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Management Summary 

 

This report contains a study on the influence of take-or-pay contract on the profitability of a 

combined heat and power plant (CHP). A combined heat and power plant is a power plant that next 

to electricity also generates usable heat. CHP plants can for example be used for district heating, the 

horticulture industry and industrial processes that require heat. A contract with a take-or-pay (TOP) 

clause gives the recipient the obligation to consume a minimum and/or maximum amount of gas 

stated in the contract. If this clause is violated, the recipient has to pay a penalty for the difference 

between the consumed amount and the contracted amount. 

One of the issues with using a contract with a TOP-clause for a CHP plant is the fact that over time 

the heat requirement of the installation is not always in line with the electricity requirement. In 

recent years, there has been a downward trend in electricity prices which makes it questionable 

whether these CHP plants should run to produce electricity. This uncertainty on power production 

has an impact on the consumed amount of gas and creates uncertainty about future levels of gas 

consumption.  

It could be possible that the current structure of the TOP-contracts is not suitable anymore in the 

new situation. If this is true, it requires modifications of the contracts in order for CHP plants to stay 

profitable. Such information is important for gas suppliers and (future) CHP plant owners.  

In order to gather insights on this problem, we have built an extension to an existing power plant 

model from EnergyQuants which can simulate a CHP. We have formulated a mathematical model 

which calculates the optimal distribution of starts and fuel consumption over the project horizon. 

Furthermore, we have improved the power plant model in order to be able to work with a 

deterministic heat demand. 

With this new model, we have run scenarios with realistic price data for the years 2009-2011. These 

scenarios yield the following results: 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 5% percent 

higher or lower than the optimal fuel amount, this leads to an average value decrease of 

1,28%.  

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 10% 

percent higher or lower than the optimal fuel amount, this leads to an average value 

decrease of 4,55%. 

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 20% 

percent higher or lower than the optimal fuel amount, this leads to an average value 

decrease of 18,20%. 

 

• A take-or-pay contract that forces the amount of fuel that has to be consumed to be higher 

than the optimal amount, has more impact on the value of a plant than a constraint that 

force the fuel consumption to be less than the optimal amount. 
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• There is no clear preference for a contract with daily, quarterly or yearly gas prices. 

We suggest validating these results for more years, as fluctuations exist within the three years in our 

sample. This could mean that our sample data is not a representative sample for all data. Also, 

further research can be conducted on the addition of CO�	demand, heat storage and a power grid 

connection.  
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1 Introduction 

 

This section introduces the topic of this study and the context in which the study has been 

conducted. Section 1.1 gives a description on the company where the thesis is conducted. Section 1.2 

addresses the reasons for this study and the problem statement. We discuss the methodology of this 

thesis in Sections 1.3 – 1.5. 

1.1 Company description 

 

EnergyQuants is a consulting firm that develops quantitative decision support models and risk 

management tools for the commodity sector. They provide software and consulting mainly to the 

commodity markets and to the energy market in particular.  

 

The company was established in January 2011, and combines the knowledge of two experts active in 

the energy and financial sector since 2000. Both are experienced from the viewpoint of both the 

utility and the energy consulting. The company is based in the Netherlands and has an international 

focus (EnergyQuants). 

1.2 Problem identification 

 

In recent years, the Dutch government has started initiatives to increase the efficiency of power 

production and the reduction of CO2 emissions. One of these initiatives is the promotion of 

decentralized energy production.  An example of decreasing CO2 output with decentralized energy 

production is the application of a combined heat and power plant (CHP). A CHP plant produces both 

energy and usable heat from coal, gas or another power source. In the Netherlands, there are a 

number of CHP plants for the agricultural industry using gas to produce energy, heat and CO2 for 

greenhouses.  

The gas used for these CHP plants is usually contracted with large suppliers and most of the times 

these contracts contain a take-or-pay (TOP) clause. A take-or-pay clause gives the recipient the 

obligation to consume a minimum amount of gas stated in the contract, or pay a penalty for the 

difference between the consumed amount and the contracted amount. One of the issues with using 

a CHP plant is the fact that over time, the heat requirement of the installation is not always in line 

with the electricity requirement. In recent years, there has been a downward trend in electricity 

prices which makes it questionable whether these CHP plants will run to produce electricity. This 

uncertainty on power production has an impact on the consumed amount of gas and creates 

uncertainty about future levels of gas consumption.  

It could be possible that the current structure of the TOP-contracts is not suitable anymore in the 

new situation. If this is true, it requires modifications of the contracts in order for CHP plants to stay 

profitable. Such information is important for gas suppliers and (future) CHP plant owners.  

This information leads to the formulation of the following problem statement: 

“Are take-or-pay contracts still suitable in the future with the current trend in electricity prices?”   
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1.3 Research questions 

 

In order to get more insights in the problem statement, we look at the economic value of a CHP 

plant. To do this, we build a model that optimizes the running pattern of a CHP plant. This thesis is 

divided into two parts: the derivation of a mathematical model formulation to calculate the 

economic value of a CHP with multiple constraints and an application to real life. 

EnergyQuants already has a functional implementation of a power plant optimization problem for a 

simple power plant. This plant model is based on linear programming and built in Matlab. A CHP 

plant is a special kind of a power plant, and the optimization of a CHP plant is an extension of the 

current power plant optimization model. Additions that have to be made in the existing model are 

long term restrictions such as yearly take-or-pay constraints and the total number of starts the CHP 

plant is allowed to make in a year. Next to that, the current formulation has to be extended to be 

able to work with a deterministic heat demand. When these additions have been made in the 

optimization model, realistic parameter settings have to be used as input variables in order to make 

an analysis of the impact of different take-or-pay contracts.  

With this in mind, the following two research questions have been formulated: 

1. “Can the existing power plant model of EnergyQuants be extended in order to be able to 

optimize a CHP plant?”  

 

2. “What is the impact of take-or-pay contracts on the profitability of a CHP plant?“ 

In order to answer this research question, the following four sub questions have been formulated: 

 

 1. How can a yearly number of allowed starts be implemented in the existing plant model? 

 2. How can take-or-pay contracts be implemented in the existing plant model? 

 3. How can deterministic heat demand be implemented in the existing plant model? 

 4. What are realistic cost elements and parameter settings for a CHP? 

These questions will be answered in the following sections. After the first three research questions 

have been answered, the current optimization model will be adapted for a CHP plant. The results of 

question four will be used as input variables in this model, after which the results will be analyzed to 

be able to give an answer to second research question in Section ten. Section eleven will summarize 

the results and give recommendation for further research. 

1.4 Scope and Limitations 

 

The results of this thesis are not only useful for gas suppliers and CHP plant owners, but should also 

give insights to EnergyQuants for valuating gas- and CHP projects. The model that will be extended is 

a model built by EnergyQuants. Inputs for this model are gas- and electricity prices. Deterministic 

scenarios for gas- and electricity prices will be used in this thesis and will be made in cooperation 

with EnergyQuants. 
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The original power plant model is built in Matlab in combination with Excel. As we will use this model 

as a basis to build upon, we will also build the extension in Matlab and Excel. 

The model is based on linear programming and this could lead to a large-scale problem if we want to 

analyze a long period with several constraints.  To decrease the computation time, the problem is 

divided in sub-problems. However, this might lead to a solution which is close to, but not exactly the 

maximum value. This is deemed acceptable. 

The plant we modeled has no outgoing connection to the power grid, which means it has to consume 

al produced energy itself. This has influence on the choice of CHP installation. Also, the model we 

build has no separate heat storage or boiler, which has influence on the run pattern.  

Apart from the electricity and heat demand, greenhouses can also have a need for CO2 to increase 

the growth of certain crops. In this model usable CO2 output for greenhouses is not modeled to 

reduce complexity. 

1.5 Methodology 

 

Section 2 gives a background on linear optimization problems and how these will be solved in 

Matlab. Section 3 describes the current power plant optimization model used by EnergyQuants and 

Section 4 will describe the differences between a normal power plant and a CHP plant. 

In Section 5 to 7, the first three sub questions will be addressed and additions to the current model 

will be described. When the first three sub questions have been answered, a model can be built to 

simulate a CHP plant. The final additions to the model are described in Section 8. 

In Section 9, we will describe and estimate realistic parameter settings for our plant model. We will 

run the model with these parameters settings for three different years, after which the results of 

these scenarios will be analyzed in Section 10.  

