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Summary 
A new phenomenon in the evolution of nearshore topography is a small-scale natural mode of 
shoreface nourishments observed by Wijnberg and Holman (2007). It is referred to as 
Shoreward Propagating Accretionary Waves (SPAWs) and is a bar-like feature shed of from 
the nearshore bar. It is observed to transit the through between bar and shore as an intact 
form. This study identified which nearshore processes control the shoreward propagation of a 
SPAW phenomenon after it has been initiated.  
 
The wave-driven flow field and related initial sediment transport patterns were simulated with 
a three-dimensional Delft3D model with a high spatial and temporal resolution. Based on 
statistics of SPAWs observed near Duck (North Carolina, USA) (Wijnberg and Holman, 2007) 
a schematized bathymetry was defined and typical wave conditions were selected (Hs=0.56 m 
and Tp=8.2 s). Additional to this base case, the influence on initial sedimentation and erosion 
patterns was assessed of different water levels, SPAW size and location, and nearshore bar 
geometry.  
 
Results showed that under typically prevailing wave conditions the process of wave 
transformation (i.e. increasing wave skewness and asymmetry) over the SPAW is important 
to generate onshore sediment transports over the feature. Near-bed transport processes in 
the direction of wave propagation due to wave asymmetry were dominant in all cases. These 
processes consisted of (i) bed load transport due to waves and currents, and (ii) suspended 
load due to wave asymmetry. Furthermore, the process of local wave breaking (i.e. energy 
dissipation), generates a horizontal circulation current around the SPAW. Since near-bed 
transport is dominant for our cases with a low wave height, it was shown that the generated 
circulation pattern did hardly influence sediment transport patterns over the SPAW. The 
onshore transports over the SPAW result in a shoreward displacement of the SPAW, 
consistent with SPAW observations in nature. This pattern persisted for different water levels, 
different SPAW sizes and location, and different nearshore bathymetry.  
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Summary 
A new phenomenon in the evolution of nearshore topagrophy, is a small-scale natural mode 
of shoreface nourishments observed by Wijnberg and Holman (2007). It is formed during a 
natural process in which a small bar-shaped feature separates at the landward side from a 
nearshore bar, then propagates onshore, and eventually merges with the beach. This 
phenomenon, also referred to as Shoreward Propagating Accretionary Wave (SPAW), is 
observed at several beaches. The feature represents a locally significant onshore sediment 
flux. SPAWs observed at Duck (USA) have an average length of 126 +/- 60 m and a width of 
30 +/- 10 m, which gives an indication of the scale of the feature. At present, it is unclear 
which processes explain this phenomenon. Knowing more about SPAW dynamics is 
important for two main reasons; (i) it will improve current knowledge about nearshore 
morphodynamics, and (ii) the onshore propagation process of a SPAW has possible 
relevance for sand nourishment techniques, which in The Netherlands currently focus on 
large scale nourishments.  
 
The objective of this study is to identify which nearshore processes control the shoreward 
propagation of a SPAW phenomenon after it has been initiated. Besides that, the influence of 
water depth, SPAW size and location, and nearshore bar topography of the feature on SPAW 
dynamics are investigated.  
 
Investigating SPAW dynamics was done by studying wave-driven flow fields and related initial 
sediment transport patterns. Starting with formulating a hypothesis for the wave-driven flow 
field and sediment transport patterns based on literature. It was hypothesized that a 
horizontal circulation current would develop in the wave-driven flow field, and that the 
sediment transport over the SPAW would be onshore directed due to non-linear wave 
transformation. To test this hypothesis, a schematized 3-dimensional Delft3D model was set 
up for the beach Duck (North Carolina, USA).The model schematization is based on earlier 
schematizations made by Hsu et al. (2006, 2008), Van der Werf (2009) and Treffers (2009). It  
was adjusted by refining the grid, in order to have a better resolution around the SPAW. 
Additionally, model input such as bathymetry and typical wave conditions (Hs=0.56 m and 
Tp=8.2 s) were based on a representative SPAW event at Duck, since most observations are 
done at this site. 
  
Results show that wave height varied locally since waves break over the feature, by which 
energy is dissipated. These variations in wave height induce cross-shore and longshore 
gradients in radiation stress, which generates local set-up (or relative set-down). These 
variations in water level cause longshore pressure gradients, which induce currents. As a 
result, a horizontal circulation current develops around the SPAW tips, which is onshore 
directed over the crest and offshore directed around the SPAW. The Eulerian flow pattern 
was dominated by the undertow, induced by wave breaking at the coast. The modulated 
wave-driven flow field accross a SPAW was such that near-bed sand transport processes 
were dominant and onshore directed.  These processes consisted of (i) bed load transport 
due to waves and currents, and (ii) suspended load transport due to wave assymetry. The 
sediment transport contributions result in a shoreward displacement of the SPAW, namely 
erosion occurs seaward and sedimentation occurs just landward of the feature. Results are 
consistent with the formulated hypothesis based on literature, and with SPAW observations 
done by Argus video systems and also with previous estimates of sediment fluxes (Wijnberg 
and Holman, 2007). 
 



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward propagating Accretionary Waves in the Nearshore 
 

iii 

The shoreward displacement pattern persisted for different water levels, different SPAW size 
and location, and different nearshore bar geometry. Water levels influenced the wave-driven 
flow field which made them differ from the base case, whereas sediment transport patterns 
were similar. The latter is due to the fact that near-bed sediment transport is dominant. SPAW 
location was observed to influence the wave-driven flow field; for SPAWs located closer to the 
bar a stronger horizontal circulation cell developed over the full length of the SPAW crest. 
Consequently, sediment transports were higher over the full lenght of the SPAW crest for this 
case, whereas for a SPAW located closer to shore sediment transport was concentrated at 
the tips. Compared to the base case for a wider SPAW a stronger horizontal circulation 
current developed. For a longer SPAW, the horizontal circulation current developed around 
the tips, for the centre of the longer SPAW no effects of the horizontal circulation currents 
were seen. The change of local geometry of the nearshore bar, largely influenced the flow-
field. For this case the depth averaged flow field differed from the base case, since velocities 
were mainly directed through the location of the lowered bar. Nevertheless, the still sediment 
transport was onshore directed over the SPAW. A remarkable result was that the onshore 
directed sediment transports at the tips of the SPAW were directed slightly to the middle of 
the SPAW, because the suspended sediment transport component is directed from the sides 
to the middle of the feature. 
 
In conclusion, the numerical simulation has shown that the consistent onshore directed 
propagation of SPAWs can be explained by the SPAW induced modulation of the wave-
driven flow field and related transport patterns.  

  



 

 

 
 
 
 

 
iv 
 

October, 2012
 

Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore
 

Contents 

1 Introduction 1 
1.1 Relevance of this research 1 
1.2 Research objective and questions 2 
1.3 Methodology 2 
1.4 Outline of the report 2 

2 Shoreward Propagating Accretionary waves and nearshore processes 3 
2.1 Shoreward Propagating Accretionary Wave (SPAW) 3 

2.1.1 Definition of a SPAW 3 
2.1.2 Initiation of a SPAW 3 
2.1.3 Evolution of a SPAW 4 
2.1.4 Methodology for observing SPAWs 4 
2.1.5 Methodology for determining SPAW dimensions 5 
2.1.6 SPAW observations 6 

2.2 Relevant nearshore processes 7 
2.2.1 Waves 7 
2.2.2 Currents 10 
2.2.3 Sediment transport 11 

2.3 Nourishment strategies 13 
2.3.1 Humplike nourishment study (Koster, 2006) 14 

2.4 Hypothesis about SPAW behaviour 15 

3 Delft3D model for modelling SPAW dynamics 17 
3.1 Modelling approach 17 
3.2 Delft3D software 18 
3.3 Field site, choice representative SPAW event and data description 19 

3.3.1 Duck Field site description 19 
3.3.2 Representative SPAW event 20 
3.3.3 Conditions during average SPAW event 20 

3.4 Delft3D model 22 
3.4.1 Horizontal Delft3D computational grid 22 
3.4.2 Vertical grid 23 
3.4.3 Bathymetry 23 
3.4.4 Initial and boundary conditions 26 
3.4.5 Conditions applied in Delft3D modelling 26 
3.4.6 Parameter settings 28 
3.4.7 Roller model implementation 31 

4 SPAW dynamics for the base case 33 
4.2 Significant wave height development 34 
4.3 Waterlevel development 36 
4.4 Velocity patterns 37 
4.5 Sediment transport 41 

4.5.2 Suspended transport 43 
4.5.3 Total load transport 44 
4.5.4 Initial sedimentation and erosion patterns 45 

4.6 Non-uniformities in the model 45 
4.7 Summarizing important findings for SPAW dynamics for the base case 46 



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward propagating Accretionary Waves in the Nearshore 
 

v 

5 SPAW dynamics for varying water levels, wave height and Delft3D versions 49 
5.1 Analysing different water levels 49 

5.1.2 Water level development for different water levels 50 
5.1.3 Velocity patterns for different water levels 51 
5.1.4 Sediment transport for different water levels 51 
5.1.5 Initial sedimentation and erosion 53 

5.2 Analysing different wave height 54 
5.3 Analysing results for test-version Delft3D 55 

5.3.1 Hydrodynamics 55 
5.3.3 Initial sedimentation and erosion patterns 59 

5.4 Summarizing important findings for SPAW dynamics for varying water levels, wave 
height and Delft3D version 59 

6 SPAW dynamics by morphometric changes of the SPAW 61 
6.1 Varying SPAW location 61 

6.1.1 Hydrodynamics for different SPAW locations 61 
6.1.2 Sediment transports for different SPAW locations 64 

6.2 Varying length and width of the SPAW 65 
6.2.2 Sediment transport for different SPAW dimensions 67 

6.3 Varying local bathymetry of the nearshore bar 68 
6.3.1 Hydrodynamics for a local bathymetry change of the nearshore bar 68 
6.3.2 Sediment transport for a local bathymetry change 70 

6.4 Summary of influence of morphometric changes in SPAW characteristics 71 

7 Discussion, Conclusion and Recommendations 73 
7.1 Discussion 73 

7.1.1 Choices and assumptions made during this study 73 
7.1.2 Delft3D modelling issues 74 
7.1.3 Relevance for nearshore nourishment strategies 75 

7.2 Conclusions 75 
7.2.1 Answers on research questions 76 
7.2.2 Synthesis on objective 78 

7.3 Recommendations 78 
7.3.1 Further investigating SPAW dynamics 78 
7.3.2 Recommendations regarding Delft3D modelling 79 

References 80 
  



 

 

 
 
 
 

 
vi 
 

October, 2012
 

Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore
 

Appendices 

A Concept of Radiation stress and wave set-up/set-down 83 
A.1 Radiation stress and wave force 83 
A.2 Wave set-up and set-down 84 

A.2.1 Wave set-down 84 
A.2.2 Wave set-up 85 

B Delft3D software 86 
B.1 Delft3D in general 86 
B.2 Delft3D horizontal and vertical grid 86 
B.3 Delft3D-FLOW 87 
B.4 Delft3D-WAVE 87 

B.4.1 SWAN Wave model 87 
B.5 Roller model 88 
B.6 Sediment calculations 89 

B.6.1 Reference height and kmx-layer 89 
B.6.2 Suspended sediment transport (non-cohesive) 89 
B.6.3 Near-bed load sediment transport (non-cohesive sediment) 90 
B.6.4 Sediment correction vector 90 
B.6.5 Sediment initial and boundary conditions 90 
B.6.6 Morphological updating 90 

C Representative transect for bathymetry 91 

D Time step analysis 92 

E Conditions SandyDuck97 94 

F Bathymetries for SPAW scenarios 96 

G Wave-driven depth averaged flow fields – initial bathymetry 98 

H Wave-driven depth averaged flow fields – morphometric changes 102 

I Additional figures for Hs = 0.56m with different water levels 107 
I.1 Sediment transport for z=+0.5 m 107 
 
 



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 
 

1 

1 Introduction 

The Dutch coast is exposed to erosion. In 1990, a coastal policy was adopted to maintain the 
Dutch coastline position by applying beach, shoreface and dune nourishments. Since then, 
several nourishments have been done at different locations in the Netherlands with currently 
a total yearly volume of 12 Mm3 (De Ronde, 2008). The performed nourishment strategies are 
mainly large scale. For example in Egmond aan Zee in the summer of 1999, a shoreface 
nourishment was done at the outer bank of approximately 2 km long and 200 m wide, backed 
by a beach nourishment (Van Duin et al., 2004).  
 
Interestingly, at a smaller-scale a natural mode of shore nourishments has been observed. 
This phenomenon is named a Shoreward Propagating Accretionary Wave (i.e. SPAW) and 
was described for the first time by Wijnberg and Holman (2007). A SPAW is formed during a 
natural process in which a small bar shaped feature separates at the landward side from a 
nearshore bar, then propagates onshore, and eventually merges with the beach. SPAWs 
observed at Duck (North Carolina, USA) have an average length of 126 +/- 60 m and a width 
of 30 +/- 10 m, which indicates the scale of the feature (Wijnberg and Holman, 2007). This 
feature is the main focus of this study, and is described in more detail in paragraph 2.1. 

1.1 Relevance of this research 
Knowing more about SPAW dynamics is important for two main reasons; (i) it will improve 
current knowledge about nearshore morphodynamics, and (ii) the possible relevance for sand 
nourishment techniques. These are explained in more detail in this paragraph.  
 
Firstly, much is still unknown about nearshore and shallow water processes, and we are only 
partly aware of the range of morphologic behaviour that can occur in the nearshore zone. In 
morphological studies the SPAW feature is not yet addressed so far. This is due to the fact 
that there is a lack of long-term, high resolution data sets on nearshore morphology, because 
it is hard to obtain them with conventional surveying techniques that require physical 
presence in the surf zone. There is in general a lack of understanding of the complex 
interaction processes between waves, currents, sediment transport, and bed levels, 
especially in the highly dynamic surf zone. Additionally, specifically for SPAWs it is hard to 
include them in a bathymetric measuring campaign, because they are very local and 
unpredictable features. Investigating mechanisms causing a SPAW to propagate onshore 
through a trough, while in the same time approximately maintaining its shape, can contribute 
to a better understanding of cross-shore transport processes in the nearshore environment 
(Wijnberg and Holman, 2007).  
 
Secondly, the mobility of sediment in the nearshore is high, waves and currents induce 
sediment transport in the nearshore. Due to non-linearity in both sediment transport 
processes and surf zone hydrodynamics, unexpected gradients in sediment transport across 
the nearshore topography can occur. This can result in unexpected bathymetric changes, 
such as the formation of SPAWs (Wijnberg and Holman, 2007). Since SPAWs are 
submerged volumes of sand which will eventually merge with the beach, they can be a large 
input of sediment on the beach or the intertidal area (Almar et al., 2010 and Capo et al., 
2009). This implies that SPAWs merging at the beach nourish the beach. Since SPAWs 
represent a consistently onshore directed sediment flux, gaining more insight in their 
dynamics can be of interest for the design of artificial shoreface nourishments. 
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1.2 Research objective and questions 
As described above there is still much to discover about the newly discovered SPAW 
phenomenon. Therefore, the objective of this research is to identify which nearshore 
processes control the shoreward propagation of the SPAW phenomenon after it has been 
initiated.  
 
This report addresses several questions in order to fulfil the objective:  

 What is the effect of a SPAW on the wave-driven flow field and related initial sediment 
transport pattern, and what is the resulting initial morphologic development of a 
SPAW: 

- According to a conceptual model developed using theory of shallow water 
processes? 

- According to simulations done with the numerical process-based model 
Delft3D?  

- Which differences between the conceptual idea and numerical simulations are 
present; and what can be possible explanations for them?  

 
 How are the wave-driven flow field, the related initial sediment transport over a 

SPAW, and the resulting initial morphologic development, affected by: 
- Water depth above the SPAW?   
- Morphometric characteristics of a SPAW? 

 Size (width and length of a SPAW) 
 Location (closer to bar or shore) 
 Local bathymetry 

1.3 Methodology 
In order to answer the above described research questions we followed several steps; firstly 
we formulated a hypothesis for the hydrodynamic flow field around a SPAW and the initial 
sediment transport pattern based on literature. To test this hypothesis, a schematized 3-
dimensional Delft3D model was set up for Duck (North Carolina, USA). This model is based 
on earlier schematizations made by Hsu et al. (2006, 2008), Van der Werf (2009) and Treffers 
(2009). The model was adjusted by refining the grid, in order to have a better resolution 
around the SPAW. With the Delft3D model several cases were run, to investigate the effect of 
wave height, water level, and morphometric characteristics of the SPAW on the flow field and 
initial sediment transport around the SPAW. We considered particularly relative effects of the 
reference case without a SPAW and a situation with a SPAW. Based on modelling results, we 
drew conclusions and formulated recommendations for future research.  

1.4 Outline of the report 
Information on SPAWs, theory about nearshore processes and literature about nearshore 
nourishments is described in Chapter 2. Followed by a presentation of the Delft3D model 
schematization is presented, and key-decisions made during the modelling process are 
discussed in Chapter 3. Then in Chapter 4 the modelling results are presented for the base 
case, which has a SPAW configuration based on an average SPAW event, a low wave height 
and an average water level. Subsequently, the influence of varying water levels, wave height, 
and Delft3D-versions are discussed in Chapter 5. Then influences of varying morphodynamic 
characteristics of a SPAW are briefly discussed in Chapter 6. Followed by a discussion of the 
obtained results and modelling approach, an overview of the main conclusions and 
recommendations based on this study in Chapter 7.  
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2 Shoreward Propagating Accretionary waves and nearshore 
processes 

The nearshore area consists of a shoaling zone in which water depth decreases, a surf zone 
where waves break and a swash zone in which waves run up the beach. Especially the 
interaction between the Shoreward Propagating Accretionary Wave (abbreviated SPAW; i.e. 
a bed feature lying in between the inner and outer bars) and nearshore processes are of 
interest to gain more insight in the expected SPAW dynamics.  
 
This chapter zooms in on the phenomenon of Shoreward Propagating Accretionary Waves 
and relevant processes in the nearshore area. In Section 2.1 it is first defined what is meant 
by a SPAW. It is explained how it initiates, evolves and how it is measured. Then SPAW 
observations are briefly described. Subsequently, in Section 2.2 relevant nearshore 
processes are discussed. This is followed by a description of current nourishment strategies 
and a study on humplike nourishments in Section 2.3. This chapter concludes with a 
hypothesis on the wave-driven flow field and related initial sediment transport pattern around 
a SPAW in Section 2.4.  

2.1 Shoreward Propagating Accretionary Wave (SPAW) 

2.1.1 Definition of a SPAW 
Shoreward Propagating Accretionary Waves (SPAWs) were described for the first time by 
Wijnberg and Holman (2007). They defined a SPAW as an isolated, spatially non-repetitive 
bathymetric feature that is generated on the landward side of a nearshore bar. The feature 
systematically propagates onshore across the trough as an intact form (Figure 2.1 and 2.2). 
When arriving at the beach, these small bars merge with the beach (i.e. see the protrusion at 
March 13, 1994 in Figure 2.2). They referred to the feature as a wave, because of similarities 
between the observed phenomenon and a solitary wave in fluid dynamics. Namely, both 
phenomena are single, isolated perturbations which approximately maintain their shape when 
propagating. In both cases the latter involves a net displacement of material in the direction of 
propagation.  

Figure 2.1. Conceptual sketch of SPAW initiation and migration 

2.1.2 Initiation of a SPAW 
Although the initiation of SPAWs is not investigated in much detail yet, Wijnberg and Holman 
(2007) observed that a three-dimensional bar pattern with onshore protruding features 
favoured the initiation of SPAWs. The three-dimensionality will rapidly become linear when 
wave conditions become more energetic (i.e. storm events, figure 2.1c) (Wright and Short, 
1984; Lippmann and Holman, 1990). In case the onshore protruding part is separated from 
the main bar a SPAW is formed.  
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2.1.3 Evolution of a SPAW 
After initiation, observed SPAWs transit the trough and eventually merge with the beach 
(figure 2.1 d and e). Wijnberg and Holman (2007) indicate two probable flow-topography 
mechanisms playing a role for the onshore propagation of SPAWs; local feedback (or self-
organisation) and non-local feedback. The former comprises direct interaction between the 
SPAW topography and overlying fluid motion, which might be the cause for a SPAW to 
systematically migrate onshore and approximately maintain its shape as it propagates 
onshore. The non-local feedback involves effects of nearshore topography on the fluid motion 
in down-wave direction. For example, the breaker bar fulfils a filtering function for the variation 
in offshore wave height; namely, waves break over the breaker bar resulting in more constant 
hydrodynamic conditions shoreward of the bar and thus across the SPAW. The filtering 
mechanism may explain the observation of Wijnberg and Holman (2007) that no relationship 
was found between mean offshore wave conditions and average onshore propagation speed 
over the life time of a SPAW. Additionally, no relation was found between the average 
onshore propagation speed and initial cross-shore position of the feature. This indicates that 
the initial water depth does not influence the migration speed of a SPAW. 
  

 
Figure 2.2. Sequence of time-exposure images near Duck (USA), white areas represent wave breaking. Peaks in 

cross shore intensity indicate the presence of a sand bar or SPAW (Wijnberg and Holman, 2007). 

2.1.4 Methodology for observing SPAWs 
Since SPAWs are a reasonably newly discovered phenomena not many are observed yet. 
The observation procedure as applied by Wijnberg and Holman (2007) on three beaches is 
described in this paragraph followed by a brief summary of observed SPAWs in the next 
paragraph. 
 
The observations were done based on video time-exposure imagery (i.e. Argus images), 
taken over about a 10 minute time span. Generally every hour a time-exposure image is 
taken. The technique is based on the fact that waves break when entering a shallower part, 
thus clearly it is only applicable when wave conditions are such that waves break over a bar. 
White areas represent wave breaking, and peaks in cross shore intensity indicate the 
presence of a sand bar (Lippman and Holman, 1990). The visual signal created by breaking 
waves is a function of local water depth, incident wave conditions, but also includes 
properties of hydrodynamic process of wave breaking itself. A SPAW is actually a submerged 
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volume of sand and can be observed as an isolated, patch of foam in between the nearshore 
bar and the shoreline (Figure 2.2). It should be noted that observers should compare 
successive visual signals to see if patterns persists over time.  
 
Observers first scanned the long time series of time-exposure images by eye to check for 
SPAW features. Then they determined the starting and ending date of the event. The starting 
date is defined as the first day on which the SPAW separated from its parent bar (Figure 2.1 
c). However choosing this date involves uncertainty, because SPAWs initiate during high 
energetic conditions, in which many waves break. The ending date is defined as the day on 
which no noticeable traces are left on the shore line (Figure 2.1 e). For a uniform coast this 
implies the hump at the merging location is gone. The SPAW migration speed is 
approximated by dividing the initial cross-shore distance from the coast by the events 
duration (number of days from starting date to ending date). Finally, they determined the 
cross-shore SPAW position at initiation and dimensions (i.e. the width and length of the foam 
patch) from the images as described in the next paragraph. The above described procedure 
was followed independently by three independent operators, to reduce the arbitrariness in 
indicating SPAW events, and omit dubious cases. 

2.1.5 Methodology for determining SPAW dimensions 
The size of a SPAW was estimated by developing an outermost equal intensity contour on 
the time-exposure image (i.e. an equal intensity of white patches at the image) (Figure 2.3). 
When the SPAW is not fully separated from the outer bar, the outermost contour was picked 
showing contractions around the feature. It should be noted that this is only a proxy method 
for two reasons. Firstly, the images show the shallower part of the SPAW where waves are 
breaking; and secondly, the image intensity itself is not a direct measure for depth, thus an 
equal intensity contour does not necessarily relate to a single depth contour.  

 
Figure 2.3. Definition sketch of morphometric measurements on contoured time-exposure image (contour based 

pixel intensity). W = SPAW width (cross-shore), L = SPAW length (alongshore), D = SPAW initial cross-
shore distance (adopted from Wijnberg and Holman, 2007).  

 
Since only video time-exposure observations were present it was not possible to estimate the 
height of a SPAW (i.e. the crest to trough elevation distance) and the development in height 
when migrating onshore. Nevertheless, since the feature separates from the main bar we 
expect it will have a similar height as the parent bar just after its initiation.  This approximation 
is also reinforced in the fact that waves break over the SPAW, which indicates the SPAW 
having a sufficient height (Wijnberg and Holman, 2007). Also a SPAW observation captured 
by accident in a bathymetric survey at the Duck study site (USA) confirms this assumption 
(Figure 2.4). The height of the parent bar and SPAW are similar; the features height is 
approximately 0.7 m.  
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2.1.6 SPAW observations 
Wijnberg and Holman (n.p.) studied three beaches (Duck, North Carolina, USA; Agate Beach, 
Oregon, USA; and Palm Beach, New South Wales, Australia) with noticeably different 
hydrodynamics and morphologic settings (Table 1).  
 
On all three beaches they observed SPAWs that were shed of from the inner bank and 
eventually merged with the coast; this can be an indication that the phenomenon may be part 
of the normal range of nearshore bar behaviour. Almar et al. (2010) also observed a SPAW 
feature at Le TrucVert beach (France). This was actually a SPAW shed of the outer bar which 
propagates onshore and eventually merged with the inner bar. Additionally, at Egmond beach 
(The Netherlands) SPAWs were observed, but these observations were not reported in 
literature (Personal communication with K.M. Wijnberg). This study focuses on Duck (USA), 
since most SPAW events were observed here (19 in total). Besides that, this site is analyzed 
often and many hydrodynamic data are available. 
 
