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Abstract
Due to environmental issues such as the greenhouse effect, and the fact that the earth’s
oil and gas reserves are slowly depleting, the electricity supply chain is slowly trans-
forming toward novel methods of energy generation. One of these methods consists
of using micro-CHPs in households to satisfy part of the electricity demand. A micro-
CHP is an installation that simultaneously generates heat and electricity, replacing the
traditional boiler. In this setting, the electricity production is essentially a by-product
of the heat production, so that there is no heat loss during the electricity production
process. The micro-CHP comes with a heat buffer, in which hot water can be stored,
so there is some flexibility in the time for this production.

Still, as electricity is dependent on the heat demand, the electricity generation from
a single house can become erratic. Therefore, in this thesis we consider a group of
houses, for which the goal is to obtain a more or less constant electricity production.
To enforce this, we assume that there are fixed upper and lower bounds on the to-
tal electricity production. The goal in this thesis is to find a production schedule for
the different micro-CHPs, so that both these total electricity bounds and the houses’
individual heat demands are satisfied. Within these constraints, the objective is to max-
imize the revenue gained by selling this electricity, whereby these electricity prices are
time-dependent, with peaks during the hours when electricity demand is higher.

This micro-CHP problem has already been investigated by Bosman [4], where mul-
tiple heuristics were used to find such a schedule, using a discretized time scale. In this
thesis, we have attempted to solve the scheduling problem mentioned above using the
technique of Approximate Dynamic Programming (ADP). For this the problem was
first modelled as a Dynamic Program, which was too large to solve exactly.

After this technique is introduced by considering the taxicab problem, it is used
on the actual micro-CHP problem. As a decision here consists of determining which
micro-CHPs are turned on and off in the following time interval, often the number of
possible decisions is too large to consider them all. Therefore, first the decision space
is reduced by using a strict priority list. Then an approximation function for every state
is defined, which uses a weighted sum of basis functions. These basis functions are
numerical values based on certain features of a state. Then, the approximation function
and the reduced decision space can be used to find to find paths through the state space,
each resulting in a production schedule for the micro-CHPs. After such a schedule has
been found, the values found in this schedule are used to update the weights in the
approximation function, to increase the quality of the approximation. This is repeated
for multiple iterations.

This algorithm is applied to a data set, after which the results were compared to
those of Bosman [4]. The results are generally better than his results from the local
search heuristic, and comparable with those of the column generation method. Only
in the cases where the planning intervals were so small that the production behaviour
of the micro-CHP had to be taken into account, the ADP algorithm did not perform as
well.
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Figure 1: Example of a micro-CHP; the MTS Infinia micro-CHP

1 Introduction
Over the last years the demand for a more durable and efficient electricity generation is
getting more and more attention. Partly because the demand for energy is increasing,
and partly because the earth is running out of the traditional energy resources, such
as oil and gas. In this thesis we look at one particular approach which can contribute
to solving this problem, which is the micro-CHP. CHP here is an approximation for
Combined Heat and Power. A micro-CHP is a special kind of boiler, that can be used
within a household. As the abbreviation already suggests, the micro-CHP simultane-
ously produced heat and power, or electricity. The heat can be used for hot water and
central heating (if necessary), while the generated electricity used within the household
or added to the network. A picture of a micro-CHP is shown in Figure 1.

With this micro-CHP it is possible to get a more efficient production of electricity
than with a traditional power plant, because there the heat loss is greatly reduced, as
the heat is used within the household. This leads to an energy efficiency of about
95 %, where e.g. an open-cycle gas turbine has only an efficiency of 35-42 % [5].
The functioning of a micro-CHP is shown schematically in Figure 2. Note that this
combined generation implies that there is only electricity production when there is a
demand for heat.

Still, there are some difficulties with this arrangement, because if electricity is only
produced when there is a heat demand, the total electricity production from houses
equipped with a micro-CHP becomes erratic and difficult to predict. To still have a
possibility of steering the electricity production, every micro-CHP has a heat buffer
where hot water can be stored, so that the production does have some flexibility in
time.

From this the question arises how this buffer should be utilized. More specifically,
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Figure 2: Schematic representation of a micro-CHP production process

if we consider a group of multiple houses equipped with a micro-CHP, we want to
find a production schedule for the micro-CHPs. This schedule should ensure that the
houses’ heat demands are fulfilled, and the electricity production performs along the
lines of a desired, more or less constant, schedule.

This problem has already been investigated by Bosman [4], where several heuristics
were used to solve this scheduling problem. In one of these approaches, this problem
was modelled as a very large Dynamic Programming instance. In this thesis an attempt
is made to solve this Dynamic Programming problem with Approximate Dynamic Pro-
gramming (ADP).

The structure of this thesis is as follows:
In Section 2 the micro-CHP problem is explained, and it is described how this

problem can be modelled as a (very large) dynamic programming problem, as was done
in [4]. In Section 3 ADP is introduced using an easier problem; the taxicab problem.
This problem can be solved using ADP, and has the advantage that the approach here
is a lot more intuitive than for the micro-CHP problem. This is the reason that we take
a small detour by examining the taxicab problem, to later draw similarities that can
be used for the micro-CHP problem. In Section 4 we then return to the micro-CHP
problem, and describe how ADP can be implemented in this problem.

In Section 5 we shortly discuss alternative approaches to this problem, as presented
in Bosman [4]. In section 6, we apply our approach to several data sets, and the results
are presented an analyzed. We also compare our results with the ones found by the
alternative approaches. In Section 7 a conclusion is drawn about the quality of the
ADP approach and we provide some recommendations for further investigation.
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2 The Micro-CHP problem
The micro-CHP is a boiler that produces both heat and electricity, that can be used
within a house. In this thesis, we consider a situation with a group of houses that are
all equipped with a micro-CHP. For every house, the heat necessary for heating the
house and hot water has to come from the micro-CHP. We assume that the heat profile
is known for every house, meaning that for different time intervals it is specified how
much heat is required. Furthermore, every house has a heat buffer, in which it can store
up to a certain amount of heat, in the form of hot water.

Of course, we will not know exactly how much heat the houses need, and when
they need it. In this thesis, we assume that an estimation is known for this, based on
previous heat data for the house. The deviations from this estimation are resolved by
using a real-time control, for which also some additional space in the heat buffer is
reserved. The real-time control will follow the original schedule as close as possible.
This means that for our scheduling problem, we can assume the estimations of the heat
demand to be fixed demands.

For this group of houses, it is assumed that a power company has set upper and
lower bounds for the total production of electricity for different intervals. This is done
to force the group to behave in a more predictable manner, which makes it easier for
the company to deal with the total electricity produced by the group. A group of houses
which behaves in such a way is called a virtual power plant (VPP).

The power company pays the group for the electricity produced, where the price of
electricity is time-dependent.

The goal is now to maximize the revenue of the electricity sales of the group of
houses, while respecting the upper and lower bound given by the power company, and
while satisfying the heat demands of the different houses.

In doing this, the behaviour of the micro-CHP also has to be considered. First,
there is only one level of production, so the micro-CHP either runs at full force or it
is turned off; it can not run at half force. A typical electricity production scheme of
a micro-CHP is shown in Figure 3. Here we can see that the electricity generation of
the micro-CHP slowly builds up to a near-constant maximum production level, and that
also some energy is generated during shutdown. After shutdown, the micro-CHP needs
to cool down. Because of this, and to ensure that the micro-CHP runs are efficient,
we infer that the micro-CHP has fixed start-up and shutdown periods. These cannot
be interrupted, and are typically longer than the time needed to reach the maximum
production or to stop producing.

In the next subsection this micro-CHP problem is translated into a mathematical
model. After that, this model is transformed into a Dynamic Programming problem.
This is first done for a single house, after which this is extended to multiple houses.

2.1 Modelling the micro-CHP
In this paragraph we translate the above sketched problem of a VPP into a mathemat-
ical model. First, we denote the number of houses by N. The total timespan for the
planning of the micro-CHPs is split into T intervals: 1,2, ...,T . This indicates that we
use discrete time steps, whereby we infer that the on or off status of each micro-CHP
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Figure 3: Generation during a micro-CHP run

within a time interval is constant. We hereby consider a micro-CHP to be turned off
while it is shutting down, and during the start-up it is considered on.

2.1.1 Decision variables and streak values

To keep track of the status of the micro-CHPs, we introduce binary decision variables
xi,t . These are defined as follows:

xi,t =

{
0 if the micro-CHP in house i is turned off during interval t
1 if the micro-CHP in house i is turned on during interval t. (1)

As can be seen from Figure 3, the production level of a micro-CHP depends on how
long the micro-CHP has been running, or how long it has been off (if it is still in the
process of shutting down). This indicates that it is useful to keep track of this running
time. For this we introduce variables ai,t with the following definition:

ai,t =

{
# of intervals the micro-CHP has been turned on consecutively if xi,t = 1
- # of intervals the micro-CHP has been off consecutively if xi,t = 0.

(2)
We refer to ai,t as the ”streak value” of house i in interval t. This streak value is

taken at the end of the interval t. In this way by choosing t = 0, we can specify also
the situation at the beginning of the planning horizon, meaning that ai,0 ∈ Z\{0} is a
model parameter that describes the initial streak value of the micro-CHP in house i.
The streak values and the decision variables xi,t are linked by the following relation:

ai,t =

{
max(ai,t−1 +1,1) if xi,t = 1
min(−1,ai,t−1−1) if xi,t = 0. (3)
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This holds as the number of consecutive intervals is increased by 1 if the on/off
status is the same as in the previous interval. When it is different, a new streak is
started, starting from 1 or −1.

From (3) it follows that the ai,t are completely determined by the xi,t variables,
for all t > 0, as ai,0 is a fixed parameter. With these streak values we can also make
sure that the start-up and shutdown periods are respected. Let the number of intervals
during which the micro-CHP be denoted by Ton, and the number of intervals required
for shutdown by Toff . With these notations we impose the following constraints on the
model:

xi,t = 1 if 1≤ ai,t−1 < Ton ∀i ∈ {1,2, ..,N}, t ∈ {1,2, ...,T}
xi,t = 0 if −1≥ ai,t−1 >−Toff ∀i ∈ {1,2, ..,N}, t ∈ {1,2, ...,T}.

(4)

2.1.2 The heat behaviour

We consider the heat behaviour in a single house. As mentioned in the introduction,
the heat in each house is produced by the micro-CHP, and can be stored in a buffer. For
this buffer there are upper and lower bounds for the amount of heat that can be stored.
We assume that the lower bound is 0, and denote the upper bound of the heat buffer in
house i by Lmax,i. To keep track of the amount of heat in the buffer of house i at the end
of interval t, we introduce the variable Li,t , t ∈ {0,1,2, ...,T}. This variable is defined
as the amount of heat in house i at the end of interval t, and is referred to as the ”heat
level” of house i in interval t. We assume that the heat level at the beginning of the
planning interval, L0,t is known. During interval t within the planning horizon, the heat
level in house i is changed by the following factors:

• The house may use some up some heat for heating or hot water. As explained be-
fore, we assume that the heat demands are fixed, and use Dit for the given amount
of heat that house i needs during interval t. The values Dit , i ∈ {1,2, ...,N},
t ∈ {1,2, ...,T} are known model parameters.

• The micro-CHP can produce some heat during interval t, which is put into the
buffer. As the production rate cannot be controlled, the heat production only
depends on how long the micro-CHP has been on in interval t, and thus on the
streak value ai,t of the micro-CHP. Therefore we can write the heat production
in house i during interval t as P(ai,t), representing the production of heat corre-
sponding to a streak value of ai,t .

• A third source of change in the heat level is heat loss; in every interval the heat
buffer loses some heat to the outside world. In reality, the heat loss depends on
the temperature difference between the boiler and the outside. This would imply
that this loss is dependent on the heat level Li,t , which would make the problem
harder. However, typically the buffer is well isolated, so that the temperature
inside the buffer is near-constant. Based on this, for our model we assume that
the heat loss to the environment is independent of the heat level Li,t , but may
depend on the given installation of house i. These assumptions imply that for
house i there is a heat loss HLi in every interval.

9



Now, if the streak value ai,t and the heat level at the previous interval Li,t−1 are
known, the heat level after interval t Li,t can be found using the following relation:

Li,t = Li,t−1 +P(ai,t)−HLi−Dit ∀i ∈ {1,2, ..,N}, t ∈ {1,2, ...,T} (5)

In this formula HLi and Dit are fixed model parameters, while P(ai,t) depends on
the decision variables. To make sure that heat level does not exceed the maximum
amount of heat that can be stored, and that there is always enough heat to meet the
demands, the following constraints are imposed:

0≤ Li,t ≤ Lmax,i ∀i ∈ {1,2, ...,N}, t ∈ {1,2, ...,T}. (6)

2.1.3 Electricity bounds

The electricity production has to be taken into account as well. Similar to the heat
production, the electricity generation Ei,t in house i during interval t also only depends
on the streak value ai,t , and can be written as Ei,t = E(ai,t). As mentioned in the
introduction, there are fixed upper and lower bounds for the total electricity generation
of the fleet in each interval t, which are denoted by Emin,t and Emax,t . This leads to the
following constraints for the total electricity generation:

Emin,t ≤
N

∑
i=1

E(ai,t)≤ Emax,t ∀t ∈ {1,2, ...,T}. (7)

2.1.4 Objective

The constraints (3) to (7) restrict the possible choices for the decision variables. Within
these constraints, the objective is to maximize the total revenue over all intervals gained
from selling the electricity. If we denote the price of electricity during interval t by
Pr(t), this revenue can be written as

T

∑
t=1

(Pr(t)
N

∑
i=1

E(ai,t)) (8)

2.1.5 The full model

Aligning all constraints and the objective, the problem now looks as follows:
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max
T

∑
t=1

(Pr(t)
N

∑
i=1

E(ai,t))

under the constraints:
xi,t ∈ {0,1} ∀i, t

ai,t =

{
max(ai,t−1 +1,1) if xi,t = 1
min(−1,ai,t−1−1) if xi,t = 0 ∀i, t

xi,t = 1 if 1≤ ai,t−1 < Ton ∀i, t
xi,t = 0 if −Toff < ai,t−1 ≤−1 ∀i, t
Li,t = Li,t−1 +P(ai,t)−HLi,t −Di,t ∀i, t

0≤ Li,t ≤ Lmax,i ∀i, t

Emin,t ≤
N

∑
i=1

E(ai,t)≤ Emax,t ∀t (9)

Written this way, this problem comes down to a constrained optimisation problem.
In Bosman [4] this problem was proven to be NP-hard over the number of houses N
by reduction to 3-partition, which means there is in general no fast solution for larger
instances this problem.

