
Contributions to bin packing games

Master Thesis

Erik van Holland

Supervisor
Walter Kern (UT)

Discrete Mathematics and Mathematical Programming Chair
Department of Applied Mathematics

University of Twente, Enschede, The Netherlands

July 4, 2012

Preface

The report you are now reading is the report of my Final Project, which
could also be named as my Master Thesis. Writing this report is my final
assignment to obtain my Master degree, provided that this report will be
graded with a mark from the set S = {6, 7, 8, 9, 10}.

The main person who will decide if the mark is indeed an element of S
is Dr. Walter Kern, who is my supervisor as well. In September 2011 he
told me about his research about bin packing and bin packing games, which
sounded like a lot of complicated puzzles. That sounded perfect! I love solv-
ing puzzles! (Well, as long as they are solvable.) Then he asked me if I was
interested in trying to make some contributions to this research as a final
project. The answer was easy: sure!

The start was not easy. ‘Easy’ subclasses appeared to be quite hard and
creating interesting instances also turned out to be harder than expected.
However, when time went by, some new instances appeared and some results
for small subclasses showed up. Although, I was not able to solve the problem
for the main case, I am satisfied with the results and the report. Hopefully,
you, as reader, will like it as well.

I would like to thank Dr. Kern for his help during my research. He offered me
lots of suggestions about subclasses I should investigate, which was a great
help for me. Furthermore, I would like to thank him for finding new angles,
correcting my report and suggesting many improvements. Other people I
would like to thank are the other members of the Graduation Committee,
Prof. Dr. M. Uetz and Dr. ir. W.R.W. Scheinhardt, and Bas Joosten,
because of his inspirational thesis and continuous interest.

I would also like to thank the people who were supporting me during my
study: My family, house mates, the people of the DMMP Chair for giving
help and relaxation during the breaks, W.S.G. Abacus and in particular my
classmates and the members of the futsalteams 2 Vingers 4 and 2 Vingers
5, Navigators Studentenvereniging Enschede and all friends that are not in-
cluded in the sets I have mentioned. Above all, I would like to thank the
Lord Jesus Christ for sending love, wisdom and strength.

By the way, in my report I use ‘we’ instead of ‘I ’. This does not mean I
am schizophrenic or something like that. I use it to get the reader more
involved in understanding the results written in this report.

2

Contents

1 Introduction 4

2 Background 5
2.1 Bin packing game . 5
2.2 (Integer) linear programs . 6

3 Problem description 8
3.1 Examples . 8
3.2 Research goals . 9
3.3 Earlier work . 10
3.4 Conjectures . 11

4 Bin packing vs. 3-PART 12
4.1 Background . 12
4.2 Modifying known instances . 14

4.2.1 Merging items . 15
4.2.2 Existence of cases . 17

5 Two bins 26
5.1 General . 26
5.2 v′ = 2 . 27

6 Conclusion & Discussion 37

7 AIMMS 38

3

1 Introduction

In this report bin packing is defined (Kern and Qiu [6]) by a set of k bins
of capacity 1 each and n items of sizes a1, a2, . . . , an. We assume w.l.o.g.
0 ≤ ai ≤ 1 for all ai. Let A be the set of items and B be the set of bins. A
feasible packing of an item set A′ ⊆ A into a set of bins B′ ⊆ B is an assign-
ment of some (or all) elements in A′ to the bins in B′ such that the total size
of items assigned to any bin does not exceed the bin capacity. Items that
are assigned to a bin are called packed and items that are not assigned are
called not packed. The value of a feasible packing is the total size of packed
items.

A set F of items is called a feasible set if its total size does not exceed
1, the maximum binsize. Denote by F the set of all feasible sets. Let σF be
the total size of all items in the feasible set F and σ = (σF) ∈ R|F|. By yF
we denote how much feasible set F is used and y = (yF).

The integer linear packing program (IPP) corresponding to the integer bin
packing is:

(IPP) max σTy,

s.t.
∑
F∈F

yF ≤ k,∑
F3i

yF ≤ 1 (i = 1, . . . , n),

y ∈ {0, 1}F .

If we relax the constraint that feasible sets should be packed as a whole, we
get the fractional packing problem (PP):

(PP) max σTy,

s.t.
∑
F∈F

yF ≤ k,∑
F3i

yF ≤ 1 (i = 1, . . . , n),

y ∈ [0, 1]F .

We define the GAP as the difference between the optimal value v of (IPP)
and the optimal value v′ of (PP). Because v′ ≥ v, we have: GAP = v′ − v.

4

2 Background

Of course the bin packing problem described in the introduction has some
background. In this chapter we explain the connection with the closely re-
lated bin packing game and describe their corresponding linear problems.

2.1 Bin packing game

The reason why we study these two types of bin packing, is the close rela-
tion to something called bin packing game, which is defined as follows [5]: A
bin packing game is a cooperative N -person game, where the set of players
consists of k bins of size 1 and n items of sizes a1, . . . , an. The value of a
coalition of bins and items is the maximum total size of items in the coalition
that can be packed into the bins of the coalition.

A cooperative (maximum value) N-person game is defined by a set N of play-
ers and a characteristic (or value) function v : 2N → R satisfying v(∅) = 0.
A subset S ⊆ N is called a coalition and N itself is the grand coalition. We
define v(S) as the total gain that coalition S can achieve if all its members
cooperate.

In cooperative games one aims to ‘fairly’ allocate the total gain v(N) of
the grand coalition N among the individual players i ∈ N . An interesting
concept essentially going back to von Neumann and Morgenstern [1] is the
core of a cooperative game. The core consists the vectors x ∈ RN that satisfy:

(I) x(N) ≤ v(N),

(II) x(S) ≥ v(S) for all S ⊆ N,

where x(S) =
∑
i∈S

xi.

It is possible that the core is empty. Then there is not enough gain to
get every player satisfied, which is undesirable of course. However, there are
some ways to relax condition (II) such that the modified core is non-empty.
Faigle and Kern [5] have introduced an ε-core, where ε ∈ (0, 1], as follows.
Given ε > 0, the ε-core consists all vectors x ∈ RN satisfying condition (I)
and (II’):

(II’) x(S) ≥ (1− ε)v(S) for all S ⊆ N.

As stated in [6], we can regard ε as a tax rate, so that coalition S is allowed
to keep only (1−ε)v(S) on its own. In order to approximate the core as close

5

as possible, we would like to have the taxation rate ε as small as possible
while keeping the ε-core non-empty.

2.2 (Integer) linear programs

If we only look at condition (II) and we want to minimize the total payments
to the individual players, we get the linear program (LP):

(LP) min x(N),

s.t. x(S) ≥ v(S) for all S ⊆ N.

Note that we did not forget the constraint x ≥ 0. If we consider S as being
only one item or only one bin, its gain is 0. Therefore, the constraint in (LP)
implies x ≥ 0.

Because all bins have size 1, we may award all bins the same amount x0.
There are k bins, so the total payment to the bins is kx0. The payment to
item i is xi. Hence we have to minimize: kx0 +

∑n
i=0 xi. The constraint of

(LP) is replaced by a constraint that only considers the cases with only 1 bin
and a set of items with a feasible total size (

∑
i∈F ai ≤ 1). This is sufficient

to cover all cases. The resulting linear program is the allocation problem
(AP):

(AP) min kx0 +
n∑
i=1

xi,

s.t. x0 +
∑
i∈F

xi ≥ σF for all F ∈ F ,

x0, x ≥ 0.

Recall that we defined σF as the total size of all items in the feasible set F .

Remarkably, the dual of linear program (AP) is linear program (PP), which
is defined in the introduction (Chapter 1). So, the allocation problem and
the fractional packing problem are each other’s dual! Thus, investigating the
bin packing game is closely related to investigating the bin packing problem.
That is why this research and thesis is about bin packing in the setting pre-
sented in the introduction.