Table 1. Summary of characteristics for beaches on which SPAWs are observed. 

Sites Slope 
Environment 
(dominated) Bar system 

Sediment 
Sand 

Average wave 
height/period 

Palm Beach 1:50 Swell One Medium 1.6 m / 10 s 
Duck 1:12.5 Swell One or two Medium 1 m / 8s 
Le TrucVert 1:20 Wave Two Medium 1.4 m / 6.5 s 
Agate beach 1:70 Swell Triple Medium 2 m / 11s 
Egmond aan Zee 1:30 - 1:50 Wave Two or three Medium 1 m / 5 s 

 
Observed SPAWs had length scales in the order of tens to hundreds of meters, with an 
average length at Duck beach of 126 +/- 60 m (Wijnberg and Holman, 2007). The maximum 
observed SPAW length is 375 m at Agate Beach (Australia), and the minimum observed 
SPAW length is 39 meter at Duck (Wijnberg and Holman, n.p.). The widths are in the order of 
tens of meters, with an average of 30 +/- 10 m at Duck beach (Wijnberg and Holman, 2007). 
The height of a SPAW at Duck is assumed to be approximately 0.7 m, based on a 
bathymetric survey at Duck (one time only). Therefore, the average volume of sand in a 
SPAW at Duck is estimated to be roughly 1900 m3. Onshore migration rates for observed 
SPAWs at Duck are on average 3.1 m/day with a standard deviation of 0.8 m/day. The 
dimensions, in alongshore and cross-shore direction are much smaller than the current 
artificial nourishments as applied at the Dutch coast as mentioned in the introduction. 

Figure 2.4. Captured SPAW event during bathymetric survey at Duck beach 6 September, 1994. (a) The surveyed 
SPAW in the time-exposure video images; (b) Indications of bathymetric survey showing three transects;  
(c) measured cross-shore profiles for the three transects (adopted from Wijnberg and Holman, 2007). 



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 
 

7 

2.2 Relevant nearshore processes 
The nearshore zone is an area in which many processes take place, each having a specific 
impact on the hydro- and morphodynamics. We expect some processes to be of importance 
for SPAW migration. And we believe that since observations show that the development of 
SPAW is dominantly cross-shore, the dynamics are essentially wave-driven. The relevant 
processes are discussed in this paragraph, subdivided in topics about waves (2.2.1), currents 
(2.2.2) and sediment transport (2.2.3).  

2.2.1 Waves 
Wind offshore can disturb the water surface and eventually develop waves. Wind generated 
waves are important as energy-transfer agent. Linear airy wave theory can be applied, 
assuming that wave height is much smaller than wave length and water depth (ܪ ≫  and ܮ
ܪ ≫ ℎ). This paragraph discusses topics related to waves, such as wave energy, radiation 
stress, shoaling, refraction, and wave deformation (skewness and asymmetry). 

2.2.1.1 Wave energy 
Waves transport energy, consisting of two parts. Firstly kinetic energy by the motion of fluid 
particles; and secondly potential energy possessed by the particles because they are 
displaced from their mean (equilibrium) position (Park, 1999). The total energy per unit area ܧ 
[J/m2] is directly related to the wave height ܪ and is given by  

ܧ =
1
ܪ݃ߩ8

ଶ (2.1) 

In which ߩ is the density of water [kg/m3]. The wave energy is not a constant since it is energy 
density, and it varies with wave height. However, energy must be conserved within a system, 
so the flux of energy is considered to be approximately constant. This flux is called wave 
power (ܲ), the rate at which energy is carried along by waves, and is given by 

ܲ = ݊ܥܧ =  ௚ (2.2)ܥܧ

Where ܥ is the phase velocity of an individual wave [m/s], ݊ depends on the region of 
application, and ܥ௚ is the group speed [m/s]. As the equation of wave power already 
suggested, for other conditions than shallow water conditions (i.e. ݊ = 1) energy of waves 
travel at a different speed as individual waves. This velocity is referred to as group speed. 
Wave groups are composed of waves of close frequencies and directions. For shallow water 
conditions only water depth determines wave speed (ܿ௦ = ඥ݃ℎ), so all waves will travel at the 
same speed. 

2.2.1.2 Shoaling transformation and refraction of waves 
When waves approach the shore two phenomena are present which influences wave 
amplitude and direction, namely shoaling and refraction (Figure 2.5). Both are interesting for 
SPAW dynamics, since shoaling influences wave height, and refraction might occur locally 
around the SPAW.  
 
Shoaling is the process for which wave height increases when waves approach the shore. 
This can be explained by the fact that when entering shallower water the depth decreases 
and thus wave velocities decreases. Nevertheless, when ignoring energy losses (e.g. by 
friction and wave breaking), the wave energy flux should approximately remain constant. 
Thus when celerity decreases, wave energy should increase, hence wave height increases.  
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Figure 2.5. Left: Schematization of shoaling process (Source: https://www.meted.ucar.edu/). Right: Schematization 

of refraction process(Source: homepages.cae.wisc.edu.jpg). 
 
Refraction is the process for which the angle of wave incidence decreases when entering 
shallower water for waves approaching the shore oblique to the coast. In shallow water the 
water depth determines the velocity of a wave. When approaching the coast from an angle 
the crest propagates much slower in shallower than in deeper water. Thus waves tend to turn 
and eventually have crests parallel to the shore (i.e. in that case the whole wave travels at the 
same speed for a uniform coast). Since wave energy in most cases has to spread over a 
wider area, wave heights generally reduces by refraction (Masselink and Hughes, 2003).  

2.2.1.3 Radiation stress and wave set-up/set-down 
The concept of radiation stress was firstly described by Longuet-Higgins and Stewart (1964) 
and is explained in Appendix A.1. They defined radiation stress as “the excess flow of 
momentum due to the presence of waves”.  
 
For the most general situation (waves propagating perpendicular to the coast) the radiation 
stresses are:  

݌݁݁݀,ݔݔܵ = 1
2
ݓ݋ℎ݈݈ܽݏ,ݔݔܵ ܧ = 3

2
 (2.3) ܧ

݌݁݁݀,ݕݕܵ = ݓ݋ℎ݈݈ܽݏ,ݕݕܵ 0 = 1
2
 (2.4) ܧ

In which ܵ௫௫  and ܵ௬௬refer to radiation stress in respectively in and normal to the direction of 
wave propagation. ܧ	refers to the wave energy. Subscripts deep and shallow refer to deep 
and shallow water.  
 
In a spatially non-uniform situation with varying wave characteristics and/or water depth a 
resulting net wave force is present due to gradients in radiation stress. The wave force vector, 
ሬܴ⃗  in the direction of wave propagation can be calculated by:  

ݔܴ = −
ݔݔ߲ܵ
ݔ߲

−
ݕݔ߲ܵ
ݕ߲

ݕܴ  = −
ݔݕ߲ܵ
ݔ߲

−
ݕݕ߲ܵ
ݕ߲

 (2.5) 

Radiation stress in water waves plays an important role in a variety of oceanographic 
phenomena. One of the most important wave driven effects occurs when waves encounter a 
sloping beach. Changes in bottom topography influence wave forms and result in changes in 
radiation stress, which subsequently lead to changes in mean water surface level, referred to 
as wave set-up and set-down. Variations in radiation stress can induce wave-driven mean 
flows.  
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For the nearshore zone on beaches two distinctive regions can be identified: seawards of the 
breaker (wave set-down) and shoreward of the breaker (wave set-up). Firstly, waves shoal in 
the nearshore zone seawards of the breaker line, which increases wave height and thus wave 
energy. Therefore the gradient in radiation stress is positive in flow direction. This leads to a 
lowering of the mean water level, referred to as wave set-down. Secondly, inside the breaker 
lines wave energy decreases shoreward, due to strongly decreasing wave heights by energy 
dissipation due to wave breaking and friction. This leads to negative gradients in radiation 
stress, resulting in increasing mean water-level in onshore direction, defined as wave set-up.  

2.2.1.4 Wave asymmetry and skewness 
In shallow water also non-linear interactions take place, and the wave form starts to deform 
from its sinusoidal wave shape. The shoaling process results not only in increasing wave 
height, but the wave also deforms during the process. Two typical transitions take place 
which are referred to as skewness and asymmetry (Figure 2.6) (Bosboom and Stive, 2011). 
The processes are important for SPAW dynamics, since they are important for sediment 
transport in the nearshore. 
 
Skewness refers to the gradual peaking of wave crests and flattening of troughs; this results 
in a long, flat trough and narrow peaked crests. The second-order stokes theory is a theory 
which can be applied as a non-linear wave theory. The second order for the surface elevation 
   :can be written as (ߟ)

ߟ = ଵߟ̂ cos(߱ݐ − (ݔ݇ + ଶߟ̂ cos ݐ߱)2 −  (2.6) (ݔ݇

The term ߱ݐ −  refers to the phase of the harmonic. The first term represents linear wave ݔ݇
theory (first order) with certain amplitude (̂ߟଵ), the second term refers to the second harmonic 
with double frequency (second-order Stokes for short waves). The amplitude of the second 
term (̂ߟଶ) is generally small compared to the first order (Figure 2.6 – left). 
 
Since the wave form is skewed, also orbital velocities become skewed. They become larger 
in the crest where orbital velocities are in direction of water movement, i.e. onshore.  And 
become lower in the trough, where orbital velocities are directed offshore. However also the 
duration of onshore/offshore orbital velocities is different since the wave form is skewed. The 
duration of onshore directed orbital motion is smaller (narrow peaked crest), and the duration 
of the offshore directed motion is larger (long flat trough). This has implications for sediment 
transport under a wave.  
 

a) Wave skewness (Stokes wave) b) Wave asymmetry 

 
Figure 2.6. Wave skewness and asymmetry. a) the first and second order Stokes components result in a skewed 

wave. b) Pitched forward shape, showing asymmetry (adopted from Bosboom and Stive, 2011).  
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Asymmetry refers to the relative steepening of the face until breaking occurs, resulting in a 
pitched-forward wave shape. This is caused by the crest moving faster than the trough since 
velocity depends directly on water depth. 
 
Both processes, skewness and asymmetry, interact with each other and take place in 
different stages. Shoaling waves become first gradually more skewed, and when approaching 
the surf-zone the harmonics shift phases which lead to an increase in wave asymmetry, and 
eventually a decrease in skewness.  

2.2.2 Currents 
In this paragraph currents in the nearshore are explained, such as the wave-generated cell 
circulation and tides.  

2.2.2.1 Wave-generated cell circulation  
Cell-circulation systems can develop in the nearshore due to longshore variations in wave 
height and wave set-up. A well-known phenomenon is a rip current, which is a strong, narrow 
current that flows seaward through the surf zone (Figure 2.7 - left). But also cell circulation 
can be formed around a nourishment area, as hypothesized by Van Duin (2004).  
 
The occurrence of horizontal cell-circulation can be explained by the concept of radiation 
stress. The shoreward component of the radiation stress induces set-down offshore of 
breaker lines and set-up onshore of breaker lines (Appendix A.2). Haas et al. (1998) studied 
horizontal currents in the nearshore (Figure 2.7 - right). He observed that wave break over the 
bars, which generates a set up shoreward of the bars. Within the channels in between the 
bars, waves are not breaking as much, thus the mean water level is lower in and shoreward 
of the channel. This induces a longshore pressure gradient from the bars directed to the 
channels. This gradient drives the currents toward the channels, creating feeder currents for 
the rips. Another interesting circulation-cell is generated close to the shore. Since waves 
through the channels did not break yet when arriving at the coast, these waves will be larger 
and therefore break sooner when arriving at the coast. This will generate more wave set-up at 
this location and hence a longshore pressure gradient will drive flow away from the channels 
creating a secondary or recirculation cell close to the shoreline. Whether circulation cells will 
develop depends on whether waves are breaking or not.  
 

  
Figure 2.7. Wave induced horizontal cell-circulation systems. Left: Plan view of a section of a coastline showing rip 

currents (adopted from Park, 1999). Right: Schematic diagram of a wave-averaged flow adopted from the 
experiment of Haas et al. (1998), ࣁାା indicates high wave set-up, ࣁା indicates low wave set-up.  
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Alongshore variation in wave set-up can be caused by variations in wave height along a crest, 
for example if one section of the crest encounters shallow water before another; this is 
determined by offshore bathymetry. Also it can be caused by sheltering effects due to for 
instance headlands, or by engineering structures such as jetties and breakwaters (Komar, 
1998). 
 
A SPAW or a nourishment is also a submerged amount of sand in the nearshore zone on 
which waves are observed to break; therefore a similar kind of flow circulation pattern as 
observed in the experiment of Haas et al. (1998) (Figure 2.7 - right) is expected around a 
SPAW.  

2.2.2.2 Undertow  
Breaking waves transport mass shoreward between the wave crest and trough. The coast is 
a closed boundary, thus continuity requires a zero net transport (otherwise, water is 
increasingly pilling up the coast). In order to have a net velocity below wave trough level to 
compensate for the flux above wave trough level a return current develops. For non-breaking 
waves there is a relatively small return current. For breaking waves much water is transported 
shoreward, thus a large return current develops, this specific current is referred to as 
undertow (Bosboom and Stive, 2011). It can be considered to be a vertical circulation current 
inside the breaker zone having a surface current towards the coast between wave and trough 
level, and a seaward current below trough level.  
 
In the surf zone relative high sediment concentrations occur, due to wave breaking. This 
implies an undertow is important for seaward directed sediment transport, since it has a 
relatively high offshore directed velocity in the lower and middle part of the water column. The 
undertow is thought to be responsible for severe beach erosion during heavy storms.   

2.2.2.3 Tides  
The tide is a long wave developed by the influence of the moon and sun on seas and oceans, 
tidal ranges (difference between high and low water levels) differ per location, but can be 
more than 10 m. Two characteristics of tides are distinguished, the vertical and horizontal tide 
(Bosboom and Stive, 2011).  
 
The vertical tide is the vertical rise and fall of the water level. High tide refers to high elevated 
water levels and low tide to low water levels. This difference in water level influences the 
location where waves break, and therefore it influences the flow-field and related sediment 
transport and nearshore morphology. For a nearshore bar or a SPAW this may imply for 
example that waves break over it when it is low tide, but do not break over it during high tide. 
Due to which sediment transport patters are expected to be different during high and low tide. 
In this study vertical tide is taken into account by simulating different water levels during runs.  
 
The horizontal tide or tidal current refers to horizontal movement of water associated with 
changing tidal water levels. This component of the tide is not taken into account in this study, 
since SPAW movement is observed to be dominated by cross-shore movements we do not 
expect this longshore component to be essential in explaining SPAW dynamics.  

2.2.3 Sediment transport 
The interaction between hydrodynamics and sediment is complex and not yet well 
understood. A SPAW is a submerged amount of sand which migrates due to sediment 
transport gradients. Much sediment is in motion in the nearshore zone. In general, movement 
of sediment particles depends on the characteristics of transported material (grain size, 
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shape, density, fall velocity, pore content), and the ambient flow conditions. Two main modes 
of transport are distinguished: 

 Bed load; particles are sliding, rolling, shifting and making small jumps over the 
seabed while they stay close to the bed. 

 Suspended load; particles are lifted from the bed and transported in suspension by 
the (moving) water. Particles are kept in suspension by fluid turbulence. 

The total sediment load is the sum of the bed and suspended load. Sediment particles will 
start moving as bed load when a critical shear stress is exceeded. Bed load transport is 
mainly determined by the bed shear stress (߬௕) that acts on the sediment particles. Therefore 
bed load formulas are among other parameters (such as diameter and density) expressed in 
terms of the bed shear stress supplemented with a bed-slope correction factor. 
 
Suspended transport rate (ܳ௦௦) is calculated by taking the sediment flux (defined as the 
sediment concentration multiplied by the horizontal velocity), and integrate it over water depth 
(from top of the bed load layer to the water level) (Eq. 2.7). In Delft3D the wave-related part of 
the suspended sediment transport is classified as near-bed load transport (Van Rijn, 2007; 
Appendix B.6). Suspended load does not always respond instantaneously to hydrodynamic 
conditions especially fine grains experience phase lag effects: sediment pickup and settling 
requires times due to which phase differences between velocities and suspended sand 
concentrations can occur. 

〈ܳ௦௦〉ถ
௧௜௠௘	௔௩௘௥௔௚௘ௗ	௦௘ௗ௜௠௘௡௧

௧௥௔௡௦௣௢௥௧௥௔௧௘

≅ නܷݖ݀ܥ
௛

௔ᇣᇧᇤᇧᇥ
௖௨௥௥௘௡௧ି௥௘௟௔௧௘ௗ	௣௔௥௧

+ න〈ݑ෤ܿ̃〉݀ݖ
௛

௔ᇣᇧᇧᇤᇧᇧᇥ
௪௔௩௘ି௥௘௟௔௧௘ௗ	௣௔௥௧

 (2.7) 

In which ܳ௦௦ = instantaneous suspended transport rate [m3/s/m], ܷ time averaged fluid 
velocity at height z [m/s], ܥ time-averaged concentration at height z [m3/m3], ݑ෤ oscillating fluid 
component [m/s], ܿ̃ oscillating concentration component [m3/m3], ܽ is top of bed load layer, ℎ 
is instantaneous water level ℎ = ℎ଴ +   .ߟ
 
Wave action, as well as current action (e.g. horizontal circulation, undertow, and tides) takes 
place in the nearshore. The presence of waves leads to (i) additional stirring (e.g. by wave 
breaking) resulting in an increased current-related sediment transport and more suspended 
sediments in the upper part of the flow, also (ii) an additional wave-related transport 
component in the direction of wave propagation is generated by waves. The effects related to 
wave asymmetry are dominantly occurring in the nearshore zone as stated by Van Rijn 
(2007).  
 
Both currents and waves induce sediment transport, in longshore as well as cross-shore 
direction. In cross-shore direction (the direction of wave propagation) a net sediment transport 
can take place, due to the presence of waves and currents. For example three possible 
interactions are:  

 The presence of waves may result in a wave-averaged net sediment transport, 
particularly during the peaks of a wave period much sediment is entrained. When the 
oscillatory velocity signal is symmetric, no net sediment transport takes place. 
However, for deformed waves in the shoaling area a positively skewed velocity signal 
is present. This induces a net sediment transport in the direction of wave propagation 
because sediment load is related to the velocity in a non-linear way (it still holds that 
〈u෤〉 = 0). 

 Similar processes occur in case of a current superimposed on a sinusoidal velocity 
signal; this also deforms the velocity signal such that a net sediment transport in the 
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direction of the current develops, which is larger than the transport for the current 
alone.   

 Another possibility is that a vertical circulation cell develops in the nearshore due to 
the undertow, this wave-generated current transports much sediment offshore 
because it is offshore directed in the lower part of the water column. Since sediment 
concentration is non-uniformly distributed over the vertical the highest sediment 
concentrations occurs in the lower part of the water column. This undertow is 
dominating during storm conditions, during which much sediment is transported 
offshore.  

 
In longshore direction, transport depends amongst others on hydrodynamics in the breaker 
zone and on sediment properties. The longshore transport is enhanced due to waves 
because waves stir up sediments, after which the longshore current transports it. 
 
In general, bed level changes can be estimated using the mass balance equation. Assuming 
there are no local inputs or abstractions of sediment, and no sediment can vanish, the mass 
balance of sediment is:  

(1 − (݌
௕ݖ߲
ݐ߲ +

߲ܵ௫
ݔ߲ +

߲ܵ௬
ݕ߲ = 0 (2.8) 

In which ݖ௕ is the bed level above a certain horizontal datum (m), ܵ௫ the sediment transport 
rate (volume in solid grains) in x,y-direction (m3/s/m), and ݌ the porosity (-).   
 
The basic problem is that the net transport in this zone is a delicate balance of various 
onshore and offshore-directed transport processes which are all of the same order of 
magnitude. Thus the net result in these conditions is by definition uncertain and almost 
unpredictable. Van Rijn (2007) also states that our knowledge of sediment transport in the 
nearshore zone close to the beach is still very limited and more research is necessary.  

2.3 Nourishment strategies 
Nourishments can be done at different scales and cross-shore locations; it can be done at a 
beach or dune face (sub aerial) or on the shoreface to the subaqueous part of the profile. 
Shoreface nourishment locally prevents the coast from erosion due to two main effects: the 
lee and the feeder effect (Figure 2.8). Firstly, the lee effect (Figure 2.8 – left) contains the fact 
that large waves will break over nourishments and decrease the wave-driven longshore 
current shoreward of the nourishment. A decreasing longshore current results in decreasing 
longshore sediment transport capacity; hence sediment is trapped shoreward of the 
nourishment. Since the nourishment acts as a blockade, updrift deposition and downdrift 
erosion shoreward of the nourishment is expected. Since SPAWs are only small humps 
(average width and length of respectively 20 and 126 m at Duck (USA)), we do not expect the 
lee effect to be large.  
 
Secondly, the feeder effect (Figure 2.8 – right) includes onshore movement of nourished sand 
particles. Since large waves break at the seaward side of shoreface nourishment, the 
remaining shoaling waves generate more onshore transport as a result of wave non-linearity. 
The smaller waves in the lee side generate less stirring of the sediment and a decreasing 
wave-induced return flow (undertow). Due to the fact that waves break over the nourishment, 
wave set-up is generated directly shoreward of the berm. This induces horizontal cell-
circulation current patterns (especially on the tips of the berm) (Koster, 2006; Ojeda et al., 
2008; Van Rijn and Walstra, 2004).  
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Figure 2.8. Expected effects as a consequence of the placement of a shoreface nourishment (adopted from Van 

Rijn en Walstra, 2004). Showing the lee effect (left) and the feeder effect (right).  
 
Van Rijn and Walstra (2004) concluded that based on observations at Egmond aan Zee, 
Terschelling and Delfland the final sand budget in the nourishment zone had increased after 
implementing nourishment. Also they found an amount in the order of 50 – 70% of the initially 
nourished sand is still in the nourished nearshore section after 3-5 years. The lifetime of 
shoreface nourishment is about 2-10 years. The supply of sand from the feeder berm to the 
beach takes place on a relatively long time scale (10 years or so), so the feeder berm needs 
additional nourishments as well in order to stay effective.  

2.3.1 Humplike nourishment study (Koster, 2006) 
Koster (2006) investigated an alternative design for shoreface nourishments. It was 
suggested to use humplike nourishments instead of the conventional method of elongated 
bars. Hypothesising that humplike nourishments cause more onshore transport than longer 
bars, because positive effects of horizontal circulation cells at the crest of the bar is better 
used. Koster tested the efficiency of humplike nourishments using the numerical model 
Delft3D.  And he invested the effectiveness of different hump lengths, gap widths, water 
depth, wave angles and wave heights. It turned out that indeed humplike nourishment 
seemed potentially more efficient than bar nourishments. The crests of all nourishments had 
a flat surface width of 50 meter. A hump length of 200 m with a gap width of 300 – 500 m 
gave the best results, since longer humps started to behave like elongated nourishment and 
shorter humps use too much amount of sand in relation with the efficient hump length. 
However, it should be noted that the study was done with a highly simplified bathymetry and 
boundary conditions. 
 
The study of Koster is very interesting in relation to studying SPAW behaviour, since it is also 
about relatively small nourishment compared to the current nourishment strategies. 
Nevertheless, there are significant differences between both studies. Firstly the location, 
Koster (2006) studies Egmond aan Zee, whereas this study focuses on Duck (USA). Both 
bathymetries are schematized, however Koster (2006) does not include alongshore bars (i.e. 
a plane bottom profile), whereas this study does (paragraph 3.4.3). Also locations and sizes 
of the submerged mount of sand (either nourishment or a SPAW) are different. The 
nourishment is located further offshore than the SPAW respectively at 600 and 200 m 
offshore. SPAWs are generally located in the nearshore zone onshore of the breaker bar. The 
nourishment is much higher than the SPAW, respectively 3 and 0.9 m. The location and 
height of the humps also imply that water depth above the humplike nourishment is much 
higher. Nevertheless, the insights of Koster are useful, because mechanisms for a SPAW are 
expected to be quite similar. 
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2.4 Hypothesis about SPAW behaviour 
A Shoreward Propagating Accretionary Wave is a consistently onshore migrating 
morphological feature observed in nature. We investigated the dynamics of SPAWs after 
initiation using the process-based Delft3D software package. In previous paragraphs relevant 
nearshore processes and theory about nourishments have been discussed. Based on this 
literature, we formulated the following hypothesis for shoreward propagation of a SPAW 
consisting of two parts:  
 

1. We expect increased onshore sediment transports over the SPAW due to the 
development of a horizontal circulation pattern around the SPAW which is onshore 
directed over the SPAW crest (Figure 2.9). This circulation is generated by local 
shoaling/deshoaling and wave-breaking over the SPAW inducing gradients in 
radiation stress. These result in a local wave set-down directly seaward of the SPAW 
due to shoaling, and wave set-up directly shoreward of the SPAW due to deshoaling 
and/or wave breaking. This local wave set-up/set-down induces longshore pressure 
gradients, which drives the local horizontal circulation current which we expect to be 
present in the flow-field.  
 