With some clever reformulations, this problem can also be written as an Integer
Linear Programming problem, as has been done by Bosman et al. in [1]. However,
in this thesis this problem is transformed to a Dynamic Programming instance, so that
ADP can be applied to this problem.

2.2 DP model for a single house
To get an idea of how the micro-CHP problem can be solved using Dynamic Program-
ming, we first consider this problem with only one house. The single house problem
is a lot easier to grasp, and can easily be expanded to the problem for multiple houses.
For convenience, we remove the i from the subscript of the variables and parameters.
Also, for now we disregard the global electricity constraint (7).

In applying Dynamic Programming to this model, we use the intervals t for the
phases of the problem. In every phase t, t ∈ 0,1, ...,T −1 the value of xt+1 is chosen.
From the constraints it follows that at and Lt follow directly from the sequence of xt ,
and so the choice of the xt defines the entire solution.

2.2.1 Re-expressing the heat level

Looking at the problem, we can see that in order to find the best decisions from time t it
is only necessary to know the heat level Lt and streak value at of the present time. This
is because all future constraints and revenues can be respectively checked and found
from this information. Therefore, an optimal decision and a maximum total revenue
exist for a combination of these values.
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Figure 4: Example of a micro-CHP run

Yet, as Lt is a continuous variable, we can not just write down all possible combi-
nations of at and Lt to describe the states, as we need them for Dynamic Programming.
Therefore we introduce two discrete variables to characterize the heat level at time t:
bt , the total number of time intervals the micro-CHP has been turned on up to time t,
and ct , the number of times the micro-CHP was switched off. Hereby an off-switch
means that the micro-CHP was turned from on to off .

To clarify how Lt can be found from these values, we look at the heat generated in
a typical run r, as shown in Figure 4. First, in every run, the micro-CHP has a start-up
period of Ton intervals. Similarly, Toff intervals are used to shut down the micro-CHP.
We define Hon := ∑

Ton
i=1 P(i) as the total heat produced during a complete start-up, and

Hoff := ∑
−1
i=−Toff

P(i) as the heat produced while shutting down. In between these start-
up and shutdown periods, the maximum heat production Hmax is produced in each time
interval. If we denote by kr the number of intervals in run r at which the micro-CHP
remains switched on after the minimum on time, the total production during run r of a
micro-CHP can be written as Hon + kr ·Hmax +Hoff .

As introduced above, we denote by ct the total number of off-switches up to time
t, which also represents the number of runs that have finished within the planning
interval. For now we assume that each of these off-switches corresponds to a completed
run which is entirely inside the planning interval. To find the amount of on-intervals
during these runs, we define a parameter b̃t describing the total on time during the first
ct runs, which are already completed. b̃t can be found as follows:

b̃t =

{
bt −at if at > 0
bt if at < 0 (10)

Using these notations and assumptions, the total amount of heat produced during
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Figure 5: Example of the beginning phase of the planning horizon; a0 ≥ Ton

the first ct completed runs, Hc, equals:

Hc = ∑
ct
r=1(Hon +Hoff + kr ·Hmax)

= ct · (Hon +Hoff )+Hmax ∑
ct
r=1 kr

= ct · (Hon +Hoff )+Hmax · (b̃t − ctTon)
(11)

We get the last equation from observing that the b̃t on-intervals are used for either
start-up intervals or maximum production intervals. As the total number of intervals
used for start-up equals ctTon, the number of maximum production intervals ∑

ct
r=1 kr

equals b̃t − ctTon.
However, we still need to deal with the assumptions we have made. First of all, we

consider the assumption that each of the ct runs was entirely in the planning horizon.
This is not always true for the first run, which may have started before time 0, nor for
the last run, that may still be in the process of shutting down. Also, a new run could
have started after run ct . Because of this, we use correction factors Hstart to correct
Hc for the first run, and Hend to correct for the last run. Hereby we assume that the
micro-CHP was turned off during at least one interval after interval 0, which can also
be written as at < t. For at ≥ t, we perform a separate calculation. In finding Hstart we
consider four different cases, based on the value of the streak value at the beginning of
the planning horizon a0:

• If a0 ≥ Ton, the micro-CHP was turned on initially, and the start-up of the first
run was already completed during interval 1. Therefore the start-up intervals
of the first run should not be considered in finding the total heat production.
Instead, these intervals have to be counted as maximum production intervals. As
the entire start-up happened before the first interval, the intervals of one start-up
have to be replaced by maximum production intervals, as in Figure 5. In this
case the correction factor equals TonHmax−Hon.

• If 0 < a0 < Ton, as depicted in Figure 6, only the first a0 start-up intervals were
before the first interval. These intervals again have to be counted as maximum

13



-4 -3 -2 -1 0 1 2 3 4 5
time

heat

Figure 6: Example of the beginning phase of the planning horizon; 0 < a0 < Ton
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Figure 7: Example of the beginning phase of the planning horizon;−Tmathito f f < a0 < 0

production intervals. As the heat produced before interval 1 equals ∑
a0
i=1 P(i), the

correction factor is equal to a0Hmax−∑
a0
i=1 P(i).

• If −Toff < a0,t < 0, the micro-CHP was switched off in interval 0, but was still
producing some heat as it is shutting down (see Figure 7). Since the off-switch
of that run occurred before interval 1 it is not included in ct . Therefore, in this
case an extra amount of heat of ∑

a0−1
i=−Toff

P(i) needs to be added.

• Finally, if a0 <−Toff , we have a situation similar to Figure 4, and no alterations
on Hc are necessary.

Combining these observations, we get:

Hstart =


TonHmax−Hon if a0 > Ton
a0Hmax−∑

a0
i=1 P(i) if 1≤ a0 ≤ Ton

∑
a0−1
i=−Toff

P(i) if −Toff ≤ a0 ≤ 0
0 if a0 <−Toff

(12)
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Figure 8: Example of the final phase of the planning horizon; at > 0
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Figure 9: Example of the final phase of the planning horizon; −Toff < at < 0
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To calculate Hend(at) we consider different three different scenarios for the values
of at :

• The situation where at > 0 is depicted in Figure 8. As the production intervals
of the current run were not considered in Hc by the definition of b̃t in (10), the
correction consists of the heat produced during the last run: ∑

at
i=1 P(i). Note that

this heat was all produced after interval 1, as we assumed that the micro-CHP
has been off at some interval up to time t.

• If Toff < at < 0, the shutdown of the last run was not completed, as can be seen in
Figure 9. To correct for that, an amount of ∑

at−1
i=−Toff

P(i) heat has to be subtracted
from Hc.

• If at <−Toff , the last run has been completed, and no correction is necessary.

This results in the following expression for Hend :

Hend =


∑

at
i=1 P(i) if at > 0
−∑

at−1
i=−Toff

P(i) if −Toff < at < 0
0 if at <−Toff

(13)

With these correction factors, the total heat produced up to time t, Htotal , can be
found. For this, if at < t, we can use the sum of Hc(t) and the correction factors we have
just defined. If at ≥ t the micro-CHP has been on at all intervals, so the heat produced
is just the part of the current run starting from interval 1, which equals ∑

at
i=a0+1 P(i).

Using this, we can now express Htotal as follows:

Htotal =

{
∑

at
i=a0+1 P(i) if at ≥ t

Hc(t)+Hstart +Hend if at < t
(14)

As all values used in the expression above can be derived from at , bt and ct , Htotal is
also a function of these three variables. As the heat losses HLi,t and the heat demands
Di,t are model parameters, we can find the heat level at time t from at , bt and ct as
follows:

Lt := L0 +Htotal−
t

∑
i=1

(HLi,t +Di,t) (15)

2.2.2 States, decisions and transitions

As Lt can be found from at , bt and ct , and as at and Lt adequately describe the past
decisions of the problem, we can now conclude that the three variables at , bt and ct ,
completely describe the current position of the house, and the implications of possi-
ble future decisions from time t. We therefore characterize a state ŝt at time t by a
combination (at ,bt ,ct)t .

From every state ŝt , t ∈ {0,1,2, ...,T − 1}, we define a decision d̂, which can be
either on or off . This decision describes whether the micro-CHP is on or off during the
subsequent interval t +1.
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Below we describe how the state changes when in state ŝt decision d̂ is made. This
is done using a transition function st+1 = T̂r(ŝt , d̂), where ŝt = (at ,bt ,ct)t :

T̂r((at ,bt ,ct)t ,on) =
{

(at +1,bt +1,ct)t+1 if at > 0
(1,bt +1,ct , t +1)t+1 if at < 0 (16)

T̂r((at ,bt ,ct)t ,off ) =
{

(−1,bt ,ct +1)t+1 if at > 0
(at −1,bt ,ct)t+1 if at < 0 (17)

These transitions are not always feasible, as some of the constraints (minimum run
time, minimum off time (4) or the heat level constraint (5)) may not be satisfied. Yet,
we formally allow these decisions, and deal with these infeasibilities in a different way.

Note that, from a given state, a set of future decisions always has the same pay-off
structure, independent of how the state was reached. This means that ŝt has its own
future decision space, and so we can create a subproblem of maximizing the future
revenue from state ŝt . This means that a state ŝt also has an optimal decision dopt(ŝt).

2.2.3 The value function

We introduce for every obtainable state ŝt a value function V̂ (ŝt), which indicates the
maximum revenue that can be obtained from state st . Obviously, V̂ ((a,b,c)T ) = 0 for
all states (a,b,c)T as no further revenue is obtained after interval T .

We now define F̂(ŝt , d̂) as the immediate revenue gained in interval t + 1 after
choosing decision d̂ from state ŝt . If any of the constraints are violated during this
interval, F̂(ŝt , d̂) takes the value −∞. If the constraints are satisfied, F̂(ŝt , d̂) is the
revenue obtained by selling the electricity that was generated in interval t + 1, i.e.
E(at+1) ·Pr(t +1).

This enables us to write the following recursion for the value function V̂ (ŝt):

V̂ (ŝt) = max
d̂∈{on,off}

F̂(ŝt , d̂)+V̂ (T̂r(ŝt , d̂)). (18)

The idea behind this recursion is that the maximum revenue that can be obtained
after decision d is chosen is equal to the immediate revenue in the following inter-
val, F(s,d), plus the maximum revenue that can be obtained from the state reached,
V̂ (T̂r(ŝt , d̂)). Taking the maximum over all possible decisions yields the maximum
revenue that can be obtained from state ŝt , V̂ (ŝt).

Using this, we can find the values in phase t given the values in phase t + 1. The
set of possible states is finite, as we have at ∈ {−T,−T +1, ...,T}∪{a0−T,a0−T +
1, ...,a0 +T}, bt ∈ {0,1, ...,T} and ct ∈ {0,1, ...,T} for all intervals t in the planning
horizon. As we know the values in phase T , we have a starting point for this recur-
sion, so we can track back the values in every phase, until the initial state (a0,0,0)0 is
reached. This determines the optimal value, and the optimal path can then be found by
moving forward in time, taking the optimal decision in every state. As infeasible paths
have value −∞, feasible paths always take priority over infeasible paths.

The complexity of this approach is of order T 4, as at , bt , ct and t all have order T
possibilities, so there are O(T 4) states, and every state is visited only once.
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2.3 The problem for multiple houses
In this subsection we expand the dynamic programming formulation in paragraph 2.2
for a situation with multiple houses. Hence, we now add an i in the subscript of the
parameters and variables which depend on the house. Formally, this means we return
to the parameters in paragraph 2.1, and that bi,t , ci,t , ŝi,t and d̂i are denote the values of
respectively bt , ct , ŝt and d̂ for house i.

2.3.1 New states, decisions and transitions

Because the electricity production constraint depends on all decisions in the different
houses, we cannot just consider each house separately. Instead of this, we aggregate
the states and decisions to and get states st := (ŝ1, ŝ2, ...ŝN) ∈ S and decisions d :=
(d̂1, d̂2, ..., d̂N) ∈ D, d̂i ∈ {on,off}. The transition function Tr(st ,d) is given by:

Tr(st ,d) = (T̂r(ŝ1,t , d̂1), T̂r(ŝ2,t , d̂2), ..., T̂r(ŝN,t , d̂N)) (19)

2.3.2 The new value function

With this new state definition a state still contains all information required for the future
decisions and revenues. We can therefore use V (st) to describe the maximum revenue
from state st . In a similar way, we can define F(st ,d) to describe the total revenue
earned in the subsequent period t +1, which is equal to the sum of the revenues of the
houses ∑

N
i=1 F̂(ŝi,t , d̂). Note that if a constraint is violated the total revenue will still be

equal to −∞. However, in the situation with multiple houses we should also consider
the electricity constraint (7), which was disregarded in the situation with a single house.
We once again infer a revenue of −∞ if this constraint is violated. This results in the
following formula for F(st ,d):

F(st ,d) =
{

∑
N
i=1 F̂(ŝi,t , d̂) if Emin,t+1 ≤ ∑

N
i=1 E(ai,t+1)≤ Emax,t+1

−∞ otherwise
(20)

With these two definitions the recursive value function can be written as follows:

V (st) = max
d

(F(st ,d)+V (Tr(st ,d)) (21)

Again, this can be solved by tracking back in time. However, where the number of
states in the single house problem was of order T 4, here we have an aggregated state
of N such states, which are independent. The new order of states is therefore T 4N ,
which becomes a very large number for the values of T and N we wish to examine. For
example, if T = 24 and N = 25, which would make a relatively small instance, T 4N

approximates 1.08 ·10138. It is therefore clear that the general problem of this form is
too large for any computer or database to solve. Therefore, we look at an approximation
technique for such large DP’s: Approximate Dynamic Programming.