 

The research will be concluded in Section 11, where we will answer both research questions and give 

recommendations for further research.  
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2 Theoretical background 

 

In this section, the theoretical background of the thesis is discussed. We will give a short overview on 

linear programming problems and how we will solve these problems in Matlab. 

2.1 Linear programming 

 

Linear Programming is a way of describing and solving mathematical problems. It is a scientific 

approach to decision making and usually involves the use of one or more mathematical models.  

The model we will use in this thesis is a prescriptive or optimization model. A prescriptive model 

“prescribes” behavior for an organization that will enable it to best meet its goal. The components of 

a descriptive model include 

- Objective function(s) 

- Decision variables 

- Constraints 

An optimization model seeks to find the values of the decision variables that optimize the objective 

function among the set of all values for the decision variables that satisfy the given constraints.  

(Winston, 2004, p. 2) 

Small LP problems can be solved by hand. However, as the number of decision variables increases, 

the number dimensions of the feasible region increase as well and a computer is needed to solve the 

problem. In this thesis, we will use Matlab to solve the LP problems. This is done by a custom Matlab 

file called lp_solve. A more detailed description of lp_solve can be found in Appendix 13. 

2.2 LP problems 

  

In this thesis, we will work with two different LP models. The first model is the plant optimization 

model which calculates the optimal value of the CHP over a smaller period for a given number of 

starts and a given fuel interval. This model is a mixed integer linear problem. A more in depth 

description of this model can be found in Section three.   

The second LP model determines the optimal combination of starts and fuel consumption. This 

model uses the output from the first LP model as input variables and tries to find a feasible optimal 

combination. This model is a 0-1 integer linear problem and will be described in Section five and six. 

2.3 Milp & 0-1 IP problems 

 

An LP problem in which all variables are integers is called a pure integer LP (IP). MILP problems are LP 

problems which where some of the variables are required to be integers. A 0-1 IP problem is an IP 

where all variables are required to be either 0 or 1. The LP obtained by omitting all integer or 0-1 

constraints on variables is called the LP relaxation of the IP. In order to solve an IP problem, first the 
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optimal value of the relaxation of the LP has to be calculated. The feasible region for any IP must be 

contained in the feasible region for the corresponding LP relaxation. (Winston, 2004, pp. 475-477) 

In practice, most IP’s are solved by using the technique branch-and-bound. Branch-and-bound 

methods find the optimal solution to an IP by efficiently enumerating the points in a sub problem’s 

feasible region (Winston, 2004, pp. 512-524).  
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3 Current power plant optimization model 

 

In this section, the current power plant optimization for a normal power plant used by EnergyQuants 

will be described. In order to build a CHP plant optimization model, extensions will be made taking 

this model as a framework. 

3.1 Constraints and parameters 

 

The current model used by EnergyQuants has been built for power plants using gas as input to 

produce electricity. By using hourly gas- and electricity prices as input parameters, the model 

computes when the plant should be turned on or off and on what power production level the plant 

should run. The model takes several constraints into account which are relevant for a normal power 

plant, but are not sufficient to model a CHP plant. The constraints which are already implemented 

are: 

• Minimum power production 

• Maximum power production 

• Minimum power efficiency 

• Maximum power efficiency 

• Minimum hours per run 

• Minimum hours between two successive runs 

• Maximum number of starts 

• Ramp-up rate (maximum upwards difference in hourly power production rate) 

• Ramp-down rate (maximum downwards difference in hourly power production rate) 

• Minimum amount of gas that has to be consumed 

• Maximum amount of gas which can be consumed 

Other input parameters in the model are the time frame over which the model makes a calculation, 

the prediction period for the gas and electricity prices,  maintenance periods, fixed cost per startup, 

fuel usage per startup, and the starting position of the plant (on or off). When the plant is on at time 

t, it means that the plant is consuming fuel at time t to generate power. When the plant is in idle 

mode, it means that the plant is not consuming any fuel. 

To reduce the complexity and computation time of the model, the valuation period gets divided into 

smaller periods. By default these periods are weeks (168 hours), but can any number of hours. For 

each smaller period, the optimal set of decision variables will be calculated by lp_solve and a 

corresponding optimal value will be given. 

3.2 Optimal value 

 

The state of the plant at hour t is defined as ��. Available values for �� are:  

�� = 0 when the plant is idle at time t 

Minimum production level ≤ �� ≤	 maximum production level when the plant is on. 
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If we look at a plant in the horticulture, CO� becomes another important cost aspect. Depending on 

the crops in the greenhouse, a horticulturist also needs CO� for a better harvest. Sometimes a CHP 

will produce all the CO� needed for the crops, while at other times there is a shortage and CO� has to 

be bought from external sources. If the CHP produces too much CO�, it will also cost money because 

of the limited emission rights of the whole horticulture industry.  

 

If we take this into account, the value of the plant becomes  

 
 �� ∗ �� − ��� � −	�� 	 ∗ 	���,��� 	���
��� − � ∗ ���,���� 

Where � is the electricity price at time t, �� is the gas price at time t and �  is the efficiency. The 

variable	�� is the cost of buying CO�at time t, � is the cost of CO� emissions, and CO�,���  and CO�,���� are 

the amounts of CO� which are either bought or emitted at time t. 

Because ��, �, CO�,���  and CO�,����  are dependent on a lot of other variables like the type of crops, the 

total emission rights of the industry, the type and size of the plant and many other variables, they are 

very hard to estimate correctly. Because of this, we have decided not to take these variables into 

account in our research. For further research, this might be an interesting topic. 

When we take the above into consideration, we can rewrite the value of the plant as: 


 �� ∗ �� − ��� ����
���  

In this thesis, we refer to the above formula when we optimize the total value of a CHP plant.  
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4 What is a CHP plant? 

 

A CHP plant is a special kind of power plant which produces both energy and usable heat instead of 

just energy. Because of this, the efficiency of CHP plants is higher than the efficiency of traditional 

ones. In this section, we will give a background on different types of CHP plants. 

It is important to know the differences between CHP installations, because different plants require a 

different mathematical formulation (Weber, 2005). 

 

CHP applications mainly use two types of CHP installations: steam turbines and gas turbines. We will 

choose to work with these installations as they are the most common in the CHP industry. Also, they 

already partly modeled by Weber (Weber, 2005, pp. 97-106). 

4.1 Steam Turbines 

 

 

Steam turbines are available in sizes from under 100 kW to over 250 MW and are widely used for 

combined heat and power (CHP) applications. Unlike gas turbine and reciprocating engine CHP 

systems where heat is a byproduct of power generation, steam turbines normally generate electricity 

as a byproduct of heat (steam) generation. A steam turbine is captive to a separate heat source and 

does not directly convert fuel to electric energy. The energy is transferred from the boiler to the 

turbine through high pressure steam that in turn powers the turbine and generator. This separation 

of functions enables steam turbines to operate with an enormous variety of fuels, from natural gas to 

solid waste, including all types of coal, wood, wood waste, and agricultural byproducts (sugar cane 

bagasse, fruit pits, and rice hulls). In CHP applications, steam at lower pressure is extracted from the 

steam turbine and used directly or is converted to other forms of thermal energy. 

Steam turbine CHP systems generally have low power to heat ratios, typically in the 0.05 to 0.2 

range. This is because electricity is a byproduct of heat generation. Hence, while steam turbine CHP 

system electrical efficiency may seem low, it is because the primary objective is to produce large 

amounts of steam. However, the effective electrical efficiency of steam turbine systems is high, 

because almost all the energy difference between the high-pressure boiler output and the lower 

pressure turbine output is converted to electricity. This means that total CHP system efficiencies are 

generally high and approach the boiler efficiency level. Steam boiler efficiencies range from 70 to 85 

% depending on boiler type and age, fuel, duty cycle, application, and steam conditions  

Steam turbines differ from reciprocating engines and gas turbines in that the fuel is burnt in a piece 

of equipment, the boiler, which is separate from the power generation equipment, the steam turbo 

generator. As mentioned previously, this separation of functions enables steam turbines to operate 

with an enormous variety of fuels. 