2. We expect sediment transport to be higher above the SPAW due to non-linear wave 
transformation over the SPAW caused by a different bathymetry. This results in 
waves becoming skewed and more asymmetric over the feature. Also we expect 
waves to break over the SPAW (since it has approximately the same height of the 
bar), which leads to more turbulence and more sediment in suspension. When waves 
are more asymmetric and skewed, the onshore sediment transport is expected to be 
higher than around the SPAW. 

 
The first part of the hypothesis is checked by looking at flow-fields around the SPAW. The 
second part is checked by analyzing sediment transport patterns and the different 
components of sediment transport (i.e. near-bed load and suspended load) that develop 
around a SPAW.  
 

 
Figure 2.9. Top view of hypothesized horizontal cell circulation induced by local pressure gradients by wave-

breaking. η+ indicate areas of set up, η+ indicate areas of large set-up. Blue arced areas indicate wave 
breaking. 
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3 Delft3D model for modelling SPAW dynamics 

To investigate the flow field around a SPAW, a three-dimensional Delft3D model is set up for 
Duck beach (USA). The input for the model (e.g. bathymetry, SPAW dimensions and wave 
height) is based on a chosen representative SPAW event that occurred at Duck Beach in 
1994. This Chapter discusses key-decisions made when setting up the Delft3D model 
schematization, also the model schematization itself is discussed.  
 
In Section 3.1 the modelling approach is explained, followed by some general information 
about Delft3D in Section 3.2. Section 3.3 describes the field site, a representative SPAW 
event on which the model is based, and measured conditions during the average SPAW 
event.  Subsequently, in Section 3.4 the Delft3D model schematization for the representative 
SPAW event at the Duck Beach study site as applied in this study is discussed. From grids, 
bathymetry, initial and boundary conditions to the parameter settings, and the implementation 
of the roller model in Delft3D.  

3.1 Modelling approach 
This study focuses on studying the hydrodynamic field that develops across and around a 
SPAW feature. A schematized modelling approach was chosen, in order to investigate 
autonomous effects of a SPAW. However, the schematized input is based on realistic wave 
conditions which could have occurred during the representative SPAW event.  
 
Schematizations are the following:  

 One average SPAW event is chosen, representative for most SPAW events. An 
average SPAW event is taken as a basis, since also morphometric characteristics of 
the SPAW will be varied.  

 The bathymetry is based on measurements during a chosen representative SPAW 
event period (paragraph 3.3.2), but is assumed alongshore uniform. With an 
alongshore uniform bathymetry results are not influences by interaction with small 
alongshore variations in bathymetry.  

 For offshore wave data the schematized JONSWAP spectrum is imposed, instead of 
a measured 2D-(direction and frequency) wave spectrum. Waves are chosen to 
approach the coast perpendicular; this reduces side effects of directional spreading 
and longshore currents.   

 Hydrodynamic characteristics are highly schematized; we assumed a constant 
significant wave height and water level instead of a time series. This facilitates the 
analysis of results, since we can analyze the influence of changes in certain 
parameters. Also computational time would become too long if a time series of 
several hours should be computed.  

 Wind is excluded from the simulation, since we do not expect wind to have very large 
impact in the flow fields around a SPAW. Wind generally can induce additional 
currents. Also another reason to exclude wind was that the model showed 
unexpected non-uniformities in model outputs. 

 Horizontal tide is excluded from the simulation. It is expected that this longshore 
component is not essential in explaining SPAW dynamics, which was dominated by 
cross-shore movements.  

 
This schematized approach facilitates interpretation of results, since these are not disturbed 
by other factors than the presence of a SPAW. Also an advantage is that due to the 
schematizations the reference case (i.e. without a SPAW) should be alongshore uniform, this 
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knowledge is used by deciding whether confidence could be put in the model. Although 
simulations provide a good general impression of SPAW dynamics, it is important to realize 
during the analysis that the modeled situation is highly schematized. The actual 
hydrodynamic field around a SPAW is a summation of all effects of different hydrodynamic 
conditions (wave angle, wave height, water level above SPAW etc.) and local bathymetry. 

3.2 Delft3D software 
Modeling of almost all runs was done with Delft3D-FLOW (Version 4.00.04.757, August 23, 
2011), and Delft3D-WAVE (Version 3.04.01.757, Aug 23 2011). One run was done as a 
sensitivity analysis with a test-version of Delft3D-FLOW (Version 5.00.08.1832, Sep 13 2012) 
in combination with Delft3D-WAVE (Version 4072ABCDE). Paragraph 3.4.7 describes the 
choice to use version 4 as well as a test-version of Delft3D. 
 
Delft3D is a process-based morphodynamic model developed to simulate phenomena 
occurring in water environments. The model schematization used in this study is based on 
earlier schematizations made by Hsu et al. (2006, 2008), Van der Werf (2009) and Treffers 
(2009). These models were hydrodynamically calibrated for the SandyDuck97 cases. The 
focus of these studies was to investigate longshore wave driven currents. Since no 
measurements of the flow-field and sediment transports (such as the SandyDuck97 cases) 
are present for periods in which SPAWs occur, it is not desirable to develop a new model for 
Duck (USA) to investigate SPAW dynamics. 
 

 
Figure 3.1. Structure of Delft3D in stationary mode, *the bed updating is only done in the last time step. 
 
For the model schematization the WAVE and FLOW modules are used. More information can 
be found in Appendix B.3 and B.4. Delft3D-FLOW calculates the flow field, the wave 
parameters (e.g. wave height) using the Roller model, the sediment transport field and the 
initial morphological evolution. Delft3D-WAVE calculates the short wave field using the SWAN 
wave model. These two modules are coupled in an online morphodynamic way (Figure 3.1), 
which implies Delft3D-FLOW makes several computations before the wave field is updated.  
 
This schematization applies the roller model to compute wave heights, as it was shown to 
improve predictions for the wave height and longshore current velocities (Hsu et al., 
2006).The effect of including the roller model is that regions of wave-set up are shifted 
shoreward as well as the wave-driven currents, because wave energy dissipation is delayed. 
The peak frequency and mean wave direction as computed by SWAN are used as input for 
the roller model. 
 
Delft3D utilises the two-layer concept introduced by De Vriend and Stive (1987) in which it is 
assumed that onshore mass transport of water occurs between wave top and trough, which is 
compensated by an offshore directed undertow below the wave trough. Delft3D considers 
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phase-averaged wave properties, only mass flux below the wave trough is considered 
through the application of the shallow water equations in a generalized lagrangian mean 
(GLM) framework (Walstra et al., 2000). The relation between the GLM velocity and the 
Eulerian-mean velocity is the Stokes drift (i.e. the wave-induced mass-flux in direction of 
wave-propagation):  

ሬ⃗ݑ ா = ሬ⃗ݑ ௅ − ሬ⃗ݑ ௌ (3.1) 

In which uሬ⃗ ୉ the ordinary Eulerian-velocity vector,  uሬ⃗ ୐ is the GLM-velocity vector, and uሬ⃗ ୗ is the 
Stokes drift vector. The Stokes drift is analytically computed from the wave theory Dean and 
Dalrymple (1991). Delft3D output is normally given in Eulerian velocity, to be able to compare 
computational results with measurements. 
 
Sediment transport is calculated online, during the FLOW module. The transport formulation 
TRANSPOR2004 of Van Rijn (2007) was used. This is an updated version of 
TRANSPOR1993 (Van Rijn, 1993). In TRANSPOR2004 the bed-shear stress is based on a 
new bed roughness predictor. Also the reference concentration function has been 
recalibrated using laboratory and field data for combined steady and oscillatory flow (Van 
Rijn, 2007a). Transport is divided into suspended and near-bed load transport. The 
suspended load is calculated using GLM velocities. In contrary, the bed load is computed 
using the bed shear stress, which originates from Eulerian velocities (Walstra et al., 2000). 
The near-bed load consists of three components, namely:  

1. Bed-load due to currents (Sbc), acting in the direction of the (Eulerian) near-bed 
current. 

2. Bed-load due to waves (Sbw), acting in the direction of wave propagation.  
3. Suspended load due to wave asymmetry effects (Ssw), acting in the direction of wave 

propagation. 
More information about the sediment transport calculations is given in Appendix B.6.  

3.3 Field site, choice representative SPAW event and data description 
Wijnberg and Holman measured SPAW events at three different beaches. This study focuses 
on Duck (North Carolina, USA), since most SPAW events were observed here (19 in total). 
Also, this site is analyzed often and many hydrodynamic data are available. 

3.3.1 Duck Field site description 
The Duck study area is located in North Carolina (USA) near the CERC Field Research 
Facility (FRF). The FRF is located at about the middle of Currituck Spit, a 100 km long 
unbroken stretch of shoreline facing the Atlantic Ocean (Figure 3.2). It is a predominantly 
steep beach (1:12.5) and it is fronted by one or two nearshore bars (usually an outer storm 
bar in water depths of about 4.5 m and an inner bar in water depths between 1.0 and 2.0 m). 
The mean annual wave height is about 1 m and its period is 8 s; the spring tide range is about 
1.5 m (Leffler et al. 1992). It is a swell-dominated area. The area of interest in the view of the 
camera starts about 200 m north of the pier and extends 1 km alongshore. In cross-shore 
direction it extended from the inner nearshore bar to the shoreline. The analysed period for 
SPAWs spans from October 7, 1986 until December 1996. A gap existed in the data between 
10th of August, 1992 and 28th of January, 1993 (Wijnberg and Holman, 2007).  
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Figure 3.2. Field Research Facility Duck (FRF), the castle in the left figure represents the measuring pier (right 

figure), adopted from http://www.frfusace.army.mill/. 

3.3.2 Representative SPAW event 
In this study a representative SPAW event is chosen to represent the SPAW for all runs. It 
had average SPAW characteristics, from which realistic wave conditions and bathymetry 
were used for the model schematization. As mentioned in chapter 2, SPAWs have an 
average length of 126 (stdev 60m), an average width of 30 (stdev 10 m), and an average 
migration speed of 3.1 m/day (stdev 0.8 m/day). Two events are approximately the same as 
the average event. The SPAW event of 22nd of April 1994 to 5th of May 1994 (Length =131 m, 
Width = 18 m, Migration speed =2.9 m/day) is chosen to be representative. Although the 
width deviates slightly more than the standard deviation, the other characteristics are 
average. The other SPAW event which reassembles an average event is measured between 
the 4thof June1988 to 19th of June 1988 (Length = 134 m, Width =24 m, Migration speed =2.3 
m/day). This event was not chosen, because no wave data are available for that period.  

3.3.3 Conditions during average SPAW event 
At FRF many (hydrodynamic) measurements were carried out. The model of Hsu et al. (2006) 
was calibrated on Duck94; Van der Werf (2009) and Treffers (2009) used the SandyDuck97 
data. The conditions during the SPAW event (22nd of April to 5th of May 1994) are visualized 
in Figure 3.3 and 3.4. 
 
Winds were measured at the end of the pier at an elevation of 19.36 m referred to National 
Geodetic Vertical Datum (NGVD) presently using an RM Young Marine anemometer at an 
interval of 34 minutes. The NGVD is 0.42 m above Mean Low Water (MLW). The wind 
direction is defined nautically; 0˚ denotes wind coming from the North and is positive in 
clockwise direction. 
 
Directional wave data are taken from the Senso-metric 8m Array (1 km offshore). The FRF's 
8m Array consists of 15 pressure gauges mounted approximately 0.5 m off the bottom at the 
8-m contour line about 900 m offshore and to the north of the research pier (Figure 3.2). 
Directional information is computed from these gauges using an iterative maximum likelihood 
estimator. Directions are defined nautical (same as wind directions), i.e. 90˚ represent waves 
propagating straight onshore. Directional wave data show that on average waves approach 
the coast approximately straight onshore. 
 
Wave heights are generally low, and wave periods are long (Figure 3.4). This is typical for a 
swell-dominated beach. When considering significant wave heights during SPAW events in 
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1994, there is a tendency for SPAWs to initiate after a storm and propagate during calmer 
conditions (Figure 3.4 and red shaded periods in Figure 3.5) this was also observed by 
Wijnberg and Holman (2007).  
 
The tidal data (ztide) are taken from the National Oceanic and Atmospheric Administration 
(NOAA) primary tide station located at the seaward end of the FRF pier. The z-axis (vertical) 
is positive upwards and relative to NGVD. The vertical tide is measured every 6 minutes.  The 
data show that the dominant M2-tide has average amplitude of approximately 0.5 m. 
 

 
Figure 3.3. Water elevation, wind speed, and wind direction during the representative SPAW event. The wind 

direction is defined nautically and positive in clockwise direction. 

 
Figure 3.4. Significant wave height, peak period and mean wave direction during average SPAW event. The wave 

direction represents the angle in degrees counter clock-wise from shore normal. 
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Figure 3.5. Significant wave height for the year 1994. Shaded areas represent SPAW events, the event with red 

lines is the average SPAW event. 

3.4 Delft3D model  

3.4.1 Horizontal Delft3D computational grid 
The rectangular FLOW grid has 187 cells in m-direction (cross-shore) and 301 in n-direction 
(longshore) (Figure 3.6). This corresponds to a modelled area of 850 x 1500 m. We choose a 
longshore distance of 1500 m to be able to use the same model schematization for SPAWs 
with lengths up to a maximum of approximately 500 m. The flow grid has a high resolution 
nearshore and coarser offshore since the nearshore zone is the main area of interest. A short 
investigation on differences in grid-resolution on- and offshore showed that making the grid 
coarser offshore had no significant impact on results. 
 

 
Figure 3.6. Computational grid for Delft3D model, showing WAVE grid (left) including boundary conditions 

(paragraph 3.2.3) and FLOW grid (right). 
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The maximum grid resolution is high compared to other Delft3D studies; this is necessary 
because SPAW dimensions are relatively small. The model has a grid-step size of 2,5 m in 
cross-shore and 5 m in longshore direction, which implies that for a SPAW with a width of 25 
m eleven depth points are located over the SPAW. It would not be feasible to refine the grid 
further, because otherwise the time step should be even smaller and consequently the 
computational time would become much longer.  
 
The WAVE grid is two times coarser than the FLOW grid in order to save computational time. 
Since the model applies the roller model (paragraph 3.4.6 and Appendix B.4), only the peak 
frequency and mean wave direction field are used from SWAN. The WAVE grid is larger than 
the FLOW grid in alongshore direction (i.e. extended by the cross-shore distance, 900 m), to 
compensate for boundary effects. This ensures that boundary conditions of the FLOW grid 
are realistic wave conditions. 

3.4.2 Vertical grid 
The model is three dimensional for investigating three dimensional effects of a SPAW on the 
flow field. This was done by implementing a vertical grid. It is recommended to choose the 
bed layer thickness in the order of 2% of the water depth (Deltares, 2011). Another factor to 
take into account is the variation factor, i.e. the difference in thickness of subsequent layers. 
The Delft3D flow manual suggests a variation factor in the range of 0.7 – 1.4. When this 
variation factor becomes too large, it can induce numerical errors.  
 

 
3.7. Vertical grid schematization showing σ-coordinate system with 6 layers(Deltares, 2011), in this study a 

schematization with 20 layers was applied. 
 
Since the main areas of interest for turbulence and sediment transport are those near the 
surface and the bed, the resolution is chosen higher in the lower and higher part of the water 
column (log-log distribution). 20 layers were used in the vertical, since computational time is 
not a very large issue (only 2 hrs have to be simulated, which takes about 17 hrs 
computational time with current settings). The distribution uses σ-layers (Appendix B.2) and is 
symmetric in the vertical: starting at the bottom and at the surface with 2% of the water depth 
and getting coarser to the middle of the water column having subsequent layers of 2.2, 2.8, 
3.3, 4, 4.8, 5.8, 6.9, 8.3, 9.9 % of the water depth. 

3.4.3 Bathymetry 
Bathymetric surveys at the FRF are conducted monthly over a series of 26 shore 
perpendicular “profile lines”, from the dunes to approximately 950 m offshore. They are 
conducted using a Coastal Research Amphibious Buggy (CRAB).  
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Figure 3.8. Base case: Schematic alongshore uniform bathymetry including a SPAW (left), and top view of SPAW 
configuration zoomed in at SPAW location (right). The axis and colouring of both figures do not have the 
same scale. 

 
We analyzed bathymetric measurements on the 6th of April 1994 and chose a representative 
transect (Appendix C) and extended it uniformly along the coast (Figure 3.8). One nearshore 
breaker bar is located at a cross shore distance of 250 meter. The model is based on a highly 
schematized alongshore uniform bathymetry, in order to investigate the autonomous effect of 
a SPAW. On top of the uniform bathymetry, SPAWs are schematized as described in the 
following paragraph.  

3.4.3.1 SPAW configuration  
Since a SPAW is only captured once in a bathymetric survey, uncertainty is involved in 
modelling a SPAW event. In this study the SPAW top is assumed to be at the same height as 
the top of the nearshore bar (Figure 3.9 - left), this is confirmed by the one observation which 
was done (Figure 2.4). Also it is observed that waves break over the SPAW, this indicates 
that SPAWs should have a similar height as the bar. The slopes of SPAWs are assumed to 
be of maximum 1:10; because if slopes are steeper, the feature is not likely to occur in real 
life due to the angle of repose of sand. Additionally, a slope of 1:10 approximately resembles 
the shoreward slope of the bar.  
 

  
Figure 3.9. Cross-sections of SPAW, showing cross-shore (left) and longshore (right) configuration. Circles indicate 

water depth points.  
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The height of a SPAW is defined as the distance from top to original bottom at that location. 
Despite the high resolution not much depth points are located over the SPAW. The grid-
resolution in cross-shore direction is 2.5 m; so for a SPAW of 25 m wide, 11 points are 
located over the SPAW. Therefore the shape is modelled relatively simple. It is modelled as a 
triangle with a flattened top; the height of the depth points close to the top are a factor (f) 
times the height of a SPAW (Figure 3.9 - left).  
 
In longshore direction the grid-resolution is 5 m. applying a 1:10 slope implies that only one 
depth point is located at the sloping side of the SPAW. For cross-shore grid points at the 
slope the shape is defined in the same way as for the middle, only the height is taken as the 
half of the height of the top of the SPAW (Figure 3.9 -red line). 
 
Delft3D applies a staggered grid; this has implications for the SPAW schematizations. It was 
chosen to specify the depth in the cell-centres (in water level points), using the key value 
DPSOPT = DP. For calculations in the velocity points depth was interpolated as the mean of 
two adjacent velocity points (DPUOPT = MEAN_DPS).  

3.4.3.2 SPAW Base case  
For the base case scenario a SPAW was configured as follows: Width (W) = 25 m, Length (L) 
= 130 m, factor for flattened top (f) = 0.95. As can be noted, the width deviates from the width 
of the chosen representative SPAW event. This is due to the fact that the height, slope and 
width are linked. The slopes would become too steep when modelling the SPAW with a width 
of 18 meter. Since determining the sizes of a SPAW is uncertain, adjusting the width seems 
acceptable. The SPAW is located at a cross-shore distance of 198.75 m, in between the 
coast and bar. And at a longshore distance of 750 m, in the middle of the domain.  

3.4.3.3 SPAW scenarios 
In the last part of this study (Chapter 6) SPAW configurations are varied to investigate the 
sensitivity of results to morphometric characteristics of SPAWs. Since the available time was 
not sufficient to run many cases, it was chosen only to run one specific case of each scenario. 
This will give a first impression of the response of the wave-induced flow field around a 
SPAW to morphometric characteristics of the SPAW. Running cases with SPAWs at different 
locations, gives insight in the expected morphodynamic behavior of a SPAW. Because if a 
SPAW shows a shoreward displacement for all locations; it can be expected that during a 
morphodynamic run the SPAW will propagate onshore.  
 
Five SPAW configurations were tested (lower part in Table 2), in which the width, length, 
location and local bathymetry were changed. In scenario 5 the local bathymetry was adjusted 
(Figure 3.10), because it could be seen in the conducted bathymetric survey at Duck that the 
bar was lowered seaward of the SPAW. The bathymetry and a top view of the bathymetry for 
each scenario are shown in Appendix F. 
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Figure 3.10. Scenario with local bathymetry change: Schematic alongshore uniform bathymetry including a 
SPAW (left), and top view of SPAW configuration zoomed in at SPAW location (right). The axis and 
colouring of both figures do not have the same scale. 

 
Table 2. SPAW configurations for base case and different scenarios 
 Hs 

[m] 
Z 

[m] 
Width 

[m] 
Length 

[m] 
Location 

[m] 
Remarks 

Base case 0.56 0 25 130 198.75  
S1: varying water levels 0.56 -0.5, 0, 0.5 25 130 198.75  
S2: varying wave heights  2.23 0 25 130 198.75  
S3: longer SPAW  0.56 0 25 400 198.75  
S4: wider SPAW 0.56 0 60 130 198.75  
S5: closer to shore 0.56 0 25 130 175  
S6: closer to bar 0.56 0 25 130 225  
S7: local bathymetry change 0.56 0 25 130 198.75 Bar lowered 

3.4.4 Initial and boundary conditions 
Flow and transport boundary conditions are required at an open boundary, representing the 
influence of the area outside the modelled area. In this model we used three types of 
boundary conditions (Figure 3.6, left). For the FLOW-module Neumann boundaries are 
combined with water level boundaries. A Neumann boundary of zero is imposed at the lateral 
boundaries perpendicular to the coast; it implies that alongshore water level gradient is zero 
(no horizontal tide). These boundaries need to be used in combination with a water level 
boundary at the seaward boundary, to make the solution of the mathematical boundary value 
problem well-posed. For the WAVE-module 2D-(directional and frequency) wave spectra are 
imposed at all boundaries. For sediment transport no boundary conditions are specified, an 
equilibrium sediment concentration at the boundaries is calculated. This provides the model 
area of sediment. As initial condition 0 kg/m3 is imposed. The initial sediment layer thickness 
at the bed is set to 5 m (default).  

3.4.5 Conditions applied in Delft3D modelling 
As mentioned in the paragraph above, Delft3D requires wave and water level information at 
the model boundaries. The imposed conditions (i.e. tide, significant wave height, water level, 
and wave spectra) are based on the measured data during the 1994 representative SPAW 
event, and are discussed in this paragraph.  
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3.4.5.1 Tide (Water level, ztide) 
A fixed water level (ztide) was imposed at the offshore boundary which represents high/low 
tide states of the vertical tide. Since the dominant M2-tide has an average amplitude of 
approximately 0.5 m (Figure 3.3) water levels of -0.5 m, 0 m and +0.5 m are imposed to 
investigate the influence of vertical tide. The different water elevations are implemented in 
Delft3D by adapting the offshore boundary condition. The water level of 0 meter is used in the 
base case.  
 
The horizontal tide component is not taken into account in this study, since it is expected that 
this longshore component does not have much impact on dominantly cross-shore SPAW 
dynamics. 

3.4.5.2 Significant wave height and peak period  
Two significant wave heights are chosen in order to represent the extremes which occur 
during SPAW occurrence. As explained in the introduction there is a tendency that the SPAW 
initiates after a storm and propagates during calmer conditions, this is confirmed by the 
significant wave height data measured during SPAWs for 1994 (Figure 3.5). For this reason a 
low and high significant wave height were chosen, respectively Hs =0.56 m and Hs =2.23 m. 
The low wave height is used in most cases, since it is the prevailing wave condition during the 
SPAW events.  
 
We also took SandyDuck97 data (Van der Werf, 2009; Appendix E) into account when 
choosing values for the significant wave height, since for the representative SPAW event no 
spectral wave data are available whereas for the SandyDuck97 there is. Hs and Tp were 
chosen so that the combination occurred during the average SPAW event and the 
SandyDuck97 experiments. Thus we used 2D-spectral wave data from ’97 to investigate 
whether the JONSWAP spectrum resembles a realistic wave spectrum at Duck Beach (USA).  
 
We searched for a time in the SandyDuck97 data at which the mean wave direction (θTmean) 
was around 90˚ (i.e. waves coming from the East) in order to minimize effects of oblique 
incoming waves and directional spreading. Also Tp was chosen such that it was very similar 
for both wave heights, to exclude the effect of wave period. A relatively long wave period was 
chosen to represent swell occurring at Duck. Applied conditions to represent hydrodynamics 
during an average SPAW event are summarized in Table 3. 
 
Table 3. Conditions from SandyDuck97 to represent average SPAW event hydrodynamics. 
 Hs [m] TP[s] θTmean[˚] Vwind[m/s] θwind[˚] Ztide[m] 
10/18/1997 19:00:00  2.23 8.1 80* 11.9 26.9 -0.5 0 0.5 
09/27/1997 01:00:00 0.56 8.2 90 4.16 75.37 -0.5 0 0.5 
* in the simulation a θTmean of 90˚ was used for generating the JONSWAP spectrum 

3.4.5.3 Wave spectra 
For the WAVE module wave spectra were imposed at all boundaries, we applied uniform 
boundary conditions along all boundaries. This can either be 2D (directional and frequency)-
wave spectra obtained from data or a parametric specified spectrum such as JONSWAP, 
Pierson-Moskowitz or Gauss. In this study we use a parametric specified spectrum, because 
it has the advantage that it is a regular spectrum, with no natural irregularities at different 
frequencies and directions. This helps by interpreting results, since patterns become clearer 
and are not disturbed by variances in the spectra. 
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We choose a JONSWAP spectrum which stands for Joint North Sea Wave Observation 
Project (Hasselman et al., 1973). They found that a wave spectrum is never fully developed 
and continues developing through non-linear wave-wave interactions when waves are 
propagating. In Delft3D a JONSWAP spectrum can be generated, requiring significant wave 
height and peak period as input. The peak enhancement factor is set to 3.3 and the direction 
spreading is 4 (default Delft3D).  
 