As mentioned in the introduction, we denote the optimal value of (IPP)
by v and the optimal value of (PP) by v′. Because of this duality, the op-
timal value of (LP) and (AP) is v′ as well. There is a direct relationship

6

between these optimal values and the non-emptiness of the ε-core. This is
described in [5]:

Lemma 2.1 ε-core(v) 6= ∅ if and only if ε ≥ (v′ − v)/v′.

Some interesting questions arise if we look at the ε-core. We are wondering
if there is a minimal ε which results in a non-empty ε-core for all bin packing
games or for all bin packing games in a specific subclass. From now on, we
call this minimal ε: εmin. There are more things we would like to investigate.
This is explained in the next chapter.

7

3 Problem description

The previous sections might seem quite abstract and it could be hard to
understand what is going on. In this section we give some examples and
explain what we would like to investigate. Furthermore, we give an overview
of earlier work that has been done.

3.1 Examples

So we have a set of n items of different sizes and k bins of size 1. We compare
two methods of bin packing, namely the integer packing and the fractional
packing. In the integer packing all feasible sets should be placed as a whole,
which is straight-forward and intuitive. In contrast, in a fractional packing
feasible sets may be split in a specific way. For example, if we want to place
a part of the feasible set, say of width x, it uses width x of a bin and all
items in this feasible set can be used in other feasible sets, up to width 1−x
in total. We give two examples:

Example 1: We have two bins of size 1 and seven items with the follow-
ing sizes: {

1

2
,
1

3
,
1

3
,
1

4
,
1

4
,
2

5
,
1

5

}
Then the value of the optimal integer packing is equal to the value of the
optimal fractional packing, that is v = v′ = 29

15
. An optimal packing is shown

in Figure 1.

Figure 1: Both optimal integer and fractional packing

To make things clear: It is not allowed to slice a part of the unused item with
size 1

3
, rotate it and put it on top of the items in the second bin to fill that bin

as well. The only way to place items, is to create a set of items, which has a
total size of at most 1, and place this set. If we visualize a feasible set as a

8

pile of items with width 1 and height the sum of the sizes, it is allowed to re-
duce the width but is not allowed to reduce the height. And it is not allowed
to rotate this set before placing it or to pack an item twice in one feasible set.

It occurs quite often that the optimal integer packing equals the optimal
integer packing. Especially if all items have different sizes. Now we give an
example with v 6= v′.

Example 2: There are two bins of size 1, five items with size 1
3

and one

item with size 1
2
. The optimal packings are given in the following figure. The

items with size 1
3

are called A,B,C,D and E for practical reasons.

Figure 2: Different values for v and v′

The left packing in Figure 2 is an optimal fractional packing with value
v′ = 23

12
and the right packing in Figure 2 is an optimal integer packing with

value v = 11
6

.

3.2 Research goals

The original focus was on the bin packing game. One would like to know if
it is possible to fairly distribute the total gain amongst the players in a bin
packing game. A fair distribution could be defined as a distribution that is
in the core of a cooperative game. This is already explained in the chapter
2.1.

If there does not exist such a distribution, one is interested in finding a
distribution that violates the fairness constraints least possible, i.e. as fair
as possible. This leads to the introduction of the ε-core. This ε-core is non-
empty if and only if ε ≥ (v′− v)/v’. Therefore bin packing, as defined in the
introduction, is connected to the bin packing game.

9

We would like to know what the minimal value of ε is such that all bin
packing games have a non-empty ε-core. Or at least for specific subclasses
like games with only two bins. Another interesting question concerns the
range of the GAP. GAP is possibly uniformly bounded, which would have
pleasant consequences. Generally speaking, a linear program needs less time
to be solved than a corresponding mixed integer program. So calculating
the optimal value of the non-practical linear program first, could give useful
information. If, for example, a company has to deliver a large amount of
boxes of different sizes and they need to order the amount of trucks they
would like to hire soon. Then solving the fast linear program would give a
good indication for the number of trucks they have to order. Later on, they
can solve the slower integer program to determine the optimal packing.

Another application is cost distribution. As mentioned in Chapter 2 the
dual of the linear program of the fractional packing problem is the linear
program that decides how we should distribute value in a fair way amongst
a set of players.

This research is part of the research of Dr. W. Kern (University of Twente).
He started this research about twenty years ago and has made some progress
in solving this problem. A few others also derived some results, which are
explained in the next subsection.

3.3 Earlier work

There are already some results made by other researchers. In [2], Faigle and
Kern observed that εmin ≤ 1/2: as long as there are items available, each bin

could be filled to at least half its capacity. Hence, εmin ≤ v′−v
v′
≤

1
2
k

k
= 1

2
.

Furthermore, they gave the example showed in Figure 3. This example has
an itemset consisting of three items of size 1

2
, called 1

2
, 1

2

′
and 1

2

′′
, and one

item of size 1
2

+ δ with 0 < δ ≤ 1
2
. If we take the limit by letting δ → 0, we

create an example with v → 3
2

and v′ → 7
4
, which results in GAP → 1

4
and

ε→ 1
7
. So, 1

7
≤ εmin ≤ 1

2
.

In [3], Woeginger proved that no example exist with ε > 1
3
. He assumed

there exist such examples and among those examples there should be one
with a minimal number of players (bins and items). He then derived a con-
tradiction, proving that εmin ≤ 1

3
. This is slightly improved by Kern & Qiu in

[6] by using a different (greedy heuristic) approach which results in εmin ≤ 35
108

.

10

Figure 3: Example with ε→ 1
7

If all items have a size strictly larger than 1
3
, the 1

7
-core is always non-empty.

This is proved by Kuipers in [4], using the fact that any feasible set contains
at most two items. Note that the example in Figure 3 is part of this sub-
class. So for every ε < 1

7
, there exist an example with an empty ε-core. In the

spirit of the proof of Kuipers, Faigle and Kern [2] proved another theorem
concerning items with ai >

1
3
:

Theorem 3.1 [2] If all itemsizes ai, . . . , an in the bin packing game are
strictly larger than 1/3, then v′ − v ≤ 1

4
. �

Another useful result was made in [6]. Let δ ∈ (0, 1) and let Nδ be the subset
of N that does not contain items with size ai ≤ δ. We define εN and εNδ as
the minimal ε for N and Nδ respectively, that results in a non-empty core.
Then,

Lemma 3.2 If δ, εNδ ≤ ε, then εN ≤ ε.

The consequence of this lemma is that we can ignore ‘small’ items. For
example, if we would like to prove that ε = 1

4
implies a non-empty core for

all bin packing games, we can ignore all items that have a size ai ≤ 1
4
.

3.4 Conjectures

After all, we have some conjectures we would like to prove or to disprove.
Some of them were made by other researchers and some of them were created
during our study.

• The 1/7-core is non-empty for all bin packing games.

• There exists a constant C such that v′ − v ≤ C for all bin packing
games.

• For a bin packing game with 2 bins, GAP = v′ − v ≤ 1
4
.

• If k ≤ 5, then v′ − v < 1
3
.

11

4 Bin packing vs. 3-PART

A way to look at Bin Packing problems is seeking similarities with other
(known) problems. In this section, instances of a problem called 3-partition
are used to generate interesting instances for our Bin Packing problem. In-
teresting examples are for example small instances with a large GAP.

4.1 Background

If we have k bins of size 1 and 3k items whose sum of sizes equals k. Is it possi-
ble to place three items per bin such that all items are placed? This question
is basically the well-known NP-complete 3-partition problem (3-PART). An
interesting case, with applications to bin packing, has been investigated by
Joosten [7]. He considered the ILP of 3-PART and removed the integrality,
allowing all variables to have any value in [0,1], which turned the ILP into
an LP. He found some instances where the LP has a solution, whereas the
corresponding ILP does not have a solution. These instances were called
nearly-feasible instances. In particular, he searched for instances where the
solution vector of the LP only contains the values 0, 1

2
and 1. Furthermore he

tried to find instances which are minimal with respect to the number of bins.
His main result was: Every nearly-feasible instance has k ≥ 6. Moreover,
there exist examples with 6 bins and 18 items.

