicate significant correlation.

Date: 068/27/12 Time: 09:36
Sample: 2 254
Included obsenvations: 253

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 -0.433 -0433 48085 0000
2 -0035 -0274 48392 0000
3 0041 -0128 48832 0000
4 -0.056 -0.134 49642 0.000
5 -0.024 -0.148 49.796 0.000
6 0.007 -0.131 49.809 0.000
7 0.003 -0.105 49.812 0.000
8 -0.002 -0.222 52.029 0.000
9 0087 -0.141 54036 0000
10 -0.038 -0173 54425 0000
11 0035 -0129 54743 0000
12 0035 -0081 55070 0.000
13 0001 -0.049 55070 0.000
14 -0.034 -0085 55376 0.000
15 0066 0010 56567 0.000
16 -0.068 -0.047 57.824 0.000
17 -0.073 -0.159 59.264 0.000
18 0.149 0009 65375 0.000
19 -0.109 -0.057 68.638 0.000
20 0034 -0024 68953 0000
21 0000 -0040 68953 0000
22 -0.008 -0.047 68969 0000
23 -0.026 -0.091 69155 0.000
24 0080 -0016 70947 0.000
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26 -0.015 -0.067 71.682 0.000
27 0.084 0019 72693 0000
28 -0.099 -0.054 76.529 0.000
29 0.039 -0.034 76.956 0000
30 -0.025 -0.088 77.143 0.000
31 0062 0012 78262 0000
32 -0.020 0051 78377 0000
33 -0.021 -0006 78505 0.000
34 0058 0109 79489 0.000
35 -0.152 -0.075 86.367 0.000
36 0099 -0048 89301 0.000
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Figure A.13: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)12 ARIMA-model of arrivals at the department outpatient clinics (first
visits) for the specialism surgery. The bars indicate the extent of correlation, bars behind
the vertical dash indicate significant correlation.
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Date: 06/27/12 Time: 09:38
Sample: 51 254
Included observations: 204

Autecorrelation

Partial Caorrelation

AC

PAC

Q-Stat

Prob

1 0034
2 -0.049
3 -0.099
4 0062
5 0018
6 -0.035
70017
8 -0.012
9 0.055
10 0.054
11 0126
12 0026
13 0045
14 -0.010
15 0083
16 -0.048
17 001
18 0.083
19 -0.080
20 0.013
21 0040
22 0006
23 -0.001
24 0037
25 0001
26 0015
27 0008
28 -0.055
29 0.022
30 0.032
31 0128
32 -0.070
33 0016
34 -0.006
35 -0.154
36 0051
37 0024
38 0.028
39 0.002
40 0.011
41 0.045
42 0.057
43 -0.098
44 -0.059
45 -0.058
46 -0.005
47 0085
48 0038
49 -0.089
50 -0.389

0.034
-0.050
-0.096
-0.058

0.010
-0.052

0.009
-0.019

0.051

0.048

0132

0.033

0079

0.020

0122
-0.038

02362
07322
27885
35845
3.6397
3.9065
3.9670
2.9999
4.6548
5.2898
87410
8.8902
03264
093497
10.888
11.408
11.433
13.373
14.839
14.880

36.089
38.249
75.367

0627
0693
0425
0.465
0602
0.689
0.784
0.857
0.863
0.871
0646
0712
0748
0.808
0760

Time series analysis data

Figure A.14: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)50 ARIMA-model of arrivals at the department outpatient clinics (first
visits) for the specialism surgery. The bars indicate the extent of correlation, bars behind
the vertical dash indicate significant correlation.
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Date' 06/27M12 Time: 09:21
Sample: 14 254
Included observations: 241

Autocorrelation

Partial Correlation

AC

Q-Stat

Prob

ﬂﬂ“‘ﬁ““““ﬂ“"‘ﬁﬁﬂ‘ﬁ‘ﬁ‘ﬁ‘ﬁﬁ‘ﬂ‘ﬁﬂnn‘ﬁﬁﬂ‘ﬂ‘ﬂﬂnﬂ

-0.467
-0.003
-0.035
0027
0022
-0.075
0.067
-0.082
0.057
-0.011
0.269
-0.521
0.256
-0.011
0014
-0.004
-0.073
0145
-0.142
0.093
-0.014
-0.032
0.046
0.022
-0.066
-0.001
0047
-0.070
0.087
-0.101
0130
-0.024
-0.014
0.083
-0.203
0.085
0.058
0022
-0.108
0.056
-0.016
0.050
-0.031
-0.056
0.003
-0.029
0162
-0.079
-0.082
-0.019

53220
53222
53531
53712
53834
55251
56.386
58.090
58896
58.926
77.248
146.88
16372
16375
163.80
162.80
16520
170732
176.02
178.31
178.36
178.65
179.22
179.34
180.51
180.51
18111
18245
18368
186 52
191.25
191.41
191.46
193.42
20519
20727
208.24
208 38
21176
21268
21275
213.49
213.78
21471
21472
21497
22290
22480
22683
22694

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Figure A.15: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)12 ARIMA-model of arrivals at the department outpatient clinics (first
visits) for the specialism surgery. The bars indicate the extent of correlation, bars behind
the vertical dash indicate significant correlation.
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Figure A.16: Plot of (0,0,0)-ARIMA-model of arrivals at the department nursing wards
(more than one day) for cardiology. The red line indicates the actual data, the green line
the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.17: Plot of (0,1,0)-ARIMA-model of arrivals at the department nursing wards
(more than one day) for cardiology. The red line indicates the actual data, the green line
the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.18: Plot of (0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department
nursing wards (more than one day) for cardiology. The red line indicates the actual data,
the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.19: Residual plot of (0,0,0)X (0, 1,0)50-ARIMA-model of arrivals at the de-
partment nursing wards (more than one day) for cardiology. The red line indicates the
actual data, the green line the estimated ARIMA-model and the blue lines depicts the
residuals.
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Date: 0710112 Time: 11:11

Sample: 2 254

Included obsemvations: 253

Autocorrelation

Partial Correlation
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Praob
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0.053

-0.525
-0.173
-0.271
-0.135
-0.088
-0.052
-0.185
-0.056
0114
-0.077
-0.081
-0.027
-0.102
-0.103
-0.102

0.008
-0.089
-0.045
-0.023

0.071

0.055
-0.000
-0.021
-0.031
-0.030

0.078

0.078

0.083

0.007

0.006
-0.187
-0.014
-0.087
-0.020
-0.019
-0.079

70.588

169.18

Time series analysis data

Figure A.20: Autocorrelation function and partial correlation function plot of (0,1,0)-
ARIMA-model of arrivals at the department nursing wards (more than one day) for
cardiology. The bars indicate the extent of correlation, bars behind the vertical dash
indicate significant correlation.
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Included obsenvalions: 242

Autocorrelation

Partial Correlation

AC

Q-5tat

Prob

=

=

]
'
'
'
'
'
'
'
'
'
'
'
'
u}
P
]
)
=
'
'
'
'
'
'
'
'
'
'
'
'
|
'
=
P
=)

ittt s W s 1 5 B N W= W = N ittt

0228
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-0.010
-0.034
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-0.092
-0.041
0124
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0037
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Figure A.21: Autocorrelation function and partial correlation functionplot of of
(0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department nursing wards (more
than one day) for cardiology. The bars indicate the extent of correlation, bars behind
the vertical dash indicate significant correlation.
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Date' 07/0112 Time: 1118
Sample: 51254
Included observations: 204

Autocorrelation Partial Correlation AC PAC  Q-Stat  Prob

1 0034 0034 02448 0621
2 0197 0196 83344 0015
3 -0046 -0060 87707 0033
4 0168 0130 14683 0005
5 0043 0054 15076 0010
6
7
8
9

oo

0078 0016 16369 0012

-0.096 -0106 18343 0010

0023 -0.002 18467 0.018

0082 0.116 19.909 0.018
10 0155 0128 25119 0.005
25233 0.008
12 0.018 -0.019 25305 0.013
13 -0.038 -0052 25619 0019
14 0059 0006 26392 0023
15 0125 0127 29868 0012
16 0082 0079 31375 0012
17 0103 0111 33761 0009
18 0051 0022 34348 0011
19 0126 0.037 37.951 0.006
20 0.023 -0.057 38.075 0.009
21 0.055 -0.012 38779 0.010
22 -0.073 -0.052 40.017 0.011
23 -0.009 -0018 40034 0015
24 -0.023 -0.003 40153 0021
25 0024 -0021 40283 0027
26 0027 0026 40455 0035
27 0045 0020 40929 0042
28 -0003 -0017 40931 0054
29 -0057 0111 41717 0080
30 -0.046 -0.069 42.231 0.068
31 -0.051 -0.054 42.865 0.076
32 0173 0226 50149 0.022
33 0.035 0082 50452 0.027
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49 0002 0023 70643 0023
50 -0.317 -0289 98043 0000
il 51 0150 0.082 10423 0.000

