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Abstract

Electricity cost reduction for household consumers is researched in this thesis
through real-time electricity pricing scheme with game-theoretical demand-side
management and later, implications of home electricity generation is researched
economically. Four different methodologies are followed during this thesis.
These methodologies are shortly described:

The first one is statistical bottom-up modelling of electricity demand profiles.
Before starting with research questions, it is important to build electricity
demand profiles of households. Two-week demand profile of ten households for
every season is generated by using bottom-up electricity demand profile
simulation program based on (Richardson I., Thomson, Infield, & Clifford, 2010).

Then, fixed pricing scheme is compared to time-varying pricing scheme by a
simple micro-economic theory that the electricity market behaves in competition
and in competitive markets, firms are free to set price and quantity; if a firm sets
a price above the prevailing market price, its product will not be purchased; if it
sets its price below the market price, its profits will be needlessly lost, since it
can get as many customers as it wants by pricing at the market price (Varian,
1992). In fixed pricing scheme, there will be a single retail market price
regardless of how much end-users consume electricity. When the retail price of
electricity does not vary over time, a wholesale seller’s attempt to exercise
wholesale market power and raise wholesale prices has no short-run impact on
quantity since end-use customers do not see a change in the retail price. With
time-varying prices demand changes are reflected in the wholesale price, an
attempt to raise wholesale prices will impact retail prices and thus reduce the
quantity of power that customers demand. This customer response reduces the
profitability of raising wholesale prices and, thus, discourages the exercise of
market power (Borenstein, 2005). Given the microeconomic theory, a new real-
time pricing scheme is suggested for the end-users.

Real-time pricing shows electricity prices for every hour of the day. End-users
have shiftable appliances, which can be turned on by electricity scheduler. If all
the consumers move to off-peak price hours with similar pattern, when the
electricity prices are lower, there could be a new peak demand. This new peak
demand, which is called “re-bound effect”, will increase the electricity price for
next hours. Scheduling consumption of end-users with game theoretical model
prevents “re-bound effect”. A non-cooperative game theoretical model to
schedule “shiftable appliances” of consumers is suggested.

At last, payback period of PV solar panels is compared in case of fixed pricing and
real-time pricing. This comparison shows us how the real-time pricing can help
in PV solar panels market.
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1. Introduction

The global energy market is exposed to the risk of increasing energy resource
usage, scarcity of energy resources and growing environmental concerns. These
risks are causing governmental and non-governmental bodies to take new
actions in generation, transmission, distribution and consumption of energy.
These actions aim to increase the efficiency of energy, thus reduce the costliness
of energy and reduce the negative impact on environment.

Most recent of developments to increase the efficiency of energy consumption
are smart grid applications and demand-side management, which are frequently
used in generation, transmission, and distribution. The smart grid is the
collection of all technologies, concepts, topologies, and approaches that allow the
hierarchies of generation, transmission, and distribution to be replaced with an
end-to-end, organically intelligent, fully integrated environment where the
business processes, objectives, and needs of all stakeholders are supported by
the efficient exchange of data, services, and transactions [32]. Smart grid
technology enables systematic communication between suppliers and
consumers; this communication helps to optimize energy production and
consumption. Demand Side Management (DSM) is a portfolio of measures to
improve the energy system at the side of consumption. It ranges from improving
energy efficiency by using better materials, over smart energy tariffs with
incentives for certain consumption patterns, up to sophisticated real-time
control of distributed energy resources [59].

Household electricity market is responsible for some 24% of electricity
consumption in the Netherlands. Household electricity demand is in increasing
trend in the Netherlands over 20 years, this is because of increasing use of
household appliances such as freezers, clothes driers and dishwashers and
increasing use of PCs has also played an important role in the electricity demand
of households. The cost of energy has risen steeply over the past years as a result
of increasing oil prices: rates for gas are linked to the price of oil, and since gas is
also a major source of fuel for generating electricity; this has resulted in higher
rates for electricity too [27]. Recent increasing trend of electricity costs force
household consumers to search for ways to decrease their electricity costs. The
research presented in this thesis aims to reduce electricity cost of households
through using smart grid technology and DSM methods.

1.1 Problem statement: Current State and Desired Situation

While minimising their electricity cost, household electricity consumers want to
maintain their convenience. This can be possible by offering different demand
response incentives to the retail market, which help household consumers to
benefit maximum from shifting their demand. Moreover household consumers
need to schedule their consumption shifts cooperatively not to cause new demand
peaks, which results in new price peaks.



After a new demand response incentive and electricity consumption scheduling
is applied, distributed generation technologies is suggested to be invested for
household consumers to be more independent from the grid prices, investments
to these technologies must be paid back in reasonable periods. Current situation
of these three offered solutions are given below:

Demand Response Incentive:

Currently household consumers are either charged by single-pricing contracts,
which does not motivate consumers to shift their demand, or they are charged by
multi-part tariff contract, which are two level, day and night time, electricity
prices. In the day and night time electricity pricing, household consumers are
also exposed to strict prices, which does not motivate them to shift their
demand. If household consumers want to benefit more from shifting their
demand, time-varying price incentives have to be followed. This solution is
explained detailed in Chapter 4.

Electricity Consumption Scheduling:

Market-based operation and deregulation of the electricity industry places
consumers in the centre of the decision-making process. Clearly, development of
Demand-Side Management (DSM) will provide choice to consumers regarding
usage of electricity, however DSM has not yet been fully integrated into the
operation of electricity markets. Most of the existing demand-side management
programs available today focus primarily on the interactions between a utility
company and its customers. Smart grid infrastructure and demand-side
management will cause domestic-users to behave in a certain way of electricity
consumption scheduling game, where the players are the users and their
strategies are the daily schedules of their household appliances and loads. If
these players shift their electricity consumption at the same time, there will be
new peak electricity consumption occurring, this is called “re-bound effect”. So
then the players have to behave in a cooperative way to keep demand stable.
This could be achieved by electricity consumption scheduling with a game
theoretical approach. This solution is explained detailed in Chapter 5.

Distributed Generation

The current electricity law allows renewable domestic generators as well as
hybrid generators that make use of fossil fuels to feed up to 3000 kWh into the
electricity grid per connection per year. This allows those kWh to be subtracted
from the used kWh and thereby receive a full value of the electricity. Since grid
operators have to take the delivery of feed-in power, investing in domestic-scale
distributed generation technologies such as PV solar panels. Moreover The
Netherlands is obliged to meet the renewable energy criteria by European Union,
which is 14% renewables in total energy consumption target in 2020 (Directive
2009/28/EC, Annex I), this target shapes the policies, which support renewable
energy programmes. The increase in investment of domestic-scale distributed
generation technologies bring new debate in economical feasibility of these
investments, which is shown in Chapter 6.
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1.2 Goal

Main goal of this research is to reduce the electricity cost of household
consumers while maintaining the same level of comfort. Two different methods
are proposed to achieve this goal.

First, time-varying pricing incentive is suggested for household users, which will
give more independence for household users to schedule their electricity
demand, thus more cost efficiency is obtained. Moreover a game theoretical
model for group of consumers is built to optimise best scheduling for “shiftable”
appliances, so then “re-bound effect” will be prevented.

Second, investment of photovoltaic solar panels is suggested in the proposed
case of electricity scheduling game under time-varying prices. Since the
household consumers are more cost efficient in the proposed case, it is
economically more advantageous to invest then in current case with single
pricing scheme.

1.3 Research Question

Research question is formulated to meet the research targets as following:
“How can household consumers benefit economically from time-varying pricing
schemes with game-theoretic electricity consumption scheduling?”

Sub-questions
These sub-questions are followed to answer research question:

A. How can electricity-pricing incentive be built to motivate household
consumers to schedule their “shiftable” appliances?

B. How can a game theoretic framework be used for electricity scheduling to
minimise electricity costs of household consumers?

C. How are photovoltaic solar panels investments economically feasible in time
varying price incentive with electricity scheduling game situation?

1.4 Research Approach

DSM includes conservation and energy efficiency programs; reducing
consumption and shifting consumption are the main tools. Reducing the
consumption can be achieved through encouraging user awareness and building
energy efficient buildings. However there is also need to shift the high power
household appliances to off-peak hours to reduce electricity costs. In this thesis
project, price-based rates demand response programme has been offered so then
the households can make more benefits of shifting their loads in time-varying
prices.

11



Electricity consumption profiles of households are built by using a bottom-up
methodology based on a previous research. These profiles are used as starting
point of the research to apply time-varying pricing schemes. Time-varying
pricing schemes is summarised by literature research. Depending on these
research results, a retail-pricing model is proposed. In retail-pricing model, next
hour electricity prices are forecasted by using a time-series statistical model
proposed by previous literature researches. Data analysis of APX-Endex takes
place as a part of this model.

Moreover, a scenario, where several consumers share a source of electricity, is
considered. If all the consumers shift their load at the same time, there will be a
new peak demand occurring, which is called ‘rebound effect’. As a solution, each
one of the consumers is equipped with an automatic electricity consumption
scheduler (ECS). The smart meters with ECS functions interact automatically by
running a distributed algorithm to find optimal electricity consumption schedule
for each user. The optimization problem is to minimise the electricity cost in the
system. This optimization problem can be expressed in a game-theoretic
analysis, which is a mathematical modelling of users’ interaction.

The electricity consumption game among the participating users, who share the
same electricity source, gives the optimal solution of a system-wide optimization
problem. Once the optimization problem is solved, new electricity cost is
calculated. Payback period of Solar Photovoltaic Power systems in new
electricity cost regime is compared to conventional electricity cost regime to
prove the change in economical feasibility of these investments.

1.5 Structure of Report

Chapter 2: Background

Electricity cost of household consumers in the Netherlands is described. Methods
to minimise electricity cost are listed: Smart Grid, Demand-Side Management
and Investment in Micro-Generation technologies. These keywords are explained
in detail. Driving factors for micro-generation and smart grid are shown and
current global energy policies are summarised.

Chapter 3: Electricity Consumption Profiles

Household Electricity Demand is explained. Household electricity consumption
profile is built using bottom-top method. “Shiftable” and “non-shiftable”
appliances are listed.

Chapter 4: Proposal of A Time-Varying Pricing Scheme

Retail electricity pricing schemes are shown. Time-varying pricing schemes are
explained. Electricity price forecasting is needed for the proposed electricity
pricing model, so forecasting is shown and proposed model is explained

Chapter 5: Proposal of An Electricity Consumption Scheduling

Consumption scheduling is obtained by using game theoretical models. The
literature is summarised and proposed game theoretical model is shown.

12



Chapter 6: Investment Performance of Photovoltaic Solar Panels

Domestic-scale distributed generation applications are observed. Pay-back
period of PV solar panels are calculated in both current situation and proposed
situation. Results are discussed.

Chapter 7: Conclusions

The report is summarised, the feasibility studies are compared and the results
are discussed. Moreover, future research proposals are given.

13



2. Background

Electricity market is affected by increasing petroleum and natural gas prices
globally. On the top of these increasing prices, energy demand trend is also
increasing globally. All these are affecting the wholesale and retail electricity
markets, which are causing increasing electricity prices for household
consumers. This argument is going to be explained in details in following
sections. In this environment, household consumers are looking for using
electricity more cost-efficiently. This thesis is proposing an electricity
consumption-scheduling (ECS) algorithm for households in case of time-varying
prices and comparing results when photovoltaic solar panels are built in
households.

Before research question is answered, it is important to know how ECS
technology is made possible today. Smart Grid system enables customers to
communicate with utilities better. Consumers can follow the peak and off-peak
demand on the grid and plan their consumption accordingly. With the help of
smart grids, demand-side management (DSM) methods can be applied in
households. DSM is a known method for many years to manage electricity
consumption scheduling. In this chapter, smart grid technology and DSM is
explained in detail and the DSM method used in this thesis is summarised. Later,
a recent trend in domestic energy sector called micro-generation is explained
shortly.

In the next sections electricity cost of households, smart grid technology,
demand-side management and micro-generation is reviewed from the literature.

2.1 Electricity Cost of Household Consumers

Household electricity demand is in increasing trend in the Netherlands over 20
years (1990-2010) as it is shown on Figure 2.1. The growth up to 2008 follows
increasing use of household appliances such as freezers, clothes driers and
dishwashers and increasing use of PCs has also played an important role. Factors
that are thought to have played a role in the apparent stabilisation of electricity
consumption after 2008 are, the market penetration of appliances such as
freezers, clothes driers and dishwashers levelled off, and household appliances,
which typically use large amounts of electricity were replaced with more energy
efficient models [27].

Increasing number of electric vehicle (EV) and plug-in hybrid electric vehicle

(PHEV) users are expected to add on more household electricity demand in next
years.

14
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Figure 2.1 Average Household Electricity Consumption (kWh/year) from 1990-
2010 (Energie Nederland, 2012)

Household electricity prices mainly depend on demand and marginal production
costs of suppliers. Electricity demand depends on mainly variables such as
weather conditions, seasonal conditions and marginal production costs of
suppliers mainly variables such as petroleum and natural gas commodity prices
[85]. The cost of energy has risen steeply over the past years as a result of
increasing oil prices: rates for gas are linked to the price of oil, and since gas is
also a major source of fuel for generating electricity; this has resulted in higher
rates for electricity too [27].

Household electricity cost is increasing as the demand and electricity prices are
increasing. Households can decrease their electricity cost by getting more
independent in electricity supply; this can be possible by investing in
photovoltaic solar panels. Moreover, households can choose different pricing
incentive for their electricity consumption and use demand-side management
applications by using smart grids; which enables them to shift their electricity
consumption of appliances from peak hours to off-peak hours.

As it is seen from the Figure 2.2, consumers find energy prices increasingly more
expensive [57].

2011 2nd half 200
2011 1st half 22 1
2010 26 2
2009 25 1
2008 17 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

EVery High ®High Reasonable “ Low

Figure 2.2 Household Consumer’s Perception of Energy Prices (Office of Energy
Regulation, 2012)
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2.2 Smart Grids

In this section, smart grids are introduced to the reader. It is important to
emphasise the technological development of the electricity grids in this thesis,
since these developments make the modelling of the suggested demand-side
management methods possible to implement.

2.2.1 Smart Grids: History and Definition

History

The electricity grid as we know it today has been designed 50-100 years ago and
still works via the same principles. Electricity was produced at central places and
transported one-way downwards to the customers [53]. As you can see from the
Figure 2.3, the conventional electricity grid is a strictly hierarchical system in
which central generation (power plants) at the top of the chain ensure power
delivery to customers’ loads at the bottom of the chain.