He also gave some nearly-feasible instances in [7] and all these instances
have integer itemsizes. For example, look at the instance:

{0, 0, 0, 2, 2, 2, 3, 3, 4, 7, 7, 8, 8, 8, 9, 10, 11, 12} (Binsize = 16)

These 18 elements are the 18 itemsizes and the total binsize available is the
sum of all those itemsizes. In this case, the sum is 96, so each bin must have
size 16. We are looking for 6t (t ∈ N) sets of three different elements, such
that every set has the same sum and all elements appear t times in the sets.
An example with t = 2 is shown in Figure 4 [7].

A graph like this is called a solution graph. Every node is a feasible set and
its elements are shown by their sizes. A ’ symbol is added to distinguish
between two elements of the same size. Furthermore, a line between two sets
is drawn for every element they have in common. This results in a graph. In
the case t = 2, all nodes have degree three, so it is a cubic graph.

For the instance above there exists a solution with t = 2. We now show
that in this example there does not exist a solution for t = 1. Note that

12

Figure 4: Example of a solution graph

Figure 5: Corresponding Bin Packing

13

t = 1 implies that every element should be in exactly one set. Now look at
the three items of size 8. To get such an item in a set, we have to find two
other items whose sizes have sum 8. The only possibility is another item of
size 8 and an item of size 0. So, an item of size 8 should be packed with
another item of size 8. Thus, we can only pack an even number of items
of size 8. However, we have three items of size 8. Hence, it is not possible
to pack all of them. So, there does not exist a solution where all items are
packed.

These instances can be applied to our bin packing problem. All sets in
the 3-PART solution are used feasible sets in the bin packing with width
yF = 1

t
for all used sets F . For example, the equivalent bin packing of

the solution graph shown in Figure 4 is the packing in Figure 5. Because
t = 2, the width of every set in the bin packing is 1

2
. However, bin packing

does not have a constraint like ‘every bin can contain at most three items’.
So we have to rescale the itemsizes, such that at most three items fit in a bin.

One method to achieve a suitable instance is to add a constant C to all
itemsizes and to add three times that constant (3C) to the binsizes. If the
smallest item has a size bigger than a quarter bin, at most three items fit in
a bin. Applying this technique, with C = 17, to the previous instance results
into:

{17, 17, 17, 19, 19, 19, 20, 20, 21, 24, 24, 25, 25, 25, 26, 27, 28, 29} (Binsize = 67)

Another way to get a feasible instance is to divide all sizes by a large number
and add (almost) 1

3
to all itemsizes to get bins with sizes 1. Let ε be a small

number, but larger than 0. Dividing all itemsizes by 1
3ε

and adding (1
3
− 16ε)

results in the following itemsizes (with binsize 1):

σA =

{
1

3
− 16ε,

1

3
− 16ε,

1

3
− 16ε,

1

3
− 10ε,

1

3
− 10ε,

1

3
− 10ε,

1

3
− 7ε,

1

3
− 7ε,

1

3
− 4ε

1

3
+ 5ε,

1

3
+ 5ε,

1

3
+ 8ε,

1

3
+ 8ε,

1

3
+ 8ε,

1

3
+ 11ε,

1

3
+ 14ε,

1

3
+ 17ε,

1

3
+ 20ε

}
Now take the limit: ε → 0. The gap between the optimal integer solution
and the optimal fractional solution is at least the size of the smallest item,
which is 1

3
in the limit.

4.2 Modifying known instances

So every 3-PART example is a bin packing problem with three items per set
and every nearly-feasible instance of 3-PART is an instance of a bin packing

14

problem with a positive GAP, which approaches 1
3

in the limiting case. In
the previous subsection we had an example with a GAP of 1

3
in the limit,

which has 18 items and 6 bins. In this subsection we present a method of
merging items to get less items and an example with a GAP of 1

3
in the limit

with only 15 items.

4.2.1 Merging items

If we look at Figure 4, we see two pairs of nodes with two lines connecting
them. This implies that there are two pairs with two elements in common,
namely {0”, 8, 8”} & {0”, 8’, 8”} and {0’, 7, 9} & {0’, 7’, 9}. Because every
element occurs twice in the sets, those common items are always together so
we can consider them as one item instead of two. This results in an instance
with the same GAP and the same number of bins, but with less items. In
this case we can merge 0” & 8” and 0’ & 9 resulting in a total of 16 items.

Figure 6: Three pairs of sets with two elements in common

There also exists an example with three pairs of ‘connected’ items. This is
shown in Figure 6. In this case we can merge 4 & 98, 57 & 16 and 15 & 49 to
form 102, 73 and 64 respectively. This results in an instance with 15 items,
6 bins and GAP= 1

3
, which is the smallest known example with GAP≥ 1

3
.

15

So we are not able to decrease the number of items of bins anymore, but
we can decrease the itemsizes without creating non-integers. Such an exam-
ple is mentioned below. Its itemsizes are:

σA = {7, 8, 8, 9, 10, 10, 11, 11, 11, 13, 13, 17, 22, 23, 25} (Binsize = 33)

Figure 7: Fractional solution

The corresponding fractional bin packing is shown in Figure 7. If we modify
this example to get bins of size 1 we get the following itemsizes:

σA =

{
1

3
− 4ε,

1

3
− 3ε,

1

3
− 3ε,

1

3
− 2ε,

1

3
− ε, 1

3
− ε, 1

3
,
1

3
,
1

3
,

1

3
+ 2ε,

1

3
+ 2ε,

1

3
+ 6ε,

2

3
,
2

3
+ ε,

2

3
+ 3ε

}
(Binsize = 1)

It is interesting to see that the optimal fractional packing, with these item-
sizes, has the structure showed in Figure 8. All the (twelve) rectangles are
used feasible sets of size 1. Two sets with a common item are connected by a
line. This results in a graph with 12 vertices and 15 edges, which can be split
into four complete graphs of three vertices and three edges connecting the
three triangles to a connected graph. In the fractional packing we can use
all twelve feasible sets half (that is yF = 1

2
for all used sets) to get a feasible

solution, while it is not possible to pick more than four sets for the integer
packing. Therefore, if there exist an integer packing with value v such that
v = v′, there should be two other feasible sets with size 1 to get all items
packed. If not, at least one item can not be packed, which results in a GAP
of at most 1

3
(1
3

in the limit).

To find an example with a GAP close to 1
3

we have to find suitable values
for a, b and c. Values are suitable if they do not create more feasible sets of
size 1. A few examples of things that should not occur are: a + b + c 6= 1,
(1−2a)+ b+ c 6= 1 and (1−2a)+(1−2b)+ c 6= 1. There are more examples,

16

Figure 8: structure of the example

but this has not been investigated thoroughly.

To get the itemsizes we mentioned before, choose a = 1
3
− 3ε, b = 1

3
− ε

and c = 1
3
. If we want to have integer values, this case is equivalent to the

case with binsize 33 (replace the 1 in Figure 8 by 33) and a = 8, b = 10 and
c = 11.

If we look at Figure 8 an interesting question arises. Is it possible to re-
place the sets {1− 2b, b+ c− a, a+ b− c}, {1− 2c, b+ c− a, a+ c− b} and
{1− 2a, a+ c− b, a+ b− c} by a single set, which would lead to an example
with only 5 bins? Unfortunately, that is not possible. Merging those sets
implies that we do not have itemsizes a+b−c, a+c−b and b+c−a anymore
and that the set {1 − 2a, 1 − 2b, 1 − 2c} would be a set of size 1. However,
this implies that a+ b+ c = 1 as well and we can create five disjoint sets of
size 1, which is an feasible integer solution with value 5. So, the GAP would
be zero.