! 52 0.012 0078 10427 0.000

Figure A.22: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)50-ARIMA-model of arrivals at the department nursing wards (more
than one day) for cardiology. The bars indicate the extent of correlation, bars behind
the vertical dash indicate significant correlation.
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Figure A.23: Plot of (0,0,0)-ARIMA-model of arrivals at the department nursing wards
(more than one day) for surgery. The red line indicates the actual data, the green line
the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.24: Plot of (0,1,0)-ARIMA-model of arrivals at the department nursing wards
(more than one day) for surgery. The red line indicates the actual data, the green line
the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.25: Plot of (0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department
nursing wards (more than one day) for surgery. The red line indicates the actual data,

the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.26: Plot of (0,0,0)X(0,1,0)50-ARIMA-model of arrivals at the department
nursing wards (more than one day) for surgery. The red line indicates the actual data,

the green line the estimated ARIMA-model and the blue lines depicts the residuals.
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Date: 07/01/12 Time: 11:35
Sample: 2 254
Included obsenvations: 253

Autocorrelation Partial Correlation AC PAC  Q-Stat Prob

= 1 -0.463 -0.463 54.889 0.000
2 0060 -0.197 55.807 0.000
3 0003 -0.072 55810 0.000
4 -0121 -0.184 59579 0.000
5 -0.009 -0210 59600 0.000
6 0089 -0048 61679 0000
7 -0117 -0144 65253 0.000
8 -0012 -0232 §5292 0.000
9 0029 -0.202 65516 0.000

10 0.033 -0.104 65796 0.000

11 -0.014 -0.137 §5.847 0.000

12 0.074 -0.083 67.303 0.000

13 -0.029 -0.058 &7.537 0000

14 0067 0067 68734 0000

15 -0.064 0008 69.842 0000

16 -0.052 -0.090 70574 0000

17 -0.050 -0167 71.258 0000

18 0134 0053 76193 0000
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| 19 -0073 0036 77666 0000
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

m

20 0.015 -0.033 77.729 0.000
21 -0.005 -0.033 77.736 0.000
22 -0.021 -0.010 77.865 0.000
23 -0.037 -0.135 78.247 0.000
24 0155 -0.010 85015 0000
25 -0.087 0007 87139 0000
26 -0.043 -0.109 87.807 0000
27 0073 -0064 89.333 0000
28 -0.050 -0.051 90.046 0000
29 0037 0015 90437 0000
30 0.016 -0.006 90.513 0.000
31 -0.007 0038 90.526 0.000
32 -0.063 -0.063 91.689 0.000
32 0.009 0068 94583 0.000
34 -0.068 0.065 95.932 0.000
35 -0.063 -0.068 97.123 0000
36 0053 -0092 97.954 0000

A& s---==sm--p--c-o--Aa--sanelln-fANs0

'
'
'
'
'
|
'
|
'
'
'
)
'
'
'
'
'
]
'
'
|
'
'
'
'
'
p
'
'
'

Figure A.27: Autocorrelation function and partial correlation function plot of (0,1,0)-
ARIMA-model of arrivalsat the department nursing wards (more than one day) for
surgery. The bars indicate the extent of correlation, bars behind the vertical dash indicate
significant correlation.

Sample: 13 254
Included observations: 242

Autacorrelation Partial Correlation AC PAC Q-Stat Prob

u] ! 1 0.130 0.130 4.1267 0.042
2 0.098 0.083 65018 0.039
3 0035 0013 68009 0079
4 -0.066 -0.082 7.8765 0.096
5 0010 0024 79025 0162
6
7
8
9

-0.060 -0.053 88007 0.185

-0.089 -0.077 10772 0.149

0.008 0033 10790 0214

0.039 0.057 11167 0.264
10 0.014 -0.005 11.219 0.341
11 -0.009 -0.032 11.242 0.423
12 -0.480 -0.497 70.411 0.000
13 -0.018 0.123 70.498 0.000
14 -0.022 0078 70623 0.000
15 -0.134 -0.150 75292 0.000
16 -0.069 -0.143 76553 0.000
17 -0.053 0028 77286 0.000
ul 18 0079 0090 78952 0.000
19 0.058 -0.072 79.837 0.000
20 0.072 0057 81223 0.000
21 -0.024 -0.001 81.379 0.000
22 -0.003 -0.007 £1.382 0.000
23 0.040 0032 81503 0.000
24 0074 -0228 83298 0.000
25 -0.068 0019 84543 0.000
26 -0.094 -0.012 86985 0.000
27 0.044 -0.067 87525 0.000
28 0034 -0.085 87850 0.000
29 0064 0079 88995 0.000
30 -0.023 0.044 89136 0.000
31 0.038 -0.037 89.543 0.000
32 0.009 0038 89.565 0.000
33 0.028 0003 89.787 0.000
34 -0.097 -0.148 92.485 0.000
35 -0.089 0017 95266 0.000
36 -0.080 -0.125 97.081 0.000
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Figure A.28: Autocorrelation function and partial correlation function plot of of
(0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department nursing wards (more
than one day) for surgery. The bars indicate the extent of correlation, bars behind the
vertical dash indicate significant correlation.
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Date: 07/01/12 Time: 11:36
Sample: 51254
Included observations: 204

Autocorrelation Partial Correlation AC PAC Q-Stat  Preb

! -0.018 -0.018 00728 0787
0112 0112 26827 0261
0033 0037 29099 0406

] 1
I 2
' 3
[ 4 0165 0179 86477 0071
1 5
1 B
I 7
8

=)

0014 0000 86871 0122
0054 0100 93115 0157
-0.086 -0.078 10.875 0.144
0.003 -0.054 10.877 0.209
ul 9 0061 0.088 11668 0.233
il 10 0.023 0.067 11785 0.300
! 11 0.080 0.030 13191 0.281
! 12 0071 0048 14308 0281
! 13 -0.003 0023 14310 0352
! 14 0030 0020 14506 0413
! 15 -0023 0025 14623 0479
| 16 -0052 -0.037 15236 0507
| 17 -0027 0023 15399 0567
=] 18 0155 0.187 20.816 0.289
|

|

|

il

19 -0.049 -0.042 21.358 0.317
20 0.009 -0.078 21.375 0.375
21 -0.037 -0.045 21.693 0.417
o 22 0023 0108 21811 0471
! 23 0040 0015 22175 0510
] 24 0186 0136 30217 0178
! 25 -0020 -0.004 30309 0213
|
|
m]

g

O-----O_-_-_-=-

'
'
'
'
'
o 26 -0104 0141 323841 0167
1 27 0036 0029 33150 0.192
1 28 0036 0147 33455 0219
|‘ 29 0.042 0.020 33870 0.244
! 30 0.015 -0.100 33924 0.284
! 31 0.001 0048 33924 0328
! 32 -0.136 -0.110 38.446 0.201
! 33 0064 0024 39438 0204
! 34 -0.085 -0.068 41221 0184
! 35 -0.075 -0084 42627 0176
! 36 0056 0017 43418 0185
| 37 0015 0072 43474 0215
| 38 0007 0025 43485 0249
! 39 0.080 0.033 45124 0.231
ul 40 0.032 0092 45391 0257
! 41 0.062 0.061 46394 0260
! 42 0.091 -0.039 48555 0228
! 43 -0.046 0.007 49.097 0.242
|

|

44 -0136 -0.057 53947 0145
45 -0.046 -0.051 54487 0157
il 46 0029 0094 54723 0177
! 47 0071 0117 56087 0171
| 48 -0032 0166 56355 0191
| 49 -0040 0000 56780 0208
! 50 -0.427 -0.400 10653 0.000
jm} 51 0.263 0195 12549 0.000
! 52 -0.088 -0.007 127.61 0.000
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Figure A.29: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)50-ARIMA-model of arrivals at the department nursing wards (more
than one day) for surgery. The bars indicate the extent of correlation, bars behind the
vertical dash indicate significant correlation.
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Figure A.30: Plot of (0,0,0)-ARIMA-model of arrivals at the department nursing wards
(one day) for surgery. The red line indicates the actual data, the green line the estimated
ARIMA-model and the blue lines depicts the residuals.
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Figure A.31: Plot of (0,1,0)-ARIMA-model of arrivals at the department nursing wards
(one day) for surgery. The red line indicates the actual data, the green line the estimated
ARIMA-model and the blue lines depicts the residuals.
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Figure A.32: Plot of (0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department
nursing wards (one day) for surgery. The red line indicates the actual data, the green
line the estimated ARIMA-model and the blue lines depicts the residuals.
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Figure A.33: Plot of (0,0,0)X(0,1,0)50-ARIMA-model of arrivals at the department
nursing wards (one day) for surgery. The red line indicates the actual data, green the
estimated ARIMA-model and blue are the residuals.
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Date: 07/01/12 Time: 11:38
Sample: 2 254
Included observations: 253

