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Abstract

The Longstaff-Schwartz algorithm is widely used for pricing Bermudan options. It allows Monte
Carlo simulation to take into account the early-exercise feature of a Bermudan option. The method
utilizes multi-linear regression to estimate the continuation value of such options. In this thesis, we
study the impact of different regressor configurations on the performance of the Longstaff-Schwartz
method. We evaluate pricing result in various model settings including the Black-Scholes world, the
Heston model and the lognormal Libor market model. By using an upper bound pricing algorithm
proposed by Andersen and Broadie, we demonstrate a reliable measure for evaluating the performance
of the Longstaff-Schwartz algorithm. We show that regressor configuration plays a significant role in this
method, and give recommendations on how to construct effective regressors.
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1 INTRODUCTION 1

1 Introduction

How much would you pay for the right to buy or sell certain asset at some specified price in a predetermined
finite set of dates? Academics and practitioners alike face this problem when they want to price a
Bermudan option. The difficulty arises because in general we do not know a priori when to exercise
the option to maximize the payoff. The associated mathematical problem is a discrete optimal stopping
problem, with known solution method by the dynamic programming principle. There is no known exact
analytical solution to the above problem even with very simple option payoff type and underlying asset
dynamics model. Instead, one can solve it by numerical methods. Depending on the number of state
variables involved, different numerical method gains preference. For one to at most three state variables,
Tree methods or lattice methods such as Finite Differences produce fast and accurate result. But as the
state variables grows in number, “curse of dimensionality” [28] means that these methods are no longer
practical in terms of efficiency and implementation complexity. Monte Carlo simulation is by far the
most favourable method for solving higher dimensional problems.

Over the years, interest rate derivatives market has expanded tremendously. Apart from the bonds,
interest rate caps, floors and swaptions are all traded in huge volume. OTC market for exotic rate products
appearing as structured notes was also growing significantly in the hey days. The liquidity of caps and
swaptions makes them popular hedging instruments for more complicated interest rate derivatives. Thus
one of the most desired features from the market for a successful interest rate model is to efficiently
recover the cap and swap market prices, which is called model calibration. The multi-factor BGM model
[12], also known as the Libor market model, and its various extensions have gained popularity over the
short rate models mainly because of their built-in capability for calibration.

As is mentioned, Monte Carlo simulation is the de facto tool for pricing complex derivatives in these
multi-factor models. To price a Bermudan option, one needs to compare the payoff due to exercise
and the remaining value of the option if it is not exercised. A problem arises in estimating the option’s
remaining value based on the information up to the exercise moment. This is a functionality not available
in the original Monte Carlo framework. Researchers have proposed a number of regression based methods
including the Longstaff-Schwartz algorithm to overcome this difficulty. It is now within the capability of
Monte Carlo to evaluate Bermudan options.

Successful implementation of the Longstaff-Schwartz method hinges on the construction of regressors.
Hence we will explore using a reliable criterion to evaluate different regressor configurations and improve
the performance by identifying more effective ones. We will also give recommendation on how to construct
effective regressors with respect to different models and option types. In Chapter 2, we will introduce
the Longstaff-Schwartz Monte Carlo, discuss its implementation issues and highlight important aspects
that affect its performance. In Chapter 3, we will discuss both the theory and implementation issues of a
method for calculating the upper bound for Bermudan option price. Thus we can bound the true option
value from above and below (by the Longstaff-Schwartz method). The gap between the two bounds can
be used as a performance evaluation measure. In Chapter 4, we will introduce the Black-Scholes world
and the Heston model as well as several types of option payoff. These serve as test cases for studying
the performance of the Longstaff-Schwartz method. In Chapter 5, we will apply two special regression
methods to the Longstaff-Schwartz method. Their effectiveness will be evaluated. In Chapter 6, we will
discuss the main model of interest for us, the Libor market model, and present how to build a Monte
Carlo engine for it. We will introduce relevant interest rate market products including the Bermudan-
style Libor Exotics. We will show how to adapt the Longstaff-Schwartz algorithm to evaluate these
complex interest rate derivatives. In Chapter 7, we will present and analyse all the simulation results,
evaluate various regressor configurations by the criterion based on the upper bound algorithm, and give
recommendation on how to construct effective regressors. In Chapter 8, we will make final conclusions
and suggest topics for further research. In the Appendices, we will introduce the basics about pricing
derivatives with Tree methods and Finite Difference methods. We also include all the upper bound
simulation data for reference.
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2 Monte Carlo and the Longstaff-Schwartz Algorithm

In this section we introduce the basics of the Monte Carlo method through an example in the Black-
Scholes world. We will review the mathematical problem of pricing a Bermudan option and study the
Longstaff-Schwartz algorithm for solving this problem in the Monte Carlo framework. We will also discuss
details of this method concerning regressor choice, pricing error and convergence property.

2.1 Pricing Plain Vanilla Option with Monte Carlo

Monte Carlo simulation is widely used in pricing derivative securities. We begin this section by reviewing
the application of Monte Carlo in pricing vanilla options. The following simple example helps to clarify the
basic ideas underlying Monte Carlo method. Suppose we want to evaluate the expectation E[f(X(T ))],
where X denotes a stochastic process {X(t), 0 ≤ t ≤ T} taking value in R. f is an integrable function,
f : R → R. Let X(k), for k = 1, . . . , N , be realized paths of process X. By the Strong Law of Large
Numbers, the following limit holds almost surely,

lim
N→∞

1
N

N∑

k=1

f(X(k)(T )) = E[f(X(T ))].

This implies that we can obtain an approximation to the expectation with finite number of realized paths.

1
N

N∑

k=1

f(X(k)(T )) ≈ E[f(X(T ))].

Suppose the dynamics of process X is specified by the following Stochastic Differential Equation (SDE),

dX(t) = a(X(t))dt + b(X(t))dW (t), for 0 ≤ t ≤ T.

where a(x) and b(x) are deterministic coefficient functions satisfying necessary regularity conditions.
To simulate the above continuous time SDE, we need to discretize it on a time grid. Suppose we

choose an equidistant grid with grid size h. Let X(h,k) denote the discretized process along path k with
grid size h. X(h,k) converges to X(k) as h ↓ 0 , so we have the following approximation

1
N

N∑

k=1

f(X(h,k)(T )) ≈ E[f(X(T ))]. (2.1)

Approximation (2.1) differs from the true expectation value with error introduced by both finite number
of paths N and nonzero time step h. Error introduced by the latter source is commonly called the
discretization error.

As an example, we will value a plain vanilla option on an asset following the Geometric Brownian
Motion (GBM). The option price at maturity T , V (T ), is given by its payoff function. Under the
Equivalent Martingale Measure (EMM) Q where W is a Q Brownian Motion, the risk-neutral dynamics
of the asset price is given by

dS(t) = rS(t)dt + σS(t)dW (t), 0 ≤ t ≤ T. (2.2)

where r is the constant risk-free rate and σ is the constant volatility parameter.
Applying Itô’s lemma to ln(S(t)) yields,

dln(S(t)) =
1

S(t)
dS(t) +

1
2
(−

1
S2(t)

)dS(t)dS(t)

= (r −
1
2
σ2)dt + σdW (t). (2.3)

Integrating SDE (2.3) over the time interval [ti, ti+1], where 0 ≤ ti < ti+1 ≤ T , gives,

ln
S(ti+1)
S(ti)

= lnS(ti+1) − lnS(ti)

=
∫ ti+1

ti

(r −
1
2
σ2)dt +

∫ ti+1

ti

σdW (t)

= (r −
1
2
σ2)(ti+1 − ti) + σ(W (ti+1) − W (ti)).
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This gives us the recursive expression for S(ti+1),

S(ti+1) = S(ti) exp

[

(r −
1
2
σ2)(ti+1 − ti) + σ(W (ti+1) − W (ti))

]

(2.4)

Assuming an equidistant grid, so ti+1 − ti = Δt, for all i. Let Si+1 = S(ti+1), ΔWi+1 = W (ti+1) −
W (ti), for i = 0, 1, . . . , Nh − 1. Notice that ΔWi+1 ∼ N (0, Δt), so we can replace ΔWi+1 by

√
ΔtZi+1

where Zi+1 are independent standard normal random variables for all i = 0, 1, . . . , Nh − 1. Given initial
asset value S0 = S(0), Equation (2.4) gives the exact formula for simulating a GBM asset price path,

Si+1 = Si exp

[

(r −
1
2
σ2)Δt + σ

√
ΔtZi+1

]

. (2.5)

for all i = 0, 1, . . . , Nh − 1.
Alternatively, we can discretize SDE (2.2) directly to show the principle of Euler discretization scheme.

The time axis is divided by grid 0 = t0 < t1 < ... < tNh
= T with step Δt = h. Integrating SDE (2.2)

over the interval [ti, ti+1] and using approximations to the two integrals gives

S(ti+1) = S(ti) + r

∫ ti+1

ti

S(x)dx + σ

∫ ti+1

ti

S(x)dW (x),

≈ S(ti) + rS(ti)(ti+1 − ti) + σS(ti)(W (ti+1) − W (ti)).

In the last step, these two Euler approximations are assumed,

∫ ti+1

ti

S(x)dx ≈ S(ti)(ti+1 − ti),

∫ ti+1

ti

S(x)dW (x) ≈ S(ti)(W (ti+1) − W (ti)).

Using the same notations as in Equation (2.5), the Euler scheme approximates a GBM asset price
path on the grid by

Si+1 = Si + rSiΔt + σSi

√
ΔtZi+1. (2.6)

for all i = 0, 1, . . . , Nh − 1.
Equation (2.5), derived from the analytical solution, gives the exact value of realized asset price along

each simulated path if the random variables Zi+1 are ideal. As Glasserman[28] points out, Equation (2.6)
approximates the actual process to an accuracy of O(

√
Δt).

Now we can price vanilla options with Monte Carlo simulation. The Risk-Neutral Pricing Principle
[51] states that,

V (t) = E
[
e−r(T−t)V (T ) | F(t)

]
, 0 ≤ t ≤ T. (2.7)

where E is taken under EMM Q. Function V (t) denotes the arbitrage-free value of the option at time t.
At maturity T , it is given by the payoff function of the vanilla option.

We generate N sample paths of the asset price according to either Equation (2.5) or Equation (2.6).
Given initial asset value S(0), we have the following approximation to the option value (2.7) at t = 0,

V̂ (0) = e−rT 1
N

N∑

k=1

g(Sh,k(T )), (2.8)

where function g(s) is the time T payoff of the vanilla option with underlying asset value s.
We have compared the GBM paths generated according to Equation(2.5) and the paths generated

according to Equation(2.6). The model parameters used are r = 0.06, σ = 0.3, T = 1, S(0) = 1. We
discretize the one year time period into 52 equidistant segments (Δt = T/52). 105 sample paths are
generated to make a histogram of the time T value of the GBM paths. We use Matlab throughout
the whole thesis. The random number generator is based on Mersenne Twister. Figure 2.1 shows that
the computer generated random samples from both equations follow approximately lognormal distri-
bution. Equation (2.5) indicates that the ratio S(T )/S(0) follows a lognormal distribution such that
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ln[S(T )/S(0)] ∼ N (m, s2), where m = (r− 1
2σ2)T and s = σ

√
T . We have the following statistics for the

lognormal random variable [52]

mean = em+s2/2,

variance = (es2

− 1)e2m+s2

,

skewness = es2

+ 2)
√

es2 + 1,

kurtosis = e4s2

+ 2e3s2

+ 3e2s2

− 3. (2.9)

The sample statistics are calculated by Matlab functions. Although these numbers are themselves random,
being close to the model statistics brings reassurance to our simulation setup. Some typical values (up
to the 4th digit) from simulation are shown in Table 2.1. Both methods give close approximations to the
theoretical lognormal random variable with 105 sample paths.
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(a) GBM by Euler Scheme on SDE
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(b) GBM by Analytical Solution

Figure 2.1: Histogram of time T value of GBM paths generated by Euler scheme and by the analytical
solution, Δt = T/52, path number Np = 105.

Table 2.1: Sample statistics of computer generated GBM path ratio S(T )/S(0), Δt = T/52, path number
Np = 105.

Statistics Value
Theoretical Euler Solution Euler Solution

run1 run1 run 2 run2

Mean 1.0618 1.0635 1.0621 1.0625 1.0618
Variance 0.1062 0.1061 0.1070 0.1067 0.1060
Skewness 0.9495 0.9217 0.9570 0.9555 0.9533
Kurtosis 4.6449 4.5170 4.6620 4.8164 4.7059

We have compared the differences between simulated option value and the Black-Scholes analytical
solution. Figure 2.2 shows convergence of simulated option value to the analytical solution when S(0) =
10, K = 10. We take 103 to 105 sample paths. For each number of sample paths, we run 100 Monte Carlo
simulations. The average of 100 results is reported as the simulation result. The pricing error is then
given by the difference between this result and the analytical solution from the Black-Scholes formula. We
also report the 95% confidence interval of the pricing error based on t-statistics of the sample mean. The
pricing error with GBM paths generated by analytical solution is due to the error in computer generated
random samples as well as finite number of paths used in the Monte Carlo simulation. The pricing error
with GBM paths generated by Euler Scheme on SDE is caused by both of the above sources as well as
the error introduced by the approximations in Equation (2.6).
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Figure 2.2: Convergence of Monte Carlo simulation result according to Equation (2.6) to the analytical
solution of a European Put in the Black-Scholes world, r = 0.06, σ = 0.3, T = 1, S(0) = 10, K = 10,
Δt = T/52.

2.2 Pricing American or Bermudan Option with Monte Carlo

2.2.1 Dynamic Programming Formulation of Bermudan Option Pricing

An American option grants its holder the right to exercise the option at any time prior to maturity. A
Bermudan option allows its holder to exercise the option at a set of possible exercise moments up to
maturity. Bermudan option value can be simulated by Monte Carlo. As we choose finer and finer grid
on the time axis and have more and more early exercise moments, the American option value can be
approximated by the Bermudan option value. Convergence from discrete to continuous time optimal
stopping problem is treated in [22].

Let us consider the following tenor structure on which we will study the problem of pricing Bermudan
options. The time interval [0, T ] is discretized by the grid 0 = T0 < T1 < . . . < TN = T , where
αi = Ti − Ti−1 = T/N for each i = 0, 1, . . . , N . A Bermudan option with maturity T issued at time T0

admits the following set of possible exercise moments T = {T1, . . . , TN}.
Suppose we have chosen the probability space (Ω,F ,P) and the natural sigma-algebra filtration,

{Ft, t ≥ 0}. For any 0 ≤ a < b < ∞, Let Sa,b denote the set of stopping times on the interval [a, b], so
Sa,b ⊂ [a, b] ∩ T [44]. For example, the set of all stopping times on the interval [0, T ] is S0,T .

In order to simplify the expressions, the quantities below are all in time 0 money, i.e. the quantities are
discounted by a proper numeraire back to time 0, but the numeraire is not explicitly expressed. Suppose
we have a value process {X̄(t), t ≥ 0}, where X̄(t) represents the value at time t in time t money. Let
{N̄(t), t ≥ 0} be the chosen strictly positive numeraire process. Then {X(t), t ≥ 0} is the discounted
value process, where X(t) = X̄(t)/N̄(t) represents the value at time t in time T0 money denoted with
numeraire N̄ . By choosing the numeraire N̄ , the expectations are taken under the corresponding EMM
Q. We define the following quantities in the same fashion.

Let Zk and Hk denote the discounted exercise value and the discounted hold value of the option at
time Tk in time 0 money respectively. Vk is the discounted option value, i.e. the arbitrage free price, at
time Tk in time 0 money. We adopt the convention that there is no early exercise opportunity at time 0,
hence Z0 = 0. Holding the option at its maturity brings no payoff, so HN = 0.

The following approach of Bermudan option pricing [44] takes the option holder’s perspective. The
value to the holder is the maximal expected payoff from exercising the option. It is stated that there
exists an optimal stopping time τ∗ such that

V0 = E[Zτ∗ |F0] = max
τ∈S0,T

E[Zτ |F0]. (2.10)

τ∗ gives the maximum expected payoff to the option holder, hence it defines the true option value to the
holder. Any other stopping time τ ∈ S0,T will give a suboptimal expected payoff. Hence any attempt
to pricing a Bermudan option by searching for close to optimal stopping time (exercise strategy) will in
general end up in a lower bound estimate to the true option value. We use maximum instead of supremum
because we are pricing a Bermudan option with finite exercise opportunity.
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The stochastic process {Vn} :

{
VN = ZN ,
Vn = maxτ∈Stn,T E[Zτ |Fn], for n = 0, . . . , N − 1.

(2.11)

is called the Snell Envelop of the payoff process {Zn} [53], which is proved to be a supermartingale. We
will come back to this point in Chapter 3.

If we distinguish exercise choice at time Tn and later, the Snell Envelop can be written by the following
expression,

Vn = max

{

Zn, max
τ∈STn+1,T

E[Zτ |Fn]

}

for each n = 0, . . . , N − 1.
The hold value is defined as Hn = E[Vn+1|Fn] = maxτ∈STn+1,T

E[Zτ |Fn], which gives us the more
familiar recursion for the Bermudan option value,

{
VN = ZN ,
Vn = max [Zn, Hn] , for n = 0, . . . , N − 1.

(2.12)

Backward recursion (2.12) indicates that the holder should exercise the first time Zk > Hk in order

to maximize payoff from the option. Define the exercise region as Ψk =
{

ω ∈ Ω, Z
(ω)
k > H

(ω)
k

}
for each

k = 1, . . . , N . Define the sequence of optimal stopping time τk : Ω → {k, . . . , N} for each k = 1, . . . , N as
τ

(ω)
k = inf{k ≤ j ≤ N,ω ∈ Ψk}. τk can be interpreted as the exercise time of the Bermudan option given

it has not been exercised up to time Tk−1. It can also be interpreted as the exercise time of a Bermudan
option newly issued on time Tk with expiry at T . The dynamic programming formulation (2.12) can be
rewritten in terms of the stopping times, as follows,






τN = N,
τn = n, if ω ∈ Ψn.
τn = τn+1, otherwise.

(2.13)

for each n = 0, . . . , N − 1.
The option value at time Tn is then given by Vn = E[Z(τn)|Fn]. In particular V0 = E[Z(τ0)|F0].

Making early exercise decision requires knowing or being able to approximate Zk and Hk at each step (in
certain situations such as a Bermudan option on a forward contract, both quantities are not known at time
Tk). Recursion (2.13) is essential in deriving an algorithm for computer simulation of the lower bound
for Bermudan option value. Approximation of Zk and Hk can be realized by the Longstaff-Schwartz
algorithm.

2.2.2 The Longstaff-Schwartz Algorithm

We will outline in this section a regression based method first studied by Carriere [16], Tsitsiklis and
Van Roy [56] and further developed by Longstaff and Schwartz [43] for approximating the continuation
value function. It allows Bermudan options to be valued by Monte Carlo. Longstaff and Schwartz named
their method the Least Square Monte Carlo method (LSM), hence forth we will refer to this name for
simplicity. Part of the description below is derived from Glasserman’s book [28].

Let us consider again the setup from last section. Let a d dimensional Ft adapted Markov process
{X(t), 0 ≤ t ≤ T} be the state process, which contains all the observable information needed for option
pricing. For simplicity, suppose the exercise value (also known as the intrinsic value) at time Tn can
be fully determined by the information up to that moment, i.e. Zn is Fn measurable. Our job is to
approximate the hold value (also known as the continuation value) Hn at each n = 1, . . . , N −1. We have
Hn = E[Vn+1|Fn] = E[Vn+1|Xn] in this setup. The main idea of the LSM algorithm is to approximate
the conditional expectation with linear combination of a set of R + 1 basis functions, Φ0, Φ1, . . . , ΦR, at
each time step. Assume these basis functions are linearly independent. For each n = 1, . . . , N − 1, we
assume the following multi-linear model,

E[Vn+1|Xn] ≈
R∑

r=0

βn,rΦr(Xn). (2.14)
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We generate N independent sample paths of process X, denoted by Xk, for k = 1, . . . , N . The
squared residual along path k is,

r2
k =

[

E[Vn+1|Xk
n] −

R∑

r=0

βn,rΦr(Xk
n)

]2

.

As is discussed by Longstaff and Schwartz [43], since early exercise is relevant only when the option
is in-the-money(ITM) for a put payoff, only ITM paths at time Tn are needed for regression. In our
numerical simulations, we observe results that support this argument. We will formulate the expression
according to this path-selection criterion. For some other options, for which the exercise value can not
be observed explicitly, all the paths should be taken for regression. Assume there are NITM ITM paths
indexed by k1 to kNIT M . Ordinary Least Square (OLS) regression is performed to find the parameter
vector βn = (βn,0, . . . , βn,R)T that minimizes the sum of all squared residuals,

min
βn

NIT M∑

j=1

r2
kj

= min
βn

NIT M∑

j=1

[

E[Vn+1|X
kj
n ] −

R∑

r=0

βn,rΦr(X
kj
n )

]2

.

The OLS estimator [32] of βn is
β̂n = (UT U)−1UT y. (2.15)

where entry (j, r) of matrix U is U(kj , r) = Φr(X
kj
n ), and entry j of column vector y is ykj = E[Vn+1|X

kj
n ].

Φ0 is often chosen to be 1 as a constant regressor. In the LSM backward recursion E[Vn+1|X
kj
n ] is replaced

by Z
kj
τn+1 , the discounted hold value at stopping time τn+1 along path kj .

Once we have determined the vector β̂n, the hold value of the option at time tn along path kj is
estimated by the fitted value of regression

Ĥkj
n =

R∑

r=1

β̂n,rΦr(X
kj
n ). (2.16)

Thus we can compare the option’s exercise value with its hold value and make exercise decision at time
Tn, along those ITM Monte Carlo paths. For the out-of-the-money(OTM) Monte Carlo paths, it is clear
that there will not be early exercise at the moment. Hence the option’s value along those paths equals its
hold value, i.e. the option’s value at the next exercise moment. By repeating this procedure backwards
in time, we can determine the LSM early exercise moment along each path according to recursion (2.13).
The option value at the initial moment can be obtained by taking the average of discounted exercise cash
flows along all Monte Carlo paths.

For computer simulation, we have implemented the following algorithm. Suppose the option owner
has the right to exercise at all of the following moments 0 = T0 < T1 < ... < TN = T except
T0. R is the number of nonconstant regressors. We use a vector for the remaining option values
Vrm = (Vrm(k), k = 1, . . . , N ) to keep track of the discounted future exercise value, Zk

τn+1
. At each

time step, the vector is updated according to the exercise decision. In this way the sequence of stopping
times do not need to be explicitly coded. Code efficiency is better than to record the stopping time and
use that to find the exercise value from a matrix. The algorithm is as follows:

1. At maturity, Vrm is evaluated by the option payoff function (with proper discounting back to time
zero).

2. for n = N − 1 : −1 : 1
Calculate the discounted exercise value Zk

n, for each path k = 1, . . . , Np.
if NITM < R + 1

Continue to the next recursion.
(Not enough paths for regression, give up the exercise opportunity)

else
Pick all ITM paths at time point tn for regression:
(these ITM paths are indexed by k1, . . . , kNIT M

.)
Use Equation (2.15) to calculate the estimator β̂n.
Use Equation (2.16) to calculate the fitted value Ĥ

kj
n , for each j = 1, . . . , NITM .

If Z
kj
n > Ĥ

kj
n , then Vrm(kj) = Z

kj
n , for each j = 1, . . . , NITM .
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end if
end for
3. Average Vr over all the paths to get the Monte Carlo result of the Bermudan option value at time

T0, V (T0) = 1
N

∑N
k=1 Vrm(k). Notice that there is no early exercise opportunity at time T0 �

2.2.3 Implementation Issues and Alternative Benchmarks

We will give some notes about implementing the LSM. In general, with R basis functions (and one
constant) as the regressors, we need at least R + 1 samples to make sure that it is possible for the
regressor matrix Z to have full column rank R + 1, so that the regressors are linearly independent.
Otherwise, when the regressors are highly correlated, which is named multicollinearity [32], β̂ may change
dramatically with respect to data. But as Longstaff and Schwartz pointed out [43], the fitted value Ĥn

is not affected by this problem. Since we are interested in the fitted value rather than the regression
coefficients themselves, the only concern for us is whether there are enough ITM paths to carry out the
regression. In our implementation, we perform the regression as long as there are at least R + 1 ITM
paths at a time step. If not, we simply say that there is not enough ITM paths, so we give up the exercise
opportunity at that moment.

We set the first possible exercise moment to be T1 = ΔT instead of T0. At the initial time T0, the
underlying asset prices along all paths are the same. As a result, OLS regression can not be performed
at T0. For a Bermudan option in real life, there is usually a lockout period, i.e. the first possible early
exercise date is set to be on a later date than the starting date of that option. So unable to run regression
at time T0 poses no problem. When approximating the value of an American option which can be
exercised immediately after its starting time, this will result in a low-biased estimate for the option value
especially when the option is initially deep ITM. However, if we make the time grid finer and finer, by
the convergence result in [22], we expect the error to approach zero.

In order to characterize the performance of the LSM algorithm on Bermudan options, we need some
alternative pricing benchmarks as a gauge of accuracy. The two numerical schemes that we implement
are the Tree scheme and the Finite Difference scheme. An outline of pricing European and Bermudan
options with these methods in the Black-Scholes world is listed in Appendix A and Appendix B. We
realize that these methods can only approximate the true option value to certain error bound within
limited computation time. Our goal of establishing alternative benchmarks is to approximate the true
option value as close as possible, at least better than using the LSM method. Thus through comparing
the pricing result from the LSM method and the benchmarks, we will be able to analyse the pricing
error profile from the LSM method, and to obtain some insight of how different configurations of LSM
implementation affect the pricing result.
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Figure 2.3: Convergence of the LSM result to a Binomial Tree benchmark for a Bermudan Put in the
Black-Scholes world, r = 0.06, σ = 0.3, S(0) = 10, K = 10, T = 1, Δt = T/52. Regressors are 1, S, S2.

A simple numerical example helps to show how the LSM method works. As Longstaff and Schwartz’s
first numerical example in Section 1 of [43], we choose the underlying asset price process S as the state
process X described before. We choose a constant c, the underlying asset value S and its square S2 as
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regressors. Figure 2.3 shows convergence of the LSM algorithm for an ATM Bermudan Put. The 95%
confidence bound is calculated by the t-statistics based on 100 Monte Carlo simulation average. The
benchmark result is obtained by a binomial tree with 52 × 400 = 20800 steps. In this way, all of the
possible early exercise moments are on the time grid of the tree. Subplot (b) shows that the LSM results
with 105 and 106 sample paths are low biased when compared to the benchmark.

We have evaluated prices of the Bermudan Put with different initial asset prices S(0) and the following
parameters, K = 10, T = 1, r = 0.06, σ = 0.3, Δt = T/52. 105 sample paths are generated in the Monte
Carlo simulation for each S(0). We take the average of 100 simulated option value as the result. The
lockout period in our Monte Carlo simulation is Δt, i.e. the first early exercise opportunity occurs at
t = Δt. We build a binomial tree with 20800 time steps and a finite difference solvers with 20800 time
steps as benchmarks.
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Figure 2.4: Simulated price and price difference for a Bermudan Put in the Black-Scholes world by three
numerical methods. r = 0.06, σ = 0.3, K = 10, T = 1, Δt = T/52, paths number Np = 105, 100
run average. Regressors used in the LSM algorithm is 1, S and S2. The benchmarks are provided by a
Binomial Tree and a Finite Difference solver for the same Bermudan Put.

The simulated option prices and pricing differences are shown in Figure 2.4. We only give a brief
discussion of the result here, detailed discussion is delegated to later chapters. The left plot shows that
three numerical methods give quite close pricing result across different moneyness. The right plot gives
the profile of pricing difference (LSM price – benchmark price). LSM price is found to be lower than the
benchmark except for deep OTM region. The largest low bias occurs ITM, near the region where the
early exercise boundary maybe.

For this simple setting, the LSM algorithm takes much longer computation time than either binomial
tree or finite difference. The LSM method does not compete well either in convergence or computation
efficiency with the alternative methods in one or two dimensional problems. However, in higher dimen-
sional problems, it soon becomes infeasible to use the alternative methods for efficient pricing. That is
when the LSM becomes the de facto tool.

2.2.4 Explanatory Variables and Basis Functions

Equation (2.14) in the last section gives the multi-linear model for the hold value function in LSM method,
which we write again here,

E[Vn+1|Xn] ≈
R∑

r=1

βn,rΦr(Xn).

In the model, Xn gives the value of the state process at time Tn, Xn : Ω → Rd, d ≥ 1. Φ1, . . . , ΦR are
the basis functions, with Φr : Rd → R.

The above division into explanatory variable and basis function is a conceptual one. For actual
implementation, boundary between the two is purely technical. We may directly evaluate some basis
functions, such as the Laguerre polynomial, at the value of some underlying variables, such as some index
value or interest rate value. Alternatively, we may use some function to map the underlying variables to
some intermediate variables and then evaluate basis functions so that these value can better approximate
the conditional expectation through the OLS regression. Exactly which way to choose depends on the
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property of the underlying model dynamics as well as the payoff feature. The intuition is to extract the
most relevant information from the underlying variables so that the estimated hold value function is close
to the true one. As Piterbarg pointed out in [45], success of the LSM depends on how robust and well-
behaved the numerical problem of fitting the conditional expectations to simulated value is. Overfitting
poses a significant danger, one should avoid using an overly rich set of parametric functions in the
fitting. A less robust fitting may find a good fit within the range of fitted values but produces completely
unreasonable outcome outside this range. For example, high order polynomials reacts very strongly to
out of the range data. Piterbarg proposed to use financially meaningful variables that actually drive the
future exercise and/or hold value. For the basis functions, he suggests to use very simple parametric
families such as polynomials of degree 2.

We will show in later chapters how we choose proper explanatory variables and basis functions ac-
cording to each specific model and payoff. We have collected extensive numerical evidence to validate
our choice.

It is important to note that one should only use the Fn measurable variables to construct the re-
gressors, because the conditional expectation is based on information available up to time Tn. Using
information in future time will in general lead to high biased estimator for the option price. A related
issue is about facilitating the OLS regression method we use. We find that specific choices of the regressor
setup has a big impact on the result. This will be dealt with in the section concerning numerical results.

We have experimented with different types of commonly used polynomials as basis functions. These
include Power series, Legendre polynomials, (weighted) Laguerre polynomials, (physicists) Hermite poly-
nomials. For details on the properties of different polynomials, one can turn to Abramowitz and Stegun
[2]. We show here the recurrence law that we use to construct the above mentioned polynomials. Given
the appropriate coefficients and starting value, the polynomials satisfies the following recursion,

an+1fn+1(x) = (an + bnx)fn(x) − an−1fn−1(x).

where the coefficients and starting values are given in Table 2.2.

Table 2.2: The coefficients and starting value for the recurrence law of the polynomials.

Name fn(x) an+1 an bn an−1 f0(x) f1(x)

Powers Wn(x) 1 0 1 0 1 x
Legendre Gn(x) n + 1 0 2n + 1 n 1 x
Laguerre Ln(x) n + 1 2n + 1 -1 n 1 1 − x

(phys)Hermite Hn(x) 1 0 1 1 1 2x

The weighted Laguerre polynomials used by Longstaff and Schwartz are constructed by multiplying
the Laguerre polynomials with e−x/2,

Gwn(x) = e−x/2Gn(x),

for each n = 0, 1, . . .. The first 10 Laguerre and weighted Laguerre polynomials are plotted in the Figure
2.5. It is clear that on (0, +∞) the exponential term scales the polynomial so that its value stays bounded
in a narrow range. This property helps to reduce numerical error in the LSM, since we need to invert
a matrix constructed by the regressors. We will show in numerical experiments that in several settings,
weighted Laguerre polynomials do give better pricing result compared to other unscaled polynomials.

2.2.5 Exercise Boundary, Pricing Error and Convergence Property

In this section, we will discuss pricing error of the LSM and how it is related to the error in approximating
the true early exercise boundary. We will also give an overview of the convergence property of the LSM
in literatures. We will use the definitions and notations in Section 2.2.1 and Section 2.2.2.

Recall that Ft measurable functions Z(t), H(t) and V (t) represent the discounted exercise value, the
discounted hold value, and the discounted value of the Bermudan option at time t with some chosen
numeraire. The following discussion is partly derived from [45].

Dynamic programming recursion 2.12 gives that

H(Tn) = E [V (Tn+1)|Fn] ,

= E [max(Z(Tn+1), H(Tn+1))|Fn] , (2.17)
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Figure 2.5: Plot of first 10 Laguerre and weighted Laguerre polynomials

We show explicitly the dependency on the underlying probability space and define the exercise region
at time Tn by Ψn,

Ψn = {ω ∈ Ω : H(Tn, ω) ≤ Z(Tn, ω)} , n = 1, . . . , N. (2.18)

The early exercise boundary is defined as the set

EBn = {ω ∈ Ω : H(Tn, ω) = Z(Tn, ω)} , n = 1, . . . , N.

Let η = η(ω) be the index that the exercise region is hit for the first time (or N if it is never hit before
T ),

η(ω) = min {n ≥ 1 : ω ∈ Ψn} ∧ N.

The time 0 Bermudan option value can be expressed by,

V (0) = E [Z(Tη)|F0] . (2.19)

Writing the option pricing formula in this form helps to reveal how the the accuracy in approximating
the option’s hold value and the accuracy in approximating the early exercise boundary(exercise region)
affect the accuracy of the LSM simulated option price.

At each early exercise moment Tn, OLS regression approximates the hold value function by the multi-
linear model,

Ĥ(Tn, x) =
R∑

r=1

β̂n,rΦr(x),

where x is the value of the state process at time Tn. The hold value along each sample path is then
calculated using this function. Finite terms of regressors introduce an error in the hold value function.
We can view this error as a function of x indexed by time Tn. The error in hold value approximation at
time Tn affects the exercise decision at that moment according to (2.18). Moreover, through the backward
dynamic programming recursion (2.17), the error affects all the exercise decisions at earlier time steps.
In this way, error in hold value approximation at each early exercise moment would have an impact in
the time 0 value of the option.

Definition of the exercise region (2.18) and the Bermudan price formulation based on first hit time of
the exercise region (2.19) indicate that the error in hold value approximation affects the option value the
most when it is made near the true early exercise boundary, i.e. when the hold value and the exercise
value are close to each other. That is because the error in Ĥ(Tn, x) makes an impact on the option price
only when it affects the exercise decision. That happens when the error is significant enough to change
the approximation of the exercise regions and subsequently the first hit moment η. Since H(Tn, x) and
Z(Tn, x) are close to each other near the true exercise boundary, a small error in Ĥ(Tn, x) may change the
approximation of Ψn. On contrary, when the error occurs far away from the the true exercise boundary,
it takes a lot higher value to influence the approximation of Ψn. In view of this, we should provide best
approximation accuracy near the true early exercise boundary. For some options where the strike is fixed,
such as a Bermudan put, we have a rough idea of where the boundary may be [50]. This information
proves vital in improving the approximation accuracy in such cases. We will show relevant examples in
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the sections about numerical results. For other options such as a Bermudan Swaption with both legs
being functions of some market rates, we do not know a priori where the boundary is. The effort to
improving pricing accuracy then focus on finding the better regressors, i.e. explanatory variables and
basis functions that makes better approximation.

We have qualitatively discussed how error in hold value function affects the LSM Bermudan option
price above. Rigorous analysis of the method requires the asymptotic property of the LSM estimator.
Finite number of sample paths affects the accuracy in estimating the regression coefficients for approxi-
mating the continuation value function, which affects the approximating the hold value function. Finite
number of sample paths also introduces a general Monte Carlo error. The type and number of terms of
regressors (basis functions) affects the accuracy of the regression coefficients as well. What further com-
plicates the matter is that the algorithm is carried out through a backward recursion, error introduced
at one stage propagates in a highly nonlinear way.