JONSWAP is developed for the North Sea which has a different wave climate than the 
Atlantic Ocean (respectively wave and swell dominated). However, since we give input data 
for the spectrum that is based on a swell dominated beach it was seen to represent the 
measured spectrum quite well (Figure 3.11). The main differences between the two spectra is 
(i) that for the measured spectrum also more energy is found at higher frequencies and (ii) the 
measured spectrum has a mean wave direction of 90˚, instead of the having the peak at that 
direction. Therefore the 1D-spectra for a direction of 90˚ how similar patterns, but have a 
different maximum energy density (Figure 3.11 - bottom).  
 

 
 

  
Figure 3.11. Wave spectra for the low wave height. Measured wave spectrum for the low wave height (left) and 

JONSWAP wave spectrum as applied in this study (right). Top figures are 2D-wave spectra (directional and 
frequency), and bottom figures are 1D-wave spectra (frequency) for the mean wave direction. Note that the 
scaling is different for all plots.  

3.4.6 Parameter settings 
Since no measured data of the flow-field and sediment transports are available for 
calibrations within the period of interest (22nd of April 1994 to 5th of May 1994) the parameter 
settings as used by Van der Werf (2009) and Treffers (2009) are applied, and some were 
slightly adjusted based on expert knowledge or sensitivity analysis. The parameter settings 
are summarized in Table 4. For parameters not mentioned in this paragraph, we used default 
Delft3D settings.  
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Table 4. Parameters for the Delft3D model to simulate SPAW behaviour. 
Parameter   Default 

Delft3D 
Van der 
Werf (2009) 

This study 

Simulation time  [min] - 60 120 
Time step  [s] - 6 1.5 
Nr. of vertical layers [-] - - 20 
Reflection parameter  [s-2] 0 100 100 
Water density  [kg/m3] 1000 1025 1025 
Chézy roughness coefficient  [m0.5/s] 65 60 60 
Background horizontal viscosity [m2/s] 1 0 0.1 
Background horizontal diffusivity  [m2/s] 10  0 0.1 
Model for 3D-turbulence [-] - k-ε model k-ε model 
Threshold depth  [m] 0.1 0.2 0.2 
Smoothing time  [min] 60 15 15 
Interval wave computation [min] - 30 15 
Roller [-] No Yes Yes 
Cstbnd [-] No Yes Yes 
Gamdis [-] 0.55 Ruessink et 

al. (2003) 
Ruessink et 
al. (2003) 

Mean sediment diameter (d50)  [mm] - - 0.2 
 
The simulation time for the model in this study was taken twice as long as Van der Werf 
(2009). Trial runs showed that after 60 minutes of simulation time, results were not yet fully in 
equilibrium. Extending the simulation time with 60 minutes gave more steady results 
(Appendix D). 
 
The time step in this study is 1.5 seconds, which is much smaller than that of Van der Werf 
(2009). We have increased the grid resolution significantly, to ensure enough grid cells were 
located over the SPAW. Therefore a smaller timestep is necessary to ensure accurate 
results, see also the time step analysis reported in Appendix D. 
 
A reflection parameter (alpha) was set for the water level boundary; a higher value of alpha 
makes the open offshore boundary less reflective for short wave disturbances propagating 
from inside the model. This kind of disturbances can especially occur at the start of the 
computation. Alpha is set to 100 (similar to Van der Werf, 2009) in order to let initial 
disturbances propagate out the model quickly. 
 
The Chézy value was set at a value of 60 m0.5/s, similar to Van der Werf (2009) and Treffers 
(2009). They calibrated the model on data. Treffers showed that 60 m0.5/s agreed better with 
longshore measurements than 55 m0.5/s. Van der Werf (2009) showed that the Chézy value 
did not influence significant wave height much, but it did influence longshore currents which 
was the main focus of their study.  
 
The background horizontal viscosity and diffusivity coefficients represent a series of 
complicated hydrodynamic phenomena. Decreasing horizontal eddy viscosity reduces 
horizontal mixing. These coefficients are so called calibration parameters, so their value is 
normally determined in the calibration process. However, no SPAW data for calibration are 
available; therefore we choose parameters based on expert knowledge. The horizontal eddy 
viscosity depends on the flow and the grid size used in the simulation, for detailed models 
with grid sizes typically as tens of meters of less, the values should be in the range of 1 to 10 
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m2/s (Deltares, 2011). Since this study applies an extremely detailed grid, the value was set 
to 0,1 m2/s (Personal communication with Walstra and Roelvink). Treffers (2009) showed that 
the default value of Delft3D as well as a value of zero did give good agreement with 
measurements for the external forcing (wave height and water level). For longshore currents 
agreement it was better if the background horizontal viscosity was set to zero. In this case 
only wave-breaking induced horizontal viscosity is added by the roller model to the system. 
 
A model for 3D turbulence can be selected for a 3D simulation to determine the vertical 
turbulent eddy viscosity and turbulent eddy diffusivity additional to the background values. For 
this study the k-epsilon turbulence model was applied, this model relates the vertical mixing 
length and vertical eddy viscosity to actual flow properties. Therefore this model is assumed 
to give a more realistic distribution of the velocity (Treffers, 2009).  
 
The threshold depth is the depth above which a grid cell is considered wet. Also, it affects 
currents since in Delft3D the roller stress is turned off at twice the threshold depth. In very 
shallow water, say depth less than 0.4 m, Delft3D occasionally generates large currents, due 
to unrealistic roller or wave forces (Hsu et al., 2006). Setting the threshold depth at 0.2 m 
avoids this problem.  
 
The smoothing time is taken similar to Van der Werf (2009). It represents the time interval 
used at the start of a simulation for a smooth transition between boundary and initial 
conditions. In the model schematization the offshore water level boundary matches the initial 
condition, therefore a smoothing time of 15 minutes is sufficient.  
 
The interval of wave computation is set to 15 minutes, which is slightly smaller than the 
interval set by Van der Werf  (2009). Trial runs showed that when reducing the interval, the 
model results were stabilizing quicker.  
 
The roller model (Appendix B.4) is used in this schematization to compute wave heights, as it 
was shown to improve predictions of wave height and longshore current velocities (Hsu et al., 
2006). The effect of including the roller model is that regions of wave-set up are shifted 
shoreward as well as the wave-driven currents, because wave energy dissipation is delayed. 
The peak frequency and mean wave direction as computed by SWAN are used as input for 
the roller model. The term Cstbnd should be used when applying the roller model; it switches 
advection terms containing normal gradients off. Advection terms at the offshore boundaries 
may generate an artificial boundary layer along the boundary, which is not desired. 
Additionally, dissipation of wave energy is calculated within the roller model; Gamdis is used 
for specifying a user defined gamma (γ) value used for calculating dissipation of wave energy 
formula. The parameter represents the significant wave height to depth ratio associated with 
depth induced breaking, i.e. the maximum height that can occur at a given depth. This γ can 
either be constant or variable γ (Ruessink et al., 2003). The latter is used in this study, since 
Hsu et al. (2006) showed that this expression improved wave height prediction. Compared to 
a typical fixed γ -value (0.5-0.8), the variable gamma leads to higher waves in deeper water 
and lower waves in more shallow water (Van der Werf, 2009).  
 
For the mean sediment diameter a uniform value of 0.2 mm was taken. Larson and Kraus 
(1993) obtained from 209 sediment samples that coarser material is present close to the 
shore and decreases rapidly with distance offshore. About 200 m from the shoreline the grain 
size is almost constant. Although the scatter in the data is wide, the median grain size in the 
offshore part of the profile is slightly less than 0.2 mm, whereas the material at the shoreline 
is generally coarser.  
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3.4.7 Roller model implementation 
A three-dimensional Delft3D model which applies the Roller model was used (Appendix B.5). 
The roller model as applied in Delft3D-FLOW has been introduced to delay transfer of wave 
energy to the current. When using roller equations, the wave set-up and longshore and cross-
shore flow are shifted shoreward. 

3.4.7.1 Roller model formulation (Delft3D Manual) 
The roller model formulations are described in the Delft3D-FLOW manual (Deltares, 2011). 
The short wave balance reads:  

ܧ߲
ݐ߲ +

߲
ݔ߲ ൫ܥܧ௚ cos(∝)൯+

߲
ݕ߲ ൫ܥܧ௚ ݊݅ݏ

(∝)൯ =  ௪ (3.2)ܦ−

In which E is the short wave energy, Cg is the group velocity, ∝ the wave direction, and ܦ௪ 
the dissipation of wave energy. The latter is described by the expression of Roelvink (1993). 
Wave energy is reduced and transformed into roller energy if wave break. It is located in 
down-wave region after wave breaking. This roller energy is modelled to propagate at twice 
the local celerity of the carrier waves and is rapidly dissipated in shallow regions. The energy 
that is lost from the organised wave motion is converted to roller energy through the roller 
energy balance: 

௥ܧ߲
ݐ߲ +

߲
ݔ߲ ൫2ܧ௥ܥ௚ cos(∝)൯ +

߲
ݕ߲ ൫2ܧ௥ܥ௚ ൯(∝)݊݅ݏ = ௪ܦ −  ௥ (3.3)ܦ

In which ܦ௥ is the roller energy dissipation, this is a function of the roller energy:  

௥ܦ = ݃ߚ2
௥ܧ
ܥ  (3.4) 

In which ߚ is a user-defined coefficient of approximately 0.1 (default Delft3D) and ݃ the 
acceleration of gravity. The above described time- and space-varying wave and roller energy 
cause a variation in radiation stresses (vertically averaged), through the following relations:  

ܵ௫௫ = ൬
௚ܥ
ܥ

(1 + cosଶ(ߙ))−
1
2൰ܧ + 2  ௥ (3.5)ܧ(ߙ)ଶݏ݋ܿ

ܵ௫௬ = ܵ௬௫ = sin(ߙ)cos	(ߙ) ൬
௚ܥ
ܥ ܧ +  ௥൰ (3.6)ܧ2

ܵ௬௬ = ൬
௚ܥ
ܥ

(1 + sinଶ(ߙ)) −
1
2൰ܧ + 2  ௥ (3.7)ܧ(ߙ)ଶ݊݅ݏ

 
In which ܵ	denotes radiation stress, which is subdivided in a depth-uniform stress and a 
surface stress as a result of the roller on the top of the water column. These surface stresses 
are always directed to the coast (since they are a result of wave breaking), and are the shear 
stresses related to the roller.  The surface stress is formulated as a roller force (ܨ௥,௫/௬): 

௥,௫ܨ =
௥ܦ
ܥ cos	(ߙ) ܨ௥,௬ =

௥ܦ
ܥ sin(ߙ) (3.8) 

Then the depth-invariant part of the radiation stresses, the organized wave forces (ܨ௪,௫/௬), 
follow from the total radiation stress gradient minus the roller force:  

௪,௫ܨ = −ቆ
߲ܵ௫௫
ݔ߲ +

߲ܵ௫௬
ݕ߲ ቇ − ௥,௫ܨ ௪,௬ܨ  = −ቆ

߲ܵ௫௬
ݔ߲ +

߲ܵ௬௬
ݕ߲ ቇ −  ௥,௬ (3.9)ܨ
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When assuming a uniform coast, a steady flow, and wave-dominance (i.e. tidal flow can be 
neglected in the near-shore zone) the equation of motion reduces to:  

݃
ߦ߲
ถݔ߲
ଵ

=
F୶
ℎดߩ
ଶ

−
〈τୠ୶〉
ℎถߩ
ଷ

 (3.10) 

In which the terms represents (1) the water level slope, (2) wave forcing (in this case the roller 
plus the wave force) and (3) bed-shear stress. When considering merely cross-shore flow and 
not sediment transport the bed shear stress term can be neglected. Then equation 3.9 
reduces to:  

݃
ߦ߲
ݔ߲ =

௫ܨ
 ℎ (3.11)ߩ

As described earlier in Chapter 2 and Appendix A.2 stresses as induced by wave force (i.e. 
gradients in radiation stresses) are compensated by a slope in water level (i.e. wave set-up or 
set-down). Since the roller force is only directed in direction of propagation (x-direction), the 
force will induce a wave set-up only and no set-down. 

3.4.7.2 Roller model implementation in Delft3D-FLOW 
During the analysis it turned out that in the current Delft3D-FLOW version 4.00.04.757 roller 
forces are indeed calculated by Eq. 3.7. However organized wave forces are not calculated 
by Eq. 3.8, but are always set to zero for the whole domain when using a stationary roller 
model. This implies that wave set-down due to shoaling and the wave-set up due to wave 
height decrease by deshoaling/breaking induced by the organized wave force is not 
incorporated in the current Delft3D version. Only the roller force is calculated and used for 
calculating water level gradient. This might influence the flow-field around the SPAW.  
 
In order to investigate effects of incorporating wave forces in the calculation a test-version of 
Delft3D was made (Sep 13th, 2012) in which wave forces are calculated as described in the 
manual. Runs were done with this test version for Hs=0.56 meter and different water levels. 
Unfortunately, runs for the average and high water levels (z = 0 m and z=+0.5 m) gave 
unstable results for the current settings in the model schematization. Since the time span for 
this study was limited, no time was left to investigate why these results became unstable for 
the test-version. This is an interesting topic to investigate in more detail in future research. 
The results for the lower water level (z = -0.5 m) were stable, and were used to compare 
results of the current and test-version of Delft3D (paragraph 5.3).  
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4 SPAW dynamics for the base case 

SPAW behaviour is observed in nature and can be seen as a natural way of beach 
nourishment (Chapter 2). A SPAW is located in the nearshore zone, in which waves break 
and nearshore processes are complex. Waves interact with the bottom, which results in 
gradients in radiation stresses, by which pressure gradients develop. These gradients on their 
turn generate currents in longshore and cross-shore direction. And finally, they interact with 
waves again, resulting in a complex hydro-morphodynamic system. 
 
In this Chapter, SPAW dynamics for the base case scenario are analysed. The base case 
applies SPAW dimensions of the representative SPAW events, and a low wave height 
(Hs=0.56 m; Tp=8.2 s) and an average water level (z=0 m). The low wave height is chosen 
since it is dominant in periods when SPAWs occur, as there is a tendency for SPAWs to 
initiate after a storm and propagate during calmer conditions (paragraph 3.3.3). All runs in this 
Chapter were done with the current version of Delft3D (i.e. version 4.00.04.757 in which wave 
forces are set to zero). The situation without a SPAW is referred to as the reference situation. 
It has the same conditions as the SPAW case, but only a different bathymetry.  
 
In Section 4.1 an overview is given of transects on which results are presented. The analysis 
of the base case was done in the sequence of analysing the following parameters: wave 
heights development (Section 4.2), water level development (Section 4.3), cross-shore and 
longshore velocities (Section 4.4), and resulting sediment transport patterns (Section 4.5). 
Some minor non-uniformity was found in modelling results, and is discussed in Section 4.6. 
The Chapter concludes with a summary of important insights in Section 4.7.  
 

4.1 Transects for analysing 
Different transects are used in the analysis to show local changes in parameters (Figure 4.1), 
it also visualizes directions and magnitudes of currents in more detail. Longshore transects 
are chosen on top of the bar, and seaward, on top, and just landwards of the SPAW; referred 
to as “Top bar” (purple), “Seaward” (green), “Top SPAW” (blue), and “Landwards” (red). The 
cross-shore transects are chosen southward, at the tip and in the middle of the SPAW; 
referred to as “Side SPAW” (red), “Tip SPAW” (green), and “Centre SPAW” (blue). The centre 
of the SPAW is located at a cross-shore distance of 198 m and a longshore distance of 750 
meter. The top of the bar is located at a cross-shore distance of 251 meter.  
 
 

 

  
Figure 4.1. Transects on which simulation outputs are plotted. Left: top view of longshore and cross-shore 

transects. Right: Side view of longshore transects. The colours match with the colouring in plots of results.  
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In the analysis, especially relative differences between the situation with a SPAW and the 
reference situations (i.e. without a SPAW) are of importance. Therefore, also differences 
between the two situations are plotted several times. These plots always show differences 
between situations with a SPAW minus the reference situation. So if the difference is positive, 
the SPAW case showed an increase relative to the reference case.  
 
Be aware that in the plots cross-shore velocity (U) and sediment transports are positive 
(negative) for values in offshore (onshore) direction. The longshore velocity (V) is positive 
(negative) in northward (southward) direction. Also note that plots zoom in at the SPAW 
location and do not visualize the total modelled area. 

4.2 Significant wave height development 
Variations in wave height show several aspects (Figure 4.2 and 4.5). Firstly, significant wave 
height increases at the bar (shoaling) and decreases landward of the bar (deshoaling and 
wave-breaking) for both reference and SPAW situation. A little bit of wave breaking takes 
place over the bar, as can be seen in the presence of a roller force at the bar location (i.e. 
x=251 m in Figure 4.3). Since no difference is visible between the reference and SPAW 
situation at the bar, the SPAW does hardly influence wave heights in seaward direction.  

 
Figure 4.2. Top view of significant wave height, showing reference situation (left), situation with a SPAW (middle) 

and the difference (right). The background colouring represents magnitude in meters, contour lines show 
bottom contours. Note that the figures are zoomed at the SPAWs location. 

 
Secondly, the SPAW case shows increasing wave heights over the SPAW due to shoaling 
effects (Figure 4.2 and 4.5). Some waves break over the feature, since landward of it wave 
height is slightly reduced compared to the reference situation. This indicates a loss of energy 
due to wave breaking. Also small roller forces develops over the feature (i.e. around x=198 m 
in Figure 4.3).  
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Figure 4.3. Cross-shore variation in roller (Fr) force over the middle of the SPAW. A negative force is directed 

onshore. The SPAW is located at x=198 m and the top of the bar is located at x=251 meter.  
 

 
Figure 4.4. Mean wave direction differences for two directional spreading coefficients. Showing refraction, reflected 

by difference in mean wave direction landward of the SPAW. Besides this, a directional spreading effect 
north and south of the SPAW can be seen, which is especially visible with a lower directional spreading 
coefficient (left). Background colouring shows magnitudes in meter, a negative value implies that the wave is 
directed slightly to the North compared to the reference situation. Contour lines show SPAW bathymetry. 

 
Thirdly, it can be observed that the presence of a SPAW affects wave direction, due to 
refraction and directional spreading effects (Figure 4.2 and Figure 4.4). Waves are refracted 
around the SPAW just landward of it. The effect of directional spreading is visible north and 
southwards of the SPAW. The feature can be seen as a submerged breakwater for waves 
over which still some waves can pass. Although for this study mean wave direction is set to 
90 degrees, waves enter the domain with a certain directional spreading depending on the 
directional spreading coefficient. A low value for this coefficient corresponds to a spectrum 
with a larger directional spreading, whereas a high value corresponds to a narrow spectrum 
for the directions. Delft3D default for this coefficient for a JONSWAP spectrum is 4. To 
explain the directional spreading effect, an example is given: at the North side of the SPAW, 
waves coming from southeast are partly “blocked” by the feature. These waves are not in the 
wave field on the northern side landwards of the SPAW anymore. Due to this filtering 
mechanism, waves at this northern side of the SPAW are slightly directed more to the south 
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(i.e. a positive difference in Figure 4.4). For the southern part, the same process takes place 
for wave approaching from northeast. When increasing the directional spreading coefficient 
(i.e. less directional spreading), directional spreading effect decreases whereas the effect of 
refraction is similar.  
 
The longshore variation in significant wave height also shows effects of above described 
differences in wave direction (Figure 4.5). The wave height at the SPAW tip is slightly higher 
due to refracted wave energy. Also the effect of refracted waves can be seen just landward of 
the feature (Figure 4.5, right), for which a decrease in wave height is visible around the 
SPAW tips (i.e. at approximately y=690 and y=810 m wave energy is reduced). A local 
increase just landward of the SPAW in wave height due to refracted wave energy, is visible at 
a quarter of the SPAW for the landward transect (i.e. at approximately y=710 and y=790 m in 
Figure 4.5, right).  
 

Figure 4.5. Left: Cross-shore variation in Hs on different longshore transects for the SPAW situation. 
Right: Alongshore variation in Hs on different cross-shore transects, showing differences. 

4.3 Water level development 
Variations in significant wave height and dissipation induce gradients in radiation stress. 
These induce set-up and set-down (paragraph 2.2.1.3), resulting in longshore pressure 
gradients and mass-fluxes, generating circulation currents. For the current version of Delft3D 
wave forces are set to zero, so no wave set-down and additional set-up by the wave forces is 
computed. Since roller forces are directed shoreward, they only induce set-up.  
 
In the reference situation wave set-up develops offshore, and increases significantly around 
the bar location (x=255 m). Also a rapid wave set-up is seen at the shore; at these locations 
waves are breaking (Figure 4.6 and 4.7).  
 

  
Figure 4.6. Left: Cross-shore variation in water level on different longshore transects for a SPAW situation.  

Right: Alongshore variation in water level on different cross-shore transects, showing differences. 
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Figure 4.7. Top view of water level, showing reference situation (left), situation with a SPAW (middle) and the 

difference (right). Background colouring represents magnitude of water level in meters, contour lines show 
bottom contours.  

 
For the SPAW situation there is less set-up seaward of the SPAW, leading to locally slightly 
lower water levels (Figure 4.7).  In contrary, landward of it an increase in set up is visible, 
since some waves break over the feature generating set-up. These local areas of set-up and 
relative set-down generate a horizontal circulation current. Water flows from high pressures to 
low pressures, so pressure gradients induce currents. At the landward side, water is higher in 
the middle then at the sides, consequently water will flow from the center to the sides. In 
contrary, seawards of the SPAW water is lower at the center then at the sides, so water flows 
from the side to the center. This induced a horizontal circulation in the flow-field as seen in 
Figure 4.8 (right figure). Longshore variations show a special water level gradient above the 
SPAW, with lower water level at the tips of the SPAW (i.e. blue line in right Figure 4.6). This 
pattern can be an effect of the horizontal circulation pattern induced by the wave generated 
longshore pressure gradients land- and seawards of the SPAW. In order to close the 
circulation at the crest of the SPAW water should flow from the tips to the middle and from the 
tips to the sides of the SPAW.   

4.4 Velocity patterns 
Local gradients in water levels and mass-fluxes can generate local horizontal circulation 
currents. It is important to note that cross-shore current (U) is defined positive in offshore 
direction. Longshore currents (V) are positive in Northern direction. Unless stated otherwise, 
figures show Eulerian velocities.  
 
The reference situation (no SPAW) shows a longshore depth-averaged uniform velocity field 
as expected (Figure 4.8). Since waves enter the domain perpendicular to the coast; 
longshore velocities are approximately zero in the whole domain for the reference situation. 
The cross-shore velocity is larger over the bar. Since water depth is smaller above the bar, 
velocities should be higher in order to transport the same mass of water.  
 
An undertow is visible near the coast (around x=140 m), this is generated by (breaking) 
waves. Delft3D utilises the two-layer concept introduced by De Vriend and Stive (1987) in 
which it is assumed that onshore mass transport of water occurs between wave top and 
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trough, which is compensated by an offshore directed undertow below the wave trough. Since 
Delft3D considers phase-averaged wave properties, only mass flux below the wave trough is 
considered through the application of the shallow water equations in a generalized lagrangian 
mean (GLM) framework (Walstra et al., 2000). In contrast to the GLM-velocities, which 
include the onshore directed stokes drift; Eulerian velocities include the wave induced 
undertow. For closed coast applications this typically results in offshore directed Eulerian 
flows as can be seen from these simulations. 
 
Figure 4.8 shows a top view of depth-averaged velocities for the situation without, with and 
the differences between these two cases. The latter clearly show that differences show a 
horizontal circulation cell pattern around the SPAW. Caution is needed by interpreting this 
plot since it only shows differences in magnitude and direction and not the velocity pattern in 
case of a SPAW.  
 
Figure 4.9 shows depth-averaged Eulerian and GLM velocities, the only difference between 
these plots is that from the GLM velocities the onshore directed stokes drift is subtracted in 
order to obtain Eulerian velocities. The figures show that indeed a horizontal circulation cell 
develops due to the presence of a SPAW (see GLM-velocities); however for Eulerian 
velocities this flow-field is dominated by the undertow.  
 
With respect to Figure 4.8, 4.9, 4.10 and 4.11 several aspects are worth mentioning: 

- A horizontal circulation current around the SPAW tips is generated due to the SPAW 
presence. This is visible in the GLM velocities and also the difference plot in Eulerian 
velocities; for the wave conditions and water depths for this base case the depth 
averaged Eulerian flow-field is dominated by the undertow. The circulation pattern is 
also visible in longshore depth averaged Eulerian velocities (Figure 4.10). Namely, 
seaward of the SPAW these are directed southwards (negative), but landward of the 
SPAW these are directed northwards (positive) on the northern part of the SPAW 
(y>750 m). 

- For the SPAW case depth averaged Eulerian velocity over the feature is offshore 
directed (Figure 4.9 and 4.11), only the magnitude is smaller compared to the 
reference case due to the generated circulation current. Also land- and seaward of 
the SPAW velocity is directed less offshore, due to the horizontal circulation. 

- At the SPAW crest the magnitude of cross-shore depth averaged velocity is higher 
than land- and seaward of the SPAW to transport the same mass of water over the 
reduced water depth at the feature (Figure 4.11).  