Central Generation

Transmission System

Centralized
Control with
Basic Data
Network

Passive
Operation
with No Data
Network

Figure 2.3 Sketch of the conventional grid structure [32]

In conventional grid structure, power plants do not have real-time information
about the service parameters of the customer loads. The grid is therefore
engineered for maximum anticipated peak demand across its aggregated load.
And since this peak demand is an infrequent occurrence, the system is inherently
inefficient. Moreover, an unprecedented rise in demand for electrical power,
coupled with lagging investments in the electrical power infrastructure, has
decreased system stability. With the safe margins exhausted, any unforeseen
surge in demand or anomalies across the distribution network causing
component failures can trigger blackouts [32].

The conventional grid was designed decades ago with different design principles,
and environmental and societal circumstances. Back then; fossil fuels were cheap
and abundant. Although nowadays renewables have an increasing share in the
energy mix, fossil fuels are still dominant [7]. For example, the energy mix of the
Netherlands in 2010 shows that 77.1% of the electricity production was fuelled
by fossil fuels [27]. But the circumstances are changing: fossil fuels are becoming
expensive and are produced by political less stable countries. Besides the

16



economical and political problems in harvesting these fossil fuels, most of the
fossil fuels are consumed with a very low efficiency.

The generation efficiency of power stations varies between around 35% (older
coal stations) to over 50% (modern combined cycle stations), averaging to about
39%. When transmission and distribution losses are considered, the average
overall efficiency of the system drops to 35% [21]. Fossil fuelled power plants,
with their low overall efficiency, cause environmental problems emitting green
house gases in air. Today, there is a general consensus on the impacts of human
activities on global climate change. The interest related to climate issues is
growing publicly and the debate now focuses on the actions that need to be
undertaken to avoid damages. These actions force countries to move on
sustainable energy sources. These sustainable energy sources are connected to
the grid different than conventional energy sources.
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Figure 2.4 Overview of the Dutch electricity network [53]

As you can see in Figure 2.5, wind park and biogas are given as examples of
sustainable energy sources, moreover a new electricity flow from houses to grid
is introduced. Addition of these sustainable energy resources requires new
developments in grid technology. A change towards another supply chain with
more sustainable energy production via continuous management of production,
transportation and consumption requires a so-called ‘Smart Grid’.
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Definition

A smart grid is an electricity network that uses digital and other advanced
technologies to monitor and manage the transport of electricity from all
generation sources to meet the varying electricity demands of end-users. Smart
grids coordinate the needs and capabilities of all generators, grid operators, end-
users and electricity market stakeholders to operate all parts of the system as
efficiently as possible, minimising costs and environmental impacts while
maximising system reliability, resilience and stability [39].

2.2.2 Smart Grids: Technology and Application

The smart grid technology areas cover the entire grid, from generation through
transmission and distribution to various types of electricity consumers. Some of
the technologies are actively being deployed and are considered mature in both
their development and application, while others require further development
and demonstration. A fully optimised electricity system will deploy all the
technology areas in Figure 2.7. However, not all technology areas need to be
installed to increase the “smartness” of the grid [39]. In this thesis, electricity
consumption scheduler (ECS) is used, which is a customer-side smart grid
technology shown in Figure 2.6.
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Figure 2.6 Smart Grid Technology Areas [39]

The smart grid is the collection of all technologies, concepts, topologies, and
approaches that allow the hierarchies of generation, transmission, and
distribution to be replaced with an end-to-end, organically intelligent, fully
integrated environment where the business processes, objectives, and needs of
all stakeholders are supported by the efficient exchange of data, services, and
transactions. A smart grid is therefore defined as a grid that accommodates a
wide variety of generation options. [t empowers consumers to interact with the
energy management system to adjust their energy use and reduce their energy
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costs. A smart grid is also a self-healing system. It predicts looming failures and
takes corrective action to avoid or mitigate system problems. A smart grid uses
IT to continually optimise the use of its capital assets while minimising
operational and maintenance costs [32].

Here, it is recommended to take a look at the evolution of smart grid technology
and remember all the technologies and concepts used by utilities before. As
Figure 2.7 shows, the metering side of the distribution system has been the focus
of most recent infrastructure investments. The earlier projects in this sector saw
the introduction of automated meter reading (AMR) systems in the distribution
network. AMR lets utilities read the consumption records, alarms, and status
from customers’ premises remotely.
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Figure 2.7 The evolution of Smart Grid [32]

Due to its one-way communication system, AMR’s capability is restricted to
reading meter data. It does not let utilities take corrective action based on the
information received from the meters. For example, a sudden decrease in
demand cannot be feed back to the utility on time, which cause the waste of
energy production. Consequently, AMR technology was short-lived.

Rather than investing in AMR, utilities across the world moved towards
advanced metering infrastructure (AMI). AMI provides utilities with a two-way
communication system to the meter, as well as the ability to modify customers’
service-level parameters. Through AMI, utilities can meet their basic targets for
load management and revenue protection. They do not only get instantaneous
information about individual and aggregated demand, but they also impose
certain caps on consumption, as well as enact various revenue models to control
their costs.

As the next logical step, the smart grid needs to leverage the AMI infrastructure
and implement its distributed command and control strategies over the AMI
backbone. The pervasive control and intelligence that embodies the smart grid
has to reside across all geographies, components, and functions of the system.
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Distinguishing these three elements is significant, as it determines the topology
of the smart grid and its constituent components [32].

2.2.3 Driving factors for Smart Grids

In [40], five major driving factors for distributed generation are listed as follows;
market liberalisation, developments in distributed generation technology,
constraints on the construction of new transmission lines, increased customer
demand for highly reliable electricity and concerns about climate change. These
factors show similarities with driving factors for Smart Grids, [30] lists three
major factors as follows; internal market, security of supply and environment.
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Figure 2.8 Schematic of the driving factors for a Smart Grid [30]

The European Internal Market:

Liberalisation of energy markets and unbundling of former vertically integrated
utilities has led to a huge number of new actors at all stages of the energy value
chain. Grid operators, for example, have to deal with a multitude of supply
companies in their network area. At the same time, energy exchange markets
such as the European Energy Exchange (EEX) in Leipzig, Amsterdam Power
Exchange (APX-ENDEX), allow the trading of electricity internationally. The
consequence of these developments is a multiplication of processes and
operations compared to an integrated management in pre-liberalisation times.
Information must flow across companies’ borders and communication between
parties involved in the electricity system becomes more and more important
[88].

Security and Quality of Supply:

Modern society depends critically on a secure supply of energy. Countries
without adequate reserves of fossil fuels are facing increasing concerns for
primary energy availability. Furthermore, the ageing infrastructure of Europe's
electricity transmission and distribution networks is increasingly threatening
security, reliability and quality of supply [30]. This is possible by smart grids, the
following example shows why.

Liberalised markets can be risky to hold a high reliability level, because of the
incentives for cost-effectiveness that come from the introduction of competition
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in generation and from the re-regulation of the network companies, it might be
that reliability levels will decrease [62]. Two solutions are suggested by
Distributed Generation technology to come over reliability problem; back up
systems and fuel cells. In Figure 2.5, it is shown that the interconnectivity of
distributed generation technology such as electricity storages, which can be back
up systems and fuel cells, are possible by smart grids.

The Environment:

Increase in distributed generation is mainly driven by the flourishing renewable
energy sector. The Dutch green electricity policies have evolved since the oil
crisis in 1973. Directly after the first oil crisis, the government took action in
promoting research and development of renewable energy. Then starting by
1990, [81] suggests three phases in policy development: phase one was
voluntary targets, the government negotiated voluntary agreements with the
energy distribution sector in early 1990s; phase two was promotion of demand,
the government introduced a regulatory energy tax in 1996, this tax support is
followed by the liberalisation of the green consumer market in 2001; phase three
is promotion of production, this policy was called “environmental quality of
electricity production” implemented in 2003. Moreover the government is
promoting the production of renewable energy via the Sustainable Energy
Incentive Scheme Plus (SDE+) recently. Under SDE+, the annual budget is no
longer distributed across the different technologies in advance; rather, the
different technologies have to compete under a single budgetary ceiling. Priority
for subsidies is given to the cheapest technologies, and the scheme therefore
contributes to achieving the 2020 target as cost-effectively as possible. Subsidies
are available under SDE+ not just for the production of renewable electricity, but
also for renewable heating and green gas, both of which will also make an
effective contribution to the 14% renewables in total energy consumption target
(Directive 2009/28/EC, Annex I) [50].

All these policies increase the number of renewable energy investments in the
Netherlands. This increases the ratio of distributed generation, which is
connected to grid on medium voltage level as seen on Figure 2.4. The feed-in of
many small distributed sites can lead to a power flow reversion and thus change
the original power flow direction, which runs from higher to lower voltage
levels. At the same time, there is a high volatility in the feed-in of wind and solar
power. This can lead to situations where the grid is no longer efficiently
controllable within the limits of its current infrastructure. For example, in times
of overload, load rejection may result in a complete cut-off of single wind
turbines that deliver carbon-free power. In such moments the grid has to deal
with conditions it was not built for. A reasonable steering without the help of
information and communication technologies (ICT) is difficult in this situation,
especially in distribution grids [88].

2.3 Demand-Side Management

For many years, Demand-Side Management (DSM) has been regarded as the
“Holy Grail” of efficient power generation. DSM is basically perceived as the
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solution to a classical dimensioning problem, namely the fact that the current
power generation and distribution infrastructure is designed to accommodate
peak and not average demand. Because the demand fluctuates substantially over
a daily cycle, a sizeable chunk of the system capacity is effectively wasted [70].

Demand Side Management (DSM) is a portfolio of measures to improve the
energy system at the side of consumption. It ranges from improving energy
efficiency by using better materials, over smart energy tariffs with incentives for
certain consumption patterns, up to sophisticated real-time control of
distributed energy resources [59].

According to [59], depending on the timing and the impact of the applied
measures on the customer process, DSM can be categorized into the following:

a) Energy Efficiency (EE).

b) Time of Use (TOU).

c) Demand Response (DR).

d) Spinning Reserve (SR).

In this thesis project, demand response programmes are applied. The following
chapter explains demand response programmes in detail.

2.3.1 Demand Response

Demand Response (DR) can be defined as the changes in electricity usage by
end-use customers from their normal consumption patterns in response to
changes in the price of electricity over time. Further, DR can be also defined as
the incentive payments designed to induce lower electricity use at times of high
wholesale market prices or when system reliability is jeopardized [79]. DR
includes all intentional electricity consumption pattern modifications by end-use
customers that are intended to alter the timing, level of instantaneous demand,
or total electricity consumption [41]. Demand Response can be divided into two
groups Incentive-Based DR and Price-Based DR:

a) Incentive-Based DR: These programs give participating customers incentives
to reduce load that are separate from, or additional to, those customers’ retail
electricity rate, which may be fixed (based on average costs) or time-varying.
The incentives may be in the form of explicit bill credits or payments for pre-
contracted or measured load reductions. Customer enrolment and response are
voluntary, although some demand response programs levy penalties on
customers that enrol but fail to respond or fulfil contractual commitments when
events are declared. In order to determine the magnitude of the demand
reductions for which consumers will be paid, demand response programs
typically specify a method for establishing customers’ baseline energy
consumption (or firm service) level against which their demand reductions are
measured [79].

b) Price-Based Rates DR: These programs give customers time-varying rates
that reflect the value and cost of electricity in different time periods. Armed with
this information, customers tend to use less electricity at times when electricity
prices are high [79]. There are three main price-based rates demand response
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programmes: Time-of-use rates, real-time pricing and critical peak pricing. These
programmes are explained in detail in Chapter 4.

2.3.2 Energy Consumption Scheduling

Energy Consumption Scheduling is also a method of demand-side management.
This management method suggests households to schedule their “shiftable”
loads in order to utility and consumer self benefits.

[51] uses energy consumption scheduling to minimise peak-to-average ratio for
the benefit of utility and minimise the energy cost for the benefit of consumers.
[16] builds a game-theoretic model between utility and consumer, by minimising
the energy cost for both parties, finds out the optimum scheduling for
consumers.

In this thesis project, energy consumption scheduling is built for household
consumers to minimise their energy costs. To build an optimum scheduling, a
game theoretical model for only consumers is suggested.

2.4 Micro-Generation

The term ‘micro-generation’ is used to refer to electricity generation systems of
the smallest capacity, which covers generation of electricity up to 50 kWe [62].
Domestic-scale micro-generation embraces a range of technologies that are
presently at varying stages of development and commercial availability. These
include small-scale photovoltaic (PV) arrays, micro-hydro generation, micro
wind generators and micro Combined Heat and Power (WCHP) systems.

2.4.1 Small-scale Photovoltaic (PV) Arrays

Photovoltaic (PV) systems produce electricity from sunlight. Small-scale PV
systems are applied in the residential area in connection to the central grid or as
autonomous units with an electricity production capacity between 1 to 10 kWe.

Four types of technologies are in use in the Netherlands: Mono-crystalline
silicone (sc-Si), Multi-crystalline silicone (mc-Si) which are crystalline silicone
based cells and Amorphous-silicon (a-Si), Copper-indium-diselenide (CIS/CIGS)
which are thin-film solar cells [2]. On this moment, approximately 10% of the
total installed capacity of PV panels in the Netherlands exists of thin-film solar
cells, and 90% of crystalline silicon based cells. Due to lower production cost
(lower material use), the market rate of thin film solar cells shows an increase
and this trend is likely to continue in the future [42].

The presence of a solar power system plays an increasingly important role in
terms of the sustainability. In The Netherlands energy efficiency of houses is
measured by a method called energy performance coefficient
(energieprestatiecoéfficiént, EPC). In 2006, The Netherlands introduced a
regulation for new homes to comply with the minimum of 0.8 Energy
Performance Coefficient (EPC). On 1 January 2008 the Dutch government
introduced a new regulation including the sale of existing homes will be based on
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a label that indicates how well the house performs on energy field. In these
regulations, the presence of a solar power-system in houses is taken positively
into account for the energy efficiency of the houses. All these regulations
motivate investors to build solar power-system to their new houses, which
increases the value of their real estate [2].
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3 Electricity Demand Profiles

In electricity cost calculations, electricity consumption and electricity price of
household consumers are multiplied with each other. In Chapter 4, time-variable
electricity pricing model will be suggested for household consumers, in this case
electricity demand of “shiftable” and “non-shiftable” loads is needed for every
hour, so then these load profiles can be used as an input to calculate the
electricity costs of household consumers. Electricity demand profile of a
household shows electricity usage of a household in every given time interval of
a day. Time interval can be 1-minute to 1-hour.

Measured data on electricity demand profiles is hard to find. In the Netherlands,
utility companies keep their data confidential for commercial and data privacy
reasons, and have not always been able to retrieve it when needed. Because it is
difficult to find measured data on electricity demand profiles, electricity demand
profiles can be generated through modelling. The two general categories of
energy demand profile model are known as “top-down” and “bottom-up”
approaches.