Longstaff and Schwartz [43] established convergence of the LSM estimator to the true option value
with single state variable under a one-step setting. They chose the Laguerre polynomial as basis function.
The number of terms was chosen large enough to satisfy certain error bound in their proof. Clement et.
al. [17] gave a more general convergence analysis. They chose a general sequence of basis functions that
is total in the L2 space. They first showed that under certain assumption on the basis functions, at each
time step n = 1, ..., N , the approximation to the Snell Envelop using m terms of basis functions converges
as m → ∞,

lim
m→+∞

E
[
Zτm

n
|Fn

]
= E [Zτn

|Fn] ,

in L2. Then they fixed the number of basis functions m and showed that for each step n = 1, . . . , N , the
LSM estimator using m basis functions and Np sample paths,

1
Np

Np∑

k=1

Z
(k)

τ
k,m,Np
n

,

converges to the E
[
Zτm

n
|Fn

]
as Np → ∞. They have also given results concerning the rate of convergence

in the same paper.
The analysis by Clement et. al. establishes the asymptotic properties of the LSM estimator. In

computer Monte Carlo simulation, one can only use finite number of regressors (or basis functions).
Actually, the number of basis functions used is often not large at all. For example, in the numerical
example provided by Longstaff and Schwartz, they used 4 terms for a Bermudan Put, 8 terms for a
Bermudan-Asian option, 9 terms for a Cancellable Index Swap in a two-factor model and 22 terms for a
Swaption in a 20-factor string model. In [29], Glasserman and Yu discussed how fast the number of sample
paths needed for certain convergence requirement grows when the number of basis functions increases.
They chose basis functions to be polynomials and studied the problem in both Brownian Motion and
Geometric Brownian Motion setting of the underlying single asset price dynamics. They placed bounds
on the Mean Square Error (MSE) of the regression coefficients and derived the number of paths it takes
to satisfy those bounds. They claimed that the number of paths grows at least exponentially in both
settings and expect this property to also apply in more general settings. Although in several thesis this
was found to be not true through numerical experiments [55], it does raise the question about whether
the number of sample paths is sufficient for convergence of the LSM price. In the original paper by
Longstaff and Schwartz, they showed that for any fixed finite number of basis functions, the LSM price
converges in probability to the option price with a suboptimal exercise rule when the number of paths
goes to infinity. And, by definition, this value is lower than the true buyer option value given by the
optimal exercise rule.
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3 Upper Bound for Bermudan Option Price

In Chapter 2, we discussed how to calculate the buyer’s price of a Bermudan option. The method is based
on a formulation of the problem in terms of optimal exercise strategy. In this chapter, we will study the
same option pricing problem but from the writer’s or seller’s perspective. Calculating the buyer’s price is
a maximization problem. We will see that calculating the seller’s price is a minimization problem. Hence
in literatures these two methods are labelled as the primal and dual approaches for pricing Bermudan
options respectively.

As mentioned in Chapter 2, in theory, suboptimal exercise policy by the LSM method should result
in negatively biased pricing result. A commonly used rule of thumb criterion to evaluate the LSM price
can be stated as follows: the higher the LSM price is, the closer it is believed to be near the true option
value. What is missing in this argument is that the LSM price should be fully converged. However, in
practice, LSM simulations are often carried out with limited number of sample paths. Considering the
complexity of this algorithm, we need to gather numerical results to show convergence. Only using the
level of LSM price as an evaluation criterion may lead to wrong conclusion. We need a better criterion
to evaluate the LSM price by, such that we can compare between different regressor configurations with
confidence. It turned out that the upper bound for Bermudan option price, or more precisely the gap
between the lower bound price and its associated upper bound price, can be used as such a criterion. In
this chapter we will discuss the theory and implementation details of this method.

3.1 Dual Approach: The Upper Bound

Let’s recall that according to the primal approach, the buyer’s value is defined by the maximal expected
payoff from the option. Equation (2.10) gives the mathematical formulation, which we write again here
for ease of reference.

V0 = E[Zτ∗ |F0] = max
τ∈S0,T

E[Zτ |F0].

The dual approach was developed by Haugh and Kogan [31], Rogers [48], as well as Jamshidian [39].
We will follow Rogers’s construction but on a discrete time grid of N exercise moments. Given the grid
0 = T0 < T1 < . . . < TN = T , T = {T1, . . . , TN} contains all the possible exercise moments. Using the
notations from Section 2.2.1, we start from the primal approach formulation.

Let H represent the space of all adapted martingales π for which supt∈T |πt| < ∞ and π0 = 0. For a
martingale π ∈ H, we have:

V0 = max
τ∈S0,T

E[Zτ − πτ + πτ |F0]

= π0 + max
τ∈S0,T

E[Zτ − πτ |F0]

≤ π0 + E[max
n∈T

(Zn − πn) |F0]. (3.1)

The second equality in (3.1) is due to the Martingale Optional Sampling theorem [49]. The inequality
in (3.1) is due to the fact that S0,T ⊂ T . Since the inequality holds for any π ∈ H, it also holds when
taking the infimum over all π ∈ H,

V0 ≤ inf
π∈H

(

π0 + E[max
n∈T

(Zn − πn) |F0]

)

. (3.2)

Rogers showed that when choosing π to be the martingale part of the supermartingale V (which is the
Snell Envelop of the payoff process), according to the Doob decomposition theorem [21], equality holds
in (3.1). Since all the other martingales in the space H satisfies the inequality (3.1), holding equality
means that the martingale part of V achieves the infimum in (3.2). Now we can formulate the problem
of Bermudan option pricing as a minimization problem,

V0 = inf
π∈H

(

π0 + E[max
n∈T

(Zn − πn) |F0]

)

. (3.3)

Interpretation of Equation (3.3) is as follows. The martingale π is regarded as the discounted price
process of a hedging portfolio. The option seller has to prepare for any potential buyer exercise during the
life time of the option. By following certain strategy that gives a martingale portfolio π, the option seller
has a hedge against potential buyer exercise. The expected cost to the seller is the expected maximum



16 3.2 The Nested Monte Carlo

shortfall of the hedge. This value is taken as the seller’s price of the Bermudan option. The optimal
hedging portfolio is the one that minimizes the hedging cost, it’s price process should be the martingale
part of V .

Equality (3.3) states that when choosing the optimal hedging portfolio, the seller’s price coincides
with the buyer’s price. Doob’s decomposition only proves its existence. But in general, we do not know
exactly how this martingale evolves over time. In order to get a close upper bound, we may try to
construct a martingale π from a good approximation of the Snell Envelop V . The buyer’s value process,

{Ln = E[Zτn
|Fn], n = 1, . . . , N}, (3.4)

associated with a specific stopping rule is a good candidate, for example the stopping rule defined by the
LSM method.

We construct a simplified version of the martingale proposed by Anderson and Broadie [6]. Their
numerical results show excellent performance. The martingale is defined as,

{
π̂0 = L0,

π̂n = π̂n−1 + Ln − E [Ln|Fn−1] for n = 1, . . . , N.
(3.5)

We can write

E [π̂n|Fn−1] = E [π̂n−1 + Ln − E [Ln|Fn−1] |Fn−1]

= π̂n−1 + E [Ln|Fn−1] − E [Ln|Fn−1]

= π̂n−1.

So, π̂ satisfies the Martingale identity. Notice the initial value π̂0 equals a positive constant L0. Since
adding or subtracting a constant from a martingale still gives a martingale, πn = π̂n−π̂0 is the martingale
with zero initial value as required in the dual problem.

In order to construct this martingale, we need the following two conditional expectations,

Ln = E [Zτn |Fn] , (3.6)

and

E [Ln|Fn−1] = E [E [Zτn
|Fn] |Fn−1]

= E [Zτn
|Fn−1] , (3.7)

for each n = 1, . . . , N . Once we have the martingale, we can derive from Inequality (3.1) that the gap
between the lower and upper bound is

G = E[max
n∈T

(Zn − π̂n) |F0]. (3.8)

The upper bound is then calculated by U0 = L0 +G as an approximation to the true option value by the
dual problem (3.3).

3.2 The Nested Monte Carlo

Equations (3.6) and (3.7) indicate that at each possible exercise moment, we need to approximate the
two conditional expectations. But as Glasserman [28] pointed out, the workload can be reduced due to
recursion (2.12). Let’s write the backward recursion in terms of the lower bound estimate,

Ln =

{
Zn, if Zn > Hn,

E[Ln+1|Fn], otherwise.
(3.9)

Plug in Equations (3.6) and (3.7), we have

E [Zτn |Fn] =

{
Zn, if Zn > Hn,

E
[
Zτn+1 |Fn

]
, otherwise.

(3.10)

So we only need to evaluate E
[
Zτn+1 |Fn

]
for n = 0, . . . , N−1. In Monte Carlo simulation, we approximate

this conditional expectation at each tenor moment before maturity along each sample path. The actual
calculation is implemented by a nested Monte Carlo.
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Given that we have already obtained estimate of the hold value function (and the exercise value func-
tion if necessary) at each step from the LSM method, the upper bound estimation proceeds by repeating
steps 1 to 3 and calculating the estimate by step 4:

1. Simulate a path of the underlying Markov chain, Xq = {Xq
0 , Xq

1 , . . . , Xq
N}, for the outer Monte

Carlo. q denotes the qth outer sample path, q = 1, . . . , Nout.
2. At each step Tn, for n = 0, . . . , N − 1,

Generate Nin sample paths for the inner Monte Carlo from time Tn to
TN with initial value Xqp

n = Xq
n. p denotes the pth inner sample path,

p = 1, . . . , Nin.
Along each inner Monte Carlo path, follow the LSM exercise rule and
calculate the payoff Zτn+1 . Use the average of these payoffs as an
estimate of the conditional expectation E

[
Zτn+1 |Fn

]
.

Evaluate Hq
n and Zq

n by the LSM estimated functions along path Xq at
time step Tn. Then use Equation (3.10) to determine E[Zτn

|Fn] .
3. Use Equation (3.5) to construct the martingale along the qth outer path, πq = {πq

0, π
q
1, . . . , π

q
N}.

Evaluate the maximum gap G = maxn∈T (Zq
n − πq

n).
4. Estimate the gap in Equation (3.8) by averaging over all outer paths, then calculate the upper

bound by U0 = L0 + G. �

3.3 Tightness of the Upper Bound

Andersen and Broadie [6] gave an analysis of the tightness of the upper bound. Let’s first introduce the
Doob decomposition [21] of a discrete supermartingale. Given a discrete supermartingale {Yn}, it admits
the following unique decomposition,

Yn = Mn − An (3.11)

where {Mn} is a martingale with M0 = Y0, {An} is an increasing process with A0 = 0, An is Fn−1

measurable, i.e. E[An|Fn−1] = An.
We start with Equation (2.11), Vn = maxτ∈STn,T

E[Zτ |Fn]. Let Ln be the lower bound price estimate
at step n. Define the lower bound error as en = Vn − Ln, for each n = 0, 1, . . . , N . We can write
Recursion (3.5) as a summation, plug in Ln = Vn − en, and apply Doob decomposition to write the
hedging martingale in terms of the martingale part of the Snell Envelop and the lower bound errors,

πn = L0 +
n−1∑

k=0

(Lk+1 − E[Lk+1|Fk])

= V0 − e0 +
n−1∑

k=0

(Vk+1 − ek+1 − E[Vk+1 − ek+1|Fk])

= M0 − e0 +
n−1∑

k=0

(Mk+1 − Ak+1 − ek+1 − E[Mk+1 − Ak+1 − ek+1|Fk])

= M0 +
n−1∑

k=0

(Mk+1 − E[Mk+1|Fk]) − e0 +
n−1∑

k=0

(−Ak+1 − ek+1 + E[Ak+1 + ek+1|Fk])

= Mn − e0 −
n−1∑

k=0

(ek+1 − E[ek+1|Fk]) .

Now the upper bound can be written as

U0 = L0 + E[ max
n∈S0,T

(Zn − πn) |F0]

= L0 + E

[

max
n∈S0,T

(

Zn − Mn + e0 +
n−1∑

k=0

(ek+1 − E [ek+1|Fk])

)

|F0

]

≤ V0 + E

[

max
n∈S0,T

(
n−1∑

k=0

(ek+1 − E [ek+1|Fk])

)

|F0

]

.
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The last inequality is due to Zn ≤ Vn ≤ Mn, for each n = 1, . . . , N . If we assume that en+1 ≥ 0 , then
E [en+1|Fn] ≥ 0. We have the following bound for the dual price,

U0 ≤ V0 + E

[

max
n∈S0,T

(
n−1∑

k=0

ek+1

)]

≤ V0 + E

[
N∑

k=1

ek

]

. (3.12)

Hence if ek ≤ ε for each k = 1, . . . , N , then U0 − V0 ≤ N × ε.
The above result states that if the lower bound error is uniformly bounded by ε at all possible exercise

moments, the corresponding upper bound error should be bounded by N × ε. The key assumption here
is that en = Vn − Ln ≥ 0.

3.4 Implementation Issues

In our simulation of the upper bound price, we first take more than 106 sample paths for the LSM
algorithm in order to get a stable estimate of the regression coefficients. We take a second set of 106 to
107 sample paths to estimate the LSM price. This is done in order to eliminate the foresight bias according
to [25]. Calculation of the upper bound requires nested Monte Carlo simulation, which is computationally
expensive. We choose 103 outer sample paths and 103 inner sample paths as a compromise between result
variability and computation cost. We will give numerical result of convergence for the upper bound result
in Chapter 7.

Since the LSM regression coefficients will be used for computing the upper bound, simulation config-
urations of the LSM algorithm have a strong impact on the upper bound result as well. In particular, the
choice of paths for the LSM regression plays a big role. If LSM regression is performed with only ITM
paths, the resulting gap between the upper and lower bound will be significantly higher when the option
is initially OTM as compared to ITM or ATM. When all the paths are used for LSM regression, such
difference in the gap value does not appear. This is mainly due to the out-of-sample-range performance
of the OLS regression fitted multi-linear model. When only ITM paths are chosen for regression, the
resulting multi-linear model might be wildly irregular in OTM region. Hence when using this model to
compute the continuation value in the upper bound algorithm, it is not surprising that large error may
occur. Such error lead to error in the approximated optimal exercise strategy or stopping rule.

The Anderson-Broadie upper bound is basically expectation of the maximal expected shortfall by the
hedger with certain exercise strategy. It is a stochastic variable which is very likely to have a significant
tail distribution. This means that its samples are intrinsically volatile. When the approximated stopping
rule contains error due to regression configuration, the hedging portfolio can not track the option value
closely and the gap between lower and upper bound is due to widen. Fortunately, we use all the sample
paths in the LSM algorithm for pricing Bermudan-style Libor Exotics. The problem of moneyness in
upper bound value does not exist in that case. We will discuss the details in Chapter 6.
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4 The Black-Scholes World and the Heston Model

To get an idea about how the LSM method performs in various models and simulation setups, we start
with simpler cases, namely the GBM asset price model in the Black Scholes world and the Heston
stochastic volatility model. We will present Monte Carlo schemes for these models, introduce several
option payoff types on single asset, and briefly discuss the FD schemes for solving these option values. In
Section 4.2.2, we will discuss the source of pricing error in the LSM through a concrete pricing problem.
These all serve as the test cases for our study of Bermudan option pricing. Knowledge and experience
gained from these cases will be applied to pricing Bermudan-style Libor Exotics in the next chapter.
More numerical results and detailed analysis will also be presented in later chapters.

4.1 Models

4.1.1 The Black-Scholes World

In the Black-Scholes world, we assume a risk-free money market account with the dynamics,

dB(t) = rB(t)dt

where constant r is the risk-free interest rate. Assume there is one underlying asset price process S,
whose dynamics under the EMM Q is given by the GBM SDE,

dS(t) = rS(t)dt + σS(t)dW (t), 0 ≤ t ≤ T.

where σ is the constant volatility. W is a Q standard Brownian Motion.
Suppose we discretize the time domain [0, T ] by grid 0 = t0 < t1 < ... < tN = T with step Δt. The

above SDE can be solved explicitly, the procedure is presented in Section 2.1. We write the result here
again for the ease of reference.

S(t + Δt) = S(t) exp

[

(r −
1
2
σ2)Δt + σ(W (t + Δt) − W (t))

]

.

From this equation we find that the log-return is normally distributed,

ln

(
S(t + Δt)

S(t)

)

∼ N

(

(r −
1
2
σ2)Δt, σ2Δt

)

.

Since Brownian Motion W has independent increments on non-overlapping time intervals, the log-
return on different intervals are independent normal random variables. Hence by the property of inde-
pendent normal random variables, we have

ln

(
S(T )
S(0)

)

∼ N

(

(r −
1
2
σ2)T, σ2T

)

, (4.1)

which states that the distribution of the return of a GBM asset price on [0,T] follows a lognormal
distribution with parameters m = (r − 1

2σ2)T and s2 = σ2T . The value of a plain vanilla option can
be derived from this distribution [35], which gives the famous Black-Scholes formula. In order to price a
path dependent option or option with early exercise feature in the Monte Carlo framework, we need to
generate the whole sample path of asset price. The procedure is also given in section 2.1.

Since the Black-Scholes world is the starting point of equity dynamics modeling, we are going to
investigate the performance of the LSM method in this setting with several types of payoffs. The payoff
types and their focus will be discussed in the following sections.

The short coming of the GBM asset price model is that by assuming a constant volatility, the model
does not fit the empirical data well. Empirical studies show that the log-return of asset price is not
normally distributed [35]. Its distribution is often featured by heavy tail and high peak. Empirical
evidence also show that equity return and implied volatility are often negatively correlated. These
deviations from normality call for models that can reflect the reality more closely in order to obtain more
realistic pricing result.
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4.1.2 The Heston Model

In 1993, Heston [33] introduced the Heston stochastic volatility model as an extension to the constant
volatility GBM asset price model. He gave a semi-analytical solution for the value of plain vanilla option
under the model. This is a big advantage over some other models because it is possible to calibrate the
model parameters to market data according to this solution. Besides, the solution allows to benchmark
some numerical schemes for the Heston model. We apply the LSM algorithm to option in the Heston
model in order to find out how to best utilize the stochastic volatility to improve simulation accuracy. A
question to be answered is whether and how the correlation coefficient affects the LSM simulation.

The Heston model under EMM Q can be written as,

dS(t) = rS(t)dt + S(t)
√

v(t)
[
ρdW1(t) +

√
1 − ρ2dW2(t)

]
, (4.2)

dv(t) = κ(η − v(t))dt + σv

√
v(t)dW1(t), (4.3)

where S is the asset price process on t ≥ 0, v is the volatility process on t ≥ 0, W1 and W2 are two
independent Q Brownian Motions on t ≥ 0. v is a square-root diffusion process with mean-reverting
drift that was first proposed by Cox, Ingersoll and Ross [18] as an interest rate model. The constant
parameters are the rate of reversion κ > 0, the long term mean η > 0 and the volatility of volatility
σv > 0. ρ represents the correlation between the stochastic drivers of S(t) and v(t). r is the risk-free
constant interest rate. We consider the model when the Feller condition 2κη < σ2

v is satisfied [4].
The associated PDE for simple payoff on time interval [0, T ] is,

∂U

∂τ
=

1
2
s2v

∂2U

∂s2
+ ρσvsv

∂2U

∂s∂v
+

1
2
σ2

vv
∂2U

∂v2
+ rs

∂U

∂s
+ κ(η − v)

∂U

∂v
− rU. (4.4)

for 0 ≤ τ ≤ T and τ = T − t, s > 0, v > 0. A Finite Difference scheme can be derived from this PDE,
for details please refer to [34].

Let’s have a look at the asset dynamics used in Monte Carlo simulation. The Feller condition guar-
antees that for the continuous model if v(0) > 0, then v(t) remains strictly positive for all 0 < t < ∞
almost surely. However, if we discretize the variance process by the Euler scheme, it is still possible that
the discretized variance process takes negative value at some step. One possible walk around is to use
the following scheme which truncates the variance process when it hits zero.

lnŜ(t + Δt) = lnŜ(t) −
1
2
v̂(t)+Δt +

√
v̂(t)+Zs

√
Δt,

v̂(t + Δt) = v̂(t) + κ(η − v̂(t)+)Δt + σv

√
v̂(t)+Zv

√
Δt.

where Zs and Zv are two correlated standard normal random variables. The function x+ = max[x, 0].
However, this choice is highly empirical and it alters the property that variance will not reach zero. So
we need a scheme that preserves the model dynamics as closely as possible, while allowing easy Monte
Carlo implementation.

As pointed out by Glasserman [28], Cox et al.[18] noticed that the distribution of the CIR process
conditioned on its value at an earlier moment is, up to a scale factor, a noncentral chi-square distribution.
In terms of Equation (4.3), this means that given the value of the variance process at time t, v(t), its
value at time t + Δt is given by,

v(t + Δt) =
σv(1 − e−κΔt)

4κ
χ

′2
d

(
4κe−κΔt

σ2
v(1 − e−κΔt)

v(t)

)

, (4.5)

where d = 4κη
σ2

v
, and χ

′2
d (λ) is a noncentral chi-square random variable with d degrees of freedom and λ

as the noncentrality parameter. The variance process can thus be sampled by this transition density. A
procedure for sampling a noncentral chi-square distribution is given in [28].

To derive a scheme for sampling the price process, we first integrate the SDE 4.3,

v(t + Δt) = v(t) +
∫ t+Δt

t

κ(η − v(u))du + σv

∫ t+Δt

t

√
v(u)dW1(u).

After reshuffling the equation, we have

∫ t+Δt

t

√
v(u)dW1(u) =

1
σv

(

v(t + Δt) − v(t) − κηΔt + κ

∫ t+Δt

t

v(u)du

)

. (4.6)
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Applying Itô’s lemma to (4.2) with f(x) = ln(x), we have

dlnS(t) = (r −
1
2
v(t))dt + ρ

√
v(t)dW1(t) +

√
1 − ρ2

√
v(t)dW2(t).

Integrating it gives us

lnS(t + Δt) = lnS(t) + rΔt −
1
2

∫ t+Δt

t

v(u)du + ρ

∫ t+Δt

t

√
v(u)dW1(u)

+
√

1 − ρ2

∫ t+Δt

t

√
v(u)dW2(u). (4.7)

Substituting (4.6) into (4.7), we have

lnS(t + Δt) = lnS(t) + rΔt +
ρ

σv
(v(t + Δt) − v(t) − κηΔt)

+ (
κρ

σv
−

1
2
)
∫ t+Δt

t

v(u)du +
√

1 − ρ2

∫ t+Δt

t

√
v(u)dW2(u). (4.8)

Equation (4.8) gives an exact solution of the log asset price. But we are still left with two unsolved
integrals. We know the distribution of the second integral up to a parameter. Since processes W2 and v
are independent from each other, the integral on [t, t + Δt] follows a normal distribution,

∫ t+Δt

t

√
v(u)dW2(u) ∼ N

(

0,

∫ t+Δt

t

v(u)du

)

. (4.9)

The first integral is not easily solved. Broadie and Kaya [14] derived the characteristic function of
this integral and then numerically Fourier-invert the characteristic function to generate the conditional
cumulative distribution function for the integral. Then they can sample a value of the integral from the
distribution function. Although being a clear idea, the scheme is quite complex. It takes both attention
to the parameter choice and longer computation time to reduce the bias introduced by the numerical
discretization in the algorithm.

For our Monte Carlo simulation, we adopt the idea proposed by Andersen [5]. We write

∫ t+Δt

t

v(u)du ≈ Δt[γ1v(t) + γ2v(t + Δt)] (4.10)

for some constant γ1 and γ2. By choosing γ1 = 1, γ2 = 0, we have an Euler-like scheme for the integral;
by choosing γ1 = 1

2 , γ2 = 1
2 , we approximate the integral by trapezoidal rule.

Using (4.9) and (4.10), Equation (4.8) gives the following discretization scheme for the log asset price,

lnS(t + Δt) = lnS(t) + rΔt +
ρ

σv
(v(t + Δt) − v(t) − κηΔt)

+ Δt

(
κρ

σv
−

1
2

)

(γ1v(t) + γ2v(t + Δt))

+
√

Δt
√

1 − ρ2
√

γ1v(t) + γ2v(t + Δt)Z, (4.11)

where Z∼ N (0, 1).
The above scheme is a tradeoff between accuracy and simulation efficiency. The whole sampling pro-

cedure from t to t + Δt is outlined by the following steps,

1. At time t, v(t) is known. First sample v(t + Δt) from the conditional distribution (4.5).
2. lnS(t) is also known at time t, so conditioned on v(t), v(t + Δt) and lnS(t) we approximate

lnS(t + Δt) with Equation (4.11). �

4.2 Option Payoffs for Simulation

4.2.1 Simple Put Payoff

The simple put payoff function is
fput(t, s) = max[K − s, 0].
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Figure 4.1: Put payoff function with strike K = 10.

where K is the strike. This means that the payoff at time t on an asset with price process {S(t), t ≥ 0}
is given by f(t, S(t)). Figure 4.1 illustrates the payoff function.

The simple put payoff in the Black-Scholes world is the starting point of our investigation of the LSM
method. By studying how the LSM method works on this payoff, we shall make clear a few important
choices of the simulation configurations, such as which set of sample paths to select for the least square
regression and why. We also want to search for a criterion in order to evaluate different set of regressors
by. Besides, the pricing result for the Bermudan put will give us a sense of the order of accuracy we may
achieve with the LSM. So when pricing options with more complicated features, we would have some
ideas about the boundary.

The arbitrage free price of a European put satisfies the Black-Scholes PDE [10]. Suppose Ū(t, s)
represents the value function of a European put option at time t, where 0 ≤ t ≤ T . Through change
of variable τ = T − t, Ū(t, s) is changed into U(τ, s), which is the solution to the following initial value
problem.

∂U

∂τ
=

1
2
σ2s2 ∂2U

∂s2
+ rs

∂U

∂s
− rU for 0 ≤ τ ≤ T. (4.12)

U(0, s) = fput(T, s).

The solution Ū(t, s) is given by the Black-Scholes formula,

Ū(t, s) = sN [d1(t, s)] − e−r(T−t)KN [d2(t, s)] for 0 ≤ t < T, (4.13)

where d1(t, s) =
1

σ
√

T − t

[

ln
( s

K

)
+

(

r +
1
2
σ2

)

(T − t)

]

,

d2(t, s) = d1(t, s) − σ
√

T − t.

and K is the strike, T is the time of maturity, σ is the volatility of the underlying asset price, N(.) is
the cumulative distribution function for the standard normal random variable N (0, 1), which is given by

N(y) = 1√
2π

∫ y

−∞ e−
z2

2 dz.

4.2.2 Put Spread Payoff

The put spread payoff function is

fputsprd(t, s) =






Q if s ≤ K1,
Q × K2−s

K2−K1
if K1 < s < K2,

0 if s ≥ K2.

(4.14)

where 0 < K1 < K2 are the lower and upper strikes, and Q is the fixed maximum payoff value. Figure
4.2 illustrates the payoff function.
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Figure 4.2: Put spread payoff function with strike K1 = 8, K2 = 12, Q = 5.

Compared to the put payoff, put spread payoff has a bend at its lower strike. This nonlinear relation
w.r.t the underlying asset price will pass onto the option’s continuation value function. Hence it is
interesting to know how this bend, or the slope of the payoff function would affect the LSM price.
Moreover, the position of the bend may be near the true early exercise boundary in the s domain. This
strong nonlinearity could make it difficult for the OLS regression to fit the continuation value function.
This will be used to illustrate how the error in approximating the continuation value function would affect
the pricing error by the LSM method.

In Figure 4.3, we gather simulation results from both LSM and FD schemes for two Bermudan put
spreads. Spread A is defined by K1 = 7, K2 = 12, Q = 5. Spread B is defined by K1 = 7, K2 = 9,
Q = 5. The slope of Spread B is steeper than that of Spread A, which also makes the bend around K1

more pronounced for Spread B. The payoff function value of Spread A is uniformly higher than or equal
to that of Spread B. We price Bermudan style option on the two spread payoff function. Maturity T = 1,
number of exercise moments Nt = 52.

Subplot (a) shows the simulated price by LSM and FD for both put spreads at different initial asset
prices. Our LSM prices agree well with the FD benchmark. Notice that the price of Spread A is higher
than that of Spread B at all initial asset prices. Looking at the pricing difference between the LSM
method and the FD method in (b), we find out that the difference for Spread B is more significant
than for Spread A. More specifically, the LSM price is more negatively biased as compared to the FD
benchmark for Spread B than for Spread A, and the ratio of the two biases is much higher than the ratio
of the absolute option prices of the two spreads. The most significant difference occurs when the initial
asset price is around 10. Subplots (c) and (d) show that this is the asset price region where the early
exercise boundary of the option may lie in. We only marked early exercise boundary at about 10 exercise
moments during the options lifetime. We also observe that the early exercise boundary is closer to the
bend around K1 for Spread B than for Spread A. In subplots (e) and (f), we choose the observation time
0.3 × T and plot the regression fitted continuation value function approximation. What appears is that
more significant bend around K1 for Spread B makes it more difficult to approximate the continuation
value function by the OLS fitted multi-linear model (in red curve in the plots). We do not know the exact
form of the continuation value function. However, the more irregular shape as shown by subplot (f) is not
to be expected. As is discussed in Section 2.2.5, error in approximating the continuation value function
translates into error in exercise decision and propagates through the backward recursion in the LSM.
These errors accumulate and cause the LSM price to be lower than the true option value associated with
the optimal exercise strategy. Data in Chapter 7 shows that our FD benchmark converges sufficiently
well, hence we believe that price difference in (b) can represent the actual pricing error from the true
option value up to the precision necessary for the above discussion.

The arbitrage free price of a European put spread also satisfies the Black-Scholes PDE. It can be
solved from Equation (4.12) with initial condition replaced by U(0, s) = fputsprd(T, s).

The payoff function (4.14) can be expressed as the scaled difference between two put payoffs,
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(a) LSM and FD pricing results
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(c) Exercise boundary for Spread A
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(d) Exercise boundary for Spread B
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(e) Continuation value function approximation
for Spread A
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(f) Continuation value function approximation
for Spread B

Figure 4.3: (a) and (b) show the pricing result and difference between LSM and FD for Spread A and B.
(c) and (d) show the option price curve and early exercise boundary at time t = 0 and several exercise
moments. (e) and (f) show the the regression fitted continuation value function. Model and simulation
parameters are: r = 0.06, σ = 0.3, T = 1, Nt = 52. 105 paths and 100 run average for the LSM. The
regressors are: c, S, . . . , S5.
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fputsprd(t, s) =
Q

K2 − K1
[fput(t, s; K2) − fput(t, s; K1)].

where fput(t, s; K) represents the simple put payoff with strike K. But this means that the arbitrage-free
price of a European put spread can be expressed as the scaled difference between two corresponding
simple puts,

ŪEu
putsprd(t, s) =

Q

K2 − K1
[ŪEu

put(t, s; K2) − ŪEu
put(t, s; K1)]. (4.15)

Since the European put price ŪEu
put(t, s; K) is given by the Black-Scholes formula, we obtain the analytical

solution for the European put spread as well. Equation (4.15) may be used as an explanatory variable
for constructing the regressors in the LSM method. Its performance is documented and analysed in the
section of numerical results. On the other hand, we do not have similar equation like (4.15) for American
or Bermudan option. This is because two American puts with different strikes have different optimal
exercise boundaries. If they are not exercised at the same moment, the cash flows generated by the
American put spreads and the two corresponding American puts will not match. Hence we do not have
the equality in their arbitrage-free prices.

4.2.3 An Asian-style Payoff

The Asian-style payoff that we are going to investigate is the discretely-monitored arithmetic-mean fixed-
strike Put. It is a path-dependent payoff in the sense that the payoff depends not only on the underlying’s
price at the observation moment, but also on its price at some earlier time. We shall study how to take
care of this path-dependency in the LSM method.

Suppose 0 ≤ t1 < t2 < . . . ≤ tN ≤ T are the discrete monitoring moments. The payoff at time tn is
given by,

fdm(tn, A) = max[K − A(tn), 0] for 1 ≤ n ≤ N. (4.16)

where S represents the underlying asset price process {S(t), t ≥ 0} , and A(tn) = 1
n

∑n
i=1 S(ti).

A closely related payoff is the continuously-monitored arithmetic-mean fixed-strike put, whose payoff
at time t is given by,

fcm(t, A) = max[K − A(t), 0] for 0 ≤ t ≤ T. (4.17)

where A(t) = 1
t

∫ t

0
S(χ)dχ.

These are two different payoff functions, but as we choose more and more discrete monitoring moments.
Payoff (4.16) converges to payoff (4.17). We need the continuously-monitored version in order to build a
FD solver based on the PDE that its option value satisfies. The arbitrage free price is a function of time
t, underlying asset price S(t) and its running average A(t) = 1

t

∫ t

0
S(χ)dχ. Let U(τ, s, a) be the option

value at time t = T −τ , with underlying price S(T −τ) = s, its running average A(T −τ) = a. It satisfies
the following initial value problem,

∂U

∂τ
=

1
2
σ2s2 ∂2U

∂s2
+ rs

∂U

∂s
+

s − a

T − τ

∂U

∂a
− rU, (4.18)

U(0, s, a) = fcm(T, a)

for 0 ≤ τ ≤ T and τ = T − t, s > 0, a > 0.
We build a FD solver for the Bermudan Asian-style option based on PDE (4.18). Although the

solution approximates the continuously-monitored version of the Bermudan Asian option, which differs
from the discretely-monitored one, this is the closest match we have. As we will see from the numerical
experiment, this allows us to make comparison between different regressor configurations in the LSM
method.

The overall procedure for pricing this option with FD is similar to the one we adopt for pricing the
Bermudan put. We first build a FD solver for the corresponding European Asian-style option, based on
which we build the solver for the Bermudan version. The complication is that we have to deal with the
partial derivative to a, ∂U

∂a , which requires special treatment to avoid numerical problem. Unlike the case
of floating-strike Asian option, it is not possible to reduce the fixed-strike version to a one dimensional
problem through change of variable. The PDE solver uses up-wind scheme in the a direction. In order to
improve computation efficiency, we use the Alternate Direction Implicit(ADI) scheme for time stepping,
see [3] and [54] for details. The ADI scheme also allows us to improve convergence at early exercise
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(a) FD price surfaces for a European-Asian
option

(b) FD price surfaces for a Bermudan-Asian
option

Figure 4.4: The FD price surfaces for a European continuously-monitored arithmetic-mean fixed-strike
Asian-style put and its Bermudan counterpart.

moments by using PSOR to solve the matrix equation iteratively. We can take into account of early
exercise decision along each s grid instead of on the whole domain all at once.

Figure 4.4 illustrates the FD approximation to the price surface of a European Asian-style continuously
monitored arithmetic-mean fixed-strike put. The strong convection term in (4.18), the term s−a

T−τ
∂U
∂a ,

makes the price surface “rotate” above the S×A plane. We observe that there is a T − τ term appearing
in the denominator part of the convection term. To avoid the explosion of that coefficient, we can
only obtain finite solution to (4.18) at time t = Δt instead of time t = 0. We take the option value
along the line A(Δt) = S(Δt) as an approximation to the initial option value A(0). This approximation
introduces error to the FD solution. However, we can reduce this error by using large number of time
steps, such that Δt ≈ 0. For calculating the Bermudan Asian option price, we choose 1000 steps in the
S direction, 1000 steps in the A direction and 2000 steps in t direction. That makes Δt = 5 × 10−4.
Figure 4.4 also shows the FD approximation of the price surface for a Bermudan Asian-style continuously
monitored arithmetic-mean fixed-strike put. Comparing the price surfaces of the Bermudan option and
its European counterpart at t = 0.3T , t = 0.7T , we observe the effect of early exercise feature. Again,
at t = Δt, strong convection makes the Bermudan option price surface appear to have “rotated” for 90
degrees.
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5 Two Special Regression Methods

In this chapter we study two regression methods that will be used to solve the problem of automatically
selecting the most relevant set of regressors for the LSM method. These are the Principal Component
Regression (PCR) and the Stepwise Regression (SR). We perform numerical simulation to check their
usefulness when applied in the LSM method.

5.1 Principal Component Regression

In [24] a good outline is given for the PCR method, we follow their description. Let’s begin with a
multi-linear regression model

y = Xβ + ε.

where y = (y1, . . . , yn)T is the vector of response variable, β = (β0, β1, . . . , βr)T is the vector of regression
coefficients, ε = (ε1, . . . , εn)T is the vector of error terms. By assumption εi ∼ N (0, σ2). The regressors
matrix X is given by,

X =








1 x11 ∙ ∙ ∙ x1r

1 x21 ∙ ∙ ∙ x2r

...
...

. . .
...

1 xn1 ∙ ∙ ∙ xnr








n×(r+1).

The ith component in y is given by

yi = β0 + β1xi1 + β2xi2 + . . . + βrxir + εi. (5.1)

The least square estimator of β is,

β̂ = (XT X)−1XT y.

One of the underlying assumptions of the Ordinary Least Square (OLS) regression is that the regressors
(column vectors) in matrix X must be linearly independent. Mathematically this means that the regressor
matrix must have full column rank. In the context of the LSM, there will be far more rows representing
independent samples of the regressors than columns, so the practical constraint is on the columns. When
this assumption is violated, the regressors are called multicollinear. In this situation, the regression
coefficient estimates may change erratically in response to small changes in the model or data. However,
multicollinearity does not reduce the reliability of the multi-linear model as a whole. In this sense, it does
not pose a problem to the LSM method because the goal is to estimate the continuation value function, not
to find out the response from a single regressor, see Section 2.2.3. Nevertheless, the least square estimator
for the coefficients demand linearly independent regressors, since otherwise the covariance matrix XT X
is not full rank hence not invertible.