Autecorrelation Partial Correlation AC PAC Q-Stat Prob

=
g
I

1 -0.410 -0.410 43.103 0.000
2 -0.087 -0.307 45.032 0.000
3 -0.004 -0.234 45036 0.000
4 0090 -0.064 47129 0.000
-0.078 -0.104 48693 0.000

6 -0.023 -0.119 48836 0.000

7 -0.057 -0.208 49.700 0.000

8 0095 -0.108 52075 0.000

9 -0.017 -0.088 52.156 0.000
10 -0.045 -0.127 52.690 0.000
11 0.032 -0.090 52.958 0.000
12 0.079 0010 54.623 0.000
13 -0.109 -0.097 57.821 0.000
i 14 0119 0073 61617 0.000
15 -0.052 0044 62362 0.000
16 -0.018 0015 62449 0.000
17 -0.028 -0.017 62670 0.000
18 -0.014 -0.074 62726 0.000
19 0000 -0.077 62726 0.000
20 0.034 -0.050 63.043 0.000
21 -0.002 -0.009 63.045 0.000
22 0.046 0055 63.642 0.000
23 -0.031 0.013 62.918 0.000
24 -0.044 -0.062 64.456 0.000
25 0016 -0.073 64529 0.000
26 0036 -0.050 64.897 0.000
27 -0.036 -0.034 65267 0.000
28 0001 -0.036 65267 0.000
29 0008 -0.022 65287 0.000
30 0.017 -0.002 65.376 0.000
31 0.019 0.049 65.480 0.000
32 -0.088 -0.056 67.731 0.000
0138 0111 73.347 0.000
34 -0.099 -0.025 76.212 0.000
35 0029 0014 76.453 0.000
36 -0.038 -0.034 76.885 0.000
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Figure A.34: Autocorrelation function and partial correlation function plot of (0,1, 0)-
ARIMA-model of arrivals at the department nursing wards (one day) for surgery. The
bars indicate the extent of correlation, bars behind the vertical dash indicate significant
correlation.

Sample: 13254
Included obsenvalions: 242

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

=
m

= 1 0231 0231 13104 0000
! 2 0082 0030 14771 0001
p 3 0134 0114 19179 0.000
p 4 0152 0103 24914 0000
! 5 0072 0.009 26214 0.000
! 6 0048 0011 26795 0.000
! 7 0034 -0.007 27.093 0.000
! 8 0046 0018 27.633 0.001
! 9 0017 -0.011 27707 0001
! 10 -0.003 -0.017 27710 0002
! 11 0021 0017 27822 0003
! 12 -0.360 -0406 61.053 0000
1] 13 -0087 0088 62999 0000
| 14 0035 0065 63311 0000
| 15 -0078 -0.049 64903 0000
! 16 -0.137 -0.020 £9.831 0.000
|
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! 17 -0.093 -0.053 72112 0.000
! 18 -0.068 -0.021 73.336 0.000
! 19 -0.001 0.067 73.336 0.000
o 20 0018 0093 73426 0000
Bl 21 -0.012 0005 73463 0000
o 22 0058 0058 74352 0000
! 23 -0061 -0.068 75350 0000
| 24 -0071 -0256 76713 0000
| 25 -0005 0064 76719 0000
! 26 -0.050 0021 77.393 0.000
! 27 -0.003 0.005 77.295 0.000
! 28 -0.037 -0.098 77.778 0.000
L 29 0025 0024 77.943 0.000
" 30 0.006 -0.045 77.958 0.000
g 31 0041 0118 78429 0000
Bl 32 -0.044 0019 78973 0000
L 33 0022 0010 79.117 0000
! 34 -0083 -0072 81065 0000
| 35 -0001 0005 810865 0000
| 36 -0060 -0243 82111 0000
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Figure A.35: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)12-ARIMA-model of arrivals at the department nursing wards (one day)
for surgery. The bars indicate the extent of correlation, bars behind the vertical dash
indicate significant correlation.



A.2 Seasonality 113

Date: 07/0112 Time: 11:41
Sample: 51254
Included observations: 204

Autocorrelation Partial Correlation AC PAC  Q-Stat  Prob

= 1 0246 0246 12487 0000
2 0201 0150 20883 0000
3 0300 0241 30692 0000
4 0334 0235 63143 0000
5 0180 0024 69950 0000
6 0179 0028 76721 0000
7 0242 0081 89.200 0.000
8 0278 0135 10577 0.000
9 0207 0069 115.04 0.000

10 0151 -0.018 119.97 0.000

11 0305 0151 14023 0.000

12 0234 0042 15226 0000

13 0182 0027 15951 0000

14 0247 0094 17304 0000

15 0101 -0158 17530 0000

16 0110 -0.067 17793 0000

17 0039 -0149 17833 0000

18 0.114 -0.010 18129 0.000

19 0137 0.058 18552 0.000

20 0130 0.041 189.36 0.000

il 21 0148 0095 19437 0.000
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Figure A.36: Autocorrelation function and partial correlation function plot of
(0,0,0)X(0,1,0)50-ARIMA-model of arrivals at the department nursing wards (one day)
surgery. The bars indicate the extent of correlation, bars behind the vertical dash indicate
significant correlation.
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This part of the appendix contains figures with the mean squared errors (MSE) of the

ARIMA-models for estimating the arrivals at 11 specialims. The figures contain for all
visit), operating theaters and nursing wards (one day (heavy and light) and more than

A.37-A .42 contain the MSE for the departments outpatient clinics (first and repeated
one day).

and the bias squared. A MSE of 0 indicates a perfect fit. The closer the number is to

25 possible fits the MSE. The MSE is defined as the sum of the variance of the residuals
zero, the smaller the difference between the estimates and the actual values.
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Figure A.37: MSE for the department outpatient clinics (first visits).
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Figure A.38: MSE for the department outpatient clinics (repeated visits).
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Figure A.39: MSE for the department operating theaters.
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Figure A.40: MSE the department nursing wards (one day (light).
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Figure A.41: MSE the department nursing wards (one day (heavy).
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Figure A.42: MSE for the department nursing wards (more than one day).



Appendix B

Markov data

B.1 Subdivision and length of time interval

Figures B.1 and B.2 of this section contain respectively the aggregate number of weekly
and monthly transitions of transfers of outpatients. The weekly transfers concern the
transfers between subspecialisms of surgery, the monthly transfers are between 11 spe-
cialisms.