In order to get some feeling with this technique, in the next section we first look at
a simpler problem where ADP can be used, namely the taxicab problem. In Section 4
we then return to the micro-CHP problem.
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3 The taxicab problem
Dynamic Programming (DP) is a technique used for solving decision problems, where
multiple decisions have to be taken in sequence. Typical is that there are multiple paths
to arrive at a certain decision epoch, and the optimal strategy from that point does not
depend on previous decisions.

This method usually works fairly good when it is applicable, and can be used in
e.g. path-finding algorithms and inventory management problems. However, for some
problems the number of states becomes too large. For example, consider an inventory
which can keep up to 9 units of 100 different products. Then there are 10100 different
inventory positions (as of each product any number between 0 and 9 units may be
available) for each time unit. If all these positions are possible at a certain time, at least
10100 subproblems have to be investigated, which is of course impossible. As we have
seen in the previous section, the micro-CHP scheduling problem is another example.

To still find a solution to these types of problems, albeit not an optimal one, we can
use Approximate Dynamic Programming (ADP). ADP seeks to only consider a small
but relevant subset of the state space, for which estimates of the states’ values are used.
Then this estimated value function is used to find a series of good (not necessarily
optimal) decisions. After that the value function is updated using the actual values
found in this decision path. This is repeated until a certain stopping criterion is met.

In order to get more feeling of how ADP works, we first look at a simple problem
known as the taxicab problem. In this problem we have to find the shortest path for a
taxicab through an orthogonal grid. This problem can easily be modelled as a Dynamic
Programming problem, which can be solved using ADP. In this section we look at both
methods and make a comparison.

In this section we first introduce Dynamic Programming, and then turn to the taxi-
cab problem. There we first introduce the problem, then provide the ADP approach,
and finally come to some conclusions and recommendations for the main problem of
this thesis, the micro-CHP problem.

3.1 Introduction to Dynamic Programming
As stated in the beginning of this chapter, Dynamic Programming is used in sequential
decision problems. A decision epoch which contains all relevant information for the
future decision and pay-out structure is called a state s. Note that for a state only
the future is relevant, so it does not matter how the state was reached. Typically, in
Dynamic Programming the same state can be reached from different paths.

In every state a decision d has to be taken, after which a transition takes place to a
new state Tr(s,d). The set of possible decisions in state s is denoted as D(s). During
the transition, a revenue F(s,d) can be obtained. The objective of the problem is to
maximize the total revenue.

In DP, the states are grouped in phases, such that after every decision from a state
one arrives at a state in a later phase, and the total number of phases is finite. From this
it follows that the number of decisions taken also is finite.

One of the ways to solve a DP instance is to define a value V (s) for every state s,
which is the value obtained from following the optimal strategy starting from that state.
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Figure 10: Example of a DP-instance
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Figure 11: Example of a DP-instance; step 1

This value is trivial for the states in the final phase, as no decisions have to be taken
from there. Then the values in the final phase can be used to find the values in the pre-
vious phase, by calculating the revenues of the different decisions. As the revenue after
choosing decision d is equal to F(s,d)+V (Tr(s,d)), we find the following recursion
for every state:

V (s) = max
d∈D(s)

F(s,d)+V (Tr(s,d)) (22)

Using this recursion, we can track back along the phases, until the starting point of
the problem is reached. If we then look up the optimal decision in every state along
the optimal path, starting at the initial phase, we can find the optimal solution and the
optimal value of the problem.

As an example, consider the shortest path problem in Figure 10. The goal here is
to find the shortest path in this directed graph from start to finish, where the lengths
of the edges are given. We can see that this is a DP instance with four phases, sorted
vertically, as every edge is directed to the right.

For the points neighbouring to the final node, i.e. points from which the final node
can be reached, we can see that there is only one path to the exit, with distances 1, 4
and 3 respectively. These numbers can be filled in as values V (s) of the corresponding
states s, as is done in Figure 11.

Now we can consider the states in the second phase. For this, we can use the
recursion (22), but as this is a minimization problem, we have to take the minimum,
i.e.:

V (s) = min
d∈D(s)

F(s,d)+V (Tr(s,d)) (23)
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Figure 12: Example of a DP-instance; step 2
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Figure 13: Example of a DP-instance; optimal solution

For the top-most state in the phase, we can see there are two possible decisions:
the top one corresponds to a path length of 3 leading to a state of value 1, and the
second decision has length 4 and leads to a state with value 4. As the revenues in this
situation are the path lengths, we find that the value of the examined state is equal to
min(3+1,4+4) = min(4,8) = 4, which corresponds to the top-most decision.

Doing the same for the middle state, we find a value of min(9+ 1,6+ 4,2+ 3) =
min(10,10,5) = 5, and for the bottom state we have min(3+4,5+4) = min(7,9) = 7.
Filling in these values leads to Figure 12.

Now the value of the initial state can be found, which is equal to min(4+ 4,1+
5,7+ 7) = min(8,6,14) = 6. Therefore, the shortest path has length 6, and by track-
ing back through the optimal solution and looking which decision corresponded to the
minimum path length, we can see the optimal path of the original problem is the path
shown in Figure 13. This value could also have been found by starting from the ”start”
node, and keeping track of the minimal cost to reach each state. This is known as ”for-
ward Dynamic Programming”, while the technique we discussed is called ”backward
Dynamic Programming”. Our ADP approach is most similar to backward Dynamic
Programming, which is why it was discussed here.

3.2 The taxicab problem
In the taxicab problem we consider a taxicab that is located somewhere on a two-
dimensional grid, and has to travel to another given location of the grid, the exit. The
goal is then to reach the exit in as few steps as possible, whereby a step is defined as a
move of one grid point (left, right, up or down). In addition, some points of the grid are
inaccessible for the taxicab. The grid is assumed to be bounded and rectangular with
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height n and width m.
We call the position the taxicab starts s0 and the exit, the place the taxicab has to go

to, se. We define a path as a sequence of adjacent accessible grid points [s0,s1, ...,se].
Hence, a path is a way for the taxicab to reach the exit. The number of grid positions
in such a path minus one is called the path length. We can see that the number of steps
required for the taxicab is equal to the path length.

We can write this problem as a Dynamic Programming problem as follows: let the
state space consist of the accessible points on the grid. For each state s let V (s) be equal
to the minimum distance which is needed to get from point s to the exit. Of course, for
the exit this distance is 0. For the points adjacent to the exit, the distance is 1, and for
the points bordering those points the distance is 2 (except for the exit itself of course).
Continuing this process results in algorithm 1 to solve the taxicab problem with DP:

Algorithm 1 Solve the taxicab problem using DP
Set V (se) = 0, set n := 0 and V (s) = m ·n ∀s 6= se.
Set list L := [se]
while V (s0) = m ·n do

set n := n+1
for all states s in L (i.e. all states that satisfy V (s) = n−1) do

set V (s′) := n for all neighbours s′ of s for which V (s′)> n
add the states s′ to L∗

end for
L := L∗; L∗ := /0

end while

One can easily verify that in step n this algorithm finds all the points at distance
n from the exit point, so when the starting point is reached, the shortest distance from
start to exit is known. The complexity of this approach is of O(m ·n), as each point is
handled at most once. The number of neighbours is at most 4 for every state, so the
complexity of handling a node is constant. This algorithm solves the problem quite
satisfactorily, but if m and n become large, it may not be too useful to search in every
possible direction, but to instead search more towards the direction where the exit is
situated.

3.3 ADP for the taxicab problem
In this subsection we attempt to solve the taxicab problem with Approximate Dynamic
Programming. The aim here is to find a method that searches for a path to the exit, by
repeatedly selecting steps that they are more likely to bring the taxicab closer to the exit.
If the grid is not too complex, i.e. there are only few or no infeasible points, the shortest
path has length O(max(m,n)), as the Manhattan distance between the starting point and
the exit is at most m+n. The ADP path is found step by step, where executing a step
takes a constant time. Therefore, if the length of the path found is of the same order as
the shortest path, we can see that the ADP algorithm finds this path in O(max(m,n))
time.
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After a path has been found, using an algorithm discussed later in this paragraph,
the information on this path is used to improve on this path. We do this by looking back
along the path to see which improvements were found. If we do this k times (where
k�min(m,n)), this method should finish in k ·O(max(m,n))�O(m ·n) time. We can
see that this method indeed promises to give results faster, at the cost of losing certainty
of finding an optimal solution.

In the next subsection we first explain how the value function works, and is updated
once a path has been found. Then it is described how a path is found, whereby the value
function is one of the factors used to determine the path.

3.3.1 Updating the value function

The base of the search for a path in this approach is a probability distribution over
the possible directions for a given state. The idea is that we give ’better’ directions a
higher probability. This probability distribution depends partly on known value estima-
tions found from previous paths. The concrete way how a given path influences these
decisions is presented in the following. In this subsection we assume that a path from
start to exit has been found, and describe how the value function is updated.

Instead of the actual distance to the exit (which is unknown here), we use the min-
imal distance we have encountered in previous paths, Ṽ (s). Therefore Ṽ (s) is always
an upper bound for the value V (s) of state s.

Since the minimum distance can never be more than the number of grid points on
the grid, we initialize Ṽ (s) as follows:

Ṽ (s) =
{

0 if s = se
m ·n if s 6= se

(24)

Now, once a path to the exit (s0,s1, ...,sk−1,sk), where sk = se, has been found, we
track back along this path. In every state si, we then update the values Ṽ (s) for a state
in the path si by taking the minimum of the current minimum path length Ṽ (s) and the
path created by first moving to state si+1 and then taking the shortest path from there.
As this path has length has Ṽ (si+1)+1, the value function can be updated by setting:

Ṽ (si) := min(Ṽ (si+1)+1,Ṽ (si)) (25)

for states {sk−1,sk−2, ...,s2,s1}.

3.3.2 Finding the path

In this subsection it is explained how a new path is found. We first define the set
of possible directions D̄ := {up,down, le f t,right}. Before taking a step, for every
possible direction d ∈ D̄ a probability to walk in that direction is determined. Then, a
realization of this probability distribution determines the direction of the next step in
the path. In the implemented algorithm we have chosen to let the probability depend
on the following measures:

• the Manhattan distance to the exit: The smaller it is, the more likely it should be
to take a step in this direction.
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• not going back: if the taxicab goes back to the grid point it just came from,
it is likely that no new information is obtained. Therefore, the probability of
returning to the previous point is made smaller.

• forward consistency: To prevent small cycles, which do not add a lot of informa-
tion, we give a bonus to the probability that the direction is in the same direction
as the previous step.

• the minimum distance found so far (i.e. the value Ṽ (si) for the different points
si adjacent to the current position of the taxicab): Paths with a lower value have
been found to result in shorter paths, so these states are more likely to be used in
a path of shorter length.

We now translate these measures into numbers, depending respectively on param-
eters A, B, C and D, which are fixed model parameters. These parameters describe the
importance of each measure, and are used as follows:

A(s,d) =
{

A if the Manhattan distance to the exit is decreased
0 otherwise (26)

B(s,d) =
{

B if d is in the opposite direction of the previous step
0 otherwise (27)

C(s,d) =
{

C if d follows the same direction as the previous step
0 otherwise (28)

D(s,d) =
{

D if Ṽ (Tr(s,d)) is minimal for all d ∈ D̄ and Ṽ ((Tr(s,d))< m ·n
0 otherwise

(29)

Note that the last condition in D(s,d) makes sure that D(s,d) = 0 if the value
of all neighbouring states of s equals the initial value, as that indicates there is no
information about the distance to the exit. A positive value for D(s,d) in this situation
would therefore only increase the randomness of the algorithm, which is not desired.
For the other variables it is simply checked whether the desired feature is present. If it
is, the corresponding variable gets value A, B, C or D.

These variables are used to define the probability score. This is a nonnegative
number that is calculated for every allowed direction, and is used to find the actual
probability of walking in a certain direction. For the probability score PS(d) we have
chosen the following formula for every possible direction d ∈ D̄:

PS(s,d)=
{

K +A(s,d)−B(s,d)+C(s,d)+D(s,d) if d leads to an allowed point
0 otherwise

(30)
In this formula, K is a parameter that can be used to increase or decrease the ran-

domness of the decisions. If K is small compared to A, B, C and D, the factors almost
completely decide which direction is taken. As K takes larger values, the directions are
chosen more randomly.
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In choosing these parameters, we should always ensure that PS(s,d) ≥ 0 for all
d ∈ D̄ and that ∑d∈D̄ PS(s,d) > 0. This makes sure that we can indeed rescale the
scores to probabilities. If d is a direction that leads to an inaccessible point, or crosses
the edge of the grid, we set PS(d) = 0.