The PCR is a method for dealing with multicollinearity. In order to introduce the method, let’s first
rewrite the multi-linear model (5.1) in terms of centered and scaled regressors. Define the centered and
scaled regressors according to

uij =
xij − x̄j

sj
,

where x̄j = 1
n

∑n
i=1 xij is the sample mean and sj =

√∑n
i=1(xij − x̄j)2 is the scaling factor. We can

write the model (5.1) as

yi = β∗
0 + β∗

1

(
xi1 − x̄1

s1

)

+ β∗
2

(
xi2 − x̄2

s2

)

+ . . . + β∗
r

(
xir − x̄r

sr

)

+ εi.

Write it in the matrix form, we have
y = β∗

01 + Uβ∗ + ε, (5.2)

where β∗ = (β∗
1 , β∗

2 , . . . , β∗
r )T , 1r×1 = (1, 1, . . . , 1)T and U is given by

U =








u11 ∙ ∙ ∙ u1r

u21 ∙ ∙ ∙ u2r

...
. . .

...
un1 ∙ ∙ ∙ unr








n×r.
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The relation between the regression coefficients in the original model and the centered and scaled model
is,

βj =
β∗

j

sj
,

for j = 1, . . . , r and

β0 = β∗
0 −

β∗
1

s1
−

β∗
2

s2
− . . . −

β∗
r

sr
,

where β∗
0 = ȳ.

The r × r sample correlation matrix of the regressors is C = UT U. Let λ1, . . . , λr be the eigenvalues
of C, and V = (v1, v2, . . . , vr) be the r × r matrix consisting all the associated normalized eigenvectors.
The eigenvalues are the solution to the equation

|UT U − λI| = 0,

where | ∙ | denotes the matrix determinant and I is the r× r identity matrix. Each pair of eigenvalue and
eigenvector satisfies the equation

(UT U − λjI)vj = 0,

for j = 1, . . . , r.
Assume U has full column rank r. First notice that for any r × 1 vector x, UT Ux = 0 if and only if

Ux = 0. Hence UT U and U has the same rank. That is to say C is a full rank r × r matrix. Hence all
of its eigenvalues are non-zero. Take any nonzero r × 1 vector x = (x1, . . . , xr)T in Rr, we have

xT (UT U)x = (Ux)T Ux ≥ 0.

So we conclude that all the eigenvalues are strictly positive, and C is positive definite. Since C is a real
symmetric matrix, the eigenvectors can be chosen such that they are real, orthogonal to each other and
have norm one, i.e. they satisfies vT

j vj = 1 and vT
i vj = 0 for i 6= j. Hence the eigenvector matrix V is

orthonormal, i.e. VVT = I.
Model (5.2) now gives the formula for PCR,

y = β∗
01 + UVVT β∗ + ε

= β∗
01 + Zα + ε, (5.3)

where Z = UV is the n× r matrix of principal components (PCs), α = VT β∗ can be interpreted as the
new regression coefficients. The least square estimators for α is

α̂ = (ZT Z)−1ZT (y − β∗
01). (5.4)

Notice that the principal components (column vectors in Z) are orthogonal to each other,

ZT Z = (UV)T (UV) = VT UT UV = VT CV = diag(λ1, λ2, . . . , λr).

In practice, when all the eigenvalues are strictly positive according to the assumption, ZT Z is positive
definite. Hence the least square estimator (5.4) is justified. When C is not full rank, then some of the
eigenvalues are zero, (5.4) can not be used. In this case, one can eliminate the PCs associated with
those zero eigenvalues and perform the regression on a reduced set of PCs. Let there be r − q positive
eigenvalues (λ1, λ2, . . . , λr−q), r× r− q matrix Vr−q = (v1, v2, . . . , vr−q). We obtain the n× r− q matrix
of remaining principal components Zr−q = UVr−q. We have ZT

r−qZr−q = diag(λ1, λ2, . . . , λr−q). Hence
the least square estimator with Zr−q can be used. Similarly, if some of the eigenvalues are much lower
compared to others, the amount of variation in y that is explained by the associated eigenvectors is low.
In that case, we may leave out those eigenvectors in the multi-linear model.

In our numerical simulation, we assemble a large set of regressors for the LSM and then perform PCR
on those regressors. We experiment two ideas about how to select the eigenvectors or PCs to improve the
LSM price accuracy. The first one is according to the amount of total variance explained by the PCs. We
sort the eigenvalues (and eigenvectors) according to their values in decreasing order. We set a threshold
for the amount of total variance that is explained by the final model. This number is given by trace of
the matrix ZT

s Zs, where Zs contains all the selected PCs. The eigenvectors associated with the lowest
eigenvalues are eliminated from the final model. Suppose the eigenvalues λ1, . . . , λr are already arranged
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in a decreasing order. We set the threshold to be a, often a value less than but close to 1. We will keep
the eigenvectors associated with eigenvalues λ1, . . . , λk, where k is determined by

k = min
l=1,...,r

(∑l
i=1 λi∑r
i=1 λi

≥ a

)

.

The second idea is according to the likelihood or statistical significance of the PCs in the model. After the
PCR we have a multi-linear model with all the PCs as regressors. By checking whether the coefficients
are statistically nonzero, we can select the more significant PCs to form the final model through another
regression. When the p−value of the t−statistic of a coefficient is higher than a chosen significance level,
the associated PC will be eliminated from the final model.

5.2 Stepwise Regression

Depending on the exact procedure and statistics involved, Stepwise Regression (SR) can represent a
family of regression methods. It is a systematic method for adding and removing terms from a multi-
linear model based on their statistical significance in a regression. We have experimented using it in the
LSM method.

We use the Matlab function “stepwisefit.m”. Here is a brief description of the method [1]. The model
starts with an initial model and then compares the explanatory power of incrementally larger and smaller
models. At each step, the p−value of an F−statistic is computed to test models with and without a
potential term. If a term is currently not in the model, we have the following hypothesis test,

H0: This term would have a zero coefficient if added to the model.
H1: This term would have a non-zero coefficient if added to the model.
If there is enough evidence to reject H0, i.e. the p−value is lower than the inclusion threshold, one

should consider adding the term to the model.
On the other hand, if a term is already in the model, we have the following hypothesis test,
H0: This term has a zero coefficient.
H1: This term has a non-zero coefficient.
If there is not enough evidence to reject H0, i.e. the p−value is higher than the removal threshold,

one should consider removing the term from the model.
The whole algorithm proceeds as follows:
1. Fit the initial model (can be specified by user).
2. If any term not in the model has a p−value less than the inclusion threshold, add the one term

with the lowest p−value and repeat this step; otherwise, go to step 3.
3. If any terms in the model has a p−value greater than the removal threshold, remove the one term

with the highest p−value and go to step 2; otherwise, end.
�

The major problem with the method is that it may produce different multi-linear model depending
on the initial model and the order that each term is added or removed. In this sense the method can
produce locally optimal result, not the globally optimal one.

5.3 Numerical Results

We have tested the above two methods in both the Black-Scholes world and the Heston model. We choose
a large set of regressors to price a Bermudan put in each setting. Applying the above mentioned regression
methods to this large set of regressors shall give the evidence of their usefulness. We will consider the
following methods: the original LSM method, plain PCR, PCR plus selecting PCs according to the
total variance explained (PCR selVar ), PCR plus selecting PCs according to their respective likelihood
of being in a multi-linear model (PCR selLH), SR according to the Matlab function “stepwise.m” (SR
routine). We choose 105 paths to calculate the LSM price. An average from100 such simulated prices is
reported as the pricing result. The total simulation time is also reported.

5.3.1 In the Black-Scholes World

The simulation setup is the same as the one we use in Section 7.1. We fix the strike at K = 10 and 52
possible exercise moments for the maturity T = 1. We choose the first 10 powers of the underlying asset
price as the set of regressors. The regressor vector at time Tn is

(
c, S(Tn), S(Tn)2, . . . , S(Tn)10

)
.
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Table 5.1: Price difference between the LSM and FD benchmark with different regression methods in the
Black-Scholes world.

Name
Initial Asset Price

Time
8(ITM) 10(ATM) 12(OTM)

Benchmark (FD) 2.1016 0.9517 0.3945
LSM −9 × 10−4 −1.8 × 10−3 −1.1 × 10−3 12 min
PCR 7 × 10−4 1.1 × 10−3 9 × 10−4 21 min

PCR(selVar 99.5%) −1.75 × 10−2 −7.5 × 10−3 −1.8 × 10−3 21 min
PCR(selVar 95%) −1.13 × 10−1 −3.79 × 10−1 −1.57 × 10−1 21 min

PCR(selLH) 2 × 10−4 < 1 × 10−4 3 × 10−4 27 min
SR(routine) < 1 × 10−4 1 × 10−4 2 × 10−4 40 min

Table 5.1 shows price difference between the above mentioned regression methods and the benchmark
in the Black-Scholes world. The benchmark prices are the same as those in Section 7.1. The original
LSM method with OLS regression produces lower prices compared to the benchmark. Plain PCR gives
higher prices compared to the benchmark at all three initial asset values. PCR with PC selection based
on variance gives lower prices. The percentage of total variance explained has a big impact on the result.
Since we need the price to be as accurate as possible, the variance selection PCR does not perform well in
this regard. By comparison, the PCR with PC selection based on likelihood performs better. The results
are close to the benchmark, although still high biased. The Matlab SR routine performs similarly to
PCR(selLH), but it takes considerably longer simulation time. It is necessary to point out that the above
results are simulated with a relatively simple set of regressors c, S(Tn), S(Tn)2, . . . , S(Tn)10. Choosing
other set of regressors may result in different effectiveness for these methods.

5.3.2 In the Heston Model

The model and simulation setup is the same as the one we use in Section 7.4. We fix the initial asset
price S0 = 10 and 52 possible exercise moments for the maturity T = 1. The correlation coefficient is
ρ = −0.6. We use in total 27 terms of regressors, which are listed in Table 5.2.

Table 5.2: The regressor set used in the Heston model for simulation of various regression methods

Type Regressors

Constant c
Asset price S, S2, . . . , S10

Volatility v
1
2 , v, v

3
2 , . . . , v3

First order cross product Sv
1
2

Second order cross product Sv, S2v
1
2

Third order cross product Sv
3
2 , S3v

1
2 , S2v

Fourth order cross product Sv2, S4v
1
2 , S2v

3
2 , S3v

Table 5.3: Price difference between the LSM and COS benchmark with different regression methods in
the Heston model.

Name
Strike

Time
8(OTM) 10(ATM) 12(ITM)

Benchmark (COS) 0.3715 1.1038 2.3486
LSM 6 × 10−4 1.1 × 10−3 −1.9 × 10−3 36 min
PCR 2.7 × 10−3 3.4 × 10−3 3.5 × 10−3 60 min

PCR(selVar 99.5%) −7 × 10−3 −2.63 × 10−2 −7.7 × 10−4 60 min
PCR(selVar 95%) −1.05 × 10−1 −2.75 × 10−1 −3.62 × 10−1 60 min

PCR(selLH) 2.3 × 10−3 3.2 × 10−3 3.8 × 10−3 60 min
SR(routine) 4 × 10−4 3 × 10−4 −7 × 10−4 126 min
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Table 5.3 contains pricing result with the regression methods in the Heston model. The original LSM
with OLS regression does not produce results consistently lower or higher than the COS benchmark.
OTM and ATM results are lower, ITM result is higher. Plain PCR gives considerably higher price.
PCR with PC selection based on variance criterion gives lower prices. PCR with PC selection based
on likelihood does not differ much as compared to plain PCR. The SR routine produces result that lies
between the original LSM result and the COS benchmark although still high biased. It takes about 3
times longer to compute than the original LSM. We need to emphasize that this is the result with the
set of regressors in Table 5.2. Further investigation is necessary to evaluate the effectiveness of these
regression methods in the LSM.
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6 The Libor Market Model and Libor Exotics

6.1 Interest Rate Market Products

6.1.1 Bond

There are various types and definitions of Bonds. For our modeling purpose, we consider the most simple
form, the zero coupon bond. It is a contract that guarantees the holder to receive 1 unit of currency at
maturity T . At time t < T the price of the zero coupon T−Bond is p(t, T ). It represents the time t value
of 1 unit of currency that is to be received at time T . By definition, p(T, T ) = 1.

The spot rate at time t on the interval [t, T ] can be derived from p(t, T ). Suppose we invest 1 unit
of currency at time t in T−Bond, the payoff is 1/p(t, T ) at time T . Suppose instead we invest 1 unit of
currency from time t till T in a risk-free savings account at the simple spot rate R(t; t, T ). The time T
payoff is 1+ (T − t)R(t; t, T ). Standard non-arbitrage argument demands that the two payoffs equal. So,

R(t; t, T ) =
1 − p(t, T )

(T − t)p(t, T )
.

6.1.2 Forward Rate Agreement

A Forward Rate Agreement (FRA) is an interest rate contract that specifies a simple interest rate R on a
specified principal N over some future period [S, T ]. At time S, the borrower receives N from the lender.
At time T , he pays back the principal plus interest, N [1 + (T − S)R].

Suppose there exists a liquid bond market for both maturity S and T . The value of the contract for
the lender at time t < S is,

FRA(t) = N [p(t, T )(1 + (T − S)R) − p(t, S)].

Market quotes are available for the Forward Rate Agreement for standard time intervals according to
market definition. The forward rate R is then defined as the rate which makes the value of FRA equals
to zero. At time t < S, this means

R(t; S, T ) =
p(t, S) − p(t, T )
(T − S)p(t, T )

. (6.1)

6.1.3 Forward Libor Rate

Let’s first define the tenor structure which is consistent with the definition in [13]. Divide the time horizon
[0, T ] by the sequence of time points,

0 = T−1 < T0 < T1 < . . . < TN = T.

We define the tenor distance αi = Ti−Ti−1, for each i = 0, . . . , N . These can be equal distance or not.
In our experiment, we keep equal distance for simplicity. The forward Libor Rate Li(t) = L(t, Ti−1, Ti)
is the simple forward rate for the period [Ti−1, Ti] contracted at time t for each i = 1, 2, . . . , N . Li(t)
moves according to the bond market up to time Ti−1. Afterwards, Li(t) freezes at Li(Ti−1) in the period
(Ti−1, Ti] and it stops to exist after time Ti. The simple rate on the interval [T−1, T0] is the spot T0 rate
which fixes at time T−1 = 0. We call it L0(t), L0(t) = L0(0) for t ∈ [T−1, T0].

According to the definition of forward rate in (6.1), Li(t) is given by,

Li(t) =
p(t, Ti−1) − p(t, Ti)
(Ti − Ti−1)p(t, Ti)

, for t ∈ [0, Ti−1].

6.1.4 Cap and Floor

Using the same tenor structure as before, let us define cap and floor. First, a Ti caplet with caplet rate
R is a contract that pays its holder the amount

Xcapl
i = αi max [Li(Ti−1) − R, 0]

at time Ti. A cap with cap rate R is a contract that gives the holder the amount Xcapl
i at each Ti for

i = 1, . . . , N .
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Similarly, a Ti floorlet with floorlet rate R is a contract that pays its holder the amount

Xflrl
i = αi max [R − Li(Ti−1), 0]

at time Ti. A floor with floor rate R is a contract that gives the holder the amount Xflrl
i at each Ti for

i = 1, . . . , N .
One can see a caplet/floorlet as a call/put option on the underlying spot rate, the cap/floor is then

a portfolio of caplets/floorlets.

6.1.5 Swap and European Swaption

An interest rate swap is a contract which exchanges one set of rate payments for another set of rate
payments. The simplest of which is the fixed-for-floating swap. The terminology always refers to the
fixed leg. Holder of a receiver swap will pay floating rate and receive fixed rate, holder of a payer swap
will pay fixed rate and receive floating rate. For a Tn × (TN −Tn) swap, the exchange of cash flows takes
place at time Tn+1, . . . , TN .

For a Tn × (TN −Tn) payer swap with swap rate K, at each Ti for i = n+1, . . . , N , the payer receives
the floating leg αiLi(Ti−1) and pays the fixed leg αiK. Then at time t < Tn, total value of the floating
leg payments in time t money is [9],

Value floating leg =
N∑

i=n+1

p(t, Ti)αiLi(t)

=
N∑

i=n+1

p(t, Ti−1) − p(t, Ti)

= p(t, Tn) − p(t, TN )

≡ DN
n (t). (6.2)

Total value of the fixed leg payments up to a scale factor K in time t money is,

Value fixed leg =
N∑

i=n+1

p(t, Ti)αi

=
N∑

i=n+1

αip(t, Ti)

≡ AN
n (t). (6.3)

AN
n is often called the annuity.

The time t value of the a Tn × (TN − Tn) payer swap with swap rate K is then

PSN
n (t; K) = p(t, Tn) − p(t, TN ) − K

N∑

i=n+1

αip(t, Ti) (6.4)

The forward swap rate RN
n (t) of the Tn × (TN −Tn) swap is the value of K for which PSN

n (t; K) = 0. So,

RN
n (t) =

p(t, Tn) − p(t, TN )
∑N

i=n+1 αip(t, Ti)

=
DN

n (t)
AN

n (t)
. (6.5)

Then time t value of a Tn × (TN − Tn) payer swap with swap rate K can be express as

PSN
n (t; K) = DN

n (t) − KAN
n (t)

= (RN
n (t) − K)AN

n (t). (6.6)

A Tn × (TN − Tn) European payer swaption with strike K is a contract with exercise date Tn that at
exercise date gives the holder the right but not the obligation to enter into a Tn × (TN − Tn) payer swap
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with fixed swap rate K. Thus the Tn payoff of the payer swaption in time t money is

XN
n = max[PSN

n (t; K), 0]

= max[RN
n (t) − K, 0]AN

n (t). (6.7)

We see that by writing the swap payoff in terms of the accrual factor AN
n and the forward swap rate RN

n

[38], the payoff of the European payer swaption can be viewed as a call option on RN
n (t) with strike K

multiplied by AN
n (t).

6.1.6 Bermudan-style Libor Exotics

A Callable Libor Exotic (CLE) is typically defined to be a Bermudan-style option to enter an exotic
swap [7]. By exotic, we mean that the coupons of the swap are determined by function of the underlying
interest rate, in this case the forward Libor rates. On the other hand, a Cancellable Libor Exotic (CnLE)
is a Bermudan-style option to cancel the remaining cash flows of an exotic swap based on Libor rates.
Exotic swaps based on a broader category of interest rates are also actively traded in the market, such as
Constant Maturity Swaps (CMS) and Spread-based Swaps. We will focus on Libor based exotic swaps
with callable or cancellable features in this thesis. Here are some of the common coupon rate functions.
Variable x takes the value of the associated Libor rate at time Tn−1, Ln(Tn−1).

Standard swap:
C(x) = k,

where k is the constant coupon rate.
Capped and floored floaters:

C(x) = max(min(g × x − s, c), f)

where s is the strike, g is the gearing factor, c is the cap, f is the floor.
Capped and floored inverse floaters:

C(x) = max(min(s − g × x, c), f)

where all the parameters are defined as above
Digitals:

C(x) = k × 1{x>s}

where s is the strike.
In a Snowball swap, the coupon not only depends on the Libor rate Ln(Tn−1), but also the last coupon

payment. The most common snowball is of the inverse floating type. In particular, the coupon paid at
time Tn is defined by

Cn = max(Cn−1 + sn − gn × Ln(Tn−1), 0) (6.8)

where sn and gn are the spread and the gearing factor at time Tn.

6.2 The Lognormal Libor Market Model

6.2.1 Market Practice and Market Model

The fixed income market has long used the Black-Scholes formula to price caplets. It is assumed
that each forward Libor rate follows a lognormal distribution. For a caplet with time Ti payoff Xi =
αi max[Li(Ti−1) − R, 0], the Black-Scholes formula for the caplet used by the market is [9],

CaplBS
i (t) = αip(t, Ti) [Li(t)Φ(d1) − RΦ(d2)] , i = 1, . . . , N (6.9)

where

d1 =
1

σmkt
i

√
Ti−1 − t

[

ln

(
Li(t)

R

)

+
1
2
(σmkt

i )2(Ti−1 − t)

]

,

d2 = d1 − σmkt
i

√
Ti−1 − t.

The volatility term σmkt
i is the market implied caplet Black volatility. One of its definitions is the

volatility that makes CaplBS
i (0) equal to the market caplet price quote Caplmkt

i (0). Actually, the caplet
prices are quoted in terms of Black volatility in the market.
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More complex fixed income products, such as various kind of swaptions, usually involve cash flows at
different times. Valuation of these products can not be carried out in the same way as a cap, because
the cash flows can not be valued separately. The model should provide an arbitrage-free dynamics for all
the Libor rates. Hence there was a need for a model that on the one hand produces the caplet pricing
formula similar to the market conventional Black-Scholes formula, while on the other hand is able to
provide arbitrage-free dynamics for pricing complex interest rate derivatives. The Libor Market Model
(LMM), also known as the BGM model [12] was the solution. Jamshidian also contributed greatly to the
model and the swap market model [38].

The underlying assumptions [9] of the LMM include an arbitrage free bond market for each tenor
maturity T0, . . . , TN ; a deterministic vector function of time σi(t) for each i = 1, . . . , N ; a set of initial
nonnegative forward Libor rates, L1(0), . . . , LN (0) and a k-dimensional QN Brownian Motion WN . For
each i = 1, . . . , N , we define Wi as the k-dimensional Qi Brownian Motion generated by WN according
to the Girsanov theorem.

The Libor forward rates are assumed to have the following dynamics,

dLi(t) = Li(t)σi(t)dW
i(t), i = 1, . . . , N.(6.10)

We will omit the model derivation in this thesis, interesting readers may turn to [9] or [13] for excellent
reference. We observe that Li(T )/Li(t) is a GBM. Solving Equation (6.10), we have

ln

(
Li(T )
Li(t)

)

= −
1
2

∫ T

t

||σi(u)||2du +
∫ T

t

σi(u)dWi(u)

So

ln

(
Li(T )
Li(t)

)

∼ N
(
mi(t, T ), Σ2

i (t, T )
)
.

where

mi(t, T ) = −
1
2

∫ T

t

||σi(u)||2du,

Σ2
i (t, T ) =

∫ T

t

||σi(u)||2du. (6.11)

Following a similar procedure as the one for deriving the single asset Black-Scholes formula [13], one
can derive the pricing formula for caplet under the LMM,

CaplLib
i (t) = αip(t, Ti) [Li(t)Φ(d1) − RΦ(d2)] , i = 1, . . . , N (6.12)

where

d1 =
1

Σi(t, Ti−1)

[

ln

(
Li(t)

R

)

+
1
2
Σ2

i (t, Ti−1)

]

,

d2 = d1 − Σi(t, Ti−1).

Equation (6.12) has a similar form to the market formula (6.9). In order to make the two consistent, one
should have

σmkt
i

√
Ti−1 − t = Σi(t, Ti−1). (6.13)

where Σi(t, Ti−1) is given by Equation (6.11). This allows calibrating the model to market caplet prices.
An alternative formulation of the model assumes a scalar QN Brownian Motion for each Libor rate

Li(t) [9]. These BMs are correlated,

dW N
i (t)dW N

j (t) = ρij(t)dt, for i, j = 1, . . . , N. (6.14)

The Girsanov theorem is used to change these to Qi Brownian Motions. The Libor forward rates are
assumed to have the dynamics,

dLi(t) = Li(t)σi(t)dW i(t), i = 1, . . . , N. (6.15)

where for each i = 1, . . . , N , σi(t) is a scalar instantaneous volatility function. Solving SDE (6.15), we
have

ln

(
Li(T )
Li(t)

)

∼ N
(
mi(t, T ), Σ2

i (t, T )
)
.
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where

mi(t, T ) = −
1
2

∫ T

t

σ2
i (u)du,

Σ2
i (t, T ) =

∫ T

t

σ2
i (u)du. (6.16)

Now we have pricing formula (6.12) with the integrated volatility function given by (6.16). By specifying
a parametric form of the function σi(t), the model can be calibrated to the caplet market data. This
model form is sometimes easier to implement in computer simulation.

Recall from Equation (6.7) that the payoff of a payer swaption is formally a call option multiplied
by the annuity. Similar to the market practice with caplet, in the swap market, a European swaption is
quoted by its Black implied volatility. The Black-Scholes formula for a Tn × (TN − Tn) European payer
swaption with strike K is,

PSNN
n (t) = AN

n (t)
[
RN

n (t)Φ(d1) − KΦ(d2)
]

(6.17)

where

d1 =
1

σmkt
n,N

√
Tn − t

[

ln

(
RN

n (t)
K

)

+
1
2
(σmkt

n,N )2(Tn − t)

]

,

d2 = d1 − σmkt
n,N

√
Tn − t.

The volatility term σmkt
n,N is the market implied Black volatility for the swaption.

Just as the Libor market model can produce market consistent pricing formula for the caplets, the
swap market model [38] can produce pricing formula for European swaptions consistent with the above
Black-Scholes type formula. As mentioned by Piterbarg [45], the Libor market model is more commonly
used than the Swap market model mainly because it is less straight forward to calibrate the Swap market
model to data from both markets. We will investigate the problem of pricing CLE and CnLE in the Libor
market model.

6.2.2 Dynamics under Various Measures

For derivation of the arbitrage-free dynamics of the Libor rates under measure Qj , j = 1, . . . , N , one can
turn to [9] or [13] for reference. We only state the result here. Li(t) dynamics under the EMM Qj (with
Tj Bond as numeraire) is given by,

dLi(t) = Li(t)μ
j
i (L, t)dt + σi(t)Li(t)dW j

i (t),

for t ≤ min(Ti−1, Tj). W j
i is a scalar Qj Brownian Motion. L represents the vector of all (living) Libor

rates at time t. The drift term μj
i (L, t) is given by,

μj
i (L, t) =






∑i
k=j+1

αkLk(t)
1+αkLk(t)σi(t)σk(t)ρik(t), if i > j

0, if i = j

−
∑i

k=j+1
αkLk(t)

1+αkLk(t)σi(t)σk(t)ρik(t), if i < j

(6.18)

and the Qj Brownian Motions are correlated by the instantaneous correlation function ρik(t),for i, k =
m(t) + 1, . . . , N .

dW j
i (t)dW j

k (t) = ρik(t)dt.

Since the Libor rates are defined on discrete tenors, the continuously rebalanced risk-neutral bank
account B(t) associated to the short rate r(t) is not readily available here. However it is possible to
define a risk neutral bank account that is rebalanced in a discrete fashion [38]. Define the next rate
reset moment, m(t) = min(i, Ti ≥ t), for t > 0. So Tm(t)−1 < t ≤ Tm(t). The discretely rebalanced
bank-account Bd(t) is defined as,






Bd(0) = 1,

Bd(t) =
p(t,Tm(t))

∏m(t)
j=1 p(Tj−1,Tj)

for 0 < t ≤ T.
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It is worth mentioning that the “living” Libor rates Li(t) at time t are those with i = m(t)+1,m(t)+
2, . . . , N . Take process Bd as the numeraire, we have the EMM Qd, which is named the spot Libor
measure. By applying the Girsanov theorem, one can derive Li(t) dynamics under Qd.

We realize that in the market, the Libor rate Li(t) freezes after time Ti−1. So we only care about the
dynamics of Li(t) for 0 < t ≤ Ti−1. If we fix a moment t, we are sure that m(t) < i. Choose j = m(t) in
(6.18), we have the drift term of Li(t) under measure Qm(t),

μ
m(t)
i (L, t) =

i∑

k=m(t)+1

αkLk(t)
1 + αkLk(t)

σi(t)σk(t)ρik(t). (6.19)

Next we try to find the Girsanov kernel that allows converting a Qm(t) Brownian Motion to a Qd

Brownian Motion. According to the Change-of-Numeraire technique proposed by Geman et al. [27], the
associated likely ratio process should be

ηd
m(t)(t) =

P (0, Tm(t))

Bd(0)
Bd(t)

P (t, Tm(t))

=
P (0, Tm(t))

Bd(0)

P (t, Tm(t))
∏m(t)

k=0 P (Tk−1, Tk)

1
P (t, Tm(t))

=
P (0, Tm(t))

Bd(0)
1

∏m(t)
k=0 P (Tk−1, Tk)

Notice that in this final expression, all the quantities are already known before time t, hence ηd
m(t)(t) is a

constant. But this means that the Girsanov kernel is zero if we try to write the likelihood ratio process
as an Itô integral. As a result, a Qd Brownian Motion has the same drift as a Qm(t) Brownian Motion,
which means that the drift of Li(t) under Qd is the same as the drift under Qm(t) given by Equation
(6.19). Now we have the Libor rate dynamics under Qd,

dLi(t) = Li(t)μ
d
i (L, t)dt + σi(t)Li(t)dW d

i (t), (6.20)

where W d
i is a scalar Qd Brownian Motion. The drift term μd

i (L, t) is given by,

μd
i (L, t) =

i∑

k=m(t)+1

αkLk(t)
1 + αkLk(t)

σi(t)σk(t)ρik(t). (6.21)

and the Qd Brownian Motions are correlated by the instantaneous correlation function ρik(t), for i, k =
m(t) + 1, . . . , N .

dW d
i (t)dW d

k (t) = ρik(t)dt. (6.22)

6.2.3 Some Choices of Model Implementation

Before discussing how to build a Monte Carlo engine for the Libor market model and how to price
CLE with it, we need to have a look at some details in the model. These are related to the calibration
procedure.

The goal of the Libor market model is to develop, under certain assumptions, a rigid mathematical
model such that the pricing result can be given in a form consistent with the Black-Scholes style market
caplet pricing formula. The assumption of deterministic volatility functions plays a central role to this
end. As is shown in Formula (6.12), the price of a caplet depends on the volatility function of each Libor,
not the correlation between them. To price other derivatives such as a swaption, the correlation structure
needs to be taken into consideration.

Although it is shown that the Libor market model and the swap market model are not consistent, under
the lognormal Libor market model, distribution of the forward swap rate is not far from lognormality
[37]. It is possible to come up with pretty close lognormal approximation for the swap rate under the
Libor market model. This allows efficient simultaneous calibration of the Libor market model to both
the cap/floor market data and the swap market data.

We are going to adopt some parametric form of the deterministic instantaneous volatility and corre-
lation functions. To check the correctness of our Monte Carlo engine implementation, we will perform
a simple calibration to the market caplet prices. For the correlation structure, we will not perform the
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calibration, but instead take some parametric form from literature. The chosen functional form will
generate a correlation structure that allows us to conduct a study on pricing swaptions.

Various instantaneous volatility functions have been proposed, one can turn to [13] for a review. An
important issue here is how the term structure of the volatility evolves over time. The Libor market
model does not specify this with deterministic volatility function. One has to impose his own belief by
choosing a specific form. This belief can be based on information obtained from historical data, but
various empirical studies show that historical volatility is often a poor estimate for the volatility in the
future. A more reasonable choice is to assume time homogeneity of the instantaneous volatility function
and use today’s volatility term structure as an estimation for that in the future. This is achieved by
assuming that the volatility is a function of the time to maturity, T − t. We choose the following form
proposed by Rebonato [46],

σi(t) = Φi(t)
(
[a(Ti−1 − t) + d]e−b(Ti−1−t) + c

)
(6.23)

where a, b, c, d and Φi are constant parameters to be determined by calibration. The procedure of cal-
ibration to the caplet data is the following. From the market caplet price formula (6.9) and the Libor
market model caplet pricing formula (6.16), we should have

σmkt
i (0) =

√
1

Ti−1

∫ Ti−1

0

σ2
i (u)du

for each i = 1, . . . , N. The integral can be evaluated analytically according to (6.23). Then we perform
a nonlinear fit of the model to market implied caplet volatilities σmkt(0) = [σmkt

1 (0), . . . , σmkt
N (0)]. We

can use least square fit for this. The Matlab function nlinfit.m uses the Levenberg-Marquardt algorithm
instead. The parametric form (6.23) allows an exact fit to the market volatilities. We first perform the
nonlinear fit by the expression σi(t)

Φi
instead of σi(t). This shall give us a rough fit of the model and fix

the parameters a, b, c, d. Then parameter Φi is used to get an exact fit to each σmkt
i (0). Figure 6.1 shows

the calibration result. The market data from [36] gives all the ATM caplet volatilities of quarterly tenor
spacing up to 20 years out.
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Figure 6.1: The market implied caplet volatility and the calibration of the instantaneous volatility func-
tion. The data used is taken from [36].

For the instantaneous correlation function ρij(t), we use the following parametric form from [47],

ρij = α + (1 − α)e−β|Ti−Tj |. (6.24)

The parameters are chosen to be α = 0.1, β = 0.1, which give the correlation matrix shown in Figure 6.2.
Brigo and Mercurio mentioned in [13] that (6.24) as well as several other correlation parameterizations
can automatically produce full rank correlation matrix.
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Figure 6.2: The volatility surface generated according to (6.24) for α = 0.1, β = 0.1.

6.2.4 Discretization for Monte Carlo Simulation

Let f(x) = ln(x). By applying Itô’s lemma to f(Li(u)), we have

dlnLi(u) =

(

μd
i (L, u) −

1
2
σ2

i (u)

)

du + σi(u)dW d
i (u),

for u ≤ Ti−1. Integrate it on [s, t] ∈ [Tm(t)−1, Tm(t)], we have

lnLi(t) = lnLi(s) +
∫ t

s

μd
i (L, u)du

︸ ︷︷ ︸
Xi

+
∫ t

s

−
1
2
σ2

i (u)du

︸ ︷︷ ︸
Yi

+
∫ t

s

σi(u)dW d
i (u)

︸ ︷︷ ︸
Zi

. (6.25)

for each i = m(t) + 1, . . . , N.
Among the three integrals, only Yi is deterministic. It can be calculated before generating the sample

paths.
Write Zi for all the living Libor rates Li(t) in vector form, we have Z = (Zm(t)+1, Zm(t)+2, . . . , ZN )T .

Since σi(t) are deterministic, one can prove by Itô isometry that the stochastic integral is normal, Zi ∼
N (0,

∫ t

s
σ2

i (u)du) and the covariance between two integrals Zi and Zk is E(ZiZk) =
∫ t

s
σi(u)σk(u)ρik(u)du.

This means Z is a multivariate normal vector with zero mean. Let CZ denote the covariance matrix of
Z, it is a real symmetric matrix. Suppose CZ is also positive definite, it has an orthonormal basis of
eigenvectors (v1, . . . , vN−m(t)) with nonnegative eigenvalues (λ1, . . . , λN−m(t)). CZ is diagonalizable by
the orthogonal matrix O = (v1, . . . , vN−m(t)),

CZ = ODOT ,

where D = diag(λ1, . . . , λN−m(t)).

If we take the positive root of the eigenvalues, then D = D
1
2 D

1
2 , where D

1
2 = diag(

√
λ1, . . . ,

√
λN−m(t)).

We can write
CZ = OD

1
2 D

1
2 OT = OD

1
2 OT (OD

1
2 OT )T ≡ QZQT

Z .

QZ is the square root of matrix CZ . Let U = (U1, . . . , UN−m(t))T , with each element independent
standard normals, Ui ∼ N (0, 1) and E(UiUj) = 0, for i 6= j. The covariance matrix of QZU is

Cov(QZU) = QZCov(U)Q = QZIQT
Z = CZ .

where I is an N − m(t) × N − m(t) identity matrix. So multivariate normal random vector QZU and Z
have the same joint distribution. We can sample vector U and then calculate QZU to get a sample for
Z.

We do not necessarily need the square root matrix QZ to sample Z. Instead, we can calculate the
pseudo square root for matrix CZ , which can be realized by Cholesky decomposition CZ = GZGT

Z , where
GZ is a lower triangular matrix. GZU and Z also share the same joint distribution.
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The integral Xi depends on the state of Libor rates, more specifically, Equation (6.21) shows that
under the spot Libor measure Qd, Xi (through μd

i (L, t)) depends on the value of Lk for k = m(t)+1, . . . , i
on the time interval [s, t]. For efficient Monte Carlo simulation, this integral has to be approximated.
Let’s write the integral again for ease of reference,

Xi =
∫ t

s

i∑

k=m(t)+1

αkLk(u)
1 + αkLk(u)

σi(u)σk(u)ρi,k(u)du.

We present two alternatives for the approximation. The first one is the so called log-Euler scheme,
which takes the initial value on the interval, Lk(s), as an approximation to the stochastic Lk(u).