©Oncology, lung surgery and gastrointensinal surgery
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jan-10 50| 19 35 23 13 360) 6486 1 24| 7011
feb-10] 43 11 40| 18] 23 355 5851 19 6366
mrt-10| 58| 4 15 4 10| 99 6891 27| 7108

apr-10 44 16| 28| 22 14] 341 62356 1 43 6765
mei-10| 44 16| 28| 22 14] 341 62356 1 43 6765
jun-10 50| 20 32| 20 34| 379 6631 16| 7182
jul-10] 47| 16| 23 29 21 246] 5566 1 46 5995
aug-10| 38| 18] 34| 18] 13 315 4321 1 37| 5401

sep-10| 48| 16| 40| 28] 26| 347] 6429 24| 6958
okt-10| 26| 12 17| 23 16| 318| 5997 1 27| 6447
nov-10 41 10| 321 22 17| 388| 6302 16| 6827
dec-10| 39 3 16| 6 8 26 6218 6376
jan-11 42| 14| 24| 29 23 393 6725 4 50 7304
feb-11| 48| 19 33 35 25 348| 5969 4 50 6531
mrt-11] 37| 12 39 19 25 341 7021 5 18] 7517
apr-11 43 12 13 19 23 307] 6394 4 32 6859
mei-11| 39 10| 25 25 22| 358| 6133 5 20 6637
jun-11 51 24| 34| 26| 25 376 5911 7| 45 6439
jul-11] 41 13 34| 26| 22| 261 5998| 5 32 6432
aug-11| 38| 3 9 3 6| 66| 5384] 8 34 5553
sep-11| 46| 18] 29 38 22| 279 6229 6| 40 6707
okt-11| 47| 15 35 19 24| 367| 5910] 47 6464|
nov-11 45 15 37| 25 16| 384] 6399 14| 6936
dec-11| 40| 13 22| 20 9 246] 6164 6514
mean 44,458| 13,752| 28,292 21,625 19,042| 304,208| 6168,375( 3,600| 32,000| 6631,417
sd 5477| 5,073| 8,615 2,381| 6,805 95,193| 464,030|2,444|12,142| 493,555
modus 50| 16 34| 22 23 341] 62356 1 24 6765,

sd=standard deviation

Figure B.1: The total number of transitions for the subspecialisms of surgery per month
and the average, standard deviation and modus for the period 2010-2011.
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Markov data
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2 14 68| 121 5 12 86 60 46 36 90 11 27, 1345 217 2144
3 3 48 64 5 11 60, 36, 42 24 55 12 13 1570 214 2163
4 38| 40 64 6 9 60| 37, 21 26 52 11 13 1562 231 2148
5 10 35 73 8 3 59 38 45 1 43 3 18, 1631 210 2192
6 6| 57, 60 10 7 54 36 39 10 64 9 19 1439 186 2000
7 8| £l 72 8 10, 35 31 33 18 54 18, 16, 1645 194 2213
8 10 39 76 4 7 47, 29 37| 20 53 13 18, 1627, 200 2188
9 4 13 57 4 5 51 43 35 21 39 6 22| 1171 207 1713
10 8| 36 44 7 4 46 23 38| 13 57 10 11 1607 242 2148
11 11 43 66 2 3 56 36, 26 12 43 6 17, 1478, 217 2018
12 6| 46, 72 6 10, 57, 33 23 13 54 3 25 1630 209 2197
13 6| 33 71 7 5 55 46 32| 10 37 12 25 1628 192 2165
14 6| 42 69 1 13 52 34 24| 12 40 11 15 1535 194 2048
15 7| 30| 59 10 3 38, 42 25 19 44 7 21 1313 192 1813
16 7| 31 34 5 11 43 33 24| 19 60, 3 16, 1506 205 2053
17 9 35 68 7 7 40 32 29 13 50 8 17| 1535 236 2091
18 4 44 43 4 3 55 21 31 10 62 8 17, 1402 249 1965
19 2] 33 49 4 2 47 29 28| 14 34 7 20, 1028, 228 1527
20 2| 39 52 7 3 48, 25 31 17 28, 7 24 1071 222 1578
21 5 25 72 7 7 39 28 21 14 50 8 22| 14593 241 2035
22 7| 39 83 9 7 46 25 29 12 47 7 29 1377 220 1940
23 7| 35 77 5 10, 49 28, 25 13 43 8 25 1580 234 214p
24 4 44 38 7 12 45 52 24| 13 46 3 4 1483 245 2122
25 10 37| 70 7 8 45 46 17| 20 44 12 21 1458 227 2022
26 7| 37| 78 4 9 43 42 12| 16 52 23 5 1492 215 2041
27 8| 41 63 3 6 43 31 26 13 65 4 25 1530 210 2070
28 10 39 72 6 5 43 36, 27| 16 50 3 21 1482 135 2000
29 4 28] 65 10 1 50 23 20 13 34 8 16 1267 174 1720
30 3 23 38 7 34 27, 15 13 44 3 15 1190 183 1619
31 15 26 70 13 2 38, 16, 22| 19 31 3 13 1035 169 1496
32 38| 22| 59 12 2 39 16, 22| 16 31 9 20, 963 175 1399
33 5 22| 48 6 6 27| 16 26 12 36 9 16 1007 181 1418
34 3 29 38 5 3 33 15 17| 12 33 6 17, 1083 193 1514
35 7| 25 78 11 7 47 20, 23 16 46 11 14 1357, 220 1882
36 38| 29 53 29 18, 14 51 7| 10 6 2 23 1382 252 1384
a7 10 24 80 4 8 45 23 29 10 56 10 20 1451 252 2026
38 6| 31 90 8 7 34 22 21 23 49 4 16 1512 257 2085
39 4 32| 59 8 7 38, 28, 27| 19 57, 7 25 1518 242 2072
40 14 28 54 5 10, 39 27, 27| 31 59 7 23 1498, 249 2071
a1 3 36 59 9 9 44 23 25 20 59 8 14 1380 239 1932
42 2] 38| 52 5 7 38 28, 20| 12 67 8 12 1512 236 2041
43 E 40 S0 7 10, 37, 21 24| 21 52 3 17, 1520 239 2046
44 38| 28 50 4 7 39 30, 26 19 57, 7 11 1197 225 1708
45 8| 39 51 2 13 46| 27| 31 21 72 9 12 1466 246 2047
46 4 43 60 4 4 41 18, 18| 12 56 3 11 1440 249 1977
47 B 38| 43 6 10, 38, 16, 17| 16 49 10, 12 1436 242 1940
48 £l 46, 50 4 7 46 26 24| 15 59 9 20, 1466 224 2005
45 8| a1 67 7 5 42 26 18 21 57 13 22| 1478 187 1993
50 8| 36 67 7 11 47 21 17| 18 49 3 25 1527 153 1935
51 E 43 61 4 6 43 24 17| 14 56 9 22 1510 93 1908
52 £l 56 31 31 12 38, 22, 5 21 2 19 2 1186 50 1485
mean | 6,882 37,216 64,431| 7,176| 7,400| 45,078| 29,765| 25,333| 16,745|48,490| 8,647 18,627| 1412,235] 210,824| 1941,235
sd 3,031 9,388| 14,765 5,290| 3,452| 10,365 10,071 8,653 5,336|14,614| 3,872| 6,500| 180,694 385,474| 224223
modus 8| 39 72 7 7 38 36 24| 12 57 8 25 1478 242 2148

sd=standard deviation

Figure B.2: The total number of transitions for 11 specialisms per week and the average,
standard deviation and modus for the period 2010.
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B.2 Markov property, homogeneity and limiting probabili-
ties

Figure B.3 shows an example for the computation of the M™ ™ -transition probabilities
of transfers of outpatients. For computing these probabilities, we use the Chapman-
Kolmogorov equations. In Figure B.4 there is an example for the M"™T™_transition
probabilities of transfer of inpatients.’

Both examples deal with the subdivision into subspecialisms of surgery. The first ex-
ample regards all realizations of the transition probabilities that an inpatient transfers
from the state ’other’ to the state 'discharge’. The second example deals with all real-
izations of the transfers of inpatients, treated by the ’other part of the hospital’, to the
state 'discharge’.

On top of the figure, one sees the different realizations of the monthly one step tran-
sition probabilities. Next, the 2-transition, 4-transition, 8-transition, 16-transition and
32-transition probabilities realizations, are provided.