4.2.2 Existence of cases

Joosten showed in [7] that it is not possible to find an example with 3k
items, k bins, 3 items per bin and a GAP of 1

3
if k < 6 and t = 2. In our

previous examples we merged two items together to get less items, but still
resulted in a feasible example. We are wondering if it is possible to have an
infeasible example with 3k items (k ≤ 5), where merging leads to feasibility.
To investigate this, we start with a lemma:

17

Lemma 4.1 If there are 3T items with a total value of T and 3 different
items per feasible set, then T −1 disjoint feasible sets with value 1 imply that
there exists another disjoint feasible set with value 1.

Let the items have sizes ai (i ∈ {1, 2, . . . , 3T}) and sort the items such that
feasible set x contains the items a3x−2, a3x−1 and a3x. Then,

3T∑
i=1

ai = T and a1 + a2 + a3 = . . . = a3T−5 + a3T−4 + a3T−3 = 1 imply

a3T−2 + a3T−1 + a3T =
3T∑
i=1

ai −
3T−3∑
i=1

ai = T − (T − 1) = 1.

Hence, there are T disjoint sets of size 1. �

Note that this Lemma also holds if we replace 3 by an arbitrary other positive
integer.

In turns out that no such examples exist. We prove it in the next theo-
rem and we also show the infeasibility of the cases with 3k items. These are
already proved in [7], but we use a different approach.

Theorem 4.2 If we have k < 6 bins, n ≤ 3k items with
∑

i ai = k and there
exists a fractional packing with value v′ = k, at most three items per bin and
for every F ∈ F there holds yF = 1

2
or yF = 0, then v = k as well.

To prove this we use a ‘brute force’ approach and prove in every case with k
bins, that there exist k − 1 disjoint feasible subsets of size 1. According to
the previous Lemma there exists a k’th disjoint subset as well.

Case: k = 1
Trivial. There exists a feasible packing of size 1. Hence v = 1 = k.

Case: k = 2
Trivial. One feasible subset of size 1 implies that there exists another feasible
set of size 1. Hence v = 2 = k.

Case: k = 3
If there are 3 bins, we have 6 used feasible sets. There are (at most) 9 items
of which some of them could have size 0 to deal with cases that contain less
than 9 items. We number these items from 1 to 9. Without loss of generality
the first feasible set is {1, 2, 3}. Every item is in at most two used feasible

18

Figure 9: Placing of the 12 items

sets, so there are not more than three other used feasible sets with item 1,2
or 3. So there are two other used feasible sets disjoint with {1,2,3}. Hence,
two disjoint feasible sets so there exist a third disjoint feasible set, which
results in v = 3 = k.

Case: k = 4, n ≤ 11
In this case we have 11 items, with possibly some items of size 0, 4 bins and
8 used feasible sets. If we have a feasible set with only one item, it occurs
twice and the remaining filling problem is equal to the case with only three
bins. So we can assume that all feasible sets have at least two items. Because
every item occurs in exactly two used feasible sets, there are (at least) two
sets that contain only two items. Call those sets F1 and F2. If F1 = F2, the
resulting problem, filling the other three bins, is equivalent to the case with
k = 3, so this results in v = k as well.
If F1 ∩ F2 = ∅, they intersect with maximal four other sets. While there are
six sets left, there is a third disjoint set. Hence, v = 4 = k.
The remaining case is F1∩F2 = {a} for some item a. If we now take a set of
two items and a disjoint set of three items (which clearly exists), the union
of these sets is non-disjoint with maximal 5 other sets. Because there are 6
other sets, there exist a third disjoint set as well. Hence, v = 4 = k.

Case: k = 4, n = 12
Without loss of generality there are two disjoint sets with the following items:
{a, b, c} and {d, e, f}. To prevent from getting a third disjoint set, all items
a, b, c, d, e and f are also placed in the six other sets. Because the new
formed sets containing a, b or c are disjoint with {d, e, f}, they have to share
an item. Applying the same argument to the other three sets, it results in
the distribution shown in Figure 9.

So there are no three disjoint used sets. However, this packing is just the
union of two packings in two bins (one for items {a, b, c, g, h, i} and one for

19

items {d, e, f, j, k, l}), each for which we already proved that there exists an
integer packing of value 2. Hence, v = 2 · 2 = 4 = k.

Case: k = 5, n ≤ 11
As mentioned before, we can assume that all feasible sets contain at least
two items. This implies that we have at least 8 sets with only 2 items. These
8 sets contain 3 disjoint sets, with a total of 6 items. So these the union
of these three is non-disjoint with maximal 3+6=9 sets. Hence, there is a
fourth disjoint set, so v = 5 = k.

Case: k = 5, n = 12
Now we have 6 sets with 2 items. If there are 3 disjoint sets amongst them,
there also exists a fourth disjoint set in the fractional packing and we have
v = 5. Else, we are sure that there are always two disjoint sets amongst
them. To prevent three disjoint sets, we have to place the items in a specific
way. Namely, we have the sets:

{a, b}, {c, d}, {a, e}, {b, e}, {c, f}, {d, f}

However, this results in 6 items of size 1
2
, so we can still form three disjoint

feasible sets of size 1. Because the other four sets contain other items, we
can create four disjoint feasible sets. Hence, v = 5 = k.

Case: k = 5, n = 13
There are 4 sets consisting of two items, so there are (at least) two of them
disjoint. These two sets are disjoint with at least one of the other six sets
containing three items. Without loss of generality these three disjoint sets
are the sets: {a, b}, {c, d} and {e, f, g}. To prevent four disjoint sets, the
other seven sets must contain each one of these items. Furthermore, if item
e, f or g is in a two-item-set (together with item h), we would have three
disjoint two-item-sets which implies a fourth disjoint itemset as well. So the
items e, f and g are in different three-item-sets all disjoint with {a, b} and
{c, d}. If two of these three sets are disjoint, we would have four pairwise
disjoint sets and we are done. So we can assume that these sets contain the
items: {e, i, j}, {f, i, k} and {g, j, k}. But now we have a bin packing for two
bins (four feasible sets where every item occurs twice) which results in v = 2
on that part. Hence, v = 5 = k.

Case: k = 5, n = 14
Two sets have only two items. Call these sets F1 and F2. Then we consider
three cases: F1 = F2, F1 ∩ F2 = {a} and F1 ∩ F2 = ∅.
If F1 = F2, the items in these sets are fully used and our instance reduces to

20

the case: k = 4 & n = 12.
If F1∩F2 = ∅, we say that these sets are: F1 = {a, b} and F2 = {c, d}. There
exists a third feasible set, say {e, f, g}, and to prevent a fourth disjoint set,
all these seven items should be in the other seven sets. Furthermore the three
sets containing e, f or g are all disjoint with both F1 and F2, so they must
intersect each other pairwise. Hence, the sets {e, f, g}, {e, h, i}, {f, h, j} and
{g, i, j} exist and this is just a bin packing of two bins. Hence v = 2 on that
part, reducing our instance to the case k = 3.

If F1 ∩ F2 = a, we can assume that F1 = {a, b} and F2 = {a, c}, which
implies that item b and c have the same size. If b and c are never in the same
set, we could swap to form F1 = {a, c} = F2 which results in v = k by reduc-
tion to k = 4. Therefore we can assume that there exists a set F3 = {b, c, d}
and F4 = {d, e, f} exists as well. If items e and f are together in another
set, we can replace these two items by one item, which results in case k = 5
and n = 13. Therefore, e ∈ F5 and f ∈ F6. The remaining sets F7, F8, F9

and F10 are disjoint with both F1 and F4, which are disjoint as well, so they
must intersect each other pairwise. This results again in a two-bin packing
which has value 2 as mentioned before. So this reduces our instance to the
case k = 3 and we are done.