Xi ≈
i∑

k=m(t)+1

αkLk(s)
1 + αkLk(s)

∫ t

s

σi(u)σk(u)ρi,k(u)du (6.26)

The second choice is the predictor–corrector (PC) scheme by [36], which consists of 2 steps. In the
predictor step, an estimate of Xi, named XE

i is calculated with the log-Euler scheme (6.26). Estimate of
the Libor rates, LE

i (t), are calculated by Equation (6.25) with XE
i . These estimates are then used in the

corrector step,

Xi ≈
i∑

k=m(t)+1

1
2

[
αkLk(s)

1 + αkLk(s)
+

αkLE
k (t)

1 + αkLE
k (t)

] ∫ t

s

σi(u)σk(u)ρi,k(u)du (6.27)

This approximation uses a trapezoidal rule like scheme to approximate the integral of the part αkLk(u)
1+αkLk(u) .

Researchers had proposed other approximation schemes for the Libor market model [41]. But con-
sidering the extra computation effort required, we only consider the above mentioned two schemes for
simulation. Now that we know how to calculate or approximate each term in Equation (6.25), we can
evolve the Libor rates from the initial time. If one step calculation between two tenor points does not
provide us with satisfying accuracy, we can divide the interval between every two tenor points into subin-
tervals. For example, if we divide interval [Tn−1, Tn] into two subintervals, then we use Equation (6.25)
to evolve the living Libor rates on [Tn−1, (Tn−1 +Tn)/2] and [(Tn−1 +Tn)/2, Tn] successively. In this way,
we hope to improve the computation efficiency while maintaining the accuracy we need. For numerical
results on the accuracy of various discretization schemes see [41].

6.2.5 Pricing Formula and Numerical Results

We will give several pricing formulas for the Libor forward rates, caplet prices and coterminal European
swaption prices. An analytical approximation is given for the coterminal European swaption price. The
following relations between rates and bond prices will often appear in the pricing formulas. We summarize
them here.

By definition of the Libor forward rate,

Li(t) =
p(t, Ti−1) − p(t, Ti)

αip(t, Ti)
.

So we have
p(t, Ti)

p(t, Ti−1)
=

1
1 + αiLi(t)

,

for each i = 1, . . . , N and t < Ti−1. We can use this to expand the zero coupon bond price between two
tenor moments,

p(Tn, Tm) =
p(Tn, Tm)

p(Tn, Tm−1)
×

p(Tn, Tm−1)
p(Tn, Tm−2)

× . . . ×
p(Tn, Tn+1)
p(Tn, Tn)

=
1

1 + αmLm(Tn)
×

1
1 + αm−1Lm−1(Tn)

× . . . ×
1

1 + αn+1Ln+1(Tn)

=
m∏

k=n+1

1
1 + αkLk(Tn)

,

for 0 ≤ Tn < Tm ≤ T .
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Specifically, at time t = 0 we have the initial bond prices

p(0, Tm) =
m∏

k=0

1
1 + αkLk(0)

,

for T0 ≤ Tm ≤ T .
Let’s write the discretely-rebalanced bank account again,

Bd(0) = Bd(T−1) = 1,

Bd(t) =
p(t, Tm(t))

∏m(t)
k=0 p(Tk−1, Tk)

, for t > 0,

where m(t) = min{j : Tj ≥ t}. In simulation, we often care about the value of Bd(t) when t = Tn for
n = −1, 0, . . . , N . It is then simplified to be

Bd(Tn) =
1

∏n
k=0 p(Tk−1, Tk)

=
n∏

k=0

(1 + αkLk(Tk−1)).

Here are the pricing formulas under measure QN or Qd that we use in the Monte Carlo simulation.
The derivation is based on the Risk-Neutral Pricing Principal and Change-of-Numeraire technique. One
can turn to [13] for reference.

Libor rate under QN ,

Li(0) =
p(0, TN )
p(0, Ti)

EN

[
Li(Ti−1)
p(Ti, TN )

|F(0)

]

.

Libor rate under Qd,

Li(0) =
1

p(0, Ti)
Ed

[
Li(Ti−1)
Bd(Ti)

|F(0)

]

.

Ti caplet value under QN ,

Capli(0) = p(0, TN )EN

[
αi max[Li(Ti−1) − R, 0]

p(Ti, TN )
|F(0)

]

.

Ti caplet value under Qd,

Capli(0) = Bd(0)Ed

[
αi max[Li(Ti−1) − R, 0]

Bd(Ti)
|F(0)

]

.

The model parameters used in this chapter is either taken or derived from [36]. They are listed in
Appendix D.1. We compare the initial Libor rates directly to the market data. But for all ATM caplets,
we will compare the implied Black volatility from the simulated caplet prices to those given by market
data. Results for the Libor rates are shown in Figure 6.3. Results for the caplet volatilities are shown in
Figure 6.4.

We price co-terminal European swaptions only under Qd. The arbitrage-free price for a European
Tn × (TN − Tn) payer swaption is,

PSNN
n (0; K) = Bd(0)Ed

[
max[PSN

n (Tn; K), 0]
Bd(Tn)

|F(0)

]

.

We have the following formula for the price of a European Tn × (TN − Tn) payer swaption under QA,
the swap measure with numeraire AN

n (t),

PSNN
n (0; K) = AN

n (0)EA
[
max[RN

n (Tn) − K, 0]|F(0)
]
. (6.28)

But since we use the Libor market model throughout for simulation, we choose to compute an analytical
approximation of the Black volatility for coterminal forward swap rates under the Libor market model
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[37]. The derivation can be found in Appendix C. We compute the implied Black volatility from the
simulated swaption price and compare it with the analytical approximation. The result is illustrated in
Figure 6.5.

The tenor spacing for the data from [36] is pretty short, ΔT = 0.25 to be precise. Our simulation
results show that in this case the Monte Carlo engine based on Euler scheme produces comparable
accuracy to that based on Predictor-Corrector scheme. In order to save computation time, we choose the
one based on Euler scheme to simulate the Bermudan-style Libor Exotics.
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Figure 6.3: Comparison of the MC simulated and the given FRAs, MC simulation performed under QN

and Qd. log-Euler scheme for generating the Libors. 106 number of paths.
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Figure 6.4: Comparison of the MC simulated and the given ATM caplet implied volatility, MC simulation
performed under QN andQd . Predictor-Corrector scheme for generating the Libors. 106 number of paths.
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scheme and approximated Black vol
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Figure 6.5: Comparison of the MC simulated and the approximated forward swap rate Black implied
volatility based on [37], MC simulation performed under Qd. Euler scheme and Predictor-Corrector
scheme are used for generating the Libors. 106 number of paths.
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6.3 Callable and Cancellable Libor Exotics

Let’s recall the dynamic programming formulation of Bermudan option pricing in Section 2.2.1. We will
first use the time grid 0 = T0 < T1 < . . . < TN = T to illustrate the procedure. Remember that all the
option value quantities are in time 0 money, i.e. discounted by proper numeraire back to time 0. The
recursions that we will use for Monte Carlo simulation are (2.12) and (2.13), which we rewrite here.

{
VN = ZN ,
Vi = max [Zi, Hi] , for i = 1, . . . , N − 1.

where Hi = E(Vi+1|Fi). At maturity we have HN = 0.
The sequence of stopping times τi can be determined by,






τN = N,
τi = i, if ω ∈ Ψi.
τi = τi+1, otherwise.

for each i = 0, . . . , N − 1, where Ψi =
{

ω ∈ Ω, Z
(ω)
i > H

(ω)
i

}
defines the exercise region at each time

step.
The option value at time Ti is given by Vi = E[Z(τi)|Fi]. In particular V0 = E[Z(τ0)|F0]. Recursion

(2.13) can be used to derive an algorithm for computer simulation of the Bermudan option value. We
just need to approximate Zi and Hi (if they are not known at time Ti) at each step. The approximation
of Zi and Hi is realized by the Longstaff-Schwartz method, i.e. the LSM algorithm.

We can now modify the above procedure to price Bermudan Swaption and Callable and Cancellable
Libor Exotics (CLE and CnLE). We use the same time discretization as defined earlier. The interval [0 , T ]
is divided by the equal distant grid 0 = T−1 < T0 < . . . < TM = T , where αi = Ti − Ti−1 = T/(M + 1)
for each i = 0, 1, . . . ,M .

6.3.1 LSM for Pricing a CLE

Let CFi be the discounted net cash flow at time Ti to the option holder. For example, for a payer
swaption, CFi equals the time Ti floating leg payment minus fixed leg payment discounted to time 0
by a proper numeraire. Since we choose Qd as the simulation measure, the associated numeraire is the
discretely rebalanced bank account Bd(t).

For a callable T0× (TN −T0) swaption, the holder has the right to enter a Tn × (TN −Tn) swap at any
Tn for n = 0, . . . , N − 1. Clearly, HN−1 = 0. We adopt the convention that at exercise decision moment,
Tn, Ln+1(Tn) is already fixed [45]. That is to say CFi+1 is Fi measurable. Hence, ZN−1 = CFN is FN−1

measurable. At Tn for n = 0, 1, . . . , N − 2, Zn = ΣN
i=n+1(CFi) is no longer Fn measurable. Hence the

exercise value at Tn must also be expressed as a conditional expectation. In [57], Versendaal outlined an
algorithm for calculating the price of CLE, in which he used the exercise value Zn at Tn directly. We
think this practice introduces foresight bias because it makes exercise decision based on information in
the future. Sticking to the double regression scheme, we have from recursion (2.12) that,






VN−1 = max[ZN−1, HN−1],
Vi = max [E(Zi|Fi), Hi] , for i = 0, . . . , N − 2.
V−1 = V0.

(6.29)

where Hi = E(Vi+1|Fi).
At each Ti for i = 0, . . . , N−2, we obtain estimation of the expected exercise value Zi and the expected

hold value Hi by the LSM algorithm. Suppose we use the same set of basis functions, Φ1, . . . , ΦR. The
approximations along each path are

E(Vi+1|Fi)
(k) ≈

R∑

r=1

β̂i,rΦr(X
(k)
i ) = Ĥ

(k)
i ,

and

E(Zi|Fi)
(k) ≈

R∑

r=1

γ̂i,rΦr(X
(k)
i ) = Ẑ

(k)
i ,

for each k = 1, . . . , Np.
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We define the sequence of stopping time τi : Ω → {i, . . . , N} for each i = 0, . . . , N − 1 as τi = inf{i ≤
j ≤ N, Ẑj > Ĥj}.

From recursion (2.13), we have the following recursion for pathwise stopping time,






τN = N,

τ
(k)
i = i, if Ẑ

(k)
i > Ĥ

(k)
i ,

τ
(k)
i = τ

(k)
i+1, otherwise.

(6.30)

for each i = 0, . . . , N − 1. There is no exercise opportunity at time 0, so τ
(k)
−1 = τ

(k)
0 . The option value at

time T−1 = 0 is

V (T−1) = E[Z(τ−1)|F−1] ≈
1

Np

Np∑

k=1

N∑

i=τ
(k)
−1 +1

CF
(k)
i .

We use the definition that
∑N

N+1 . . . = 0.

6.3.2 LSM for Pricing a CnLE

For a Cancellable T0 × (TN − T0) swaption. The holder enters a T0 × (TN − T0) swap at time 0. Then
at each Tn, for n = 0, . . . , N − 1, the holder has the right to stop the swap and cancel all the remaining
cash flows CFj for j = n + 1, . . . , N . We use the convention that when it comes to making the decision
at time Tn, CFn+1 is already known, i.e. CFn+1 is Fn measurable. If the swaption is cancelled at time
Tn, the holder gets nothing from Tn+1 on. If it is not cancelled, the swaption is worth the discounted
remaining (hold) value Hn. Notice that this value has a different definition than the hold value defined
before. Now recursion (2.12) becomes






HN−1 = max[CFN , 0],
Hi = max [E(Hi+1|Fi), 0] , for i = 0, . . . , N − 2,
H−1 = H0.

(6.31)

At each Ti for i = 0, . . . , N − 2, we only need to obtain estimation of the expected remaining value
Hi by the LSM algorithm. The approximation along each path is

E(Hi+1|Fi)
(k) ≈

R∑

r=1

β̂i,rΦr(X
(k)
i ) = Ĥ

(k)
i .

for each k = 1, . . . , Np.
We define the sequence of stopping time τi : Ω → {i, . . . , N} for each i = 0, . . . , N − 1 as τi = inf{i ≤

j ≤ N, Ĥj < 0}.
From recursion (2.13), we have the following recursion for pathwise stopping time,






τN = N,

τ
(k)
i = i, if Ĥ

(k)
i < 0,

τ
(k)
i = τ

(k)
i+1, otherwise.

(6.32)

for each i = 0, . . . , N − 1. There is no exercise opportunity at time 0, so τ
(k)
−1 = τ

(k)
0 . The option value at

time T−1 = 0 is

V (T−1) = E[H(τ−1)|F−1] ≈
1

Np

Np∑

k=1

τ
(k)
−1∑

i=1

CF
(k)
i .

We use the definition that
∑0

1 . . . = 0.

6.3.3 Parity between CLE and CnLE

There is a parity relationship between the prices of CLE and CnLE. As mentioned by Bender et al. [8],
time 0 value of a CLE can be expressed as the sum of the value of the underlying exotic swap and the
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value of the corresponding CnLE with cash flows of the opposite sign,

V CLE+

(T−1) = sup
τ∈{0,...,N−1}

E




N∑

j=τ+1

CFj |F−1





= E




N∑

j=1

CFj |F−1



+ sup
τ∈{0,...,N−1}

E




τ∑

j=1

−CFj |F−1





= V SW+

(T−1) + V CnLE−

(T−1).

The + and − in the above expression denote the direction of the cash flows. Notice that a payer and
receiver swap have exactly the opposite cash flows. We have the following parity relations,

V CPSN (0; θ) = V PS(0; θ) + V CnRSN (0; θ),

V CRSN (0; θ) = V RS(0; θ) + V CnPSN (0; θ). (6.33)

θ represents all the parameters defining the swap and the swaptions. The superscripts denotes the swap
or swaption type. For example, PS means a payer swap, CnRSN means a cancellable receiver swaption.
The following numerical example shows that our Monte Carlo simulation for the CLE and CnLE indeed
satisfies the parity relation (6.33). We perform two separate LSM simulations to price a callable payer
swaption and a cancellable receiver swaption. From these two LSM simulations we also get the price
of the European T0 × (TN − T0) payer swap. We use the parity (6.33) to calculate the corresponding
cancellable receiver swaption or the corresponding callable payer swaption respectively.

Table 6.1: Example of the parity between a callable payer swap and a cancellable receiver swap. All the
numbers reported are in basis points (1bp = 0.0001).

Value
Strike
K

Simulated
V PS(0)

Simulated
V CPSN (0)

Calculated
V CnRSN (0)

Simulated
V PS(0)

Simulated
V CnRSN (0)

Calculated
V CPSN (0)

823 -453.6 11.2 464.8 -453.6 464.8 11.3
623 -0.66 82.8 83.5 -0.66 83.0 82.4
423 452.2 452.2 ≈ 0 452.2 ≈ 0 452.2

The simulation shown in Table 2.1 is performed with model quotes taken from [36]. Monte Carlo
simulation is performed on swaptions fixed at the first 10 tenor dates. K = 623bps is the forward swap
rate. We run simulation with K = 823bps, 623bps, 423bps for different moneyness. We use the same 106

paths to estimate the exercise and hold value functions as well as to perform the Monte Carlo averaging.
The regressors used in the simulation consists of a constant, the value of floating leg, the value of fixed
leg and the value of a curve tilt. Details about the basis functions will be discussed in the next section.
Simulation results show close to parity relation at different moneyness. It seems that either algorithm
can be used to compare the relative merit of different explanatory variables and basis functions. Later,
when we compute the upper bound of Bermudan swaptions, we found that it is better to implement the
algorithm based on valuation of the CnLE instead of CLE.

6.3.4 Explanatory Variable and Basis Function

We have demonstrated previously that the LSM can be adapted to price Bermudan swaptions, be it CLE
or CnLE. However, there remains a question to answer, namely what set of regressors gives more accurate
price.

Choosing regressors in the LSM is regarded somewhat of an art. Since how close the LSM approximates
the true stopping time depends on the detailed option specifications, it is not surprising that one set of
regressors may work well with one option but not so much with another. There is in general no optimal
set of regressors that gives better prices for all types of options. What we hope to achieve is to identify
the criterion according to which we can evaluate the regressors.

Piterbarg put forward a good guideline on this issue [45]. He mentioned that the main difficulty in
modeling Bermudan-style LE lies in the strong dependence on unobservable volatility parameters. These
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are partly taken care of by choices of model implementation for the Libor market model. What remains
is how to best utilize the information available at time Tn through the choice of regressors to obtain a
tight LSM price. The regressors are constructed by evaluating certain basis functions at the value of some
explanatory variables. Piterbarg argues that in order to avoid the trouble of overfitting, one should use
a relatively simple parametric family of basis functions and to choose the explanatory variables carefully.
Based on our simulation result with the Black-Scholes world, we will not spend much time in comparing
different basis functions such as polynomials but focus on the explanatory variables.

Piterbarg argued that the explanatory variables should be financially meaningful. He suggests that
the overall level of the rates and the slope of the rate curve are the two most significant factors affecting
the option price. The coterminal forward swap rate captures information about the overall level. One
can use a short tenor rate to capture the curve slope information, since the regression will automatically
take care of the difference between this rate and other variables.

Piterbarg’s reasoning is based on market observations. The Libor forward rates often move in accor-
dance with one another resulting in such stylized movements as a parallel shift, a curve tilt or a hump.
However, it is doubted that whether these basic movements can provide adequate information in the
LSM method for some more complex type of swaptions. Maybe it is better to just feed the algorithm
with all the living Libor rates as explanatory variables and let it find the information by itself. We have
performed large amount of numerical experiments to compare between different setups of the regressors
for different types of swaptions. The results can be found in the Chapter 7. We give some descriptions
about the regressors that we think is worth experimenting.

As our base case, we take the regressors used by Buitelaar [15]. He studied control variate method
for pricing Bermudan swaptions in the Libor market model. Here is the set of explanatory variables that
he used.

S1(Tn) = 1,

S2(Tn) =
N∑

j=n+1

αjp(Tn, Tj),

S3(Tn) =
N∑

j=n+1

αjLj(Tn)p(Tn, Tj),

S4(Tn) =
N∑

j=n+1

αjLj(Tn)p(Tn, Tj)(n − imid),

S5(Tn) = CFn+1,

where imid = n+N
2 . S2 is the time Tn present value of the fixed leg omitting the constant coupon rate

K. S3 is the time Tn present value of the floating leg. S4 is the time Tn present value of a curve tilt. It
is defined in such a way that if the remaining forward rate curve exhibits a counter-clockwise tilt around
the center point Timid

, S4 increases. In order to capture the path dependent feature of a Snowball, the
immediate next cash flow CFn+1 is added to the regressor matrix. Some squared terms as well as cross
product terms of the above explanatory variables are also used as regressors. This set of regressors is
chosen according to Piterbarg’s guideline, although not completely according to his recommendation.
The above mentioned set of regressors give information about the overall level as well as the curve slope.

We would like to find out if these regressors give better result than the ones recommended by Piterbarg.
Looking at the payoff form of a fixed-for-floating swaption (6.28), it is natural to think that the forward
swap rate given by (6.5) should be used as an explanatory variable. We expect it to work even with some
more complicated type of swaptions. In terms of the notation here, the forward swap rate is given by,

S6(Tn) =
S3(Tn)
S2(Tn)

=

∑N
j=n+1 αjLj(Tn)p(Tn, Tj)
∑N

j=n+1 αjp(Tn, Tj)
.

At time Tn the immediate next Libor rate is Ln+1(Tn), which we choose as a short tenor rate in order to
capture the curve slope information.

S7(Tn) = Ln+1(Tn).

For swaptions other than the basic fixed-for-floating one, the coupon leg provides more information than
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the fixed leg. We also use the time Tn present value of the coupon leg as an explanatory variable,

S8(Tn) =
N∑

j=n+1

αjC(Lj(Tn))p(Tn, Tj).

where C(x) denotes the coupon function depending on rate x. In the above expression, time Tn rates value
Lj(Tn) are used to approximate future coupon leg value. For a Snowball swaption, the coupon function
is path-dependent. In order to determine Cn one need to know Cn−1. This additional path-dependency
poses a challenge to the LSM method. What we can do is try approximating the coupon values with the
information available at time Tn. One possibility is to freeze the Libor rates at time Tn−1 and compute
the coupon rates according to Equation (6.8). Another more involved approximation will be discussed in
Chapter 7.

We would also like to find out whether supplying all the living Libor rates to the LSM algorithm
improves the pricing result. In the related experiments, we choose at each step all the living Libor rates,
the squared terms and their cross-products as regressors. Thus the regression matrix changes size at each
exercise moment, with much larger size at longer time to maturity. One of the concerns we have based
on our simulation result with the Black-Scholes world is that when using too many terms of regressors,
the simulated LSM price could be high biased as compared to our benchmark. Whether this is due to
Monte Carlo error or some other numerical error or convergence issue is unknown. It is natural to ask if
this will be an issue when pricing Bermudan-style Libor Exotics with the LSM, especially when all the
living Libor rates are used as regressors directly. With the upper bound algorithm, we will be able to
check if this ever happens.

6.3.5 Upper Bound for C(n)LE

We do not have any alternative benchmark price for the Bermudan-style LE. The upper bound algorithm
makes it possible to evaluate LSM pricing results without an alternative benchmark. As stated in the
last section, it allows the evaluation of different regressor configurations in the LSM method.

When trying to implement the upper bound algorithm for the C(n)LE, one should be careful of what
information is available at the moment. If the exercise value Zn is Fn measurable, then it can be directly
computed at time Tn. In our experiment, stocks in the Black-Scholes world or the Heston model both
fall into this category. But in case of a swaption with multiple future cash flows to be fixed, Zn is not
known at time Tn. One should approximate E[Zn|Fn] by the LSM regression coefficients, and then make
exercise decision based on this value and the hold value Hn. To Compute Zn directly from the realization
of future cash flows implies perfect foresight about future information. This would introduce a significant
upward bias. The hold value, Hn, is always approximated by regression fitted multi-linear model.

In our experiment in the Black-Scholes world and the Heston model, we work with Bermudan put on
the underlying stock. When experimenting with CLE and CnLE in the Libor market model, we notice that
although our pricing algorithm gives the theoretical parity relation between prices of the corresponding
CLE and CnLE, it is difficult to produce reasonable upper bound for CLE without resorting to perfect
foresight. Due to limited time for this project, we decide to focus on computing the upper bound of
CnLE. In this case, we only need to compare expectation of the remaining cash flows until future exercise
moment (if this ever happens) to the fixed value 0. Regarding Equation (3.9), Zn and Hn represents the
remaining cash flows value if exercise or hold at time Tn. Exercise means canceling all remaining cash
flows, so we have Zn = 0 at each exercise moment.
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7 Numerical Results and Discussions

We present in this chapter the main results from our numerical experiment. We give the reasoning for our
choices of simulation configuration and discuss the impact on LSM pricing result. We will show results
in various models and payoff types. Whenever an alternative benchmark is available, we will give the
numerical convergence result for that benchmark. When no alternative benchmark is available, we will
present result from upper bound simulation. Upper bound results are also given for the Bermudan put
in the Black-Scholes world and the Heston model.

7.1 Bermudan Put in the Black-Scholes World

Unless stated otherwise, we consider the following set of model and simulation parameters.
Parameters for the underlying asset price dynamics under the risk-neutral measure: r = 0.06, σ = 0.3.
Parameters for the Bermudan put option: K = 10, T = 1. Let Δt = T

52 , the exercise moments are{
1
52 , 2

52 , . . . , 51
52 , 1

}
.

Parameters for the Monte Carlo simulation: time step Δt = T
52 , 105 number of sample paths for each

Monte Carlo (LSM) simulation result. An average over 100 such results gives the pricing result. We
choose only ITM sample paths at each early exercise moment for regression, i.e. only those paths such
that S(Tn) < K at Tn.

7.1.1 Convergence of the Benchmark

We build two benchmarks for comparison. The first one is based on Binomial Tree. We choose 52 ×400 =
20800 time steps. The second one is based on Finite Difference with θ scheme and PSOR iterative matrix
equation solver. We choose 52× 400 = 20800 time steps and 4000 space steps. The time steps are chosen
as a multiple of 52 such that all early exercise moments are on grid. In this way, we can rule out the
error caused by choosing different early exercise moments with different numerical schemes.

The Binomial Tree is used to cross validate the FD scheme. Pricing result from the FD scheme is
used as the benchmark against which all Monte Carlo simulations are compared.

Table 7.1: Pricing result for a Bermudan Put with Binomial Tree

Index # Steps Initial Asset Price S(0)
6 8 10 12 14

P1 52×4 3.99135 2.10287 0.95161 0.39574 0.15415
P2 52×40 3.98876 2.10162 0.95166 0.39454 0.15439
P3 52×400 3.98850 2.10158 0.95166 0.39450 0.15433

Table 7.2: Convergence for a Bermudan Put with Binomial Tree

Index Initial Asset Price
6 8 10 12 14

P2 − P1 -2.6 ×10−3 -1.2×10−3 4.84×10−5 -1.2 ×10−3 2.45×10−4

P3 − P2 -2.59×10−4 -3.55×10−5 3.00×10−6 -4.87×10−5 -6.70×10−5

Table 7.3: Pricing result for a Bermudan Put with Finite Difference

Index Δs Initial Asset Price
6 8 10 12 14

P1 1 3.98854 2.08569 0.93284 0.38346 0.14989
P2 0.1 3.98847 2.10142 0.95149 0.39436 0.15426
P3 0.01 3.98847 2.10158 0.95167 0.39448 0.15432

Table 7.1 and Table 7.2 shows the convergence of the Binomial Tree with several initial asset price
values. We compare three different number of steps for the tree. Table 7.3 and Table 7.4 shows the
convergence of the FD scheme with several initial asset price values. We compare three choices of the
space step size, Δs. Time step convergence of the FD scheme is not checked, we fix 20800 time steps in
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Table 7.4: Convergence for a Bermudan Put with Finite Difference

Index Initial Asset Price
6 8 10 12 14

P2 − P1 -6.67×10−5 1.57×10−2 1.86×10−2 1.09×10−2 4.4×10−3

P3 − P2 -2.9×10−7 1.55×10−4 1.77×10−4 1.23×10−4 6.4×10−5

the simulation. Depending on different moneyness, convergence differs for the two numerical schemes.
Figure 7.1 shows the difference of pricing results from the Binomial Tree and the FD scheme. The most
significant difference is about 6 × 10−5 where S(0) = 7.8, and that the difference in OTM region are all
below 1×10−5. Although we can not say much about whether the true Bermudan option value lies above
or below the benchmark prices, convergence of both our benchmarks brings confidence that the true
option value is nearby. As we will see in later sections, the LSM price varies around our benchmark price
when computed using different regressor configurations. Our benchmarks are believed to be accurate
enough compared to the LSM result.
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Figure 7.1: Pricing result and difference using Binomial Tree and Finite Difference for a Bermudan Put
in the Black-Scholes world

7.1.2 Selection Criteria and Simulation Choices

We try to answer the following two questions:
1. How do we judge which set of basis functions gives better pricing result?
2. Which set of sample paths should we choose for regression at each exercise moment?
The first question is closely related to convergence property of the LSM method. Glasserman and Yu

[29] pointed out that the number of sample paths necessary for convergence of the LSM method is affected
by the number of regressors used. While our goal is to find the most appropriate explanatory variable
and basis functions, taking the speed of convergence into consideration would significantly complicate
the problem. Hence our approach is to take as many paths as possible to facilitate convergence and to
compare the pricing result calculated from that many paths. Although this means that it may take more
computation time than necessary for some quick convergence cases, it is necessary to do so for slower
convergence cases. Nevertheless, we are limited by the computer hardware in terms of computational
power. In our implementation of the LSM algorithm, we need to invert some large matrices. The matrix
size can be as large as the number of sample paths. Inverting these large matrices can be handled
by the Matlab built-in matrix division operation, which applies certain variant of Gauss elimination.
However, Matlab has its limit of the size of matrix that can be generated depending on the amount of
memory available. In case of simulation in Black-Scholes world, we find out that sometime it is difficult
to generate matrix of size 106×106 consistently depending on the amount of memory available to Matlab
at a particular moment.

Yet we are still interested in how the number of sample paths affects the pricing result. Table 7.5 and
7.6 shows the simulation results with 105 and 104 sample paths respectively. We simulated with a group
of initial asset price around the strike. Then average price difference from simulation with these initial
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asset prices are calculated. The price difference is define as

Price Difference = Price by LSM − Price by Benchmark.

It is not easy to find a pattern from the numbers in these two tables, plots of the price difference would
provide more information. Figure 7.2 shows the price difference simulated with the 2 settings, LSM1 with
105 sample paths, LSM2 with 104 sample paths. We observe that with one term of power series as basis
function, both cases give low biased result compared to the FD benchmark. As the number of basis
functions increases, the price difference of both cases increases and finally becomes positive, indicating
that the LSM price rises higher than the FD benchmark. The result with 105 paths agrees with the FD
benchmark more closely.
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(b) 2 terms of power series
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(c) 3 terms of power series
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(d) 4 terms of power series
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(e) 5 terms of power series
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Figure 7.2: Price difference for a Bermudan put in the Black-Scholes world, T = 1, Δt = T/52, power
series as basis functions. LSM1 simulated with 105 sample paths, LSM2 simulated with 104 sample paths.

Here are a few comments on the result:
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First, as pointed out before, our benchmark also suffers from numerical error. So a pricing result
higher than the benchmark does not necessarily mean that it is higher than the true option value based
on optimal exercise strategy. But the convergence result from our FD benchmark does suggest that the
FD price should lie close to the true option price.

Table 7.5: Price difference for a Bermudan put with Power series as basis function. T = 1, Δt = T/52,
105 number of paths, ITM paths for regression.

Polynomial Term
Number

Average Diff
S(0) ∈ [6, 14]

Most Positive Diff Most Negative Diff

Power 1 −8.2 × 10−3 4.2×10−5@19 -1.99×10−2@8.4
Power 2 −1.5 × 10−3 1.85×10−4@20 -3.7×10−3@8.8
Power 3 −8.33×10−5 4.37×10−4@16 -6.7×10−4@7.6
Power 4 2.69 × 10−4 7.2×10−4@10.8 -1.97×10−4@9.2
Power 5 2.97 × 10−4 8.79×10−4@9.2 -1×10−3@10
Power 6 1.79 × 10−4 6.38×10−4@10.8 -1.5×10−3@9.6
Power 7 −1.72×10−4 4.39×10−4@14.4 -2.1×10−3@8.8
Power 8 −4.9 × 10−4 4.09×10−4@15.6 -2.1×10−3@10

Table 7.6: Price difference for a Bermudan put with Power series as basis function. T = 1, Δt = T/52,
104 number of paths, ITM paths for regression.

Polynomial Term
Number

Average Diff
S(0) ∈ [6, 14]

Most Positive Diff Most Negative Diff

Power 1 −7.4 × 10−3 8.26×10−4@15.2 -2×10−2@8.8
Power 2 −4.5 × 10−5 1.7×10−3@13.2 -2×10−3@9.2
Power 3 2.1 × 10−3 3.3×10−3@10 -3.4×10−6@0.01
Power 4 2.8 × 10−3 4.1×10−3@10.4 -3.4×10−6@0.01
Power 5 3.1 × 10−3 5×10−3@9.6 -3.4×10−6@0.01
Power 6 3.3 × 10−3 5.1×10−3@10 -5×10−5@1

Table 7.7: Price difference for a Bermudan put with Power series as basis function. T = 1, Δt = T/52,
Np = 105 number of paths. All paths for regression.

Polynomial Term
Number

Average Diff
S(0) ∈ [6, 14]

Most Positive Diff Most Negative Diff

Power 1 −6.29×10−2 7.1×10−8@5.6 -9.2×10−2@11.6
Power 2 −3.6 × 10−2 9.9×10−5@6.8 -6.2×10−2@10.8
Power 3 −2.19×10−2 1.35×10−5@6.4 -3.44×10−2@11.6
Power 4 −1.52×10−2 9.86×10−5@6.4 -2.44×10−2@11.2
Power 5 −1.27×10−2 1.59×10−4@6.4 -2.35×10−2@11.2
Power 6 −9.7 × 10−3 1.48×10−4@6.8 -1.94×10−2@11.2

Second, when using more than 3 terms of power series, LSM2 results are significantly higher than
either the benchmark or LSM1. Hence it should lie above the true option value. A rule of thumb criterion
for evaluating the performance of the LSM method is that the higher the LSM price is, the closer it is
believed to be near the true option value. This argument is based on the assumption that the LSM result
is fully converged, and it should be below the true option value as predicted by the suboptimal exercise
rule. However, as we observe here, the pricing result with finite number of sample paths may very well
be high biased. In order to find an explanation, one need to study the convergence of the LSM method
under specific simulation setup. This is a difficult problem considering all the factors involved in the
algorithm. We will not investigate further into this convergence topic.

Third, we observe that the LSM result does not keep increasing after adding just a few terms of
regressors. Hence when we can only use limited number of sample paths, a practical criterion for selecting
the best regressor configuration would be to choose such configuration with the least number of terms
reaching this “price saturation”. We will see that with 105 sample paths, the “saturated” prices are
pretty close to our FD benchmark.
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Fourth, to get more insight into this matter, one can look into the upper bound of the option value.
Corresponding simulation result will be presented in Section 7.1.4.

The question about which set of sample paths to choose is much more straight forward. Comparing
the results from Table 7.5 and Table 7.7, we observe that the price result computed by regression on all
the sample paths is significantly lower than the result computed from only ITM paths. A put option has
a fixed strike, hence moneyness is well defined by only look at the underlying asset value at the exercise
moment. That is, if at time t, along path k, Sk(t) < K, the option is ITM, meaning its intrinsic value
is greater than zero, then this path will be selected for regression. Since the option’s continuation value
is nonnegative, one only need to approximate the continuation value function and make early exercise
decision when the option is ITM.

When using linear least square regression to estimate the multi-linear model for the continuation
value function, the estimate of the coefficients are calculated such that the sum of all squared residuals is
minimized. This is a global fit of the model to all the data points. One possible explanation of the lower
price result when selecting all sample paths is that fitting globally makes the fit to ITM data points worse
than if only fitting those ITM data points. This is the drawback of the linear least square regression.
Other more advanced regression methods may be considered for improvement.

7.1.3 Performance with Different Regressor Configurations

In the framework of linear least square fitting, we construct the regressor matrix by choosing appropriate
explanatory variables and basis functions. In our asset model, the only randomness comes from the GBM
asset dynamics. Possible choices of explanatory variables would be the underlying asset value and some
quantities related to the underlying asset value. In this section, we give some numerical results regarding
different choices of the explanatory variables and basis functions.

For the choice of explanatory variable, we consider the following 3 possibilities:

1. underlying asset value

2. exercise value of the option

3. value of a co-terminal European put based on the Black-Scholes formula using the underlying asset
value at exercise moment as the initial value for its underlying.

For the choice of basis function, we consider Power series, Laguerre polynomial and weighted-Laguerre
polynomial. Since the payoff function is quite simple, we do not consider other types of basis functions.
Table 7.8 gives a list of the regressor configurations we have tested. Figure 7.3 compares the average
price difference when using the above mentioned explanatory variables and basis functions.

Table 7.8: The regressor set configurations used for Bermudan Put in the Black-Scholes world

Explanatory Variable Basis Function Terms of Polynomials

Group 1 Asset Price Power Series 1 to 8
Group 2 Exercise Value Power Series 1 to 6
Group 3 European Put Value Power Series 1 to 6
Group 4 Asset price Laguerre Poly 1 to 6
Group 5 Asset price weighted-Laguerre 1 to 8

When using only 1 or 2 terms of polynomials, the combination of co-terminal European Put value
plus Power series as well as the combination of underlying asset value plus weighted-Laguerre polyno-
mial outperform the rest. The good performance associated with co-terminal European option value is
expected since the Bermudan option price can be decomposed into the value of its European counterpart
and a relatively small early-exercise premium. In a sense, the European Put value serves as a good control
variate for the Bermudan Put value. When using 4 to 6 terms of polynomials, we observe that the average
price difference is positive for all combinations. This indicates that for most of the initial asset prices,
LSM price rises above the FD benchmark. Using even more terms of Power series or weighted-Laguerre
polynomial causes the price difference to reduce again. The exact reason for this positive difference re-
quires further study. But we conjecture that it has something to do with the finite path convergence
property of the LSM method w.r.t. the number of regressors used.
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Figure 7.3: Average price difference between LSM and FD when S(0) ∈ [6, 14] for a Bermudan Put in
the Black-Scholes world using various regressor configurations.