'More data is available digitally.
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Markov data

jon___lieb _ mar __lapr _ Jmay _lin _ Jjl _ lavg _ Jsep loct _ Jnov __ldec  DISERWRTERUS
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Figure B.3:

1
66,97%
69,82%
63,40%
71,06%
57,92%
65,85%
67,81%
68,45%
67,79%
68,65%
67,68%
70,32%

1
44,85%
48,74%
40,19%
50,49%
33,55%
43,36%
45,98%
46,85%
45,95%
47,12%
45,81%
49,40%
45,31%

1
20,11%
23,76%
16,16%
25,49%
11,25%
18,80%
21,18%
21,95%
21,12%
22,21%
20,99%
24,45%
20,67%

1

4,05%
5,64%
2,61%
6,50%
1,27%
3,53%
4,47%
4,82%
4,46%
4,93%
4,40%
5,98%
4,40%
6,90%
1,10%

1
0,16%
0,32%
0,07%
0,42%
0,02%
0,12%
0,20%
0,23%
0,20%
0,24%
0,19%
0,36%
0,21%
0,45%
0,01%

An

2
69,82%
72,78%
66,09%
74,08%
60,38%
68,65%
70,69%
71,36%
70,67%
71,57%
70,56%
73,31%

2
46,75%
50,81%
41,30%
52,64%
34,97%
45,20%
47,94%
48,85%
47,91%
49,13%
47,76%
51,55%

2
20,97%
24,77%
16,84%
26,58%
11,73%
19,60%
22,04%
22,89%
22,01%
23,15%
21,88%
25,49%

2
4,22%
5,88%
2,72%
6,78%
1,32%
3,68%
4,66%
5,02%
4,65%
5,14%
4,59%
6,23%

0,17%
0,33%
0,07%
0,44%
0,02%
0,13%
0,21%
0,24%
0,21%
0,25%
0,20%
0,37%

3
63,40%
66,09%
60,02%
67,27%
54,83%
62,34%
64,20%
64,80%
64,17%
64,99%
64,07%
66,57%

3
42,46%
46,14%
38,05%
47,80%
31,76%
41,05%
43,53%
44,36%
43,50%
44,61%
43,37%
46,81%

3
19,04%
22,49%
15,29%
24,14%
10,65%
17,80%
20,02%
20,78%
19,39%
21,02%
19,87%
23,14%

3
3,83%
5,34%
2,47%
6,15%
1,20%
3,35%
4,23%
4,56%
4,22%
4,67%
4,17%
5,66%

0,15%
0,30%
0,06%
0,40%
0,02%
0,12%
0,19%
0,22%
0,19%
0,23%
0,18%
0,34%

a
71,06%
74,08%
67,27%
75,40%
61,46%
69,87%
71,95%
72,63%
71,93%
72,84%
71,82%
74,61%

a
47,59%
51,72%
43,65%
53,58%
35,59%
46,01%
48,79%
49,72%
48,76%
50,00%
48,61%
52,46%

a
21,34%
25,21%
17,14%
27,05%
11,94%
19,95%
22,44%
23,29%
22,41%
23,56%
22,27%
25,94%

a
4,29%
5,99%
2,77%
6,90%
1,34%
3,75%
4,74%
5,11%
4,73%
5,23%
4,67%
6,34%

0,17%
0,34%
0,07%
0,45%
0,02%
0,13%
0,21%
0,25%
0,21%
0,26%
0,21%
0,38%

5
57,92%
60,38%
54,83%
61,46%
50,09%
56,95%
58,65%
59,20%
58,63%
59,37%
58,54%
60,82%

5
38,79%
42,16%
34,76%
43,67%
29,01%
37,50%
39,77%
40,52%
39,74%
40,76%
39,62%
42,76%

5
17,40%
20,55%
13,97%
22,05%

9,73%
16,26%
18,29%
18,99%
18,26%
19,21%
18,15%
21,14%

5
3,50%
4,88%
2,26%
5,62%
1,10%
3,06%
3,87%
4,17%
3,86%
4,27%
3,81%
5,17%

0,14%
0,28%
0,06%
0,37%
0,01%
0,11%
0,17%
0,20%
0,17%
0,21%
0,17%
0,31%

6
65,85%
68,65%
62,34%
69,87%
56,95%
64,75%
66,68%
67,30%
66,65%
67,50%
66,55%
69,14%

6
44,10%
47,93%
39,52%
49,65%
32,99%
42,63%
45,21%
46,07%
45,18%
46,34%
45,04%
48,62%

6
19,78%
23,36%
15,88%
25,07%
11,07%
18,49%
20,79%
21,59%
20,76%
21,84%
20,64%
24,04%

6
3,98%
5,55%
2,57%
6,39%
1,25%
3,48%
4,40%
4,74%
4,38%
4,85%
4,33%
5,88%

0,16%
0,31%
0,07%
0,42%
0,02%
0,12%
0,20%
0,23%
0,20%
0,24%
0,19%
0,35%

7
67,81%
70,69%
64,20%
71,95%
58,65%
66,68%
68,66%
69,31%
68,64%
69,51%
68,53%
71,20%

7
45,41%
49,36%
40,70%
51,13%
33,97%
43,91%
46,56%
47,44%
46,53%
47,72%
46,39%
50,07%

7
20,37%
24,06%
16,36%
25,82%
11,40%
19,04%
21,41%
22,23%
21,38%
22,49%
21,25%
24,76%

7
4,10%
5,72%
2,64%
6,58%
1,28%
3,58%
4,53%
4,88%
4,52%
4,99%
4,46%
6,05%

0,17%
0,32%
0,07%
0,43%
0,02%
0,13%
0,20%
0,24%
0,20%
0,25%
0,20%
0,36%

83,64%

8
68,45%
71,36%
64,80%
72,63%
59,20%
67,30%
69,31%
69,96%
69,29%
70,17%
69,18%
71,87%

8
45,84%
49,82%
41,08%
51,61%
34,29%
44,32%
47,00%
47,89%
46,97%
48,17%
46,82%
50,54%

8
20,56%
24,28%
16,51%
26,06%
11,50%
19,22%
21,61%
22,44%
21,58%
22,70%
21,45%
24,99%

8
4,14%
5,77%
2,67%
6,64%
1,29%
3,61%
4,57%
4,93%
4,56%
5,04%
4,50%
6,11%

0,17%
0,33%
0,07%
0,43%
0,02%
0,13%
0,20%
0,24%
0,20%
0,25%
0,20%
0,37%

82,84%

9
67,79%
70,67%
64,17%
71,93%
58,63%
66,65%
68,64%
69,29%
68,62%
69,49%
68,51%
71,18%

9
45,40%
49,34%
40,69%
51,11%
33,96%
43,89%
46,55%
47,43%
46,51%
47,70%
46,37%
50,05%

9
20,36%
24,05%
16,35%
25,81%
11,39%
19,03%
21,40%
22,22%
21,37%
22,48%
21,24%
24,75%

9
4,10%
5,71%
2,64%
6,58%
1,28%
3,58%
4,53%
4,88%
4,51%
4,99%
4,46%
6,05%

0,17%
0,32%
0,07%
0,43%
0,02%
0,13%
0,20%
0,24%
0,20%
0,25%
0,20%
0,36%

83,89% 82,71% 8593% 11,27% notok

10
68,65%
71,57%
64,99%
72,84%
59,37%
67,50%
69,51%
70,17%
69,49%
70,37%
69,38%
72,08%

10
45,97%
49,96%
41,20%
51,76%
34,39%
44,45%
47,14%
48,03%
47,10%
48,31%
46,96%
50,68%

10
20,62%
24,35%
16,56%
26,13%
11,54%
19,27%
21,67%
22,50%
21,65%
22,76%
21,51%
25,06%

10
4,15%
5,79%
2,68%
6,66%
1,30%
3,62%
4,58%
4,94%
4,57%
5,06%
4,51%
6,13%

10
0,17%
0,33%
0,07%
0,43%
0,02%
0,13%
0,20%
0,24%
0,20%
0,25%
0,20%
0,37%

11
67,68%
70,56%
64,07%
71,82%
58,54%
66,55%
68,53%
69,18%
68,51%
69,38%
68,41%
71,07%

11
45,33%
49,26%
40,62%
51,03%
33,90%
43,82%
46,47%
47,35%
46,44%
47,63%
46,30%
49,97%

11
20,33%
24,01%
16,33%
25,77%
11,37%
19,00%
21,37%
22,19%
21,34%
22,44%
21,21%
24,71%

11
4,09%
5,70%
2,64%
6,57%
1,28%
3,57%
4,52%
4,87%
4,51%
4,98%
4,45%
6,04%

11
0,17%
0,32%
0,07%
0,43%
0,02%
0,13%
0,20%
0,23%
0,20%
0,25%
0,20%
0,36%

12 max norm difference
70,32% 9,22% not ok
73,31% 9,61% not ok
66,57% 8,73% not ok
74,61% 9,79% not ok
60,82% 7,98% not ok
69,14% 9,07% not ok
71,20% 9,34% not ok
71,87% 9,43% not ok
71,18% 9,34% not ok
72,08% 9,45% not ok
71,07% 9,32% not ok
73,83% 9,68% not ok