Case: k = 5, n = 15
We now have 10 sets, each containing 3 items, and 15 items, each placed
in two different sets. For every two disjoint sets, there exist a third disjoint
set. So w.l.o.g. the following sets exist: F1 = {a, b, c}, F2 = {d, e, f} and
F3 = {g, h, i}. The remaining seven sets should all contain at least one of
these items to prevent a fourth disjoint set. We can now distinguish three
subcases:

• F4 = {a, d, g}.

• F4 ⊇ {a, d} & F5 ⊇ {b, e}.

• F4 ⊇ {a, d} & F5 ⊇ {b, g}.

Note that if two items are both times in the same set, we can replace them
by a single item which results in the bin packing problem with 14 items, a
case that has been treated before.

If F4 = {a, d, g}, then all other six sets have one item in common with
the union of F1, F2 and F3 and are disjoint with F4. Furthermore, if b ∈ F5

and c ∈ F6, then both sets are disjoint with both F2 and F3 so F5 and F6

21

should intersect. We now apply the same argument to the other four sets,
which results in: F5 = {b, j, .}, F6 = {c, j, .}, F7 = {e, k, .}, F8 = {f, k, .},
F9 = {h, l, .} and F10 = {i, l, .} where the items m, n and o have not been
distributed yet. However, it does not matter how we distribute the items
m, n and o, there are always three disjoint sets amongst the last six sets.
Together with F4 they form four disjoint sets and there holds: v = 5 = k.

If F4 ⊇ {a, d} and F5 ⊇ {b, e}, the remaining sets meet: c ∈ F6, f ∈ F7,
g ∈ F8, h ∈ F9 and i ∈ F10. So F8, F9 and F10 are disjoint with both F1 and
F2. This implies that F8, F9 and F10 are not allowed to be disjoint. Hence:
F8 = {g, k, l}, F9 = {h, k,m} and F10 = {i, l,m}. Together with F3, this
forms a bin packing of two bins. Hence, v = 5 = k.

The final case is where F4 ⊇ {a, d} and F5 ⊇ {b, g}. Then c ∈ F6, e ∈ F7,
f ∈ F8, h ∈ F9 and i ∈ F10. If F7 ∩ F8 = ∅, then F1, F3, F7 and F8 form
four disjoint sets. So we have to place item j in both F7 and F8. The same
argument applied to F9 and F10 results in k ∈ F9 and k ∈ F10. The current
overview is shown in Figure 10.

Figure 10: Overview

Without loss of generality, F6 = {c, l,m} and we have the following subsub-
cases:

• l ∈ F4 and m ∈ F5. Then the sets F4 and F5 have an empty intersection
and they are both disjoint with F7, F8, F9 and F10. These four sets
have 8 different items in its union, so {F7, F8, F9, F10} contains at least
two disjoint sets, which results in a total of 4. Hence, v = 5 = k.

• l ∈ F4 and n ∈ F5. Then F4 ∩F5 = ∅ and the items m, n and o (twice)
have to be placed. If item m is placed in set F7 or F8, then set F9 or
F10 (or both) contains item o. This results in four disjoint sets. The
case with m ∈ F9 or m ∈ F10 is similar.

22

• n ∈ F4 and o ∈ F5. If l ∈ F7 or F8 and m ∈ F9 or F10, the sets F4,
F5 and the sets containing l and m are four disjoint sets and we are
done. Else w.l.o.g.: F7 = {e, j, n}, F8 = {f, j, o}, F9 = {h, k, l} and
F10 = {i, k,m}. Then {F3, F4, F6, F8} are four disjoint sets.

• n ∈ F4, n ∈ F5, l ∈ F7 and m ∈ F8. Then {F2, F5, F6, F9} form four
disjoint sets.

• n ∈ F4, n ∈ F5, l ∈ F7 and m ∈ F9. Then {F2, F5, F6, F9} form again
four disjoint sets.

Now we have covered all cases. �

Remark that these proofs also hold for cases with less items, because items
can be considered as items with size 0. However, we also gave proofs for
these easier cases to show that these cases can be treated in an easier way.

Immediate consequence:

Lemma 4.3 There is no nearly-feasible instance of 3-PART for k ≤ 5.

We now deal with the case with 6 bins in the following lemma:

Lemma 4.4 Assume k = 6 bins, n < 14 items with
∑

i ai = 6 and there
exists a fractional packing with value v′ = 6, at most three items per bin and
yF = 1

2
or yF = 0 for all F ∈ F . Then v = 6 as well.

The cases with less than 12 items contain items of size 1 and therefore reduce
to cases with less than 6 bins, which are discussed in the previous theorem.
So we have two cases left: n = 12 and n = 13. In both cases, there are at
least 10 feasible sets of two items, so there always exist four disjoint sets.
This can be shown quite easily: We call the first set with two items F1 and
this set contains the items a and b. Then, F1 intersect with at most two
other sets and there are at least seven other sets of two items disjoint with
F1. We call one of these sets F2 and so on.

Case: n = 12
In this case all feasible sets contain two items. To prevent 5 disjoint sets,
we have to place the items in a specific way which is shown in Figure 11.
However, this implies that all items have size 1

2
, which clearly leads to an

integer packing with value 6.

23

Figure 11: Fractional packing for 12 items

Case: n = 13
There are 10 sets containing two items and therefore there are four of them
disjoint, say F1 = {a, b}, F2 = {c, d}, F3 = {e, f} and F4 = {g, h}. Then
the items of at least two of these sets are in other sets of size two as well.
W.l.o.g. a ∈ F5, b ∈ F6, c ∈ F7 and d ∈ F8. Note that these sets contain
no item from F3 and F4. Hence F5 and F6 are disjoint with F2, F3 and F4,
so F5 and F6 should have a common item. So, F5 = {a, i} and F6 = {b, i}
and applying the same argument results in F7 = {c, j} and F8 = {d, j}.
However, F1, F5 and F6 imply that a = b = i = 1

2
and F2, F7 and F8 imply

that c = d = j = 1
2
. So, i+ j = 1 and we have a feasible set disjoint with F1,

F2, F3 and F4. Hence, v = 6.

This completes the proof. �

The case with n = 14 ended with a remarkable result. We were expect-
ing that there does not exist such an example with a positive GAP and we
tried to prove this. However, it resulted in the example shown in Figure 12:

Figure 12: Fractional packing for 14 items

In Figure 12 we see 12 sets of which at most 4 are disjoint. The itemsize 1
2

occurs three times, while the itemsizes 3
8

and 3
8

+ ε occur twice. Its solution
graph is shown in Figure 13.

24

If there would exist an integer packing with value v = 6, all three items with
size 1

2
should be packed. However, the only possibility to pack these items

in a set of size 1, is packing it along with another item of size 1
2
. Because

we have three items of size 1
2
, this is impossible. Hence, v < 6. Because the

smallest item has size 1
4
− 2ε, there holds: v = 19

4
+ 2ε and GAP = 1

4
− 2ε.

Figure 13: Solution graph

In Figure 13 we see the solution graph, which is remarkably disconnected.
Its left part has three nodes consisting of two items each, which makes it
impossible to get an equivalent 3-PART instance.

25

5 Two bins

The easiest case to investigate is the case where there is only 1 bin. However,
this is trivial because only the largest feasible set is used in the optimal
fractional packing, which is an integer packing as well. So there is no need
to look at cases with k = 1. The case k = 2 is the first non-trivial case and
that is why we are studying bin packing with two bins. We distinguish two
cases: general and v′ = 2.

5.1 General

In this subsection we treat the general case, i.e. there are two bins and no
other constraints.

Lemma 5.1 If there are two bins, the GAP, the difference between the op-
timal value of the fractional solution v′ and the optimal value of the integer
solution v, is at most 1

2
.