The primary locations of steam turbine based CHP systems are industrial processes where solid or 

waste fuels are readily available for boiler use. In CHP applications, steam extracted from the steam 

turbine directly feeds into a process or is converted to another form of thermal energy. Steam 

engines are mainly seen in the chemicals, primary metals, and paper industries. Pulp and paper mills 

are often an ideal industrial/CHP application for steam turbines. Such facilities operate continuously, 
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have a high demand for steam, and have on-site fuel supply at low, or even negative costs (waste 

that otherwise would have to be disposed of) (Energy Nexus Group, 2002). 

CHP applications use two types of steam turbines: non-condensing and extraction.  

4.1.1 Non-Condensing (Back-pressure) Turbine 

 

The non-condensing turbine (also referred to as a back-pressure turbine) exhausts its entire flow of 

steam to the industrial process at conditions close to the process heat requirements. 

The term “back-pressure” refers to turbines that exhaust steam at atmospheric pressures and above. 

The specific CHP application establishes the discharge pressure. The most typical pressure levels for 

steam distribution systems are 50, 150, and 250 psig. District heating systems most often use the 

lower pressures, and industrial processes use the higher pressures. Power generation capability 

reduces significantly when steam is used at appreciable pressure rather than being expanded to 

vacuum in a condenser. Discharging steam into a steam distribution system at 150 psig can sacrifice 

slightly more than half the power that could be generated when the inlet steam conditions are 750 

psig and 800°F, typical of small steam turbine systems. A graphical representation of a back pressure 

turbine can be seen in Figure 1 (Energy Nexus Group, 2002). 

 

Figure 1: Back-Pressure Turbine (Energy Nexus Group, 2002) 

 

4.1.2 Extraction Turbine 

 

The extraction turbine has openings in its casing for extraction of a portion of the steam at some 

intermediate pressure before condensing the remaining steam. The extracted steam may be used for 

process purposes in a CHP facility or for feed water heating as is the case in most utility power plants. 

The steam extraction pressure may or may not be automatically regulated. Regulated extraction 

permits more steam to flow through the turbine to generate additional electricity during periods of 

low thermal demand by the CHP system. In utility type steam turbines, there may be several 
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extraction points, each at a different pressure corresponding to a different temperature. The facility’s 

specific needs for steam and power over time determine the extent to which steam in an extraction 

turbine is extracted for use in the process. 

With these choices the designer of the steam supply system and the steam turbine has the challenge 

of creating a system design which delivers the (seasonally varying) power and steam which presents 

the most favorable business opportunity to the plant owners. A graphical representation of an 

extraction condensing turbine can be seen in figure 2 (Energy Nexus Group, 2002). 

 

Figure 2: extraction condensing steam turbine (Energy Nexus Group, 2002) 

4.2 Gas Turbines 

 

  

Gas turbines are available in sizes ranging from 500 kW to 250 MW. Gas turbines can be used in 

power-only generation or in combined heat and power (CHP) systems. Gas turbines operate on 

natural gas, synthetic gas, landfill gas, and fuel oils. Plants typically operate on gaseous fuel with a 

stored liquid fuel for backup to obtain the less expensive interruptible rate for natural gas. Gas 

turbines produce a high quality (high temperature) thermal output suitable for most combined heat 

and power applications. High-pressure steam can be generated or the exhaust can be used directly 

for process drying and heating. This high-quality exhaust heat can be used in CHP configurations to 

reach overall system efficiencies (electricity and useful thermal energy) of 70 to 80 percent.  

The oil and gas industry commonly uses gas turbines to drive pumps and compressors. Process 

industries use them to drive compressors and other large mechanical equipment, and many 

industrial and institutional facilities use turbines to generate electricity for use on-site. When used to 

generate power on-site, gas turbines are often used in combined heat and power mode where 

energy in the turbine exhaust provides thermal energy to the facility. 

The majority of the simple-cycle gas turbine based CHP systems are operating at a variety of 

applications including oil recovery, chemicals, paper production, food processing, and universities. 

Simple-cycle CHP applications are most prevalent in smaller installations, typically less than 40 MW. 
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A typical commercial/institutional CHP application for gas turbines is a college or university campus 

with a 5 MW simple-cycle gas turbine. Approximately 8 MWh of 150 psig to 400 psig steam (or hot 

water) is produced in an unfired heat recovery steam generator and sent into a central thermal loop 

for campus space heating during winter months or to single-effect absorption chillers to provide 

cooling during the summer. 

Within a gas turbine, atmospheric air is compressed, heated, and then expanded, with the excess of 

power produced by the expander (also called the turbine) over that consumed by the compressor 

used for power generation. Consequently, it is advantageous to operate the expansion turbine at the 

highest practical temperature consistent with economic materials and internal blade cooling 

technology and to operate the compressor with inlet air flow at as low a temperature as possible. As 

technology advances permit higher turbine inlet temperature, the optimum pressure ratio also 

increases. 

A gas turbine based system is operating in combined heat and power mode when the waste heat 

generated by the turbine is applied in an end-use. For example, a simple-cycle gas turbine using the 

exhaust in a direct heating process is a CHP system, while a system that features all of the turbine 

exhaust feeding a heat recovery steam generator and all of the steam output going to produce 

electricity in a combined-cycle steam turbine is not (Energy and Environmental Analysis, 2008). 
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5 Startups 

 

In this section, we answer the first sub question; how can a yearly number of allowed starts be 

implemented in the existing plant model?  

 

First, we will give a short explanation on startups and why they have to be modeled. After that, a 

mathematical representation and the implementation in Matlab will be discussed. 

5.1 Relevance of startups for a CHP plant 

  

When working with a TOP-contract, most gas suppliers sell their gas at a price which is day specific. 

However, electricity prices vary a lot on different hours during a normal day. There is a peak around 

lunchtime and an even higher peak around 18:00 o’clock. Because of this, it depends on the hour 

whether it is profitable to turn on a CHP plant. Figure 1 shows the energy price (euro per MWh) for 

the fifth of January in the price scenario made together with EnergyQuants. 

 

Figure 3: Estimation energy prices 5-1-2012 

In the optimal situation, it would be possible to change the status of your CHP on an hourly basis. 

However, this needs a lot of monitoring and currently is not technically possible. Next to that, CHP 

plants have a minimum up-time for each run. When a CHP has been turned off, it also needs a cool 

down time before it can start up again. In the coming sections, we will work with a minimum up and 

down time of twelve hours. However, this is variable. 

 

If we assume that the plant is only profitable during peak hours in electricity prices, and has 

minimum up- and down time of twelve hours, the optimal solution is to have one run of twelve hours 

each day over the period in which the plant generates the most profit. However, startups cost a fixed 

amount of money and a fixed amount of fuel each time. Next to that, there usually is a maximum 

number of starts incorporated in the financial contract. Startups also have impact on the wear and 
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tear of the CHP plant. Because of this, it might be better to only use a limited number of startups 

during a week, month or year.  

5.2 Mathematical representation of startups 

 

 

In order to make a mathematical representation of the problem with a limited number of startups, 

we break the problem up into smaller periods of weeks. We do this in order to decrease the problem 

complexity and computation time. We compute for each week the total value of the plant for a 

different number of starts. Afterwards, the optimal number of starts each week is selected using an 

additional optimization 

When there only is a limited number of a starts each year, you cannot perform a start every day. 

Instead, with a minimum up- and down time of twelve hours, the CHP plant will start between zero 

and seven times a week. The current power plant model is already able to compute the weekly 

optimal value for a given number of starts. If we compute this over m weeks, with n different number 

of start possibilities, this gives us an m by n matrix with the optimal value for each possible number 

of starts for every week. Selecting the optimal amount of starts can be done with the following 

mathematical model. 

 �	 = � !"#$%	& = '"#$%	()	*+,%+*	%�,- = '"#$%	()	*+,%+*	&	�!	. 	�		/�,- = /,0"	�!	. 	�	.�+ℎ	&	*+,%+*	2�,- = 34�*�(!	5,%�,$0	+ℎ,+	6",0*	1	�)	+ℎ	�89	"**	&	*+,%+*	�!	. 	�	: = ;,<�#"#	!"#$%	()	*+,%+*  

;,<	=	 = 	

/�,- 	 ∗ 2�,--� 																		
*. +.													