From these probability scores we now define the probability of going to direction
d, P(s,d), as follows:

P(s,d) :=
PS(s,d)

∑i∈D̄ PS(s, i)
(31)

This gives a probability distribution over the different possible directions d ∈ D̄,
from which we can take a realization to choose a direction for the next step. This
probability distribution is largely determined by the parameters A, B, C, D and K. We
could split these parameters into 3 groups; the global steering variables A and D, where
A is a parameter that steers the path to a closer Manhattan distance to the exit, and
D looks at the results from previous paths. B and C can be considered consistency
parameters, that ensure the path does not contain too many turns (B) and loops (C). K
is a parameter that determines the randomness of the algorithm, or the influence of the
steering of the other variables.

This method leads to an iteration of the grid as given by algorithm 2. During such
an iteration also the value function Ṽ (s) is updated.

Algorithm 2 Calibration of Ṽ (s) with a sample path
s← s0, path p← [s0]
while se /∈ p do

Find P(s,d) for all directions d from state s as described in (31)
Generate a direction d from this probability distribution
Add Tr(s,d) to the path p: p← [p,Tr(s,d)]
s← Tr(s,d)

end while
Update V (s) as described in (25)

This algorithm is repeated k times in order to find a better estimate for the value
function.

3.4 Results and analysis
In order to see if this algorithm works, and how we should choose the parameters,
this algorithm is applied to different grids. We have chosen the default values of this
algorithm at A = 1, B = 0.9, C = 0.3, D = 1 and K = 1.

For every grid, we vary A, B, C, D and K individually, where the remaining param-
eters keep their default values. We look at three different grids and compare the results.
As not all comparison criteria are equally effective on every grid, these criteria differ
per grid.

25



Figure 14: Grid 1
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A = # paths time (ms) B = # paths time (ms) C = # paths time (ms)
0 18.41 29.57 0 16.22 6.99 0 18.70 6.45
0.25 21.62 11.54 0.1 15.95 6.88 0.1 18.69 6.26
0.5 21.05 8.39 0.2 16.68 5.88 0.2 18.65 6.04
0.75 19.91 6.89 0.3 17.26 6.66 0.3 18.78 6.21
1 18.61 6.00 0.4 16.85 6.16 0.4 18.82 6.07
1.25 17.34 4.62 0.5 17.32 6.20 0.5 18.49 6.02
1.5 15.65 4.08 0.6 17.50 6.00 0.6 18.70 6.27
1.75 14.56 3.73 0.7 18.08 5.84 0.7 18.63 6.29
2 13.57 3.37 0.8 18.64 5.99 0.8 18.05 6.03
2.25 12.57 2.96 0.9 18.60 6.05 0.9 17.69 5.84
2.5 11.61 2.67 1 19.11 5.96 1 17.97 5.89
D = # paths time (ms) K = # paths time (ms)
0 23.58 9.33 0.9 17.80 5.12
0.25 21.84 7.80 1.1 19.54 6.09
0.5 21.04 6.89 1.3 20.14 7.07
0.75 19.61 6.33 1.5 20.90 8.45
1 18.35 5.94 1.7 21.06 9.54
1.25 17.56 5.41 1.9 21.33 10.56
1.5 17.00 5.20 2.1 21.76 11.70
1.75 16.39 5.13 2.3 21.40 12.31
2 15.66 4.70 2.5 21.88 14.85
2.25 15.04 4.43 2.7 22.17 16.92
2.5 14.93 4.72 2.9 21.58 17.28

Table 1: Results for grid 1
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3.4.1 Grid 1

First of all, we consider a 50 x 50 grid with no obstacles, where the start (red) is the top
left corner, and the exit (green) in the bottom right corner, as shown in Figure 14. The
presented algorithm was applied to this grid. We ran this algorithm until the optimal
solution of 98 steps was found, and then we looked at which iteration this optimum was
found, and the time it took to find this optimal solution. As the directions are chosen
randomly in this algorithm, a different run can have a different result. Therefore, we
decided to restart the algorithm a total of 1,000 times for each combination of values.
The average values found in these runs are shown in Table 1.

Examining the effect of a change in the parameter A, we see that larger values lead
to a decrease of the time needed to find the optimal solution. The reason for this is
fairly obvious, as in this empty grid every step toward the exit is an optimal step. So if
A increases, the probability of taking an optimal step increases, and an optimal solution
is found faster. The number of paths needed also decreases as A is increased, with the
exception of small values of A (0 ≤ A ≤ 0.5). This can be explained by the fact that a
smaller A leads to longer paths, which contain more information. Hence, as expected, a
larger A makes the algorithm faster and in general it takes less paths to find the optimal
solution.

For B, we see that if B becomes larger, the number of paths increases while the time
needed to find the optimal solution decreases. This indicates that for higher values of B
the paths are shorter, but because the longer, ’worse’ paths contain more information,
less of these paths are required. But taking the time as an indication of the quality of
the algorithm, we see that larger values for B produces better results for this grid.

For C we see that both the number of the iterations the optimal solution was found in
and the running time do not show much difference, but both seem to show a decreasing
trend. This indicates that the optimal solution is computed slightly faster and uses less
paths as C takes larger values.

If D is increased the required number of paths decreases, as well as the running
time. As D increases, the focus is more about improving the previous paths than it is
to find more or less new paths. As in this grid most non-optimal paths can be made
optimal by finding a few shortcuts, improving previous paths is quite a good strategy,
which explains this result.

For K we picked a minimum value of 0.9, because a lower K could cause proba-
bilities P(s,d) to become negative. Here we see that the more random the algorithm
becomes, the slower it finds the optimal paths. This is because the grid contains no
inaccessible squares, and so the steering variables A, B, C and D all have a positive
effect on the algorithm, because of the considerations described above. Therefore, for
this grid we can conclude that the lower the random factor is, the better the algorithm
works.

3.4.2 Grid 2

For the second grid (see Figure 15) we added a large block in the middle, which can
only be passed by finding the narrow bridge over it. Again, the optimal solution is 98,
which can be achieved by e.g. first walking to the right top corner, and then going
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Figure 15: Grid 2
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A = sols avg sol best sol B = sols avg sol best sol C = sols avg sol best sol
0 200 98 98 0 67 116.1 98 0 67 121.2 102
0.25 200 98 98 0.1 80 116.8 100 0.1 72 117.8 100
0.5 183 100.1 98 0.2 87 114.1 100 0.2 89 121.7 98
0.75 133 107.3 98 0.3 76 116.6 100 0.3 79 119.3 100
1 88 117.7 100 0.4 83 117.2 98 0.4 91 116.7 100
1.25 53 123.8 100 0.5 81 116.8 100 0.5 102 118.6 98
1.5 41 124.6 108 0.6 80 116.3 98 0.6 112 117.4 98
1.75 13 123.5 112 0.7 87 120.0 98 0.7 115 114.9 98
2 12 127.5 110 0.8 92 119.8 100 0.8 116 114.7 98
2.25 19 121.1 112 0.9 88 118.3 98 0.9 131 113.8 98
2.5 13 123.1 108 1 77 123.1 100 1 147 113.8 98
D = sols avg sol best sol K = sols avg sol best sol
0 87 136.2 112 0.9 80 119.5 98
0.25 68 132.6 108 1.1 110 116.0 98
0.5 80 128.2 104 1.3 122 115.2 98
0.75 91 126.8 102 1.5 139 112.7 98
1 80 118.6 100 1.7 157 109.1 98
1.25 79 114.1 98 1.9 174 108.7 98
1.5 84 110.1 98 2.1 175 107.0 98
1.75 92 107.6 98 2.3 186 106.5 98
2 80 106.8 98 2.5 184 103.6 98
2.25 83 105.6 98 2.7 191 102.3 98
2.5 86 105.8 98 2.9 199 99.1 98

Table 2: Results for grid 2
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down. We have run the algorithm on this grid as well, but only used 200 runs, as more
time was needed for this grid. Here it was found that here the optimum solution was
not always reached. In fact, often no solution was found at all in 200 iterations, after
which the algorithm was stopped. This is because the algorithm has to find the narrow
bridge over the block, for which the variable A turned out to have very bad influence,
as the algorithm is pulled the path on the region left to the bottom of the block, as
the minimum distance to the exit reaches a local minimum there. For this reason the
average solution after 200 iterations in 200 runs (avg sol) is shown. The average is
taken only over the values where a solution was found, runs without a solution were
not considered in finding the ’avg sol’-value. We also show the best solution found
(bestsol), and the amount of runs in which in a solution was found at all (sol). The
result of the simulation can be found in Table 2.

We see that the algorithm for this grid runs better for a smaller value of A. This is,
as mentioned before, due to the fact that initially the path is pulled towards the region
left to the bottom of the block, as there is a local minimum value for the distance there.
As the path keeps being pulled there, it becomes very hard to leave that region.

Looking at the performance of the algorithm when B is changed, we see that the
algorithm produces quite consistent results, so it seems that this variable doesn’t have
a lot of effect in this case.

For parameter C, we can observe that the algorithm seems to get better when C is
increased. This can easily be seen from the number of times a solution is found, and
also from the average final solution. This can be explained not only by less cycles in
the algorithm, but also because a straight line is needed in large part of the optimal
solution.

For D, we see that the algorithm gets better as D becomes larger. An explanation
for this is that once a path to the exit has been found, the path is pulled towards this
path, and more and better solutions can be found from there. Also, as D takes larger
values, the presence of the ”bad” variable A becomes less important.

Looking at K, we can observe that the algorithm gets better as the randomness
factor increases. When the algorithm is more random, there is less pull to the region to
the left to the bottom of the block, and so the algorithm has a better chance of finding
the bridge over the block. This causes more solutions to be found, and the final solution
to be better.

3.4.3 Grid 3

For the third grid we inserted some blocks of unaccessible squares on the grid, leading
to the grid in Figure 16. It can be easily verified that there is a solution of length 98,
which uses a long horizontal line in the middle of the grid.

In this grid we are interested in both the ability of the algorithm to find this path,
and the time it takes to complete the runs. Therefore we once again used 1,000 runs
with 200 iterations for every instance, and set out the average solution found, and
the average time needed for a run. Note that in the first grid we considered the time
needed to find the optimal solution, but here the time required for all 200 iterations is
considered, as the optimal solution is not always found. The results can be found in
Table 3.
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Figure 16: Grid 3
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Looking at the different values of A, we see that the solution gets worse while A
takes larger values. The reason for this is that a larger value of A creates a diagonal pull
to the finish, where the optimal solution requires partly a horizontal line in the middle.
As A gets larger, it also becomes harder to get back to this horizontal line once it drops
below. We also see that the algorithm initially become faster as A becomes larger, but
if it gets too large, the taxicab tends to get caught behind the little vertical block near
the exit, and so the algorithm becomes slower for higher values of A.

As B takes larger values, we see that the time it takes to solve the problem decreases,
while the average solution seems to get a little bit worse. This is explained by the fact
that decreasing the probability of going back makes it harder to return to the short
horizontal path, but does create shorter paths, so it takes less time.

Increasing C leads to better solutions, and also the time needed to find the solution
decreases. This is because the optimal solution uses a long horizontal line, which is
of course easier discovered when the probability of continuing in the same direction is
increases. Also, a higher C leads to more consistent paths, so once the path is going
in the right direction, it is more likely to keep going there. Of course, this also holds
when the path is going in the wrong direction, but apparently this is outweighed by the
positive effects, causing the solving speed to increase as well.

When D is increased we see that the quality of the result of the algorithm becomes
worse. This is not too surprising, as the first time it is likely that the algorithm does not
find an optimal algorithm, and after that it is drawn to that path, which makes it harder
to deviate and find the optimal path. A larger D does lead to faster solving times,
because the algorithm is more likely to follow the previous path and thus typically has
no problem to find the exit.

For K, a higher K implies more randomness, which increases the probability of
finding the optimal solution. It also gives the best result over all changes we tried.
This is explained by the fact that a higher K causes longer runs, which contain more
information. Also, with a higher K the path is not too much disturbed by the diagonal
pull direction of A, and the pull towards (non-optimal) previous paths of D. Of course,
a higher K also increases the average number of steps needed to find the exit, which
results in a longer running time.

3.5 Conclusion
The approximate dynamic program presented in this section seems to provide reason-
able solutions for solving the taxicab problem. The program was run under different
parameters for several different grids, and for each grid the optimal solution was found
for at least some parameter configurations. Different parameters often provided differ-
ent results, which were all fairly intuitive and could easily be explained, and often even
predicted. So we have indeed managed to solve some instances of the taxicab problem
with Approximate Dynamic Programming.

However, the grids chosen are so small that they could all be solved optimally,
and almost instantaneously, using Dynamic Programming. However, the algorithm de-
scribed and the results presented in this section give a good idea of how ADP works.
Also, we already saw some issues that are also encountered in solving the micro-CHP
problem, such as the balance between exploring the state space and exploiting the es-
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A = avg sol time (ms) B = avg sol time (ms) C = avg sol time (ms)
0 100.4 114.4 0 101.59 84.2 0 101.82 64.0
0.25 100.9 78.1 0.1 101.58 79.0 0.1 101.79 63.4
0.5 101.36 70.3 0.2 101.61 76.5 0.2 101.70 63.4
0.75 101.63 66.9 0.3 101.63 74.1 0.3 101.64 63.2
1 101.69 64.6 0.4 101.57 71.6 0.4 101.62 63.1
1.25 101.77 64.0 0.5 101.65 69.1 0.5 101.60 63.0
1.5 101.85 64.8 0.6 101.67 66.7 0.6 101.49 63.2
1.75 101.81 66.4 0.7 101.63 64.3 0.7 101.48 62.6
2 101.82 69.3 0.8 101.70 62.3 0.8 101.34 62.9
2.25 101.88 73.1 0.9 101.66 59.3 0.9 101.29 62.8
2.5 101.85 77.6 1 101.63 57.1 1 101.20 62.3
D = avg sol time (ms) K = avg sol time (ms)
0 100.63 141.0 0.9 101.71 60.7
0.25 101.09 97.0 1.1 101.63 74.5
0.5 101.36 78.7 1.3 101.49 75.6
0.75 101.57 68.5 1.5 101.17 83.9
1 101.73 62.3 1.7 101.00 92.6
1.25 101.73 58.2 1.9 100.83 102.1
1.5 101.78 55.6 2.1 100.50 111.2
1.75 101.80 52.8 2.3 100.24 120.8
2 101.80 51.1 2.5 99.84 130.4
2.25 101.78 49.5 2.7 99.62 140.1
2.5 101.83 48.6 2.9 99.34 150.7

Table 3: Results for grid 3
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timated values. We already saw that too much exploration takes more time and leads
to less useful states being visited, while too much exploitation leads to too much rep-
etition and worse solutions as we saw in grids 2 and 3. This is a dilemma already
described in literature, see for example Powell [2] and James [3].