Let F be the used set with the largest value. We call this value σF (≤ 1).
Using F to fill the first bin, we can fill the second bin to at least half its
capacity as stated in section 3.3 [2]. Then,

v ≥ σF +
1

2
≥ 2σF −

1

2
≥ v′ − 1

2

Hence, v′ − v ≤ 1
2
. �

Creating an integer packing
To create an integer packing, it seems to be a good guess to take the largest
feasible set F1 and the largest feasible set disjoint from F1. However, these
two sets might not form the optimal packing. We can also take G1, the sec-
ond largest feasible set and the largest feasible set disjoint from G1. This
might lead to a better result, but could also be non-optimal.

We now give an example where we should ignore the p − 1 largest feasible
sets (p ≥ 2) to get an optimal packing:

σA =

{
1

2
+ δ,

1

2
+ δ,

1

2
− pδ, 1

2
− pδ, 2pδ, (2p− 1)δ, (2p− 2)δ, . . . , (p+ 2)δ

}

26

Then, the total sum of all items is 2 + 1
2
(3p2−p+ 2)δ and the largest feasible

sets are:

F1 =

{
1

2
− pδ, 1

2
− pδ, 2pδ

}
σF1 = 1

F2 =

{
1

2
− pδ, 1

2
− pδ, (2p− 1)δ

}
σF2 = 1− δ

F3 =

{
1

2
− pδ, 1

2
− pδ, (2p− 2)δ

}
σF3 = 1− 2δ

...

Fp−1 =

{
1

2
− pδ, 1

2
− pδ, (p+ 2)δ

}
σFp−1 = 1− (p− 2)δ

Fp =

{
1

2
+ δ,

1

2
− pδ

}
σFp = 1− (p− 1)δ

Using one of the first p−1 feasible sets implies that we do not use both items
of size 1

2
+δ. We then get an integer packing of value at most 3

2
+ 1

2
p(3p−1)δ,

while using Fp results in an integer packing with value v = 2−2(p−1)δ, which
is larger if δ is small enough. Moreover, if we take δ → 0, this difference is
approaching 1

2
, which is the worst-case as stated in the previous lemma.

Lemma 5.2 Using the largest feasible set may yield a value gap with respect
to the optimal integer packing of size ≈ 1

2
.

So considering the use of the largest feasible set seems to be useless if we
want to prove that the maximal GAP is less than 1

2
.

5.2 v′ = 2

In this case we assume that there are two bins and the optimal fractional
packing has value v′ = 2.

Let y = (yF) be an optimal fractional packing and let sy be the cardinality of
the support of y (that is, the number of used sets in the fractional packing).
Clearly, sy ≥ 2. If the optimal fractional packing contains two disjoint sets
(of size 1), those sets form an optimal integer packing of size 2 as well. We
are looking for examples with a (large) GAP so these cases are not interesting
anymore. Therefore we assume in what follows that any two used sets in the
fractional packing have at least one element (item) in common.

27

Before we distinguish cases with a different sy we give some general results.

Lemma 5.3 If we have two bins, ai >
1
4

for all items and there exists a
fractional packing of value 2, then GAP < 1

3
.

Proof Because v′ = 2, the entire width of the two bins is used, so
∑

i yFi = 2.
We now take an arbitrary used set and call this set F1. If F1 contains not
more than two items it is disjoint with a certain other used set, because its
items do not cover more than yF1 + 2(1− yF1) < 2 of the total width. So F1

contains at least three items. Because all items have a size larger than 1
4
, F1

should contain exactly three items.

Assume that F1 = {a, b, c}. Then the following sets are non-empty: A =
{Fi|Fi ∩ F1 = {a} ∧ σFi = 1}, B = {Fi|Fi ∩ F1 = {b} ∧ σFi = 1} and
C = {Fi|Fi ∩ F1 = {c} ∧ σFi = 1}.

If item a, b or c has a size smaller than 1
3
, we can use F1 and a item from

set A,B or C respectively to form an integer packing with size > 5
3

by using
item a, b or c once.

Else, the items a, b and c have size 1
3
. Applying the same argument to other

sets, leads to the observation that all items have size 1
3
. Then we can easily

form an integer packing with value 2. So, GAP < 1
3
. �

Lemma 5.4 If we have two bins, v′ = 2 and the most used set has width w,
then GAP ≤ 1−w

2−w .

Call the most used set F1, so yF1 = w. The remaining used sets (with a total
width of 2− w) should all contain at least one item from F1. Assume there
does not exist an used set, where the total size of the items in the intersection
with F1 is at most 1−w

2−w . Then, the total size of the items form F1 exceeds

w · 1 + (2− w) · 1−w
2−w = 1, which is impossible. Contradiction, so there exists

such a set. Now take this set together with F1 to form an integer packing by
deleting the intersection. This intersection has a total size of at most 1−w

2−w ,

so GAP ≤ 1−w
2−w . �

If w = 1, the GAP is obviously 0 (there always exists a disjoint used set
to form an integer packing of value 2). If we take w → 0, then GAP → 1

2
, a

value we already knew. However, if w → 0, there are a lot of different used
sets and a lot of items as well. It feels intuitive that the GAP is small if there
are a lot of items with different sizes. So, it should be possible to make some
improvements on this area.

28

sy = 2
If sy = 2, both sets are fully used. That is, if we call the sets F1 and F2,
there holds yF1 = yF2 = 1, which is an integer packing as well. Hence, no
GAP.

sy = 3
If sy = 3, no optimal packing exists where every two sets have a common
item. To show this, call the used sets F1, F2 and F3. We use the fact that
every item occurs in total at most once in the packing. (This is just the
constraint:

∑
F3i yF ≤ 1.) So if two sets, Fi and Fj, have a common item,

the inequality Fi + Fj ≤ 1 must hold. Therefore, we get the inequalities:

yF1 + yF2 ≤ 1, yF1 + yF3 ≤ 1, yF2 + yF3 ≤ 1,

which imply: yF1 +yF2 +yF3 ≤ 3
2

and v′ ≤
∑
yFi ≤ 3

2
, a contradiction. Hence,

an example with sy = 3 does not exist.

sy = 4
An example with sy = 4 does exist and we need at least seven items to
achieve that: To have all pairs of sets non-disjoint, we need (at least) six
items. If there were exactly six items, they need to be distributed in the
following way:

{a, b, c}, {a, d, e}, {b, d, f}, {c, e, f}

However, this implies that a + b + c + d + e + f = 2 and together with
a + b + c = 1 it is easy to see (Lemma) that {d, e, f} is another feasible set
of size 1. Hence, the optimal integer packing also has value 2.

This result also proves the following Lemma:

Lemma 5.5 If there are two bins, sy = 4, the optimal fractional packing has
value v′ = 2 and all items have a size strictly larger than 1

4
, that is ai >

1
4

for all i. Then, v = 2.

If ai >
1
4

for all i, then at most three items fit in a bin. So the optimal
fractional packing contains either two disjoint sets or just six items. In case
there are two disjoint sets, these sets both have size 1, which leads to an
integer packing with size v = 2. In the case there are just six items, the
system we just described also implies v = 2. �

29

An example where it is impossible to get an integer packing with value 2 is
one with the following itemsizes:

σA =

{
1

4
,
1

4

′
,
1

4

′′
,
1

4

′′′
,
3

8
,
3

8

′
,
3

8

′′}
To distinguish between itemsizes of the same size, we added ’ signs. The sum
of all those items is 2 + 1

8
and all items have a size of at least 1

4
. Hence, it

is impossible to get an integer packing with value 2. But it is possible to get
a fractional packing with value 2. Consider the following sets (with yFi = 1

2

for all i).