%�,- ∗ 2�,- ≤ :-� 											
																				
2�,- = 1	- 																													(∀�) 
�, &, %�,-	, :	,%	�!+�%*	2�,- = 0	(%	1	:	 > 0										 %�,- 	≥ 0							� = 1,2, … F!"#$%	()	. *G	& = 0,1,… F#,<�#"#	*+,%+*	H%	. G	
  

The goal is to maximize the total value of the CHP. This is done by multiplying a set of decision 

variables, 2�,-, with a set of corresponding values, /�,-. 
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The first constraint bounds the maximum number of starts that can be made over the entire 

valuation period. The second constraint ensures that when the CHP starts & times in week	�, it cannot 

start & + < times in the same week.  

5.3 Startups in Matlab 

 

Unfortunately, the lp_solve algorithm described in Section 3.2 cannot work with this mathematical 

formulation. This is because the current mathematical formulation is not exactly in the form  

;,<	5 = )J ∗ <  *. +.			K ∗ < ≤ $ 

In order to do so, we have to transform /�,- into a vector f, transform 2�,- into a vector x, and rewrite 

the constraints as matrices. In this section, we will give an example on how this is done. 

Making a vector of /�,- by removing one dimension looks quite difficult, but is easily done by placing 

all subsequent rows under each other.  This will transform an m by n matrix into an m*n vector 

where the old element /�,-now corresponds with )(-L�)∗MN�. 
We will give an example by looking at the first four weeks of the year, with five different starting 

options. The Matlab model creates the following output for /�,-. 

O0 79030 80644 82045 834450 76462 78100 79545 809900 73895 75556 77046 785350 70989 72675 74208 75742W 
In this matrix, the rows are week one to four, and the column are zero to four startups. Because the 

price model gives the same energy prices in the first four weeks of January, the values of /�,-are the 

same in each column, if we transform this matrix like we described above, we can create the vector f; 

XY
YY
YY
YY
YY
YY
YY
YY
YY
YZ 000079030764627389570989806447810075556726758204579545770467420883445809907853575742[\

\\
\\
\\
\\
\\
\\
\\
\\
\]
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Now we have our vector f, we want to know what to do with our decision variables. In the current 

model, these are described by action matrix 2�,-, which has the same size as /�,-. This matrix needs to 

be transformed into vector x, with the same length as vector f. 

We build this vector by again placing all subsequent rows under each other, as we did with the 

previous matrix. We now have made a vector where the old element	2�,- corresponds with <(-L�)∗MN�. 
Next, we rebuild the constraints of the mathematical model. We start with the constraint:  



%�,-.∗ 2�,- ≤ :-�  

This constraint ensures that the sum of the number of starts each week does not exceed the total 

number of allowed starts. This constraint can be written as one equation where K ∗ < is the left hand 

side and b is the right hand side of this equation.  

The right hand side of our constraints, b, equals the maximum number of allowed starts, R. Our set 

with decision variables, x, is currently a vector of size m*n by 1 and corresponded with 2�,-. Because 

we have to satisfy K ∗ < ≤ $, we know A is a 1 by m*n matrix. The values in A are the weights for the 

decision variables which in our example equal %�,-. 

The weight for each decision variable in this constraint should be equal to the number of starts of the 

corresponding element in vector x. For the example we used above, this gives us the following matrix 

for A: 

F0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4G 
This matrix consists of a sequence of n (the number of weeks) times each possible number of starts. 

For any other number of weeks or number of start possibilities, the matrix A is created in the same 

way as shown in the example above. 

For example, if we rewrite this as a linear constraint, we get 

 0<1 + 0<2 + 0<3 + 0<4 + 1<5 + 1<6 + 1<7 + 1<8 + 2<9 + 2<10 + 2<11 +2<12 + 3<13 + 3<14 + 3<15 + 3<16 + 4<17 + 4<18 + 4<19 + 4<20 ≤ : 

Next, we have to define A and b for the weekly starting constraint, 

 
 2�,- = 1-  

To avoid confusion with the previous constraint, we will call A and b respectively Aeq and beq. 

As with the previous constraint, we first describe this problem with an example where we use four 

weeks and five starting options. Because m and n are still of the same size, the decision variables are 

the same vector x.  
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In the mathematical formulation,  2�,^ + 2�,� + 2�,� + 2�,_ + 2�,` had to equal 1 for each i. this means 

that the vector b consists out of ones, and is a vector with size m (the number of periods) 

In this example, beq becomes the vector, O1111W 

With any other number of weeks m, of starting iterations, n, beq will always be a vector of size m and 

will be filled with ones. 

Aeq equals the left hand side of the equation, and always is a matrix of size m by m*n. This is 

because there are m equations that have to be solved for m*n decision variables.  

For each i, the row of matrix Aeq should correspond with  2�,^ + 2�,� + 2�,� + 2�,_ + 2�,`  

This means that these five elements should get a 1, and the other elements in the row should be 

zero. This is in accordance to the values 2�,- can be. 

In this example, Aeq becomes the matrix: 

O1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 00 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 00 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 00 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1W 

Aeq will always be a size m by m*n matrix with the same pattern as the matrix from our example. 

If we combine these matrices into a set of linear equations of the form K ∗ < ≤ $, we get:  

 <1 + <5 + <9 + <13 + <17 = 1 constraint week 1 <2 + <6 + <10 + <14 + <18 = 1 constraint week 2 <3 + <7 + <11 + <15 + <19 = 1 constraint week 3 <4 + <8 + <12 + <16 + <20 = 1 constraint week 4 

To finalize our example, we have to combine the constraints above. The LP formulation to calculate 

the optimal division of starts over the periods becomes: 

 ;,< 5 =  )J ∗ < 

 

s.t. 0<1 + 0<2 + 0<3 + 0<4 + 1<5 + 1<6 + 1<7 + 1<8 + 2<9 + 2<1 + 2<11 + 2<12 + 3<13 + 3<14 + 3<15 + 3<16 + 4<17 + 4<18 + 4<19 + 4<20 ≤ :                    Max # starts constraint  <1 + <5 + <9 + <13 + <17 = 1    constraint week 1 <2 + <6 + <10 + <14 + <18 = 1    constraint week 2 <3 + <7 + <11 + <15 + <19 = 1    constraint week 3 <4 + <8 + <12 + <16 + <20 = 1    constraint week 4 
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0 ≤ < ≤ 1 < = 0 (% 1 

With all this in mind, we have built a Matlab file which rebuilds all the matrixes from the 

mathematical model given in Section 5.2 and such that we can use the function lp_solve. It uses the 

output from the lp_solve file to create a vector with the optimal starts for each period. This vector 

can be used as input variable to determine the optimal value over the valuation period.  

5.4 Analysis 

 

Using the new Matlab file, we can run different scenarios in order to see the impact of the new 

model on the plant output. To save time, we have chosen to run these scenarios for a month instead 

of a whole year. We have done this, because the effects over a month are similar to the effects over 

a year, but on a smaller scale. Apart from measuring the value of the plant, the runtime has been 

monitored in order to be able to see what the impact is of splitting the problem into smaller periods. 

For all our scenarios in this section, the maximum power generation level is 100 MW and the 

minimum power generation level is 10 MW. The minimum run time and minimum idle time are both 

12 hours. The start state of the plant each period is idle. 

Scenario 5.1 has no limitation on the total number of starts and the possibility to start zero to seven 

times a week. Because the plant has an on and off time of twelve hours, this is the maximum amount 

that still leads to a different optimal solution. 

In Scenario 5.2, we decrease the number of total starts to fifteen. The maximum number of starts 

each week is seven. 

In Scenario 5.3, the total number of starts allowed is unbounded, but the number of starts each week 

is brought back to a maximum of three, which effectively decreases the total allowed number of 

starts to a maximum of fifteen starts that month. 

In Scenario 5.4, we do not split up the problem into smaller sub problems of a week, but instead do a 

calculation over a whole month. The total number of allowed starts will be fifteen as in Scenario 5.2. 

Because the problem is not split into sub-problems, the total value will probably be higher. 

 

The results of these scenarios can be found in Appendix 1. 

From the results from Scenario 5.1, we see that the optimal solution with infinite starts would be to 

make a run every day, as we already stated in Section 5.1. Week five only has three starts, because it 

consists out of the 29
th

, 30
th

 and 31
st

 of January and not a whole week. If we run the model for a 

whole month, we thus have 31 starts. 

In Scenario 5.2, it can be seen that when the total amount of starts goes down, Matlab calculates 

that it is more profitable to make longer runs instead of turning the plant off for a longer period. This 

means that the plant will also run during hours where it actually will make losses. As a result, the 

consumed amounts of gas and produced energy are higher, but the total profit is lower.  