12 max normniet ok
47,09% 6,18% niet ok
51,18% 6,71% niet ok
42,20% 5,54% niet ok
53,02% 6,95% niet ok
35,22% 4,62% ok
45,53% 5,97% niet ok
48,238% 6,33% niet ok
49,20% 6,45% niet ok
48,25% 6,33% niet ok
49,48% 6,49% niet ok
48,10% 6,31% niet ok
51,92% 6,81% niet ok

12 max norm niet ok
21,12% 2,77% ok
24,95% 3,27% ok
16,96% 2,22% ok
26,77% 3,51% ok
11,82% 1,55% ok
19,74% 2,59% ok
22,20% 2,91% ok
23,05% 3,02% ok
22,17% 2,91% ok
23,32% 3,06% ok
22,04% 2,89% ok
25,67% 3,37% ok

12 max normniet ok
4,25% 0,56% ok
5,93% 0,78% ok
2,74% 0,36% ok
6,82% 0,90% ok
1,33% 0,17% ok
3,71% 0,49% ok
4,69% 0,62% ok
5,06% 0,66% ok
4,68% 0,61% ok
5,18% 0,68% ok
4,62% 0,61% ok
6,28% 0,82% ok

12 max norm difference
0,17% 0,02% ok
0,33% 0,04% ok
0,07% 0,01% ok
0,44% 0,06% ok
0,02% 0,00% ok
0,13% 0,02% ok
0,21% 0,03% ok
0,24% 0,03% ok
0,21% 0,03% ok
0,26% 0,03% ok
0,20% 0,03% ok
0,38% 0,05% ok

example of Markov limiting probabilities, Markov property and homo-
geneity for the transfer of outpatients. The Chapman-Kolmogorov equations are com-
puted for 2,34,8,16 and 32-transition probabilities for the first month. The example
concerns the transfer from the state 'other’ to the state ’discharge’ for outpatients who
did not underwent an operation.



B.2 Markov property, homogeneity and limiting probabilities 123

ian __lieb __Imar__lapr _Jmay__liun __Jil __Jaug _lsep oot Jnov__ldec  EXSERERTINES

98,31% 97,85% 99,04% 96,90% 99,83% 96,50% 97,69% 9511% 96,60% 97,19% 96,36%  99,69% 2,48% ok
two step 1 2 3 4 5 6 7 8 9 10 11 12 max norm difference
1 96,64% 96,19% 97,36% 9526% 98,14% 94,86% 96,03% 93,50% 94,96% 95.55% 94,73%  98,00% 2,44% ok
2 96,19% 9574% 96,91% 94,82% 97,68% 9442% 9559% 93,06% 94,52% 9510% 94,29% 97,55% 2,43% ok
3 9736% 96,91% 98,08% 9597% 98,87% 9557% 96,75% 94,19% 95,67% 96,26% 9544% 98,73% 2,45% ok
4 9526% 94,82% 9597% 93,90% 96,74% 93,51% 94,66% 92,16% 93,60% 94,18% 93,38%  96,60% 2,40% ok
5 98,14% 97,68% 98,87% 96,74%  99,66% 96,34% 97,52% 94,95% 96,43% 97.03% 96,20%  99,52% 2,47% ok
6 94,86% 94,42% 9557% 93,51% 96,34% 93,12% 94,27% 91,78%  93,22% 93,79% 92,99%  96,20% 2,39% ok
7 96,03% 9559% 96,75% 94,66% 97,52% 94,27% 9543% 92,91% 94,36% 94,94% 94,14% 97,39% 2,42% ok
8 93,50% 93,06% 94,19% 92,16% 94,95% 91,78% 92,91% 90,46% 9187% 92,44% 91,65% 94,82% 2,36% ok
9 94,96% 94,52% 9567% 93,60% 96,43% 93,22% 94,36% 91,87% 93,31%  933,88%  93,08%  96,30% 2,39% ok
10 9555% 9510% 96,26% 94,18% 97,03% 93,79% 94,94% 92,44% 93,88% 9446% 93,66% 96,89% 2,41% ok
11 94,73% 94,29% 9544% 93,38% 96,20% 92,99% 94,14% 91,65% 93,08% 93,66% 92,86% 96,07% 2,39% ok
12 98,00% 97,55% 98,73% 96,60% 99,52% 96,20% 97,39% 94,82% 96,30% 96,89% 96,07%  99,39% 2,47% ok
gemiddeli  35,24%
four step 1 2 3 L 5 6 7 8 9 10 11 12 max norm difference
1 93,39% 92,96% 94,09% 92,06% 94,84% 91,68% 92,80% 90,36% 9L77% 92,33% 91,55% 94,71% 2,35% ok
2 92,53% 92,10% 93,21% 91,20% 93,96%  90,83% 91,94% 89,52% 90,92% 91,48% 90,70% 93,83% 2,33% ok
3 94,79% 94,35% 954%% 93,43% 96,26% 93,05% 94,19% 91,71%  93,14% 93,71% 92,91%  96,12% 2,39% ok
4 90,74% 90,32% 91,42% 8944% 92,15% B89,08% 90,17% 87,79%  89,16% B89,71%  B88,95% 92,02% 2,29% ok
5 96,31% 95.87% 97,03% 94,94% 97,81% 94,55% 95,71% 93,18% 94,64% 95,22% 94,41% 97,67% 2,43% ok
6 89,99% 89,58% 90,66% 88,71% 91,39% 88,34% 89,43% 87,07% 8843% 83,97% 88,22% 91,26% 2,27% ok
7 92,22% 91,73% 92,91% 90,90%  93,65% 90,53% 91,64% 83,22% 90,62% 91,18% 390,40% 93,52% 2,33% ok
8 B8742% 87,01% 88,07% B86,17% B88,78% 85,81% B86,87% 84,58% B85,90% B86,43% 85,69% B88,65% 2,20% ok
9 90,17% 89,75% 90,84% 88,89% 91,57% 88,52% 89,61% 87,24% 88,61% 89,15% 88,39% 91,45% 2,27% ok
100 91,29% 90,86% 91,97% 89,98% 92,71% 89,61% 90,71%  88,32% 89,70% 90,26%  89,49%  92,58% 2,30% ok
11 83,74% 835,32% 90,41% B8846% 91,13% 88,09% 83,17% B86,82% B88,18% B88,72% 87,97% 351,00% 2,26% ok

12 96,05% 9560% 96,76% 94,67% 97,54% 94,28% 9544% 92,92% 94,38% 94,96% 94,15% 97,40% 2,42% ok
gemiddeli  91,38%

8step 1 2 3 4 5 6 7 8 9 10 11 12 max norm difference
1 B8722% B86,81% B87,87% B8597% B88,57% B85,62% 86,67% 84,38% B85,70% B86,23% B85,50% 8845% 2,20% ok
2 B8561% 8521% 86,25% B84,39%  B86,94% 84,04% B8507% 82,83% B84,12% B84,64% 83,92% B86,82% 2,16% ok
3 89,84% 89,43% 90,51% 88,56% 91,24%  88,19% 89,28%  86,92% 88,28%  88,83% 88,07% 9L11% 2,27% ok
4 82,34% 81,96% 82,95% 81,16% 83,62% 80,83% B8182% 79,66% 80,91% 8141% 80,71%  83,50% 2,08% ok
5 92,76% 92,33%  93,45% S91,44% 94,20% 91,06% 92,18% 83,75% 91,15% 91,71% 390,93% 94,07% 2,34% ok
6 80,99% B80,61% 81,59% 79,83% 82,25% 79,50% B80,48% 78,36% 79,58% B80,07% 79,39% B82,13% 2,04% ok
7 8505% 84,65% 85,68% 83,83% 86,37% 8349% 84,51% 82,28% 83,57% 84,08% 83,37% 86,25% 2,14% ok
8 7642% 76,07% 76,99% 75,33% 77.61% 7502% 7594% 73,94% 75,09% 7556% 74,91% 77,50% 1,93% ok
9 81,31% B80,94% B81,92% B80,15% 82,58% 79,82% 80,80% 78,67% 79,90% B80,33% 79,71% 8246% 2,05% ok
10 83,34% 82,95% B83,96% 82,15% 84,63% B81,81% 82,81% B80,63% B81,89% 82,39% B81,69% B84,51% 2,10% ok
11  80,53% 80,16% 81,13% 79,38% 81,78% 79,05% 80,02% 77,91% 79,13% 79,62% 78,94% 81,67% 2,03% ok
12 92,25% 91,82% 92,93% 90,93% 93,68% 90,55% 91,67% 89,25% 90,64% 91,20% 90,42%  93,55% 2,33% ok