F1 =

{
1

4
,
1

4

′
,
1

4

′′
,
1

4

′′′}
F2 =

{
3

8
,
3

8

′
,
1

4

}
F3 =

{
3

8
,
3

8

′′
,
1

4

′}
F4 =

{
3

8

′
,
3

8

′′
,
1

4

′′}
The constraint Fi ∩ Fj 6= ∅ holds for all i, j, all sets have size 1 and no item
is used more than twice. Hence, this is a feasible fractional packing of size
2. The optimal integer packing has value 15

8
, so the GAP equals 1

8
. This is

shown in Figure 14.

Figure 14: Optimal packings

The previous example is the limiting case of the structure shown in Figure
15. We assume that this structure holds and try to calculate a packing such
that the GAP is maximized.

30

Figure 15: Structure

It contains four feasible sets:

{a, b, c, w}, {a, d, e}, {b, d, f} {c, e, f}

And all these sets have size 1. This leads to four constraints:

a+ b+ c+ w = 1

a+ d+ e = 1

b+ d+ f = 1

c+ e+ f = 1

Which results in the itemsizes shown in Table 1.

Item Size
a a
b b
c c
d 1

2
− 1

2
a− 1

2
b+ 1

2
c

e 1
2
− 1

2
a+ 1

2
b− 1

2
c

f 1
2

+ 1
2
a− 1

2
b− 1

2
c

w 1− a− b− c

Sum: 5
2
− 1

2
(a+ b+ c)

Table 1: Itemsizes

The values of a, b and c can still be chosen, while the values of the other four
variables depend on a, b and c. The sum of all variables is 5

2
− 1

2
(a+ b+ c),

which is equal to 2 + 1
2
w. This is what we expect, because w is the only

itemsize that occurs only once in the fractional packing as shown in Figure
15.

31

If all items have a size of at least w, the integer packing has a value of
at most 2 + 1

2
w −min{a, b, c, d, e, f, w}. Assuming that the optimal integer

packing equals this value, optimality is reached if all items have a size of at
least 1

4
. (It is not possible to get a lower value of the optimal integer packing

because of the constraint: a+ b+ c+w = 1.) This is the case in our previous
example.

Lemma 5.6 If there are two bins and sy = 4, then the optimal y can be
chosen to be half-integral: yF = 1

2
or yF = 0 for all F .

All sets do intersect each other pairwise. So yFi + yFj ≤ 1 for all Fi and Fj.
Because we use four sets, the result follows. �

Lemma 5.7 If there are two bins, v′ = 2 and sy = 4, then GAP < 1
4
.

Proof Because sy = 4, there are four sets of size 1 with yF = 1
2
. We

call these sets F1, F2, F3 and F4. If there are two disjoint sets the result
follows immediately, so we can assume all sets do pairwise intersect. We can
distinguish the items of a set into four groups: The first three groups are
the items that are also in the other three sets, and the remaining group are
items that are not placed in other sets. For now we assume that every group
consists of only one item. (Otherwise combine the elements in a group to one
new larger element.) In that case, w.l.o.g. the feasible sets are the following
sets:

F1 = {a, b, c, w}, F2 = {a, d, e, x}, F3 = {b, d, f, y}, F4 = {c, e, f, z}

The sum of all these items is: 2 + 1
2
(w + x + y + z). We assume that

w ≥ x ≥ y ≥ z.

If item a has size < 1
4
, then the integer packing F1 + F2 \ {a} results in

v > 7
4
. Hence, by applying the same argument, the items a, b, c, d, e and f

have a size of at least 1
4
. This implies that the items w, x, y and z have a size

of at most 1
4
. So by deleting one or more items from the set {w, x, y, z} out

of the set of all items, it is possible to get a sum of all itemsizes ∈ (7
4
, 2].

More precisely, we delete the smallest set with a total size bigger than
1
2
(w + x+ y + z). There are four cases and in all four cases we can form an

integer packing by using all remaining items so there always exists an integer
packing with v > 7

4
:

32

If {x, y} should be deleted, then use F1 and {d, e, f, z}.
If {w, z} should be deleted, then use F2 and {b, c, f, y}.
If {x, y, z} should be deleted, then use F1 and {d, e, f}.
If {w} should be deleted, then use F2 and {b, c, f, y, z}.

So it is always possible to create an integer packing with a value larger than
7
4
. �

sy = 6
An example with sy = 6:

σA =

{
3

16
,

3

16

′
,

3

16

′′
,
1

4
,
1

4

′
,

5

16
,

5

16

′
,
3

8

}
The sum equals 33

16
and the smallest item has size 3

16
. Therefore, the value of

the integer packing is not larger than 15
8

. This is shown in Figure 16.
To get a fractional packing with value 2, we can use the following sets (with
all yFi = 1

3
):

F1 =

{
3

8
,

5

16
,

5

16

′}
F2 =

{
3

8
,
1

4
,

3

16
,

3

16

′}
F3 =

{
3

8
,
1

4

′
,

3

16
,

3

16

′′}
F4 =

{
5

16
,

5

16

′
,

3

16

′
,

3

16

′′}
F5 =

{
5

16
,
1

4
,
1

4

′
,

3

16

}
F6 =

{
5

16

′
,
1

4
,
1

4

′
,

3

16

′}
Note that, with these itemsizes, it is not possible to get two sets with all
items in common, which would contradict the statement that sy = 6. So,
with these itemsizes we need six sets to get value 2. Furthermore, there is
only one possibility, apart from permutation of items with the same size, to
get an optimal fractional solution with sy = 6, provided that there are 3
equal parts per bin. And if we try to get a solution with sy = 4, the optimal
value would be 63

32
.

33

Figure 16: Optimal packings

To prove the uniqueness of this solution, consider that with these items there
are four ways to get a set of size 1:

α :

{
3

8
,

5

16
,

5

16

}
, β :

{
3

8
,
1

4
,

3

16
,

3

16

}
, γ :

{
5

16
,

5

16
,

3

16
,

3

16

}
, δ :

{
5

16
,
1

4
,
1

4
,

3

16

}
The letters α, β, γ and δ denote the number of times each set occurs.
If we look at the two items with size 1

4
for example, we know that each item

occurs in 3 sets. So, in total the itemsize 1
4

occurs six times, which leads
to the constraint: β + 2δ = 6. Applying this technique to the other items
results in four constraints:

α + β = 3, 2α + 2γ + δ = 6, β + 2δ = 6, 2β + 2γ + δ = 8

Where the last constraint equals 8 instead of 9, because one item of size 3
16

is only part of two sets (instead of three). This due to the construction of
these instance.

These four constraints lead to the feasible solution: α = 1, β = 2, γ = 1 and
δ = 2. So it happens twice that the two items with size 1

4
are together in the

same set, which implies that the two other sets that contain an item with
size 1

4
have two different items with size 1

4
. Applying the same argument for

items of size 5
16

results in the observation that no two sets have the same
items. Thus this packing is unique provided that 3 equal parts per bin are
used. �

Actually, there exists another solution that uses 6 different sets. This so-
lution is shown in Figure 17 and needs 4 parts per bin.

34

Figure 17: 6 sets

We are wondering if there exist more examples like this for sy = 2s with
s ≥ 4. To derive such an example, it may be useful to look at the strategy
we used to derive the previous example with sy = 6. We looked at bins
of size 16 (=8(s − 1)) and created a set of items with a total itemsize of
33 (=16(s − 1) + 1) and a minimal itemsize of 3 (=s). Then the optimal
packing has a value of at most 30 and if we are lucky it may be possible to
get a fractional packing with value 2. Furthermore, we would like to use 2s
different feasible sets to get sy = 2s, while it is not possible to get an optimal
fractional packing if sy < 2s.