Scenario 5.3 gives all weeks an equal amount of starts. The amount of consumed gas and created 

energy surprisingly is the same. However, because the division of the starts is less optimal than in 

Scenario 5.2, the optimal value is slightly lower. Because in this scenario we only have four different 
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starting options instead of eight, the amount of decision variables is halved. We can see that this 

leads to an expected decrease in runtime. 

Scenario 5.4 calculates the optimal value over a whole month. This indeed gives a slightly more 

optimal value for the plant. The value computed Scenario 5.2 is 99.87% of the optimal value in 

Scenario 5.4.  However, Scenario 5.4 requires over eleven times more time to compute this outcome, 

as it is not split up into sub problems. If this scenario is run over a whole year, the increase in runtime 

will be even higher. Appendix 9 contains a table with runtimes for different valuation periods without 

splitting it into smaller periods. 

 

5.5 Conclusion 

 

In this section we gave a mathematical representation of a power plant with a finite number of 

allowed starts. This formulation has been implemented in the power plant optimization model in 

Matlab, and we have analyzed different scenarios. From these scenarios, we can conclude that a 

bounded number of starts can lead to a lower optimal value, but a higher gas consumption and 

energy production. However, the latter is specific for this case, as with in other price scenarios, the 

model might choose to lengthen the idle time instead of the run time. This will result in a lower 

optimal value, but also lower gas consumption and energy production 

we can also conclude that splitting the problem into smaller sup problems gives a suboptimal value 

which is extremely close to the optimal value, while decreasing the running time of the model with a 

significant amount.  
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6 Take-or-pay 

 

In this section, we give an answer on the second research question; How can take-or-pay contracts 

be implemented in the existing power plant model? 

We give a short explanation on take-or-pay contracts and their influence on CHP plants. After that, a 

mathematical representation and the implementation in Matlab will be discussed. Finally, an analysis 

will be given with the new Matlab model. 

6.1 Relevance of take-or-pay contracts for a CHP plant 

 

A contract with a take-or-pay clause gives the recipient the obligation to consume a minimum 

amount of gas, or pay a penalty for the difference between the consumed amount and the 

contracted amount. There can also be a maximum allowed of fuel that may be consumed. In the 

ideal situation, the optimal fuel consumption of a CHP plant is within the range of the take-or-pay 

clause. Because the energy price is volatile and dependent on a lot of external factors like the 

weather, this is not always the case. In cold winters or hot summers, more energy is used to 

respectively warm and cool houses and offices than average. This leads to a higher energy price, 

which means that running the CHP will be profitable frequently. When the winters are less harsh or 

the summers are relatively cool, energy prices will be lower, which means the CHP will be less 

frequent in the money.  

 

In the scenario described above, the owner of a CHP plant will probably get an optimal value if he 

uses more gas than allowed in the take-or-pay contract. In the second scenario, the plant might only 

be in the money for small periods during the year, meaning the CHP plant owner probably needs to 

use less fuel than in the take-or-pay contract in order to get the optimal value. 

 

In both scenarios, the optimal solution cannot be used, as it violates the take-or-pay clause of the 

contract. In the next section, we will describe a mathematical model which takes take-or-pay 

constraints into account and distributes the fuel in an optimal way over different periods in the 

project. 

6.2 Mathematical Formulation with take-or-pay constraints 

 

In order to make a mathematical representation of the problem with extra fuel constraints, we again 

split the valuation period into smaller periods. We use the mathematical formulation from Section 5 

and add several extra constraints. These include maximum fuel consumption and minimum fuel 

consumption. This means that we also need an extra variable for the amount of fuel consumed. Next 

to that, the matrix with optimal values for a number of starts each week needs to be expanded with 

a dimension for the fuel used. The same happens with our set of decision variables.  

This gives us the following mathematical formulation. 

�	 = � !"#$%	
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& = '"#$%	()	*+,%+*	 = )"0	4(!*"#H+�(!	�!+%5,0	%�,-,a = '"#$%	()	*+,%+*	&	�!	. 	�	.�+ℎ	 	)"0	4(!*"#H+�(!	)�,-,a = b"0	4(!*"#c	�!	. 	�	.�+ℎ	&	*+,%+*	,!c	)"0	4(!*"#H+�(!	�!+%5,0	 	/�,-,a = /,0"	�!	. 	�	.�+ℎ	&	*+,%+*	,!c	)"0	4(!*"#H+�(!	�!+%5,0	 	2�,-,a = 34�*�(!	/,%�,$0	+ℎ,+	6",0*	1	�)	�89	"**	&	*+,%+*	�!	. 	�	.�+ℎ	)"0																4(!*"#H+�(!	�!+%5,0	 	: = ;,<�#"#	!"#$%	()	*+,%+*	b#,< = ;,<�#"!	b"0	4(!*"#H+�(!	b#�! = ;�!�#"#	b"0	4(!*"#H+�(! 

;,<	=	 = 	


/�,-,a .∗ 2�,-,aa-�  

 *. +.													


%�,-,a 	 ∗ 	2�,-,a ≤ :a-�  

 																				


)�,-,aa- 	 ∗ 	2�,-,a 	≤ b#,<�  

																					


)�,-,aa- 	 ∗ 2�,-,a ≥ b#�!�  

 																				

2�,-,aa = 1- 													(∀�)												
�, &,  , %�,-,a	, :	,%	�!+�%*	2�,-,a = 0	(%	1		:	 > 0 %�,-,a	, )�,-,a	, b#�!, b#,<	 ≥ 0	� = 1,2, … F!"#$%	()	. *G	& = 0,1,… F#,<�#"#	*+,%+*	H%	. G	 = 1,2,… F#,<�#"0	)"0	�!+%5,0G  
This model looks a lot like the model from Section 5.2, but there are some changes. First of all, there 

is an extra dimension for the fuel consumption, k. Also, two constraints have been added to bind the 

maximum amount of fuel and minimum amount of fuel consumed over the whole -contract period. 

The maximum and minimum amount of fuel that can be consumed corresponds with the values in 

the take-or-pay contract. 

6.3 Take-or-Pay in Matlab 

 

As in the previous section, these extra constraints have to be altered in order to work with the 

lp_solve algorithm. 

First of all, we will have to add another input variable to the model, the fuel used each week. This 

transforms our two-dimensional matrix  /�,- into the three dimensional matrix /�,-,a where k stands 
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for a fuel interval. This fuel interval consists of a minimum and maximum value for the allowed 

amount of fuel consumption  

In the ideal situation, the amount of fuel consumed would be calculated with interval steps of 1 

MWh. This way, the fuel used each week will be allocated in an optimal way. However, this will lead 

to a huge increase in the number of decision variables, as it is not exceptional if the amount of gas in 

a take-or-pay contract is in the range of 1000MWh to 10000MWh. Because of this, the intervals have 

to be larger in order to give an acceptable computation time.  

Because a take-or-pay contract limits both the maximum and minimum amount of fuel that can be 

consumed, it would seem logical to add a dimension for the maximum and minimum amount of fuel 

that can be consumed each week.  

If we choose to calculate the value each week for !	different amounts of minimum and maximum 

fuel consumption,  we create two more dimension in our model and we obtain !� times more 

decision variables.  

Instead, we choose to describe the maximum and minimum fuel consumption with fuel intervals. We 

choose a fixed number of intervals for each scenario, and the maximum and minimum fuel 

consumption for each interval is scaled to the total number of intervals. This seems reasonable as 

they are related variables. If we use ! different intervals, we obtain ! times more decision variables 

instead of !� times more, as we only create one extra dimension. 

The maximum amount of fuel that can be consumed per period is either the maximum amount of 

fuel that the plant can consume if the plant runs on maximum capacity during the whole period, or 

the maximum amount of fuel allowed to consume over the whole valuation period. However, it is 

unlikely that the second scenario is realistic, especially for projects with a longer valuation period. 

The first scenario will only occur when either the energy price is extremely volatile over different 

periods or when the constraint on the minimal amount of fuel forces to plant to run on total capacity 

during the whole period. Also these scenarios are highly unlikely to occur.  

By setting the maximum amount of fuel consumption allowed each week to a lower amount than the 

constraints described above, we will create either smaller intervals, or less intervals of the same 

length. The first option leads to a better solution and the second option leads to less computation 

time, which both are improvements for the model. However, by setting the maximum amount of fuel 

consumption allowed each week too low, we have the risk that it will be below the optimal value for 

certain periods. 