- At the tips (i.e. longshore distance y=690 and y=810 m) depth averaged velocity is 
smaller than at the middle of the SPAW (i.e. longshore distance y=750 m). This also 
reflects the influence of the cell-circulation which is larger at the tips than in the middle 
of the SPAW (Figure 4.8).  
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Figure 4.8. Top view of depth-averaged velocity (m/s), showing reference situation (left), situation with a SPAW 

(middle) and the difference (right). The background colouring represents magnitude, vectors show 
directions, grey contour lines show bottom contours. Note that the figures are zoomed at the SPAWs 
location. 

  
Figure 4.9. Top view of depth-averaged velocities (m/s), Eulerian (left) and GLM (right), zoomed in at the SPAW 

(red box in top left inset). Vectors show directions and magnitude, contour lines show bottom contours. The 
inset at the top left shows the velocity pattern around the SPAW for a larger area, is enlarged in Appendix G.  
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Figure 4.10. Depth averaged longshore velocity over longshore transects. Showing that longshore velocities are 

present in case of a SPAW; due to the generated horizontal circulation current. 
 

 
Figure 4.11. Depth averaged cross-shore velocity over cross-shore transects.  
 
Since the model is three-dimensional, also velocity and concentration profiles can be 
analysed (Figure 4.12). These are especially important for suspended sediment transport. 
Concerning velocity profiles, the following aspects were observed. GLM velocities are 
directed more onshore compared to Eulerian velocities, since it includes the onshore Stokes 
drift. For the SPAW case (full lines), velocities at the SPAW and landwards of it are more 
onshore directed in the top of the water column because waves break over the feature. In 
sediment concentration profiles, it was seen that the SPAW presence mainly influenced the 
profile at the SPAW crest. The reference concentration is much higher and more sediment is 
entrained in the water column (Figure 4.12 – lower). For the other locations, landwards and 
seawards of the SPAW, differences in concentration profiles between the reference and the 
SPAW case are small.   
 

 
Figure 4.12. Velocity (upper figure) and sediment concentration (lower figure) profiles for the base case at different 

cross-shore locations around the SPAW. Positive velocities are offshore directed.  
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4.5 Sediment transport 
The presence of a SPAW induces wave-breaking over the feature, higher velocities over it, 
and the generation of a horizontal circulation current as illustrated in previous paragraphs. 
These aspects all influence sediment transport, because this is strongly related to local near-
bed velocities and vertical mixing of sediment by wave breaking. 
 
There are no data available to calibrate sediment transport calculations, since measuring the 
flow-field and sediment transports around a SPAW is hard due to its irregular occurrence.  In 
this study Delft3D parameters values are chosen based on current expert knowledge, and are 
not calibrated to fit any results. In order to give some feeling whether modelling results are 
valid, they are compared to the hypothesis based on theory and to a rough estimate of the 
sediment flux based on SPAW observations done by Wijnberg and Holman (2007). The 
modelling results are in the same order of magnitude of the rough estimate. Therefore they 
are trusted to give a qualitative impression on how sediment transport patterns are expected 
to be influenced by the presence of a SPAW. 
 
Delft3D considers near-bed and suspended load, adding these two together gives the total 
sediment load. Near-bed load transport is an order of magnitude larger than suspended load 
transport (i.e. respectively 10-5[m3/s/m] and 10-6 [m3/s/m], Figure 4.13) for a low wave height 
and an average water level.  
 

 

 

Figure 4.13. Cross-shore sediment transport over the centre of the SPAW. Showing the near-bed,  suspended, and 
total load transport components. Negative values are onshore directed transports. The SPAW crest is 
located at x=199 m.  

 
4.5.1 Near-bed load transport  

In the applied theory of Van Rijn (2007) near-bed load consists of three parts, (i) bed load due 
to currents, (ii) bed-load due to waves, and (iii) suspended load due to wave asymmetry. In 
this study bed load refers to bed load due to waves and currents. The overall pattern of near-
bed load transport shows the cross-shore component is always directed onshore (i.e. 
negative values) (Figure 4.13 and 4.14), and an increase is seen at the SPAW crest (order 
8x10-6 m3/s/m) compared to the reference case.  
 
The onshore directed near-bed transports indicate that components in direction of wave 
propagation are dominant. Figure 4.14 shows that the suspended load due to wave 
asymmetry increases over the SPAW in the same order of magnitude as bed load increases. 
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This implies that wave non-linearity is an important aspect for sediment transport over a 
SPAW during this low wave conditions.  
 

 

 

Figure 4.14. Cross-shore sediment transport components over the centre of the SPAW. 
 
Longshore transport rates are an order of magnitude smaller than rates in cross-shore 
direction (Figure 4.16); this implies that hardly any longshore bed load transport takes place. 
At the crest and landwards of the SPAW, we see that around the SPAW near-bed load is 
slightly directed to the middle of the SPAW, which resembles the refraction pattern of the 
waves (Figure 4.15). This also reinforces the statement that near-bed load transport is mainly 
dominated by waves and not by the currents induced by the horizontal circulation pattern.  
 
In conclusion, wave skewness and asymmetry are increased over the SPAW due to a 
modulation of wave field induced by the SPAW presence. This leads to an increase in 
onshore near-bed load transport in the direction of wave propagation, as was also 
hypothesized based on literature.   
 

 
Figure 4.15. Top view of bed load transport (m3/s/m) showing reference situation (left), situation with a SPAW 

(middle) and the difference (right). The background colouring represents magnitude, vectors show 
directions, grey contour lines show bottom contours.  
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Figure 4.16. Longshore variation in bed-load transport load in y-direction (longshore). Positive values are Northern 

directed transports. 

4.5.2 Suspended transport  
The suspended transport for the reference case is very low for the offshore domain, but 
rapidly increases near the coast and is then offshore directed (Figure 4.13). When depth-
induced wave breaking takes place, more sediment is entrained in the water column. This 
was seen on the SPAW crest (Figure 4.12 – lower figure).  
 
Quantities that are moving with the flow are transported by the GLM velocity. Due to higher 
onshore GLM-velocities at the SPAW and more entrained sediments in the water column due 
to wave breaking, suspended sediment transport is increased in magnitude and onshore 
directed over the SPAW (Figure 4.17).  

 
Figure 4.17. Top view of suspended sediment load transport (m3/s/m). Background colouring represents magnitude, 

vectors show directions, grey contour lines show bottom contours. No vectors are shown for left and middle, 
since these plots are then dominated by large vectors directed from the coast as a result of the undertow.  

 
The horizontal circulation current does influence suspended sediment transport, due to the 
modulation of the wave driven flow-field in the GLM velocities. This can be seen in the top 
view difference plot (Figure 4.17-right) and in the longshore directed suspended sediment 
transport load (Figure 4.18). The longshore and cross-shore components of the suspended 
sediment transport are of the same order of magnitude.  
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Figure 4.18. Longshore variation in suspended transport load in y-direction (longshore).Positive values are Northern 

directed transports. 

4.5.3 Total load transport  
The total load is the sum of the near-bed and suspended transport load. Since for this 
prevailing wave condition the near-bed load is larger than suspended load, total load is 
dominated by near-bed-load transport pattern. Figure 4.19 shows the top-view of the total 
load in which the increasing onshore transport above the SPAW is clearly visible. This is 
consistent with the formulated hypothesis over sediment transport.  

 
Figure 4.19. Top view of total load transport (m3/s/m), showing reference situation (left), situation with a SPAW 

(middle) and the difference (right). The background colouring represents magnitude, vectors show 
directions, grey contour lines show bottom contours.  

 
The longshore component of sediment transport can induce longshore diffusion of the SPAW. 
For near-bed load transport the longshore component was negligible and directed towards 
the middle of the SPAW at the tips; whereas for suspended transport the longshore and 
cross-shore components had the same order of magnitude and a horizontal circulation 
pattern was visible. Since for this case near-bed load is dominant, longshore components of 
transports are negligible. This implies the SPAW is expected to propagate towards the coast 
maintaining its shape, which is consistent with SPAW observations done by Wijnberg and 
Holman (2007). 
 
We have confidence in the modelling results, since these are in the same order of the rough 
estimate based on average shape and migration speed of SPAW observations. Wijnberg and 
Holman (2007) estimated that with an average onshore propagation speed of 3.1 +/- 0.8 
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m/day and a height of the SPAW in the order 0.5 m, the average onshore sediment flux 
related to the SPAW propagation will be about 1 to 2 m3/m/day. From the simulations the total 
sediment transport above the SPAW is approximately 1.5x10-5 m3/m/s or 1.3 m3/m/day and is 
onshore directed.  

4.5.4 Initial sedimentation and erosion patterns 
The onshore directed transport contributions result in a shoreward displacement of the 
SPAW. In the initial erosion-sedimentation patterns it can be seen that sedimentation occurs 
at the landward, and erosion at the seaward side of the SPAW. The onshore propagation of 
the feature is consistent to all SPAW observations (Wijnberg and Holman, 2007). Also no 
significant sedimentation or erosion is visible at the sides (north- and southward) of the 
SPAW. This is a first implication that the feature maintains its shape during shoreward 
propagation.  
 

  
Figure 4.20. Top view of sedimentation and erosion pattern for the reference situation (left) and the SPAW situation 

(right). Warm colours denote sedimentation, cold colours denote erosion. 

4.6 Non-uniformities in the model 
Results are expected to be alongshore uniform, because the bathymetry is alongshore 
uniform for the reference situation (no SPAW). We discovered some minor non-uniformity in 
velocity profiles in the results which affected the sediment transport. Just seaward of the bar 
(i.e. around x=280 m) a relatively rapid transition in water level takes place (Figure 4.21 - left). 
Right at this location non-uniformities are visible for the sediment transports in the reference 
case. For this specific location no irregular gradients in bathymetry are present, the point lies 
on the sloping part of the seaward side of the bar. Based on theory and underlying 
bathymetry, changes at this particular location are not expected, and therefore regarded as 
numerical flaws in the model (personal communication Roelvink and Walstra). We saw at 
some grid points just seaward of the bar anomalous eddy viscosity profiles (Figure 4.21 - 
right). We regarded the cause for these irregularities to fall outside the scope of this study, 
since available time is limited and the location of these irregularities was outside the area of 
interest for SPAW dynamics. These anomalous vertical eddy viscosity profiles were also seen 
at the crest of the SPAW for the case with low wave height and high water level (Appendix 
I.1).   
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Figure 4.21. Left: Top view of water level variation showing rapid water level variation at x ≈280 m. Right: Vertical 

eddy viscosity profiles over cross-shore transect over crest of SPAW (y=750m). The blue lines indicate 
profiles at x=272 m (full), x=275 m (dashed), and x=280 m (dashed-dotted), the red line indicate the 
anomalous profile for x=277.5 m.  

4.7 Summarizing important findings for SPAW dynamics for the base case 
Numerical results show consistent results with respect to the hypothesis based on literature 
(paragraph 2.4), with respect to SPAW observations done by Argus video systems and 
previous estimates of sediment fluxes (Wijnberg and Holman, 2007). Namely, estimates of 
Wijnberg and Holman (2007) for average onshore sediment transport flux related to SPAW 
propagation is about 1 to 2 m3/m/day, while results from this analysis estimated the flux on 
1.3 m3/m/day. Besides that, results are approximately uniform for the reference case without 
a SPAW. These above described observations give confidence in obtained model results.  
 
Results for the base case gave insight in SPAW dynamics: by gained knowledge about wave-
driven flow-fields and related sediment transport patterns induced by the SPAW presence. It 
showed that wave height varied locally since waves break over the SPAW, by which energy is 
dissipated. These variations in wave height induce cross-shore and longshore gradients in 
radiation stress, due to which local set-up (or relative set-down) is generated. The set-down 
was not computed since the current version of Delft3D was used. These variations in water 
level cause pressure gradients, which induce currents. The SPAW induced a modulation of 
the wave-driven flow field, namely a horizontal circulation current developed around it. Depth 
averaged Eulerian velocities were dominated by the undertow and offshore directed over the 
SPAW, but at the sides velocities were higher and directed around the feature. In depth 
averaged GLM-velocities, important for suspended transport calculations, a clear circulation 
pattern was visible showing onshore directed velocities at the full SPAW crest.  
 
Sediment transport patterns are related to the flow-field, and are therefore also influenced by 
the SPAW presence. An onshore sediment transport was seen over the SPAW, which was 
dominated by near-bed transports in direction of wave propagation (i.e. bed load and 
suspended load transport due to wave asymmetry). These onshore directed transport 
contributions result in a shoreward displacement of the SPAW. Initial sedimentation occurred 
just landwards, whereas erosion occurred seaward of the SPAW. Since longshore velocities 
are small compared to cross-shore transports, this is a first implication that the SPAW 
maintains the shape during propagation. 
 
In conclusion, the consistently onshore directed propagation of SPAWs can be explained by 
the SPAW induced modulation of the wave-driven flow field and related transport patterns. A 
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remarkable finding from these Delft3D simulations is that, with a low wave height, the 
generation of a horizontal circulation current is not the driving force for sediment transport. 
Near-bed sediment transport, mainly due to wave asymmetry, was seen dominant over 
suspended transport. For higher wave heights suspended transport is expected to be higher 
(i.e. more wave breaking and thus more suspended material in the vertical), this can effect 
sediment transport patterns since suspended sediment load is highly influenced by the 
generated horizontal circulation current. It would be interesting to investigate this in future 
research. 
 
  



 

 

 
 
 
 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 

 

October, 2012 
 

48 
 

  



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 
 

49 

5 SPAW dynamics for varying water levels, wave height and 
Delft3D versions 

In the former Chapter SPAW dynamics for the base case are analysed, with a low wave 
height and an average water level (Hs=0.56 m and z=0 m). To investigate how robust the 
behaviour is as was seen for the base case (Chapter 4), it was analysed how SPAW 
dynamics are influenced by changing water levels, wave height, inclusion of wave forces, and 
morphometric characteristics of the SPAW. The first three parameters are discussed in this 
Chapter, the morphometric characteristics are discussed in Chapter 6. The main driving 
forces and processes of hydrodynamic flow and sediment transport patterns around a SPAW 
are already discussed for the base case in the Chapter 4, and are not addressed again. 
 
In Section 5.1 the influence of varying water level is analysed, and subsequently in Section 
5.2 we discuss the influence in wave height. Then the results of the Delft3D test-version 
which includes wave-forces are discussed in Section 5.3. And the Chapter concludes with a 
summary of important findings in Section 5.4.   

5.1 Analysing different water levels 
The effect of the vertical tide on SPAW dynamics was investigated by adjusting water levels, 
doing runs with a water level of z=-0.5 m and z=+0.5 m. During a SPAW occurrence both high 
and low water levels occur due to the presence of the vertical tide. Water depth is an indicator 
of whether waves break over a SPAW. For example when water levels are lower, more wave 
breaking takes place over the bar and SPAW, due to the fact that corresponding water depths 
are lower. This can influence the wave-driven hydrodynamic flow field and sediment transport 
patterns around a SPAW. This Section discusses observed differences in cases with other 
water levels compared to the situation with an average water level (z=0 m).  
 

5.1.1 Significant wave height development for different water levels 
Wave breaking mainly depends on water depth in combination with wave height. Figure 5.1 
also shows this aspect; with high water level (z=+0.5 m) less dissipation takes place over the 
bar, and only shoaling/deshoaling takes place over the SPAW. The latter is concluded 
because wave height is approximately the same landwards of the SPAW; implying that hardly 
any energy was dissipated. The roller forces (Appendix H) confirm this pattern. For the case 
with z= 0 m, some waves break over the bar and over the SPAW as discussed earlier. For a 
lower water level, more waves break over the bar and the SPAW. This was shown in a larger 
decrease in wave height landwards of both features. 
 

 
Figure 5.1. Cross-shore variation in significant wave height for different water levels.. 
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An interesting aspect comes forward when looking at the top view of wave height differences 
between the SPAW and reference situation for the three water levels (Figure 5.2). For all 
cases wave height decreases north- and southwards of the SPAW due to the directional 
spreading effect. The wave refraction is also present in all three cases, but interestingly it is 
dominant for the high water level (i.e. the increase in wave height landward of the SPAW) 
since in this case hardly any waves break over the SPAW. Wave breaking is dominant for the 
low water level (i.e. a decrease in water level landwards of the SPAW in which still the 
refraction pattern is visible).  
 

 
Figure 5.2. Top view of difference plots in significant wave heights (Hs) in meter for different water levels (z) (SPAW 

– no SPAW).The contour lines show SPAW bathymetry. Background colour shows the difference in Hs. 

5.1.2 Water level development for different water levels 
In order to compare the three cases with different water levels, the set-up is analyzed. This is 
the local water level minus the mean water level (Figure 5.3); thus only shows wave set-up 
and set-down. The latter is not included, since these runs were done with Delft3D-FLOW 
version 4 (paragraph 3.4.7).  

 
Figure 5.3. Cross-shore variation in set-up (i.e. current water level minus mean water level) over the middle of the 

SPAW for different water levels. The SPAW crest is located at x=199 m, the bar top is located at x=251 m. 
 
As we expected from the wave breaking pattern, set-up is highest for low water levels, due to 
induced larger cross-shore and longshore gradients in radiation stresses by wave breaking 
(which takes place more often by the low water condition). Also additional set-up landwards of 
the SPAW is highest for the lowest water level. For the high water level set-up is only of the 
order of 0.1 mm, whereas changes induced by the SPAW are even smaller. From these water 
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level gradients the horizontal velocity pattern is expected strongest for the lowest water level 
(z= -0.5 m) and weakest for the highest water level (z= +0.5 m). 

5.1.3 Velocity patterns for different water levels 
As expected from the above described pressure gradients, hydrodynamic flow patterns 
around a SPAW are significantly different for different water levels (Figure 5.4), which is 
explained in this paragraph.  

 
Figure 5.4. Top view of depth-averaged (Eulerian) velocity pattern (in m/s) for different water levels and low wave 

height, zoomed in at the SPAW (red box in top left inset). The vectors show directions and magnitude, grey 
contour lines show bottom contours. The inset at the top left shows the velocity pattern around the SPAW 
for a larger area, this inset is enlarged in Appendix G. 

 
For the low water level (Figure 5.4-left) the horizontal circulation around the SPAW is strong, 
induced by local wave breaking over the SPAW. Onshore velocities are present over the 
SPAW, instead of offshore velocities in the reference situation (no SPAW). The colored 
vectors show that the magnitude of velocities is higher for a lower water level. Also longshore 
velocities are higher than for the base case, in the order of 0.04 m/s landwards of the SPAW.  
 
For the high water level (Figure 5.4-right) less waves break, resulting in a weak horizontal 
circulation current that is dominated by the undertow and therefore not visible in Eulerian 
depth-averaged velocities.  Since the horizontal circulation is weaker, velocities over the 
SPAW are higher and offshore directed than for the base case. Longshore velocities are 
negligible landwards of the SPAW.  

5.1.4 Sediment transport for different water levels 
The wave-driven flow field is approximately symmetrical around the SPAW for all water level 
cases. From these patterns we expect an approximately symmetric transport pattern around 
the SPAW. For the high water level however, transport at the SPAW crest varies significantly 
from North to South. Therefore, we consider sediment transport results for the high water 
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level not realistic due to numerical issues when running the model (i.e. anomalous vertical 
eddy viscosity profiles occur). Appendix I.1 shows results for this case.  
 
The sediment transport patterns for the low water level case qualitatively show similar results 
to the case with an average water level (Figure 5.5and 4.24). For both cases near-bed, 
suspended and total load show an increasing onshore transport at the crest and just 
landwards of the SPAW. Sediment transport is a result of many processes (e.g. wave 
asymmetry, water depth, wave breaking, bottom shear stress, etc.) interacting with each 
other. Therefore it is difficult to isolate one particular parameter or process that induces 
observed small differences in transport between the low and average water level cases.  

 
Figure 5.5. Top view of total load transport (m3/s/m), showing average water level case (left) and low water level 

case (right). The background colouring represents magnitude, vectors show directions, grey contour lines 
show bottom contours.  

 

 
Figure 5.6. Comparison of near-bed and suspended transports in x-direction, for low (blue tints) and average water 

levels (red tints).  
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For the bed-load transport (current and wave related) the bed shear stress near the bottom is 
an important parameter. It is influenced by for example water depth and wave height; bed 
shear stress increases with higher wave heights but also with lower water depth. Compared 
to the low water case wave heights are higher near the SPAW for an average water level 
case, because less wave energy is dissipated over the bar. This will result in a higher bed 
shear stress. But for an average water level case water depth is higher compared to the low 
water case, resulting in a lower bed shear stress. This example shows that many processes 
(e.g. water depth and wave height development) influence resulting sediment transports. 
Since bed-load transport is similar for both water level cases, it shows that processes 
counteract each other. For suspended load transport due to wave asymmetry (included in the 
near-bed load transport), wave asymmetry is an important factor. This depends on local wave 
height and water depth as well. 
 
The concentration of sediment over the vertical is important for suspended transport, for the 
suspended transport due to currents and due to wave asymmetry (which is defined as a 
component of the near-bed load). When wave breaking takes place more sediment is 
entrained over the water column, which can induce higher sediment concentrations in the 
water column. For both low and average water level cases the concentration profiles around 
the SPAW are very similar in shape and magnitude (Figure 5.7). The differences observed 
between SPAW case and reference cases are much larger than differences between different 
water level cases. In the SPAW case it can be observed that the reference concentration and 
the concentration in the water column is higher, implying that more sediment is entrained by 
wave breaking over the SPAW.  

 
Figure 5.7. Sediment concentration profiles for different cross-shore locations onshore of the SPAW location (in 

middle of domain).  
 
Based on the analysis we can conclude that although water level influences how strongly the 
flow-field is modulated by the SPAW presence, effects on sediment transport patterns are 
small. Simulated sediment transport patterns are a result of many different processes (i.e. 
non-linear wave transformation, concentration profiles, and velocity patterns) interacting with 
each other. Since observed differences between water level cases are small, the processes 
probably counteract each other.  

5.1.5 Initial sedimentation and erosion 
The sediment transport patterns for both water levels were similar, which results in similar 
erosion - sedimentation patterns. For the low water level we see that erosion and 
sedimentation values are slightly higher than for the average water level. Nevertheless, 
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results for both water levels show a shoreward displacement of the SPAW. This is consistent 
with the observation of Wijnberg and Holman (2007) that water depth above the SPAW does 
not influence general SPAW behavior.  

  
Figure 5.8. Initial sedimentation and erosion rates (m) for average water level (left) and low water level (right). 

5.2 Analysing different wave height 
In order to simulate the effect of higher waves on wave-driven flow field and sediment 
transport patterns, we did a run with a higher wave height. The chosen wave height was Hs = 
2.23 meter, which was also observed at the end of the SPAW period of 1994. Although the 
SPAW merely transits the trough during low wave conditions, it is interesting to see what 
would happen if a period of high waves occur during a SPAW event. Also it can be used as a 
check whether simulation results endorse the observation of Wijnberg and Holman (2007) 
that no relationship was found between mean offshore wave conditions and average onshore 
propagation speed over the life time of a SPAW. 
 
Figure 5.9 shows that for the high wave height case an unrealistic high longshore current 
directed to the North is generated near the coast for the reference as well as the SPAW case. 

 
Figure 5.9. Top view of depth-averaged velocity (m/s), showing reference situation (left), situation with a SPAW 

(middle) and the difference (right). The background colouring represents magnitude, vectors show 
directions, contour lines show bottom contours.  
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Although the general wave field is not as we expected, relative differences show a horizontal 
circulation cell as was seen for other cases (Figure 5.9 - right). This indicates that the 
processes for a high wave height will be similar to a case with a low wave height. 
Unfortunately, no more time was available to investigate why this longshore current was 
generated in the simulation. It is worth to look into the influence of wave height on the wave-
driven flow field and sediment transport patterns in more detail in future research.  

5.3 Analysing results for test-version Delft3D 
During the analysis it turned out that the current version of Delft3D (v4) does not compute 
organized wave forces, when applying the roller model. We run a test-version of Delft3D (v5) 
to investigate the influence of including wave forces, and thereby set-down. The 
implementation of the roller model in Delft3D and the test-version is discussed in paragraph 
3.4.7. Due to numerical issues when running the test-version results were unstable for the 
average and high water level case, therefore only the low water level case was analysed.  

5.3.1 Hydrodynamics  
For wave heights, no significant differences are present between simulations of both Delft3D 
versions (Figure 5.10). The main differences are present in water level variations over the 
domain, resulting in a slightly different flow pattern around the SPAW as will be discussed in 
this Section.  

 
Figure 5.10. Cross-shore variation in wave height over the middle of the SPAW for different Delft3D-versions. 
 

 
Figure 5.11. Cross-shore variations in roller (Fr =red lines) and wave forces (Fw =blue line) for Delft3D test-version 

over the middle of the SPAW (y=747.5 m). Negative forces are forces directed onshore.  
 
Figure 5.11 shows roller and organized wave forces computed by the test-version. The 
computed roller forces are the same for both versions. Seaward of the bar and SPAW the 
wave force is directed offshore, whereas it is directed onshore just shoreward of the bar and 
SPAW (location of bar and SPAW tops are respectively x = 251 m and x= 198 m). This is in 
line with wave theory, since waves shoal over a bar leading to positive gradients in radiation 
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stress in the direction of wave propagation. This gradient in radiation stress induces wave 
forces directed offshore.  
 