7.1.4 Upper Bound Result

We have implemented the upper bound algorithm in Chapter 3 in the setting of the Black-Scholes world.
We call the upper bound price the Andersen-Broadie (AB) price. What we try to show with our numerical
result here is that the computed gap between an LSM price and its associated upper bound price gives
us information about whether a set of regressor performs better than another set.

Since the upper bound algorithm is computationally quite expensive, we choose 12 possible exercise
moments for the maturity T = 1 in the Black-Scholes world. Notice that in the previous simulation of
the LSM price, we choose 52 for T = 1. The difference in early exercise moments would cause difference
in the option price. As we can see from the benchmark prices in Table 7.1, Table 7.3, and Table 7.9
below, the price difference is observable.

Let us first give some results about convergence of the upper bound price. As a base case, we choose
the outer path number Nout = 103, the inner path number Nin = 103. An average of 10 such simulation
gives us an estimate of the gap between the LSM price and the upper bound AB price as well as the
corresponding 95% t-Confidence Interval (t-CI) of the gap value. We use a constant and the first 3 power
terms of the underlying asset value as the regressors. We use 2 × 106 paths to obtain the LSM regression
coefficients, then use a separate set of 106 paths to obtain the LSM price. These regression coefficients
define the exercise rule for the upper bound simulation. Variation in the regression coefficients due to
limited number of paths for the LSM algorithm may lead to variation in the upper bound result as well.
We choose as many as possible paths for the LSM to minimize such impact. We increase either Nout or
Nin to 104 paths to check the variation of the gap value due to upper bound Monte Carlo configuration.
Table 7.9 gives the benchmark prices, Table 7.10 till Table 7.12 gives the convergence result of the upper
bound algorithm.

Table 7.9: Benchmarks for the Bermudan Put in the Black-Scholes world for N = 12, T = 1.

Name Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

FD 2.0934 0.9471 0.3923
Binomial 2.0934 0.9471 0.3923

Comparing the numbers in Table 7.10 till Table 7.12, we do not find much difference in variation of
the Gap value. Hence choosing Nout = 103, Nin = 103 is reasonable. The t-CI based on 10 simulations
is narrow enough around the mean. There is a big difference in terms of the variation of the Gap value
at different moneyness. It seems that the variation is lowest for ITM case, acceptable for ATM case,
but excessively high for OTM case. The reason for this is that we only choose ITM paths for regression,
hence when the underlying asset starts OTM, a lot of paths would be OTM at different moments before
maturity and the exercise rule given by the regression coefficients is basically unable to track the true
continuation value closely. So to compare between different sets of regressors in the Black-Scholes world,
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Table 7.10: Case 1 of upper bound convergence result for a Bermudan Put in the Black-Scholes world.
Nout = 103, Nin = 103, 10 simulation average. Time for a run is about 10 min.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0929 0.9470 0.3922

Gap 0.0154 0.0158 0.0071
Gap(t-CI) (0.0147,0.0160) (0.0150, 0.0166) (0.0065, 0.0078)

Run2
LSM price 2.0931 0.9470 0.3923

Gap 0.0142 0.0140 0.1957
Gap(t-CI) (0.0132,0.0152) (0.0129, 0.0150) (0.1925, 0.1989)

Run3
LSM price 2.0948 0.9467 0.3927

Gap 0.0149 0.0140 0.0401
Gap(t-CI) (0.0141,0.0157) (0.0133, 0.0147) (0.0392, 0.0410)

Table 7.11: Case 2 of upper bound convergence result for a Bermudan Put in the Black-Scholes world.
Nout = 103, Nin = 104, 10 simulation average. Time for a rum is about 55 min.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0922 0.9474 0.3914

Gap 0.0138 0.0144 0.2622
Gap(t-CI) (0.0132,0.0144) (0.0140, 0.0148) (0.2598, 0.2646)

Run2
LSM price 2.0948 0.9469 0.3925

Gap 0.0137 0.0157 0.2646
Gap(t-CI) (0.0128,0.0146) (0.0147, 0.0167) (0.2611, 0.2681)

Run3
LSM price 2.0942 0.9478 0.3928

Gap 0.0143 0.0125 0.2231
Gap(t-CI) (0.0135,0.0152) (0.0119, 0.0130) (0.2191, 0.2272)

Table 7.12: Case 3 of upper bound convergence result for a Bermudan Put in the Black-Scholes world.
Nout = 104, Nin = 103, 10 simulation average. Time for a run is about 125min.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0940 0.9462 0.3921

Gap 0.0137 0.0098 0.0134
Gap(t-CI) (0.0134,0.0139) (0.0096, 0.0100) (0.0131, 0.0136)

Run2
LSM price 2.0935 0.9463 0.3924

Gap 0.0151 0.0128 0.1487
Gap(t-CI) (0.0150,0.0153) (0.0126, 0.0131) (0.1479, 0.1495)

Run3
LSM price 2.0937 0.9469 0.3918

Gap 0.0150 0.0139 0.3470
Gap(t-CI) (0.0147,0.0154) (0.0137, 0.0141) (0.3456, 0.3483)

we will focus on the ITM and ATM gap result. Later, we will see that the OTM problem disappears
when we price C(n)LE because all the paths are selected for regression.

Figure 7.4 shows the upper bound simulation results on a Bermudan Put in the Black-Scholes world.
All relevant simulation data are listed in Table E.1 to Table E.6 in Appendix E. We choose the underlying
asset price as explanatory variable and one to six terms of power series as the basis functions. We will
ignore the gap number for OTM case for the reason explained above. The figure shows that the LSM prices
are pretty close to the FD benchmark price, although some of them rise slightly above the benchmark.
The AB upper bound prices vary much more significantly as we change the number of regressors. The
mid point of the lower and upper bound is not a good approximate for the true option value in this case.

Looking at ITM and ATM cases, we have some interesting observations. In both ITM and ATM cases,
as the number of basis functions increases the gap value decreases at first and then increases. There is
a minimum. For the ITM case, the minimum occurs with 4 terms, and the gap is below 0.2% of our
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(c) S0 = 8 (ITM) zoomed view
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(d) S0 = 10 (ATM) zoomed view

Figure 7.4: Simulated lower bound LSM price and the corresponding upper bound AB price for a Bermu-
dan Put in the Black-Scholes world. The strike is fixed at K = 10. Results are simulated with 2 different
initial asset prices: S0 = 8, 10.
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benchmark price. For the ATM case, the minimum occurs with 3 terms, and the gap is below 2%. Due to
different variability at different moneyness, comparison across different moneyness does not make much
sense. What appears interesting is that when we choose more than optimal number of basis functions,
although the LSM price does not change much, the gap value increases more significantly. The maximum
expected shortfall is more sensitive toward different regressor configurations than the LSM price itself.
One can say that the relative insensitive LSM price showcases the robustness of the algorithm. But as
a measure to compare the relative merit of different regressors, sensitivity of the gap value is a desirable
feature.

When the gap value decreases, the LSM price is mostly below our benchmark, but when the gap
value increases after it hits the minimum, some of the LSM prices are higher than our benchmark. In
Figure 7.2, we have observed that if we keep the same number of sample paths and let the number of
basis functions increase, the LSM price raises above our benchmark. Combining the observation from
the upper bound result, we think that such increment in price does not imply more accurate pricing. It
might be caused by convergence issue, it might be caused by other idiosyncratic numerical error. The
exact reason requires further study. But our simulation result shows that one should not blindly follow
the rule of thumb criterion for evaluating the LSM price, that is to say, one can not be sure that if an
LSM price increases it must be closer to the true option value. Instead, using the upper bound algorithm
gives us a much more robust criterion, although the algorithm is quite costly in terms of computation
time.

7.2 Bermudan Put Spread in the Black-Scholes World

Unless stated otherwise, we consider the following set of model and simulation parameters:
Parameters for the underlying asset price dynamics under the risk-neutral measure, r = 0.06, σ = 0.3.
We consider two different put spreads,
Spread A: K1 = 7,K2 = 12, Q = 5.
Spread B: K1 = 7,K2 = 9, Q = 5.
Parameters for the Bermudan early exercise moments are the same for the two spreads, T = 1. Let

Δt = T
52 , exercise moments are

{
1
52 , 2

52 , . . . , 51
52 , 1

}
.

Parameters for Monte Carlo simulation, time step is Δt = T
52 , 105 number of sample paths for each

Monte Carlo (LSM) result. Averaging over 100 such simulation results gives the output. We choose
only ITM sample paths at each early exercise moment for regression, i.e. only those paths such that
S(t) < K2.

What we would like to find out in this experiment is how the LSM algorithm performs when the payoff
function exhibits strong nonlinear relation w.r.t. the underlying. The main difference between a Put and
a Put Spread is that the Put Spread payoff function exhibits a bend in the ITM region. The strong
nonlinearity in the payoff function happens to be in the region of underlying asset price where the early
exercise boundary can be. Studying the Put Spread helps us understand how the error in approximating
the continuation value, the error in approximating the true early exercise boundary and the error in the
LSM price are related.

7.2.1 Convergence of the Benchmark

As the case with the Bermudan Put, we build two benchmarks for comparison. The first one is based on
Binomial Tree. We choose 52 × 400 = 20800 time steps. The second one is based on Finite Difference
with θ−scheme and PSOR iterative matrix equation solver. We choose 52 × 400 = 20800 time steps and
4000 space steps. The Binomial Tree is used to cross validate the FD scheme. Pricing result from the FD
scheme is used as the benchmark against which all Monte Carlo simulations are compared. We obtain
benchmark prices for the two Put Spreads respectively.

Table 7.13 and Table 7.14 show the convergence for Spread A with Binomial Tree at several initial
asset prices. We compare three different number of steps for tree. Table 7.15 and Table 7.16 show the
convergence for Spread A with Finite Difference at several initial asset prices. We compare three space
step size, Δs. 20800 time steps are used for the FD scheme.

Table 7.17 and Table 7.18 show the convergence for Spread B with Binomial Tree at several initial
asset prices. Table 7.21 and Table 7.22 show the convergence for Spread B with Finite Difference at
several initial asset prices.

Figure 7.5 shows the difference of pricing results from Binomial Tree and Finite Difference for both
Put Spreads. The number shows that the most significant difference lies in the vicinity of K1 = 7, which
is less than 1.5 × 10−4 for both spreads. Difference in OTM region is much lower for both Put Spreads.
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Table 7.13: Pricing result for Spread A with Binomial Tree

# Steps Initial Asset Price
6 7 9 11 13

P1 52×4 4.99567 4.88344 3.02286 1.60936 0.79878
P2 52×40 4.99437 4.87501 3.02279 1.60877 0.79839
P3 52×400 4.99424 4.87414 3.02269 1.60858 0.79836

Table 7.14: Convergence for Spread A with Binomial Tree

Initial Asset Price
6 7 9 11 13

P2 − P1 -1.3×10−3 -8.4×10−3 -7.2×10−5 -6.0×10−4 -3.9×10−4

P3 − P2 -1.33×10−4 -8.7×10−4 -9.7×10−5 -1.87×10−4 -2.96×10−5

Table 7.15: Pricing result for Spread A with Finite Difference

Δs Initial Asset Price
6 7 9 11 13

P1 1 4.99347 4.94954 3.00300 1.59384 0.78592
P2 0.1 4.99422 4.87581 3.02260 1.60843 0.79823
P3 0.01 4.99423 4.87407 3.02269 1.60858 0.79835

Table 7.16: Convergence for Spread A with Finite Difference

Initial Asset Price
6 7 9 11 13

P2 − P1 7.52×10−4 -7.37×10−2 1.96×10−2 1.46×10−2 1.23×10−2

P3 − P2 7.31×10−6 -1.7 ×10−3 8.35×10−5 1.43×10−4 1.24×10−4

Table 7.17: Pricing result for Spread B with Binomial Tree

# Steps Initial Asset Price
6 7 8 9 11

P1 52×4 4.99567 4.74168 3.25581 2.09834 0.79603
P2 52×40 4.99437 4.72975 3.25533 2.09487 0.79406
P3 52×400 4.99423 4.72981 3.25613 2.09506 0.79378

Table 7.18: Convergence for Spread B with Binomial Tree

Initial Asset Price
6 7 8 9 11

P2 − P1 -1.3×10−3 -1.19×10−2 -4.80×10−4 -3.5 ×10−3 -2×10−3

P3 − P2 -1.39×10−4 5.33×10−5 7.95×10−4 1.89×10−4 -2.8×10−4

Table 7.19: Pricing result for Spread B with Finite Difference

Δs Initial Asset Price
6 7 8 9 11

P1 1 4.99290 4.91701 3.26701 2.07085 0.76895
P2 0.1 4.99420 4.73451 3.25697 2.09489 0.79347
P3 0.01 4.99422 4.72976 3.25618 2.09502 0.79375

7.2.2 Performance with Different Regressor Configurations

We apply the LSM method for both put spreads, and characterize the performance respectively. We will
see that the difference in the slope of the payoff function makes a difference.
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Table 7.20: Convergence for Spread B with Finite Difference

Initial Asset Price
6 7 8 9 11

P2 − P1 1.3×10−3 -1.83×10−1 -1.0×10−2 2.4×10−2 2.45×10−2

P3 − P2 1.9×10−5 -4.8×10−3 -8.0×10−4 1.33×10−4 2.86×10−4
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(b) Price Difference on Spread B

Figure 7.5: Price difference between the Binomial Tree and Finite Difference benchmarks for the two Put
Spreads

For the choices of explanatory variable, we consider the following 2:
1.the underlying asset value,
2.the value of a co-terminal European put based on the Black-Scholes formula.
For the choice of basis function, since the payoff function of Put Spread has a distinctive bend in ITM

region, we consider various types of polynomials, including power series, weighted-Laguerre polynomial,
Legendre polynomial and Hermite polynomial.

Figure 7.6 shows the average price difference for S(0) ∈ [6, 14] for both Put Spreads. Since the two
Put Spreads have different payoff functions and hence option values, it does not make sense to compare
the average price difference between the two for S(0) ∈ [6, 14]. So, we look at the result separately.
Subplot (a) and (c) shows the result with Spread A. (c) shows that the combination of asset price plus
weighted-Laguerre polynomial as well as European Put Spread value plus Power series give less negative
average price difference before the number becomes positive after using 4 or 5 terms of the polynomials.
An interesting case in (a) is that the combination of coterminal European option price and 1 or 2 terms
of weighted-Laguerre polynomial produces significantly more negative average difference when compared
to other combinations. When we compare this poor result to the good performance of European option
price plus Power series, it is not hard to find that a close match of the regressor value to the Bermudan
option’s exercise or hold value is crucial in determining the performance of the LSM method. Weighted-
Laguerre polynomial introduces a scaling factor of e−x/2 to bound the polynomials. When x is large,
this helps to improve the OLS fitted multi-linear model. On the other hand, when x is small, the scaling
factor introduces a nonlinear distortion to the regressor w.r.t. the explanatory variable x. As a result,
we see improvement with more terms of weighted-Laguerre polynomials but worse result with one or two
terms. As is shown in (b) and (d), we have similar observations for Spread B. Overall, the combination
of coterminal European Put value plus Power series as well as the combination of underlying asset price
plus weighted-Laguerre polynomial give the best LSM pricing result.

Figure 7.7 compares the price difference (not the average difference) for Spread A and Spread B at
different initial asset prices. Underlying asset value is used as explanatory variable, and Power series is
used as basis function. Since the payoff function of Spread B lie below that of Spread A uniformly, the
option value of Spread B should be lower than that of Spread A. We observe that with 1, 3, 5, 6 terms of
Power series, the price difference on Spread B is higher than that on Spread A at most initial asset prices.
With 4 terms of power series, the price differences are comparable on the two spreads. It is an anomaly
with 2 terms of power series, where the pricing difference on Spread A is much higher. For all six cases,
the highest(most negative)price difference of Spread B occurs when S(0) is close to K1 = 7. A discussion
about LSM pricing error based on the result in (e) is given in Section 4.2.2. The main conclusion is that
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(c) Spread A (zoomed view)
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(d) Spread B (zoomed view)

Figure 7.6: Average price difference between LSM and FD when S(0) ∈ [6, 14] for the two Put Spreads
in the Black-Scholes world using various regressor configurations.

when the OLS fitted multi-linear model approximates the option’s continuation value function poorly
near the true early exercise boundary, there will be higher LSM pricing error.

7.3 Bermudan with an Asian-style Payoff in the Black-Scholes World

Unless stated otherwise, we consider the following set of model and simulation parameters:
Parameters for the underlying asset price dynamics under risk neutral measure, r = 0.06, σ = 0.3.
Parameters for the Bermudan put option, K = 10, T = 1. Let Δt = T

52 , exercise moments are{
1
52 , 2

52 , . . . , 51
52 , 1

}
.

Parameters for Monte Carlo simulation, time step is Δt = T
52 , 105 number of sample paths for each

Monte Carlo(LSM) result. Averaging over 100 such simulation results gives the output. We choose only
ITM sample paths at each early exercise moment for regression, i.e. only those paths where A(t) < K.
The Asian-style Bermudan option has a path dependent feature. We would like to understand how to
incorporate the path-dependency in the LSM algorithm.

7.3.1 Convergence of the Benchmark

As we have mentioned in Section 4.2.3 , the benchmark FD solver approximates the value of a continuously-
monitored arithmetic-mean fixed-strike Bermudan Asian option. It is the closest match to the discretely-
monitored Bermudan Asian option that we try to price with the LSM method. We first give some
numerical evidence of the convergence of our benchmark price.

We build the FD solver for the Bermudan Asian option. Table 7.21 and 7.22 give the convergence of
the Bermudan FD benchmark. For price P3, we use 1000 grid points for asset price S, 1000 grid points
for its running average A and 2000 grid points for the time axis. With the strike at K = 10, we are
mainly interested in option price on the interval S(0) ∈ [6, 12]. The number shows that depending on
the moneyness, convergence is about to a few percentage of the price fir P3. This is not so satisfactory
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(b) 2 terms of power series
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(c) 3 terms of power series
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(d) 4 terms of power series
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(e) 5 terms of power series
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(f) 6 terms of power series

Figure 7.7: Price difference for two Bermudan Put Spreads in the Black-Scholes world, T = 1, Δt = T/52,
underlying asset value as explanatory variable, power series as basis functions. Simulated with 105 sample
paths. Spread A, K1 = 7,K2 = 12. Spread B, K1 = 7, K2 = 9.
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from pure numerical point of view. However, despite the effort of using ADI to enhance the numerical
efficiency, the PSOR algorithm does not work very efficiently in this case. It takes long time to obtain
the price P3. One may need to try some more efficient numerical scheme to build better FD solver for
the Bermudan Asian option. However, we shall learn from the next section that this benchmark allows
us to gauge the relative performance of the LSM pricing result.

Table 7.21: Pricing result for a Bermudan Asian Put with Finite Difference

Δs Initial Asset Price
6 8 10 12 14

P1 2 4.0556 2.2641 0.5636 0.1292 0.0290
P2 0.2 4.1817 2.2967 0.6444 0.1039 0.0123
P3 0.02 4.1612 2.2760 0.6264 0.0965 0.0099

Table 7.22: Convergence for a Bermudan Asian Put with Finite Difference

Initial Asset Price
6 8 10 12 14

P2 − P1 0.1261 0.0327 0.0808 -0.0253 -0.0168
P3 − P2 -0.0205 -0.0207 -0.0179 -0.0075 -0.0023

7.3.2 Performance with Different Regressor Configurations

We have simulated the LSM method with different regressor configurations. Table 7.23 shows the price
difference between the LSM price and the FD benchmark. The numbers are higher than those for the
Bermudan Put and Put Spread, mainly because the difference in payoff functions for LSM simulation and
the FD benchmark. Figure 7.8 illustrates the pricing difference at different initial asset prices. Neverthe-
less we can still observe change in the price difference numbers when different regressor configurations are
used. We do not record the most extreme price difference points, instead, we track the pricing difference
at several representative initial asset price points.
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Figure 7.8: Pricing results and difference between the LSM method on a discretely-monitored Bermudan
Asian option and the FD scheme on its continuously-monitored counterpart.

The numbers show that using the underlying price S and its running average A together as the
explanatory variables helps to reduce the price difference significantly. This is expected, because one of
the underlying assumptions of the LSM algorithm is that assume the underlying information process to be
a Markov process. When the assumption is satisfied the continuation value function can be expressed as a
one step conditional expectation conditioned on the information available up to that moment. In case of
this Bermudan Asian option, if we only take S as explanatory variable, then the path-dependent feature
means that the continuation value function also depends on S value at earlier moments, which means it
is non-Markovian. However, if we augment the explanatory variable by A, then the continuation value
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Table 7.23: Price difference for a Bermudan Asian Put with various regressor configurations, T = 1,
Δt = T/52, 105 number of paths.

Regressors Average
Diff for
S(0) ∈
[6, 12]

Initial Asset Price

6 8 10 12 14

c, A. -0.1545 -0.16460 -0.27228 -0.09143 -0.00110 0.00085
c, A,A2. -0.1516 -0.15394 -0.25689 -0.09114 -0.00104 0.00076
c, A, . . . , A3. -0.1526 -0.15780 -0.26322 -0.09134 -0.00101 0.00078
c, A, . . . , A4. -0.1514 -0.16393 -0.26821 -0.09103 -0.00094 0.00089
c, S. -0.0888 -0.08993 -0.13801 -0.07606 -0.01112 -0.00080
c, S, S2. -0.0864 -0.08740 -0.13107 -0.07590 -0.01162 -0.00086
c, S, . . . , S3. -0.0857 -0.08730 -0.12978 -0.07541 -0.01163 -0.00088
c, S, . . . , S4. -0.0857 -0.08750 -0.12952 -0.07552 -0.01162 -0.00086
c, A, S. -0.0280 -0.04715 -0.05457 -0.00481 0.00375 0.00096
c, A,A2, S, S2. -0.0258 -0.04381 -0.05202 -0.00222 0.00414 0.00099
c, A, . . . , A3,
S, . . . , S3.

-0.0253 -0.04406 -0.05189 -0.00159 0.00393 0.00100

c, A, . . . , A4,
S, . . . , S4.

-0.0252 -0.04404 -0.05177 -0.00125 0.00411 0.00099

c, A,A2,S, S2,
S × A.

-0.0238 -0.04321 -0.04948 0.00038 0.00423 0.00101

c, A, . . . , A3,
S, . . . , S3,
S × A.

-0.0233 -0.04246 -0.04942 0.00108 0.00418 0.00099

c, A,A2,S, S2,
S×A, S×A2,
S2 × A.

-0.0232 -0.04266 -0.04932 0.00124 0.00418 0.00102

c, A, . . . , A3,
A, . . . , A3,
S×A,S×A2,
S2 × A.

-0.0233 -0.04251 -0.04929 0.00089 0.00420 0.00096

function at time t indeed only depends on the time t values of S(t) and A(t). Thus the LSM simulation
using both S and A is theoretically justified. The result shows that adding higher order terms such as
S3 or A3 does not bring much improvement. Adding the cross-product S ×A increases the pricing result
slightly further, although not as significant as adding A. Adding higher order cross-product terms such
as S2 × A or S × A2 does not make much difference.

We have also tried to use the Black-Scholes price of a co-terminal European-Asian continuously-
monitored geometric-mean fixed-strike put as an explanatory variable. The results are shown in Table
7.24. The numbers show that using this variable does not render better pricing result.
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Table 7.24: Price difference for a Bermudan Asian Put with various regressor configurations, T = 1,
Δt = T/52, 105 number of paths. The BS value of a co-terminal geometric-mean European Asian put,
Vg, is used as explanatory variable.

Regressors Average
Diff for
S(0) ∈
[6, 12]

Initial Asset Price

6 8 10 12 14

c, Vg, V
2
g . -0.0870 -0.08830 -0.13115 -0.07795 -0.01218 0.00095

c, Vg, . . . , V
3
g . -0.0860 -0.08770 -0.12934 -0.07623 -0.01187 0.00092

c, A,A2,
Vg, V

2
g .

-0.0260 -0.04376 -0.05168 -0.00321 -0.00347 -0.00084

c, A, . . . , A3,
Vg, . . . , V

3
g .

-0.0254 -0.04397 -0.05178 -0.00189 -0.00363 -0.00083

c, A,A2,
Vg, V

2
g ,

Vg × A.

-0.0241 -0.04257 -0.04988 -0.00042 -0.00408 -0.00093

c, A, . . . , A3,
Vg, . . . , V

3
g ,

Vg × A,Vg ×
A2, V 2

g × A.

-0.0233 -0.04248 -0.04948 -0.00105 -0.00407 -0.00089

7.4 Bermudan Put in the Heston Model

Unless stated otherwise, we consider the following set of model and simulation parameters:
Parameters for the underlying asset price dynamics under the risk neutral measure:
We consider Heston model with 2 different correlation coefficients.
The one with ρ = −0.6 is called Heston A.
The one with ρ = 0 is called Heston B.
All the other model parameters are the same, r = 0.03, σv = 0.3, κ = 2, η = 0.1, v(0) = η, S(0) = 10.
Parameters for the Bermudan put option, T = 1. Let Δt = T

52 , exercise moments are
{

1
52 , 2

52 , . . . , 51
52 , 1

}
.

We evaluate the option price at different strike, K.
Parameters for Monte Carlo simulation, time step is Δt = T

52 , 105 number of sample paths for each
Monte Carlo(LSM) result. Averaging over 100 such simulation results gives the output. We choose only
ITM sample paths at each early exercise moment for regression, i.e. only those paths where S(t) < K.
For each set of regressors, we generate sample paths from S(0) = 10, and simulate by the LSM method
option values with different strike K.

In this experiment, we would like to find out how to utilize the stochastic volatility (or variance)
variable in the LSM algorithm.

7.4.1 Convergence of the Benchmark

For the Heston model, we use a benchmark based on the COS method [23]. In the algorithm, the one
parameter that affects convergence the most is the number of COS terms. We choose all other parameters
according to the recommendation in Fang’s work [23]. Option values calculated with different number
of COS terms are compared to establish convergence. Table 7.25 and 7.26 shows the convergence of the
benchmark for Heston A, Table 7.27 and 7.28 shows the convergence of the benchmark for Heston B.

Table 7.25: Pricing result for Heston A with COS

# COS terms Strike
6 8 10 12 14

P1 32 0.07377 0.37502 1.11034 2.35698 4.05131
P2 62 0.07277 0.37166 1.10414 2.34965 4.03393
P3 128 0.07268 0.37154 1.10376 2.34865 4.03253
P4 256 0.07268 0.37154 1.10376 2.34863 4.03256
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Table 7.26: Convergence for Heston A with COS

Strike
6 8 10 12 14

P2 − P1 -1.0×10−3 -3.4×10−3 -6.2×10−3 -7.3×10−3 -1.74×10−2

P3 − P2 -9.2×10−5 -1.2×10−4 -3.8×10−4 1.3×10−3 -1.4×10−3

P4 − P3 -2.9×10−6 -3.9×10−6 -5.1×10−6 -1.9×10−5 -2.8×10−5

Table 7.27: Pricing result for Heston B with COS

# COS terms Strike
6 8 10 12 14

P1 32 0.04834 0.33838 1.11890 2.41504 4.09708
P2 62 0.04738 0.33517 1.11054 2.40722 4.08645
P3 128 0.04733 0.33483 1.10989 2.40652 4.08630
P4 256 0.04733 0.33483 1.10988 2.40652 4.08629

Table 7.28: Convergence for Heston B with COS

Strike
6 8 10 12 14

P2 − P1 -9.6×10−4 -3.2×10−3 -8.4×10−3 -7.8×10−3 -1.06×10−2

P3 − P2 -5.5×10−5 -3.4×10−4 -6.5×10−4 7.0×10−4 -1.6×10−4

P4 − P3 -2.4×10−7 -2.7×10−6 -6.3×10−6 -4.8×10−6 -8.4×10−6

7.4.2 Performance with Different Regressor Configurations

We simulate the LSM method with different regressor configurations. We distinguish between two cases,
one with the correlation coefficient ρ = −0.6 and the other with ρ = 0.

Table 7.29 to 7.31 have the results where ρ = −0.6. Table 7.29 shows the price difference with the
LSM price simulated from 104 sample paths. The figures show that as the number of basis functions
increases, the LSM price rises above the COS benchmark for all strike value. We have observed similar
phenomenon in the Black-Scholes world. The message here is that we should be more careful to interpret
the results.

Despite this ambiguity, we do observe evidence that some configurations of regressors make a dif-
ference. Table 7.30 shows that using the underlying asset price S alone does not produce better result
regardless how many terms of basis functions to choose. In Table 7.31 we show the price difference with
various regressor configurations. Regressors like c, S, . . . , S4,

√
v, S ×

√
v and c, S, . . . , S4, v, S × v reduce

the price difference significantly while keeping the LSM price below the COS benchmark. Adding more
terms of cross-product such as S × v or S2 ×

√
v further raises the LSM price, but whether this means

better accuracy is still not clear at this point. We will get back to this in the upper bound simulation
later. Since in these simulations early exercise is possible at each time step except time 0, running sum
of the stochastic variance, Σn

i=1v(tn), does not contribute to better pricing. Figure 7.9 shows the price
differences between the LSM price and the benchmark with several different regressor constructions and
simulation setups. In all four subplots, MC1 is simulated with the regressors, c, S, . . . , S4 and 105 paths,
which is plotted to illustrate the pricing error profile of low biased LSM results. 4 different error plot
with different regressors or simulation configuration are labeled MC2. These plots illustrates the problem
that the LSM price would raise above the benchmark under various situations. Subplot (c) shows that
adding too many terms of regressors could be a problem. Subplot (d) shows that using low path number
can lead to significant high bias.

One question to be answered is whether the significant improvement when adding regressors such
as S ×

√
v or S × v is related to the negative correlation coefficient ρ = −0.6. We thus make a few

similar simulations with ρ set to be 0. Table 7.32 shows the results. We again observe that regressors like
c, S, . . . , S4,

√
v, S ×

√
v and c, S, . . . , S4, v, S × v reduce the price difference significantly while keeping

the LSM price below the COS benchmark. This illustrates that the improvement is not related to the
correlation coefficient. Adding more cross-product terms further raises the LSM price, but the implication
requires further study.
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(a) MC2 regressors: c, S, . . . , S4,
√

v, S ×
√

v.
Simulated with 105 sample paths.
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(b) MC2 regressors: c, S, . . . , S4,v, S × v.
Simulated with 105 sample paths.
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(c) MC2 regressors: c, S, . . . , S4,
√

v, v,
S ×

√
v, S × v, S2 ×

√
v. Simulated with

105 sample paths.
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(d) MC2 regressors: c, S, . . . , S4. Simulated
with 104 sample paths

Figure 7.9: Price difference for a Bermudan Put in the Heston model, T = 1, Δt = T/52, different
regressor constructions. All results except MC2 in (d) are simulated with 105 sample paths. All the MC1
are simulated with regressors: c, S, . . . , S4.

Table 7.29: Price difference for a Bermudan Put in the Heston model with underlying price as explanatory
variable and Power series as basis functions , T = 1, Δt = T/52, 104 number of paths. Correlation
coefficient ρ = −0.6.

Polynomial Term
Number

Average Diff
S(0) ∈ [6, 14]

Most Positive Diff Most Negative Diff

Power 3 −3.6 × 10−4 2.0×10−3@15.2 -2.5×10−3@13.2
Power 4 2.1 × 10−3 3.6×10−3@8 NA
Power 5 2.7 × 10−3 6.0×10−3@9 NA
Power 6 4.2 × 10−3 6.6×10−3@9 NA
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Table 7.30: Price difference for a Bermudan Put in the Heston model with underlying price as explanatory
variable and Power series as basis function, T = 1, Δt = T/52, 105 number of paths. Correlation
coefficient ρ = −0.6.

Polynomial Term
Number

Average Diff
K ∈ [8, 16]

Most Positive Diff Most Negative Diff

Power 1 −1.4 × 10−2 2.8×10−5@4 -2.5×10−2@12
Power 2 −6.4 × 10−3 1.2×10−4@16 -1.15×10−2@12.8
Power 3 −3.9 × 10−3 2.3×10−4@16 -7.4×10−3@13.2
Power 4 −3.3 × 10−3 2.8×10−4@6 -6.2×10−3@13.2
Power 5 −3.3 × 10−3 5.1×10−4@7 -6.2×10−3@13.2
Power 6 −2.9 × 10−3 5.7×10−4@7 -5.9×10−3@13.6
Power 7 −3.0 × 10−3 5.9×10−4@6 -6.6×10−3@12.4
Power 8 −3.6 × 10−3 3.0×10−4@8 -8.7×10−3@12.8

Table 7.31: Price difference for a Bermudan Put in the Heston model with various regressor configurations,
using both underlying price and the stochastic variance as explanatory variables. T = 1, Δt = T/52, 105

number of paths. Correlation coefficient ρ = −0.6. c means a constant.

Regressors Average Diff
K ∈ [8, 16]

Most Positive Diff Most Negative Diff

c, S, . . . , S4,
√

v. −3.6 × 10−3 2.2×10−4@15.6 -7.0×10−3@12.4
c, S, . . . , S4,

√
v, v. −2.6 × 10−3 4.0×10−4@15.2 -5.4×10−3@12.4

c, S, . . . , S4, S ×
√

v. −1.9 × 10−3 4.7×10−4@6 -3.7×10−3@12.8
c, S, . . . , S4,

√
v, S ×√

v.
−3.4 × 10−4 2.3×10−4@5 -9.5×10−4@12.4

c, S, . . . , S4,
√

v, S ×√
v, S × v.

−2.0 × 10−4 5.8×10−4@7 -1.4×10−3@12.8

c, S, . . . , S4,
√

v, v, S×√
v, S × v.

3.8 × 10−4 8.5×10−4@15.2 -9.1×10−5@13.6

c, S, . . . , S4,
√

v, v, S×√
v, S × v, S2 ×

√
v.

8.6 × 10−4 1.3×10−3@10.8 NA

c, S,
√

v. −1.2 × 10−2 4.4×10−5@4 -2.2×10−2@12
c, S, S ×

√
v. −1.26×10−2 1.2×10−4@16 -2.3×10−2@12

c, S,
√

v, S ×
√

v. −1.15×10−2 7.5×10−5@4 -2.1×10−2@12.4
c, S, . . . , S3, v. −3.5 × 10−3 2.1×10−4@6 -6.7×10−3@12
c, S, . . . , S4, v. −3.1 × 10−3 3.6×10−4@15.2 -6.0×10−3@12.4
c, S, . . . , S5, v. −3.7 × 10−3 2.8×10−4@15.6 -7.6×10−3@12.4
c, S, . . . , S6, v. −3.7 × 10−3 4.1×10−4@10.8 -9.2×10−3@11.6
c, S, . . . , S4, S × v. −3.7 × 10−3 3.3×10−4@6 -7.5×10−3@12.4
c, S, . . . , S4, v, S × v. −2.0 × 10−4 7.3×10−4@8 -8.8×10−4@12
c, S, . . . , S4, Σv. −4.4 × 10−3 2.6×10−4@5 -8.5×10−3@12
c, S, . . . , S4, S × Σv. −4.3 × 10−3 2.6×10−4@6 -8.7×10−3@12
c, S, . . . , S4, Σv, S ×
Σv.

−2.1 × 10−3 4.0×10−4@6 -4.0×10−3@12.8
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Table 7.32: Price difference for a Bermudan Put in the Heston model with various regressor configurations,
using both underlying price and the stochastic variance. T = 1, Δt = T/52, 105 number of paths.
Correlation coefficient ρ = 0. c means a constant.

Regressors Average Diff
K ∈ [8, 16]

Most Positive Diff Most Negative Diff

c, S, . . . , S3. −6.5 × 10−3 1.1×10−4@5 -1.0×10−2@13.2
c, S, . . . , S4. −5.7 × 10−3 1.9×10−4@6 -9.1×10−3@13.6
c, S, . . . , S5. −5.6 × 10−3 2.1×10−4@6 -8.8×10−3@13.6
c, S, . . . , S6. −5.5 × 10−3 4.1×10−4@6 -8.8×10−3@14
c, S, . . . , S7. −5.8 × 10−3 2.7×10−4@6 -8.8×10−3@12.8
c, S, . . . , S8. −6.5 × 10−3 1.8×10−4@5 -1.0×10−3@13.6
c, S, . . . , S4,

√
v. −5.3 × 10−3 1.6×10−4@5 -8.5×10−3@12.4

c, S, . . . , S4,
√

v, v. −4.9 × 10−3 1.7×10−4@5 -7.9×10−3@12.4
c, S, . . . , S4,

√
v, S ×√

v.
−8.2 × 10−4 5.7×10−4@7 -1.6×10−3@13.6

c, S, . . . , S4, v, S × v. −3.6 × 10−4 5.0×10−4@8 -9.7×10−4@12
c, S, . . . , S4,

√
v, v, S×√

v, S × v, S2 ×
√

v.
1.2 × 10−3 1.6×10−3@14.8 NA

c, S,
√

v. −1.39×10−2 4.3×10−5@4 -2.1×10−2@12.4
c, S, S ×

√
v. −1.36×10−2 3.4×10−5@4 -2.1×10−2@12.4

c, S,
√

v, S ×
√

v. −1.41×10−2 6.9×10−5@5 -2.2×10−2@12.4

7.4.3 Upper Bound Result

We compute the upper bound price only for the case where ρ = −0.6. The initial asset price is fixed
at S(0) = 10. Since the upper bound algorithm is computationally quite expensive, we choose Nt = 12
possible exercise moments for the maturity T = 1 in the Heston model. Notice that in the previous
simulation of the LSM price, we choose Nt = 52 for T = 1. Difference in the option price can be observed
from the benchmark prices in Table 7.25 and Table 7.33.