We also saw that multiple runs of the same algorithm (but with a different random
seed) can lead to different results. Therefore, it seems to be a good idea to run the
algorithm multiple times and take the best results, if it involves randomness. This often
works better than trying new iterations from the previous values. We also have seen
that the best choice of the parameter settings depends on the grid. So if it is necessary
to estimate some parameters in the model, we need to be careful.

Based on these observations and experiences with us as we turn to applying ADP
to the micro-CHP problem in the next section.
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4 ADP Approach
In this section we present an Approximate Dynamic Programming approach to the
micro-CHP problem presented in Section 2. This approach is slightly different from
the approach to the taxicab problem. This is because in the micro-CHP problem there
are too many states to store values for all of them. Keeping track of just the values of
the states that are visited is also difficult, not only because this number can become too
large as well, but also because it is difficult to look up the stored values, if not all are
stored.

Therefore, instead of keeping track of values for all states, as we did for the taxicab
problem, in this section an approximation of the value function is considered. In this
approximation, we use features of the current state, where a feature uses some char-
acteristics of a state, indicating something about its quality. Basis functions are used
to transform these features into numerical values. To obtain an approximation for the
value function of a state, we use a weighted sum of these basis functions. The weights
used to scale the basis functions depend on the phase, so that every phase t has its own
weights.

Although this method is quite different from the ADP approach in the previous
section, there are a lot of similarities between the two applications of ADP, so that the
experience from the previous section can still be used.

In this section first the decision space is reduced, as there are simply too many
decisions from a state to consider all of them. Then the structure of the chosen value
function is specified. In the final subsection we explain how the parameters of this
value function are updated, using the values of the path found.

4.1 Reducing the decision space
In this subsection we will describe the way in which the decision space is reduced
in our ADP approach. Currently, the decision vector d consists of N binary decision
variables, where N is the number of houses. This means that for a typical instance
of 100 houses at each state we have 2100 ≈ 1030 possible decision vectors. This is of
course too many to consider them all. To deal with this problem, we consider only a
subset of the possible decisions.

To do this, we introduce in each state a strict priority list for the houses. For this
the houses are ordered on a measure of suitability to be on in the next interval. Once
this list is determined, the only allowed decisions are to take the on decision for the
first houses on the priority list, and the off decision is made for the remaining houses.
Hereby the only decision that can be made is how many houses are turned on. In other
words, we determine n, 0 ≤ n ≤ N, after which the on decision is taken for the first n
houses on the priority list, and the other houses are turned off . As in this situation the
only decision left is to determine n, the number of decisions is decreased from 2N to
N +1. Of course, we also lose a lot of flexibility here.

To make the priority list, we define a value R(i) for every house i and the priority
list is then achieved by sorting the houses from low to high values of R(i). This is done
in the following way. First, it is checked whether the house can be turned on in the
next interval without a constraint being violated. If this is not the case, this house is
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of course very unsuited to be on in the next interval, so we impose R(i) := ∞. For the
remaining houses, R(i) is defined as the number of consecutive intervals that the off -
decision can be taken, without a constraint being violated. Note, that if the off -decision
cannot be taken in the next interval, so the only feasible decision is to turn the house
on, we get R(i) = 0, putting these houses in the front of the list. This is a desirable
property, as these houses are of course the best suited to be turned on.

For the other houses, the idea is that a higher value of R(i) leaves more options in
the next intervals. If house i has R(i) = 1, and we decide to turn it off in the coming
interval, we already know that it has to be turned on in the next interval. If we turn
off a house for which R(i) = 2, we will likely have both the on and the off decision
available in the following interval (unless the off time constraint 4 prevents that). For
a house with R(i) = 3 it takes even longer to get a forced decision if it remains turned
off, so that house receives less priority to be turned on.

We define D̃ as the set of decision vectors that can be obtained in this manner for
n ∈ {0,1, ...,N}. Note that we consider all possible values within this set in taking
these decisions. This includes the decisions leading to an infeasibility, e.g. switching
on a house i for which R(i) = ∞ or switching off a house for which R(i) = 0. We do
this because in some cases, all decisions are infeasible, or lead to an infeasibility in the
future, and we still need to make a decision in these cases.

4.2 The value function
In this subsection we describe how the value function is initiated and updated. As we
have mentioned before, the number of visited states typically becomes too large to keep
track of values for all of them, as we have done in solving the taxicab problem. There-
fore, we estimate this value function by considering F different features that apply to
any state st ∈ S. Then, features f ∈ {1,2, ...,F} are mapped to a number by a basis
function φ f (st). A weighted sum of these basis functions is used to find an estimate of
the value.

In this weighted sum, the basis functions are multiplied by the phase-dependent
weight of the feature θ f ,t . These weights are updated after a decision from a state in
phase t has been chosen, which means that all weights are updated once during each
iteration. The set of weights at a certain time is denoted by θt := {θ1,t ,θ2,t , ...,θF,t}.

In formula form, the approximate value function Ṽ (st ,θt) looks as follows:

Ṽ (st ,θt) = ∑
f∈F

θ f ,tφ f (st) (32)

If these weights and basis functions work well, the approximate value of the reach-
able states can be calculated, and these values can be used to find the best decision,
according to this approximation.

The approximate value function we use here has the same interpretation as V (st)
in Section 2: the maximum revenue from all future electricity sales being in state st at
time t. For the final interval we infer Ṽ (sT ,θT ) := 0, as after the final time interval no
more electricity is sold.

However, we chose to create a different penalty for violation of the constraints from
the one chosen in Section 2. Instead of obtaining a revenue of −∞ when a constraint
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is violated, an amount P is subtracted from the total revenue if the global electricity
constraint (7) is violated. If another constraint, e.g. the heat level constraint (6), is
violated, an amount of 10P is subtracted. P will be chosen in the order of the maximum
total revenue that can be obtained by all houses in one time interval. This ensures that
a feasible solution is always preferred over an infeasible solution.

This change is made because the obtained revenues of a found solution are used
to update the weights θ f ,t , and in this update values of −∞ are very impractical. This
becomes clear in the description of the method of updating the weights. Furthermore,
we have chosen a smaller penalty when the global electricity constraint (7) is violated,
so that in case of a choice of constraint violations, violation of constraint (7) takes
preference. This will lead to an easier comparison between different infeasible runs, as
often the same constraint is violated in these cases.

4.2.1 Value function decomposition

In this paragraph, the parameters and basis functions we have chosen to represent the
value function are presented.

We have chosen to introduce four basis functions, so that the value function has the
following form:

Ṽ (st ,θt) = θ1,tφ1(st)+θ2,tφ2(st)+θ3,tφ3(st)+θ4,tφ4(st) (33)

In the following each of these basis functions are defined and explained.

• φ1(st) is an estimate of the total maximum sales revenue of electricity from state
st . To obtain this, we drop the global electricity constraint, after which we look at
each house i individually, and simplify the situation of the house. We assume that
a house only produces when its micro-CHP is switched on, and that it produces
the maximum electricity Hmax in these intervals. This implies that to find the
current heat level, the streak value ai,t and the number of on/off switches ci,t
are not relevant anymore; only the total running time bi,t matters. Finally, all
constraints are discarded as well, except for the heat level constraints (6) for the
final interval T , for all houses i. In this heavily simplified model, the number
intervals where the micro-CHP of house i has to be on is fixed for every house
i, as this is the maximum number of on-intervals such that the heat level after
interval T is within the heat bounds. If we denote this number of intervals by w,
the maximum revenue can be obtained by turning the micro-CHP on during the
w intervals in {t+1, ...,T} where the electricity price is the highest. This is done
for all houses i, and the sum of these revenues is used as an estimate of the total
sales revenue from state st .

• φ2(st) consists of the minimum total amount of penalties received for constraint
violations during interval t + 1. These penalties are the revenues of −P and
−10P that are obtained if a constraint is violated. Note that the value of this
basis function is found before the decision vector is chosen.
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First we check all constraints but the global electricity constraint (7). This is done
by looking for houses for which both the on and off decisions are infeasible. A
penalty of 10P is obtained for every house for which this holds.

To account for the global electricity constraint (7) we first find the R(i)-value for
all houses, as we did in finding the optimal decisions. Then, we can find the min-
imum total electricity generation in the next interval by choosing the off -decision
for all houses for which R(i)> 0, and the on-decision for the remaining houses.
Obviously, this is the minimum electricity production that can be obtained in a
feasible way. If this minimum value is higher than the upper electricity bound
Emax, a penalty of P is unavoidable, and will be considered in φ2(st). Similarly,
the maximum total electricity production is found by determining the electric-
ity production obtained when all houses are assumed on when R(i)< ∞, and this
value is compared to Emin. Again, a penalty of P is obtained if this value is lower.

• To calculate φ3(st) we first determine the number of houses for which both the on
and the off decisions are feasible. To obtain φ3(st), this number is downscaled by
multiplying this number with k3, a fixed model parameter, which is done to make
this basis function fit better to the size of the other basis functions. The idea here
is that more houses with two possible decisions leads to more flexibility, which
can be a useful property.

• With φ4(st), we want to ensure that the average remaining electricity production
is in line with Emin and Emax. Otherwise, it could happen that a large part of
the production takes place in the first part of the day, producing around Emax in
every interval, leaving not enough room for electricity production later, so that
Emin can not be reached.

To prevent this, we first find the average electricity production per time interval
from time t on, Eavg, and compare that value to the minimum and maximum
production in each interval. To calculate Emax, we first determine for every house
i an estimate of the final electricity level after interval T , L f inal,i. This is a model
parameter that lies between the heat bounds 0 and Lmax,i, which tries to make an
accurate prediction of the electricity level.

Then we determine for every house i the number Z(i), which indicates how much
heat has to be produced to reach this level, also considering the heat demands and
heat losses. This is summed over all the houses, to find an estimate of the remain-
ing heat production. To convert this estimate into an estimate of the electricity
production, we estimate that the ratio between electricity and heat production is
approximately the ratio of their maxima. Therefore, we define the number η as
Hmax
Emax

, and divide by this number to convert the heat demand to electricity produc-
tion. Eavg can now be found by dividing this number by the number of remaining
intervals T − t +1:

Eavg :=
∑

N
i=1 Z(i)

(T − t +1)η
(34)
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Eavg is compared with the upper and lower bounds for the total electricity pro-
duction. These differences are converted to a fraction of the maximum heat pro-
duction by dividing by NHmax to obtain the relative difference from the bounds.
To do this, we define du and dl as follows:

du :=
η(Emax−Eavg)

NHmax
, dl :=

η(Eavg−Emin)

NHmax
(35)

These values du and dl now provide a relative measure of how close the remain-
ing electricity production is to the boundaries. The smaller these values, the
closer they are. The following formula is used for the basis function, where 1
represents the indicator function:

φ4(st) :=−k4 ·N((0.1−dl)
2 ·1dl<0.1 +(0.1−du)

2 ·1du<0.1) (36)

The negative sign in this formula indicates that this number is a penalty. This
penalty gets larger as the minimum of dl and du becomes smaller. As with φ3(st),
we multiplied this number with a constant, in this case k4 ·N, to get this basis
function into the right order of magnitude.

Summarizing, the first basis function gives an upper bound for the total revenue
of the electricity sales, the second looks for unavoidable penalties in the current inter-
val, the third looks at local flexibility, and the fourth looks at global consistency and
flexibility.

4.3 Finding a path
Using the decision space as defined in Section 4.1, at every state but the states in the
final interval, (i.e. st , t < T ), we have N + 1 possible decisions. To find the value
corresponding to a decision d in state st , we observe that this consists of two parts:
the revenue in the next interval t + 1, which is equal to F(st ,d) as defined in Section
2.3, and the value of Tr(s,d), the state reached after taking decision d, which can be
estimated by Ṽ (Tr(s,d),θt+1). The ’optimal’ decision dopt(st), given the approximate
value function and the weights θt , is then

dopt(st) = argmax
d∈D̃

C(st ,d)+Ṽ (Tr(st ,d),θt) (37)

If the weights θ f ,t are defined, we can find a decision strategy that always chooses
decision dopt(st) from state st . This is the strategy we use in our ADP approach. An
interesting aspect of this strategy is that infeasibilities are prevented quite powerfully.
If there is a series of decisions in D̃ that does not cause an infeasibility in the next two
intervals, the algorithm will find it. This is because C(st ,d) prevents infeasibilities in
the current interval, and Ṽ (Tr(st ,d),θt) contains φ2(st), which prevents infeasibilities
in the interval t +1, if this is possible.