We discovered that it is quite hard to do so. Although it is easy to find
an example that needs s parts to reach optimality, it is hard to find an ex-
ample that uses 2s different sets. We now give an example with s = 5, but
sy ≤ 7:

σA =

{
5

32
,

5

32

′
,

5

32

′′
,

3

16
,

3

16

′
,

3

16

′′
,

7

32
,

7

32

′
,
1

4
,

5

16

}
In Figure 18 we show that it is possible to get a packing of value 2 by using
7 different sets.

If we would have used less than 5 parts per bin, it would be impossible
to get a fractional packing of value 2. This can be shown by observing that
the sum of all itemsizes is 65

32
and the smallest item has size 5

32
. So at least

1
5
’th should be sliced of an item to get a total size of 2.

Another example is: {
1

6
,
1

6

′
,

5

24
,
1

4
,
1

4

′
,

7

24
,
1

3
,
3

8

}
35

Figure 18: An optimal packing that needs 7 sets.

Its packing is shown in Figure 19.

Figure 19: Another optimal packing that needs 7 sets

36

6 Conclusion & Discussion

After all, this research is not finished yet. The general problem has not been
solved yet and there are still a lot of unsolved subclasses left. For example,
we did not prove any of the conjectures mentioned in section 3.4. However,
we have some conjectures about some subcases we have studied.

In section 5 the case with only 2 bins has been described. We gave some
interesting examples and proved some lemmas for certain cases. However,
we think that the bounds of some lemmas can be improved. These lemmas
are lemma 5.1, 5.3 and 5.7.

If we look first at lemma 5.1 from page 26, it says that the upper bound
of the GAP is 1

2
. However, the example with the largest known GAP is

Figure 3 from page 11 which has GAP 1
4
. So there are still improvements to

make.

Lemma 5.3 from page 28 states that if every item has a size larger than
ai >

1
4
, the GAP is less than 1

3
. Actually, we could not create a single in-

stance with a positive GAP at all!

The third example is lemma 5.7 from page 32. This lemma states that GAP
< 1

4
, while the largest known GAP is 1

8
what is shown in Figure 14 from page

30.

In section 4 we did some research about the similarities between Bin Packing
and the 3-partition problem. In lemma 4.3 we derived the same result as was
derived in [7]: There does not exist a nearly-feasible instance of 3-PART for
k ≤ 5. However, when we tried to prove the case for k = 6 up to 14 items,
we found a bin packing instance with a remarkable GAP of 1

4
with an even

remarkable disconnected solution graph.

The question now is: What things can we do to get more improvements?
Starting with small subcases, like considering only two bins, should be a
good start, but in our research we were not able to solve the problem for this
case. It seems to be a better strategy to use software to create the instance
that maximizes the GAP out of a specific subclass of instances. So far, we
only tried to do so by hand and checked the validity of our instances by using
AIMMS (c.f. section 7). So there may exist instances with a larger GAP.

37

7 AIMMS

It is hard to create examples without useful software. Although most exam-
ples we created where made by hand, we used the software AIMMS to check
the validity of our instances. AIMMS is optimization software and optimizes
by solving a set of (non)-linear equations, where some variables can be inte-
ger (or have other types of boundaries).

Although the bin packing problem can be written as the linear program
described in the introduction (Chapter 1), we changed it a bit to make it
suitable for our research. The described linear problem uses a set of all feasi-
ble sets to maximize. This set should be generated before to make it possible
to solve this problem. However, this needs a long calculation time so we did
not do this. (Remark that if there is a minimum bound on the itemsizes,
generating can still be done in polynomial time.) Instead, we wrote two pro-
grams that avoided generating all feasible sets.

The first program splits every bin in a equal number of equal parts. This
is sufficient to deal with our subproblems, but it might be non-optimal for
the general case. This splitting in equal parts has, of course, a reason. In
our constructed examples we saw this happening all the time and it is also
logical for this reason: In the optimal situation some items are fully used,
so the feasible sets that contain one of these items fit exactly in one bin.
If feasible sets contain more than one of these items, there does not always
exist an optimal solution with integer yF . For example: an optimal solution
with constraints y1 + y2 ≤ 1, y1 + y3 ≤ 1 and y2 + y3 ≤ 1 could contain
y1 = y2 = y3 = 1

2
(depending on the other constraints). However, sets of

constraints like
∑

i∈C yi ≤ 1, with a certain set C, lead to rational solutions.

The second program uses the Column Generation method to derive the opti-
mal fractional packing. We now describe both programs. The first program
includes some redundant variables and parameters which are used to easily
read some properties of the optimal solution.

38

Bin splitting Program

Sets:

Set name Letter Range
Bins b Integer from 1 to B
Items i Integer from 1 to I
Parts p Integer from 1 to P

Parameters:

Letter Description
B Number of bins
I Number of items
P Number of parts
Si Size of item i
Tb Size of bin b

Variables:

Letter Description
Xipb Binary which tells if item i is in part p of bin b

Yib Binary which tells if item i is in bin b (Redundant)
Zb The total size of items in bin b (Redundant)

Constraints:∑
iXipb · Si ≤ Tb ∀ b, p Total itemsize in part does not exceed binsize∑
b,pXipb ≤ P ∀ i Every item is used in at most P parts

Yib =
∑

pXipb ∀ i, b Number of times item i is in bin b (Redundant)

Zb = 1
P

(
∑

i,pXipb · Si) ∀ b Total size of items in bin b (Redundant)

Objective:

max
1

P

∑
b,p,i

Xipb · Si

39

Column Generation Model

Sets:

Set name Letter Range
Items i Integer from 1 to I
Feasible sets f Integer from 1 to F

Parameters:

Letter Description
B Number of bins
I Number of items
F Number of feasible sets
ai Size of item i
Rif Binary which indicates if item i is in feasible set f
zf Size feasible set f

Variables:

Letter Description
yf Usage of feasible set f

Constraints:∑
f yf ≤ B Total usage fits in the bins (Bin constraint)∑
f yf ·Rif ≤ 1 ∀ i Every item is used at most once (Item constraint)

Objective:

max
∑
f

yfzf

Initialization

F = 1, R11 = 1 and z1 = a1.

40

Creating a new feasible set

Parameters:

Letter Description
x0 Shadowprice bin constraint
x1 to xI Shadowprices item constraints
ai Size of item i

Variables:

Letter Description
bi Binary which indicates if item i is in the new formed feasible set.

Constraints:∑
i

bi · ai ≤ 1 The new formed set has to be feasible.

Objective:

min v = x0 +
∑
i

bi · xi −
∑
i

bi · ai

Adding the new feasible set

Increase F by 1.
RiF = bi for all i.
zF =

∑
i bi · ai.

Procedure

1. Run Initialization.
2. Find optimal packing given the generated feasible sets.
3. Create a new feasible set.
4. If v < 0, add the new set and go back to step 2.
5. Show packing.

41

References

[1] J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, Princeton, 1947.

[2] U. Faigle and W. Kern. On some approximately balanced combinatorial
cooperative games. Mathematical methods of operations research, 38:141-
152, 1993.

[3] G.J. Woeginer. On the rate of taxation in a cooperative bin packing game.
Mathematical Methods of Operations Research, 42:313-324, 1995.

[4] J. Kuipers. Bin packing games. Mathematical Methods of Operations Re-
search, 47:499-510, 1998.

[5] U. Faigle and W. Kern. Approximate core allocation for binpacking
games. SIAM J. Discrete Math, 11:387-399, 1998.

[6] W. Kern and X. Qiu. Improved taxation rate for bin packing games.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6595
LNCS:175-180, 2011.

[7] S.J.C. Joosten and H. Zantema. Relaxation of 3-partition instances. To
be published

42

	Introduction
	Background
	Bin packing game
	(Integer) linear programs

	Problem description
	Examples
	Research goals
	Earlier work
	Conjectures

	Bin packing vs. 3-PART
	Background
	Modifying known instances
	Merging items
	Existence of cases

	Two bins
	General
	v'=2

	Conclusion & Discussion
	AIMMS