Top-Down Models

In the top-down case, the models are concerned with breaking-down an overall
view of the whole system and are usually based upon aggregated consumption
data. Top-down models determine the effect on energy consumption due to on
going long-term changes or transitions within the residential sector, primarily
for the purpose of determining supply requirements. Variables, which are
commonly used by top-down models include macroeconomic indicators such as
gross domestic product (GDP), employment rates, and price indices; climatic
conditions, housing construction/demolition rates, and estimates of appliance
ownership and number of units in the residential sector.

Figure 3.1 shows two groups of top-down models: econometric and
technological. Econometric models are based primarily on price (of, for example,
energy and appliances) and income. Technological models attribute the energy
consumption to broad characteristics of the entire housing stock such as
appliance ownership trends. In addition there are models, which utilize
techniques from both groups.

Top-down models operate on an equilibrium framework, which balances the
historical energy consumption with that estimated based on input variables. For
example, if housing construction increased the number of units by 2%, an
increase in total residential energy consumption of 1.5% might be estimated by
the top-down model, as new houses are likely more energy efficient. If this
construction was increased to 10% of the units the top-down model could have
difficulty in producing an appropriate estimate, as the vintage distribution of the
housing stock would have changed significantly.
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Figure 3.1 Top-down and bottom-up modelling techniques for estimating the
regional or national residential energy consumption (Swan & Ugursal, 2009)

Bottom-Up Models

The bottom-up approach encompasses all models, which use input data from a
hierarchal level less than that of the sector as a whole. Models can account for
the energy consumption of individual end-uses, individual houses, or groups of
houses and are then extrapolated to represent the region or nation based on the
representative weight of the modelled sample. The variety of data inputs results

in the groups and sub-groups of the bottom-up approach as shown in Figure 3.1
[76].

Statistical methods (SM) rely on historical information and types of regression
analysis, which are used to attribute dwelling energy consumption to particular
end-uses. Once the relationships between end-uses and energy consumption
have been established, the model can be used to estimate the energy
consumption of dwellings representative of the residential stock. Engineering
methods (EM) explicitly account for the energy consumption of end-uses based
on power ratings and use of equipment and systems and/or heat transfer and
thermodynamic relationships.

Common input data to bottom-up models include household properties such as
geometry, envelope fabric, equipment and appliances, climate properties, as well
as indoor temperatures, occupancy schedules and equipment use. This high level
of detail is the strength of bottom-up modelling and gives it the ability to model
technological options. Bottom-up models have the capability of determining the
energy consumption of each end-use and in doing so can identify areas for
improvement. As energy consumption is calculated, the bottom-up approach has
the capability of determining the total energy consumption of the residential
sector without relying on historical data. The primary drawback caused by this
level of detail is that the input data requirement is greater than that of top-down
models and the calculation or simulation techniques of the bottom-up models
can be complex. Bottom-up modelling will be most appropriate to meet the
modelling requirements of individual households.
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Table 3.1 Positive and negative attributes of the three major residential energy
modeling approaches. (Swan & Ugursal, 2009)

In this thesis, a bottom-up statistical approach is followed.

3.1 Electricity Demand Profile Model

Loughborough University has built a 1-minute resolution household occupancy
model, using a Markov-chain technique where the activity state in each
household at each time step depends on the previous one, together with the
probability of that state changing. This starts with inputs for house size,
occupancy and number of appliances owned; a simulation is carried out for the
number of persons in the house and active at any time, using UK national time-
use survey data.

Then, the same time-use survey is used to predict the probability that the
occupants in the house will change their activity, depending on what they
happen to be doing at any one time. This in turn drives which electrical
appliances are on and build a 1-minute resolution household demand profile
model. The load profiles for individual appliances are taken from measured data
where possible. The electricity consumption profile generated by the model was
calibrated against 1-minute overall electricity use measurements from 22
houses.

At the averaged level, the model output showed the same mean and other
statistical properties as the measured data. However, it was less good at
simulating individual houses, and in particular did not fully represent the
variation between highest and lowest demand households. No input level data
was collected on activities to allow comparison of simulated and actual usage at
appliance level.
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In this thesis, demand profile of the example household will be generated using
Loughborough University’s model due to the time constraints. This model has
been modified using the Dutch household appliance usage statistics, which
differs from UK household usage statistics. Moreover UK time of use statistics
was used to build occupancy pattern model assumed to be the same for the
Netherlands. Even though these changes have been applied, the new model has
not been validated by comparing to the real demand profile in The Netherlands
due to the lack of real data.

The structure of the model is presented in Figure 3.2. On the left of the diagram,
there are set of daily activity profiles, which represent the likelihood of people
performing different activities at different times of the day; these profiles are the
same for all households. To the right of the diagram, the outer square block
represents the example household. Example household is assigned an active
occupancy data series for three-person house and a set of installed appliances.
Each appliance is mapped to one of the daily activity profiles. When an appliance
switch-on occurs, the appliance power use characteristics are used to determine
its electricity demand (including the reactive power demand). Adding the power
demands of all appliances within the example household gives the household
demand.

E H hold
Create the list
Daily activity of installed
profiles appliances
Active : v
Washina 7 dresei occupancy =
ashing / cressing data series ™| For each appliance:
Ironing
House cleaning Switch-on events
> Power use characteristics
N An activity profile is
Watt?hlng 1 assigned to each
Cooking appliance. E.g. the 7
“laundry” activity
profile, to the Dwelling
“washing machine” power
appliance. consumption

Overall power consumption

Figure 3.2 Electricity demand model architecture [66]

3.2 Occupancy Pattern Model

The different households have different life styles. The total load profile shape

will of course vary from day to day and house to house. The factors influencing

the occupancy pattern are as follows:

(1) The number of occupants

(2) The time of the first person getting up in the morning and the last person
going to sleep

(3) The period of the house unoccupied during the day.
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It is important to identify the cluster of households when analyse the load
profile, because the load profile depends very much on the occupancy pattern. In
the case of lack of information about household occupancy pattern, it is proposed
five most common scenarios of household occupancy pattern by [89], same
scenarios can be applied in the Netherlands.

Scenarios Type Unoccupied Period
1 Part-time working morning session 1/2 09:00-13:00
2 Full-time working 09:00-18:00
3 Part-time working 2/3 09:00-16:00
4 No working N/A
5 Part-time working afternoon session 1/2 13:00-18:00

Table 3.2 Occupancy pattern for a three-person household offered by [89]

In this thesis, occupancy modelling approach of [65] is followed. In [65], a large
survey of how people use their time was conducted in the United Kingdom in
year 2000, known as the Time Use Survey (TUS), is used to model occupancy.
Time of Use Survey contains detailed 24-hour diaries, completed at ten-minute
resolution by many thousands of participants. The data includes the location of
the participants, at each ten-minute diary period, and can thus be used to
identify the number of active occupants in a house.

An example of the nature of active occupancy profiles are taken from TUS is
shown in Figure, where fifty people are individually represented. The black
horizontal bar shown for each person represents the times of the day when they
are active within their dwelling. The active occupancy during the hours from
00:00 to 07:00) can be seen to be sparse, as would be expected. It can be seen
that activity increases during the day, and reaches a maximum during the
evening.

Person number

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day (h)
Figure 3.3 Fifty example active occupancy profiles drawn from the TUS data [65]
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The TUS data also provides sufficient detail to determine which occupants live
together. People’s activity within the same household is often correlated and this
is evident in the TUS data.

[65] presents their model, which provides a stochastic simulation of active
occupancy patterns in UK households. The model uses a Markov-Chain technique
to generate further data with statistical characteristics that match the original.
An implementation of the model, in the form of a Microsoft Excel workbook, is
available for free download and this workbook is adopted to statistics of The
Netherlands and adapted for specific application [48].

The technique of building transaction probability matrices from the source data
and using these to generate synthetic data series is very effective and
computationally efficient. The statistical characteristics of the original TUS data
and simulation output correlate very closely.

3.3 Appliance Activity Model

In addition to the level of active occupancy within dwellings, a second concept is
required in order to represent the use of different types of appliance at different
times of the day, depending upon what activities the occupants are likely to be
engaged in. Each daily activity profile, on the left of Figure 3.2, quantifies the
probability of the specified activity being undertaken as a function of time-of-
day. The set of profiles includes variants to take account of the current number
of active occupants, in case of the example household 3-person and whether it is
a weekday or a weekend day.

For example, people will commonly use cooking appliances, such as ovens and
hobs, around the meal times of the day, whilst television usage mainly occurs in
the evening. This concept is represented using “activity profiles” which, like the
active occupancy data, are also derived from the TUS data set.

The activity profiles are linked to the use of individual appliances. As an example,
the activity of watching television will require a television appliance to be in use.
Similarly, a laundry activity may well require a washing machine to be used. By
assigning an activity profile to each appliance, the likelihood of that appliance
being used at different times of the day may be represented.

3.3.1 Appliances

Proposed model of [66] uses the appliance it refers to any individual domestic
electricity load, such as a television, washing machine or vacuum cleaner. It is
therefore a ‘bottom-up’ model, in common with those developed by [58], [15],
[89] and [6].

An important feature of model in [66] is in its approach to representing time-
correlated appliance use. The appliances in this model are configured using
statistics describing appliance annual energy use and appliance power
characteristics, including steady-state consumption or typical use cycles as
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appropriate. The next stage of model development considers when the specific
appliances are likely to be used.

Installed Domestic Appliances
Domestic appliances can be classed as:

1)

2)

Cooking appliances: Most of the energy used in cooking goes to the hob and
oven. Since electric hob is not a popular consumer appliance, electric oven
and microwave oven are used in the simulation.

Cold appliances: Households will have one or more cold appliances, which
are on all the time. These consume electricity in a cyclical pattern over 40
minutes - 1 hour, at a more or less constant rate unless they are unsuitable
location or are being left open regularly when in use.

Consumer electronics: Televisions and appliances associated with them such
as speakers, set top boxes, games consoles and DVD players is the highest
growth area of household energy. Many households have multiple groups of
these, in use simultaneously as different family members pursue their own
activities in different rooms. In the simulation, only two televisions and a
DVD player is selected for the simplicity of calculations. Energy use depends
partly on how many appliances there are and their power rating, but also
very much on how they are used - whether they are the main form of
entertainment, as a constant background to other activities, whether they are
switched off or on standby when not in use.

Wet appliances: Dishwashers, washing machines and tumble driers are heavy
electricity consumers - they draw high peak power, and have long cycle
times. Their energy consumption per cycle varies depending on the cycle
length and temperature setting, and also on whether they take in hot as well
as cold water. However their total contribution to household energy depends
on household size, attitudes and practices. For example, some households
who have dishwashers may choose to use them all the time whether they are
full or not, others will prefer to wash small loads by hand and only deploy the
machine when there is a large party.

Miscellaneous: The extent to which computers and other miscellaneous
devices contribute to a household’s energy use is not possible to predict in
advance. If someone in the house is regularly working from home, then the
computer and associated peripherals may be significant. The other electricity
appliances are kettle, iron, and vacuum cleaner, etc. The usage pattern of this
kind of appliances also depends on the household occupancy pattern and
lifestyle.

Lighting: Lighting is complicated to measure because although the total
energy used is high, this is the product of multiple small power light bulbs.
Lighting use varies during the year depending on the number of daylight
hours, as well as on occupancy patterns. However, attitudes also have a large
influence on whether or not low energy fittings are used, on how many lights
are switched on at any time, and whether or not lights are routinely switched
off when occupants move from room to room.

Common appliances are selected for the simulation of example household. These
appliances are refrigerator, freezer, cd player, alarm clock, hi-fi, iron, vacuum
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cleaner, personal computer, one TV, DVD, TV receiver box, oven, microwave,
dishwasher, washing machine, tumble dryer.

Appliance annual energy use

Each appliance is assigned an annual demand in kWh/y. This data is based on the
‘basisonderzoek elektriciteitsverbruik kleinverbruikers’, which is a detailed
research on retail electricity in the Netherlands. This data is taken from different
sources, where the findings are published, [71], [72] and [44]. The data is given
in the Table 3.3, the data with star is taken from [66].

Energy
Category Selected used  Ownership
Appliances (kWh/year) level (%)
Entertainment Appliances TV 207 98
TV receiver box 131 93.4*
VCR/DVD recorder 108 48
Computer 135 74
Printer 49* 66.5*
CD player 24 91
HiFi 89* 90*
Wet Appliances Washing Machine 230 96
Dishwasher 220 47
Drier 599 59
Refrigerator 225 100
Freezer 380 79
Cooking Appliances Electric oven 55 61.6*
Microwave oven 35 84
Kettle 161* 97.5*
Miscellaneous [ron 20 90*
Vacuum cleaner 54 93.7*
Alarm clock 18* 90*

Table 3.3 Selected Appliances and their energy usage per year and ownership
levels in The Netherlands [71], [72], [44].

Appliance power characteristics

Appliance power characteristics are used from [66]. Each appliance in the model
has two states: it may be either on or off. The off state includes the
representation of standby, in that an appliance may be configured to use power
even when off.

Many appliances are assumed to have a constant power demand when switched-
on. However, in pursuit of a one-minute time resolution for the final model

output, some appliances are represented by time-varying demands.

Finally, each appliance is assigned an appropriate power factor, representing a
mean value over a one-minute interval. These power factors are used from [66].
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A unity value is used for resistive heating appliances, such as an oven or iron.
Electronic entertainment appliances are configured with a value of 0.9. Cooling
and washing type appliances are configured with a value of 0.8. These figures are
based on measurements made with a plug-in power meter on a small number of
appliances.

3.3.2 Appliance-activity mapping

Appliances of which use is dependent upon a particular activity-taking place are
assigned to their relevant activity profile. There may be multiple appliances
assigned to a single activity. For example, the electric hob, oven, microwave,
small cooking appliance and dishwasher are all assigned to the cooking activity.
This does not imply that all these appliances are necessarily used whenever
cooking takes place; it simply models the possibility of their being used and
possibly simultaneously.

Appliances not associated with any particular activity are assigned to the ‘other’

activity profile, which covers two specific cases:

e For some appliance types, there are no activity profile categories that
describe when the appliance is likely to be used. A telephone is an example.
In this case, the appliance use is taken to be dependent only upon active
occupancy within a dwelling.

e Some appliances do not depend on active occupancy at all. In this model, the
cycling of cooling appliances such as a fridge or freezer, do not depend on
people being active within a dwelling.