Starting from the initial state, this strategy can be used to find paths through the
state space. We will use the actual revenues obtained on those paths to rescale the
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weights θ f ,t . For the rescaling of θt there are several possibilities, which include using
a Kalman filter or a gradient method [2]. In this thesis the gradient method is selected,
as this is easier to implement and requires less calculations.

To explain how this gradient method works in this problem, we first define v̂t(st),
which is another estimate of the value of state st . This estimate is equal to the value
corresponding to taking the optimal decision dopt in state st , and can be found as fol-
lows:

v̂t(st) := maxd∈D̃ C(st ,d)+Ṽ (Tr(st ,d),θt+1) (38)

We consider v̂t(st) to be a more accurate estimate, as it contains the actual revenue
of the next interval, and the value function estimate considers one less interval. There-
fore, to update the weights θ f ,t we wish to move the estimate V (st ,θt) toward v̂t(st).
For this we use the following formula to find the new weight θ

p
f ,t for basis function i

at time t in path p, where θ
p−1
f ,t represent the old weights, and θ

p−1
t the vector of old

weights (θp−1
1,t ,θ

p−1
2,t , ...,θ

p−1
F,t ):

θ
p
f ,t = θ

p−1
f ,t −αp(Ṽ (st ,θ

p−1
t )− v̂t(st)) ·∇θt (Ṽ (st ,θ

p−1
t )). (39)

In this formula, αp is a small number that may depend on the iteration p. The
weight change is proportional to the gap between the two values Ṽ (st ,θ

p−1
t )− v̂t(st).

This ensures that the bigger the gap is, the more the weights are changed, and also that
the change is made in the right direction. The gradient ensures that the weight change
is proportional to the derivative of the value function, so that weights that have more
effect are changed the most.

Note that there is no relation between the size of the weights and the size of the
value functions and the gradients. Therefore, we should choose αp in such a way
that the product (Ṽ (st ,θ

p−1
t )− v̂t(st)) ·∇θt (Ṽt(st ,θ

p
t )) is scaled into the same order of

magnitude of θ
p−1
f ,t .

Also, we want to have some convergence in the value function, so that the value
of being in a certain state does not deviate too much in different runs, even if Ṽt(st ,θt)
does not converge to v̂t(st) for all states st in phase t. To obtain this convergence, we let
the weights θi,t converge by letting the update factor αp approach 0 over time. We do
this by setting αp := 1

p ·α, where α is a model parameter that depends on the instance.
We have chosen the multiplication with 1

p because this approaches 0 as p→ ∞, so that
θ

p
f ,t converges, and the value function Ṽ (st ,θt) with it. Also, the sum of the harmonic

series diverges, so that
∞

∑
p=1

ap = ∞. With this property in mind, we expect that this

method of decreasing αp does not prevent the θ
p
f ,t from converging to good values.

As we can observe from considering the value function (33) that ∇θt (Ṽt(st ,θ
p−1
t ))

is simply a vector of φ f (st), we can rewrite equation (39) to:

θ
p
f ,t = θ

p−1
f ,t −

1
p

α(Ṽ (st ,θ
p−1
t )− v̂t(st)) ·φ f (st) (40)
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Now we have enough information to describe an iteration in the micro-CHP ap-
proach, as is done in Algorithm 3.

Algorithm 3 An iteration of our ADP approach to the micro-CHP problem
for all p from 1 to P do

Set t := 0 and current state s := s0
while t ≤ T do

Find R(i) for all houses i and sort the houses to obtain D̃.
Find dopt as in (37) and v̂t(st) as in (38).
Update θ f ,t using (40).
Set s := Tr(s,dopt) and t := t +1.

end while
end for

The entire ADP approach now consists a series of P̄ iterations, during which the
best value and solution are remembered.
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5 Alternative approaches
As mentioned before, in Bosman [4] a number of alternative methods have been pre-
sented. In this section we will present a short overview. First of all, two exact methods
were examined. These were the ILP approach, and the exact DP approach. Also two
other heuristics are presented: DP-based local search and a column generation method.

5.1 ILP approach
In the ILP approach, the constrained optimisation problem (9) mentioned in Section
2, is transformed into an ILP. In this method the ai,t variables were not used; instead
the variables starti,t and stopi,t are introduced, which are binary variables indicating
if a run of the micro-CHP in house i was started or stopped in interval t. Using these
variables, the heat and electricity generation can also be found in a linear setting, so
that an ILP is found. This ILP was entered in the CPLEX solver, and was able to solve
most of the smaller instances tested.

These instances contained 24 planning intervals up to 10 houses, for which different
scenarios for the electricity bounds were tested. We also used these instances to test our
micro-CHP approach to, and they are explained in more detail in the Results section.
With the ILP approach, as the number of houses grew, the computational time increased
quite dramatically. In the cases up to 6 houses, all tested instances were solved within
5 minutes, but from 7 houses on, this could go well over an hour, and in some of the
cases with 9 and 10 houses, the solver terminated and the optimality of the solution
could not be determined. In 3 cases, a better solution was found in the exact Dynamic
Programming method described below.

5.2 Solving the Dynamic Program
Another exact method that was attempted was to simply solve the Dynamic Program,
which, as mentioned before, is in general only possible for small instances. It was
tested for the same small instances as the ILP approach, and it turned out that it was
possible to solve cases up to 10 houses with this method. This was done using a SQL
database to store the values. Both the time needed to find the solution and the memory
needed to store the values increased exponentially in this method. In the cases with 10
houses, the database needed 15,1 GB of memory, and the running time exceeded 10
days. However, the optimal solution was found for all tested cases.

5.3 DP-based Local Search
As the exact methods could not be made to work for larger instances, the focus was
shifted to heuristics. One of the tested heuristics was a local search method that consists
of two steps. The first step uses the single house DP (as explained in paragraph 2.2),
where for every house the optimal schedule is found. As the complexity for the single
house DP is only T 4, this is possible.

In the second step these optimal schedules are combined, and the electricity prices
are altered to give the houses more incentive to perform within the electricity bounds.
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This is done by multiplying the electricity prices in interval t by a factor α, (0 <α < 1),
if too much electricity was produced, and a factor 2−α if too little was produced. This
was repeated until a maximum of iterations was reached, or until a feasible schedule
was found.

This method was also tested for the smaller instances, and also some larger in-
stances. More specifics of these instances, as well as the results of the tests (with
α = 0.9, which turned out to be the best tested value) can be found in the Results
section.

5.4 Column Generation
Also, a column generation method was tested. This method also exists of two parts.
First, for every house i, a set of feasible production schedules Fi is chosen for the micro-
CHP in house i. Then, in the main problem, an optimal solution is generated whereby
only schedules in Fi are allowed for house i. If the combined schedule is infeasible,
because the global electricity constraint is violated, for all houses i a subproblem is
solved, that finds a good candidate for new schedules to be added in Fi.

In these subproblems, the goal is to find a feasible schedule for house i, whereby we
want to produce less electricity in intervals where there is an excess production in the
global schedule, and produce more if the global electricity production is insufficient.
The schedule that fits this requirement the best is then added to Fi. This is done for all
houses i ∈ {1,2, ...,N}. This sequence of main and sub problems is repeated until no
further improvement is found.

In the subproblem, two methods have been tested to find the best schedule. One
method consisted of looking at the actual difference in electricity production, while
the other only considered the on/off-status of the micro-CHP. The latter method was
significantly faster, and also slightly better for the large instances, which is why we
use those results to compare the results of the ADP approach to. The results for this
method for both the smaller and the larger instances are shown in the Results section.
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6 Results
In this section the results of applying Approximate Dynamic Programming are pre-
sented. For these results we used the parameters that were introduced by Bosman et
al. in [4]. The algorithm presented in the previous section is applied to the data set.
Anywhere in the results where a schedule is found for n houses, the first n houses of
this set are intended.

The data set contains 200 houses with hourly heat demands between 500 Wh and
4000 Wh spread over the day, with peaks during the morning and the evening hours.
The capacity of the buffer Li,max equals 10 kWh, and the maximum heat production
Hmax is 8000W/h. The prices of electricity varied between 19,01 e/MWh to 500,00
e/MWh. The maximum electricity production is 1000W/h, so that the maximum rev-
enue per interval per house equals e0,50. The penalty P for violation of the electricity
bounds is set at e1 ·N, so that a feasible solution is always preferred over an infeasible
solution.

In our ADP approach, we have chosen k3 = 0.001 and k4 = 0.1, and initialized
θ0

f ,t := 1 for all f ∈ {1,2, ...,F}, t ∈ {1,2, ...,T}.

6.1 Small instances
First of all, we considered several small instances, where we let the number of houses N
vary between 1 and 10. For the minimum and maximum electricity production several
fixed percentages of the maximum electricity production were considered, see Table
4. In the tenth variant, the bounds were set to the tightest bounds in the cases 1-9 for
which a feasible solution was found. The other parameters were kept constant for the
different instances.

For each of these small instances we set the number of iterations to P̄= 200, and we
had Ton = Toff = 1, so the streak length does not restrain the set of feasible decisions.
The total amount of intervals T is 24, with the interpretation that the total time equals
one day, so each interval represents an hour. For every instance, we have manually
found a good value for α, which, as it turned out, was very important for the algorithm.
The importance of α and how we have selected it are described to more detail in the
next paragraph.

The revenues corresponding to the solutions found are presented in Table 5. These
results represent the total revenue per house in e. We also show the running times and
the best choices found for α.Hereby, we multiplied these with 100, to get them into a
more convenient range. Also, the optimal values found in the exact DP approach by
Bosman in [4] are presented. As can be seen, the algorithm seems to generally perform
a little worse than the optimal solution, and in a total of 7 cases it does not find a
feasible solution when there does exist one.

We also show the results generated by the heuristics used in Bosman [4]. The
results for the DP-based local search method are shown in Table 6, and the results for
the column generation method are given in Table 7. As we can see, both heuristics by
Bosman almost always give better results in variants 1 and 2, but in the other variants
the values are generally better. Looking at the errors, the ADP algorithm had a total of
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case Emin
NHmax

·100% Emax
NHmax

·100%
1 0 100
2 0 90
3 0 80
4 0 70
5 0 60
6 0 50
7 0 40
8 10 100
9 20 100
10 20∗ 40∗

Table 4: Electricity bounds variants

7 cases where no feasible solution was found, where the local search method and the
column generation had respectively 12 and 15 instances with errors.

This seems very promising indeed, especially as we are most interested in the vari-
ants where bounds are tight, which is not the case in the first two variants. We should
however note that the column generation method appears to get better as the number of
houses increases. Looking only at the cases from 8 houses up, the column generation
method shows 1 error-free run more, and the size of the errors is quite a lot smaller. It
therefore could be that this method works better for larger cases, which are the cases
we eventually want to consider. We do still see a large difference in the revenues; if we
compare the instances with more than 8 houses where both heuristics find a feasible
solution, the average difference in value is 0,100.

Also note that the other heuristics both generate their results a lot faster than the
ADP approach; the local search algorithm found all results within 0,3 seconds, and
the column generation method rarely exceeds 2 seconds to solve an instance. In the
ADP approach, for the larger instances about 6 seconds were needed, which should
perhaps be multiplied by a factor 7 or 8 to account for the number of attempts needed
to optimize the value for α.

6.2 The choice of α

In finding the results in the previous paragraph, we have mentioned that we had to find
the optimal value for α. In this paragraph we zoom in on how this value was found, and
show the effect on different values for α on the runs. In the pictures below the instance
with N = 9 houses and the sixth case for the electricity bounds is used. The best value
found was 0.974, which was found when α = 4.

In Figure 17 we have shown the changes in value during the 200 iterations when
α = 1. We can see that there is only one shift in value, after 20 iterations. As all
other values are exactly equal, we can safely assume that only two different paths were
tested during this run. This seems very little, and the reason for this is that the weight
changes, which are scaled by α, were apparently too low to lead to other paths being
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N variant 1 2 3 4 5 6 7 8 9 10
1 α(·100) 350,0 350,0 xxx xxx xxx xxx xxx xxx xxx 350,0

value 1,126 1,071 xxx xxx xxx xxx xxx xxx xxx 1,071
time (s) 0,343 0,345 xxx xxx xxx xxx xxx xxx xxx 0,345
optimal 1,147 1,092 xxx xxx xxx xxx xxx xxx xxx 1,092

2 α(·100) 90,0 80,0 120,0 120,0 120,0 120,0 xxx xxx xxx 120,0
value 1,225 1,197 0,996 0,996 0,996 0,993 xxx xxx xxx 0,993
time (s) 0,683 0,620 0,681 0,637 0,672 0,622 xxx xxx xxx 0,622
optimal 1,236 1,208 1,016 1,016 1,016 1,016 xxx xxx xxx 1,016

3 α(·100) 35,0 35,0 35,0 35,0 30,0 xxx xxx xxx xxx 30,0
value 1,189 1,189 1,102 1,102 0,905 xxx xxx xxx xxx 0,905
time (s) 0,978 0,960 0,957 0,947 0,970 xxx xxx xxx xxx 0,970
optimal 1,197 1,197 1,106 1,106 1,002 xxx xxx xxx xxx 1,002

4 α(·100) 15,0 15,0 15,0 15,0 20,0 20,0 xxx 15,0 15,0 15,0
value 1,173 1,096 1,072 1,107 0,985 0,985 xxx 1,042[1] 1,042[2] 0,971[3]

time (s) 1,383 1,124 1,122 1,356 1,350 1,350 xxx 1,397 1,402 1,460
optimal 1,183 1,164 1,128 1,114 1,021 1,021 xxx 1,009 1,009 0,949

5 α(·100) 10,0 10,0 15,0 15,0 10,0 xxx xxx 10,0 xxx 15,0
value 1,159 1,119 1,114 1,052 1,052 xxx xxx 1,117 xxx 1,004
time (s) 1,902 1,881 1,854 1,746 1,854 xxx xxx 1,892 xxx 1,864
optimal 1,164 1,149 1,120 1,060 1,060 xxx xxx 1,118 xxx 1,023