To cover the problem stated above, we chose to split the fuel options into equal intervals between 

zero and twice the average amount fuel allowed each week. As will be shown in the analysis, this still 

covers the optimal amount of fuel consumed for each week for our practice scenarios. For example; 

when the average amount of fuel allowed each week is 10000MWh and we use four different fuel 

iterations, the model will give the optimal value for the intervals [0-5000 MWh], [5001 -10000 MWh], 

[10001-15000 MWh] and [15001-20000 MWh]. The scenario with a maximum amount of 0 MWh 

does not have to be run, as it is being calculated in the zero starts option when the start state is off, 

or is infeasible when the start state is on. 
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The current model is already capable of calculating the optimal value for a given period, with a given 

number of starts and a given minimum and maximum fuel. This optimal value corresponds with our /�,-,a. Once again, we will have to transform this three-dimensional matrix to a one-dimensional 

vector. We will used the same heuristic as we used in Section 5.3, but because we have one 

dimension more, we will have to do it twice. This transforms the size m by n by p matrix /�,-,a into 

vector f with size 	# ∗ ! ∗ H, where the old element /�,-,a corresponds with the new element 

)(-L�)∗M∗dN(�L�)∗dNa) 
Now we have our vector f, we will do the same with our set of decision variables 2�,-,a.We will 

transform this matrix to the vector x with size 	# ∗ ! ∗ H, where the old element 2�,-,a corresponds 

with the new element 

<(-L�)∗M∗dN(�L�)∗dNa 

Next, we will look at the extra constraints formulated in the previous section, starting with 




)�,-,aa- 	 .∗ 	2�,-,a 	≤ b#,<�  

	


)�,-,aa- 	 .∗ 2�,-,a ≥ b#�!� 	 
These constraints ensure that the optimal value will not exceed the minimum and maximum values 

of the take-or-pay contract. These constrains are very similar to the maximum number of starts 

constraint, and can be modeled in the same way.  

Our vector b for these constraints is equal to the right side of the equations, which are b#,< and b#�!. Because our set of decision variables, x, has size m*n*p by 1, the size of A is 2 by m*n*p.  The 

value assigned to both rows off A is the amount of fuel consumed in the optimal solution for the i, j 

and k of the corresponding decision variable.  

The last constraint which has to be added, is the weekly fuel constraint which ensures that each 

week, only one fuel interval can be chosen for the optimal solution. As said in the previous section, 

this constraint can be combined with the weekly start constraint and can be written as: 


 
 2�,-,aa 	- = 1 

To construct Aeq, we will look at an example with four weeks, three fuel intervals and two starting 

options. This gives us 4*3*2=24 decision variables. 

In the mathematical formulation 2�,�,� + 2�,�,� + 2�,�,_ + 2�,�,� + 2�,�,� + 2�,�,_ has to equal 1 for all i. 

Like in the previous section, our beq is equal to the right side of the constraints, equaling a vector of 

size m (the number of periods) filled with ones. 

Aeq equals the left hand side of the equation, and always is a matrix of size m by m*n*p. This is 

because there are m equations that have to be solved for m*n*p decision variables.  
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For each I, the row of matrix Aeq should describe 2�,�,� + 2�,�,� + 2�,�,_ + 2�,�,� + 2�,�,� + 2�,�,_, 

meaning these values will receive a one. All other values in the row will be zero. 

In this example, Aeq becomes the following matrix. 

O1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 00 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 00 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1W 

Aeq will always be a matrix of size n by m*n*p, with the same pattern as the matrix above. 

If we combine these matrices into a set of linear equations of the form K ∗ < ≤ $, we get:  

<1 + <2 + <3 + <13 + <14 + <15 = 1  Constraint week 1 <4 + <5 + <6 + <16 + <17 + <18 = 1  Constraint week 2 <7 + <8 + <9 + <19 + <20 + <21 = 1  Constraint week 3 <10 + <11 + <12 + <22 + <23 + <24 = 1 Constraint week 4 

Together with the constraints for the maximum number of starts and the minimum and maximum 

amounts of fuel, we can extend the LP model to calculate the optimal combination of starts and fuel 

consumption each week. 

With the information above, we have extended the Matlab file to be able to work with the extra 

dimension and to rebuild all the matrixes from the mathematical model given in Section 6.2 to 

prepare them for the function lp_solve. The new Matlab file does not only give a vector with an 

optimal starting sequence, but will also give a vector with the optimal fuel consumption each week. 

Together, these two vectors can be used to determine the optimal value over the total valuation 

period.  

6.4 Analysis 

  

In this section, we run the improved model for several scenarios to get data on the impact of the new 

constraints. In order to save time, the scenarios all have been run for a month. We run several 

scenarios where the take-or-pay maximum is below the optimal amount and several scenarios where 

the take-or-pay minimum is above the maximum amount. 

 

In the previous section we ran a scenario without fuel and start restrictions. This scenario had a value 

of 367.865, and a gas consumption of 67.695 MWh. We take this scenario as a base case for the 

other scenarios. 

6.4.1 Maximum fuel lower than optimum fuel amount 

 

In the first set of scenarios we will set the limits of the take-or-pay contract to a minimum of 50000 

MWh and a maximum of 60000 MWh. In order to see the influence of the take-or-pay constraints 

and chosen interval method, we choose to leave the number of starts unbounded.  

The results of these scenarios can be found in Appendix 2 
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As we already expected, a higher number of intervals increases the optimal value. This is because 

when the intervals are smaller, the probability that the solution is close to the optimal solution gets 

higher. However, for a small number of intervals this might not always be the case, as we can see in 

Scenario 6.4. Even though there are more intervals, the optimal value becomes smaller. However, if 

we keep increasing the number of intervals, we see that the optimal value increases as well.  

 

With smaller intervals, the model can make more precise computations. This can also be seen in the 

fact that in the latter scenarios, the amount of consumed gas keeps coming closer to the maximum 

allowed amount by the take-or-pay constraint. When the intervals are larger blocks, the amount of 

consumed gas is not exactly the maximum allowed amount. 

 

Another interesting fact is that the optimal value only decreases with 1,63%, while the amount of gas 

decreases with 11,88%. We will look at this in the coming sections, when we will run more realistic 

scenarios. 

6.4.2 Minimum fuel higher than optimum fuel amount 

 

For the second set of scenarios, we set the minimal fuel higher than the optimal amount. We set the 

minimum amount of fuel to 75000 MWh and the maximum amount to 85000 MWh In order to see 

the influence of the take-or-pay constraints and chosen interval method, we choose to leave the 

number of starts unbounded. 

The results of these scenarios can be found in Appendix 3. 

In these scenarios, we also find better results when we increase the number of intervals. We also see 

that for smaller intervals, the optimal solution sometimes is lower than the solution with a lower 

number of intervals. At the same time, these solutions also tend to use less starts than the more 

optimal solutions. This is fixed when the interval size is chosen small enough.  

The maximum value in our example does not differ much from the optimal value without a take-or-

pay clause. The optimal value decreases with 2,10% while the amount of gas increases with 10,94%. 

When we run more realistic scenarios, we will find out whether this is unique for this scenario, or 

whether a large difference in fuel consumption always leads to a small decrease in the optimal value. 

6.5 Conclusion 

 

In this section we gave a mathematical representation on how you can allocate your fuel in an 

optimal way when you are bounded to a minimum or maximum amount. This formulation has been 

implemented in the power plant optimization model in Matlab and scenarios have been run to 

analyze different scenarios. From these scenarios, we can conclude that it is possible to come close 

to an optimal solution for the fuel allocation without overloading the model with decision variables.  
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7 Deterministic heat demand 

 

In this section, we answer the third research question; how can deterministic heat demand be 

implemented in the existing power plant model? 

We first describe the importance of heat for CHP plants. Next, we will describe the relation between 

heat production and power production for the plants described in Section 3. After that, different 

scenarios will be run in order to analyze the additions to the Matlab model. 

7.1 Relevance of heat demand for a CHP plant 

 

Heat production is a crucial part of a CHP plant, as it is one of the two generated output values. In a 

CHP plant, heat is not just a side product, but a main product of which a certain amount is needed for 

processes. For example, in the horticulture, the heat is needed for climate control in greenhouses. 