3.3.3 Switch-on events

The procedure to determine whether an appliance switch-on event occurs at

each time step of a simulation is presented in Figure 3.4. The following steps

occur:

e Firstly, the activity profile is selected according to the appliance activity, the
current number of active occupants and whether it is a weekend or not.

e Secondly, the probability that any of the active occupants are engaged in the
activity at this time is read from the activity profile.

e Thirdly, the activity probability is multiplied by the calibration scalar. A
discussion of how the calibration scalar is derived is presented later.

e Finally, the result of the previous step is compared to a random number
between zero and one. If the probability is more than the random number,
then a switch-on event occurs.
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Figure 3.4 Switch-on events [66]

3.3.4 Appliance calibration scalars

Each appliance has a “calibration scalar” which is factored into the probability of
switch-on as shown in Figure 3.4, and thus determines the average number of
times that the appliance is used in a year. In the case of automatic appliances
such as fridges, this corresponds to the number of times that the thermostat
starts the compressor. A calibration scalar is adjusted so that, over a very large
number of stochastic simulation runs, the mean annual consumption of the
appliance will be correct.

For example, the chest freezer in the model uses 271 kWh/y. It draws 190 W for
14 minutes on each operating cycle and uses no power on standby. It must
therefore cycle 6116 times per year. Additionally, each 14-minute run is
followed by a delay of 56 minutes during which the appliance may not start
again; this represents the effect of the thermostat dead band. This leaves
approximately 95000 minutes of the year when a start event can occur. Thus the
mean time between start events, excluding the time when the appliance is in a
cycle, is 95000/6116= 16 minutes. Since the freezer appliance is not dependent
on active occupancy, its activity probability is taken as unity, and thus, referring
to Figure 3.4, the calibration scalar is simply 1/16 min-1.

A similar calculation can be performed for appliances that do depend on daily
activity profiles, but it is more complex. This is because it is necessary to take
into account the statistical distributions of both the occupancy and the activity
profiles.

The overall mean value of an activity-taking place at a time step must first be
calculated. This may be achieved by using Bayes’ conditional probability
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theorem. The first input to this is the probability of each level of active
occupancy (none, one, two, three, four or five) at each time step of the day. This
may be determined from the occupancy model. The second input is the
conditional probability of an activity-taking place, given each level of active
occupancy. This information is available from the activity profile.

This mean probability of an activity-taking place, when multiplied by the
calibration scalar, should equal the mean probability of an appliance switch-on
event. The former value is determined by the same method as described above,
such that the required number of cycles per year occur as required to give the
correct overall energy use. Of course, appliances that do depend on daily activity
profiles may only start if there is active occupancy within the household.

3.4 Lighting model

A key motivation for the use of domestic lighting is the occupant’s perception of
the natural light level. Clearly, people will use lighting after dusk or before dawn,
or when weather conditions, such as overcast skies, reduce the available light.
The majority of domestic lighting use is the result of people switching on lights
as they move around the dwelling. The concept of active occupancy is therefore
useful in determining when people are within a dwelling and be available to use
lighting as is required. The model of active occupancy, described in the previous
chapter, is used to provide simulations in this context. It is common for multiple
occupants to share the use of lighting, for example, when two or more people are
within the same room. Using the number of active occupants as an input enables
this sharing to be represented. The term “lighting unit” is used to describe one or
more bulbs that are operated by a single switch. As an example, this could be a
single bulb in a hallway, or it could represent a set of halogen down lights within
a kitchen. It is important to appropriately represent the numbers and types of
bulbs within each dwelling that is to be simulated. In reality, the lighting
configuration within each dwelling will vary as a result of choices made by the
occupants. Statistics from Domestic Lighting 2008 Report of The Lighting
Association in Telford, UK are used to randomly populate each dwelling with an
appropriately representative set of lighting units. The relative usage of different
lighting units varies around the dwelling. For example, lighting units in living
areas, such as kitchens, will be used more than loft or cellar areas. The model
represents this variation of use with a weighting factor, picked at random from a
probability distribution.
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Figure 3.5 Whole-dwelling lighting demand model architecture [67]

The outdoor irradiance data series has global scope, such that all dwellings in the
simulation are subject to the same level of natural light. A second global variable
is the calibration scalar: this is used to calibrate the model, such that the overall
mean electricity demand of the lighting over a large number of simulations, will
meet a required level, such as that from national statistical data. The main block
of the diagram represents the inputs, outputs and processing performed for each
dwelling in a simulation.

Each dwelling is assigned an active occupancy profile from the output of the
model described in Section 3.2. The level of active occupancy is transformed into
an “effective occupancy” value, in order to take sharing into account. Each
dwelling is also assigned a set of lighting units: the number and power ratings of
all lights are thereby determined.

Furthermore, each dwelling is assigned an irradiance threshold that defines the
natural light level below which occupants will consider that lighting is required.
The inner block, shown in the Figure 5, represents the processing that occurs for
each lighting unit at each time step of a simulation. The combination of the
effective occupancy, the irradiance level, the relative usage and the calibration
scalar, is used to stochastically determine if a switch-on event occurs at each
time step. When this does occur, the length of time that the unit remains on is
determined stochastically, by picking a value at random from an appropriate
distribution. Finally, at each time step, the power demand of each lighting unit
that is switched on is summed at each time step to provide the overall demand.

3.5 Electricity Demand Simulation

In Figure 3.6, it is shown an example of April weekday occupancy simulation of a
3-person house.
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Figure 3.6 Household active occupancy profile

In this simulation, the household has been allocated as having three total
residents, but in this run, three occupants are only active between 20:00 to
22:30. The profile is typical in that there is no active occupancy between 01:00 to
07:30 and the level varies throughout the day.

The list of appliances that has been allocated to the household is listed in Table
3.3. The simulated use of these appliances throughout the day is shown on the
figures below.

Cold appliances such as refrigerator and freezer are seen to cycle at intervals
throughout the whole day regardless of active occupancy. The usage of these
appliances is not shiftable.
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Figure 3.7 Consumption pattern of cold appliances

Usage of kitchen appliances is shown in the Figure 3.7. Electric oven and kettle
are used in the morning, probably warming up some bread and boiling water for
tea. Microwave oven is used in the evening when two active occupants were
home, probably for a dinner and kettle usage in the evening is for some hot
beverages after dinner. Cooking appliances are dependent on active occupancy
and time of use survey; the consumption cannot be shifted since consumers
demand the usage of these appliances for their convenience.
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Figure 3.8 Consumption pattern of cooking appliances

Usage of entertainment appliances is also active occupancy and time of use
survey dependent. PC is used when the house is occupied with more than two
consumers, TV and TV receiver are correlated turned on at same time. For this
simulation, household did not use their DVD and CD player for the given day.
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Figure 3.9 Consumption pattern of entertainment appliances

Wet appliances are also dependent on consumer convenience, but consumers
would like to shift the time to wash their clothes for couple hours, while they
would not like to shift the time to drink a cup of tea or watch TV for couple
hours. Demand for wet appliances can be shifted to different times and this
characteristic for these high energy requiring appliances are important for
consumers. In the figure, only the dishwasher and washing machine are used for
the given day.
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Figure 3.10 Consumption pattern of wet appliances
In Figure 3.11, it is shown electricity consumption profile of the example 3-
person household of which active occupancy simulation given below.
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Figure 3.11 Simulation output; aggregated total

39



4 Electricity Pricing

Electricity production is dependent on the demand; if production is more than
the demand, then because electricity is not economically storable, production
will be wasted. That is why electricity production is subject to rigid short-term
capacity constraints. Since demand is highly variable, there will be times when
there is plenty of capacity, and the only marginal costs of producing electricity
will be fuel and operation and maintenance (0O&M) costs; at the other times, the
capacity constraint will be binding, causing the marginal cost to increase greatly,
and wholesale market prices to rise. The result of this structure is that the
wholesale price of electricity, reflecting the supply/demand interaction, varies
constantly. In most markets, the wholesale price changes every half-hour or
hour.

The end-user customer however sees the retail price, which typically is constant
for months at a time. Retail price does not reflect the hour-by-hour variation in
the underlying wholesale cost of electricity [10]. In The Netherlands, residential
electricity consumers pay retail electricity prices, which is some kind of average
price. Electricity trading companies usually offer small consumers the choice
between a floating price which changes monthly and is calculated as a weighted
average of the spot price, and a fixed price that is constant for a longer period of
time, usually 1, 2, 3 or 5 years. In either way the consumer faces the same price
for all hours of the day.

A number of programs have been implemented or proposed to make the
economic incentives of customers more accurately reflect the time-varying
wholesale cost of electricity. Opponents have expressed concern that these
programs expose customers to too much price volatility [10]. In this thesis, the
general wholesale electricity market scenario is considered as in Figure 4.1,
where each retailer/utility serves a number of end users. The time-varying price
information, reflecting the wholesale prices, is sent to the users by the retailer
over a digital communication infrastructure, a local area network (LAN).
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Power Line | ' | T T Power Line
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Figure 4.1 A simplified illustration of the wholesale electricity market formed by
multiple generators and several regional retail companies [51]
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4.1 Pricing Schemes

The supply/demand of electricity balance changes continuously and there can be
a great deal of uncertainty about supply and demand in advance of any given
period. This raises the two fundamental issues in designing time-varying retail
electricity prices:

Granularity of prices: The frequency with which retail prices change within the
day or week. The single retail price does not have granularity. Real-time prices
change every minute and are announced only at the minute in which they are
applied.

Timeliness of prices: The time lag between when a price is set and when it is
actually effective. The single retail price is set months before some of the hours
which it is applied. When timeliness is discussed as part of RTP, the issue is
whether prices should be set a day ahead or an hour (or less) ahead.

In case of fixed pricing, there is not granularity, nor timeliness of prices.
Programs that have been designed for implementing time-varying retail prices,
range, accordingly different price granularity and price timeliness levels, from
slight augmentations on flat pricing to more radical change that would make
retail electricity markets more closely resemble the wholesale electricity
markets.

4.1.1 Fixed pricing

Retail price does not reflect the hour-by-hour variation in the underlying
wholesale cost of electricity [10]. In The Netherlands, residential electricity
consumers pay retail electricity prices, which is some kind of average price.
Electricity trading companies usually offer small consumers the choice between
a floating price which changes monthly and is calculated as a weighted average
of the spot price, and a fixed price that is constant for a longer period of time,
usually 1, 2, 3 or 5 years. In either way the consumer faces the same price for all
hours of the day.

4.1.2 Real time pricing (RTP)

Real-time prices are typically set either “day-ahead” or “real-time.” In the day-
ahead formulation, the retail provider announces all 24 hourly prices for a given
day at one time on the prior day. In the real-time approach, the retail provider
announces prices on a rolling basis, typically with the price for each hour
determined between 15 and 90 minutes prior to the beginning of that hour. In
terms of economic incentives and efficiency, RTP using real-time announced
prices offers the greatest value [10], this has been shown in Section 4.2.

RTP programs currently in effect typically announce the prices for all hours of a
day on the previous day. Obviously, a longer lag time between the price
announcement and the price implementation will result in prices that less
accurately reflect the actual real-time supply/demand situation in the market.
That is the reason why wholesale electricity prices must be forecasted with high
precision, taking into account of probable “re-bound” effects by the retail
consumers.
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In The Netherlands, there are not examples of time-varying prices in retail
electricity market. There are several examples in USA, e.g: Ameren Illinois?!, PGE
(Pacific Gas and Electricity Company)?

4.1.3 Time of Use Pricing (TOU)

Under TOU, the retail price varies in a pre-set way within certain blocks of time.
The rates for each time block (usually called peak, shoulder, and off-peak) are
adjusted infrequently, only two or three times per year in most cases. Price is the
same at a given time of day (on a weekday) throughout the month or season for
which the prices are set. TOU retail pricing lacks both the granularity and the
timeliness of RTP.

The lack of timeliness of TOU prices means that they cannot capture any of the
shorter-term variation in supply/demand balance. In addition, TOU programs
don’t reflect expected wholesale market variation very well, due to the lack of
price granularity.

4.1.4 Critical Peak Pricing Programs (CCP)

CPP has some attributes of RTP and some of interruptible programs. CPP
programs usually start with a TOU rate structure, but then they add one more
rate that applies to “critical” peak hours, which the utility can call on short
notice. While the TOU program has poor granularity and timeliness, as discussed
above, CPP allows a very high price to be called on very short notice, thereby
improving both aspects of the rate structure. Thus, CPP is similar to interruptible
programs except prices are not set so high as to cause most customers to reduce
consumption to zero.

CPP programs typically limit the utility to call number of critical peak hours per
year. CPP is a clear improvement on TOU with demand charges, because the
additional charges are based on consumption when the system is actually
constrained, rather than when the particular customer’s demand peaks. CPP has
some of the advantages of RTP, because retail prices are allowed to vary with the
wholesale market. Of course, CPP is much more constrained than RTP: the CPP
peak price is set in advance and the number of hours in which it can apply is
limited.

4.2 Comparison of Time-Varying Prices to Single Price

It is assumed that the electricity market behaves in competition. In competitive
markets, firms are free to set price and quantity; if a firm sets a price above the
prevailing market price, its product will not be purchased; if it sets its price
below the market price, its profits will be needlessly lost, since it can get as many
customers as it wants by pricing at the market price [82].

It is assumed that there are only two levels of demand: peak and off-peak. These

1 Ameren Illinois Company Real Time Pricing Website: https://www?2.ameren.com/RetailEnergy/realtimeprices.aspx

2 PGE Company Real Time Pricing website: http://www.pge.com/tariffs/energy_use_prices.shtml
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levels are drawn in blue colour and denoted as D, and D, .,

4.2. It is also assumed that all producers have the same cost of production, which
is the marginal cost, MC . Different prices are charged during peak and off-peak
times, denoted as P P,.Q,, and O, denotes the power during peak-

peak ?

demand and off-peak demand times.

e on the Figure

Total installed capacity K equals the peak-demand power @, ; if total installed

peak ’

capacity is more than the peak-demand power K > Q then there will be waste

peak
of production; if total installed capacity is less than the peak-demand power
K<Q then there will be blackout. Market supply curve is flat at MC out to

K and then vertical, as drawn in green colour on the Figure 4.2.

peak ’

During off-peak power demand, if producers try to charge a price above P, , it

will be unable to sell its power according to competitive market definition.

During peak-demand power, no producer will sell below the price P, , because

any producer can sell all of its output at that price. If any producer tries to charge

more than P, it will find that its unit sales decline according to competitive

market definition.

Price

off — peak

peak

oI

op

Qap Qap Qpeak =K Qpea " Power

Figure 4.2 Varying pricing and single pricing shown [10]

The firms charge the same price for both peak and off-peak demand. If the firms
are still to break even overall, the price will lie between the peak and off-peak

price. This single price is denoted as P and it is shown in red colour in the
Figure 4.2.

There are two deadweight loss areas, shaded and numbered on the Figure 4.2.
Deadweight loss occurs when there is a loss of economic efficiency. In other
words; the total loss of producer and consumer surplus from underproduction
and from overproduction is referred to as a deadweight loss [43].
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During the off-peak demand, single-price restriction result increase in the price

due to P>MC and inefficiently discourage off-peak consumption. Off-peak
demand power will decrease as is shown in the Figure 4.2, new off-peak power

demand Qop . These changes in price and quantity are shaded as deadweight area
1 in the Figure 4.2.