Table 7.33 gives the benchmark prices by COS method. Table E.7 to Table E.9 in Appendix E show
the convergence result of the upper bound algorithm. As a base case, we choose the outer path number
Nout = 103, the inner path number Nin = 103. Average of 10 such simulation gives us the estimate of the
gap between the LSM price and the Upper bound price as well as the corresponding 95% t-Confidence
Interval (t-CI) of the gap value. We use the following set of regressors c, S, . . . , S4,

√
v, S ×

√
v. We use

106 paths to obtain the LSM regression coefficients, then use a separate set of 107 paths to obtain the
LSM price. These regression coefficients define the stopping rule used in the upper bound simulation.
Variation in the regression coefficients due to limited number of paths for the LSM algorithm may lead
to variation in the upper bound result as well. We choose as much as possible paths for the LSM to
minimize such impact. We increase either Nout or Nin to 104 paths to check the variation of the gap
value due to upper bound Monte Carlo configuration.

Figure 7.10 shows the upper bound results for a Bermudan Put in the Heston model. Table 7.34 gives
a list of all the 10 sets of regressors used in simulation. The simulation data are recorded in Table E.10
to Table E.19 in Appendix E. We will ignore the gap number for OTM case where the strike K = 8.

Table 7.33: Benchmarks for a Bermudan Put in the Heston model for N = 52 and T = 1.

Strike
8(OTM) 10(ATM) 12(ITM)

COS 0.3707 1.1014 2.3442

We have simulated the upper bound with different set of regressors based on the underlying asset
price S and the stochastic variance v. The hand picked “best” set of regressors, Set 9, which consists
of a constant c, S, . . . , S4,

√
v and S ×

√
v gives a low gap. The resulting gap is below 0.6% in three

simulation runs for the ITM case. That is below 3.5% for the ATM case. When choosing less or more
terms of the main variable, which is S in this case, the gap increase significantly. Set 1, 2 and 4 uses 1
or 8 power terms of the asset price. Subplot (a) and (b) shows that these regressors give high gap value.
The interesting case is Set 4 with 8 power terms of the asset price. The high gap value indicates worse
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(a) K = 12 (ITM)
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(b) K = 10 (ATM)
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(c) K = 12 (ITM) zoomed view
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(d) K = 10 (ATM) zoomed view

Figure 7.10: Simulated lower bound LSM price and the corresponding upper bound AB price for a
Bermudan Put in the Heston model. The initial asset price is fixed at S(0) = 10. Results are simulated
with 2 different strikes: K = 12, 10.

Table 7.34: The regressor set configurations used for a Bermudan Put in the Heston model.

Set Name Regressor Set Configuration

Set 1 const c, asset price S, square-root of stochastic variance
√

v.
Set 2 c, S,

√
v, S ×

√
v.

Set 3 c, S, . . . , S4.
Set 4 c, S, . . . , S8.
Set 5 c, S, . . . , S4,

√
v.

Set 6 c, S, . . . , S4,
√

v, v.
Set 7 c, S, . . . , S4,

√
v, v, v

3
2 , v2.

Set 8 c, S, . . . , S4, S ×
√

v.
Set 9 c, S, . . . , S4,

√
v, S ×

√
v.

Set 10 c, S, . . . , S4,
√

v, v, S ×
√

v, S × v, S2 ×
√

v.
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approximation due to overfitting caused by using many high order polynomials.
Several other sets of regressors give slightly lower LSM price than Set 9 above, such as c, S, . . . , S4,√

v, or c, S, . . . , S4,
√

v, v. Mainly those with the same number of the main variable S and different
number of the secondary variable v or cross-products. These regressor set produce similar upper bound
gaps to the “best” set. Subplot (c) and (d) zoom in to give a better view of the gap. Considering
the variation of the gap value in separate simulation runs, which can be observed in the data tables in
Appendix E, these results are literally indistinguishable. Just using c, S, . . . , S4 gives a proper gap value.
That is less than 1% ITM and less than 2.5% ATM. These results confirms that the LSM price is robust
with different choices of the basis function. On the other hand, they shows that due to the variation
in the gap value, it is difficult to distinguish between sets of regressors producing very similar pricing
results. In Table E.18 and Table E.19, we have the result for Set 9 and Set 10. Results show that with
106 sample paths for the LSM algorithm, the additional regressors in Set 10 does not raise the LSM price
above our benchmark. Meanwhile, the gap values are quite similar between these two cases.

7.5 Cancellable Bermudan Swaption in the Libor Market Model

We use the model parameters given in Appendix D.2 for all simulations with the Libor market model in
this chapter. For each type of coupon specification, we simulate the value of a pair of callable/cancellable
Bermudan swaptions according to the algorithms in Section 6.3 at different moneyness. We check the
results according to the theoretical parity relation between the simulated option values as suggested by
Equation 6.33,

V CPSN (0; θ) = V PS(0; θ) + V CnRSN (0; θ).

We compute the gap between the LSM price and upper bound price for the cancellable receiver swaptions.
The simulation parameter for the parity result is: 106 paths for the LSM regression coefficients and

the LSM price.
The simulation parameters for the upper bound result are: 106 paths for calculating the LSM regres-

sion coefficients, 107 paths for calculating the LSM price. 103 paths for upper bound outer simulation,
103 paths for upper bound inner simulation, 5 upper bound results for calculating average gap value and
the 95% t-Confidence Interval. We will report 3 separate simulation runs to give a sense of the overall
variability of the gap value. Difference in the results from the 3 runs indicates the impact of the LSM
estimated stopping rule on upper bound result.

The first exotic swaption we study is the fixed-for-floating cancellable Bermudan swaption. Its coupon
rate is defined by,

Cn(Ln(Tn−1)) = k.

where Cn denotes the coupon rate on the interval [Tn−1, Tn].

7.5.1 Parity Result

We consider a pair of cancellable receiver swaption and callable payer swaption, which share the same
coupon rate and possible exercise moments. We can find the analytical solution of the ATM swaption
coupon rate, k = RN

0 (0). We find that k = 314bps. The ITM and OTM (with respect to the cancellable
receiver swaption) coupon rates are set to be 414bps and 214bps. Table 7.35 gives the parity result.

Table 7.35: Parity value for a callable payer swaption and a cancellable receiver swaption. All the numbers
reported are in basis points.

Value
Coupon
rate k

Simulated
V PS(0)

Simulated
V CPSN (0)

Calculated
V CnRSN (0)

Simulated
V PS(0)

Simulated
V CnRSN (0)

Calculated
V CPSN (0)

214 837.0 901.3 64.3 837.0 64.3 901.3
314 0.3 453.5 453.2 0.3 453.0 453.3
414 -835.2 247.1 1082.3 -835.0 1082.1 247.1
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7.5.2 Upper Bound Result

Figure 7.11 shows the simulated lower bound LSM price and the corresponding upper bound Andersen-
Broadie(AB) price for the cancellable receiver Bermudan swaption. The middle point between upper
bound and lower bound prices is a better estimate of the true option value than either one of them. We
simulate the option values at 3 coupon rates mentioned in the last section. We have simulated 10 different
sets of regressors, their configurations are listed in Table 7.37. The regressors involved are described in
Section 6.3.4. All the numbers reported are in basis points (bps). We show in Figure 7.11 the results from
one of three separate simulation runs. Results concerning all 3 runs are listed in Table E.20 till Table
E.29 in Appendix E. An example is shown here as Table 7.36. We also report the 95% t-Confidence
Interval calculated from 5 upper bound results within a simulation run in Appendix E.

Table 7.36: Upper bound for a cancellable receiver swaption. Regressors: c, fixed leg, floating leg, floating
leg tilt. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 64.2 453.2 1082.3

Gap 9.1 15.6 11.6
Gap(t-CI) (8.4, 9.8) (14.2, 17.1) (10, 13.2)

Run2
LSM price 64.3 453.1 1082.3

Gap 9.5 15.8 12.4
Gap(t-CI) (8.9, 10) (15.1, 16.4) (11.7, 13.1)

Run3
LSM price 64.3 453.2 1082.2

Gap 9.3 16.5 13
Gap(t-CI) (8.8, 9.9) (14.0, 19.1) (11.1, 14.9)

Table 7.37: The regressor set configurations used for the cancellable Bermudan swaption in the Libor
market model

Set Name Regressor Set Configuration at Tn

Set 1 const, fixed leg, floating leg, floating leg tilt.
Set 2 const, fixed leg, floating leg, all living Libors.
Set 3 const, fixed leg, floating leg, all living Libors, all living Libors

squared.
Set 4 const, fixed leg, floating leg, all living Libors, cross-product of all

living Libors.
Set 5 const, fixed leg, floating leg, next Libor rate, forward swap rate

RN
n (Tn).

Set 6 const, fixed leg, floating leg, next Libor rate, RN
n (Tn), RN

n (Tn)2.
Set 7 const, fixed leg, floating leg, next Libor rate, RN

n (Tn), . . . ,
RN

n (Tn)3.
Set 8 const, fixed leg, floating leg, next Libor rate, RN

n (Tn), . . . ,
RN

n (Tn)4.
Set 9 const, fixed leg, floating leg, next Libor rate, RN

n (Tn), . . . ,
RN

n (Tn)5.
Set 10 const, fixed leg, floating leg, next Libor rate, RN

n (Tn), . . . ,
RN

n (Tn)6.

Since we choose all the paths for regression, the high gap value caused by picking only ITM paths for
regression in the Black-Scholes world and Heston model does not happen here. Even the base case set of
regressors, Set 1, can give gap value less than 20 bps across different moneyness. Using all the living Libor
rates directly as regressors reduces the gap value to less than 5 bps. Using square or cross-product of the
Libor rates gives little improvement. Set 5 to Set 10 features the forward swap rate, RN

n (Tn). They are
able to reduce the gap value further. The gap value is brought down to less than 1 bp with Set 9 and 10,
which includes the first 5 and 6 powers of RN

n (Tn). This term effectively captures the information needed
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Figure 7.11: Simulated lower bound LSM price and the corresponding upper bound AB price for a
cancellable receiver Bermudan Swaption. Results simulated with 3 different fixed coupon rates: k =
214bps, 314bps, 414bps.

to approximate the continuation value of the fixed-for-floating swaption. We expect that the forward swap
rate would also facilitate LSM pricing accuracy for more complicated swaption type, although probably
not as effective as what has been demonstrated with the fixed-for-floating swaption.

What is worth mentioning is that we use many terms of regressors in Set 2, 3 and 4. But the resulting
gap value appears to be pretty stable. It seems that there is no apparent problem in convergence of the
LSM when using many terms of regressors in this setting. Comparing the results associated with Set 5
till Set 10, we observe that as the lower bound LSM price increases, the upper bound reduces as a result
of reducing gap value. Considering very similar computational time for all the above mentioned regressor
sets, we recommend to use Set 10 for the cancellable fixed-for-floating swaption.
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7.6 Cancellable Inverse Floater in the Libor Market Model

We consider a cancellable receiver floored inverse floater with the following coupon function,

Cn(Ln(Tn−1)) = max(s − Ln(Tn−1), f),

where s is the strike, f is the floor. Both parameters are set to be time independent constants.

7.6.1 Parity Result

We find the ATM model parameters through a few trail-and-error simulations, and these are s = 585.2bps,
f = 20bps. The parameters makes the simulated swap to worth around ±1bp at time 0. The ITM and
OTM (with respect to the cancellable receiver inverse floater) strikes are set to be 685.2bps and 385.2bps.
Table 7.38 gives the parity result.

Table 7.38: Parity value for a callable payer floored inverse floater and a cancellable receiver floored
inverse floater. All the numbers reported are in basis points.

Value
strike
s

Simulated
V PS(0)

Simulated
V CPSN (0)

Calculated
V CnRSN (0)

Simulated
V PS(0)

Simulated
V CnRSN (0)

Calculated
V CPSN (0)

485.2 561.5 832.8 271.3 561.1 270.6 831.7
585.2 1.1 674.3 673.2 1.1 674.1 675.2
685.2 -689.4 533.9 1223.3 -689.4 1223.1 533.7

7.6.2 Upper Bound Result

Figure 7.12 shows the simulated lower bound LSM price and the corresponding upper bound AB price
for the cancellable receiver inverse floater. We simulate the option values at 3 strike values mentioned
in the last section. We have simulated 10 different sets of regressors, their configurations are listed in
Table 7.40. The regressors involved are described in Section 6.3.4. All the numbers reported are in basis
points (bps). We show in Figure 7.12 the results from one of the three separate simulation runs. Results
concerning all 3 runs are listed in Table E.30 till Table E.39 in Appendix E. An example is shown here as
Table 7.39. We also report the 95% t-Confidence Interval calculated from 5 upper bound results within
a simulation run in Appendix E.

Table 7.39: Upper bound for a cancellable receiver Inverse Floater. Regressors: c, fixed leg, floating leg,
floating tilt. About 14 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 270.7 673.2 1222.8

Gap 42.7 48.2 43.9
Gap(t-CI) (39.9, 45.4) (45.3, 51.1) (40.1, 47.8)

Run2
LSM price 270.8 673.7 1222.4

Gap 40 49 43.2
Gap(t-CI) (38.2, 41.8) (46.5, 51.5) (42.3, 44.1)

Run3
LSM price 270.9 673.4 1222.5

Gap 40.8 47.7 44.8
Gap(t-CI) (38.1, 43.5) (45.0, 50.3) (42.4, 47.2)

For the floored inverse floater, the base case set of regressors, Set 1, produces a gap value about 48
bps ATM, about twice the number for the ATM Bermudan swaption. The truncation introduced by the
floor makes it more difficult for the LSM to approximate the optimal stopping rule, thus resulting in a
wider gap. Adding square and cross-product of the floating leg and floating leg tilt to Set 1 gives us Set
2. It reduces the gap to around 15 bps. In this case, adding these terms improves the approximation
accuracy.
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Table 7.40: The regressor set configurations used for a cancellable inverse floater in the Libor market
model

Set Name Regressor Set Configuration at Tn

Set 1 const, fixed leg, floating leg, floating leg tilt.
Set 2 const, fixed leg, floating leg, floating leg tilt, floating leg squared,

floating leg tilt squared, floating leg times floating leg tilt.
Set 3 const, fixed leg, floating leg, all living Libors.
Set 4 const, fixed leg, floating leg, all living Libors, all living Libors

squared.
Set 5 const, fixed leg, floating leg, all living Libors, cross-product of all

living Libors.
Set 6 const, fixed leg, floating leg, next Libor rate, forward swap rate

RN
n (Tn).

Set 7 const, coupon leg, floating leg, next Libor rate, forward swap
rate RN

n (Tn).
Set 8 const, coupon leg, floating leg, next Libor rate, forward swap

rate RN
n (Tn), RN

n (Tn)2.
Set 9 const, coupon leg, floating leg, next Libor rate, forward swap

rate RN
n (Tn), coupon leg squared.

Set 10 const, coupon leg, floating leg, next Libor rate, forward swap
rate RN

n (Tn), coupon leg squared, coupon leg third power.
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Figure 7.12: Simulated lower bound LSM price and the corresponding upper bound AB price for a
cancellable receiver Inverse Floater. Results simulated with 3 different fixed strikes: s = 485.2bps,
585.2bps, 685.2bps.
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Using all the living Libors, their squares and cross-products reduces the gap down to less than 2 bps.
Set 3, 4 and 5 provide superior result. This rather “crude” approach proves to be quite robust. However,
we would like to find out if some more structured regressors can produce similar low gap. Set 6 consists
of a const c, forward swap rate RN

n (Tn), fixed leg, floating leg and the next Libor rate. It gives a gap
value similar to that by Set 2. We replace the fixed leg with the coupon leg in Set 7. The gap value
immediately drops down to around 4.5 bps. Adding higher order powers of RN

n (Tn) does not improve
the result. Adding higher order powers of the coupon leg further reduces the gap value to less than 2
bps. We understand that the coupon leg contains the most relevant information concerning the payoff of
the inverse floater because it takes into account the payoff function. It is not surprising that it proves to
be a very effective regressor in this case. Overall, we conclude that Set 5 and 9 are good choices for the
cancellable inverse floater.
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7.7 Cancellable Snowball in the Libor Market Model

We consider a cancellable receiver Snowball of the inverse floating type. Its coupon rate on the period
[Tn, Tn+1] is defined by

Cn = max(Cn−1 + an − Ln(Tn−1), 0).

The spread an is defined to be time dependent. A constant virtual coupon rate C0 is specified to start
the Snowball.

7.7.1 Parity Result

The spread an is set to increase by time. It is 200bps at T1 and increases by 20bps at each coupon fixing
moment until TN . The virtual coupon rate C0 is set to be 300bps for the ATM case. These values are
determined through a few trail-and-error simulations. They make the Monte Carlo simulated underlying
Snowball swap worth around 7 bps. For ITM and OTM cases, we change C0 to 400bps and 200bps
respectively. Table 7.41 gives the parity result.

Table 7.41: Parity value for a callable payer snowball and a cancellable receiver snowball. All the numbers
reported are in basis points.

Virtual Value
coupon
C0

Simulated
V PS(0)

Simulated
V CPSN (0)

Calculated
V CnRSN (0)

Simulated
V PS(0)

Simulated
V CnRSN (0)

Calculated
V CPSN (0)

200 544.0 1339.7 795.7 543.9 795.9 1339.8
300 6.1 1217.0 1210.9 7.0 1209.2 1216.2
400 -593.7 1095.7 1689.4 -593.8 1690.6 1096.8

7.7.2 Upper Bound Result

Figure 7.13 shows the simulated lower bound LSM price and the corresponding upper bound AB price
for the cancellable receiver Snowball. We simulate the option values at 3 virtual coupon rates mentioned
in the last section. We have simulated 11 different sets of regressors, their configurations are listed in
Table 7.43. The regressors involved are described in Section 6.3.4. All the numbers reported are in basis
points (bps). We show in Figure 7.13 the results from one of three separate simulation runs. Results
concerning all 3 runs are listed in Table E.40 till Table E.50 in Appendix E. An example is shown here as
Table 7.42. We also report the 95% t-Confidence Interval calculated from 5 upper bound results within
a simulation run in Appendix E.

Table 7.42: Upper bound for a cancellable receiver Snowball. Regressors: c, fixed leg, floating leg, floating
leg tilt, next cash flow. About 15 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 795.6 1210.4 1692.0

Gap 60.2 53.0 51.7
Gap(t-CI) (57.5, 62.9) (50.1, 55.9) (49.1, 54.2)

Run2
LSM price 795.2 1209.7 1692.6

Gap 56.3 53.8 51.1
Gap(t-CI) (53.9, 58.7) (49.3, 58.3) (50.0, 52.2)

Run3
LSM price 795.8 1210.5 1692.1

Gap 58.4 53.3 52.8
Gap(t-CI) (53.9, 63.0) (47.8, 58.7) (48.5, 57.2)

For the cancellable Snowball, the base case set of regressors, Set 1, produces a gap value more
than 50 bps ATM. Our Snowball payoff function is defined in a path-dependent way. The coupon rates
accumulates as time goes on, how fast they accumulate depends on all the relevant Libor rates, Ln(Tn−1),
along the path. Simulation results show that this poses a difficult situation for the LSM with the base
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Table 7.43: The regressor set configurations used for the cancellable Snowball in the Libor market model

Set Name Regressor Set Configuration at Tn

Set 1 const, fixed leg, floating leg, floating leg tilt.
Set 2 const, fixed leg, floating leg, floating leg tilt, floating leg squared,

floating leg tilt squared, floating leg times floating leg tilt.
Set 3 const, fixed leg, floating leg, all living Libors.
Set 4 const, fixed leg, floating leg, all living Libors, all living Libors

squared.
Set 5 const, fixed leg, floating leg, all living Libors, cross-product of all

living Libors.
Set 6 const, fixed leg, floating leg, next Libor rate, forward swap rate

RN
n (Tn).

Set 7 const, coupon leg approximation 1, floating leg, next Libor rate,
forward swap rate RN

n (Tn).
Set 8 const, coupon leg approximation 1, floating leg, next Libor rate,

forward swap rate RN
n (Tn), coupon leg approximation 1 squared.

Set 9 const, coupon leg approximation 2, floating leg, next Libor rate,
forward swap rate RN

n (Tn).
Set 10 const, coupon leg approximation 2, floating leg, next Libor rate,

forward swap rate RN
n (Tn), coupon leg approximation 2 squared.

Set 11 const, coupon leg approximation 2, floating leg, next Libor rate,
forward swap rate RN

n (Tn), coupon leg approximation 2 squared
and to the third power.

case set of regressors. Set 2 performs surprisingly well even when compared to other better performing
sets of regressors. Set 2 consists of all the regressors in Set 1 plus the squares and cross-product of the
floating leg and the floating leg tilt. These additional terms are crucial in this case. We believe that the
good performance of Set 2 can be traced back to the regressors related to the floating leg tilt. These terms
embodies information about the “slope” of the Libor rate curve, that is the relative position of rates at
different tenors. The path dependent feature of the payoff function means that the relative position of
the rates affects how fast the coupon rate accumulates and thus affects the option value. As a result,
using this information in the regressors brings significant improvement.

Using all the living Libors, their squares and cross-products again proves to be quite robust. Set 3,
4 and 5 give quite good results. Set 5 uses the cross-products of the living Libors, which gives higher
LSM price compared to the price by Set 2. The cross-products of the living Libors embody information
about the joint distribution of these rates, which affects the relative position of the rates. This approach
tackles the problem imposed by path dependency from a different angle.

In Set 7, we make a simple approximation for the value of the coupon leg, for which we freeze the
living Libor rates at current value. Suppose we are standing at an exercise moment Tn, the Snowball
payoff function indicates that we need the rate Lk(Tk−1) in order to calculate the coupon rate Ck for
each k = n + 1, . . . , N . Based on the information available at time Tn, we only know Ln+1(Tn) among
these rates. But we may replace Lk(Tk−1) by Lk(Tn) for each k = n + 2, . . . , N and get approximation
C̃k. Then these approximations of the coupon rates are used to calculate an approximation to the value
of the coupon leg. In Set 8, we add square of the coupon leg value as a regressor. The results from these
two sets are not bad, but they are not much better than the results from Set 5.

The problem with Set 7 and Set 8 is that the frozen Libors are not such a good approximation to future
value of the living Libors. A closer approximation may help to improve the pricing result. We devise a
second approximation to the coupon leg value base on the following scheme for approximating the future
Libor values. We take the vector of living Libor rates at Tn and evolve it in a way similar to our Libor
Monte Carlo engine but without stochastic shock. In this way, we hope to obtain closer approximation
L̂k(Tk−1) for each k = n + 2, . . . , N . Depending on the overall level and shape of the volatility term
structure, quality of this approximation may vary. Although we do not add any stochastic shock in this
construction, the drift of the rate dynamics contains information about the volatility and correlation
structure in the future. Hence, we do expect improvement from this future rate approximation.

We adopt the above mentioned scheme in Set 9. Square of the coupon leg value is added as a regressor
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(c) C0 = 400 bps

Figure 7.13: Simulated lower bound LSM price and the corresponding upper bound AB price for a
cancellable receiver Snowball. Results simulated with 3 different virtual coupon rates: C0 = 200bps,
300bps, 400bps.

in Set 10. Square and third power of the coupon leg value are added in Set 11. Simulation results show
that Set 9 gives worse result than Set 7, but Set 10 gives by far the best result, which reduces the gap
value to about 6bps. Set 11 does not improve over Set 10. The downside of this approach is that it
takes roughly twice total simulation time as compared to the total simulation time with other sets of
regressors. Preparing the regressors takes most of the computation time in our implementation. If we
take computational efficiency into account, Set 5 and 8 are decent choices for the cancellable Snowball.
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8 Conclusions and Suggestions

8.1 Conclusions

In this thesis, we have studied the problem of pricing Bermudan options with the Longstaff-Schwartz
Monte Carlo in various models and option types. Our goal is to identify better performing regressors for
this method in order to reduce pricing error. We have investigated several important issues concerning
method implementation and made suggestions with respect to various models and option types. We have
shown that using the Andersen-Broadie upper bound algorithm together with the LSM exercise rules
produces a better estimate of the true Bermudan option value. We have also shown that the gap between
the upper and lower bound prices serves as a good performance measure for evaluating various sets of
regressors.

Study of the Bermudan put in the Black-Scholes world shows that for options whose exercise value is
observable at the exercise moment, selecting only ITM paths for the LSM regression can give closer option
value estimate than selecting all paths. However, gap between the lower and upper bound values can be
very high when the option is initially OTM in this case. Yet, we can use the gap to evaluate different
regressors when the option is initially ITM or ATM. Lower gap indicates better performing regressors.

Study of the Bermudan put spread in the Black-Scholes world shows that strong nonlinearity present
in the payoff function can make it difficult for the LSM to approximate the option’s continuation value
function, hence resulting in higher pricing error. Choosing the right combination of explanatory variables
and basis functions improves the result. Analytical expression for value of the European option with the
same payoff function can be used to form an effective explanatory variable.

Study of a Bermudan Asian-style option in the Black-Scholes world shows that one should identify
all the observable variables that affects the option’s continuation value. For this option, the path depen-
dency property is well captured by the running average of the underlying asset price. Using all these
as explanatory variables is consistent with the underlying assumption of the LSM that the continuation
value function is a conditional expectation based on information up to the exercise moment.

Study of a Bermudan put in the Heston model shows that one should identify the relative importance of
the explanatory variables in estimating the option’s continuation value. Assigning an appropriate number
of basis functions to the primary variable improves pricing accuracy. Using cross-products between the
explanatory variables renders further improvement. These guidelines do work for different correlation
coefficient, ρ, in the Heston model.

We then focus on pricing Bermudan-style Libor Exotics in the lognormal Libor market model with
the LSM and AB methods. We have adapted the LSM algorithm to pricing both CLE and CnLE. Our
results show that these algorithms do produce option values close to a theoretical parity relation between
corresponding pairs of CLE and CnLE. We have adapted the AB upper bound algorithm to CnLE. The
middle point between the lower and upper bound values is a better estimate of the true option value.
The resulting gap value provides a reliable criterion to evaluate different regressor configurations. Careful
construction of the regressors helps to extract the most relevant information from the observable variables
up to the exercise moment. One should take both future rates evolution and specific option payoff features
into consideration.

For a cancellable fixed-for-floating swaption, present values of the fixed leg, the floating leg and the
forward swap rates are effective explanatory variables. In our experiment, adding the forward swap rate
and its higher order power terms reduces the gap to less than 1bp for a swaption worth over 1000bps.

For a cancellable inverse floater, replacing the fixed leg value by value of the coupon leg and adding
higher order terms proves to be very effective. Another effective way is to use all the living Libor rates,
their products and cross-products directly as regressors. This approach proves to be both effective and
robust.

For a cancellable snowball, the payoff function is itself path dependent. We find that the construc-
tion of regressors should reflect the general trend of the rate curve. Regressors that embody the joint
distribution information of the rates are also effective. Because of the path dependent payoff function,
we do not have a simple expression for the present value of the coupon leg. We propose two effective
approximations based on information up to the exercise moment. One of them outperforms all the rest
regressor configurations, the other produces decent performance with moderate computation cost.
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8.2 Suggestions

During the course of this thesis project, we have come cross several problems that we think are worth
the effort of further investigation.

One problem that recurs in multiple occasions is the slightly high biased LSM price when compared
to more accurate benchmark price. The exact reason why this happens is not clear. It could be caused
by the finite path convergence property of the LSM price estimator, or by certain numerical issue. Our
simulation do show that the regressor configuration plays a role in it. Using some proven random number
generator other than the Mersenne Twister may help to rule out one possible sources of error.

Throughout the thesis, we estimate the multi-linear model for the continuation value function by
OLS regression. We realize the limitation of this approach when trying to fit some more complicated
functional form. Our approach for improving the quality of the fit is to construct better explanatory
variables. We have experimented using Principal Component Regression and Stepwise Regression in
the LSM method, but our simulation results show that their usefulness is not convincing. It would be
interesting to explore using other methods such as nonparametric regression [40] or data mining techniques
to fit the continuation value function.

The upper bound method for Bermudan option pricing complements the lower bound LSM method
well. The drawback is that it takes very long time to compute due to the nested Monte Carlo simulation.
Nested Monte Carlo is needed for calculating several conditional expectations. It would be interesting
to find more efficient alternatives, although there has been student thesis [57] indicating that this is not
easily achievable.

We have studied pricing Bermudan-style LE with the LSM method in the lognormal LMM. It would
be interesting to know whether the effectiveness of each regressor configuration would change dramatically
or not when other types of initial forward rate curve, volatility term structure, and correlation matrix are
used. There have been quite a number of extensions since the original lognormal LMM was introduced
in 1997. These extensions are designed to account for the volatility skew as well as its variation over
time. One can expect new challenges arising when applying the LSM in these models. Likewise, it is
of great interest to find out how the LSM performs with other interest rate derivatives. For example,
a spread-based Bermudan-style swaption featuring multiple types of rates or a multi-tranche callable
structured note featuring the right for the issuer to increase the size of the note.
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A Option Pricing with Tree

Tree methods are commonly used numerical schemes for option pricing. We briefly introduce the theory
and address some implementation and performance issues in the Black-Scholes world with the Put payoff.
Later, these methods will be used to cross validate the pricing result from other alternative numerical
methods.

A.1 Matching Tree Parameters with the Black-Scholes Model

In the Black-Scholes world, the asset price follows a Geometric Brownian Motion(GBM) on the time
interval [0, T ]

dS(t) = rS(t)dt + σS(t)dW (t). (A.1)

Given the asset price at time t1, S(t1), the solution to this SDE is

S(t2) = S(t1) exp

[

(r −
1
2
σ2)(t2 − t1) + σW (t2 − t1)

]

, for 0 ≤ t1 < t2 ≤ T .

Tree methods is a kind of grid method. It discretizes the time and spatial domain to approximate
the model dynamics. In order to derive the tree parameters that mimic the GBM model, we need to
calculate the first two moments from the GBM model. Later, these expressions will be compared with

those consisting of the tree parameters. The ratio S(t2)
S(t1)

has a lognormal distribution, where ln
(

S(t2)
S(t1)

)
∼

N
(
(r − 1

2σ2)(t2 − t1), σ2(t2 − t1)
)
. It’s mean and second moment are given by,

E

[
S(t2)
S(t1)

]

= e(r− 1
2 σ2)(t2−t1)+

1
2 σ2(t2−t1) = er(t2−t1),

E

[(
S(t2)
S(t1)

)2
]

= e2(r− 1
2 σ2)(t2−t2)+2σ2(t2−t1) = e(2r+σ2)(t2−t1).

By choosing t1 = t, t2 = t + Δt, the above expressions give,

E

[
S(t + Δt)

S(t)

]

= erΔt, (A.2)

E

[(
S(t + Δt)

S(t)

)2
]

= e(2r+σ2)Δt, (A.3)

Var

[
S(t + Δt)

S(t)

]

= (eσ2Δt − 1)e2rΔt. (A.4)

Having derived the first two moments of the return under GBM asset price model, we will match the
tree parameters to these value.

The binomial tree scheme discretizes the time interval [0, T ] by M steps, with each time step being
Δt = T

M . The time at step i is ti = i ∙ Δt, i = 0, ...,M . We call the asset price on a node at ti to be Xi.
At any node with i < M on the tree, assume the following binomial relation under risk-neutral measure
Q:

Q(Xi+1 = u ∙ Xi) = p,

Q(Xi+1 = d ∙ Xi) = 1 − p.

The 1st and 2nd moments of Xi+1

Xi
are

E

[
Xi+1

Xi

]

= (1 − p)d + pu, (A.5)

E

[(
Xi+1

Xi

)2
]

= (1 − p)d2 + pu2. (A.6)

Now fit the tree parameters to the GBM parameters. We align the time points from the above two
models by taking S(ti) = Xi and S(ti + Δt) = Xi+1. Matching the mean and 2nd moment expressions
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respectively, we have

erΔt = (1 − p)d + pu, (A.7)

e(2r+σ2)Δt = (1 − p)d2 + pu2. (A.8)

But (A.7) gives that
(u + d)erΔt = (1 − p)d2 + pu2 + ud. (A.9)

Substituting (A.8) into (A.9) eliminates p from the expression. We have,

(u + d)erΔt = e(2r+σ2)Δt + ud. (A.10)

In order to have a recombining tree, we demand that

d = 1/u. (A.11)

Equation (A.10) and (A.11) gives a quadratic equation on the variable u,

u2 − (e−rΔt + e(r+σ2)Δt))u + 1 = 0. (A.12)

Solving this equation, and taking one of the two solutions, we have

u = A +
√

A2 − 1, where (A.13)

A =
1
2
(e−rΔt + e(r+σ2)Δt).

Besides, Equation (A.7) gives the probability,

p =
erΔt − d

u − d
. (A.14)

Now Equations (A.11), (A.13) and (A.14) matches the first two moments of our binomial tree scheme
to the GBM model. In order to get a simplified expression for u, we apply Taylor expansion to the
exponential terms in (A.12),

e−rΔt = 1 − rΔt + O(Δt2),

e(r+σ2)Δt = 1 + (r + σ2)Δt + O(Δt2).

Ignoring higher order terms of Δt, we have a new quadratic equation for u,

u2 − (2 + σ2Δt)u + 1 = 0.

Solving this equation, we have

u =
2 + σ2Δt ± σ

√
Δt

√
4 + σ2Δt

2

≈ 1 ± σ
√

Δt +
1
2
σ2Δt

≈ e±σ
√

Δt.

In the last step, we ignored all higher order terms of Δt. Assuming that u > d, we have the following
solution that matches the 1st moment, and approximately matches the 2nd moment of our binomial tree
scheme to the GBM model,

u = eσ
√

Δt,

d = 1/u,

p =
erΔt − d

u − d
. (A.15)
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The above solution gives the expression of the Cox, Ross, Rubinstein (CRR) binomial tree. The formal
proof and discussion of convergence properties can be found in the pioneering work [19]. Other binomial
tree parameterization approaches that match the GBM model have been developed since. [30] gave a
literature survey of various alternative binomial and trinomial tree parameterization approaches. The
major drawback of the CRR tree is that it loses numerical stability when Δt > σ2/r2. In this situation,
one of the probability will be negative while the other one larger than one, which is of course nonphysical.

Unlike the binomial tree, a third node is added to each step in trinomial tree. Let u, d and m be the
possible asset price rate of change over one step with probability pu, pd and pm respectively. We demand
that

pm + pu + pd = 1.

We discretize time domain in the same way as the binomial tree, We call the asset price on a node at ti
to be Xi. At any node with i < M on the tree, assume the following trinomial relation:

Q(Xi+1 = u ∙ Xi) = pu,

Q(Xi+1 = m ∙ Xi) = pm,

Q(Xi+1 = d ∙ Xi) = pd.

In order to derive a recombining tree, we demand that d = 1/u and m = 1. Hence the middle branch
of the tree would stay at the same asset price value and after two steps, relevant branches of the tree
would recombine. Figure ?? illustrates a recombining trinomial tree.

The 1st and 2nd moments of Xi+1

Xi
are given by

E

[
Xi+1

Xi

]

= pd ∙ 1/u + pu ∙ u + 1 − pu − pd, (A.16)

E

[(
Xi+1

Xi

)2
]

= pd ∙ (1/u)2 + pu ∙ u2 + 1 − pu − pd. (A.17)

Again we fit the trinomial tree to the GBM in Black-Scholes model. We align the time points from
the above two models by taking S(ti) = Xi and S(ti + Δt) = Xi+1. Matching the 1st and 2nd moments
results in

M = pd ∙ d + pu ∙ u + 1 − pu − pd,

V ar + M2 = pd ∙ d2 + pu ∙ u2 + 1 − pu − pd.

where M = eΔt, V ar = (eσ2Δt − 1)e2rΔt.

Boyle[11] solved the probabilities pu and pd in terms of M and V ar,

pu =
u(V ar + M2 + M) − (M − 1)

(u − 1)(u2 − 1)
,

pd =
u2(V ar + M2 + M) − u3(M − 1)

(u − 1)(u2 − 1)
.