6 α(·100) 6,0 6,0 6,0 6,0 6,0 6,0 xxx 6,0 xxx 5,0
value 1,159 1,126 1,126 1,080 1,006 1,005 xxx 1,138 xxx 1,004
time (s) 1,945 2,053 2,031 2,047 2,061 2,043 xxx 2,044 xxx 2,041
optimal 1,163 1,150 1,130 1,092 1,048 1,027 xxx 1,139 xxx 1,021

7 α(·100) 4,5 4,5 4,5 3,0 5,0 4,0 5,0 5,0 xxx 4,0
value 1,132 1,132 1,132 1,101 1,059 0,948 0,914 1,131 xxx 0,891
time (s) 3,074 2,872 2,762 3,033 2,775 2,240 2,582 3,099 xxx 3,108
optimal 1,156 1,145 1,137 1,109 1,069 0,972 0,925 1,150 xxx 0,924

8 α(·100) 3,5 3,5 3,5 5,0 4,0 5,0 3,0 4,0 4,0 5,0
value 1,134 1,134 1,109 1,082 1,070 1,024 0,887 1,132 1,078[2] 0,894[2]

time (s) 3,700 3,838 3,8 3,963 3,713 3,713 3,536 3,561 3.804 3,835
optimal 1,156 1,145 1,130 1,114 1,080 1,032 0,919 1,152 1,069 0,902

9 α(·100) 3,0 3,0 3,0 3,0 4,5 4,0 xxx 3,0 3,0 3,0
value 1,133 1,133 1,111 1,088 1,062 0,974 xxx 1,130 1,109[4] 0,948
time (s) 4,427 4,449 4,522 4,666 4,452 4,6 xxx 4,671 4,602 4,698
optimal 1,153 1,143 1,121 1,098 1,072 0,999 xxx 1,150 1,113 0,976

10 α(·100) 3,0 3,0 1,5 2,0 3,0 4,0 4,0 2,0 3,0 3,0
value 1,150 1,150 1,129 1,108 1,090 1,024 0,940 1,151 0,979[5] 0,927
time (s) 5,529 5,606 5,060 5,412 5,384 5,047 4,937 5,189 5,088 5,816
optimal 1,176 1,162 1,143 1,122 1,095 1,044 0,956 1,173 1,028 0,945

[1][2][3][4][5]: no feasible solution found: error value respectively 700, 1500, 750, 1550,
3750

Table 5: Results for small instances
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# houses variant 1 2 3 4 5 6 7 8 9 10
1 value 1,147 1,092 xxx xxx xxx xxx xxx xxx xxx 1,092

time (s) 0,015 0,015 xxx xxx xxx xxx xxx xxx xxx 0,016
error 0 0 xxx xxx xxx xxx xxx xxx xxx 0

2 value 1,236 1,208 0,937 0,937 0,937 1,016 xxx xxx xxx 1,016
time (s) 0,015 0,015 0,078 0,078 0,078 0,016 xxx xxx xxx 0,016
error 0 0 200 400 600 0 xxx xxx xxx 0

3 value 1,197 1,197 1,097 1,097 0,863 xxx xxx xxx xxx 0,863
time (s) 0,015 0,015 0,016 0,016 0,031 xxx xxx xxx xxx 0,031
error 0 0 0 0 0 xxx xxx xxx xxx 0

4 value 1,183 1,068 1,050 1,103 0,939 0,794 xxx 0,931 0,931 0,822
time (s) 0,015 0,015 0,016 0,015 0,078 0,047 xxx 0,125 0,141 0,141
error 0 0 0 0 0 0 xxx 1250 2850 1500

5 value 1,164 1,083 1,063 1,054 1,054 xxx xxx 0,978 xxx 0,856
time (s) 0,015 0,016 0,016 0,047 0,031 xxx xxx 0,172 xxx 0,062
error 0 0 0 0 0 xxx xxx 400 xxx 0

6 value 1,163 1,096 1,096 1,092 0,967 0,940 xxx 0,925 xxx 0,942
time (s) 0,015 0,015 0,016 0,031 0,047 0,063 xxx 0,203 xxx 0,141
error 0 0 0 0 0 0 xxx 500 xxx 0

7 value 1,156 1,137 1,137 1,079 1,068 0,904 0,893 1,093 xxx 0,839
time (s) 0,015 0,016 0,016 0,016 0,031 0,078 0,219 0,266 xxx 0,993
error 0 0 0 0 0 0 900 0 xxx 150

8 value 1,156 1,138 1,087 1,087 1,073 0,875 0,838 1,151 0,986 0,881
time (s) 0,016 0,016 0,016 0,016 0,031 0,063 0,218 0,016 0,266 0,219
error 0 0 0 0 0 0 0 0 1050 7600

9 value 1,153 1,137 1,092 1,092 1,057 0,842 xxx 1,148 0,960 0,843
time (s) 0,016 0,031 0,016 0,031 0,031 0,078 xxx 0,015 0,250 0,188
error 0 0 0 0 0 0 xxx 0 650 0

10 value 1,176 1,161 1,098 1,098 1,094 0,963 0,871 1,170 0,968 0,849
time (s) 0,016 0,016 0,016 0,015 0,031 0,109 0,109 0,031 0,297 0,297
error 0 0 0 0 0 0 0 0 2100 6850

Table 6: Results for local search method in Bosman [4]; small instances
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# houses variant 1 2 3 4 5 6 7 8 9 10
1 value 1,147 1,050 xxx xxx xxx xxx xxx xxx xxx 1,050

time (s) 0,00 0,00 xxx xxx xxx xxx xxx xxx xxx 0,00
error 0 0 xxx xxx xxx xxx xxx xxx xxx 0

2 value 1,236 0,890 0,995 0,995 0,995 0,995 xxx xxx xxx 0,995
time (s) 0,00 0,00 0,00 0,00 0,00 0 xxx xxx xxx 0
error 0 0 0 0 0 0 xxx xxx xxx 0

3 value 1,197 1,197 0,899 0,899 1,017 xxx xxx xxx xxx 1,017
time (s) 0,00 0,00 0,00 0,00 0,25 xxx xxx xxx xxx 0,25
error 0 0 0 0 150 xxx xxx xxx xxx 150

4 value 1,183 0,892 1,090 1,000 0,883 0,984 xxx 0,825 0,914 0,946
time (s) 0,00 0,00 0,25 0,26 0,26 0,26 xxx 0,53 0,53 0,52
error 0 0 0 0 0 0 xxx 700 1500 1450

5 value 1,164 0,863 0,902 0,941 0,941 xxx xxx 1,056 xxx 0,942
time (s) 0,27 0,26 0,26 0,25 0,25 xxx xxx 0,52 xxx 0,78
error 0 0 0 0 0 xxx xxx 400 xxx 0

6 value 1,163 0,999 0,938 1,041 0,917 0,868 xxx 0,941 xxx 0,911
time (s) 0,53 0,26 0,52 0,26 0,52 0,26 xxx 0,53 xxx 0,8
error 0 0 0 0 0 0 xxx 500 xxx 450

7 value 1,156 1,080 0,964 0,841 1,015 0,915 0,920 0,929 xxx 0,927
time (s) 0,25 0,52 0,53 0,53 0,52 0,80 1,56 0,26 xxx 1,04
error 0 0 0 0 0 0 100 0 xxx 250

8 value 1,154 1,041 0,938 0,831 0,957 0,894 0,876 0,945 0,977 0,878
time (s) 0,25 0,53 0,53 0,51 0,53 0,53 1,33 0,51 1,06 3,98
error 0 0 0 0 0 0 0 0 0 550

9 value 1,151 1,018 1,050 0,915 0,931 0,909 xxx 1,003 1,046 0,905
time (s) 0,26 0,53 0,52 0,51 0,53 0,53 xxx 0,51 0,78 1,33
error 0 0 0 0 0 0 xxx 0 0 0

10 value 1,174 1,010 1,010 0,832 0,900 0,930 0,911 1,107 0,886 0,876
time (s) 0,26 0,53 0,53 0,53 0,80 0,53 1,34 0,52 6,88 4,54
error 0 0 0 0 0 0 0 0 50 50

Table 7: Results for column generation method in Bosman [4]; small instances
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found. The value this run converged to, which is around 0.971, is also a little lower
than the optimum value.

When α is set to a higher value, such as α = 7 in Figure 18, we can observe a lot
of jumps initially, not always finding better solutions. In fact, between run 7 and 13
all runs were infeasible, as an electricity constraint was violated. These are depicted as
values of 0.91. Often, the weights are changed severely altered when an infeasibility is
found, because there is a large difference between the estimated and the realized value.
Once an infeasibility is encountered during an iteration, it becomes much more difficult
to find good solutions. Here it can be seen as well that the algorithm settles for a value
of 0.949, severely lower than the highest value found, which was 0.965 in run 4.

It seems to be obvious that the optimal value for α can be found in between these
values of 0.1 and 0.7, so that the weight changes is not so large as to cause infeasi-
bilities, and not so small so that the weights are barely changed. In 19 the values for
α = 4, the best found value for α, are shown. It can be seen that the highest value found
is about 0.974, reached in the 6th iteration. After 13 runs the value does not change
anymore, and the value appears to have reached convergence at a value of 0.949. It
happens quite often that the algorithm does not stabilize at the highest value found.

This example is very typical for the results in the previous paragraph; for too small
values of α the algorithm found only few improvements over the initial value, and for
too large values infeasible solutions were found and the algorithm does not recover
from that.

Therefore, we can conclude that the choice of α is important. In the results pre-
sented in this section, every instance was run several times, during which the choice
of α was changed accordingly. This was repeated until a reasonable choice for α

was found. In doing this we only considered choices for α of the type x · 10y where
x ∈ {1,1.2,1.5,1.7,2,2.5,3,3.5,4,4.5,5,6,7,8,9} and y∈Z and optimized within this
range. For the results presented in this section, this was done manually. This was partly
due to time constraints, and partly because it is difficult to formalize this process al-
gorithmically. The typical process consisted of starting with choices of α around an
optimum for a similar case, until ’too many’ infeasible runs were found, or the value
strayed ’too far’ from the highest value found, followed by searching near the choices
leading to the highest values.

On average about 7 or 8 choices were tested for α in every instance. In a large
fraction (around 40 %) of the cases tested, the maximum value was found in the first
run, making the choice of α irrelevant.

6.3 Large instances
We also tested some large instances with 25, 50, 75 and 100 houses. These instances
were also tested with different numbers of time intervals; 24, 48 and 96. In all these
cases the same day is considered, but in the 24 intervals case each time interval rep-
resents one hour, with 48 intervals half an hour, and with 96 intervals every interval
represents 15 minutes. In the first two cases, the minimum run time Ton and off time
Toff were 1 interval, so the minimum and maximum run times do not restrict the fea-
sible decision space. With 96 intervals, Ton = Toff = 2, as the minimum running time
and the minimum off time were defined to be 30 minutes.
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run

value

0 20 40 60 80 100 120 140 160 180 200
0.91
0.92
0.93
0.94
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0.96
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0.98

Figure 17: Value changes during run where α = 1

run

value
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Figure 18: Value changes during run where α = 7
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value
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Figure 19: Value changes during run where α = 4
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N: Elec bounds: 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
25 α · (100) 0,2 0,35 0,35 0,35

value 1,09992 1,03603 0,94359 0,90164
error 0 1950 4450 5700
run time 6,923 7,535 6,737 6,203

50 α(·1018) 0,15 0,15 0,15 0,15
value 1,098180 1,036690 0,981824 0,914132
error 0 4000 9000 16950
run time 20,049 23,492 25,354 20,562

75 α(·1018) 0,05 0,05 0,05 0,03
value 1,10203 1,03613 0,96678 0,90454
error 0 5950 12250 44650
run time 45,183 42,294 41,121 40,923

100 α(·1018) 0,015 0,01 0,01 0,03
value 1,09378 1,04354 0,96971 0,89921
error 0 8000 18000 34750
run time 65,771 67,471 72,644 66,239

Table 8: Large instances; 24 intervals

In these cases we only let the algorithm for P̄ = 50 iterations, as each run took a lot
longer than it did with the smaller instances. The results the algorithm gave for these
instances are shown in Tables 8, 9 and 10. We can see that no errors occurred in the
cases with 48 intervals, while there is a large error in the case with 96 intervals.

This seems strange, as the solutions found for 48 intervals are also solutions for
the case with 96 intervals. However, apparently it is much harder to find these error-
free solutions in the case with 96 intervals. This is likely due to the fact that with
96 intervals, the minimum off time and the minimum on time are 2 intervals, where
they were 1 interval in the situation with 48 intervals. Therefore, at a typical state, the
number of feasible decisions is smaller, because some of the houses have been turned
on the previous interval, and so their state must remain unchanged. This could make
it it more difficult to find a feasible schedule for the following two intervals, and as a
consequence the error is higher.

To get more insight in the influence of the different data sets to this algorithm, we
have written the average value for every parameter in Table 11. This means that for the
first entry in the table, we took the average value (and error and runtime) for all results
where 24 intervals were used.

From this table we can see that the running times depend mostly on the number
of houses and the numbers of intervals, and both increase faster than linear. For the
intervals, this can be explained by the fact that in every interval, finding φ1(st) requires
a sum over every interval to be taken, and since this has to be done in every interval,
this gives us a T 2-term in the computation time. For the houses we note that in reducing
the decision space the houses are sorted on their R(i)-value, which takes N2 time, as
the sorting algorithm is not most efficient.