During the peak demand, single-price restriction results in a price P for peak
demand that is below P, . This will increase the peak-demand power from

O, 10 Q.- The total installed capacity is built to answer the peak-demand in

power,Q =K, but now the new peak-demand is higher than the total installed

peak ~—

capacity, 0, > K. Theoretically this situation should cause shortage, but in

reality capacity is expanded to meet the excess demand. This excess demand has

to be supplied by the producers, when they make loss from each unit, P, ~P.

This inefficiency is shaded as deadweight area 2 in the Figure 4.2. With time-
varying pricing of electricity, this excess capacity is not necessary because higher
prices at peak times encourage customers either to shift peak consumption to
off-peak or to reduce consumption at peak times.

So far analysis has considered only the case of a competitive electricity market,
the benefit of instituting time-varying prices is greater in non-competitive
electricity market. Producers are able to exercise market power by raising price
above the competitive level in non-competitive markets. The financial
attractiveness of raising price above the competitive level depends on the trade-
off of higher prices on the sold quantity versus lost sales due to the increased
price. It is clear that the payoff in non-competitive market is greater if raising
prices has a smaller impact on sales.

When the retail price of electricity does not vary over time, a wholesale seller’s
attempt to exercise market power and raise wholesale prices has no short-run
impact on quantity since end-use customers do not see a change in the retail
price. This makes it much more profitable for the wholesale seller to exercise
market power. With time-varying prices that reflect changes in the wholesale
price, an attempt to raise wholesale prices will impact retail prices and thus
reduce the quantity of power that customers demand. This customer response
reduces the profitability of raising wholesale prices and, thus, discourages the
exercise of market power.

Without time-varying retail prices, the combination of supply-demand
mismatches and the ability of sellers to exercise market power at peak times
creates a relationship between price and system load that looks like a hockey
stick laid on its side. Figure 4.3 shows a price/load scatterplot for California
during June 2000 and a polynomial curve fitted to the points. The hockey-stick
relationship is a fairly constant price over a wide range of outputs and then
steeply upward-sloping price as demand grows closer to capacity. Time-varying
prices would reduce the frequency and degree of price spikes during periods of
high system load.
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Figure 4.3 California Power Exchange Price versus System Load - June 2000 [10]

4.3 Forecasting Hourly Electricity Price

In Section 4.4, a retail electricity-pricing model is proposed. This electricity-
pricing model consists of two variables: base price and price gap. Base price is
wholesale electricity prices dependent on APX-Endex. Forecasting hourly
electricity prices is an important tool for the proposed electricity-pricing model
so then retailers can send the prices day-ahead or hour-ahead to the household
customers. Better forecasting results are going to give better economic efficiency
for the system. Before modelling our electricity-pricing scheme, it is important to
forecast hourly electricity prices of wholesale market.

Price modelling and forecasting has long been at the centre of commodity and
financial markets. Depending on the objectives of the analysis, a number of
methods for modelling price dynamics have been proposed, ranging from
parsimonious stochastic models to fundamental and game theoretic approaches.

Electricity spot price modelling and forecasting techniques generally can be
traced back to models that originate either in electrical engineering or in finance.
The various approaches that have been developed to analyse and predict power
markets' behaviour and the resulting electricity prices may be broadly divided
into six classes [85]:

e Production-cost models: These models simulate the operation of electricity
generation at minimum cost. They have the capability to forecast prices on an
hour-by-hour level; however they ignore the strategic bidding practices,
including execution of market power. This model is not well suited for the
recently established competitive markets.

e Game theoretic approaches: These models take strategic bidding into
considerations, however a number of components have to be defined: the
players (utilities), their potential strategies, the ways they interact and the
set of payoffs, which is not suitable for short-term price forecasting.
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e Fundamental methods: These methods describe price dynamics by modelling
the impact of important physical and economic factors on the price of
electricity [13], [74]. The fundamental data such as loads, weather conditions,
system parameters, etc. is used. Because of the nature of fundamental data,
which is typically collected over longer time intervals, data availability is an
issue. Pure fundamental models are better suited for medium-term rather
than short-term predictions. Some recent examples include [63] and [23].

e (Quantitative models: These models characterise the statistical properties of
electricity prices over time for evaluating the derivatives and risk
management. Consequently, these models are not required to accurately
forecast hourly prices but to recover the main characteristics of electricity
prices in particular, seasonality, mean-reversion, high volatility and the
occurrence of spikes, typically at the daily time scale.

e Statistical analysis: These are direct applications of the statistical techniques
of load forecasting or econometric implementations for power market.
Statistical analysis stand a better chance in efficient and useful forecasting in
power markets then in financial markets. The reason for this is the
seasonality in electricity price processes. It makes the electricity prices more
predictable than those of “very randomly” fluctuating financial assets.

e Artificial intelligence-based techniques: Al-based models tend to be flexible
and can handle complexity and non-linearity. This makes them promising for
short-term predictions and a number of authors have reported their excellent
performance in short term price forecasting (STPF). Artificial neural
networks (ANNs) have probably received the most attention [91]. Other non-
parametric techniques have been also applied, however, typically in hybrid
constructions [68].

Of the six above-mentioned approaches, statistical analysis and Al-based models
are best suited for STPF, in particular at the hourly time horizon. Statistical
analyses are chosen in this thesis. The choice is backed by results of a recent
study by [20], which compared different methods of short term price
forecasting: time series analysis, ANNs and wavelets. The ANN technique was the
worst outcome of the five tested models. Consequently, in this chapter statistical
approaches are utilised.

4.3.1 Time Series Data

Collections of observations of a variable that become available sequentially
through time are called time series data [11]. The order of observations is
represented by a subscript #. Therefore, p, is t th observation of time 7 and a

proceeding observation is written as p, ,, and succeeded observation as p,,,.

In most electricity markets the series of prices presents the following features:
1. High Frequency

Non-constant mean and variance

Daily and weekly seasonality

Calendar effect on weekend and holidays

High volatility

Presence of outliers

oUW
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These characteristics, which can be observed in the hourly price series of APX-
Endex (APX-ENDEX, 2012) from 01.01.2009 to 12.02.2012, give non-stationary
character for the time series. The analysis of the time series demands the series
to be stationary. The stationarity of a time series is related to its statistical
properties in time. That is in the more strict sense, a stationary time series
exhibits similar "statistical behaviour"” in time and this is often characterized as a
constant probability distribution in time [54]. If the process has the mean,
variance and autocorrelation structure constant over time then process is known
as stationary process.

Following actions are being taken on our data:

e The high frequency and high volatility features are characteristics inherent to
the series that cannot be changed.

e The non-constant mean feature of the price series is alleviated by the
differentiating the original series by 1 hour before data (hourly
differentiation), 24 hour before data (daily differentiation), 168 hour before
data (weekly differentiation) or other values depending on the series. This
has been treated in Section 4.3.2 in detail. The non-constant variance is
alleviated by taking logarithms of prices.

e Daily and weekly seasonalities are typically taken into account through the
use of seasonality models of orders 24 and 168, respectively. The calendar
effect is taken into account by incorporating ad-hoc logic. This will be shown
in Section 4.3.2 in detail.

e OQutliers have been explicitly treated. Missing values and outliers were
substituted by the arithmetic average of the two neighbouring values and
negative values were substituted with forecasts for those hours as suggested
in [85].

4.3.2 Model

In this section, only one model based on time series analysis is presented:
Dynamic Regression (DR). This model is selected after reviewing following
scientific articles: [20], [85] and [86]. [20] compares time series models of
ARIMA, dynamic regression, transfer function and concludes that the dynamic
regression and transfer function algorithms are more effective than ARIMA
models. Weron, in [85] and [86], compares the models included different
specifications of linear autoregressive time series with heteroscedastic noise
and/or additional fundamental variables and concludes that the best results
were obtained using the dynamic regression.

The description of the standard statistical methodology to construct a model is
presented below [20]:

Step 0. A class of models is formulated assuming certain hypotheses

Step 1. A particular model is identified for the series being considered

Step 2. The parameters of the model are estimated

Step 3. If the hypotheses of the model are validated, the procedure continues in
Step 4.; otherwise the procedure continues in Step 1. to refine the model

Step 4. The model is used to forecast
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Conventional and commercially available software such as Eviews can be used to
carry out the actual prediction in a convenient manner.

Step 0. Model Selection: Dynamic Regression Model

[87] investigates the forecasting power of various time series models for
electricity spot prices. The models included different specifications of linear
autoregressive time series with heteroskedastic noise and/or additional
fundamental variables. Further, a non-linear, Markov regime-switching model
with AR(1)-type processes as well as threshold regime-switching models (TAR
and TARX) were considered. The models were tested on a time series of hourly
system prices and loads from the California power market. The best results were
obtained using a non-linear TARX model and a relatively simple ARX model [87].

Autoregressive Model with Exogenous Variable or Dynamic Regression
(ARX)

The autoregressive model is expressed as the current value of a variable p,
depends only upon the value that the variable took in previous periods plus an
error term. An autoregressive model is denoted by AR(r), where r is the order of
the process and the order of the process represented number of parameters that
need to be estimated. An r th order autoregressive process is written as

p=C+op_+0,p ,+.+0.p,_ ¢

where p, is the series and C is constant. Also, ¢,,...,¢, are the autoregressive
parameters which describe the effect of a unit change in two consecutive time
series observations ( p,, on p,) and which need to be estimated. The ¢, termisa
white noise or error term assumed to be independent and identically distributed
(i.i.d) with mean zero and variance constant over time, € ~ N(0,0°) and zero
autocorrelation.

The autoregressive model with exogenous variable v,,v,,...,v,, or dynamic
regression model is denoted by ARX(r,g,,....g,) where g,’s are the orders of the

exogenous factors (e.g. system load, temperature, power plant availability). The
autoregressive model with one exogenous variable can be written [20] as

p=C+0p_ +0,p ,+.F0p_ +W VY _ +Y,v .. +Y v +E

Step 1. Model Identification

The target of this step is to identify which polynomial parameters should be
estimated, because they affect the forecasting. The initial selection is based on
the observation of the autocorrelation and partial autocorrelation plots. Further
refinement of the selection is based on physical knowledge and on engineering
judgment.

Logarithmic Function of Prices
In this step, it might be convenient to make the time series stationary (constant
mean and variance). To that end, a transformation of the original price data may
be necessary. A logarithmic transformation is usually applied to the price data to
attain a more stable variance.
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Price P and load L, is transformed in logarithmic value to attain more stable
variances in the model result.

p, =log(F)

[, =log(L,)

Choice of Lags

The best-forecast results were obtained for pure ARX (autoregressive model
with exogenous variable) model is given by [85]. The optimal AR
(autoregressive) structure, i.e. yielding the smallest forecast errors for the first
week of the test period was found to be the variable set of last two days log-price
p., and p,_,, last week log-price p, . and the minimum of previous day’s 24

hourly log-prices (mp, ) [85].
P =CHOD oy +0,P, 45 + P3P, 165+ OmD,

However a small change has been made in this model, in case of using the
minimum of previous day’s 24 hourly log-price, previous hour’s log price is
implemented in the model. One of the reasons for this improvement is, it is
simpler to apply in.

P=CHOD oy +0,P, 45 T3P 165 + D,

Exogenous Variable and Dummies

Next hour forecasted load is chosen as exogenous parameter. This is because of
the good forecast performance of this parameter in previous electricity
forecasting literature.

This simple model was unable to cope with the weekly seasonality. Weekly
seasonality was causing the forecast results on Mondays, Saturdays and Sundays
to be worse then the rest of the week. Inclusion of three dummy variables
Saturday (D, ), Sunday (D, ) and Monday (D,,,) and next day forecasted load

helped a lot. The best model structure, in terms of forecasting performance for
the first week of the test period, turned out to be:

sun mon

+E,

mon

p=C+Op o +0,p 5 +0:p s to0.p,, +V¥ [, +d D, +d,D,, +d.D

Forecasted price is given by the equation above: y, is the coefficient of the
logarithm of next hour forecasted load (/,); d,,d,,d, are the coefficients of
dummies.

Step 2. Polynomial parameter estimation

Once the parameters of the polynomials different from 0 have been identified
(through plot observation, physical knowledge and engineering judgment), these
parameters should be estimated. The estimation procedure is based on available
historical data. Good estimators are found assuming that the data constitute
observations of a stationary time series and maximizing the likelihood function
with respect to the polynomial parameters.
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Sometimes, the series contain unusual observations, or outliers. In these cases, it
is appropriate to use a procedure to detect and minimize the effect of these
outliers. With this adjustment, better forecasting performance is usually
achieved. Missing values and outliers were substituted by the arithmetic average
of the two neighbouring values and negative values were substituted with
forecasts for those hours as suggested in [85].

An econometric analysis program Eviews 7 is used to estimate the
parameters, parameters are given in Table 4.1.

Table 4.1 Parameters of Forecasting Model

Variable Coeffiecient p-Value

c 0.7709 0.0000
a, 0.8444 0.0000
v, -0.0215 0.0001
d; -0.0065 0.0343
d, -0.0226 0.0000
d, -0.0504 0.0000
9, 0.2951 0.0000
o, 0.1333 0.0000
9, 0.3956 0.0000

Step 3. Validation of model hypotheses

In this step, a diagnosis check is used to validate the model assumptions. If the
estimated model is appropriate, then the residuals (actual prices minus
predicted prices) should behave in a manner consistent with the model.
Residuals must satisfy the requirements of a white noise process: zero mean,
constant variance, zero correlation and normal distribution. Taking tests for
randomness, such as the one based on the Ljung-Box statistics and observing
plots, such as the autocorrelation and partial autocorrelation plots, allow
checking of these requirements.

If the hypotheses on the residuals are validated, then the corresponding model
can be used to forecast prices and this step is concluded successfully. Otherwise,
the residuals contain a certain structure that should be analysed to refine the
model, and the procedure continues back in Step 1. To refine the model a careful
inspection of the autocorrelation plots of the residuals should be performed.

Step 4. Actual prediction

In this step, the corresponding model from Step 2 is used to predict future values
of prices, typically 24 hours ahead. It should be noted that prediction quality
deteriorates as the predicted hour increases, i.e., the error of the estimate of hour
24 is typically greater than the error of the estimate of hour 1.