Without the heat generation, a CHP is just a normal power plant. CHP Heat is also used for district 

heating of university campuses and city district heating. It can also be used for industrial processes 

which require large amounts of heat. 

7.2 Relation between power production and heat production 

 

The amount of heat that can be produced by a CHP is dependent on the power production and vice 

versa. The relation between the power production (9ef) and heat production ?ghJA differs for 

different CHP types. In this section, we describe this relation for three types of turbines: a back-

pressure steam turbine, an extraction condensing steam turbine and a gas turbine. These are the 

same CHP installations as we described in Section 4. For this description, we use the mathematical 

model described by Weber. (Weber, 2005) 

7.2.1 Back-pressure steam turbine 

 

Back-pressure steam turbines are often used in CHP if power and heat are needed simultaneously 

and in rather stable shares, since they produce electricity and heat in a constant ratio. The amount of 

heat that can be produced is dependent on the power production, and the amount of power 

produced is dependent on the amount of heat that is generated. This relation can be written in 

linearized form as follows: 

9�,ief = 2ef ∗ g�,ihJ          

In this constraint, 9�,ief stands for the energy output of at time t in state s, g�,ihJ is the heat output of 

the plant at time t in state s and 2ef describes the power to heat ratio, which is a plant specific 

variable. The power to heat ratio is the amount of power generated per unit of generated heat. As 

stated in Section 4, this ratio is usually between 0.05 and 0.2 for a back pressure steam turbine. 

The fuel consumption for a back-pressure turbine is only dependent on the power generation, and 

not on the heat generation. However, as can be seen in in the equation, the heat generation has 

influence on the power generation (Weber, 2005). 
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7.2.2 Extraction condensing steam turbine 

 

Extraction condensing steam turbines are a more complex turbine type, because of its higher 

flexibility. Such turbines offer the possibility to produce power and heat in an at least partly variable 

ratio, by extracting steam of a conventional steam turbine. The operation area of an extraction 

condensing steam turbine can be shown in a PQ chart. This chart shows all possible combinations of 

the produced electricity (P) and the produced heat (Q). 

A graphical representation of a typical PQ chart is given in Figure 4. 

 

Figure 4: PQ Chart (Weber, 2005) 

As can be seen in the PQ-Chart, the feasible region is defined by 5 lines, of which one is the y-axis 

which describes the amount of produced electricity, 	9ef. The intersection of the y-axis with line 1 is 

the maximum power output of the plant with zero heat output. The intersection of the y-axis with 

line 2 is the minimum electric output of the plant with zero heat output. 

 

The slopes of line 1 and 2 are dependent on the efficiency of the power production j and of the 

efficiency of heat production	k. These relate to the electric power reduction due to heat 

production, which is the ratio  j	/	k.  

Line 3 models a maximum heat outlet, due to the limited heat exchanger capacity. This is a given 

number, which is plant specific.  

Finally, line 4 provides a plant specific minimum power to heat ratio, 2�,M��ef  which is caused by the 

maximum ratio between the extraction and the condensing flow. 

In linearized form, these constraints can be written as 

1

j
∗ 9�,i

ef I
1

k
∗ g�,i

Jh 	 9Mmn
ef /j																		?1A 
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1

j
∗ 9�,i

ef I
1

k
∗ g�,i

Jh ≥ 9M��
ef /j																		?2A 

g�,i
hJ 	 gMmn

hJ 																		?3A 

9�,i
ef ≥ 2M��

ef 	 ∗ g�,i
hJ																		?4A 

In these constraints, 9	Mmn
ef  stand for the maximum power production of plant u and 9	M��ef stands for 

the maximum power production of plant u.  

Unlike with the back-pressure steam turbine, the fuel consumption of the extraction condensing 

steam turbine is dependent on both the electric power production and the heat production.  (Weber, 

2005) 

7.2.3 Gas Turbines 

 

Gas turbines have as main goal to produce electric power, and heat production is a welcome side 

effect. The model descriptions of the gas turbine are almost similar to that of the back-pressure 

steam turbine. However, a gas turbine usually has as the option that the heat generated can 

alternatively be taken through a heat exchanger to produce useful heat or be directly released to the 

environment through an auxiliary cooling system. This leads to the following linearized equation. 

9�,ief ≥ 2ef ∗ g�,ihJ																		(5) 
If no cooling system is available, all heat will be used, and the constraint is the same as with the back-

pressure steam engine. Compared to the back-pressure steam engine, a gas turbine has a much 

higher power generation efficiency, and a much lower heat to power ratio. 

7.3 Heat demand in Matlab 

 

In the Matlab model, we choose to model the extraction condensing steam turbine. Because heat 

demand and power demand of most CHP applications do not have a steady ratio over different 

seasons, we expect that this turbine will yield the best results. We assume that there is no excess 

power production which can be sold to the electricity network. 

Next to that, the extraction condensing steam turbine is the most complicated to model, and can be 

easily transformed into a model for the other turbines.  

7.3.1 Modeling the PQ Chart 

 

In order to model the heat demand, we need to define the feasible region the model can operate in. 

This region is given by the PQ chart described in Section 7.2.2. In order to model this, Weber has 

added an extra variable for the heat produced on time t to his mathematical formulation. However, 

over a whole year this leads to 8760 extra decision variables which will complicate the mathematical 

model considerably. 

To avoid having these extra decision variables, we made some assumption that the plant will never 

generate more heat than necessary. This is because heat production has an influence on fuel 

consumption, which costs money. Because of this, the heat demand is an input variable which is 
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known beforehand, instead of a decision variable that has to be optimized. In this case, the produced 

heat is the main product of the CHP, and heat demand always needs to be met. Electricity generation 

is a byproduct which is only generated if it is needed for heat generation or when it is more 

profitable than buying electricity. The consequence for the model is that it is not possible to extend 

the formulation with a heat storage device. However, this is not part of this thesis and can be an 

interesting topic for further research. 

Taking the above into account, we can see that 9�,ief is the only unknown variable in the first 

constraint of the PQ chart. This means that we can rewrite ?2A into 

 

9�,ief ≤ 9Mmnef − g�,iJh ∗ jk 	 
By solving this equation for every t, we acquire a maximum value for 9�,ief for every t. 

In the same way, we can transform ?3A into 

 

9�,ief ≥ 9	M��ef − g�,iJh ∗ jk 

Which gives us a minimum value 9�,ief can become at time t. 

The minimum value 9�,ief can become is not only bounded by constraint	(3), but also by constraint (5).  
Because both constraints must apply, this means that our hourly minimum value of 9�,ief is equal to 

the maximum of both constraining values. 

Whit this in mind, we do not have to make an extra decision variable for the produced heat, but we 

have to transform the hourly minimum and maximum allowed power production with the formulas 

mentioned above and replace the old vectors 9M��ef  and 9Mmnef  with the newly computed values. 

The last constraint which bounds the heat production has not been modeled as a constraint in the LP 

model, but as a check before the model starts running. Because g�,ihJ	 and gMmnhJ  are both known 

beforehand, the model will first run a feasibility check whether this constraint is true for every t.  

7.3.2 Modeling the must-run constraint  
Because we do not have a decisions variable and constraints for the heat productions anymore, the 

model will look at the value of � − opq   (where � is the electricity price at time t, �� is the gas price at 

time t and � is the efficiency of power production) for choosing when it is the most profitable to turn 

the plant on and off. However, the model also has to satisfy the heat demand because else the 

horticulturist will not have a warm greenhouse. This can be solved by adding a constraint to the 

model which forces the CHP plant to run at all times in order to produce enough heat. This is not an 

optimal solution, as it forces the model to also run at times where it is not profitable and neither 

needed for heat generation. 
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This has been solved by changing the lower bound values of the decision variable for the plant status. 

For the plant status, the upper bound equals one, meaning the plant is running. The lower bound for 

this variable is zero, meaning the plant is off.  

Instead a vector with only zeros, we have changed the lower bound to a vector with value zero if 

there is no heat demand at hour t and value 1 if there is a heat demand at hour t. This forces the 

plant to run in times when there is heat demand, while it will look at the value of � − opq   at times 

when there is no heat demand. 