gemiddeli  84,13%

16 step 1 2 3 L 5 6 7 8 9 10 11 12 max norm difference
1 76,07% 7572% 76,64% 74,98% 77,25% 74,67% 7559% 73,60% 74,75% 7521% 74,57% 77,14% 1,92% ok
2 73,29% 72,95% 73,84% 72,24% 74,43% 71,95% 72,83% 70,91% 72,02% 72,46% 71,84% 74,33% 1,85% ok
3  B0,72% B0,34% B81,32%  79,56% 81,97% 79,24%  80,21% 73,03% 79,32% 73,80% 79,12% B1,86% 2,04% ok
4 67,80% 6748% 68,30% 66,83% 68,85% 66,55% 67,37% 6559% 66,62% 67,03% 66,46% 68,75% 1,71% ok
5 86,05% 85,65% 86,69% 84,82% 87,39% 84,47% 85,51% 83,25% 84,56% 85,08% 84,35% 87,26% 2,17% ok
6 6559% 6529% 66,08% 64,65% 66,61% 64,39% 6518% 63,46% 6445% 64,85% 64,29% 66,52% 1,65% ok
7 72,33% T71,9%% 72,87% 71,30% 73,45% 71,00% 71,88% 69,98% 71,07% 71,51% 70,90% 73,35% 1,82% ok
8 5840% 58,13% 58,84% 57,57% 59,31% 57,33% 58,04% 56,50% 57,39% 57,74% 57,25%  59,23% 1,47% ok
9 6612% 6581% 66,61% 6517% 67,14% 64,90% 6570% 63,97% 64,97% 6537% 64,81% 67,05% 1,67% ok
10 69,45% 69,13% 69,97% 6846% 70,53% 68,17% 69,01% 67,19% 68,24% 68,66% 68,08% 70,43% 1,75% ok
11 64,85% 64,55%  65,33% 63,92% 65,80% 63,66% 6444% 62,74% 63,72% 64,12% 63,57% 65.77% 1,63% ok

12 8509% 84,70% 85,73% B83,88% 8642% 83,53% 84,56% B82,33% B83,62% 84,13% B8341%  B86,30% 2,15% ok
gemiddeli  71,62%

max 87,39%

min 56,50%

32 step 1 2 3 4 5 6 7 8 9 10 11 12 max norm difference
1 57,87% 57,60% 58,30% 57,04% 5877% 56,80% 57,50% 55,99% 56,86% 57,21% 56,72%  58,68% 1,46% ok
2 53,72% 53A47% 54,12% 52,95% 54,55% 52,73% 53,38% 51,97% 52,78%  53,11%  52,66% 54,47% 1,35% ok
3  6515% 64,85% 6564% 64,22% 66,17% 63,96% 64,74% 63,04% 64,02% 64,42% 63,87% 66,07% 1,64% ok
4 4597% 45,75%  46,31%  45,31%  46,68%  45,12%  45,68% 44,47% 45,17% 4545%  45,06%  46,61% 1,16% ok
5 74,05% 73,70% 74,60% 72,99% 75,20% 72,69% 73,58% 71,64% 72,76% 73,21% 72,58%  75,09% 1,87% ok
6 43,02% 42,82% 43,34% 42,41% 43,69% 42,23% 42,75% 41,62% 42,27% 42,53% 42,17%  43,63% 1,08% ok
7 52,32% 52,07% 52,71% 51,57% 53,13% 51,36% 51,99% 50,62% 5141% 51,72% 51,28%  53,05% 1,32% ok
8 34,11% 33,95% 34,36% 33,62% 34,64% 33,48% 33,89% 33,00% 33,52% 33,72% 33,44% 34,59% 0,86% ok
9 43,72% 43,51% 44,04% 43,09% 44,39% 42,91% 43.44% 42,29%  42,96%  43,22% 42,85% 44,33% 1,10% ok
10 48,23%  48,01%  48,59%  47,54%  48,98% 47,35% 47,93%  46,66% 47,33% 47,69% 47,28%  48,91% 1,22% ok
11 42,06% 41,86% 42,37% 41,45% 42,71% 41,28% 41,79%  40,69% 41,33% 41,58% 41,23% 42,65% 1,06% ok
12 72,41% 72,07% 72,95% 71,38% 73,54% 71,08% 71,96% 70,06% 71,15% 71,59% 70,98% 73,43% 1,83% ok

gemiddell  52,33%

max 58,77%

min 33,00%

Figure B.4: An example of Markov limiting probabilities, Markov property and homo-
geneity for the transfer of inpatients. The Chapman-Kolmogorov equations are computed
for 2,34, 8,16 and 32-transition probabilities for the first month. The example is for a pa-
tient transfer from the state ’other’ to the state ’discharge’ for inpatients who underwent
an operation.
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Appendix C

Service times

This appendix contains the results of the average service times for the different spe-
cialisms. The average service times are given for clinical admissions in nursing wards
(one day and more than one day) per DBC and for the operations, also per DBC. Figures
C.1-C.3 provide means, standard deviations and frequencies per DBC for the operations.
Figures C.4-C.8 contain means, standard deviations and frequencies per DBC for the
admissions to nursing wards. The data is from 2011.
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Appendix D

Model comparison

This appendix contains results for the model comparisons. Recall, we have two different
models. The first is the holistic model with the three components, ARIMA-models,
Markov models and average service times. The second is the 4 year average model.
Figure D.1 provides the differences between the 4 year average model and the actual
data and between the outcomes of our model and the actual data of week 5 to 24 of
2011. A negative value in Figure D.1 denotes an underestimation of the weekly patient
volumes at a certain specialism, a positive value denotes an overestimation. Figure D.2
provides the total costs per class of 10 patients for our model and the 4 year average
model for two described scenarios in Section 5.4.2.
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5|average | -4,75| 91,00| 14,00 17,75 4,25| 20,00 -1,00 -1,00| 319,25| 9,75|-13,00
5|model -3,67| 14,74 -4,68| 6,75|-22,33| -7.79| 9,29|-16,56( 378,32|-40,79| 25,71
6|average | 15,00(105,75| 19,25 15,00| 39,50| 18,75| 0,50| 15,00| 399,00 2,25 23,25
6|model |-43,05| 15,93| -3,91| 13,83 0,26 -5,74|-16,97| -3,75|-412,40|-50,52| 12,16
7|average| 3,50| 60,50| 19,00| 19,75| 29,50\ 2,25| 16,75| 9,75| 372,50| 5,00 23,75
7|lmodel |-15,95| -14,69( -3,07| -5,28| 1,74 0,04| -5,18| -5,12| 825,25(-50,71| 10,36
8|average | 14,75| 35,00( 16,00| 15,25| 30,75| 16,25| 15,00| 19,25| -31,25 2,75 10,75
g|model | 18,47| 69,87| 1,92| -5,48| -1,30| -0,63| 16,65 14,40| 948 13|-44,32| 35,20
9|laverage| 3,75| 1,25| 35,50/ 9,75| 29,00 -7,25| -2,00| -4,25| 410,00 8,25 7,00
9 model 14.82( -00,52 4,12 1,59 -7,07( -9,57|-20,26|-29,06) -99,55|-58,12| -8,17
10|average | 12,75| 97,25| 28,00/ 3,00 0,00 4,75| 4,25 -2,50| 372,00 12,75| 13,25
10|model | 22,34|-19,14| 3,53| -4,27|-19,57| 7,87|-12,11| -9,77| 174,96|-37,60| 13,01