50



4.3.3 Forecast Error Measures
The most widely used measures of forecasting accuracy are those based on
absolute errors, absolute values of difference between the actual, P, and

predicted, ﬁ,, prices for a given hour, #. Another popular measure is the Mean
Absolute Error (MAE); for hourly prices P, the daily MAE is given by

1 24

MAEdaily = az

t=1

P—-P

t t

Sometimes no the absolute, but the relative or percentage difference is more
informative. For instance, when comparing results for two distinct data sets. In
such cases the Mean Absolute Percentage Error (MAPE) is preferred. For hourly
prices P the daily MAPE is given by

A

P-P

24
1 ' '

MAPE,  =—
daily 24 ; P

t

The MAPE measure works well in load forecasting, since the actual load values
are rather large. However when applied to electricity prices, MAPE could be
misleading. In particular, when prices drop to zero, MAPE values become very

P - I3l . The reason for this is

large regardless of the actual absolute differences

the normalisation by the current price P, .

PP
normalised by the average price attained during the day. The resulting measure,
also known as the Mean Daily Error (MDE), is given by

Alternative normalisation is proposed here; the absolute error is

BRI
24 h=1 P24 P24

MDE = MAE

daily

— 1
Here, P, = — “P.In general, MDE compared to MAPE puts more weight to
24 24 h=1 h

errors in the high-price range. Analogously to MDE, the mean weakly error
(MWE) can be computed as:

L aln-

MWE=—Y"——1=— MAE
168 h=1 P168

weekly
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Results

Daily results and graphs are given in the Appendix A. Here, only the weekly mean
absolute error and mean weekly error for weeks between 16.01.2012 and
06.02.2012 is given in Table 4.2.

Table 4.2 Weekly Mean Absolute Error and Mean Weekly Error for weeks between
16.01.2012-06.02.2012

Forecasted Period APX weekly MAE weekly MWE
16.01-22.01 4466184524 2.284793008 0.051157604
23.01-29.01 46.04309524 2.069306943 0.044942829
30.01-05.02 53.89136905 3.774173922 0.070032994
06.02-12.02 73.22303571 6.582462888 0.089896067

4.4 Proposed Electricity Pricing Model

In this thesis, the following electricity-pricing model is proposed to motivate
household consumers to shift their loads to off-peak hours. Retail electricity
price ¢, is given by the sum of base price p, and the price gap p, .

o, =p,+p,

4.4.1 Base price
Here the base price is defined as marginal cost of generating electricity by

authors [16], [55]. [16] defines base price as the wholesale price: p, = G .

t

In this formula, 7,in kW is the predetermined total daily energy demand of all
users (residential, commercial, industrial and transportation) for time slot ¢ and
forms the vector R:[rl,rz,...,n] for the time horizon. C,(r,) is the cost function,
which is assumed to be a decreasing and strictly convex function of r,; and thus
¢, is higher during high load periods than during low load periods.

Instead of [16] and [55]’s definition of base price, forecasted APX-Endex prices
are used as base price in this thesis. In previous Section 4.3, APX wholesale
prices explained and are forecasted for next-hour.

4.4.2 Price Gap
The price gap p, is designed to influence the difference between the actual

residential demand and the initial or predetermined average daily demand of
residential users. p, is designed such that p, increases when the difference

between the actual demand and the predetermined average daily 6, =¢, —¢
increases. Here g, and g are given as follows
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N
— t t — _ =1
q, _Z”i + X q=
i=1

On the left formula, x; is the “shiftable” and u; is the "non-shiftable” power
consumption of user at time slot z.

Smaller 6,, the lower price gap p,, so that the energy scheduler is more willing

to schedule the appliance to operate during this period, and vice versa. Price gap

can be designed as follow
— e:u(qr_qavemgg)

P:

where >0 is a design parameter and is independent of time. Exponential

function is a strictly convex function, which gives positive range for all domains.
If 8, increases, the price gap will increase and the retail price set by the energy

provider becomes higher. This encourages users to consume more energy to
reach the average value. From this pricing mechanism, one can see that this
encourage users schedule their energy consumption in such a way that the
energy demand is more equally over all time slots.

4.4.3 Validation of Pricing Scheme

In Section 4.1, retail electricity pricing scheme in the Netherlands is summarized.
If a household makes electricity contract for 1-year period, he/she will pay the
fixed amounts given below:

Table 4.3 Electricity prices of retail suppliers in The Netherlands

Delivery Cost
excluding BTW
Suppliers (cents/kWh)
Essent 7.22
e.on 7.04
Eneco 7.88
NUON 7.04

Let’s compare these prices to the proposed pricing model. Hourly APX prices of
16.01.2012 are used as base price. On the top of this base price, price gap is
added; design factor u is selected as to make the proposed pricing model close

to the electricity prices of retail suppliers in The Netherlands. Hourly retail
electricity prices of proposed pricing model can be found in the Appendix B.
Daily average electricity price according to the proposed pricing scheme is 6.848
cents/kWh. Proposed electricity pricing scheme shows less than %10 difference
compared to 1-year contract prices offered in the Netherlands. Since 1-year
contract prices are calculated by price predictions of the duration, example of
daily average electricity price is acceptable.

Below in the Figure 4.4, hourly electricity consumption of 25 houses is shown. It
can be seen clearer from the graph how the proposed electricity scheme works.
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More the electricity consumption is deviating from average electricity demand,
more the price gap affects electricity price.
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Figure 4.4 Hourly shiftable and unshiftable electricity demand and electricity
prices without ECS deployment
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Figure 4.5 Hourly energy cost of 25 houses without ECS deployment
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5 Electricity Consumption Scheduling

Smart grid is a power network composed of intelligent nodes that can operate,
communicate, and interact, autonomously, in order to efficiently deliver power
and electricity to their consumers. This multi-task characteristic of the smart
grid motivates the adoption of advanced techniques for overcoming the various
technical challenges at different levels such as design, control, and
implementation. In this respect, game theory is expected to constitute a key
analytical tool in the design of the future smart grid.

5.1 Game Theory and Demand-Side Management

Game theory is a formal analytical as well as conceptual framework with a set of
mathematical tools enabling the study of complex interactions among
independent rational players. For several decades, game theory has been
adopted in a wide number of disciplines ranging from economics, laws and
politics to psychology. More recently, game theory has also become a central tool
in the design and analysis of communication systems.

The proliferation of advanced technologies and services in smart grid systems

implies that disciplines such as game theory will naturally become a prominent

tool in the design and analysis of smart grids. In particular, there is a need to
deploy novel models and algorithms that can capture the following
characteristics of the emerging smart grid:

e The need for distributed operation of the smart grid nodes for
communication and control purposes

e The heterogeneous nature of the smart grid, which is typically composed of a
variety of nodes such as micro-grids, smart meters, appliances, and others,
each of which having different capabilities and objectives

e The need for efficiently integrating advanced techniques from power
systems, communications, and signal processing.

e The need for low-complexity distributed algorithms that can efficiently
represent competitive or collaborative scenarios between the various entities
of the smart grid. In this context, game theory could constitute a robust
framework that can address many of these challenges [69].

5.1.1 Introduction and Basic Game-Theoretic Concepts
Game theory is a mathematical framework that can be divided into two main
branches: non-cooperative game theory and cooperative game theory.

Non-cooperative game theory can be used to analyse the strategic decision
making processes of a number of independent players, that have partially or
totally conflicting interests over the outcome of a decision process which is
affected by their actions. Essentially, non-cooperative games can be seen as
capturing a distributed decision making process that allows the players to
optimize, without any coordination or communication, objective functions
coupled in the actions of the involved players. It is noted that the term non-
cooperative does not always imply that the players do not cooperate, but it
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means that, any cooperation that arises must be self-enforcing with no
communication or coordination of strategic choices among the players.

Basics of Non-cooperative Game Theory:

Non-cooperative games can be grouped into two categories: static games and
dynamic games. Static games are games in which the notions of time or
information do not affect the action choices of the players. Thus, in a static
setting, a non-cooperative game can be seen as a one-shot process in which the
players take their actions only once (simultaneously or at different points in
time). In contrast, dynamic games are games in which the players have some
information about each others’ choices, can act more than once, and time has a
central role in the decision making. For static games, one general definition is the
following:

Definition 1: A static non-cooperative game is defined as a situation that
involves three components: the set of players N, the action sets (A4),_, , and the

utility functions (i;),., . In such a non-cooperative game, each player i wants to
choose an action g, € A so as to optimize its utility function u,(q;,a_;) which
depends not only on player i s action choice g, but also on the vector of actions

ieN ?

taken by the other players in N\{i}, denoted by a ,.

Note that, when the game is dynamic, one needs to also define, as part of the
game, additional components such as information sets, time, or sets of past
actions, which are usually reflected in the utility functions. It is noted that the
notion of action coincides with that of a strategy in static games while in dynamic
games strategies are defined, loosely, as functions of the information available to
each player.

The strategy choices of the players can be made either in a deterministic manner
such as pure strategies, or by following a certain probability distribution over the
action sets (A),., such as mixed strategies.

Solution Concept:

The objective of non-cooperative game theory is to provide algorithms and
techniques suitable for solving such optimization problems and characterizing
their outcome, notably when the players are making their action choices non-
cooperatively without any coordination or communication. One of the most
important solution concepts for game theory in general and non-cooperative
games in particular is that of a Nash equilibrium.

The Nash equilibrium characterizes a state in which no player i/ can improve its
utility by changing unilaterally its strategy, given that the strategies of the other
players are fixed. For a static game, the Nash equilibrium in pure strategies can
be formally defined as follows:

Definition 2: A pure-strategy Nash equilibrium of a static non-cooperative game
is a vector of actions @' € A (A is the Cartesian product of the action sets) such
that Vie N , the following holds:
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In mixed strategies, a Nash equilibrium is defined similar to Definition 2 with the
strategies being a vector of probability distributions over the action sets.

The Nash equilibrium serves as a building block for many types of non-
cooperative games. This solution concept has both advantages and drawbacks.
One of its main advantages is that it characterises a stable state of a non-
cooperative game in which no player i e N can improve its utility by unilaterally
changing its action a, given that the actions of the others are fixed at a_,. This

state can often be reached by the players in a distributed manner and with little
coordination.

However, the Nash equilibrium also has some drawbacks. For example, even in
finite games, where each player has a finite action set, Nash equilibrium is only
guaranteed to exist in mixed strategies. A non-cooperative game can also have
multiple Nash equilibriums then selecting an efficient and desirable Nash
equilibrium is a challenging topic.

Nonetheless, several metrics such as the price of anarchy or the price of stability
can be used to study the efficiency the Nash equilibrium such as in [56].
Moreover, the Nash equilibrium concept can be complemented and extended
using many other game theoretic techniques such as pricing so as to provide
suitable solutions for non-cooperative games.

Cooperative Games:

In non-cooperative games, it is assumed that the players are unable to
coordinate or communicate with one another directly. However, for games in
which the players are allowed to communicate and to receive side payments
(share utilities), it may be of interest to adopt fully cooperative approaches. In
this respect, cooperative game theory provides frameworks that can answer one
pertinent question: “What happens when the players can communicate with one
another and decide to cooperate?”

Cooperative games allow investigating how one can provide an incentive for
independent decision makers to act together as one entity so as to improve their
position in the game. For example, in politics, different parties may decide to
merge or coalesce into a cooperative group so as to improve their chances in
obtaining a share of the power.

Cooperative game theory encompasses two parts: Nash bargaining and
coalitional game. Nash bargaining deals with situations in which a number of
players need to agree on the terms under which they cooperate while coalitional
game theory deals with the formation of cooperative groups or coalitions. In
essence, cooperative game theory in both of its branches provides tools that
allow the players to decide on whom to cooperate with and under which terms
given several cooperation incentives and fairness rules.
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5.1.2 Learning in Games

While studying the efficiency of equilibrium is central to game-theoretic design,
another important aspect is to develop learning algorithms that enable the
players to reach a certain desired game outcome. In fact, choosing the desired
equilibrium is a challenging. To reach certain equilibrium, the players must
follow well-defined rules that enable them to observe the current game state and
make a decision on their strategy choices. Essentially, a learning scheme is an
iterative process in which each iteration involves three key steps performed by
every player [90]:

e Observing the environment and current game state,

e Estimating the prospective utility, and

e Updating the strategy based on the observations.

Numerous learning algorithms have been proposed in the literature. The
simplest of such algorithms is the so-called best response dynamics, which is an
iterative process in which a player selects the strategy that maximizes its utility
at every iteration. Several variants of this process exist. One of the advantages of
a best response algorithm is its simple implementation, however, it suffers from
several drawbacks. First, a best response process is only guaranteed to converge
to equilibrium for certain types of utility functions. Second, best response
dynamics are highly sensitive to the initial conditions and any changes in these
conditions could lead to different equilibriums. Third, adopting a best response

approach does not always guarantee convergence to an efficient equilibrium
[33].

5.1.3 Game Theory and Demand-Side Management

Game theory has been extensively used for demand-side management and
demand-response models in smart grids such as in [12], [16], [38], [51], [52] and
[55].

[12] proposes a game theoretical decision-making scheme for electricity retailers
with real-time DSM in the smart grid. Dynamic behaviours of customers is
modelled by utility functions and then later suggests a four-stage Stackelberg
game to model interactions between a retailer and its customers.

[51] proposes a computationally feasible and automated optimization-based
residential load control scheme in a retail electricity market with real-time
pricing tariff combined with inclining block rates.

[52] proposes a game theoretical model in order to minimize the cost of energy
and also to balance the total residential load when multiple users share a
common energy source. The authors used game theory to model DSM problem in
smart grid where customers schedule their energy consumption profiles to
minimize the total energy payment. However, all users need to exchange their
energy consumption profiles to each other, which is not practical. In practice,
users are only able to communicate and exchange information with energy
providers.
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[55] proposes a game theoretic framework to model independent decision-
making of users’ energy consumption scheduling. The aim of the authors is to
reduce the peak load of the system. A new pricing model is designed and a
distributed algorithm is proposed to achieve Nash equilibrium of the non-
cooperative game in which each user tries to minimize its energy payment to an
energy provider.

[16] applies Stackelberg game to model DSM problem where a retailer act as a
leader and customers act as followers. The best provider and customers’
strategies are given and a distributed algorithm has been proposed where the
link between the leader and followers is the price signal.

In this paper, unlike [52], it is assumed that users are only able to communicate
and exchange information with the retailer. So then, a similar Stackelberg game
theoretical model of [16] is proposed.

In order to provide a better overview on how game theory can be applied for
demand-side management, in this section, we start by analysing a non-
cooperative game approach for modelling the interactions between a number of
consumers and an energy generator or substation.

5.1.4 Game Theory for Demand-Side Management through Energy
Consumption Scheduling

Introduction and Model:

Classical demand-side management schemes such as direct load control and
smart pricing are focused on the interactions between a utility company and
each individual end-user. On the one hand, direct load control enables the utility
company to control the appliances inside the home of each individual consumer,
based on a certain agreement. On the other hand, the essence of smart pricing is
to provide monetary incentives for the users to voluntarily shift their
consumption and balance the load on the electricity grid. While these schemes
have been extensively deployed, they are all focused on the individual user
energy. However, [52] shows that, instead of focusing only on the individual user
consumption such as in classical schemes, it is better to develop a demand-side
management approach that optimizes the properties of the aggregate load of the
users. This is enabled by the deployment of communication technologies that
allow the users to coordinate their energy usage, when this is beneficial.