This local wave forces around the SPAW generate significant local set-up/set-down (Figure 
5.12). For the test version (blue lines) a set-down is seen seaward of the bar and a set-up 
shoreward of the bar. Then going shoreward a set-down is generated seaward of the SPAW 
again and a set-up shoreward of the SPAW, due to which the water level becomes slightly 
higher than seaward of the SPAW. At the coast a set-down is generated again, by shoaling of 
waves to the coast. These areas of set-down are not present in the current version where no 
organized wave forces are calculated (red line). Despite these differences, for both cases 
without a SPAW (dashed lines) generated set-up and water levels are very similar for the 
area in which the SPAW is located (i.e. between x = 170 m and x = 230 m).  
 

 
Figure 5.12. Cross-shore variation in set-up (i.e. current water level minus mean water level) over the middle of the 

SPAW for different Delft3D-versions for situation with SPAW and without a SPAW. 
 
The different water level gradients for the test-version case generate a slightly different flow-
field than for the current Delft3D version. The general pattern of water level development is 
similar: namely there is less set-up seaward of the SPAW.  In contrary, landward of the 
SPAW an increase in set up is visible, since waves break over the feature. The main 
difference between the two Delft3D versions is that there is a local set-down region over the 
SPAW.  
 
The depth averaged velocity pattern shows a similar horizontal circulation pattern for both 
Delft3D versions (Figure 5.13), thus inclusion of organized wave forces in the simulation only 
show second order effects. Second order effects can be seen in the two aspects; (i)) the flow-
field computed by the test-version shows that velocities just landwards of the SPAW are more 
directed towards the side than onshore as is the case for the results of the current version. 
And (ii) the centers of the circulations cells are shifted a bit landwards and towards the side of 
the SPAW for the test-version case.  
 
The main differences in cross-shore velocity between both Delft3D-versions are present over 
the SPAW and at the SPAW tips (Figure 5.14). In the middle of the SPAW (top figure blue 
line) velocities are more onshore directed for version 5 than for version 4. Furthermore the 
shift of location of circulation cell centre is visible in the cross-shore velocities, since at the 
tips of the SPAW (Figure 5.14 – top figure green line) velocities are directed onshore 
landward of the SPAW and offshore directed at the seaward side. 
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Figure 5.13. Top view of depth-averaged Eulerian velocities (m/s) zoomed in at the SPAW (red box in top left inset). 

The vectors show directions and magnitude, grey contour lines show bottom contours. The inset at the top 
left shows the velocity pattern around the SPAW for a larger area, this inset is enlarged in Appendix G. 

 

 

 
Figure 5.14. Depth averaged velocities over different transects. Upper figure: cross-shore variation in cross-shore 

velocity (negative values are onshore directed). Lower figure: Longshore variation in longshore velocity 
(negative values are southwards directed). 
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The longshore velocities show that differences between both versions shoreward and 
landward of the SPAW are small, whereas over the SPAW crest they are different for both 
versions (Figure 5.14 – bottom figure, blue line). This can also be explained by the shift of the 
centre of the horizontal circulation cell. The magnitudes of longshore velocities are stronger 
for Delft3D version 5, which indicates that the horizontal cell circulation is stronger.  
 

5.3.2 Sediment transport 
Figure 5.15 shows suspended, near-bed, and total load sediment transport patterns for runs 
with the current version of Delft3D (v4) and test-version of Delft3D (v5). Results show similar  
sediment transport patterns for both model versions (Figure 5.15).  

 

 
Figure 5.15. Top view of sediment transport (m3/s/m) over the SPAW. Upper figure shows results for the current 

version of Delft3D (v4 - only roller forces) and the lower figure for the test version of Delft3D (v5 - with wave 
and roller forces). Colours indicate magnitude (scaling is the same for all plots), vectors show direction and 
white contour lines indicate SPAW bathymetry.  
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The sediment transport over the SPAW increases locally and is directed onshore, similar to 
other cases. The near-bed load (due to wave asymmetry) is again dominant. This explains 
why differences seen in the wave-driven flow fields for both Delft3D versions are hardly 
visible in results for near-bed transport. Sediment transport rates are slightly higher for test 
version; this is probably due to the fact that the generated horizontal flow circulation induced 
by the SPAW was stronger for this version. This resulted in higher onshore velocities over the 
SPAW, and consequently higher (particularly suspended) onshore transports.   

5.3.3 Initial sedimentation and erosion patterns 
The inclusion of organized wave forces in the model only has second order effects on wave-
field and sediment transport patterns. This results in a similar erosion and sedimentation 
pattern for both the version including organized wave forces (the test version – v5) and the 
version which only takes roller forces into account ( the current version - v4); showing an 
initial shoreward displacement of the SPAW (Figure 5.16).  

  
Figure 5.16. Initial sedimentation and erosion rates (m) for current Delft3D version (left) and test-version (right). 

5.4 Summarizing important findings for SPAW dynamics for varying water levels, wave 
height and Delft3D version 
To investigate the robustness of the behaviour seen for the base case (Chapter 4), we 
analysed how SPAW dynamics are influenced by changing (1) water levels, (2) wave height, 
and (3) inclusion of organized wave forces. Important findings are summarized below.  
 
Firstly, results show that for different water levels the wave breaking pattern over the bar and 
SPAW differs. More waves break over both features if water level is lower, which results in a 
higher wave set-up shoreward of the SPAW. Consequently, longshore pressure gradients are 
larger for the low water level case, which results in the development of a stronger horizontal 
circulation current for this case. Sediment transport is a result of many different processes 
that can counter act each other (for example wave height and water depth both influence bed 
shear stress). Sediment transport patterns for the low and average water level case were very 
similar, which implies that indeed processes influencing sediment transport counteract with 
each other. As a result of the sediment transports, also erosion-sedimentation patterns 
showed very similar results for a low as well as for an average water level.  
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Also a simulation was done for a higher wave height. Unfortunately an unrealistic high 
longshore current developed for the reference case and for the SPAW case. It would be worth 
to investigate in future research what the wave-driven flow field and initial sediment transport 
patterns would be for higher wave heights and why this particular wave height gives such 
unrealistic results.  
 
The third parameter that was varied was the Delft3D version. The simulation was also done 
with a version that includes organized wave forces in the roller model as well. Due to 
numerical issues only the wave height for z = -0.5 m was stable and analysed in this Chapter. 
Local organized wave forces generated local set-down at the crest of the SPAW. For the case 
with the Delft3D test-version a slightly different wave-driven flow field was generated, 
because of differences in longshore pressure gradients. Since near-bed transport was 
dominant for both Delft3D versions, differences in wave-driven flow field were not reflected 
strongly in sediment transport patterns, resulting in similar sediment transport patterns for 
both versions. Onshore transport over the SPAW was higher for the test-version, because for 
that case a stronger horizontal circulation current developed.  As a consequence the SPAW 
showed an initial shoreward displacement, similar to results of the current Delft3D version. 
Thus inclusion of organized wave forces in the Delft3D computation only induces second 
order effects. Therefore we are confident that other results obtained with the current Delft3D 
version do also approximately represent reality. Nevertheless, it is advisable to critically 
review the implementation of the roller model in Delft3D, and investigate why numerical 
issues appear for different water levels.  
 
In conclusion, this Chapter shows that compared to the base case, qualitative wave-driven 
flow-fields and initial sediment transport patterns induced by the SPAW presence are similar 
for cases with varying water levels and cases including organized wave forces in the 
computation. As a result of the modulated flow-field by the SPAW presence, all cases show 
an initial shoreward displacement of the SPAW.  
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6 SPAW dynamics by morphometric changes of the SPAW 

SPAW dynamics for the base case are addressed in Chapter 4. Then in Chapter 5 the 
influence of water level, wave height and inclusion of wave forces on SPAW dynamics are 
discussed. These cases all show that a horizontal circular current develops around the SPAW 
and sediment transports over the SPAW are larger and onshore directed, dominated by near-
bed transport. The earlier analysed cases are all based on a chosen representative SPAW 
event. This Chapter investigates SPAW dynamics for cases with different morphometric 
SPAW characteristics (paragraph 3.4.3.3), Appendix F shows applied bathymetries.  
 
It should be noted that analysis focus on erosion and sedimentation patterns. Causes for 
differences in flow-field and sediment transport patterns among cases were not assessed in 
detail. The aim of this Chapters analysis is to check whether shoreward displacement of a 
SPAW persists for features at different locations, with different sizes and different nearshore 
bar topography. Results for different SPAW locations give an indication of the 
morphodynamic SPAW behaviour. Also results from this Chapter are used to compare 
modelling results with the observation in nature that regardless size or location of the SPAW it 
always propagates onshore.  
 
Section 6.1 shows results for different SPAW locations. Then Section 6.2 discusses a case 
with a wider and longer SPAW, since the features observed in nature has different sizes. 
Subsequently Section 6.3 presents results for a SPAW with a local bathymetric change of the 
bar. Finally, Section 6.4 shows a summary of insights obtained from analysis of morphometric 
changes of the SPAW.  

6.1 Varying SPAW location 
For the base case the SPAW is located at x=198.75 m. To investigate how hydrodynamics 
and sediment transport develop for different SPAW locations, also a run was done with the 
feature closer to the bar (i.e. x=225 m) and closer to shore (i.e. x=175 m).  

6.1.1 Hydrodynamics for different SPAW locations 
For all runs with different SPAW locations, the pattern of refraction and directional spreading 
effect is visible when investigating differences in significant wave heights (Figure 6.1).  
 

 
Figure 6.1. Top view of difference plots in significant wave heights (Hs)(m) for different SPAW locations. The 

contour lines show bottom contour lines for a SPAW case. Background colour shows the difference in Hs. 
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For a SPAW located further from shore, refracted waves reinforce each other landwards of 
the feature. Figure 6.2 - left also shows that the shoaling of the waves is very similar for all 
cases on cross-shore transects, only the effect landwards of the feature differ. Extra wave 
set-up as a result of the SPAW presence is in the same order of magnitude for all locations, 
only the relative set-down seawards of the SPAW is larger for a SPAW located further from 
shore (Figure 6.2- right). Thus, if the SPAW is located close to the shore, hardly any 
longshore pressure gradient develops seawards of it.  
 

  
Figure 6.2. Cross-shore variation for different SPAW locations in significant wave height (left figure) and set-up (i.e. 

current water level minus mean water level) (right figure) over the middle of the SPAW. 
 
Variations in wave height induced by the SPAW presence generate pressure gradients which 
drive a horizontal circulation flow. Figure 6.3 shows depth-averaged GLM velocities, which 
are used for calculating suspended sediment transport. It can be seen that the circulation 
pattern is strongest if the SPAW is located closest to the bar and extends over the full length 
of the SPAW crest (i.e. Figure 6.3 - right). If the SPAW is located close to the shore a 
horizontal circulation current only develops at the SPAW tips; velocities are directed towards 
the sides landwards of the feature whereas seawards velocities are only slightly directed 
towards the SPAW centre. This is probably due to the small longshore pressure gradient 
seaward of the SPAW for this case. It results in a weak horizontal circulation pattern around 
the tips (Figure 6.3-left).  

 
Figure 6.3. Top view of depth averaged GLM velocities (m/s) for different SPAW locations, zoomed in at the SPAW 

(red box in top right inset). The colour vectors show directions and magnitude, grey contour lines show 
bottom contours. The inset at the top right shows GLM velocity pattern for a larger area  
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Figure 6.4. Top view of depth averaged Eulerian velocities (m/s) (top figure) and difference plots (SPAW minus no 

SPAW) for depth averaged Eulerian velocities (bottom figure). Coloured vectors show directions and 
magnitude, black vectors show directions, background colouring shows magnitude. Contour lines show 
bottom contours. The inset at the top left shows the velocity pattern around the SPAW for a larger area, the 
red rectangle shows the area at which the figure zooms in. The inset is enlarged in Appendix H. 

 
Depth averaged Eulerian flow velocity patterns and corresponding difference plots confirm 
that the generated horizontal circulation pattern is strongest for a SPAW located further from 
shore, and weakest for a SPAW located closer to shore (Figure 6.4). For a SPAW located 
closer to shore, offshore directed velocities at the SPAW crest increase. This is because 
water depth is decreased above the SPAW, due to which velocities should be higher in order 
to satisfy the mass balance. This is similar to results for the low wave height and high water 
level (paragraph 5.1.3).  
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6.1.2 Sediment transports for different SPAW locations 
Sediment transports for all SPAW locations (close to shore, in between shore and bar, and 
closer to bar) show similar patterns. Namely, the near-bed transport (i.e. bed load transport 
plus suspended transport due to wave-asymmetry) is dominant in both cases and is larger 
and onshore directed at the SPAW crest. The observed horizontal circulation currents are 
reflected in the sediment transport patterns. Figure 6.5 shows that if the SPAW is located 
closer to shore suspended sediment contribution mainly concentrate at the tips similar to 
depth-averaged GLM velocities. For a SPAW closer to the bar suspended load is onshore 
over the full length of the SPAW crest. 
 
Furthermore, a local increase in sediment transport is visible landwards of the SPAW for a 
SPAW located further from shore. This can be due to modulations of the wave-driven flow 
field (for example the reinforcement of waves due to refraction at that location might cause 
additional shear) or to inadequacies of Delft3D. It is worth to investigate the cause of this local 
increase in future research.  

 

 
Figure 6.5. Top view of sediment transport patterns  over the SPAW. Upper figure shows results for SPAW located 

closer to the shore, lower figure for the SPAW closer to the bar. Colours indicate magnitude (scaling is the 
same for all plots), vectors show direction and white contour lines indicate SPAW bathymetry. 
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Although sediment transport over the SPAW crest is either concentrated at the tips (closer to 
shore) or over the full length of the SPAW crest (closer to bar), the observation of onshore 
transport over the SPAW persists for all locations. Consequently, erosion and sedimentation 
patterns show qualitatively similar patterns for all locations. Sedimentation occurs landwards, 
whereas erosion occurs seaward of the feature. These results are in agreement with SPAW 
observations at Argus cameras (Wijnberg and Holman, 2007), which show that SPAWs 
transit the trough between bar and shore and propagate onshore.  

 
Figure 6.6. Initial sedimentation and erosion rates (m) for SPAW at different x-locations. Contour lines show SPAW 

bathymetry, colouring shows erosion or sedimentation rate in meters.  

6.2 Varying length and width of the SPAW 
For the base case the SPAW length is 130 m and width is 25 m (based on the chosen 
representative SPAW event). To investigate how SPAW dynamics are influenced by SPAW 
dimensions, runs were done with a longer (L=400 m) and wider feature (W=60 m).  
 

6.2.1 Hydrodynamics for different SPAW dimensions 
Differences in significant wave height show the refraction and directional spreading effect for 
the tested SPAW dimensions (Figure 6.7).  

 
Figure 6.7. Top view of difference plots in significant wave heights for different SPAW locations. The contour lines 

show bottom contour lines for a SPAW case. The background colour shows the difference in Hs. 
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For a longer SPAW effects are local at the tips. For the wider SPAW refraction effects are 
stronger. This is due to the fact waves over the SPAW are for a longer distance (width of the 
SPAW) in lower depth than for the base case. More wave refraction is generated since waves 
at the sides of the SPAW travel faster for a longer distance (width of the SPAW).  
 
Depth averaged velocity overviews show that for the longer SPAW the generated circulation 
pattern concentrates around the tips (Figure 6.8 - left). At the features centre Eulerian velocity 
is more offshore due to a decreased water depth over the SPAW. For the wider SPAW depth 
averaged Eulerian as well as GLM velocities show a horizontal circulation pattern induced by 
the SPAW (Figure 6.8– right). Onshore GLM velocities over the SPAW are relatively large, 
compared to the base case. 
 

  

  
Figure 6.8. Top view of depth averaged Eulerian (top figures) and GLM (lower figures) velocities for the longer 

SPAW (left) and wider SPAW (right). Coloured Vectors show directions and magnitude, black vectors show 
directions, background colouring shows magnitude, contour lines show SPAW bathymetry. Overviews of 
Eulerian velocity patterns are enlarged in Appendix H. 
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The GLM velocities, by which suspended sediment transport is computed, also show 
horizontal circulation patterns (Figure 6.8 - bottom). The depth averaged pattern should be 
interpreted with care, because also the velocity profiles should be taken into account. In the 
top of the water column GLM velocities are highest, where the sediment concentration is 
lowest. Nevertheless this gives a qualitative view on how GLM velocities have developed.  

6.2.2 Sediment transport for different SPAW dimensions 
A wider or a longer SPAW show similar qualitative sediment transport patterns as the base 
case. Namely, the near-bed transport in direction of wave propagation is dominant in both 
cases and is larger and onshore directed at the SPAW crest. The horizontal circulation 
currents as observed in the flow-fields are reflected in the related sediment transport patterns 
(Figure 6.9).  

 

 
Figure 6.9.Top view of sediment transports (m3/s/m) over the SPAW. Upper figure shows results for a longer 

SPAW, lower figures for a wider SPAW. Colours indicate magnitude (scaling is the same for all plots), 
vectors show direction and white contour lines indicate SPAW bathymetry. 
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For a longer SPAW (upper Figure 6.9) near-bed transport is increased over the full features 
length. Suspended load concentrates at the SPAW tips, since at this point onshore GLM 
velocities are higher than at the centre. For a wider SPAW (lower Figure 6.9) sediment 
transport is also dominated by near-bed load. Suspended load and near-bed load 
concentrates at the SPAW tips and centre. The latter can be due to suspended load due to 
wave-asymmetry, but this was not analysed. The responsible processes for these local 
increases should be investigated in further detail in future research.  
 
The onshore directed transport contributions over the SPAW results in a shoreward 
displacement of the SPAW. All show erosion-sedimentation patterns show sedimentation 
landwards and erosion seawards of the SPAW (Figure 6.10). An interesting aspect is the fact 
that the erosion/sedimentation at the wider SPAW is spread out over a larger width and is 
smaller in magnitude, while the total load is slightly higher in magnitude. Furthermore, at the 
SPAW crest for a larger width the sedimentation-erosion rates are zero compared to the base 
case. Also the (unexplained) local increase of sediment transport at the SPAW centre is 
reflected in the pattern.  An aspect for a longer SPAW, worth to look into further, is that 
although total load is higher at the tips hardly any effect of this local increase is visible in the 
initial erosion and sedimentation pattern.  

   
Figure 6.10. Initial sedimentation and erosion rates (m) for different SPAW dimensions. Contour lines show SPAW 

bathymetry, colouring shows erosion or sedimentation rate in meters. 

6.3 Varying local bathymetry of the nearshore bar 
For the base case a SPAW is superimposed on the reference bathymetry. Nevertheless, in 
one measured SPAW bathymetry it was seen that the bar was lowered locally seaward of the 
feature. To investigate whether described qualitative behaviour of a SPAW would be affected 
by a local decrease of the nearshore bar, we also run the model with a bathymetry where the 
bar was locally lowered seawards of the SPAW.  

6.3.1 Hydrodynamics for a local bathymetry change of the nearshore bar 
Since the bathymetry of the bar is changed, also the development of wave height and water 
level is different (Figure 6.11 and 6.12). These patterns are not discussed any further. The 
resulting modulated flow-field differs from the base case; it shows that for a case with a locally 
lowered nearshore bar no clear horizontal circulation current is generated and visible in 
neither the depth-averaged Eulerian nor the GLM velocities (Figure 6.13). Depth-averaged 
velocities (Eulerian as well as GLM) are directed to the location where the bar is lowered. 
Velocities coming from the SPAW tips and sides are highest. 
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Figure 6.11. Top view of significant wave height (m). Background colour show magnitude, contour lines bathymetry. 
 

   
Figure 6.12. Top view of water level (m). Background colouring show magnitude, contour lines show bathymetry. 
 

  
Figure 6.13. Top view of depth-averaged velocity pattern for the case with a local bathymetry change zoomed in at 

the SPAW (red box in top left inset), Eulerian velocities (left) and GLM velocities (right). Vectors show 
directions and magnitude, grey contour lines show bathymetry. The inset at the top left shows velocity 
patterns around the SPAW for a larger area, Eulerian velocity patterns are enlarged in Appendix H. 
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6.3.2 Sediment transport for a local bathymetry change 
Due to modulations in the flow-field by the presence of a SPAW, sediment transport over the 
feature is locally increased and onshore directed, similar to the previous discussed cases. 
Three main topics interest can be identified. Firstly, when focussing at the bar it can be seen 
that at the place where the bar is lowered, onshore near-bed transport is decreased and the 
suspended load is offshore directed. This results in less onshore transport at this part of the 
bar. Secondly, the suspended and near-bed transports of the bar side at original height are 
both onshore directed, and therefore total load is onshore directed and relatively large at the 
sides of the inner bar. Thirdly, at the SPAW sediment transport is increased and directed 
onshore. The transport at the tips is directed slightly to the middle of the SPAW, which can be 
a contribution for the SPAW maintaining its shape during its propagation to the coast. For the 
base case the total load is mainly directed straight onshore (Figure 4.19). It is interesting to 
investigate during further research whether the lowering of the bar is essential for the SPAW 
maintaining its shape.  
 

 
Figure 6.14. Top view of sediment transport patterns over the SPAW for the case with a local bathymetry change. 

Colours indicate magnitude (scaling is the same for all plots), vectors show direction and contour lines 
indicate bathymetry.  

 
The initial sedimentation/erosion pattern at the SPAW is again similar to all previous cases 
(Figure 6.15); showing a shoreward displacement of the SPAW. The main difference with the 
base case is that no sedimentation occurs at the bar where it is lowered. This is, inter alia, 
due to the changed flow velocity field.  
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Figure 6.15. Initial sedimentation and erosion rates (m) for base case (left) and a case with a local bathymetry 

change (right). Contour lines show bathymetry, colouring shows erosion or sedimentation rate in meters. 

6.4 Summary of influence of morphometric changes in SPAW characteristics 
This Chapter presents results for Delft3D simulations for runs with varying morphometric 
changes in SPAW characteristics. The following parameters were varied: SPAW location, 
width, length and local bathymetry of the bar. In general, although depth-averaged wave-
driven flow fields differed between cases resulting sediment transport patterns were 
qualitatively similar. For all cases it was shown that for a low wave height sediment transport 
is dominated by near-bed load (bed load due to waves and suspended load due to wave-
asymmetry). The onshore directed transport components resulted in a shoreward 
displacement of the SPAW for all SPAW cases. Specific observations for all cases are 
summarized below.  
 
In nature, SPAWs are observed to propagate onshore across the trough as an intact form. 
This implies that SPAW dynamics at different cross-shore locations should be similar, in order 
let the feature propagate shoreward. Results for different SPAW locations show that sediment 
transports are indeed qualitatively similar. For a SPAW located closer to shore suspended 
sediment transport is concentrated at the tips, because the generated horizontal circulation in 
velocity is intense at the tips. If the SPAW is located closer to the bar the horizontal circulation 
extends to the full length of the SPAW centre, due to which suspended transport is increased 
and onshore directed over the full length of the SPAW crest. Local increases in sediment 
transports for the case with a SPAW closer to the bar were not explained, this is an 
interesting aspect to further investigate.    
 
Furthermore, Argus observations show that SPAWs occur in nature with varying length and 
width. These are, regardless of their dimensions, observed to transit the trough and 
approximately maintain their shape. The modelling results are in agreement with this 
observation; namely in situations with low wave height SPAW length and width do not 
considerably change sediment transport patterns and related initial erosion/sedimentation 
rates. For the case with a wider SPAW, a stronger horizontal circulation cell developed 
compared to the base case, which resulted in onshore directed depth averaged Eulerian 
velocities over the SPAW. Also local hotspots of sediment transports were present at the 
SPAW tips and centre which were not explained and should be investigated in more detail. 
For the longer SPAW total load was higher at the tips, but hardly any effect is visible in initial 



 

 

 
 
 
 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 

 

October, 2012 
 

72 
 

erosion and sedimentation pattern. It is interesting to study the cause for this result, since it is 
expected that for elongated bars the tips of the bar propagate faster onshore.  
 
Also a run was done with a local lowering of the nearshore bar. This case showed that the 
flow-field was significantly different from the base case. Velocities and related suspended 
sediment transports are offshore directed at the location where the bar was lowered, resulting 
in less onshore directed transport at this part of the bar. Transports increased at the place 
where the nearshore bar has its original height, since both suspended and near bed 
transports are onshore directed and relatively large at the sides of the inner bar. A remarkable 
result was that the onshore directed sediment transports at the tips of the SPAW were 
directed slightly to the middle of the SPAW, because the suspended sediment transport 
component is directed from the sides to the middle of the feature. This is due to a generated 
horizontal circulation current slightly landward of the SPAW. This can be a contribution for the 
SPAW maintaining its shape during its propagation to the coast. It is worth to investigate this 
in further detail.   
 
 
  



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 
 

73 

7 Discussion, Conclusion and Recommendations  

This report provides insights in SPAW dynamics in the nearshore. During the study several 
assumptions and choices were made. The implications of these are discussed in Section 7.1. 
In Section 7.2 the conclusion is presented, reflecting on the research questions and 
hypothesis about SPAW dynamics. Recommendations for further research related to SPAW 
dynamics and Delft3D modelling are presented in Section 7.3.  