11|average | 17,50 65,50| 37,75| 5,25| 34,50|-23,25| 33,75| 2,25| 224,50| 11,75|-30,25
11|model | -5,98| 5L,00| 9,89 2,58 -0,67| -9,45| 24,25|-25,57| 505,34|-39,94| 9,28
12|average | 12,50| 73,00| 38,75| 9,50| 4,50 -9,25| 12,25| 16,00| 15,50| -9,75|-35,25
12|model | 0,62| 66,16| 16,11| 19,08-17,23| 7,29|-13,51| 14,95| 475,11|-55,46-18,70
13|average | 12,50\ 72,00| 20,50| 35,50| 6,00| 10,50| 13,00 9,75| 123,50 6,75 8,00
13|model | -2,60| 33,60| -4,10| 3,65|-18,36(-18,18| 1,89| -6,70| 389,62|-51,93| 11,90
14|average | 27,00| 72,50| 38,75| 22,25| 10,75| -6,75| 1,50 3,00 352,75| 15,00| 15,25
model |-10,43|-18,35| 21,35| 14,10|-10,25| -4,07| -6,60|-14,27| 470,99|-40,53|-22,55
average | 17,00 64,50| 32,25| 14,00| 24,25| 12,00| 19,75| 8,00| 295,25| 20,25|-20,00
model | -3,94| 25,18| -4,01| 848| 1,90(-22,67| 1,06/ -6,23| 49,21|-48,23| 39,28
16|average | -2,00| 32,75| 39,50| 21,75/ 0,25(-11,00| -0,75| 20,50| 273,50| 21,00/ 14,50
16|model | 10,13|-51,57| 8,61|-18,58|-28,83| -5,10|-19,90|-10,23|-397,15|-28,30| 10,17
27|average | 22,50\ -2,00| 40,75| 20,75| 41,00 4,75| 15,00| 22,50| 191,50| 10,50| 10,75
17|model |-12,67| 45,06| 20,19|-31,01| 9,10(-14,99| 5,79| 9,76 941,88|-47,84|-19,01
18|average | 23,50| 32,75| 37,25| -6,50| 35,25 8,00\ 24,50 7,00\ 162,25 15,00 25,00
18|model |-10,02| 26,35| 4,97| -3,29| 3,97| -4,54| 9,93|-17,33| 762,66|-26,83| -2,70
19|average | -9,00| 80,75 1,25 2,75| -0,50| 5,50| 16,50|-19,00| 513,75 5,75 2,25
19|model |-19,98| -89,23|-28,61|-15,24|-41,82| -1,53| -5,24|-34,33| -19,06|-71,87| 8,61
20|average | 22,25|124,25| 28,25| 33,75| 35,75| -6,25| 6,75| 29,75 524,75| 29,75|-19,50
20|model | 8,24| 55,39| -7,19|-17,18| 1,68| 16,83| -7,85| 4,10\ 52,70|-19,51|-21,29
21|average| 2,50 37,25| 47,50| 8,00| 37,50| -1,75| 10,50| 14,00| 283,75 8,50|-19,75
21|model |-22,43|-15,95| 3,69| -3,70| -2,00(-15,46| -3,16| 1,12| 417,07|-64,28| 8,17
22|average | 12,25| 53,50| 15,50|-15,25| 13,50| 18,25| -3,00| 8,50\ 11,25\ 4,75| 27,25
22|model |-15,67| 46,47| -6,34| 6,86| -9,10| -8,34|-15,93| 10,52| 484,04|-32,42| -8,32
23|average |-27,25| -28,50| 3,75| 17,25| 8,00| -1,50| 11,75| -6,75| 94,00 0,00 5,25
23|model | -7,57| -5,15|-22,02|-11,54|-31,48(-15,59| -0,67|-42,69| 243,36|-60,82| 30,71
24|average |-17,00| -29,50| 10,50 8,25 29,25| -8,25| 3,25| 30,75| -83,75| 8,50/ 1,75
24|model | 24,54| 13,00| 2,81| 23,38/ -0,67| 8,35| -6,99| 16,06/ 538,56|-21,92| 20,59

LG e

Figure D.1: Differences between 4-year average and actual data and our model and the
actual data, for weeks 5-24 of 2011. Negative values are an underestimation of the true
value; positive values are an overestimation.
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class

model (average)

model (worst-case)

4 year (average)

4 year average (worst-case)

difference (average)

difference (worst-case)

110-120 overestimated £ 360,000.00 € 720,000.00| €0.00| €0.00 -€ 360,000.00| -€720,000.00|
100-110 overestimated £0.00 £0.00| €0.00| £0.00 £0.00 £0.00|
90-100 overestimated £0.00 €0.00| €0.00| €0.00 £0.00 £0.00|
80-90 overestimated £ 270,000.00 € 540,000.00| €0.00| £0.00 -£ 270,000.00 -£ 540,000.00
70-80 overestimated £ 960,000.00 £1,920,000.00 €0.00| £0.00 -£ 960,000.00 -£€1,920,000.00
60-70 overestimated €1,680,000.00| € 3,360,000.00| €0.00| €0.00 -€1,680,000.00| -€ 3,360,000.00|
50-60 overestimated £0.00 £0.00| €0.00| £0.00 £0.00 £0.00|
40-50 overestimated €1,050,000.00| € 2,100,000.00| €0.00| €0.00 -€1,050,000.00| -€ 2,100,000.00|
30-40 overestimated £ 960,000.00 €1,920,000.00| € 600,000.00| €1,200,000.00 -€ 360,000.00| -€720,000.00|
20-30 overestimated £ 360,000.00 €720,000.00| €90,000.00| £ 180,000.00 -£ 270,000.00 -£ 540,000.00
10-20 overestimated €1,140,000.00| € 2,280,000.00| € 300,000.00| € 600,000.00 -£ 840,000.00| -€£1,680,000.00|
0-10 overestimated €1,020,000.00 £2,040,000.00 € 360,000.00| £720,000.00 -£ 660,000.00 -£1,320,000.00
no over- or underestimation £0.00 £0.00 €0.00 £0.00 £0.00 £0.00
10-20 underestimated €1,020,000.00| £2,040,000.00| € 1,560,000.00| €3,120,000.00 €540,000.00 €1,080,000.00,
20-30 underestimated €1,140,000.00 £2,280,000.00| €2,940,000.00| £ 5,880,000.00 €1,800,000.00 £ 3,600,000.00
30-40 underestimated £ 360,000.00 € 720,000.00| €450,000.00| £€900,000.00 £ 90,000.00| € 180,000.00|
40-50 underestimated £ 360,000.00 €720,000.00] €1,320,000.00 € 2,640,000.00 £ 960,000.00 €1,920,000.00|
50-60 underestimated £ 300,000.00 €600,000.00] €3,000,000.00 £ 6,000,000.00 € 2,700,000.00 £ 5,400,000.00
60-70 underestimated £ 540,000.00 €1,080,000.00| € 360,000.00| € 720,000.00 -£ 180,000.00| -£€ 360,000.00|
70-80 underestimated £0.00 £0.00| €0.00| £0.00 £0.00 £0.00|
80-90 underestimated £ 240,000.00 €480,000.00| € 240,000.00| £480,000.00 £0.00 £0.00|
90-100 underestimated £ 540,000.00 €1,080,000.00] €1,080,000.00| € 2,160,000.00 £ 540,000.00 €1,080,000.00|
100-110 underestimated £0.00 £0.00| € 300,000.00| £ 600,000.00 £ 300,000.00 £ 600,000.00|
110-120 underestimated £0.00 €0.00| € 330,000.00| € 660,000.00 £ 330,000.00 € 660,000.00|
120-130 underestimated £0.00 €0.00| €0.00| €0.00 £0.00 €0.00|
130-140 underestimated £0.00 £0.00| € 780,000.00| £1,560,000.00 £ 780,000.00 £1,560,000.00
140-150 underestimated £0.00 €0.00| €0.00| €0.00 £0.00 £0.00|
150-160 underestimated £0.00 £0.00| €450,000.00| £900,000.00 £ 450,000.00 £900,000.00|
160-170 underestimated £0.00 £0.00| €480,000.00| £960,000.00 £ 480,000.00 £960,000.00|

total costs

€12,300,000.00]

€ 24,600,000.00)

€ 14,640,000.00)

€29,280,000.00

€2,340,000.00)

€4,680,000.00)

Figure D.2: Overview of the two scenarios for the total costs per class for the 10 spe-
cialisms in week 5 to week 24 of 2011.
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