Similar to [52], a power system with N users and a single energy source, such as
a substation. A wired or wireless technology interconnects the smart meters and
the sources, hence, enabling them to communicate at any point in time. We let N
denote the set of all users. Assuming time is slotted into hour-long intervals, at

any given hour / the total consumption of all users is denoted by L, = zieNli” ,

with " being the energy consumption of user i at hour #.
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This total consumption incurs a cost on the utility company, which could reflect
either a physical cost (i.e., costs for thermal generators) or a virtual cost that is
used by the utility company so as to encourage an energy-aware behaviour by
the users. Practical cost functions such as thermal generation costs are

increasing with the load and, often, strictly convex. As a result, let 2:1:] C,(L,)

denote the total cost incurred on the utility company over a period of H hours
by all N users with the cost function C,(.) being a strictly convex and increasing

function. Note that, for a certain load value, the cost function C,(.) could lead to
different costs depending on the hour during which this load is consumed.

Based on the cost Zthl C,(L,), the utility company would decide on how much to

charge the users for the consumption during the A hours. The dependence of
the cost function on the total users’ load L, implies that a change in the load of

one user would impact the total cost of the utility company, which, in turn,
impacts the individual charges of the users. Hence, clearly, the users can be seen
as independent decision makers whose choices of scheduling times and loads
would impact one another. In this model, the objective is to enable the smart
meters at the users premises to utilise automatic energy consumption
schedulers so as to choose when to schedule appliances in order to minimize the
total cost on the utility company and, subsequently, minimize the charges on
each individual user. To address this problem, a game theoretic formulation is
suitable as shown in [52] and discussed next.

A Non-cooperative Game for Scheduling Appliances:

Essentially, we are interested in devising a demand-side management scheme
that enables to schedule the shiftable appliances such as dish washers, washing
machines and dryers, while minimising the overall energy consumption and,
thus, the charges on the consumers.

In this context, as in [52], we can formulate a static non-cooperative game in
which the set of users N represents the players with the strategy of every player
i € N being a vector x, which is formed by stacking up energy consumption

H
ia

schedule vectors of the form Xi:[x;’a...x ] where x/ is the energy

consumption scheduled for an appliance a by user i .

In this non-cooperative game, each user i needs to select its vector x; so as to
optimize a utility function u,(x;,x_;), which is mainly a function of the cost
function C,(.) at each time /. The exact expression of the utility depends on
how the utility company performs the billing as well as on the type and energy
requirement of the users’ appliances. Exact expressions for this utility were
derived in [52] under the assumption that each user is billed proportionally to its
total consumption. In consequence, we have a static non-cooperative game,
which we refer to as the appliances scheduling game and we can make several
remarks on the properties of this game based on the results in [52], as follows:
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1) Nash equilibrium for the appliances scheduling game always exists and all
equilibriums coincide with the optimal scheduling policy that minimises the

overall utility company cost, which is given by 2}’; C,(L,).

2) The Nash equilibrium of the game corresponds to a unique set of total loads

[ ateachuser ie N .

h,NE
li

3) Each user can map the total load at the equilibrium to any feasible set of

strategies x| . For the utility function considered in [52], the appliances are,

thus, indifferent to when they are scheduled as every schedule would always
correspond to the minimum of the total cost incurred on the utility company.

The authors in [52] propose an algorithm that uses best response dynamics to
find the Nash equilibrium while ensuring that no user has an incentive to cheat
and announce an incorrect energy schedule. A best response algorithm mainly
relies on a sequence of decisions in which each player chooses the strategy that
maximises its utility, given the current strategies of the other players. It is shown
in [52] that, for the appliances scheduling game, best response dynamics always
converges to equilibrium. The simulations in [52] also show that, whenever
consumers have a good number of shiftable appliances, adopting a game-
theoretic approach for scheduling these appliances can reduce the energy costs
of up to 18% compared to existing solutions while also reducing the peak-to-
average ratio of the energy demand (i.e., the ratio of the energy at peak hour to
the average energy over a time period H) of about 17%.

Future Extensions of Game for Scheduling:

Clearly, using non-cooperative games can lead to smarter demand-side

management schemes. The model studied in this sub-section can be extended in

a variety of ways such as by:

e Introducing a utility function in which the time at which an appliance is
scheduled impacts the payoff of the users. The objective of the game
becomes to optimize a trade-off between minimizing the charges and
optimizing the appliances’ waiting time. By doing so, the properties and
results of the game formulated in [52] are significantly impacted, although
the non-cooperative framework is still useful to analyse the problem.

e Considering multiple energy sources and the interactions among them. In
such a setting, hierarchical games such as Stackelberg games are a good
candidate to provide insights on the appliances’ scheduling problem.

e Studying a stochastic game counterpart of this model in which the smart
meters schedule the appliances instantaneously based on the time-varying
conditions of the network (e.g., the varying generation conditions of the
energy source). The studied game can, in fact, constitute a building block for
such a stochastic formulation. For instance, a stochastic game is essentially a
dynamic game composed of a number of stages and in which, at the
beginning of each stage, the game is in a specific state. In such a setting, the
studied game and its solution can be used to solve or study each one of these
stages. Hence, the studied game can serve as a single stage in a stochastic
game setting (under both complete and incomplete information). Each one of
these extensions leads to new challenges but also contributes to the
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deployment of smart demand-side management schemes that account for the
aggregate user loads as well as the individual objectives of the users.

5.2 Proposed Game Theoretical Model

5.2.1 System Model

Smart power system consists of one energy source provider and N load
subscribers or users, as shown in Figure 5.1. The service provider buys
electricity from the wholesale market and sells it to consumers. The energy
scheduler in each home interacts with the service provider through an
underlying two-way communication network (e.g., the smart metering
infrastructure). The energy scheduler coordinates power use among in-home
smart appliances; of particular interest in our model, it schedules the time of use
of shiftable appliances within the home.
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Figure 5.1 Household electricity market [16]

5.2.2 Household Consumption Profiles

In Chapter 3, the methodology of household consumption simulation is
explained: [66] has built a 1-minute resolution household occupancy model,
using a Markov-chain technique where the activity state in each household at
each time step depends on the previous one, together with the probability of that
state changing. The simulations are carried out for three persons in the house.
Then, the time-use survey is used to predict the probability that the occupants in
the house will change their activity, depending on what they happen to be doing
at any one time. This in turn drives which electrical appliances are on and build a
1-minute resolution household demand profile model. 25 different simulations
are run and the results are given below in the chart.

All 25 households are assumed to use the following “shiftable” and “non-
shiftable” appliances.
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Table 5.1 Appliances in Households

“Non-Shiftable”s “Shiftable”s
Refrigerator TV Washing Machine
Freezer TV receiver box Dishwasher

Electric oven VCR/DVD recorder |Dryer
Microwave oven Computer
Kettle Printer
Iron CD player
Vacuum cleaner HiFi
Alarm clock

Figure 5.2 shows the cumulative 1-minute resolution total and “non-shiftable”
electricity consumption and hourly total and “non-shiftable” electricity
consumption of 25 households.
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Figure 5.2 1-Minute Resolution of Electricity Demand Profile for 25 Households

Hourly consumption data of “non-shiftable” appliances are transformed from
one-minute resolution consumption data. Hourly consumptions are calculated as
follows; ¢, is the 1-minute electricity consumption in watts, average of every-
minute electricity consumption in one hour gives ¢; the power consumption of
user i € N at time slot 7 in watt.hour.

m+60

> 0,

! _ m=60r

q; 60

Let A be the set of users and 7 be the set of time slots, where Né|J\/'| and
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T £|T|. For each user i e N, the “non-shiftable” power consumption vector is

defined u; = [ul',ul’,,uf] where u; is the "non-shiftable” power consumption

of user at time slot 7. This “non-shiftable” power consumption vector is created
for each user by [66] based data consumption profiler.

Once “non-shiftable” hourly consumption is obtained, operation durations and
hourly consumption of “shiftable” appliances are calculated for each household
and their average is given below Table 5.2.

Table 5.2 Operation duration and consumption of “shiftable” appliances

Operation Duration Hourly Consumption

l; , (Hours) ¢;, (kWh)
Washing Machine 2 0.4634
Dishwasher 1 1.1860
Dryer 1 2.5500

Initial consumptions of these appliances are spread on every hour of the day on

the basis of the Table 5.2. The initial consumptions of 25 households are given
below Figure 5.3.

Figure 5.3 1-hour resolution of Electricity Demand for 25 households
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The usage of shiftable appliance a € A, , has three important features: start time
s, operation duration /,, and hourly consumption c,,. The initial start time of

“shiftable” appliances are chosen to be similar to the first simulation results.

Operation duration and hourly consumption of shiftable appliances are taken
from [66].

Let AV be the set of users and 7 be the set of time slots, where N | A/| and

T £|7]. For each user i e N, given the scheduled start time s, ¢,, and /,,, the
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service provider forms a “shiftable” power consumption vector

1 t

— T : . .
X0 = [xw e ,...,xm] in kWh for this appliance, where

c te[s,s+lm)

0, teT\[s.s+1,)

Power consumption vector of all the shiftables are shown as following formula

r_ t
xi - zxi,a

acA

5.2.3 Energy Consumption Scheduler
The ECS aims to minimize the cost to the consumer for the usage of the
“shiftable” appliance a € A, . Its action is to determine the optimal start time s

for a shiftable appliance that was requested to turn on at time slot ¢,.

Given the scheduled start time s, ¢, and [, , the service provider forms a
r,a 1,a

power consumption vector of a “shiftable” appliance Xm=[x;’a,...,xf,a,...,x;],

where

C.

ia®

0, teT\[s.s+1,)

te [s,s+lm)

When the power consumption vector of the “shiftable” appliances are obtained,
total “shiftable” power consumption is given by

r_ t
xi - zxi,a

acA
So the total power consumption vector of “shiftable” appliances is shown as

1 t T
X; = [xi ,...,.Xi I o ]

1

For the initial situation, it is assumed that every household starts with “non-
shiftable” predetermined profile. So the real-time load vector of user i is then

updated as q, =u, +x, :[qi',qf,...,qf]. So then the total consumption vector is

N N
given as q, = Zqi and the consumption at time slot 7 is ¢, = Zuf +x; .

i=1 i=1

ECS is required to schedule all appliances within the horizon 7  so then the sum
of the optimal scheduled start time s and the operation duration of appliance /,

has to be smaller than time horizon 7 .

Given the price vector p,={p,,p,....p,} for the time horizon T and the
“shiftable” appliance power usage c,, during the operation period, the optimal

scheduled start time s is obtained by solving the following optimization.
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s+,
min Z D,C: .,
. :

r=s

subjectto s+, , <T

The optimization problem can also be written as

s+,
1 (qz_q)
min Z |:¢t +e Cia
r=s

subjectto s+, , <T

5.2.4 Distributed Algorithm
User i has a request to turn on appliance a for the given day. Then optimal start

time s for this appliance is calculated by solving the optimization problem:
s+,
min Z p.c;, subjectto s+,  <T.

Here, it is assumed that there is no “shiftable” appliance consumption for the
initial position, so q,=u,. After solving optimal start time s , “shiftable”

. . 1 T . .
appliance consumption vector x,-,a=[xi,a,...,x;!u,...,xm] is created. By adding

“shiftable” appliance consumption vector on predetermined “non-shiftable”
appliance consumption, new total consumption vector of user i is obtained:

71

q=u+x,=[q"q".q"]

N
The new total consumption vector is obtained by d; =2(L'- and is sent to
i=1

service provider. New price vector is computed by using new total consumption

vector, new price vector is computed by p/ =¢, + e 7).,

Algorithm 1 Executed by the service provider
1: Initialization.
2:repeat

3 if receive request signal from ECS user i for app a then

4 Compute the initial price vector p, using p, =¢, +¢" (4-7)

6: Send p, toECSuserieN.

7 for all start time s received do

8 Compute new ¢’ and ¢’

9: Compute new price vector p/, using p/ =¢, + e 7)
10: Send p/ toECSuser ie N ,

11: end for

12: end if

12: until the end of the day
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Algorithm 2 Executed by the ECS i

1: Initialization.
2:if consumer i has a request for appliance a for the given day then

3: Send the request signal to service provider.
4: for all price vector p, received do

s+, )
5: Solve min Z p.c,, subjectto s+1,, <T to find optimal s’
6: Send s to service provider.
7: end for
8: end if

5.2.5 Simulation Results

In this section, simulation results are represented and assessed the performance
of the proposed algorithms. In considered benchmark smart grid system there
are N =25 customer/users that subscribe to the ECS services.

Performance Comparison

The simulation results on total scheduled energy consumptions and the energy
cost for a single scenario are shown in Figures 5.4 and 5.5 with the deployment
of the ECS function in the smart meters, respectively.

For the case without ECS deployment, each appliance a € A, for each user i e N

is assumed to start operation right at the beginning of the time interval and at its
typical power level. For the case with ECS deployment, the timing and the power
level for the operation of each household appliance is determined by algorithm 1
and 2. By comparing the results of electricity cost graphs in Figures 4.5 and 5.2, it
can be concluded that when the ECS functions are not used/implemented the
energy cost is 30.145€. At the same time, when the ECS feature is enabled, the
energy cost reduces to 21.070€ (i.e., 30.11% less).

In fact, in the latter case, there is a more evenly distributed load across different
hours of the day. Note that each user consumes the same amount of energy in the
two cases, but it simply schedules its consumption more cost efficiently in the
case that the ECS units are used.
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Figure 5.4 Hourly shiftable and non-shiftable electricity demand and electricity
prices with ECS deployment
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Figure 5.5 Hourly energy cost of 25 houses with ECS deployment

User Payment

While the proposed distributed DSM strategy leads to less total energy cost, it is
also beneficial for each individual end user. To see this, the daily payments for all
users are shown in Figure 5.6. Here, the simulation setting is the same. We can
see that all users would pay significantly less to the utility company when the
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ECS is enabled in the smart meter. Therefore, the users would be willing to
participate in the proposed automatic demand-side management system.
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Figure 5.6 Electricity cost of each household with/without ECS deployment

Impact of Amount of Shiftable Load

For the simulation scenarios so far, we have assumed that around %33.3 of the
residential load is shiftable while the other %66.6 is not shiftable. Clearly, the
ECS units are expected to have a more significant impact if more appliances have
shiftable operation.
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6 Investment Performance of Photovoltaic Solar Panels

It is proven in Chapter 5 that proposed retail electricity pricing model, proposed
in Chapter 4, is advantageous for the household consumers who are willing
schedule their appliances with a game theoretical framework. In this chapter, PV
solar panels investment performance of the household consumers is compared
in two cases; conventional fixed electricity pricing scheme and real-time pricing
with ECS deployment.