We also see that the value decreases as the electricity bounds get tighter. Obviously,
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N: Elec bounds: 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
25 α(·100) 0,5 0,7 0,7 0,2

value 1,25431 1,10719 0,96935 0,87922
error 0 0 0 0
run time 19,101 21,143 17,015 16,969

50 α(·100) 0,1 0,1 0,1 0,15
value 1,25406 1,08606 0,94669 0,90723
error 0 0 0 0
run time 46,004 48,704 48,471 49,250

75 α(·100) 0,07 0,07 0,07 0,07
value 1,25230 1,10215 0,99048 0,89273
error 0 0 0 0
run time 95,661 96,506 102,711 95,581

100 α(·100) 0,03 0,03 0,03 0,03
value 1,23980 1,09577 0,96083 0,89756
error 0 0 0 0
run time 171,697 163,489 172,661 165,142

Table 9: Large instances; 48 intervals

N: Elec bounds: 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
25 α(·100) 0,35 0,1 0,1 0,1

value 1,22444 1,04120 0,92303 0,84896
error 0 0 1900 14100
run time 38,444 41,589 39,513 46,328

50 α(·100) 0,1 0,1 0,1 0,1
value 1,22704 1,05646 0,92474 0,85964
error 0 0 6600 11950
run time 132,257 136,001 130,54 143,61

75 α(·100) 0,01 0,01 0,01 0,01
value 1,21518 1,05564 0,90533 0,89114
error 0 0 12100 84425
run time 278,415 275,164 276,683 261,058

100 α(·100) 0,005 0,005 0,005 0,005
value 1,23483 1,0578 0,92361 0,89593
error 0 1650 16600 103100
run time 542,231 485,194 464,913 468,786

Table 10: Large instances; 96 intervals
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# of intervals: 24 48 96
value 1,002 1,052 1,018
error 10353 0 15777
run time (s) 35 83 235
Elec bounds 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
value 1,191 1,063 0,950 0,891
error 0 1796 6742 26302
run time (s) 122 117 117 115
# of houses 25 50 75 100
value 1,019 1,024 1,026 1,026
error 2342 4042 13281 15175
run time (s) 22 69 138 242

Table 11: Average results with one parameter fixed

# of intervals: 24 48 96
value 0,953 1,023 1,103
error 27163 39252 74162
run time (s) 1 243 7053
Elec schedule 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
value 1,165 0,971 0,984 0,984
error 0 9340 65654 112440
run time (s) 859 2951 2962 2958
# of houses 25 50 75 100
value 1,007 1,026 1,040 1,031
error 20588 36063 59734 71050
run time (s) 1048 1982 2869 3831

Table 12: Results for local search method by Bosman; large instances

tighter bounds lead to lower production when the price is highest, so the value is lower
there. Also, the error increases in this case as these tighter bounds are more difficult
to satisfy. Beside this, we can also observe an increase in the error as the number of
houses becomes larger. With more houses, of course larger errors are possible.

The results of these methods are provided in Table 12 and Table 13. These results
are aligned in a similar way as in Table 11.

Here we can see that the local search method has significantly higher errors than
those obtained by the ADP approach. If we compare the values found, we see that they
appear to be close: for the case with 96 houses and with tighter electricity bounds, the
local search method performs better, while the ADP approach performs better in the
other cases. On average, the local search method has slightly higher values (1,026 vs
1,024), but this is clearly offset by the different in error sizes.

Comparing the results to the column generation method, we see that the values for
the ADP approach are higher across the table. The average value found in the column
generation method is 0,897, 0,127 lower than in the ADP approach. However, the error
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# of intervals: 24 48 96
value 0,969 0,859 0,864
error 7141 19 224
run time (s) 39 181 277
Elec schedule 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
value 0,846 0,986 0,899 0,86
error 0 1283 3367 5194
run time (s) 57 77 116 412
# of houses 25 50 75 100
value 0,898 0,884 0,901 0,907
error 950 1919 3059 3917
run time (s) 105 128 192 237

Table 13: Results for column generation method by Bosman; large instances

is typically smaller in the column generation method. We should note here that most
of the values in the original table are ’contaminated’ in a way with the values of the
case with 96 intervals, where the errors found are 224 and 15777 for respectively the
column generation method and the ADP approach.

Looking closer at the cases for different numbers of houses, we see that in the
column generation method the errors are smaller in the cases with 24 intervals. How-
ever, in the instances with 48 intervals some (small) errors were found, which was not
the case in the ADP-approach. The time needed was also significantly smaller in the
column generation method.

6.4 Basis functions
To check the usefulness of the basis functions we selected, we also decided to run the
algorithm without each of the basis functions. In every run a different basis function
was left out. The case with 24 intervals and 25 houses was used for the test, where
the other parameters were set equal to the ones in the previous run. The results of this
test are shown in Table 14. As our algorithm only gives penalties when a constraint
is violated, and no regard is given to the size of the violation, constraint violations are
more important to our algorithm than error sizes. Usually, this is no real issue, as the
goal is to find error-free intervals. However, for this part it is relevant, so we also show
the number of intervals in which constraints were violated in the optimal solution as ’#
of violated intervals’.

Here we can see that the first two basis functions indeed seem to be important;
without these we can observe lower values and higher error rates. This indicates that
these two basis functions significantly contribute to the algorithm.

The last two basis functions generate about equal results, and even a higher value
can be found when the third basis function is left out in the 20− 40% situation. This
may be caused by the fact that these basis functions are restraints that are supposed to
lead to more options, where a lower score in the next interval is accepted in order to
obtain higher flexibility later. In some cases, this higher flexibility will not be relevant.
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Without bf: Elec bounds: 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
none α(·100) 0,2 0,35 0,35 0,35

value 1,09992 1,03603 0,94359 0,90164
error 0 1950 4450 5700
run time 6,923 7,535 6,737 6,203
# of violated intervals 0 1 1 1

1 α(·100) 0 0 0 0
value 0,907178 0,903136 0,908267 0,913903
error 0 1050 5500 11050
run time 4,321 4,649 4,617 4,789
# of violated intervals 0 1 2 3

2 α(·100) 0,2 0,45 0,25 0,35
value 1,09992 1,03657 0,94418 0,90879
error 0 1050 4450 11550
run time 4,165 4,119 4,134 4,04
# of violated intervals 0 1 1 2

3 α(·100) 0,2 0,35 0,35 0,25
value 1,09992 1,03603 0,94400 0,90164
error 0 1950 3550 5700
run time 4,477 4,352 4,399 4,54
# of violated intervals 0 1 1 1

4 α(·100) 0,2 0,35 0,35 0,35
value 1,09992 1,03603 0,94359 0,90164
error 0 1950 4450 5700
run time 5,21 6,226 4,992 6,123
# of violated intervals 0 1 1 1

Table 14: 24 intervals with one basis function left out

In some of the other cases, we did observe that the interval for choices of α in which
the optimal solution was found became smaller. This indicates that our basis functions
also carry some positive effects.

However, the contribution of these last two basis functions remains questionable,
especially as the running time is also decreased significantly if they are not used.

6.5 Randomness
We also considered a possibility where we introduced some randomness into the algo-
rithm. Currently we always take the decision with the highest value. Yet, in the taxicab
problem we have already seen that not always taking the highest value decision leads
to a larger range of states being reached, which in some cases leads to a better solution.

Although this problem is very different from the taxicab problem, we nevertheless
tried a similar approach here. Therefore, instead of always taking the solution with the
highest value, for the results in the next table we have taken with a probability of 5%
the second best decision, if this decision is feasible.
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N Elec bounds: 0 - 75 % 10 - 50 % 20 - 40 % 25 - 35 %
25 deterministic value 1,09992 1,03603 0,94359 0,90164

best value using randomness 1,10106 1,03843 0,94563 0,90547
error 0 1950 4450 5700
run time 43,996 45,271 37,3 46,348
# of violated intervals 0 1 1 1

50 deterministic value 1,098180 1,036290 0,981824 0,914132
best value using randomness 1,098610 1,036720 0,982695 0,915428
error 0 4000 9000 16950
run time 145,424 144,082 142,007 156,515
# of violated intervals 0 1 1 2

75 deterministic value 1,10203 1,03613 0,96678 0,90454
best value using randomness 1,10219 1,03736 0,97046 0,91131
error 0 5950 12250 42850
run time 305,433 314,621 300,191 313,958
# of violated intervals 0 1 1 3

100 deterministic value 1,09372 1,04354 0,96971 0,89921
best value using randomness 1,09397 1,04375 0,97313 0,90304
error 0 8000 18000 39150
run time 524,208 534,785 532,507 538,028
# of violated intervals 0 1 1 3

Table 15: 24 intervals with random decisions

We have tested this for all cases with 24 intervals using the same values for α in the
deterministic case. All other parameters were also all kept the same. As a different run
can lead to a different result in this case (if the random seed is different), this algorithm
was run a total of 10 times, where the best result was taken.

The results of this test are shown in Table 15. As we can see, in all cases we have
tried lead to an improvement. In two cases the improvement did have an higher error,
but the number of violated intervals remained the same. This means that the algorithm
does not see this higher error, so these cases should be considered improvements as
well.

Note that the improvements found are typically not too large, and for obvious rea-
sons this algorithm takes about 10 times longer than the original. Also, in many of
the runs no improvement was found, and the result found was actually worse than the
original result. Still, for every case in at least one of the ten runs an improvement over
the deterministic setting was found.

57



7 Conclusion and future work
In this thesis we have described an Approximate Dynamic Programming approach to
the micro-CHP scheduling problem. This was done using the Dynamic Programming
architecture for this problem that was described by Bosman [4]. Here the planning
horizon was discretized in several intervals, so that in every interval the state of a
micro-CHP remained unchanged. Then, there is only a finite combination of possible
positions for the micro-CHPs in the different houses.

Our ADP algorithm translated such a combination into a value by using an esti-
mated value function, that uses several features of the current positions of the houses.
These features are converted into numbers, of which then a weighted sum is taken.
This sum is used as an approximation of the value, and can be used to find a decision
strategy. Using the decisions taken and considering the revenues received using this
path, the weights are updated to form a better approximation.

This approach showed promising results, and withstood the comparison with the
results presented in Bosman [4] well. Compared to the local search method, the errors
found were significantly lower, and the values were approximately equal.

The comparison with the column generation method is more difficult. The ADP
approach was slower and in most cases showed larger errors, but the value found was
significantly higher. It also became clear, the approach appears to be some difficulties
if the instance has a minimum on time or a minimum off time which of more than 1
interval.

Yet, there are many different implementations of ADP possible for this problem,
and here we only tested one approach (and some small variations thereof). For now, it at
least seems to be an interesting addition to the spectrum of heuristics for this problem,
also because it uses an entirely different approach. While the other heuristics tried to
make schedules for individual houses, which were merged together, in this approach
the scheduling is done time-based, so in a given interval a decision is made for all
houses.

To find improvements, the following changes to the chosen approach are worth
investigating:

• In generating the results, the optimal values for α are currently found manually,
which is quite labour intensive and uses a lot of time. It would be better to make
this a part of the algorithm, although some care is required to simulate the current
optimization process.

• We could have chosen another reduction of the decision space: we have in our
approach decided to sort the houses on how long they could be left turned off.
We have already seen that this may cause difficulties when the minimum off time
and minimum on time are more than one interval. Therefore it could be better
to consider methods where the current on/off status is considered in making the
decision for the next interval.

• We can also consider other basis functions in the value function. As we have
seen in the Results section, the last two basis functions we have chosen do not
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seem to contribute much to the solution. Therefore, it seems to be a good idea to
replace these with better basis functions, if these can be found.

• Updating the weights could be done in a different way. We have now chosen a
gradient method, but in literature also a Kalman filter is mentioned. Also, the
gradient method used is sort of counter-intuitive, as there is no direct relation
between the weights and the size of the weight change. Therefore, this method
could be adapted by introducing such a relation, for example by changing the
weights in such a way that a certain percentage of the gap between the value
estimates is closed. Another possibility for changing the updates of the weights
is not just considering the estimate in the value function in the next step, but
also the value that is eventually reached, or perhaps other combinations of value
estimates and revenues reached in between.

• In the standard algorithm, we assume that the decision that gives the highest
estimated revenue is always taken. This appears to be obvious, but in multiple
paths this often leads to the same path being taken again and again. Therefore,
it could be a good idea to not always choose the optimal decision. In the Results
section we have already seen that a 5 % probability of choosing the second best
decision improves the results in all of the tested cases. This indicates that there is
some room for improvement here. Yet, the question remains what the best way
is to deviate from the optimal decision.

• As mentioned in the Results section, in considering the penalties, we currently
only observe whether a constraint has been violated. We do not consider by how
much it has been violated, as we focus on finding an error-free schedule. We
could also penalize the size of the error, i.e. adding a penalty cost per error point,
but that would imply some relation between the errors and the revenue, making
comparison between results. Adding a very large penalty per error point, so that
a solution with smaller error is always chosen, is also an option. This would
however lead to higher penalties if an infeasibility is encountered, which could
cause the weights to over-correct, making it harder to find feasible paths in future
iterations. Yet, if there is a clear idea of what infeasibilities are preferable, such
as a desire to minimize the error, some adjustments can be made.

• Choosing a factor of 1
p in changing the weights in the value function could make

the first iterations too powerful compared to the others. In this setting the first
step is a factor 10 larger than the tenth step, which is quite a big jump. Perhaps
it would be more appropriate to change the 1

p into e.g. a 1
p+9 -term, and then

increase α by a factor 10. This would make sure that the first step is of the same
size, but here the step size decreases much slower. Of course, this also implies
that the final steps are also larger, and so the final weights will have had less
opportunity to stabilize.
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