Boyle suggested to use the parameterization u = eλσ
√

t with λ > 1, so that the resulting probabilities
will be all positive for a range of λ. He investigated this range through trial and error.

Another way to derive a recombining trinomial tree is to combine two steps of a recombining binomial
tree. The recombining binomial tree will give 3 different nodes in 2 steps, which makes a single step of a
trinomial tree. We set the length of each binomial tree time step to be Δt/2, so the resulting trinomial
tree has a time step of Δt. We use the CRR binomial tree because it has a simple expression, although
other forms of recombining binomial trees may also be used.

If we cascade the CRR binomial tree into a trinomial tree with time step Δt, Equation (A.15) leads
to the following trinomial tree parameters,
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u = (eσ
√

Δt/2)2 = eσ
√

2Δt,

m = eσ
√

Δt/2 ∙ e−σ
√

Δt/2 = 1,

d = (e−σ
√

Δt/2)2 = e−σ
√

2Δt = 1/u,

pu = pb
u ∙ pb

u =

(
erΔt/2 − e−σ

√
Δt/2

eσ
√

Δt/2 − e−σ
√

Δt/2

)2

,

pd = pb
d ∙ pb

d =

(
eσ
√

Δt/2 − erΔt/2

eσ
√

Δt/2 − e−σ
√

Δt/2

)2

. (A.18)

where pb
u and pb

d are the probability of going up and down in the CRR binomial tree over time step Δt/2.

A.2 Pricing European Put with Tree Methods

A European call/put option gives its owner the right to buy/sell the underlying asset at the agreed price
K (strike price) at the specified time T (maturity time). To price such an option with tree method, one
first calculates the option payoffs at maturity time T ,

C(T, S) = max(S − K, 0) Call Option,

P (T, S) = max(K − S, 0) Put Option.

and build an asset price tree.
In the Black-Scholes model, we assume a constant volatility σ, and a constant interest rate r. The

risk-neutral pricing principle gives the arbitrage free derivative price at time t,

V (t) = E
[
e−r(T−t)V (T ) | F(t)

]
, 0 ≤ t ≤ T, (A.19)

where the conditional expectation is taken under the risk-neutral measure.
We can now approximate the righthand side conditional expectation in the above equation, because

we have matched our tree parameters to the GBM such that the first two moments match. Since the
tree parameters are moment matched to the GBM model under risk neutral measure, the probability
parameters in our tree model represents risk neutral probability. For a binomial tree this means

Vi,j = e−rΔt[pu ∙ Vi+1,j+1 + pd ∙ Vi+1,j−1], (A.20)

where we calculate Vi,j , the option price at time step i and node j. Vi+1,j−1 is the option price with an
downward asset movement while Vi+1,j+1 is the option price with a upward asset movement.

For a trinomial tree this means

Vi,j = e−rΔt[pu ∙ Vi+1,j+1 + pm ∙ Vi+1,j + pd ∙ Vi+1,j−1], (A.21)

with which we can calculate Vi,j , the option price at time step i and price node j. Vi+1,j+1 is the option
price with an upward price movement, Vi+1,j−1 is the option price with a downward price movement and
Vi+1,j is the option price when the asset price is unchanged.

To price with the tree method, we go backwards on the tree. The option value at maturity on the
tree nodes are given by the payoff functions. For example, Vi,j = P (Si,j , T ) for a put option, where Si,j

is the asset price on the tree at time step i and price node j. Then we go each time one time step back,
calculate option value on all the nodes at that time, and continue the recursion until we reach the initial
time point.

A.3 Pricing American or Bermudan Put with Tree Methods

In order to price a Bermudan option with a set of possible early exercise moments while reducing the
pricing error, we choose a large number of time steps for the tree, but only check early exercise at those
possible moments. The computation is based on the dynamic programming formulation 2.12. Starting at
the maturity and going backwards, at each possible exercise moment we calculate the exercise value and
hold value of the option. Make the exercise decision and go on. At none-exercise moments, we compute
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one step backward on the tree like the European option. For a GBM model, since we have a constant risk
free interest rate, we discount differently as implied in Equation 2.12. Instead of discounting the values
back to zero at each time, we discount one step back at a time by e−rΔt.

The exercise value of a vanilla option at a time step prior to the maturity is given by

C(Si,j) = max(Si,j − K, 0), for a Call Option,

P (Si,j) = max(K − Si,j , 0), for a Put Option.

This means that for a Bermudan Put, we use the following equations in recursion. For a binomial
tree, this is

Vi,j = max
(
P (Si,j), e

−rΔt[pu ∙ Vi+1,j+1 + pd ∙ Vi+1,j−1]
)
.

For a trinomial tree, this is

Vi,j = max
(
P (Si,j), e

−rΔt[pu ∙ Vi+1,j+1 + pm ∙ Vi+1,j + pd ∙ Vi+1,j−1]
)
.

Let T denote the set of possible early exercise moments. We take Binomial tree as an example, the
pricing algorithm becomes,

At maturity, tN = T , VN−1,j = e−rΔt[pu ∙ VN,j+1 + pd ∙ VN,j−1].
for i = N − 2 : −1 : 0

if ti ∈ T, then Vi,j = max(P (Si,j), e−rΔt[pu ∙ Vi+1,j+1 + pd ∙ Vi+1,j−1]).
else Vi,j = e−rΔt[pu ∙ Vi+1,j+1 + pd ∙ Vi+1,j−1].
end if

end for
�

with large number of time steps to give alternative pricing benchmark for several different Bermudan
option in the Black-Scholes world.
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B Option Pricing with Finite Difference

By the Finite Difference (FD) method, one numerically solves a Partial Differential Equation (PDE)
for the option value. For American/Bermudan option, it is possible to use FD method to solve an
approximation to the true early exercise boundary of the option. This provides valuable insight into the
pricing problem. In this section, we first discuss some basics of the FD method by pricing a European
vanilla option in the Black-Scholes world. Then we discuss pricing American/Bermudan option with
the FD method. We have also worked on pricing some other options with the FD method, such as a
Bermudan-Asian option in the Black-Scholes world and a Bermudan-Put in the Heston model. These
will be discussed in later chapters where the specific problems are dealt with.

B.1 Pricing European Put with Explicit Scheme

To price a European vanilla option with the FD method, we start with the Black-Scholes PDE and the
option payoff as the final condition for the PDE. Let V (t, S) be the option price at time t with underlying
asset price process {S(t), 0 ≤ t ≤ T}.

∂V̄

∂t
+

1
2
σ2S2 ∂2V̄

∂S2
+ rS

∂V̄

∂S
− rV̄ = 0, (B.1)

V̄ (T, S) = P̄ (T, S). (B.2)

where we P̄ (t, s) is the simple Put payoff function.
First we transform the time variable t by τ = T−t for 0 ≤ t ≤ T , and the original option price function

V̄ (t, S) changes to Ṽ (τ, S). Thus the final condition V̄ (T, S) becomes the initial condition Ṽ (0, S) for the
new PDE. The payoff function P̄ (t, s) changes to P̃ (τ, s). Now the new PDE is accompanied by initial
condition, which is common in many physical problems.

−
∂Ṽ

∂τ
+

1
2
σ2S2 ∂2Ṽ

∂S2
+ rS

∂Ṽ

∂S
− rṼ = 0, (B.3)

Ṽ (0, S) = P̃ (0, S). (B.4)

S ∈ (0, +∞) in the above equations. But the computation domain for S needs to be cut off at some finite
number, so let S ∈ [Smin, Smax]. We use V to denote the FD approximation to Ṽ . The time domain is
discretized by grid 0=τ0 < τ1 < ... < τNτ = T , and the asset price domain by grid Smin = S0 < S1 <
... < SNS

= Smax. Now we have τn = n ∙ Δτ , Sj = j ∙ ΔS and Vn,j = V (τn, Sj) for n = 0, ..., Nτ , and
j = 0, ..., NS .

For a European put option, we have the following theoretical boundaries [50]:

Ṽ (τ, S) = Ke−rτ − S, for S ≈ 0. (B.5)

Ṽ (τ, S) = 0, for S → ∞. (B.6)

We approximate the Black-Scholes PDE around point (τn+1, Sj) with the following partial derivative
approximations based on Taylor series expansion,

∂Ṽ

∂S
≈

Vn,j+1 − Vn,j−1

2ΔS
, (B.7)

∂2Ṽ

∂S2
≈

Vn,j+1 − 2Vn,j + Vn,j−1

ΔS2
, (B.8)

∂Ṽ

∂τ
≈

Vn+1,j − Vn,j

Δτ
. (B.9)

Depending on how we choose the approximation for Ṽ , we would have two different versions of explicit
schemes.

If we choose
Ṽ = Vn,j . (B.10)

then substituting equations (B.7)-(B.10) into equation (B.3) and reshuffling the equation renders

Vn+1,j = (p ∙ S2
j − q ∙ Sj)Vn,j−1 + (p ∙ S2

j + q ∙ Sj)Vn,j+1 − (1 − rΔτ − 2p ∙ S2
j )Vn,j . (B.11)
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where

p =
σ2

2
Δτ

ΔS2
,

q =
r

2
Δτ

ΔS
.

If we choose
Ṽ = Vn+1,j . (B.12)

then substituting equations (B.7)-(B.9), (B.12) into equation (B.3) and reshuffling the equation renders

Vn+1,j =
1

1 + rΔτ
[(p ∙ S2

j − q ∙ Sj)Vn,j−1 + (p ∙ S2
j + q ∙ Sj)Vn,j+1 − (1 − 2p ∙ S2

j )Vn,j ]. (B.13)

where

p =
σ2

2
Δτ

ΔS2
,

q =
r

2
Δτ

ΔS
.

The initial conditions are also given on the grid V0,j = P̃ (0, Sj) for all j = 0, . . . , NS . The boundary
conditions are given on the left and right boundaries, S = Smin and S = Smax,

Vn,0 = Ke−rτn − Smin, for all n, (B.14)

Vn,Ns
= 0, for all n. (B.15)

Both difference equations (B.11) and (B.13) give valid explicit schemes. We can directly calculate the
option price Vn+1,j at time step n + 1 if we already know the price on 3 adjacent nodes at time step n,
Vn,j−1, Vn,j , and Vn,j+1. So we can start from the initial condition and repeatedly solve option prices
over all the grid nodes except those given boundary nodes.

The main drawback of the explicit scheme is that its stability depends on the discretization parameters.
For the PDE that we discretize, there is an upper limit of time step size Δt given the step size of the
option price such that the FD solution remains stable and converges to the solution of the original PDE.
If the parameters are chosen beyond this upper limit, the FD solution might show such behavior as the
oscillation in Figure B.1. The discretization parameters in this example are ΔS = 0.25, Δτ = 0.005.
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Figure B.1: Oscillation in explicit scheme discretization of the Black-Scholes PDE

We can combine equations (B.11) or (B.13) for all the nodes at one time step into a matrix form and
obtain a tridiagnal matrix similar to the one that we show in the next section. Fusai etc. [26] analyzed
the stability conditions of various finite difference schemes. They give the following bound for the explicit
scheme,
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Δt ≤
1

r
2 + (σNS)2

,

which gives us an idea about how large the time step should be prior to each simulation.

B.2 Pricing European Put with θ−Scheme

In order to avoid the stability issue with the explicit scheme, one can use the implicit scheme to discretize
the PDE instead. Suppose we have already computed value on all the grid points at time step n, the spatial
derivatives in Equation (B.3) are discretized at time step n + 1. We have the following approximations,

∂Ṽ

∂S
≈

Vn+1,j+1 − Vn+1,j−1

2ΔS
,

∂2Ṽ

∂S2
≈

Vn+1,j+1 − 2Vn+1,j + Vn+1,j−1

ΔS2
,

∂Ṽ

∂τ
≈

Vn+1,j − Vn,j

Δτ
,

Ṽ ≈ Vn+1,j .

Plugging these into Equation (B.3) and reshuffle, we have,

(

−
1
2
σ2Δτ

S2
j

ΔS2
+

1
2
rΔτ

Sj

ΔS

)

Vn+1,j−1 +

(

1 + rΔτ + σ2Δτ
S2

j

ΔS2

)

Vn+1,j

+

(

−
1
2
σ2Δτ

S2
j

ΔS2
−

1
2
rΔτ

Sj

ΔS

)

Vn+1,j+1 = Vn,j . (B.16)

Notice here all the unknowns are on the left hand side of the equation. Hence when we combine all
the equations from step n to step n + 1 and fill in the right boundary conditions, we obtain a system
of equations in the matrix form. If this matrix equation can be solved, all the values Vn+1,j for j =
1, . . . , Ns − 1 can be obtained at once. It is proved that this indeed can be done and the implicit scheme
is free of oscillation when σ2 > r [26]. The main drawback is the relatively costly matrix computation.

One can combine the explicit scheme and the implicit scheme into the so called “θ scheme”. Dis-
cretization now becomes,

∂Ṽ

∂S
≈ (1 − θ)

Vn,j+1 − Vn,j−1

2ΔS
+ θ

Vn+1,j+1 − Vn+1,j−1

2ΔS
,

∂2Ṽ

∂S2
≈ (1 − θ)

Vn,j+1 − 2Vn,j + Vn,j−1

ΔS2
+ θ

Vn+1,j+1 − 2Vn+1,j + Vn+1,j−1

ΔS2
,

∂Ṽ

∂τ
≈

Vn+1,j − Vn,j

Δτ
,

Ṽ ≈ (1 − θ)Vn,j + θVn+1,j .

Plugging these into Equation (B.3) and reshuffle, we have,

an,jVn+1,j−1 + bn,jVn+1,j + cn,jVn+1,j+1 = dn,jVn,j−1 + en,jVn,j + fn,jVn,j+1, (B.17)
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where

an,j = θ

(

−
1
2
σ2Δτ

S2
j

ΔS2
+

1
2
rΔτ

Sj

ΔS

)

,

bn,j =

(

1 + θrΔτ + θσ2Δτ
S2

j

ΔS2

)

,

cn,j = θ

(

−
1
2
σ2Δτ

S2
j

ΔS2
−

1
2
rΔτ

Sj

ΔS

)

,

dn,j = (1 − θ)

(
1
2
σ2Δτ

S2
j

ΔS2
−

1
2
rΔτ

Sj

ΔS

)

,

en,j =

(

1 − (1 − θ)rΔτ − (1 − θ)σ2Δτ
S2

j

ΔS2

)

,

fn,j = (1 − θ)

(
1
2
σ2Δτ

S2
j

ΔS2
+

1
2
rΔτ

Sj

ΔS

)

.

Collecting all the equations connecting step n and step n + 1, we have the following system,

AV (n+1) = BV (n) + d(n),

where (Ns − 1)× 1 vector V(n) and V(n+1) represent the option value on grid points at time n and n+1,
(Ns − 1) × 1 vector d(n) accounts for all the boundary conditions at S0 and SNs . Matrix A and B store
all the coefficients. Notice that all the vectors on the right hand side of the above equation is known. We
give the details below. Let’s define the vectors at time step n to be

V (n) = (Vn,1, . . . , Vn,Ns−1)
T ,

V (n+1) = (Vn+1,1, . . . , Vn+1,Ns−1)
T ,

d(n) = (dn,1, 0, . . . , 0, dn,Ns−1)
T ,

where T denotes transpose and

dn,1 = an,1Vn+1,0 + dn,1Vn,0

dn,Ns−1 = cn,Ns−1Vn,Ns + fn,Ns−1Vn,Ns .

The coefficient matrices are

A =










bn,1 cn,1 0
an,2 bn,2 cn,2

. . .
. . .

. . .
an,Ns−2 bn,Ns−2 cn,Ns−2

0 an,Ns−1 bn,Ns−1










∈ R(Ns−1)×(Ns−1),

and

B =










en,1 fn,1 0
dn,2 en,2 fn,2

. . .
. . .

. . .
dn,Ns−2 en,Ns−2 fn,Ns−2

0 en,Ns−1 fn,Ns−1










∈ R(Ns−1)×(Ns−1).

It is proved that for θ ∈ [0.5, 1], the θ scheme produce unconditionally stable solution in the sense that
we do not have to restrain size of the time step for stability concern. The time step size still affects
numerical accuracy, however that is far more relaxed than the constraint in explicit scheme. As a result,
we can choose finer grid in the spatial direction to improve solution accuracy. Notice that when choosing
θ = 0, Equation (B.17) degenerates into the explicit scheme (B.11); when choosing θ = 1, Equation
(B.17) degenerates into the implicit scheme (B.16). [3] covers the error and stability analysis for these
basic FD schemes. For analysis with regards to the Black-Scholes equation, one can turn to [50] and [26].
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B.3 Pricing American Put with Explicit Scheme

The explicit scheme can be used to approximate American option price with some adjustments. Since we
are working with discretized steps in the time domain, we are actually pricing a Bermudan option with
the FD scheme. But as we take finer and finer time steps, the pricing result approximates that of the
corresponding American option.

The payoff at maturity is the same for a European option or its American variant, initial condition
remains the same for the PDE. The boundary conditions should be modified. Let us consider a put
option. On the right boundary, S → ∞ and the put option is deep OTM, its value approaches zero. On
the left boundary, S ≈ 0, so the put option is deep ITM. But for American option this also means that
the option is in the immediate exercise region at that moment, so the option value equals its exercise
value, K − S. The boundary conditions (B.6) and (B.5) now become

Ṽ (τ, S) = K − S, for S ≈ 0, (B.18)

Ṽ (τ, S) = 0, for S → ∞. (B.19)

The corresponding boundary conditions on the grid become

Vn,0 = K − Smin, for all n, (B.20)

Vn,Ns = 0, for all n. (B.21)

The dynamic programming formulation (2.12) means that the option price is determined by comparing
its exercise value and hold value at each possible exercise moment. Incorporating this feature is straight
forward with the explicit scheme. Suppose we already know the option value on the 3 points,Vn,j−1, Vn,j ,
Vn,j+1, then the value calculated by Equation (B.11) or (B.13) is the hold value at time step n + 1 and
price step j, Hn+1,j . This value will be compared with the exercise value Zn+1,j = max[K − Sn+1,j , 0].
The resulting option price is given by the greater of the two

Vn+1,j = max[Zn+1,j , Hn+1,j ].

With these modifications, the explicit scheme can be used for pricing American vanilla options. Our
explicit scheme for American option is based on equation (B.11).

B.4 Pricing American Put as Linear Complementarity Problem

Although the explicit scheme can be adjusted to price American options, the stability problem remains.
An alternative is to switch to an implicit scheme or the θ-scheme.

To account for early exercise opportunities, we need to compare the immediate exercise value and the
hold value of the option at each early exercise moment prior to maturity. But implicit scheme solves the
option price on all asset value grid points at a time step in one matrix equation. It is therefore difficult
to take into account the early exercise decision in the same way as how the explicit scheme does it.

For an alternative FD method of pricing American options, we follow the procedure as described in
chapter 4 of Seydel’s work [50]. Let us define a function of t, Sf (t), as the early exercise boundary of
an American Put option. for all t ∈ [0, T ]. The intuition is that when the asset price S(t) > Sf (t), the
option price V̄ (t, S) > (K −S)+, its exercise value. In this case, it is in the interest of the option’s holder
not to exercise early. We call this region the continuation region. On the other hand, when S(t) ≤ Sf (t),
V̄ (t, S) = K − S, it is better to exercise the option immediately and maximize the profit. Seydel showed
in the appendix that for a put option, on these two regions, the following relations hold,

if S(t) ≤ Sf (t), V̄ (t, S) = (K − S(t))+ and

∂V̄

∂t
+

1
2
σ2S2 ∂2V̄

∂S2
+ rS

∂V̄

∂S
− rV̄ < 0, (B.22)

if S(t) > Sf (t), V̄ (t, S) > (K − S(t))+ and

∂V̄

∂t
+

1
2
σ2S2 ∂2V̄

∂S2
+ rS

∂V̄

∂S
− rV̄ = 0. (B.23)
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In order to simplify the derivation, we adopt the following transformation to convert the Black-Scholes
equation into a heat equation with constant coefficient. Let us take

S = Kex, t = T −
2τ

σ2
, q =

2r

σ2
. (B.24)

The original domain S × t ∈ [0,∞] × [0, T ] turns into the transformed domain x × τ ∈ [−∞, +∞] ×
[0, 1

2σ2T ].The option price V̄ (S, t), is transformed into function y(x, τ ) of new variables x and τ by

V̄ (t, S) = V̄ (T −
2τ

σ2
,Kex) = Kexp

{

−
1
2
(q − 1)x − (

1
4
(q − 1)2 + q)τ

}

y(τ, x).

Then the equalities and inequalities that hold for V̄ (S, t) on the two regions turn into equalities and
inequalities for y(τ, x). With the above transformation, the early exercise boundary turns into xf (τ). We
have,

if x(τ) ≤ xf (τ), y(τ, x) = g(τ, x) and

∂y

∂τ
−

∂2y

∂x2
> 0, (B.25)

if x(τ) > xf (τ), y(τ, x) > g(τ, x) and

∂y

∂τ
−

∂2y

∂x2
= 0. (B.26)

where g(τ, x) = exp
{

1
4 (q − 1)2τ + 4q

}
max

{
e

1
2 (q−1)x − e

1
2 (q+1)x, 0

}
.

The equalities and inequalities in (B.25) and (B.27) is equivalent to the following Linear Complemen-
tarity Problem (LCP),

(
∂y

∂τ
−

∂2y

∂x2

)

(y − g) = 0,

∂y

∂τ
−

∂2y

∂x2
≥ 0, y − g ≥ 0. (B.27)

In this way the early exercise boundary xf (τ) does not show up explicitly in the equations, so we can
describe the behavior of the option price on the whole computation grid with one system.

The original final condition, V̄ (T, S) = max{K − S, 0}, is then transformed into the initial condition,

y(0, x) = g(0, x), for −∞ ≤ x ≤ +∞. (B.28)

The original conditions on fixed boundaries for S → ±∞ are

lim
S→0

V (t, S) = K − S,

lim
S→+∞

V (t, S) = 0.

They are transformed into

lim
x→±∞

y(τ, x) = lim
x→±∞

g(τ, x), for 0 ≤ τ ≤
1
2
σ2T. (B.29)

Now the original put option price conditions on the S × t domain has been reformulated into the LCP
with fixed boundary conditions described by system (B.27), (B.28) and (B.29). System (B.27) gives a
nonlinear PDE with 2 inequality constraints, which is still not easy to solve by numerical techniques.
However, it is possible to make the discretization at this step and simplify the problem further in latter
steps. We cut off the computation domain to τ × x ∈ [xmax, xmin] × [0, 1

2σ2T ]. We use w to denote the
FD approximation to y. The time domain is discretized by grid 0 = τ0 < τ1 < ... < τNτ = 1

2σ2T , and
the w domain by grid xmin = x0 < x1 < ... < xNx = xmax. Now we have τn = n ∙ Δτ , xj = j ∙ Δx and
wn,j = w(τn, xj) for n = 0, ..., Nτ , and j = 0, ..., Nx.
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With this grid, we approximate system (B.27) by the θ-scheme. At each time step 0 ≤ n < Nτ and
each asset price node excluding the boundaries 1 < j < Nx, we have the following approximations,

∂2y

∂x2
= (1 − θ)

wn,j+1 − 2wn,j + wn,j−1

Δx2

+ θ
wn+1,j+1 − 2wn+1,j + wn+1,j−1

Δx2
,

∂y

∂τ
=

wn+1,j − wn,j

Δτ
.

Let λ = Δτ
Δx2 , then at grid point (τn, xj),

∂y
∂τ − ∂2y

∂x2 ≥ 0 turns into the difference inequality

−λθwn+1,j+1 + (1 − 2λθ)wn+1,j − λθwn+1,j−1

≥ λ(1 − θ)wn,j+1 + [1 − 2λ(1 − θ)]wn,j + λ(1 − θ)wn,j−1 (B.30)

The other inequality, y − g ≥ 0, turns into

wn,j ≥ gn,j . (B.31)

where gn,j = g(τn, xj).(
∂y
∂τ − ∂2y

∂x2

)
(y − g) = 0 turns into

[ − λθwn+1,j+1 + (1 − 2λθ)wn+1,j − λθwn+1,j−1

− λ(1 − θ)wn,j+1 − [1 − 2λ(1 − θ)]wn,j − λ(1 − θ)wn,j−1] ∙ [wn,j − gn,j ] = 0 (B.32)

We define the vectors at time step n to be

b(n) = (bn,1, . . . , bn,Nx−1)
T ,

w(n) = (wn,1, . . . , wn,Nx−1)
T ,

g(n) = (gn,1, . . . , gn,Nx−1)
T .

where T means transpose.
The coefficient matrices are

A =












1 + 2λθ −λθ 0

−λθ
. . .

. . .
. . .

. . .
. . .

. . .
. . . −λθ

0 −λθ 1 + 2λθ












∈ R(Nx−1)×(Nx−1)

B =












1 − 2λ(1 − θ) λ(1 − θ) 0

λ(1 − θ)
. . .

. . .
. . .

. . .
. . .

. . .
. . . λ(1 − θ)

0 λ(1 − θ) 1 − 2λ(1 − θ)












∈ R(Nx−1)×(Nx−1)

Then we write equality (B.30) over the asset value nodes j = 1, . . . , Nx − 1 into vector form and have

Aw(n+1) ≥ b(n) (B.33)

where b(n) is given by
b(n) = Bw(n) + d(n)

and

d(n) =










λθwn+1,1 + λ(1 − θ)wn,1

0
...
0

λθwn+1,Nx + λ(1 − θ)wn,Nx










∈ R(Nx−1)×1
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We write inequality (B.31) over the asset value nodes j = 1, . . . , Nx − 1 into a vector form and have

w(n+1) ≥ g(n+1) (B.34)

We write equality (B.32) over the asset value nodes j = 1, . . . , Nx − 1 into a vector form and have

(
Aw(n+1) − b(n)

)T (
w(n+1) − g(n+1)

)
= 0 (B.35)

The initial and the boundary conditions are

w0,j = g0,j , for j = 0, . . . , Nx, (B.36)

wn,1 = gn,1, wn,Nx = gn,Nx , for n = 1, . . . , Nτ . (B.37)

Now we can start with the initial condition and repeatedly calculate the vector w(n+1) as solution of
system (B.33) - (B.35) under proper boundary conditions.

In order to further simplify our problem, let us make the following substitution

m = w(n+1) − g(n+1),

n = Aw(n+1) − b(n).

And notice that for b̂ = b −Ag, Am − n ≡ b̂. Our problem of calculating w(n+1) from (B.33) - (B.35) is
equivalent to the problem of finding vectors m and n such that Am − n = b̂,m ≥ 0, n ≥ 0,mT n =0.

Seydel adopted the work of Cryer [20] and showed further that this problem is equivalent to the
minimization problem through the Karush-Kuhn-Tucker theorem in convex optimization,

min
m≥0

G(m), where G(m) =
1
2
(mT Am) − b̂m is strictly convex. (B.38)

It can be shown that the Hessian matrix ∇2G = A is positive definite, so G(m) is strictly convex.
Thus we can try to solve the above problem by looking for vector m such that the gradient, ∇G(m) = 0
under the constraint that m ≥ 0. Now this problem can be solved by the so called Projected Successive
Over-Relaxation method (PSOR), which is an extension to the Gauss-Seydel method for solving a linear
system through iterations [42].

Let k be the recursion counter, ωR be the the relaxation coefficient, ‖ ∙ ‖ be a norm on vector m, and
ε be the minimum error for the iteration to continue. An approximation to the minimizer of the above
problem, vector m, can be solved by the following algorithm:

Set k = 0, pick an arbitrary initial value for vector m0 and continue with the recursion

while ‖mk+1 − mk‖ > ε

{

for j = 1, 2, . . . , Nx − 1

{

mk+1
j = mk

j +
ωR

1 + 2λθ

[
b̂j + λθmk+1

j−1 − (1 + 2λθ)mk
j + λθmk

j+1

]

mk+1
j = max

{
gn+1,j ,m

k+1
j

}

k = k + 1

}

}

�
With this algorithm, we can calculate the vector w(n+1) from system (B.33) - (B.35) for n = 0, . . . , Nτ−

1. After solving all the w, we can then use equations in (B.24) to transform the grid points back to the
t × S domain. Thus we can solve the whole surface of American put option price.

B.5 Pricing Bermudan Put

In order to price a Bermudan put option with a given set of possible early exercise opportunities, we
build the FD solver in the following way. Suppose the whole time interval till the option’s maturity is
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discretized with grid, 0 = t0 < t1 < ∙ ∙ ∙ < tN−1 < tN = T . Let T denote the set of all possible early
exercise moments. We start at maturity and calculate the option value backwards. The option value
follows the Black-Scholes PDE just as a European option between two early exercise moments(as well
as in the first and last time interval), so FD method (such as θ−scheme) on the Black-Scholes PDE can
be used to calculate the option value between these moments. At an early exercise moment, the pricing
problem should be formulated as an LCP, hence the scheme described in the last section for pricing
American option should be used instead.

Suppose T = {te1 , te2 , . . . , teM } and 0 < te1 < te2 < ∙ ∙ ∙ < teM < T . All the early exercise moments
are on grid, i.e. ek ∈ {0, . . . , N − 1} for all k = 1, . . . ,M . Let te0 = 0, teM+1 = T to simplify the indexing.
The algorithm reads,

At maturity, the option price satisfies the payoff function, thus V (tN , S) = Payoff(S).
for i = M : −1 : 0

Use V (tei+1 , S) as the final condition on the interval [tei , tei+1 ].
for j = ei+1 : −1 : ei+1

Solve the option price V (tj , S) by θ−scheme as a European option
with lifetime [tei , tei+1 ].

end for
Solve the option value from V (tei+1, S) back to V (tei , S) as an LCP
using PSOR (except when i = 0).

end for
�
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C An Approximated Black Volatility for Forward Swap Rates
in the LMM

In [37], Jäckel and Rebonato proposed an approximated Black volatility for the forward swap rate RN
0 (0)

in the LMM. We will briefly discuss their idea and extend the formula to all coterminal forward swap
rates RN

n (0), for each n = 0, . . . , N − 1.
We use the same time grid as the one in Chapter 6. The time horizon [0 , T ] is divided by the sequence

of time points, 0 = T−1 < T0 < T1 < . . . < TN = T . Suppose under some pricing EMM Q, the
arbitrage-free Libor dynamics is given by

dLi(t)
Li(t)

= μi(L, t)dt + σi(t)dWi(t),

for each i =where Wi is a Q standard Brownian Motion, σi(t) and μi(x, t) are deterministic functions in
R. The Brownian Motions are correlated,

dWi ∙ dWj = ρij(t)dt,

where ρij(t) is the deterministic time-dependent instantaneous correlation between Wi and Wj .
Equation (6.5) gives the expression for the forward swap rate at time t,

RN
n (t) =

DN
n (t)

AN
n (t)

=

∑N
j=n+1 pj(t)αjLj(t)
∑N

k=n+1 αkpk(t)

=
N∑

j=n+1

αjpj(t)
∑N

k=n+1 αkpk(t)
Lj(t)

≡
N∑

j=n+1

wj(t)Lj(t) (C.1)

Now we will derive the dynamics of dRN
n (t)

RN
n (t)

for 0 ≤ t < T0. Hence all the Libors are still alive. To
simplify the expressions, we will suppress the time index t. By multidimensional Itô’s formula, we have

dRN
n

RN
n

=
N∑

j=1

dRN
n

dLj

dLj

RN
n

=
N∑

j=1

dRN
n

dLj

Lj

RN
n

dLj

Lj
(C.2)

By Itô’s product rule, we have

dRN
n

RN
n

∙
dRN

n

RN
n

=
N∑

j,k=1

dRN
n

dLj

Lj

RN
n

dRN
n

dLk

Lk

RN
n

(
dLj

Lj
∙
dLk

Lk

)

=
N∑

j,k=1

dRN
n

dLj

Lj

RN
n

dRN
n

dLk

Lk

RN
n

ρjkσjσkdt

≡
N∑

j,k=1

ξjk(t)ρjk(t)σj(t)σk(t)dt. (C.3)

We notice that ξjk(t) is a stochastic quantity. Thus the righthand side of (C.3) is also stochastic and can
only be observed pathwise.

In order to arrive at the Black-Scholes type constant volatility σBK
n,N for the forward swap rate R̃N

n ,
one may assume the following dynamics for the forward swap rate under EMM Q,

dR̃N
n (t)

R̃N
n (t)

= . . . dt + σn,N (t)dW (t), (C.4)
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where W is a Q standard Brownian Motion, σn,N is a deterministic time-dependent volatility function.

Since the drift of dR̃N
n (t)

R̃N
n (t)

is irrelevant to the Black volatility, we omit it in the above expression. Assume

that the volatility function satisfies necessary regularity conditions, one can change to an equivalent

measure under which dR̃N
n (t)

R̃N
n (t)

dynamics has zero drift by the Girsanov theorem. Then one can derive that

σBK
n,N and σn,N satisfy the following relation,

[
σBK

n,N

]2
× Tn =

∫ Tn

0

[σn,N (u)]2 du. (C.5)

Apply Itô’s product rule to dynamics (C.4), we have

dR̃N
n

R̃N
n

∙
dR̃N

n

R̃N
n

= [σn,N (u)]2 dt. (C.6)

Jäckel and Rebonato gave an argument in [37] that by freezing ξjk(t) at time 0, one gets a good approx-
imation to (C.6) by (C.3) from a practical perspective. We can write

[σn,N (t)]2 ≈ ξjk(0)
N∑

j,k=1

ρjk(t)σj(t)σk(t). (C.7)

In order to calculate ξjk(0), one needs to find the expression for dRN
n (t)

dLj(t)
, for 0 ≤ t < T0. We start from

(C.1). Again we will suppress the time variable t.
For n = 1, . . . , N and i = 1, . . . , N ,

dRN
n

dLi
=

1
AN

n

dDN
n

dLi
−

DN
n

AN
n

2

dAN
n

dLi

=
1

AN
n



αipi1{i≥n+1} +
N∑

j=n+1

αjLj
dpj

dLi
1{i≤j}



−
DN

n

AN
n

2




N∑

j=n+1

αj
dpj

dLi
1{i≤j}



 (C.8)

Notice that

dpj

dLi
1{i≤j} =

d
∏j

k=0
1

1+αkLk

dLi
1{i≤j}

=
∏

k=0,...,j.k 6=i

1
1 + αkLk

(

−
αi

(1 + αiLi)2

)

1{i≤j}

= −pj
αi

1 + αiLi
1{i≤j} (C.9)

Substitute (C.9) into (C.8), we have

dRN
n

dLi
=

1
AN

n



αipi1{i≥n+1} −
N∑

j=n+1

αjLjpj
αi

1 + αiLi
1{i≤j}



−
DN

n

AN
n

2




N∑

j=n+1

αjpj
αi

1 + αiLi
1{i≤j}





=
1

AN
n



αipi1{i≥n+1} −
αi

1 + αiLi

N∑

j=(i−1)∨n+1

αjLjpj



−
DN

n

AN
n

2



 αi

1 + αiLi

N∑

j=(i−1)∨n+1

αjpj





=
αipi

AN
n

1{i≥n+1} +
αi

1 + αiLi

(
DN

n AN
(i−1)∨n − AN

n DN
(i−1)∨n

AN
n

2

)

, (C.10)

where x ∨ y = max(x, y). ξjk is then given by

ξjk =
dRN

n

dLj

Lj

RN
n

×
dRN

n

dLk

Lk

RN
n

=

[
αjpjLj

AN
n

1{j≥n+1} +
αjLj

1 + αjLj

(
DN

n AN
(j−1)∨n − AN

n DN
(j−1)∨n

AN
n DN

n

)]

×

[
αkpkLk

AN
n

1{k≥n+1} +
αkLk

1 + αkLk

(
DN

n AN
(k−1)∨n − AN

n DN
(k−1)∨n

AN
n DN

n

)]

. (C.11)
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Using (C.7) and (C.5), we have the approximated Black volatility, σBK
n,N , of the forward swap rate, RN

n (0),
in the LMM for each n = 0, . . . , N − 1.
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D Libor Market Model Parameters

D.1 Parameters Based on the Paper by Hunter et al.

The volatility parameters are either taken from [36] or obtained through model calibration according to
the data in [36]. We only show parameters corresponding to the first 10 tenor points.

Tenor spacing: ΔT = 0.25.

Volatility and correlation parameters:

Parameter a b c d α β
Value 0.15717 0.71839 0.15017 -0.08914 0.1 0.1

FRAs and volatility fitting parameters:

Index i Li(0) Φi

0 6.149% −
1 6.121% 1.2824
2 6.155% 1.0257
3 6.178% 0.8809
4 6.214% 0.8831
5 6.249% 0.9683
6 6.265% 1.0214
7 6.281% 1.0229
8 6.289% 1.0120
9 6.279% 0.9963
10 6.263% 0.9930
...