7.1 Discussion  

7.1.1 Choices and assumptions made during this study 
The three-dimensional Delft3D model with a large domain and a high spatial and temporal 
resolution, as used in this study, is rather unique. Most Delft3D studies use 2DV-models or a 
coarser grid (e.g. Hsu et al., 2006 and 2008; Van der Werf, 2009; Koster, 2006).The high 
resolution was necessary in order to model SPAWs, which are a relatively small-scale 
morphological feature. Following a 3-dimensional approach vertical velocity and concentration 
profiles are computed, by which suspended transport is better simulated than by following a 
2DV approach; particularly within the surfzone with strong undertow. The analysis showed 
that with a low wave height, near-bed transport is dominant for all SPAW cases. Therefore 
this study shows that a 2DV model would probably give comparable results for this specific 
situation. However, when suspended sediments become more important a 3D approach can 
be necessary. Before this study was done it was not known whether a 3D-model would give 
similar results to a 2DV model. It is a useful insight to know a 2DV approach would also be 
sufficient, since applying a 2DV model will reduce computation time.  
 
We have modelled a representative SPAW event on Duck Beach (USA, North Carolina), 
since most SPAW observations were done here. Duck is a swell-dominated beach (i.e. waves 
with long waves periods – peak periods are around 8-12 s) with one nearshore bar. The 
results for this study are therefore specifically applicable for Duck. However, Koster (2006) 
studied small-scale nourishments on Egmond aan Zee. This beach is wave dominated, which 
implies that waves are wind generated and have shorter periods. Kosters analysis showed 
similar flow-fields and sediment transport patterns around the nourishments compared to 
results for SPAW cases in this study. Furthermore, SPAW observations done by Wijnberg 
and Holman (2007) at other beaches also display onshore migration. Based on these two 
reasons it is expected that processes important for SPAW development, are similar for 
beaches with different hydrodynamics and bathymetries.    
 
The model schematization is based on a hydrodynamically validated Delft3D-model for Duck 
that was made by Hsu et al. (2006 and 2008), Van der Werf (2008), and Treffers (2009). No 
field measurements of the flow-field and sediment transports during a SPAW event are 
available for calibration, because it is hard to measure a SPAW due to its irregular and 
unpredictable occurrence. We have chosen Delft3D parameters based on expert knowledge, 
and simulated results are not calibrated to fit any results. Nevertheless, qualitative modelling 
results are trusted since these are in line with the formulated hypothesis based on theory. 
Also the reference situation (i.e. situation without a SPAW) showed approximately longshore 
uniform results. Furthermore, results are compared to observations done by Wijnberg and 
Holman (2007) and the rough estimate they made of the sediment flux. Their rough estimate 
(1 to 2 m3/m/day) was in the same order of magnitude for the sediment flux induced by the 
SPAW for the base case (1.3 m3/m/day). It should be noted that particularly sediment 
transport results should be interpreted with care, because Delft3D parameters for sediment 
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transports are normally calibrated on measurements. A parameter which was seen to 
influence sediment transports as well was the horizontal diffusion coefficient.  
 
It is important to realize that this study is based on a highly schematized Delft3D model of a 
SPAW. This was done to study the autonomous effects of a SPAW, i.e. isolated from other 
processes that are expected to be less importance. The following schematizations were done. 
Firstly, the bathymetry was assumed alongshore uniform based on bathymetry 
measurements. Secondly, a constant wave height and water level was assumed instead of a 
time series. Simulating a time series is of particular interest for morphodynamic modelling, 
since then the SPAW could move onshore/offshore depending on the wave conditions. 
Thirdly, a JONSWAP spectrum was applied which is based on North Sea characteristics. 
Nevertheless, since for the input in a JONSWAP spectrum specific wave conditions for Duck 
are used the JONSWAP also gave a good representation of the wave field. Furthermore, 
winds and horizontal tide were excluded, and the angle of wave incidence is assumed to be 
coast normal. Due to the latter schematizations, longshore currents are strongly reduced and 
even absent for the reference case without SPAW. This makes the analysis of SPAW 
dynamics easier since it is determined by fewer factors. However, in reality a longshore 
current will be present most of the time. It will tend to advect and diffuse sand in alongshore 
direction. Nevertheless, SPAW development is observed by Wijnberg and Holman (2007) to 
be essentially a cross-shore process, and therefore it was worthwhile to first study dynamics 
excluding longshore currents. Also it should be noted that it was chosen to carry out 
morphostatic instead of morphodynamic simulations, since sediment transports are uncertain 
and the available time for this study was limited. However, because we also modelled SPAWs 
at several locations (near the shore, between the bar and shore, and closer to the bar) an 
indication of the morphodynamic development of a SPAW was given. A shoreward 
displacement of the SPAW was visible for all locations. However, we could not estimate how 
long it takes a SPAW to transit the trough and compare the estimate with SPAW observations 
in nature; a morphodynamic run is needed to make such estimation.  
 
Using a highly schematized model has large advantages. Mainly because modelling results 
are not disturbed by other factors, such as local longshore variations in bathymetry. 
Furthermore, it facilitates to investigate solely the SPAW influence on hydrodynamics and 
sediment transport.  

7.1.2 Delft3D modelling issues 
The highly schematized approach had as additional advantage that it becomes easier to 
detect model inadequacies and irregularities in the results. Consequently, this study revealed 
a few Delft3D model inadequacies. Namely, anomalous eddy viscosity profiles for the 
reference base case were detected at specific grid cells near the point where water levels 
rapidly increases. Also they were found at the SPAW crest for the high water level case. 
These anomalous profiles induce irregular and unrealistic results for sediment transports. 
Within this study these aspects are regarded as numerical flaws in the model. Since they 
were located outside the area of interest for the base case, the cause of these flaws were 
regarded outside the scope of this study. However, to improve robustness of Delft3D, it is 
worth to investigate what the cause is for these irregularities.  
 
Furthermore, it turned out that the stationary roller model as implemented in the current 
Delft3D version did not compute organized wave forces, but only roller forces, by which the 
model could not simulate wave set down. A Delft3D test-version was made in which the 
stationary roller model was adjusted. This test-version indeed improved prediction of set-
down, but also numerical issues arose leading to instable results for the average and high 
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water level case. For the low water level, it showed that inclusion of organized wave forces 
had second order effects on the flow-field and related sediment transports. Nevertheless, it is 
a fact that the current implementation of the stationary roller model in Delft3D does not 
include organized wave forces, inducing set-down, which is a natural phenomenon. 
Therefore, it is advisable to critically review the implementation of the roller model.  
 
Finally, it was not possible to use the model a high wave event, because unrealistic high 
longshore currents near the coast were predicted for such case. For the low wave height 
near-bed sediment transport was dominant, while for a high wave height suspended transport 
can become more important. Therefore a higher wave height might lead to more diffusion and 
advection of sediment in the longshore direction by the generated horizontal circulation 
current. It is worth to look into the influence of wave height in more detail in future research.  
 
Although it was a challenge to resolve numerical issues which came by during the modelling 
process, obtained results show that Delft3D can be applied in a detailed way and generates 
results that are consistent with theory. 

7.1.3 Relevance for nearshore nourishment strategies  
A specific study on humplike nourishments for the shoreface was done by Koster (2006). He 
set-up a 2DV Delft3D model to investigate whether humplike nourishments would be more 
effective than elongated bar nourishments. Likewise to humplike nourishments, SPAWs can 
be regarded as natural small-scale nourishments. Nevertheless, this study and Koster’s differ. 
For example, Koster studied Egmond aan Zee with a 2DV model instead of a 3D model. 
Furthermore, his bathymetry did not include an alongshore bar. He placed nourishments 
further offshore, and they were higher and thus contained a larger volume of sand. In his 
computation the waves approached the shore obliquely, so he included longshore currents. 
Besides that, wave heights he imposed at the boundaries were larger (i.e. 1 to 3 meter 
compared to a wave height of 0.56 m in this study). Also his study was about three small 
scale nourishments next to each other. Nevertheless, his study also showed that a horizontal 
circulation current developed around the humps, sediment transports were onshore directed 
at the nourishment, and consequently onshore migrations of the humps occurred.  
 
However, he did not particularly zoom in at the processes important for the onshore 
transports over a nourishment and consequently onshore propagation of nourishments. And 
he did not distinguish the contribution of suspended and near-bed transport, whereas this 
study does. An important finding from this analysis is that near-bed load is dominant, and 
mainly driven by wave asymmetry.  
 
For nourishment strategies specifically, this study contributes to the idea that small scale 
nourishments can be an interesting alternative way of nourishing the shoreface. SPAWs are 
located very close to the shore and therefore the construction costs are expected to be 
higher. However, it is very well possible that these more nearshore nourishments are more 
effective (i.e. more sand eventually reaches the beach), making it an attractive way of 
nourishments. Future research can be done to investigate what the cost-efficiency will be for 
small-scale nourishments at different locations and shapes in the nearshore. 

7.2 Conclusions  
The objective of this study was to assess which nearshore processes control shoreward 
propagation of the SPAW phenomenon after it was initiated. This was fulfilled by formulating 
a hypothesis based on theory of nearshore processes and literature, and subsequently 
simulating several schematized SPAW cases with a 3-dimensional Delft3D model. Water 
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levels, wave heights, and SPAW dimensions were varied to understand SPAW behaviour. 
The wave-driven flow field and related sand transport patterns around the SPAW were 
analysed. By means of these insights the research questions could be answered.  

7.2.1 Answers on research questions 
1) What is the effect of a SPAW on the wave-driven flow field and related initial 
sediment transport pattern, and what is the resulting SPAWs initial morphologic 
development? 
Delft3D simulations for the base case gave insight in the wave-driven flow field and related 
sediment transports, particularly in comparison to the case without SPAW. The base case 
uses a schematized bathymetry based on the representative SPAW event and a low wave 
height (Hs=0.56 m and Tp=8.2 s) and an average water level (z=0 m). It showed that wave 
height varied locally since waves break over the feature, by which energy is dissipated. These 
variations induce cross-shore and longshore gradients in radiation stress, due to which local 
set-up (or relative set-down) is generated. These variations in water level cause longshore 
pressure gradients, which induce currents. As a result, a horizontal circulation current 
develops around the SPAW tips, which is onshore directed over the crest and offshore 
directed around the SPAW. The Eulerian flow pattern was dominated by the undertow, 
induced by wave breaking at the coast.  
 
Due to changes in the wave-driven flow-field, the SPAW presence also influences sediment 
transport. Waves shoal over the SPAW, leading to wave deformation in which waves become 
more asymmetric and skewed. An onshore sediment transport was seen over the SPAW, 
which was dominated by near-bed transports in direction of wave propagation (i.e. bed load 
and suspended load transport due to wave asymmetry). These onshore directed transport 
contributions result in a shoreward displacement of a SPAW, i.e. initial sedimentation 
occurred just landwards, and erosion just seawards of the SPAW. A remarkable result is that, 
with a low wave height, the generation of a horizontal circulation current around the SPAW is 
not the driving force for increased onshore sediment transport. Instead, the driving force is the 
wave deformation over the SPAW, influencing near-bed transport.  
 
The obtained results are consistent with the hypothesis based on literature. A horizontal cell-
circulation current indeed develops around the SPAW, and sediment transport is onshore 
directed over the SPAW. Interestingly, also another aspect became clear from the Delft3D 
modelling study; namely due the modulation of the flow-field the depth-averaged velocities 
over the bar at the location of the SPAW were lower if a SPAW was present. This stimulates 
crescentic bar pattern as observed after long periods of calmer weather conditions (Wright 
and Short, 1984). Additionally, results are consistent with SPAW observations done by Argus 
video systems and previous estimates of sediment fluxes (Wijnberg and Holman, 2007). The 
average onshore sediment transport flux related to SPAW propagation was roughly estimated 
about 1 to 2 m3/m/day based on SPAW observations, whereas results from this analysis 
estimated the flux on 1.3 m3/m/day. 
 
2) How are the wave-driven flow field and related initial sediment transport over a 
SPAW, and the resulting initial morphologic development, affected by changing water 
levels, wave height, and morphometric characteristics of the SPAW? 
To begin with, for all cases the qualitative patterns of initial sedimentation and erosion 
patterns were similar to the base case. This implies that these are not strongly influenced by 
water levels, or morphometric changes of the SPAW (i.e. SPAW width, length, location or bar 
bathymetry). 
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For different water levels the analysis showed that the wave breaking pattern over the bar 
and SPAW differs. More waves break over both features if the water level is lower, which 
results in a higher wave set-up shoreward of the SPAW. Consequently, longshore pressure 
gradients are larger for the low wave height, which results in the development of a stronger 
horizontal circulation cell for a low water level. Nevertheless, no extreme differences in 
sediment transport could be seen between a case with a low and an average water level. This 
is due to the fact that sediment transport is a result of many processes counteracting each 
other (e.g. wave asymmetry, concentration in the vertical due to wave-breaking, velocity 
patterns etc). But also due to the fact that near-bed transport due to wave asymmetry is 
dominant. When suspended transport would be more important, differences between different 
water levels could become bigger because this type of transport is influenced more by the 
flow-field.  Since the generated horizontal circulation current is stronger for the low water level 
case, sediment transport patterns are then expected to be different for both cases.  
 
The effect of SPAW locations was investigated to see whether the SPAW is expected to show 
similar behaviour regardless its cross-shore locations (between bar and shore). The 
developed flow-field around a SPAW was different for all SPAW locations. For a SPAW 
located further from the shore, the generated horizontal circulation current was stronger than 
for a feature located closer to shore. It extended over the full length of the SPAW crest, 
whereas for the latter it was only concentrated at the tips. This was because longshore water 
level gradients seaward of the SPAW were small when it was located closer to the shore, 
inducing a weaker current. Consequently, related sediment transport patterns were also 
different. For a case with a SPAW located closer to shore (suspended) sediment transports 
were higher at the SPAW tips, whereas for a feature located further from shore they were 
higher over the full length of the SPAW crest. Initial erosion-sedimentation patterns confirm 
SPAW observations and show a shoreward displacement of the SPAW for all cases. This is 
mainly due to the fact that near-bed sediment transport due to wave asymmetry is dominant. 
 
For a wider or longer wave-driven flow fields and related initial sediment transport patterns 
are again similar to the base case. For a wider SPAW a stronger horizontal circulation cell 
developed around the SPAW. For the longer SPAW horizontal circulation currents 
concentrated at the SPAW tips, which resulted in higher onshore directed sediment transports 
at the tips than in the centre. However, hardly any effect of the sediment transport being 
larger at the tips for a longer SPAW was seen for the initial morphodynamic results. 
 
Finally, the bathymetry of the nearshore bar was lowered seaward of the SPAW, since this 
was seen in the one bathymetric measurement of a SPAW. For this case the depth averaged 
flow field differed from the base case, since velocities were mainly directed through the 
location of the lowered bar. Velocities and related suspended sediment transport are offshore 
directed at the location where the bar was lowered, resulting in less onshore directed 
transport at this part of the bar. Transports increased at the place where the nearshore bar 
has its original height, since both suspended and near bed transports are onshore directed 
and relatively large at the sides of the inner bar. A remarkable result was that the onshore 
directed sediment transports at the tips of the SPAW were directed slightly to the middle of 
the SPAW, because the suspended sediment transport component is directed from the sides 
to the middle of the feature. This is due to a generated horizontal circulation current slightly 
landward of the SPAW. This can be a contribution for the SPAW maintaining its shape during 
its propagation to the coast.  
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7.2.2 Synthesis on objective 
To come back to the objective, the process of wave transformation (i.e. increasing wave 
skewness and asymmetry) over the SPAW is important to generate onshore sediment 
transports over the feature. Near-bed transport in the direction of wave propagation due to 
wave asymmetry was dominant in all cases.  
 
Furthermore, the process of local wave breaking (i.e. energy dissipation), generates a 
horizontal circulation current around the SPAW. This current is especially important for 
suspended sediment transports, which are transported by the GLM-velocities. When 
suspended transport becomes higher, this can be for sediments with a smaller grain size, or 
higher wave heights. We expect the horizontal circulation current to become more important 
for the sediment transport patterns. Since near bed load is dominant for our cases with a low 
wave height, it was shown that the generated circulation pattern did hardly influence sediment 
transport patterns over the SPAW.    

7.3 Recommendations 

7.3.1 Further investigating SPAW dynamics  
We recommend carrying out morphodynamic simulations to investigate further whether a 
SPAW maintains its shape during propagating to the shore which is observed in nature, or 
that it will diffuse along the coast while propagating onshore. Also with a morphodynamic run 
it can be simulated how long it takes the SPAW to transit the trough. For nourishing practices 
the time scale in which a SPAW is expected to transit the trough is important to know.  
 
It would also be interesting to investigate why in the case of a longer SPAW the higher 
sediment transport concentrations at the tips are hardly reflected in related initial 
sedimentation-erosion patterns. Based on the sediment transport patterns, we expect the tips 
to propagate faster, but this is not confirmed by the simulation results. It is important to 
investigate this aspect, since it will give insight in the different morphodynamic behaviour of 
features with different lengths, which is important for nourishing strategies.  
 
The analysis of morphometric changes of SPAWs focused on initial erosion-sedimentation 
patterns. However, several interesting aspects in the flow-fields and sediment transport 
patterns came forward which are worth to investigate further. Firstly, for the SPAW located 
further from the shore sediment transport was increased around x=180 m. Secondly, for the 
wider SPAW an increase in sediment transport was seen at the tips and in the middle of the 
SPAW. Knowing what cause these patterns will give insight in whether sediment transport 
patterns for these cases are indeed realistic.  
 
Also the influence of wave height should be investigated in more detail, since this can 
influence sediment transport patterns and suspended transports are expected to become 
more important. Besides that, it is interesting to test what a longshore current would do for 
SPAW dynamics. This can for example be tested by varying the wave angle and inclusions of 
a horizontal tide.  
 
Finally, these results are particularly applicable for the study site of Duck. Although similar 
behaviour and important processes are expected for other beaches, it is good to check this by 
doing a comparable study for another beach at which SPAWs are observed. Also with respect 
to nourishment strategies, it is worth to investigate the expected cost-efficiency for small-
scale nourishments with different shapes and at different locations in the nearshore. 
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7.3.2 Recommendations regarding Delft3D modelling  
It is important to critically review the current roller model implementation in Delft3D. The 
current version does not take organized wave force into account and therefore does not 
include wave set-down and additional wave set-up. A Delft3D test-version was made which 
includes roller forces as well as wave forces. Modelling results for both versions for this 
specific study were similar and only showed second order effects. Nevertheless, it should be 
investigated whether this holds for other cases/situations (i.e. not only SPAW cases, but also 
cases for bars more offshore etc.). Another aspect is that some numerical problems arose 
when using the test-version including organized wave forces for higher water levels; it should 
be investigated where these numerical instabilities come from. 
 
Additionally, the model schematization is an interesting case to investigate numerical Delft3D 
problems in more detail; because it is three-dimensional for a large domain, has a very fine 
grid, and is highly schematized. It is advisable to use it as a test case to investigate several 
modelling aspects in more detail. Such as the anomalous vertical eddy viscosity profiles 
which induced gradients for the sediment transports.  
 
The model was not calibrated on sediment transport data, but parameters were chosen based 
on experts’ opinion. Modelling results were trusted by the circumstantial evidence that they 
were similar to the hypothesis based on literature, and to SPAW observations in nature, and 
sediment transports were in the same order of magnitude as the rough estimate of Wijnberg 
and Holman (2007). Nevertheless, it is important to check the sensitivity of results for 
parameters that can influence sediment transport patterns; such as sediment grain size, free 
parameters in the roller model (now default values are used), factors determining the 
importance of sediment transport components, and the background horizontal 
diffusion/viscosity parameters. In the best case we would like to calibrate the model using 
measured data of the flow-field and sediment transport patterns for a SPAW case. But 
unfortunately, it is probably not feasible to obtain these data due to the irregular occurrence of 
a SPAW.  
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A Concept of Radiation stress and wave set-up/set-down 

This appendix explains the concept of radiation stress in more detail than in the main text. It 
firstly describes the phenomenon of radiation stress followed by the concept of wave set-up 
and set-down.  

A.1 Radiation stress and wave force 
Radiation stress in water waves plays an important role in a variety of oceanographic 
phenomena, such as additional water mean sea level variation known as wave “set up” and 
“set down” and to wave-driven mean flows. It is also especially important for the nearshore 
zone, and is therefore particularly interesting for this research. Longuet-Higgins and Stewart 
(1964) define radiation stress as “the excess flow of momentum due to the presence of 
waves”. In the direction of the wave propagating the momentum flux consists of two 
components: one with the horizontal water velocity (i.e. ݑߩଶ), and a component associated 
with water pressure (i.e. ݌). When considering only an excess of momentum flux the 
hydrostatic pressure should be subtracted.  
 
Longuet-Higgins and Stewart (1964) assumed that linear wave theory could be applied to 
describe expressions for the velocity and pressure, in order to develop relations to describe 
radiation stress. Thus to calculate radiation stress in the direction of the flow the following 
equations can be applied:  

ݔݔܵ = න(݌ −

ߞ

−ℎ

ݖ݀(2ݑߩ

തതതതതതതതതതതതതതതതതത

−	 න ݖ0݀݌

0

−ℎ

 (A.1) 

ݔݔܵ = ൬
2݇ℎ

sinh 2݇ℎ
+

1
2
൰ܧ = ൬2݊ −

1
2
൰ܧ (A. 2) 

In which ܵݔݔ is the radiation stress, ℎ the waterdepth [m], ߞ the surface elevation [m], ݌ the 
pressure [N/m2], ߩ the density of the water [kg/m3],	ݑ the velocity in x-direction [m/s], 0݌ the 
hydrostatic pressure [N/m2], ݇ the wavenumber [rad/m],	ܧ the wave energy [J/m2]. A 
situation with the x-direction in the direction of propagation direction of the waves is 
considered. The ݊ value for deep and shallow conditions are known, respectively ݊=1/2 and 
݊=1. This implies:  

݌݁݁݀,ݔݔܵ = 1
2
ݓ݋ℎ݈݈ܽݏ,ݔݔܵ ܧ = 3

2
 (A. 3) ܧ

For the transverse components of the radiation stress, normal to the direction of wave 
propagation, only the pressure contributes to the total mean momentum flux. Since for gravity 
waves the transverse velocity component vanishes everywhere (i.e.ݒ = 0).  
Thus:  

ݕݕܵ = න ݌
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−ℎ

ݖ݀
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 (A. 4) 

ݕݕܵ = ൬
݇ℎ

sinh 2݇ℎ
൰ܧ = ൬݊ −

1
2
൰ܧ (A. 5) 

Considering the deep and shallow conditions again, gives:  

݌݁݁݀,ݕݕܵ = ݓ݋ℎ݈݈ܽݏ,ݕݕܵ 0 = 1
2
 (A. 6) ܧ

It should be noted that for a more general situation with a horizontal x-y coordinate system 
and waves propagating in an arbitrary direction (angle θ with the x-axis), additional radiation 
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stresses are present due to momentum in x-direction transported in y-direction and vice versa 
(ܵ௫௬ and ܵ௬௫):  

ݔݔܵ = ൬݊ −
1
2

+ ݊ cos2  (A. 7) ܧ൰ߠ

ݕݔܵ = ݔݕܵ = (݊ sinߠ cos  (A. 8) ܧ(ߠ

ݕݕܵ = ൬݊ −
1
2

+ ݊ sin2  (A. 9) ܧ൰ߠ

Only in a spatially non-uniform situation with varying wave characteristics and/or water depth 
a resulting net wave force is present due to gradients in radiation stress. The wave force 
vector, ሬܴ⃗  in the direction of wave propagation can be calculated by:  

ݔܴ = −
ݔݔ߲ܵ
ݔ߲

−
ݕݔ߲ܵ
ݕ߲

ݕܴ  = −
ݔݕ߲ܵ
ݔ߲

−
ݕݕ߲ܵ
ݕ߲

 (A. 10) 

This wave force can be considered an external force, which induces the process of wave set-
up and set-down as discussed in paragraph 4.2.4. Radiation stresses also play a part in the 
generation of infragravity waves, but next to that they are responsible for the generation of 
longshore currents.  

A.2 Wave set-up and set-down 
Radiation stress can modify motions on a scale larger than the waves themselves. One of the 
most important wave driven effects occurs when waves encounter a sloping beach. Changes 
in bottom topography influence wave forms and result in changes in radiation stress, which 
subsequently lead to changes in the mean surface level, referred to as wave set-up and set-
down (Longuet-Higgins and Stewart 1964). These two phenomena are discussed below. 
 
When assuming the following described aspects the equation of motion reduces to equation 
A.11. Assuming a uniform coast, with the coastline as well as the depth contour lines of sea 
bed are schematized as parallel straight lines. Assuming wave-dominance, i.e. tidal flow can 
be neglected in the near-shore zone. And assuming a steady flow and that bed-shear stress 
can be neglected when considering merely flow and not sediment transport.  

݃
ߦ߲
ݔ߲ = −

1
ℎߩ

߲ܵ௫௫
ݔ߲  (A. 11) 

Wave energy approaching a shore may either be reflected or dissipated to heat (Longuet-
Higgins and Stewart, 1964). Considering slopes sufficiently gentle that reflection is often of 
negligible importance, which is generally the case for beaches addressed in this research, 
two distinctive regions can be identified. The nearshore zone seawards of the breaker line 
(wave set-down) and landwards of the breaking zone (wave set-up).  