6.1 Subsidies for Photovoltaic Solar Panels in The Netherlands

6.1.1 Solar Subsidy

From Monday, July 2, 2012, the scheme is opened and individuals can apply for
grants for solar installations (solar PV). Agentschap NL implements the scheme
in the Ministry of Economic Affairs, Agriculture and Innovation.

For a solar PV installation with a minimum capacity of 0.601 kWp (kilowatt
peak) to 3.5 kWp subsidy is 15% of actual purchase costs. The grant for a solar
plant with a capacity greater than 3.5 kWp (kilowatt peak) was calculated as
follows: the outcome of 15% of actual cost is multiplied by 3.5 and divided by the
power kilowatt peak. The investor can be subsidised maximum of 650 euro in all
cases.

6.1.2 Feed-in tariff

Net metering law provides up to 5,000 kWh of surplus electricity. Households,
who consume less than 5,000 kWh of electricity, will receive the feed-in tariff as
equal to the delivery rate including energy tax and VAT.

6.2 Method of Payback Time of The Investment

6.2.1 Cash Flow of PV Solar Panel Investment

The especial features of PV systems together with the economic incentives taken
into account in the analysis suggest that any cash flow involved in it should make
a contribution to one of the following two concepts:

a. The annualised cost of the system from the user standpoint (PV, ); this

ann

concept is opposed to the life-cycle cost of the system from the grid
standpoint, which considers costs that exlude tax exemptions, buy-down or
grant policies, low or interest-free loans, etc.

b. The annual cash inflows from the system.

Annualised cost of the system from the user standpoint
Parameter PV_ is the sum of the annualised of the initial user investment on the

ann

PV solar panels (PMT,, ) plus the annual operation and maintenance cost ( PV,

ann aom

PV =PMT, +PV

ann ann aom
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If PV, is the initial investment on the PV solar panels while PV,, is stated as the
initial buy-down subsidy, PV, —PV,, is to be paid by the owner. However, if this
amount is borrowed at an annual loan interest i, total payments of each year (
PMT, ) during the loan period (N, in years) can be set equal so that [49]:

ann

1+i)"
PMTann :(P‘/m_P‘/bd)l %
a+i" -1
where PV isthe annual operation and maintenance cost, according to [73]
pv =001PV,.

The annual cash inflows from the system

The annual cash inflows from the system (CF(N)) are related to government
generation-based incentives. The most general case would assume that part of
the annual PV yield ( E,,, in kWh) is sold at a given price ( p,, in €/kWh), which
is usually above the market level. N (years) is the serviceable life of the system.

CF(N)=pE,,

6.2.2 Payback time

The payback time of an investment project (more properly, the discounted
payback time, DPBT ) is the required number of years for the annualized worth
of the inflows to equal the annualised worth of the outflows. Evidently,
profitability means that the discounted payback time should not exceed the
serviceable life of the system ( DPBT < N ). Although easily understandable and
straightforward, this parameter does not consider the cash flows that are
produced after the DPBT. Hence, it may hide sound financial opportunities for
those deciding to invest on a PV system [14].

6.3 Results

Results are given under two different conditions, current situation and proposed
situation. In current situation, payback period of PV solar panels are calculated in
case of no electricity consumption scheduler (ECS); in proposed situation, pay
period of PV solar panels are calculated in case of ECS.

There are five different PV solar systems offered by NUON Electricity Company
in the Netherlands. Three out of these five PV solar systems were selected as
possible investment options for the majority of household consumers.

Table 6.1 PV solar panel projects offered by NUON3

Package A | Package B | Package C
Peak generation (kWp) 1080 1880 2820
Total area of panels (m?) 7.9 13.2 19.8
Generation per year (kWh) 920 1600 2400
Cost including the installation (€) | 3000 4600 6200

3 http://www.nuon.nl/energie-besparen/zonne-energie/zonnepanelen/prijzen-en-opbrengst.jsp
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Payback Time of PV Systems in Current and Proposed Situation

It is assumed that all these three packages are applied with a bank loan with 4%
annual interest rate. Subsidies summarized in Section 6.1, are added on the
capital cost of PV solar panels and the equivalent annual capital cost is obtained
by the methodology given in Section 6.2.1.

In current situation, retail electricity prices are fixed; household consumers do
not have real-time electricity price option. As a matter of fact, household
consumers do not schedule their electricity consumption. In this case, the
economical benefits of ECS will not be taken into consideration when the
payback period is calculated.

Table 6.2 Payback time of PV Systems in Current Situation

Packa
21.05 17.32
Annualised Capital Cost of PV systems
Cost of capital 0.04 0.04 0.04
Capital Cost of PV (€) 3000 4600 6200
Subsidy on PV investment (€) 450 650 650
[nitial Investment (€) 2550 3950 5550
Equivalent Annual capital cost (€/year) 181.50 320.50 484.50
Annual Cost of OM (€/year) 25.50 39.50 55.50
Total annual cost (€/year) 207 360 540
Cash inflow
Electricity sold (€/kWh) 920 1600 2400
Feed-in tariff (€/kWh) 0.225 0.225 0.225
Annual cash inflow from PV (€/year) 207, 360 540
Profit from Scheduler (€/year) 0 0 0
Total annual cash inflow 207 360 540

In the proposed situation, household consumers are exposed to real-time
electricity pricing scheme. So then household consumers are using electricity
consumption scheduler at their homes to benefit from real-time pricing scheme
as much as possible. On the Table 6.3, profit from the scheduler is given; this is
derived from the results of Chapter 5.

When the ECS functions are not used/implemented the energy cost is 30.145€
for 25 households. At the same time, when the ECS feature is enabled, the energy
cost reduces to 21.070€ (i.e.,, 30.11% less) for 25 households. If it is assumed
that this cost reduction is the average cost reduction in a year, it makes 125.34
€/year save for one household. This assumption can be improved further by
running the simulations for every two weeks of a month and then averaging the
profits, this assumption will be discussed further in the next chapter.

Table 6.3 Payback time of PV Systems in Proposed Situation
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Package A|Package B|Package C

Expected payback time 10.30

Annualised Capital Cost of PV systems
Cost of capital 0.04 0.04 0.04
Capital Cost of PV (€) 3000 4600 6200
Subsidy on PV investment (€) 450 650 650
[nitial Investment (€) 2550 3950 5550
Equivalent Annual capital cost (€/year) 306.84 445.84 609.84
Annual Cost of OM (€/year) 25.50 39.50 55.50
Total annual cost (€/year) 332.34 485.34 665.34
Cash inflow
Electricity sold (€/kWh) 920 1600 2400
Feed-in tariff (€/kWh) 0.225 0.225 0.225
Annual cash inflow from PV (€/year) 207, 360 540
Profit from Scheduler (€/year) 125.34 125.34 125.34
Total annual cash inflow 332.34 485.34 665.34

PV solar panels have 25 years of lifetime. In the current situation, PV systems
payback their costs when they are already older than half of their life. In the
proposed situation, there is a visible improvement in payback time. After 10-12
years, the investment pays back and later the PV investor enjoys the profits.
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7 Conclusions and Future Work

7.1 Conclusions

Main goal of this research is to reduce the electricity cost of household
consumers while maintaining the same level of comfort. To achieve this goal,
real-time electricity pricing model with game theoretical electricity scheduling is
suggested for the household consumers.

The following research question was answered during this research: “How can
household consumers benefit economically from time-varying pricing schemes with
game-theoretic electricity consumption scheduling?”. To answer this research
question, the sub-question “How can electricity-pricing incentive be built to
motivate household consumers to schedule their “shiftable” appliances?” is given
and a model is proposed on Chapter 4. Later, the sub-question “How can a game
theoretic framework be used for electricity scheduling to minimise electricity
costs of household consumers?” is researched and the simulations in Chapter 5
give the numerical results. Moreover sub-question “How are investment of
photovoltaic solar panels economically feasible in time varying price incentive
with electricity scheduling game situation?” is answered by comparing the
payback periods of conventional fixed pricing case and the proposed ECS model.

7.1.1 Electricity Pricing Model

Electricity pricing scheme for this thesis is proposed to be real-time pricing.
Real-time pricing scheme can be applied in different ways; the retailer can give
the next hour-prices either an hour before or a day before. In this thesis, it is
assumed that retailer declares prices a day before. Electricity pricing model
proposed by this thesis does not exist in real life, so the results for the benefit of
deploying ECS can change from one electricity-pricing model to another.

Modelling Price Gap

In the proposed electricity-pricing model, price gap plays an important role.
Since this gap is designed to motivate household consumers to schedule their
“shiftable” appliances, it is important to recall the formula and test it with
changing design factor values.

— e,u(q/ ~Gaverage)

P:

Price gap is given by the formula below. This gap could have been designed in
many other ways; but in this thesis, exponential function is proposed. Different
designs would have resulted different outcomes of simulations.

Design Factor
Design factor u plays an important role in calculating the price gap. Changing

design factor would change the electricity cost of households in both deployment
of ECS and no deployment of ECS.

There are three important conclusions, which can be drawn from the Figure 7.1:
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1  The proposed electricity-pricing model is not advantageous for the
household consumers when design factor is 0.075 and higher.

2 Electricity cost of households are not affected drastically by the design
factor when the household consumers are deployed with ECS, on the other
side electricity cost of households are increasing drastically by the design
factor when the household consumers are not deployed with ECS.

3 Overall, deployment of ECS with real-time pricing is always advantageous
when compared to the conventional fixed pricing scheme.
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Figure 7.1 Effect of design factor in real-time pricing with/without deployment of
ECS and fixed pricing schemes

7.1.2 Algorithm of Electricity Scheduler

Algorithm of electricity consumption scheduler is starting with a signal from the
“shiftable” appliance of household consumer, which is a random case. When the
simulations were run, it is assumed that every household is using washing
machine, dishwasher and cloth dryer in the same day and running them in a
sequential order.

This assumption causes results to be more unrealistic. For example, in the day of
simulation of 25 households, it is assumed that the cloth dryer runs first in every
household and then the dishwashers and then the cloth dryers, which would not
be the case in the real life.

7.1.3 Results

Electricity Cost Reduction

In the case where household consumers do use real time prices, but do not
deploy ECS, it is shown that the proposed retail electricity-pricing model is very
volatile (red line on the Figure 7.2). This is causing electricity costs for every
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hour to be volatile too and the sum of the electricity costs shows that when the
ECS functions are not used/implemented the electricity cost is 30.145€ for 25
households.
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Figure 7.2 Hourly shiftable and unshiftable electricity demand and electricity
prices with and without ECS deployment

When the proposed model of real-time pricing with game theoretical electricity
consumption scheduling is applied, electricity cost of 25 households drops to
21.070€, which is 30.11% less compared to the conventional fixed pricing case.
So it is concluded that the proposed real-time electricity pricing with electricity
consumption scheduling model help household consumers to reduce their
electricity costs.
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Figure 7.3 Hourly electricity cost of households with and without ECS deployment

[f the one-day simulation result is generalized for whole year, one household
profits 125.34 € in one year.

Investment Performance of PV solar Panels

Investment performance is observed by comparing the payback periods of PV
solar panels for both cases; with and without ECS deployment. It is shown that
the payback period decreases drastically when the proposed real-time pricing
with ECS scheduling is applied.
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Figure 7.4 Payback periods of three PV solar system packages

7.2 Future Works
In the future works, the following subjects can be improved:

e Electricity demand profile generation can be applied better for a specific
country.

e Different real-time pricing models can be suggested and compared. If the
research is done with the sponsorship of an electricity retail company, their
pricing model can be applied to see more realistic results to compare the
fixed pricing scheme with real-time pricing scheme.

e Simulation program of game theoretical model can be improved; so then
electricity usage requests of the consumers are also randomized.

e Payback periods of more micro-generation applications, such as micro
combined heat and power (micro CHP) and heat pumps can be evaluated,
moreover these applications can be also simulated for better results.

e Next-hour electricity forecasting can be analysed from the risk management
point of view and risk management of the whole proposed model can be
given.
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Appendix A

Daily Mean Absolute Error and Mean Weekly Error
Forecasted period APX daily MAE daily MDE

1/16/12 49.509 1.926 0.0389
1/17/12 50.018 1.313 0.0263
1/18/12 45.696 2.658 0.0582
1/19/12 46.298 1.828 0.0395
1/20/12 44.222 1.795 0.0406
1/21/12 40.233 2.245 0.0558
1/22/12 36.657 4.229 0.1154
1/23/12 44.060 1.942 0.0441
1/24/12 48.916 1.599 0.0327
1/25/12 46.720 1.886 0.0404
1/26/12 46.221 1.743 0.0377
1/27/12 48.459 2.406 0.0496
1/28/12 45.385 1916 0.0422
1/29/12 42.541 2.992 0.0703
1/30/12 44415 2.579 0.0581
1/31/12 48.733 1.928 0.0396
2/1/12 51.210 2.413 0.0471
2/2/12 60.041 5.257 0.0876
2/3/12 63.689 6.343 0.0996
2/4/12 57.432 4.852 0.0845
2/5/12 51.720 3.048 0.0589
2/6/12 78.947 7.897 0.1000
2/7/12 78.106 5.949 0.0762
2/8/12 98.983 12.200 0.1233
2/9/12 76.487 7.782 0.1017
2/10/12 74.249 6.902 0.0930
2/11/12 54.653 2.885 0.0528
2/12/12 51.137 2.463 0.0482

Forecast Results

Below are the graphs of predicted and real APX-Endex prices, red is the real
price, blue is the predicted price.
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Appendix B

Hours APX - Wholesale Price Price Gap Retail Electricity Price

(cents/kWh) (cents/kWh)
0:00 4.377 0.235 4.612
1:00 4111 0.242 4.352
2:00 3.910 0.235 4.145
3:00 3.540 0.230 3.769
4:00 3.308 0.238 3.546
5:00 3.656 0.249 3.905
6:00 3.927 0.404 4.331
7:00 5.148 0.994 6.142
8:00 5.941 3.026 8.967
9:00 5.829 2.023 7.852
10:00 5.656 1.063 6.719
11:00 5.658 0.921 6.580
12:00 5.347 0.598 5.945
13:00 4,991 0.585 5.576
14:00 4.984 0.572 5.556
15:00 4.834 1.006 5.840
16:00 5.034 4.236 9.271
17:00 5.838 6.700 12.538
18:00 6.572 6.472 13.045
19:00 6.472 6.290 12.761
20:00 5.461 5.155 10.617
21:00 4.782 2.213 6.996
22:00 4.688 1.379 6.067
23:00 4.593 0.626 5.219
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