...
...
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D.2 Parameters Based on the Thesis by Buitelaar

The volatility parameters are taken from [15]. We only show parameters corresponding to the first 10
tenor points.

Tenor spacing: ΔT = 1.

Volatility and correlation parameters:

Parameter a b c d α β
Value 0.976 2.0 1.5 0.5 0.1 0.1

FRAs and volatility fitting parameters:

Index i Li(0) Φi

0 2.3% −
1 2.5% 0.153
2 2.7% 0.143
3 2.7% 0.140
4 3.1% 0.140
5 3.1% 0.139
6 3.3% 0.138
7 3.4% 0.137
8 3.6% 0.136
9 3.6% 0.135
10 3.8% 0.134
...

...
...
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E Upper Bound Simulation Data

E.1 Bermudan Put in the Black-Scholes World

We present here the simulation results concerning the Bermudan Put in the Black-Scholes world.

Table E.1: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0764 0.9367 0.3885

Gap 0.2661 0.6574 0.9346
Gap(t-CI) (0.2572,0.2750) (0.6481, 0.6667) (0.9228, 0.9463)

Run2
LSM price 2.0775 0.9379 0.3895

Gap 0.2649 0.6429 0.9666
Gap(t-CI) (0.2590,0.2707) (0.6339, 0.6519) (0.9497, 0.9836)

Run3
LSM price 2.0771 0.9380 0.3890

Gap 0.2597 0.6483 0.9346
Gap(t-CI) (0.2507,0.2686) (0.6351,0.6615) (0.9228,0.9464)

Table E.2: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S, S2.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0910 0.9458 0.3920

Gap 0.1085 0.1593 0.1272
Gap(t-CI) (0.1040,0.1131) (0.1539, 0.1647) (0.1241, 0.1303)

Run2
LSM price 2.0911 0.9459 0.3925

Gap 0.1064 0.1618 0.1212
Gap(t-CI) (0.1032,0.1097) (0.1584, 0.1653) (0.1172, 0.1253)

Run3
LSM price 2.0909 0.9461 0.3909

Gap 0.1084 0.1637 0.1214
Gap(t-CI) (0.1052,0.1116) (0.1614, 0.1661) (0.1186, 0.1241)

Table E.3: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S, . . . , S3.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0917 0.9479 0.3916

Gap 0.0145 0.0091 0.3544
Gap(t-CI) (0.0137,0.0152) (0.0083, 0.0099) (0.3508, 0.3580)

Run2
LSM price 2.0929 0.9473 0.3923

Gap 0.0150 0.0142 0.2734
Gap(t-CI) (0.0142,0.0157) (0.0133, 0.0151) (0.2701, 0.2767)

Run3
LSM price 2.0941 0.9469 0.3925

Gap 0.0131 0.0116 0.1962
Gap(t-CI) (0.0123,0.0139) (0.0108, 0.0123) (0.1941, 0.1984)
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Table E.4: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S, . . . , S4.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0922 0.9466 0.3919

Gap 0.0038 0.0450 0.1950
Gap(t-CI) (0.0033,0.0043) (0.0435, 0.0464) (0.1917, 0.1983)

Run2
LSM price 2.0931 0.9465 0.3916

Gap 0.0028 0.0402 0.3519
Gap(t-CI) (0.0023,0.0034) (0.0376, 0.0428) (0.3479, 0.3559)

Run3
LSM price 2.0921 0.9478 0.3913

Gap 0.0036 0.0566 0.1811
Gap(t-CI) (0.0031,0.0042) (0.0539, 0.0593) (0.1767, 0.1855)

Table E.5: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S, . . . , S5.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0947 0.9470 0.3924

Gap 0.0149 0.1924 0.1909
Gap(t-CI) (0.0136,0.0161) (0.1848, 0.1999) (0.1879, 0.1938)

Run2
LSM price 2.0932 0.9479 0.3923

Gap 0.0172 0.2371 0.1631
Gap(t-CI) (0.0150,0.0194) (0.2327, 0.2416) (0.1595, 0.1666)

Run3
LSM price 2.0932 0.9480 0.3925

Gap 0.0196 0.1700 0.6509
Gap(t-CI) (0.0182,0.0210) (0.1647, 0.1753) (0.6436, 0.6582)

Table E.6: Upper bound for a Bermudan Put in the Black-Scholes world. Regressors: c, S, . . . , S6.

Run Number Initial Asset Price
8(ITM) 10(ATM) 12(OTM)

Run1
LSM price 2.0931 0.9472 0.3919

Gap 0.0415 0.1516 0.7292
Gap(t-CI) (0.0388,0.0442) (0.1489, 0.1543) (0.7195, 0.7389)

Run2
LSM price 2.0936 0.9473 0.3923

Gap 0.0457 0.2540 0.1623
Gap(t-CI) (0.0444,0.0469) (0.2497, 0.2584) (0.1595, 0.1651)

Run3
LSM price 2.0925 0.9471 0.3922

Gap 0.0494 0.2429 0.5809
Gap(t-CI) (0.0468,0.0519) (0.2394, 0.2464) (0.5753, 0.5866)
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E.2 Bermudan Put in the Heston Model

We present here the simulation results concerning the Bermudan Put in the Heston model.

Table E.7: Upper bound convergence result for a Bermudan Put in the Heston model. Nout = 103,
Nin = 103, 10 simulation average. Time for a run is about 80 min.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3709 1.1024 2.3448

Gap 0.2266 0.0082 0.0139
Gap(t-CI) (0.2230,0.2301) (0.0070, 0.0093) (0.0131, 0.0148)

Run2
LSM price 0.3703 1.0993 2.3439

Gap 0.1779 0.0246 0.0146
Gap(t-CI) (0.1755,0.1804) (0.0231, 0.0260) (0.0133, 0.0159)

Run3
LSM price 0.3704 1.1021 2.3435

Gap 0.2426 0.0105 0.0126
Gap(t-CI) (0.2396,0.2456) (0.0097, 0.0113) (0.0112, 0.0141)

Table E.8: Upper bound convergence result for a Bermudan Put in the Heston model. Nout = 103,
Nin = 104, 10 simulation average. Time for a run is about 490 min.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3699 1.1006 2.3413

Gap 0.4457 0.0174 0.0089
Gap(t-CI) (0.4383,0.4532) (0.0169, 0.0179) (0.0086, 0.0093)

Run2
LSM price 0.3711 1.1015 2.3443

Gap 0.1806 0.0052 0.0087
Gap(t-CI) (0.1763,0.1848) (0.0048, 0.0056) (0.0078, 0.0096)

Run3
LSM price 0.3702 1.1005 2.3429

Gap 0.0498 0.0094 0.0079
Gap(t-CI) (0.0478,0.0518) (0.0083, 0.0104) (0.0075, 0.0084)

Table E.9: Upper bound convergence result for a Bermudan Put in the Heston model. Nout = 104,
Nin = 103, 10 simulation average. Time for a run is about 800 min.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3700 1.1011 2.3423

Gap 0.2204 0.0148 0.0153
Gap(t-CI) (0.2193,0.2214) (0.0143, 0.0153) (0.0150, 0.0156)

Run2
LSM price 0.3717 1.0997 2.3421

Gap 0.0695 0.0063 0.0147
Gap(t-CI) (0.069,0.070) (0.0060, 0.0065) (0.0144, 0.0150)
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Table E.10: Upper bound for a Bermudan put in the Heston model. Regressors: c, S,
√

v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3688 1.0939 2.3276

Gap 0.9565 0.7263 0.3916
Gap(t-CI) (0.9439,0.9691) (0.7218, 0.7309) (0.3742, 0.4090)

Run2
LSM price 0.3689 1.0939 2.3274

Gap 0.9772 0.7254 0.3962
Gap(t-CI) (0.9651,0.9893) (0.7116, 0.7392) (0.3865, 0.4059)

Run3
LSM price 0.3693 1.0935 2.3287

Gap 0.9681 0.7234 0.3944
Gap(t-CI) (0.9564,0.9799) (0.7125,0.7342) (0.3814,0.4075)

Table E.11: Upper bound for a Bermudan put in the Heston model. Regressors: c, S,
√

v, S ×
√

v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3689 1.0947 2.3278

Gap 0.8410 0.6444 0.3557
Gap(t-CI) (0.8329,0.8490) (0.6333, 0.6554) (0.3451, 0.3663)

Run2
LSM price 0.3691 1.0944 2.3281

Gap 0.8545 0.6515 0.3671
Gap(t-CI) (0.8440,0.8650) (0.6401, 0.6630) (0.3572, 0.3770)

Run3
LSM price 0.3689 1.0939 2.3289

Gap 0.7653 0.6477 0.3632
Gap(t-CI) (0.7525,0.7781) (0.6372,0.6576) (0.3553,0.3711)

Table E.12: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3679 1.0993 2.3381

Gap 0.4102 0.0133 0.0196
Gap(t-CI) (0.4059,0.4145) (0.0124, 0.0141) (0.0183, 0.0209)

Run2
LSM price 0.3699 1.0992 2.3395

Gap 0.1568 0.0274 0.0186
Gap(t-CI) (0.1543,0.1593) (0.0256, 0.0293) (0.0176, 0.0195)

Run3
LSM price 0.3695 1.0991 2.3387

Gap 0.4584 0.0140 0.0188
Gap(t-CI) (0.4540,0.4628) (0.0126,0.0154) (0.0180,0.0195)

Table E.13: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S8.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3698 1.0986 2.3391

Gap 0.1666 0.2992 0.1176
Gap(t-CI) (0.1641,0.1691) (0.2917, 0.3067) (0.1127, 0.1225)

Run2
LSM price 0.3702 1.0991 2.3391

Gap 0.6808 0.2969 0.1066
Gap(t-CI) (0.6755,0.6862) (0.2930, 0.3007) (0.1029, 0.1104)

Run3
LSM price 0.3698 1.0983 2.3385

Gap 0.5362 0.1924 0.1380
Gap(t-CI) (0.5294,0.5430) (0.1865,0.1984) (0.1320,0.1439)
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Table E.14: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4,
√

v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3696 1.0984 2.3388

Gap 0.5346 0.0116 0.0214
Gap(t-CI) (0.5336,0.5356) (0.0108, 0.0124) (0.0202, 0.0225)

Run2
LSM price 0.3700 1.0987 2.3385

Gap 0.4067 0.0311 0.0202
Gap(t-CI) (0.4053,0.4071) (0.0292, 0.0330) (0.0192, 0.0212)

Run3
LSM price 0.3701 1.0988 2.3387

Gap 0.2798 0.0266 0.0205
Gap(t-CI) (0.2765,0.2831) (0.0256,0.0277) (0.0197,0.0212)

Table E.15: Upper bound with the Heston model. Regressors: c, S, . . . , S4,
√

v, v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3697 1.0989 2.3397

Gap 0.0448 0.0324 0.0182
Gap(t-CI) (0.0434,0.0462) (0.0312, 0.0335) (0.0170, 0.0194)

Run2
LSM price 0.3700 1.0992 2.3393

Gap 0.4539 0.0134 0.0186
Gap(t-CI) (0.4485,0.4592) (0.0128, 0.0140) (0.0176, 0.0199)

Run3
LSM price 0.3695 1.0983 2.3394

Gap 0.1320 0.0266 0.0190
Gap(t-CI) (0.1292,0.1349) (0.0252,0.0281) (0.0182,0.0198)

Table E.16: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4,
√

v, . . . , v2.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3700 1.0979 2.3402

Gap 0.0960 0.0616 0.0176
Gap(t-CI) (0.0936,0.0985) (0.0591, 0.0641) (0.0163, 0.0190)

Run2
LSM price 0.3694 1.0987 2.3398

Gap 0.0801 0.0429 0.0175
Gap(t-CI) (0.0781,0.0822) (0.0404, 0.0455) (0.0163, 0.0188)

Run3
LSM price 0.3696 1.0985 2.3393

Gap 0.6389 0.0148 0.0208
Gap(t-CI) (0.6338,0.6439) (0.0137, 0.0158) (0.0196,0.0220)

Table E.17: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4, S ×
√

v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3698 1.0988 2.3387

Gap 0.4425 0.0108 0.0207
Gap(t-CI) (0.0437,0.0448) (0.0102, 0.0115) (0.0196, 0.0219)

Run2
LSM price 0.3703 1.0991 2.3394

Gap 0.5511 0.0439 0.0199
Gap(t-CI) (0.5466,0.5556) (0.0420, 0.0458) (0.0186, 0.0211)

Run3
LSM price 0.3697 1.0988 2.3394

Gap 0.7018 0.0303 0.0191
Gap(t-CI) (0.6956,0.7080) (0.0288, 0.0319) (0.0180,0.0202)



E UPPER BOUND SIMULATION DATA 107

Table E.18: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4,
√

v, S×
√

v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3708 1.100 2.3434

Gap 0.4835 0.0361 0.0135
Gap(t-CI) (0.4790,0.4879) (0.0334, 0.0387) (0.0123, 0.0148)

Run2
LSM price 0.3704 1.1011 2.3434

Gap 0.1795 0.0113 0.0139
Gap(t-CI) (0.1780,0.1811) (0.0101, 0.0125) (0.0130, 0.0148)

Run3
LSM price 0.3704 1.1011 2.3430

Gap 0.0640 0.0219 0.0139
Gap(t-CI) (0.0629,0.0650) (0.0202, 0.0235) (0.0129,0.0150)

Table E.19: Upper bound for a Bermudan put in the Heston model. Regressors: c, S, . . . , S4,
√

v, v, S ×√
v, S × v, S2 ×

√
v.

Run Number Strike
8(OTM) 10(ATM) 12(ITM)

Run1
LSM price 0.3701 1.1007 2.3428

Gap 0.2308 0.0188 0.0138
Gap(t-CI) (0.2287,0.2330) (0.0176, 0.0199) (0.0130, 0.0145)

Run2
LSM price 0.3703 1.1014 2.3436

Gap 0.0487 0.0612 0.0133
Gap(t-CI) (0.0468,0.0505) (0.0585, 0.0638) (0.0119, 0.0147)

Run3
LSM price 0.3705 1.1008 2.3431

Gap 0.0259 0.0301 0.0130
Gap(t-CI) (0.0255,0.0262) (0.0283, 0.0319) (0.0122,0.0138)

E.3 Cancellable Swaption in the Libor Market Model

We present here the simulation results concerning the cancellable receiver swaption in the Libor market
model. The simulation configuration is discussed in Section 7.5.

Table E.20: Upper bound for a cancellable receiver swaption. Regressors: c, fixed leg, floating leg, floating
leg tilt. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 64.2 453.2 1082.3

Gap 9.1 15.6 11.6
Gap(t-CI) (8.4, 9.8) (14.2, 17.1) (10, 13.2)

Run2
LSM price 64.3 453.1 1082.3

Gap 9.5 15.8 12.4
Gap(t-CI) (8.9, 10) (15.1, 16.4) (11.7, 13.1)

Run3
LSM price 64.3 453.2 1082.2

Gap 9.3 16.5 13
Gap(t-CI) (8.8, 9.9) (14.0, 19.1) (11.1, 14.9)
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Table E.21: Upper bound for a cancellable receiver swaption. Regressors: c, fixed leg, floating leg, all
living Libors. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 69.9 463.2 1090.6

Gap 2.8 4.4 3.5
Gap(t-CI) (2.2, 3.5) (4.3, 4.5) (2.9, 4.1)

Run2
LSM price 69.9 463.3 1090.5

Gap 2.5 4.5 3.8
Gap(t-CI) (2.2, 2.9) (4.0, 5.1) (2.4, 5.1)

Run3
LSM price 69.9 463.2 1090.7

Gap 2.5 5.0 3.7
Gap(t-CI) (2.2, 3.0) (3.5, 6.4) (2.6, 4.9)

Table E.22: Upper bound for a cancellable receiver swaption. Regressors: c, fixed leg, floating leg, all
living Libors, all living Libors squared. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 70.3 463.9 1091.0

Gap 2.0 3.2 3.6
Gap(t-CI) (1.7, 2.2) (2.6, 3.8) (2.5, 4.6)

Run2
LSM price 70.2 464.0 1091.0

Gap 1.8 3.4 3.1
Gap(t-CI) (1.7, 2.0) (2.8, 4.0) (2.4, 3.9)

Run3
LSM price 70.3 464.0 1091.0

Gap 1.9 3.6 3.1
Gap(t-CI) (1.8, 2.0) (2.9, 4.3) (2.4, 3.7)

Table E.23: Upper bound for a cancellable receiver swaption. Regressors: c, fixed leg, floating leg, all
living Libors, cross products of all living Libors. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 70.2 464.0 1091.1

Gap 1.9 3.5 3.1
Gap(t-CI) (1.7, 2.1) (3.2, 3.9) (2.5, 3.6)

Run2
LSM price 70.2 463.8 1091.1

Gap 2.0 3.3 2.8
Gap(t-CI) (1.7, 2.4) (3.1, 3.5) (2.3, 3.3)

Run3
LSM price 71.0 465.6 1092.6

Gap 1.0 1.4 1.3
Gap(t-CI) (0.9, 1.2) (1.2, 1.6) (0.8, 1.8)
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Table E.24: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 69.8 463.3 1090.6

Gap 2.6 4.6 4.1
Gap(t-CI) (2.3, 2.8) (3.6, 5.6) (2.7, 5.4)

Run2
LSM price 69.8 463.4 1090.5

Gap 2.8 4.7 4.4
Gap(t-CI) (2.2, 3.5) (3.6, 5.7) (2.8, 6.0)

Run3
LSM price 69.9 463.4 1090.7

Gap 2.6 4.7 3.8
Gap(t-CI) (2.3, 2.8) (3.5, 5.9) (2.5, 5.2)

Table E.25: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate, RN
n (Tn)2. About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 70.6 464.6 1091.1

Gap 1.5 2.5 2.9
Gap(t-CI) (1.3, 1.8) (1.9, 3.0) (2.3, 3.5)

Run2
LSM price 70.5 464.7 1091.2

Gap 1.6 3.1 3.1
Gap(t-CI) (1.5, 1.8) (2.7, 3.4) (2.2, 4.1)

Run3
LSM price 70.6 464.5 1091.1

Gap 1.6 2.4 2.6
Gap(t-CI) (1.5, 1.8) (1.9, 2.8) (2.1, 3.0)

Table E.26: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate, RN
n (Tn)2, RN

n (Tn)3 . About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 70.9 465.4 1092.5

Gap 1.2 1.5 1.1
Gap(t-CI) (1.0, 1.4) (1.4, 1.7) (0.9, 1.4)

Run2
LSM price 70.9 465.3 1092.5

Gap 1.3 1.5 1.5
Gap(t-CI) (1.0, 1.5) (1.3, 1.7) (1.2, 1.7)

Run3
LSM price 71.0 465.4 1092.4

Gap 1.3 1.5 1.3
Gap(t-CI) (1.0, 1.5) (1.3, 1.7) (1.1, 1.5)
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Table E.27: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate, RN
n (Tn)2,. . . ,RN

n (Tn)4 . About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 71.4 465.4 1092.8

Gap 0.6 1 0.9
Gap(t-CI) (0.6, 0.7) (0.9, 1.2) (0.8, 1.1)

Run2
LSM price 71.4 466.0 1092.8

Gap 0.7 0.9 0.7
Gap(t-CI) (0.5, 0.8) (0.7, 1.1) (0.6, 0.9)

Run3
LSM price 71.3 466.0 1092.9

Gap 0.9 0.8 0.9
Gap(t-CI) (0.7, 1.0) (0.7, 0.9) (0.7, 1.2)

Table E.28: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate, RN
n (Tn)2,. . . ,RN

n (Tn)5 . About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 71.6 466.2 1092.9

Gap 0.4 0.6 0.7
Gap(t-CI) (0.3, 0.5) (0.5, 0.7) (0.5, 1.0)

Run2
LSM price 71.6 466.3 1092.9

Gap 0.4 0.6 0.8
Gap(t-CI) (0.2, 0.5) (0.5, 0.8) (0.6, 1.0)

Run3
LSM price 71.7 466.5 1092.9

Gap 0.5 0.6 0.7
Gap(t-CI) (0.4, 0.5) (0.5, 0.8) (0.5, 0.8)

Table E.29: Upper bound for a cancellable receiver swaption. Regressors: c, forward swap rate RN
n (Tn),

fixed leg, floating leg, next Libor rate, RN
n (Tn)2,. . . ,RN

n (Tn)6 . About 13 hours for 3 simulation runs.

Run Number Coupon rate k
214(OTM) 314(ATM) 414(ITM)

Run1
LSM price 71.8 466.3 1093.0

Gap 0.3 0.5 0.7
Gap(t-CI) (0.2, 0.3) (0.3, 0.6) (0.5, 1.0)

Run2
LSM price 71.7 466.4 1092.9

Gap 0.3 0.6 0.7
Gap(t-CI) (0.2, 0.3) (0.5, 0.7) (0.5, 0.9)

Run3
LSM price 71.7 466.3 1093.0

Gap 0.2 0.5 0.7
Gap(t-CI) (0.2, 0.3) (0.4, 0.7) (0.6, 0.8)
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E.4 Cancellable Inverse Floater in the Libor Market Model

We present here the simulation results concerning the cancellable receiver Inverse Floater in the Libor
market model. The simulation configuration is discussed in Section 7.5.

Table E.30: Upper bound for a cancellable receiver inverse floater. Regressors: c, fixed leg, floating leg,
floating tilt. About 14 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 270.7 673.2 1222.8

Gap 42.7 48.2 43.9
Gap(t-CI) (39.9, 45.4) (45.3, 51.1) (40.1, 47.8)

Run2
LSM price 270.8 673.7 1222.4

Gap 40 49 43.2
Gap(t-CI) (38.2, 41.8) (46.5, 51.5) (42.3, 44.1)

Run3
LSM price 270.9 673.4 1222.5

Gap 40.8 47.7 44.8
Gap(t-CI) (38.1, 43.5) (45.0, 50.3) (42.4, 47.2)

Table E.31: Upper bound for a cancellable receiver inverse floater. Regressors: c, fixed leg, floating leg,
floating leg tilt, floating leg square, floating tilt square, floating leg×floating tilt. About 17 hours for 3
simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 293.5 702.5 1251.5

Gap 15.9 15.2 11.2
Gap(t-CI) (12.8, 19.0) (12.8, 17.6) (9.2, 13.2)

Run2
LSM price 293.4 702.4 1251.2

Gap 15.6 15.1 12.2
Gap(t-CI) (12.9, 18.3) (13.6, 16.5) (10.4, 14.0)

Run3
LSM price 293.3 702.6 1251.3

Gap 14.8 13.9 11.1
Gap(t-CI) (13.0, 16.5) (12.2, 15.6) (9.7, 12.6)

Table E.32: Upper bound for a cancellable receiver inverse floater. Regressors: c, coupon leg, floating
leg, all living Libor rates. About 17 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 303.0 709.8 1255.3

Gap 1.2 4.5 6.9
Gap(t-CI) (1.1, 1.3) (3.6, 4.9) (4.7, 9.0)

Run2
LSM price 302.9 709.7 1255.1

Gap 1.2 4.3 5.5
Gap(t-CI) (1.0, 1.3) (4.1, 4.5) (4.1, 6.9)

Run3
LSM price 303.0 709.8 1255.1

Gap 1.4 4.2 6.1
Gap(t-CI) (0.8, 1.9) (3.3, 5.2) (4.9, 7.3)
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Table E.33: Upper bound for a cancellable receiver inverse floater. Regressors: c, coupon leg, floating
leg, all living Libor rates, all living Libor rates squared. About 17 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 303.1 711.4 1256.6

Gap 1.0 2.6 4.3
Gap(t-CI) (0.8, 1.1) (2.3, 3.0) (3.1, 5.4)

Run2
LSM price 303.4 711.5 1256.5

Gap 0.8 2.3 4.7
Gap(t-CI) (0.7, 1.0) (1.6, 3.0) (3.9, 5.5)

Run3
LSM price 303.3 711.5 1256.6

Gap 0.9 2.5 5.3
Gap(t-CI) (0.7, 1.0) (1.8, 3.2) (4.0, 6.5)

Table E.34: Upper bound for a cancellable receiver inverse floater. Regressors: c, coupon leg, floating
leg, all living Libor rates, cross-products of all living Libor rates. About 17 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 303.3 712.0 1258.2

Gap 0.8 1.7 2.9
Gap(t-CI) (0.6, 0.9) (1.5, 2.0) (2.8, 3.0)

Run2
LSM price 303.3 712.1 1258.1

Gap 0.8 1.7 2.7
Gap(t-CI) (0.7, 1.0) (1.4, 2.1) (2.1, 3.4)

Run3
LSM price 303.3 712.1 1258.2

Gap 0.8 2.0 2.9
Gap(t-CI) (0.7, 1.0) (1.8, 2.2) (2.1, 3.7)

Table E.35: Upper bound for a cancellable receiver inverse floater. Regressors: c, forward swap rate
RN

n (Tn), fixed leg, floating leg, next Libor rate. About 14 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 292.7 701.4 1250.2

Gap 16.7 15.7 11.6
Gap(t-CI) (15.6, 17.9) (13.6, 17.8) (8.8, 14.4)

Run2
LSM price 292.6 701.1 1250.2

Gap 15.8 16.5 13.4
Gap(t-CI) (13.1, 18.5) (14.3, 18.7) (10.3, 16.4)

Run3
LSM price 292.3 701.3 1250.2

Gap 15.8 15.8 15
Gap(t-CI) (12.3, 17.1) (13.4, 18.2) (12.8, 17.2)
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Table E.36: Upper bound for a cancellable receiver inverse floater. Regressors: c, forward swap rate
RN

n (Tn), coupon leg, floating leg, next Libor rate. About 17 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 302.7 709.4 1253.1

Gap 1.7 4.1 7.7
Gap(t-CI) (1.5, 1.9) (3.7, 4.5) (6.8, 8.7)

Run2
LSM price 302.5 709.8 1253.0

Gap 1.7 3.9 8
Gap(t-CI) (1.3, 2.0) (3.1, 4.8) (6.3, 9.7)

Run3
LSM price 302.6 709.7 1253.3

Gap 16 4.3 8.2
Gap(t-CI) (15.0, 17.0) (3.8, 4.9) (7.4, 9.0)

Table E.37: Upper bound for a cancellable receiver inverse floater. Regressors: c, forward swap rate
RN

n (Tn), coupon leg, floating leg, next Libor rate, RN
n (Tn)2. About 17 hours for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 302.8 710.1 1254.6

Gap 1.3 4.5 6.5
Gap(t-CI) (1.1, 1.4) (3.7, 5.3) (5.3, 7.8)

Run2
LSM price 302.7 709.8 1254.4

Gap 1.3 4.1 6.4
Gap(t-CI) (0.9, 1.7) (3.3, 4.8) (5.3, 7.6)

Run3
LSM price 302.8 709.8 1254.6

Gap 1.3 4.4 6.6
Gap(t-CI) (1.2, 1.4) (3.9, 5.0) (5.7, 7.4)

Table E.38: Upper bound for a cancellable receiver inverse floater. Regressors: c, forward swap rate
RN

n (Tn), coupon leg, floating leg, next Libor rate, coupon leg square. About 17 hours for 3 simulation
runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 302.7 712.4 1259.2

Gap 1.2 1.5 1.8
Gap(t-CI) (0.9, 1.5) (1.3, 1.7) (1.5, 2.1)

Run2
LSM price 302.8 712.1 1258.8

Gap 1.3 1.4 1.6
Gap(t-CI) (1.0, 1.6) (1.0, 1.8) (1.4, 1.7)

Run3
LSM price 303.0 712.1 1259.2

Gap 1.4 1.5 1.8
Gap(t-CI) (1.1, 1.7) (1.1, 1.8) (1.4, 2.2)
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Table E.39: Upper bound for a cancellable receiver inverse floater. Regressors: c, forward swap rate
RN

n (Tn), coupon leg, floating leg, next Libor rate, coupon leg square, coupon leg cubic. About 17 hours
for 3 simulation runs.

Run Number Strike s
485.2(OTM) 585.2(ATM) 685.2(ITM)

Run1
LSM price 302.7 712.6 1258.8

Gap 1.3 1.2 1.6
Gap(t-CI) (1.0, 1.5) (0.9, 1.5) (1.0, 2.3)

Run2
LSM price 302.8 712.3 1258.7

Gap 1.3 1.4 1.8
Gap(t-CI) (1.1, 1.4) (1.2, 1.6) (1.4, 2.1)

Run3
LSM price 302.8 712.2 1258.9

Gap 1.4 1.5 1.8
Gap(t-CI) (1.2, 1.7) (1.2, 1.8) (1.5, 2.0)

E.5 Cancellable Snowball in the Libor Market Model

We present here the simulation results concerning the cancellable receiver snowball in the Libor market
model. The simulation configuration is discussed in Section 7.5.

Table E.40: Upper bound for a cancellable snowball. Regressors: c, fixed leg, floating leg, floating leg
tilt, next cash flow. About 15 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 795.6 1210.4 1692.0

Gap 60.2 53.0 51.7
Gap(t-CI) (57.5, 62.9) (50.1, 55.9) (49.1, 54.2)

Run2
LSM price 795.2 1209.7 1692.6

Gap 56.3 53.8 51.1
Gap(t-CI) (53.9, 58.7) (49.3, 58.3) (50.0, 52.2)

Run3
LSM price 795.8 1210.5 1692.1

Gap 58.4 53.3 52.8
Gap(t-CI) (53.9, 63.0) (47.8, 58.7) (48.5, 57.2)

Table E.41: Upper bound for a cancellable snowball. Regressors: c, fixed leg, floating leg, floating leg
tilt, next cash flow, floating leg squared, floating tilt squared, floating leg×floating tilt. About 15 hours
for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 824.7 1235.0 1712.5

Gap 28.5 32.7 31.5
Gap(t-CI) (25.8, 31.1) (28.3, 37.0) (26.7, 36.3)

Run2
LSM price 824.3 1235.0 1713.5

Gap 34 32.3 34.9
Gap(t-CI) (28.5, 39.5) (25.4, 39.1) (29.2, 40.6)

Run3
LSM price 824.3 1234.5 1712.9

Gap 32.0 32.4 35.9
Gap(t-CI) (29.8, 34.3) (27.2, 37.6) (31.8, 39.9)
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Table E.42: Upper bound for a cancellable snowball. Regressors: c, fixed leg, floating leg, all living
Libors. About 17 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 820.7 1231.2 1709.9

Gap 30.6 34.7 35.8
Gap(t-CI) (28.2, 32.9) (28.0, 41.4) (29.6, 42.1)

Run2
LSM price 821.2 1231.6 1710.6

Gap 32.2 33.5 34.0
Gap(t-CI) (30.0, 34.4) (30.5, 36.5) (28.9, 39.1)

Run3
LSM price 821.6 1230.6 1710.0

Gap 31.3 35.0 35.1
Gap(t-CI) (29.6, 33.0) (33.4, 36.6) (29.6, 40.7)

Table E.43: Upper bound for a cancellable snowball. Regressors: c, fixed leg, floating leg, all living
Libors, all living Libors squared. About 17 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 823.6 1233.3 1711.8

Gap 28.4 32.1 34.0
Gap(t-CI) (26.2, 30.6) (30.7, 33.5) (29.6, 38.5)

Run2
LSM price 823.6 1232.7 1711.8

Gap 29.2 32.8 34.7
Gap(t-CI) (26.1, 32.2) (30.8, 34.8) (29.0, 40.4)

Run3
LSM price 825.1 1234.0 1711.6

Gap 28.4 34.5 33.9
Gap(t-CI) (24.3, 32.4) (30.7, 38.2) (32.2, 35.6)

Table E.44: Upper bound for a cancellable snowball. Regressors: c, fixed leg, floating leg, all living
Libors, cross product of all living Libors. About 17 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 830.8 1240.5 1719.8

Gap 18.5 22.9 24.1
Gap(t-CI) (16.2, 20.9) (19.5, 26.5) (18.8, 29.3)

Run2
LSM price 830.6 1241.9 1719.8

Gap 18.1 22.8 24.9
Gap(t-CI) (16.2, 20.1) (19.6, 26.0) (19.6, 30.2)

Run3
LSM price 830.2 1240.9 1719.8

Gap 19.3 21.7 25.5
Gap(t-CI) (17.9, 20.8) (19.7, 23.7) (22.4, 28.6)



116 E.5 Cancellable Snowball in the Libor Market Model

Table E.45: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), fixed leg,

floating leg, next Libor rate, next cash flow. About 15 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 823.4 1232.6 1711.9

Gap 30.0 33.3 35.1
Gap(t-CI) (25.6, 34.4) (27.1, 39.5) (28.1, 42.1)

Run2
LSM price 823.2 1233.0 1712.5

Gap 31.8 30.2 35.4
Gap(t-CI) (25.4, 38.2) (25.8, 34.6) (31.0, 39.7)

Run3
LSM price 823.3 1232.9 1711.5

Gap 29.2 30.9 32.2
Gap(t-CI) (24.2, 34.1) (25.4, 36.3) (26.9, 37.4)

Table E.46: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), coupon

leg approximation 1, floating leg, next Libor rate, next cash flow. About 18 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 828.5 1235.7 1721.5

Gap 17.6 22.5 16.8
Gap(t-CI) (15.0, 20.2) (19.9, 25.2) (15.2, 18.5)

Run2
LSM price 827.5 1235.2 1720.3

Gap 17.1 22.5 15.6
Gap(t-CI) (15.7, 18.5) (20.0, 24.9) (13.2, 18.1)

Run3
LSM price 828.1 1235.3 1720.2

Gap 16.7 20.8 17.6
Gap(t-CI) (15.4, 17.9) (18.2, 23.4) (15.4, 19.9)

Table E.47: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), coupon

leg approximation 1, floating leg, next Libor rate, next cash flow, coupon leg approximation 1 squared.
About 18 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 830.4 1241.6 1725.6

Gap 15.4 15.6 12.4
Gap(t-CI) (12.7, 18.2) (14.3, 17.0) (11.3, 13.5)

Run2
LSM price 830.1 1241.9 1724.6

Gap 15.5 15.7 11.4
Gap(t-CI) (14.0, 16.9) (13.2, 18.2) (10.3, 12.5)

Run3
LSM price 830.5 1241.4 1725.1

Gap 16.2 16.1 12.1
Gap(t-CI) (14.9, 17.5) (14.4, 17.7) (10.9, 13.2)
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Table E.48: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), coupon

leg approximation 2, floating leg, next Libor rate, next cash flow. About 34 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 827.0 1230.5 1702.9

Gap 19.4 26.2 33.9
Gap(t-CI) (15.9, 22.9) (23.8, 28.7) (32.0, 35.7)

Run2
LSM price 826.2 1231.0 1703.8

Gap 18.0 26.9 34.1
Gap(t-CI) (15.4, 20.5) (25.0, 28.9) (33.2, 35.1)

Run3
LSM price 827.2 1230.5 1703.1

Gap 17.9 25.6 36.9
Gap(t-CI) (16.2, 19.7) (23.9, 27.4) (34.1, 39.8)

Table E.49: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), coupon

leg approximation 2, floating leg, next Libor rate, next cash flow, coupon leg approximation 2 squared.
About 34 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 838.7 1250.6 1730.2

Gap 6.3 6.1 5.8
Gap(t-CI) (6.0, 6.6) (5.4, 6.9) (4.6, 7.1)

Run2
LSM price 839.6 1251.3 1731.4

Gap 5.4 6.2 5.2
Gap(t-CI) (4.1, 6.7) (5.5, 6.8) (4.4, 5.9)

Run3
LSM price 839.1 1250.4 1730.6

Gap 6.6 5.7 5.8
Gap(t-CI) (5.5, 7.8) (4.8, 6.6) (4.8, 6.8)

Table E.50: Upper bound for a cancellable snowball. Regressors: c, forward swap rate RN
n (Tn), coupon

leg approximation 2, floating leg, next Libor rate, next cash flow, coupon leg approximation 2 squared
and to the third power. About 34 hours for 3 simulation runs.

Run Number Virtual Coupon Rate C0

200(OTM) 300(ATM) 400(ITM)

Run1
LSM price 838.0 1250.5 1730.1

Gap 5.5 5.6 5.8
Gap(t-CI) (4.4, 6.5) (5.0, 6.1) (5.0, 6.5)

Run2
LSM price 838.9 1250.7 1731.1

Gap 6.0 5.5 5.8
Gap(t-CI) (3.8, 8.3) (5.1, 5.8) (5.3, 6.2)

Run3
LSM price 0 0 0

Gap 0 0 0
Gap(t-CI) (0, 0) (0, 0) (0, 0)
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