A.2.1 Wave set-down 
When waves encounter a sloping beach just outside the surf zone, shoaling processes are 
present. Shoaling leads to increasing wave heights and thus increasing wave energy. This 
leads to a positive gradient in radiation stress in flow direction, from which it follows that the 
total right term of equation A.11 is negative. Thus the slope in mean water level is negative; 
implying a lowering of the mean water level defined as set-down. When integrating equation 
A.11 a general expression for the mean water level can be found, which can also be specified 
for shallow water conditions (i.e. sinh 2݇ℎ ≈ 2݇ℎ): 

̅ߦ = −
1
8

ଶܪ݇

sinh 2݇ℎ ߦ௦̅௛௔௟௟௢௪ = −
1

16
ଶܪ

ℎ  (A. 12) 
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A.2.2 Wave set-up 
Inside the breaker lines wave energy decreases shoreward, due to strongly decreasing wave 
heights by energy dissipation due to wave breaking and friction. This leads to a negative 
gradient in radiation stress, from which it follows that the total right term of equation 11 is 
positive. Thus the slope in mean water level is positive. 
 
Although Longuet-Higgins and Stewart (1964) remark that it is probably not valid to apply 
linear wave theory, they state that assuming ܵ௫௫ = య

మܧ for shallow water conditions still 
remains approximately valid. Also ܪ௕௥ =  ℎ௕௥ is the relation for the decreasing wave height inߛ
the surf zone. Then the expression for the slope in mean water level becomes: 

ߦ߲
ݔ߲ = −

3
ߛ8

ଶ ߲ℎ
 (A. 13) ݔ߲

Since water depth decreases approaching the shore, the right-hand side of the above 
equation becomes positive. This indicates that breaking waves lead to increasing water-level 
in the onshore direction, defined as wave set-up.  

 
Figure 0.1. Profile of the mean water level and the envelope of the wave height showing wave set-up and wave set-

down (adopted by Bowen and Inman, 1968).  
 
It should be noted that wave set-up is much larger than the set-down and it takes place on a 
shorter distance. Experiments from Bowen, Inman et al.(1968) showed the theory of Longuet-
Higgins and Stewart (1964) describe the phenomenon wave set-up and set-down reasonably 
well (Figure 0.1). However, it can be seen that just outside the break point measured values 
of 'set-down' are consistently less than the theory would predict, since the assumptions of 
Linear wave theory are no longer justified. 
 
 
  



 

 

 
 
 
 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 

 

October, 2012 
 

86 
 

B Delft3D software 

This appendix explains the basics of the Delft3D software (Version 4.00.01) which was used 
in this study to simulate SPAW dynamics. The Delft3D software is developed by WL | 
DelftHydraulics, at present Deltares. Look for more detailed information (such as model 
equations etc.) in the references (Lessers et al., 2004; Deltares, 2011 and 2011a). This 
appendix firstly gives general information about the software, then the modules FLOW and 
WAVE are described, followed by the SWAN and roller model which are applied in this study, 
and finally sediment transport calculations within Delft3D are explained. 

B.1 Delft3D in general 
Delft3D is a process-based morphodynamic model developed to simulate phenomena 
occurring in water environments. It can simulate flows, sediment transports, waves, water 
quality, morphological developments and ecology. Process-based implies that relevant 
processes such as tide, currents, waves, sediment transport, and bed updating are 
implemented using detailed descriptions. The software is widely used and proven reliable 
regarding sediment transport and morphological evolutions. It is possible to make 1D, 2D 
horizontal averaged, 2D depth-averaged and 3D calculations; especially the ability to 
calculate three-dimensionally is important for this research, since SPAWs are local and 
relatively small features. To investigate the hydrodynamic field, also the 3D flow pattern is of 
interest. 
 
The WAVE and FLOW modules are used. Delft3D-FLOW calculates the flow-field, sediment 
transport field and evolution of the morphology; Whereas Delft3D-WAVE calculates the short 
wave field. These two modules are coupled in an online morphodynamic way (Figure 0.2), 
which implies Delft3D-FLOW makes several computations before the wave field is updated 
again. 
 

 
Figure 0.2. Structure of Delft3D in stationary mode. 

B.2 Delft3D horizontal and vertical grid 
Delft3D is a numerical model based on finite differences. It uses a rectangular (applied in this 
study), curvilinear or spherical grid, which should be orthogonal and well structured. Well-
structured in the sense that it should comply with some requirements. For example: Delft3D 
requires an aspect ratio in m/n direction between 1 and 2, unless the flow is predominantly 
along one gridline; also m-(n-) smoothness (i.e. the ratio between adjacent grid cell lengths in 
m-(n-)direction) should preferably be less than 1.2 (Deltares, 2011a). Variables in the model 
are arranged in a staggered grid, meaning that not all variables are quantified at the same 
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location in the grid (Figure 0.3, right). The water level points are in the centre of a (continuity) 
cell, whereas the velocity components are calculated perpendicular to the grid cell faces. 
 
For 3D computations, a so called boundary fitted (σ-coordinate) approach is used for the 
vertical grid direction (Figure 0.3, left). The sigma layer approach implies that each layer is a 
percentage of the total water depth, instead of a fixed value. Due to this the individual depth 
layers follow the contour of the water depth. For vertical layers the number of layers and 
thickness of each layer can be adjusted. In paragraph 3.4.2 the vertical grid settings of this 
model are described in further detail. 
 

  
Figure 0.3. Vertical grid schematization showing σ-coordinate system (left) and horizontal grid showing staggered 

grid (right) Deltares (2011). 

B.3 Delft3D-FLOW 
Delft3D-FLOW solves the unsteady shallow-water equations in two (depth-averaged) or three 
dimensions. The system of equations which is solved by the FLOW module consists of 4 
equations: horizontal momentum equation, continuity equation, transport equation, and a 
turbulence closure model. The vertical momentum equation is reduced to the hydrostatic 
pressure relation as vertical accelerations are assumed to be small compared to gravitational 
acceleration and therefore are not taken into account. The module takes phenomena as tide, 
wind and wave-driven flows into account.  
 
Also three-dimensional wave effects can be taken into account by Delft3D-FLOW (Walstra 
and Roelvink, 2000) such as; (i) wave forcing due to breaking, (ii) wave induced mass flux, 
(iii) streaming, and (iv) additional turbulence production due to dissipation in the wave 
boundary layer and due to wave white capping and breaking at the surface. 

B.4 Delft3D-WAVE 
A separate module Delft3D-WAVE can be used to simulate the evolution of wind-generated 
waves in coastal waters. It computes root mean square wave height, peak spectral period, 
wave direction, and mass fluxes. The wave simulations can be done in two ways; with the 
HISWA wave model (HIndcasting Shallow water Waves, Holthuijsen et al., 1989) or the third 
generation SWAN model (Simulating Waves Nearshore, Holthuijsen et al., 1993). In this 
study the latter is used, which is explained in more detail below.  

B.4.1 SWAN Wave model 
The SWAN wave model, standing for Simulating Waves Nearshore (Holthuijsen et al., 1993), 
is used in Delft3D-WAVE to simulate waves. SWAN describes waves with a two-dimensional 
wave action density spectrum N(σ, θ); in which σ is the relative frequency and θ is the wave 
direction. The action density is used rather than the energy density spectrum E(σ, θ) since in 
presence of currents, action density is conserved whereas energy density is not. The action 
density equals the energy density divided by relative frequency. The following processes are 
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accounted for in SWAN; (i) generation of wind, (ii) dissipation by white capping, bottom 
friction and depth-induced breaking, and (iii) non-linear wave-wave interaction. For Cartesian 
coordinates the spectral action balance equation, which is the basis for wave evolution of the 
wave spectrum in SWAN, reads (e.g. Hasselman et al., 1973): 

߲
ถܰݐ߲
ଵ

+ 	
߲
ݔ߲ ܿ௫ܰᇣᇧᇤᇧᇥ

ଶ

+
߲
ݕ߲ ܿ௬ܰᇣᇧᇤᇧᇥ

ଷ

+
߲
ߪ߲ ܿఙܰᇣᇧᇤᇧᇥ

ସ

+
߲
ߠ߲ ܿఏܰᇣᇧᇤᇧᇥ

ହ

=
ܵ
⏟ߪ
଺

 (14) 

In which ܰ is action density, ܿ is propagation velocity, ݐ is time, ݔ and ݕ denotes geographical 
space, ߪ is relative frequency, ߠ is wave direction, and ܵ is the source term. The terms in the 
equation represent:  

1. The local rate of change of action density in time 
2. The propagation of action in geographical space (x-direction)  
3. The propagation of action in geographical space (y-direction) 
4. Shifting of relative frequency due to variations in depth and currents 
5. Depth-induced and current-induced refraction.  
6. Source term in terms of energy density representing the effects of generation of wind, 

dissipation (white capping, bottom friction and depth-induced breaking) and non-linear 
wave-wave interactions. For each of these source terms, different equations are used.  

B.5 Roller model 
The transition zone is the zone where rapid transitions of wave shapes are observed (i.e. 
wave decay), however no associated increase in energy dissipation is observed. This implies 
that wave energy dissipation should occur further to the shore. Svendsen (1984) suggested 
that the large amount of potential energy lost in the transition zone is converted to forward 
momentum flux, especially in the surface roller. Thus organized wave energy is not dissipated 
immediately, but first converted to roller energy (storage of kinetic energy inside the roller). 
The surface roller is defined as a recirculation part of the flow above the dividing streamline, it 
is a volume of water carried shoreward with the breaker (Figure 0.4). Therefore the roller is 
carried with the propagation speed of the wave. This paragraph broadly summarizes the 
implications of using the roller model. For theoretical background look in Svendsen (1984) 
and Nairn (1990), for equations and implementation in Delft3D look in Deltares (2011).  
 
The roller model as applied in Delft3D-FLOW has been introduced to delay transfer of wave 
energy to the current. When using the roller equations, the wave set-up and longshore and 
cross-shore flow are shifted shoreward. The roller model allows modelling the effect of short-
wave groups on long waves. Long waves travel along with groups of short waves (called 
carrier waves) and are referred to as bound long waves or locked waves. Wave breaking 
causes the carrier waves to vanish and hereby releasing the locked waves, and causes 
variations in radiation stresses. The roller model can only be applied in cases with a narrow-
banded wave spectrum, both in direction and frequency. The SWAN wave model is used to 
supply a dominant frequency (peak frequency) and mean wave direction field, which indicates 
the direction of propagation of the carrier waves. 
 
The roller model applies the balance of short wave energy (Deltares, 2011). Through the 
process of wave breaking the wave energy is reduced and transformed into roller energy. 
This energy is located in down-wave region after wave breaking. The propagation of roller 
energy is modelled by transporting it with twice the local celerity of the carrier wave. The 
energy that is lost from the organized wave motion is converted to roller energy through a 
roller energy balance. The time- and space varying wave energy and roller energy cause a 
variation in radiation stresses. The roller model can be turned on in the FLOW-module by 
using the keywords: Cstbnd = #yes# and Roller = #yes#.  
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Figure 0.4. The concept of a roller travelling on top of a wave (Treffers, 2009). 

B.6 Sediment calculations 
In this model the sediment online version is used, which continuously updates transport of 
sediments in the FLOW module. Therefore it is possible to update the bed level and give 
feedback to hydrodynamics. Different sediment fractions and mixtures can be used; however 
in this study only uniform non-cohesive sediment fraction is used (i.e. sediment sand). 
Delft3D computes two types of sediment transport, suspended and bed load transport, as 
described in this paragraph. The transport formulation TRANSPOR2004 of Van Rijn (2007) 
was used. This is an updated version of TRANSPOR1993 (Van Rijn, 1993). In 
TRANSPOR2004 the bed-shear stress is based on a new bed roughness predictor. Also the 
reference concentration function has been recalibrated using laboratory and field data for 
combined steady and oscillatory flow (Van Rijn, 2007a). In Deltares (2011) a detailed 
description of the equations and methodology is given. In this paragraph the main topics are 
discussed. 

B.6.1 Reference height and kmx-layer 
In this calculation the definition kmx-layer is used. This refers to the layer that is entirely 
above Van Rijn’s reference height (Figure 0.5), which is calculated based on bed roughness. 
The sediment concentrations in the layer below the kmx-layer are assumed to rapidly adjust 
to the same concentration as the kmx-layer.  

 
Figure 0.5. Selection of the kmx layer; where a is Van Rijn's reference height (Deltares, 2011). 

B.6.2 Suspended sediment transport (non-cohesive) 
The suspended sediment is calculated over the whole vertical of the water column. The Van 
Rijn (2000) approach is followed by default. Firstly the settling velocity of material calculated 
following method of Van Rijn (2007). Then the output of the turbulence closure model (the 
eddy viscosity at each layer interface) is used to calculate the vertical sediment mixing 
coefficient. The k-ε turbulence closure model (as applied in this study) has been extended to 
include three-dimensional effects of waves. Finally, the transfer of sediment between the bed 
and flow is modelled using sink and source term acting on the near-bottom layer that is 
entirely above Van Rijn’s reference height (kmx, layer). Sediment is entrained in the water 
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column by imposing a reference concentration at the reference height. For this modelling the 
approach of Van Rijn (2007) is followed as well.  

B.6.3 Near-bed load sediment transport (non-cohesive sediment) 
For simulations including waves (this study) the magnitude and direction of the near-bed load 
transport on a horizontal bed are calculated using the selected transport formula (in this study 
TRANSPOR2004; Van Rijn 2007), assuming sufficient sediment and are adjusted for bed-
slope effects. Bed composition is ignored except for e.g. hiding and exposure effects on 
critical shear stresses. Van Rijn regards sediment transported below the reference height as 
belonging to ‘bed-load sediment transport’. This study refers to this as the near-bed load 
transport, since also a suspended load component is included. This responds almost 
instantaneously to changing flow conditions and feels the effects of bed slopes.  
 
For simulations including waves, TRANSPOR2004 formula distinguishes three transport 
components all treated as bed or total load, i.e. without relaxation effects of an advection 
diffusion equation:  

1. Bed-load due to currents (Sbc), acting in the direction of the (Eulerian) near-bed 
current. 

2. Bed-load due to waves (Sbw), acting in the direction of wave propagation.  
3. Suspended load due to wave asymmetry effects (Ssw), acting in the direction of wave 

propagation. 
The third component represents effects of asymmetric wave orbital velocities on the transport 
of suspended material within approximately 0.5 m of the bed. It also accounts for the bulk of 
the suspended transport affected by high-frequency wave oscillations.  
 
Bed load transport is affected by bed level gradients, in terms of magnitude and direction. 
Two bed slope corrections are distinguished: the slope in the initial direction of the transport 
(i.e. longitudinal bed slope) and the slope in the direction perpendicular to that (referred to as 
the transverse bed slope). Corrections for the bed slope are included by default in Delft3D.  

B.6.4 Sediment correction vector 
Some transport can be double counted since the suspended sediment transport is computed 
over the entire water column, and the bed-load is regarded the load below the reference 
height. To prevent for double counting, a sediment correction vector is applied, which is 
estimated by the load of the suspended load in the reference layer.  

B.6.5 Sediment initial and boundary conditions 
The initial conditions for non-cohesive sediment concentrations can be set to a uniform zero 
concentration, since the concentrations for non-cohesive sediments adapt very rapidly to 
equilibrium conditions. For the boundary conditions, the vertical diffusive flux through the free 
surface is set to zero. The bed boundary condition exists of the exchange of material in 
suspension and the bed. This is modelled by calculating the sediment fluxes from the bottom 
computational layer to the bed, and vice versa. At open boundaries the flow should enter 
carrying all sand sediment fractions at their equilibrium concentration profiles.  

B.6.6 Morphological updating 
It is possible to also calculate the morphological development of the bathymetry during a 
simulation. For this model the morphological updating is only started in the last minute of the 
simulation in order to simulate the initial sedimentation and erosion patterns. These patterns 
are only qualitative, since no data are available to calibrate anything.    
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C Representative transect for bathymetry 

For this research, bathymetric measurements on the 6th of April 1994 were analyzed and a 
representative transect was chosen and extended uniformly along the coast. This appendix 
explains the choice for a specific transect.  
 
Bathymetric surveys at the FRF are conducted monthly over a series of 26 shore 
perpendicular transects (profile lines) from the dunes to approximately 950 m offshore. They 
are conducted using a Coastal Research Amphibious Buggy (CRAB). 
 
Since the Argus camera is installed at the top of a 40 m high tower, looking north. The area of 
interest in the field of view of the camera starts about 200 m north of the pier and extends 1 
km alongshore (Wijnberg and Holman, n.p.). Figure 0.6 (left) shows transects at which the 
bathymetry was measured. Transect 58 to 95 are within the visualized area of the Argus 
camera, therefore it is preferred to take one of these as representative. Transects between 64 
and 95 have a longshore bar at approximately the same location and height, although 
transect 67 has a trough much deeper than the other transects in this section. It could be 
seen from the data that between transect 160 and 171 the bathymetry is largely influenced by 
the pier.  
 
A representative profile (dashed bold line in Figure 0.6) could be transects 85, since it 
approximately represents the cross-sections within the area of interest of the Argus camera. 
However, the measurement does not extend far offshore, and is not very detailed compared 
to other available cross-sectional measurements. Therefore transect 176 is chosen to be 
representative for the area instead. The shape of the bar is approximately the same as 
transects between 64 and 95 (Figure 0.6), only the measurement extends further offshore 
and more depths are measured per distance. Thus, transect 176 was taken for representing 
the bathymetry in September 1994. 
 

Figure 0.6. Choice for representative transect for bathymetry. Left: Transects over which bathymetry is measured 
(from http://www.frf.usace.army.mil/). Right: representative transect compared to others.  
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D Time step analysis 

The computational time largely depends on the time step; a larger time step decreases the 
total computation time. Nevertheless, when having a very high grid resolution (as is the case 
in this study) the time step should become smaller as well in order to get accurate and stable 
results. The time step can be chosen on accuracy arguments, since stability is in most cases 
not an issue (Deltares, 2011). 
 
The Courant (Friedrichs-Lewy) number [CFL] is an important parameter to check the 
accuracy of a model and gives a guideline for choosing a good timestep:  

ܮܨܥ = ඥ݃ℎඨݐ∆2
1
ଶݔ∆ +

1
ଶݕ∆ < 10 (15) 

In which ∆ݐ is the time step (s), ݃	is the acceleration of gravity, ℎ is the waterdepth, and ∆ݕ∆,ݔ 
is a characteristic value (in many cases the minimal value) of the grid spacing in either 
direction. CFL should in general not be larger than 10 for an implicit numerical scheme such 
as Delft3D, in order to secure accuracy (Deltares, 2011). From Delft3D it could be obtained 
that the maximum allowed time step for accurate computation of wave propagation is 2.0 
seconds. However this is a rough estimate and the timestep should be checked by executing 
a sensitivity test. 
 
To investigate the influence of the time step to the model results, we did trial runs with 
different time steps (a time step of 1.5, 3, and 6 seconds).The results of these trial runs show 
that for time step 6 the results in the water level become instable when looking at the last 
timestep (Figure 0.7). Note that the magnitude of water level values is very small (10-4).  

 
Figure 0.7. Water level after 2 hrs over the whole cross-section for different time steps. 
 
If looking at the water level over time at an observation point located at the top in the middle 
of the SPAW(Figure 0.8), it shows that both time steps 6 and 3 seconds show irregularities. 



 

 
October, 2012 
 

 
Wave-driven dynamics of Shoreward Propagating Accretionary Waves in the Nearshore 
 

93 

These irregularities are once every 15 minutes, so they could be caused by the 
communication with the WAVE module which takes place at that interval. For the depth 
averaged velocity the cross-shore component (Figure 0.9, left) all timestep converge to an 
equilibrium value. For a step of 6 seconds, some irregularities can be seen. For the longshore 
velocity the results seem to differ a lot (Figure 0.9, right), however when looking at the 
magnitude of these velocities differences are not that big. After 120 minutes all timestep seem 
to be converged to an equilibrium value. 
 
From this sensitivity analysis a time step of 1.5 second is chosen, since this seemed to give 
the most accurate results. Also, this value is lower than the suitable time step as given by 
Delft3D.  

  
Figure 0.8. Water levels in time for the observation point on top of the middle of the SPAW for different timesteps; 

with SPAW (left), without SPAW (right). 
 

  
Figure 0.9. Depth averaged velocity in time for the observation point on top of the middle of the SPAW for different 

time steps; cross-shore velocity [U] (left), longshore velocity [V] (right). 
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E Conditions SandyDuck97 

The conditions during the SandyDuck97 experiments as Van der Werf (2009) used are shown 
in this Appendix. The figures below show the water level, wind speed, wind direction, 
significant wave height, spectral peak period, and peak wave direction from 27th of September 
to 21st of October 1997. The wind direction is defined nautically (same as in Figure 3.3), the 
wave direction is different than in Figure 3.4, and represents the angle in degrees counter-
clockwise from normal to the array, i.e. 0˚ represent coming from East and +90˚ represents 
coming from the North.  

 
Figure 0.10. Water elevation, wind speed, and wind direction during SandyDuck97 field campaign. The wind 

direction is defined nautically and positive in clockwise direction (Van der Werf, 2009). 

 
Figure 0.11. Significant wave height, spectral peak period, and wave direction during SandyDuck97 field campaign. 

The wave direction represents the angle in degrees counter clockwise from shore normal (Van der Werf, 
2009).  
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F Bathymetries for SPAW scenarios 

This appendix shows bathymetries as applied in the different scenarios. The specifications for 
SPAW configurations in different scenarios are summarized in Table 5. Note that the axis and 
colouring of bathymetry and top view figures do not have the same scaling. 
 
Table 5. SPAW configurations for different scenarios 

 Hs 
[m] 

Z 
[m] 

Width 
[m] 

Length 
[m] 

Location 
[m] 

Remarks 

S1: longer SPAW  0.56 0 25 400 198.75  
S2: wider SPAW 0.56 0 60 130 198.75  
S3: closer to shore 0.56 0 25 130 175  
S4: closer to bar 0.56 0 25 130 225  
S5: local bathymetry change 0.56 0 25 130 198.75 Bar lowered 
 

 
 

Figure 0.12. Scenario with a longer SPAW: Schematic alongshore uniform bathymetry including a SPAW (left), 
and top view of SPAW configuration zoomed in at SPAW location (right).  

 
 

Figure 0.13. Scenario with a wider SPAW: Schematic alongshore uniform bathymetry including a SPAW (left), and 
top view of SPAW configuration zoomed in at SPAW location (right). 
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Figure 0.14. Scenario with SPAW closer to shore: Schematic alongshore uniform bathymetry including a SPAW 
(left), and top view of SPAW configuration zoomed in at SPAW location (right). 

 
 

Figure 0.15. Scenario with SPAW closer to bar: Schematic alongshore uniform bathymetry including a SPAW 
(left), and top view of SPAW configuration zoomed in at SPAW location (right). 

 
 

Figure 0.16. Scenario with local bathymetry change: Schematic alongshore uniform bathymetry including a 
SPAW (left), and top view of SPAW configuration zoomed in at SPAW location (right). 
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G Wave-driven depth averaged flow fields – initial bathymetry 

This Appendix shows the depth-averaged velocity patterns around a SPAW for cases with the 
initial bathymetry and different water levels.  
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H Wave-driven depth averaged flow fields – morphometric 
changes 

This Appendix shows the depth-averaged Eulerian velocity patterns around a SPAW for 
cases with different morphometric changes. 
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I Additional figures for Hs = 0.56 m with different water levels 

In this Appendix additional figures are presented for the reader who is interested in more 
details of the runs with different water levels. 
 

 
Figure 0.17. Cross-shore variations in roller forces for different water levels. 
 

I.1 Sediment transport for z=+0.5 m 
The sediment transport at the SPAW crest for the case of Hs=0.56 meter and a water level of 
z=+0.5m shows unrealistic results. Over the SPAW the transport is expected to be symmetric 
over the SPAW crest. However, the model results show a significant different transport on the 
northern and southern side of the SPAW (Figure 0.18 to 0.20). 
 
These results are caused by some numerical issues, which can be seen in differences in 
vertical eddy viscosity (Figure 0.21). The profiles at the northern part of the SPAW show 
viscosity profiles with a large increase in the bottom layer, similar as was seen at a cross-
shore distance x=280 meter (as discussed in paragraph 4.6). It would be very interesting to 
find out what exactly cause the differences in these profiles. However, this aspect falls 
outside the scope of this study. Unfortunately, the sediment transports for the case Hs=0.56 m 
and z=+0.5 m are therefore not discussed in more detail in this report.  

 
Figure 0.18. Top view of bed load transport showing reference situation (left), situation with a SPAW (middle) and 

the difference (right). The background colouring represents magnitude, vectors show directions, grey 
contour lines show bottom contours.  
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Figure 0.19. Longshore variation in bed-load transport load in x-direction (wave propagation) for different cross-

shore transects. Negative values are onshore directed transports. 
 

 
Figure 0.20. Top view of suspended load transport showing reference situation (left), situation with a SPAW 

(middle) and the difference (right). The background colouring represents magnitude, vectors show 
directions, grey contour lines show bottom contours. 

 
Figure 0.21. Vertical eddy viscosity profiles at longshore transect over crest of SPAW. The full lines indicate profiles 

at the north of the SPAW, dashed lines at the south. Black line in middle (y = 750m), blue line at quarter of 
SPAW (y = 775 and 825m), red line at tips of SPAW (y = 700 and 800m).  

 
 