7.3.3 Modeling the new optimal value. 

 

The choice to not work with an extra decision variable for the heat production has influence on the 

way the optimal value for each iteration is calculated. Because the heat demand and efficiency for 

heat production are given, we can compute the amount of fuel which for heat production during 

each period. Because the fuel constraints still apply, the maximum and minimum amount of fuel that 

can be used each iteration to generate power has to be subtracted by the amount of fuel consumed 

for heat production. The total value of the plant has to be subtracted by the amount of fuel 

consumed for heat production times the fuel price. 

7.4 Analysis 

 

In this section, we run the model for different scenarios to see what the impact of our method is. 

First we run a scenario with a steady heat production each hour. After that, we run a scenario with 

periods without heat demand. Next, we will try to explore the other boundaries of the PQ Chart. 

Finally, we will run scenario with random heat demand.  

In all scenarios we work with the possibility to start zero to seven times a week and with 6 fuel 

intervals. For all scenarios,  9Mmnef = 100 , 9M��ef = 10, j = 50% , k = 95%  and  2M��ef = 0,3. 

Unlike with the other scenarios in the previous sections, the start status each week is set to on to 

satisfy the must run condition. This a problem we will take a look at in the coming sections. The 

results of these scenarios can be found in Appendix 4 

In Scenario 7.1, the heat demand is 10MWh/h. This means that the minimum amount of power that 

has to be generated each hour equals the maximum of  9M��ef − g�,iJh ∗ stsu and  2M��ef 	 ∗ g�,ihJ which 

equals the maximum of 4.74 and 3, which is 4.74. if we look in our excel output sheet, we see that 

this is indeed the scenario. Our maximum power that can be generated should be equal to  9Mmnef − g�,iJh ∗ stsu = 100 − 10 ∗ ^,v^,wv = 194,7. According to our excel sheet, this is true. The maximum 

fuel consumption each hour is 200 MW. The total fuel consumption is dependent on the power 

production, the heat production and the efficiency of both productions. In this scenario  
_v�x�^,v +y``^^,wv ≈ 78395, which is also correct.  

In order to verify the must-run constraint only accounts for periods where there is a heat demand, 

we constructed a ten day period without any heat demand in Scenario 7.2. These are day 8 to day 17, 

which equals the whole second period, and the first three days of the third period. When we take a 
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look at the results, we see that in these periods the plant makes several starts, and is not bounded by 

the must run constraint. However, the number of starts is one lower than we would expect at first. 

This is because the plant status is always on at the start of the week, which the model currently does 

not count as a start. We will look into this in the coming sections. 

During the periods where the heat demand does not equal zero, the model behaves as it should, and 

the conclusions from Scenario 7.1 also apply for this scenario. 

In Scenario 7.3, we force the minimum allowed power production to line 4 in the PQ Chart. When the 

heat demand is 20, 9M��ef − g�,iJh ∗ stsu equals -0,53 and 2M��ef 	 ∗ g�,ihJ	 equals 6. The excel sheet confirms 

this.  The maximum amount of fuel that can be produced equals 89,5 MW, and the maximum fuel 

consumption is never higher than 200 MW. The formula for the total fuel consumption also applies. 

In Scenario 7.4, the heat demand is not the same each hour, but a random integer between 0 and 20. 

When we rearrange the outcomes for the minimum and maximum allowed hourly energy 

production, we get the following table. These numbers correspond with the formulas mentioned in 

Section 7.3 

Heat Demand Minimum Power Maximum Power 

0 10 100 

1 9,5 99,5 

2 8,9 98,9 

3 8,4 98,4 

4 7,9 97,9 

5 7,4 97,4 

6 6,8 96,8 

7 6,3 96,3 

8 5,8 95,8 

9 5,3 95,3 

10 4,7 94,7 

11 4,2 94,2 

12 3,7 93,7 

13 3,9 93,2 

14 4,2 92,6 

15 4,5 92,1 

16 4,8 91,6 

17 5,1 91,1 

18 5,4 90,5 

19 5,7 90,0 

  20 6,0 89,5 

Table 1: boundaries for hourly Minimum and Maximum fuel for given Heat Demand 

Finally we have also run a scenario in which the heat demand during one hour was higher than the 

maximum heat production of the plant. In this scenario, the validity check does its work, and stops 

the model from running by giving an error code that the plant cannot produce enough heat to meet 

the demand. 



37 

 

7.5 Conclusion 

 

In this wection, we wanted to model a deterministic heat demand in the existing model. Instead of 

adding extra decision variables, we defined a feasible region for all combinations of power- and heat 

production. This region has been defined with linearized constraints and has been modeled in 

Matlab. Afterwards, several scenarios have been run to analyze different scenarios. From these 

scenarios we can conclude that the model behaves as predicted in Section 7.3. We can also see that 

an increase in heat demand has a drastic influence on the profitability of the plant. This however 

might be specific for this scenario. We will look as this in the coming sections, where we will run a 

model with more realistic settings. 
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8 Finishing the model 

 

The new model currently takes the starts, fuel and heat constraints into account for every week. 

However, because the model splits the problem in smaller sub-problems instead of running one big 

calculation, there are small complications when these sub solutions are combined. In this section, we 

will discuss these problems and optimize the model further. 

8.1 Problems in the current model  

In order to reach a reasonable computational time, the former model of EnergyQuants splits the 

problem into smaller sub problems. However, this is at the cost of small inaccuracies. These 

inaccuracies are: 

• If period i ends in an idle state, and period i+1 starts in a running state, this is not counted as 

a startup. 

• The runtime or idle time between two periods can be less than the minimum run or idle 

time. 

• The model does not take ramping constraints into account when a run takes place over 

multiple periods. 

Some of these problems have already surfaced in scenarios in the previous sections.  

The first two errors have an impact on the feasibility of the running pattern of the plant, as they 

might lead to more starts than allowed or an infeasible on/off sequence. The effects of the ramping 

error are assumed to be marginal, and more complicated to resolve. Because of this we choose to 

only look at the first two problems. 

8.2 Mathematical formulation 

 

To solve the startup problem, we decided to add a new variable that describes the state op the plant 

during a period at time t = 0 and at the end of the period. We do not add a variable for how long the 

plant has been in that state, which means this model does not solve the second problem. 

With this extra variable, we can make a new mathematical formulation. We have used the model 

from Section 6 and rebuild it to be able to cope with an extra dimension for the state of the plant. 

This yields the following model. 

�	 = � !"#$%	& = '"#$%	()	*+,%+*	 = )"0	4(!*"#H+�(!	�!+%5,0	0	 = *+,+	()	+ℎ	H0,!+	,+	+ = 0	,!c	+ℎ	!c	()	+ℎ	H%�(c								0	6",0*	1 = (! − (!								0	6",0*	2 = (! − ())								0	6",0*	3 = ()) − (!								0	6",0*	4 = ()) − ())	%�,-,a,{ = '"#$%	()	*+,%+*	&	�!	. 	�	.�+ℎ	)"0	4(!*"#H+�(!	�!+%5,0	 	,!c	H0,!+	*+,+	0	)�,-,a,{ = b"0	4(!*"#c	�!	. 	�	.�+ℎ	&	*+,%+*, )"0	4(!*"#H+�(!	�!+%5,0	 	,!c	
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%�,-,a,{ ∗ 	2�,-,a,{{a- ≤ :�  

 																				



)�,-,a,{ ∗ 	2�,-,a,{{a- 	≤ b#,<�  

 																				



)�,-,a,{ ∗ 2�,-,a,{{a- ≥ b#�!	� 	 
 																				


2�,-,a,{ = 1{a- 														(∀�)	 
 																					2�,-,a,� + 2�,-,a,_ + 2�N�,-,a,_ + 2�N�,-,a,` = 1 

																					2�,-,a,� + 2�,-,a,` + 2�N�,-,a,� + 2�N�,-,a,� = 1 

 �, &,  , 0, %, :	,%	�!+�%* 	2 = 0	(%	1	:	 > 0	%�,-,a,{ 	, )�,-,a,{ , b#,<, b#�!	 ≥ 0	� = 1,2, … F!"#$%	()	. *G	& = 0,1,… F#,<�#"#	*+,%+*	H%	. G	 = 1,2,… F#,<�#"0	)"0	�!+%5,0G	0 = {1,2,3,4} 
In the old model, the state at t = 0 is the same for all periods. While the state at t = 0 has no direct 

influence on the value or the fuel consumption of the plant, it has influence on the possible states of 

the following hours. For example, if t = 0 is in idle state and t = 1 is in a running state, it counts a start 

in that period and the plant has be in a running status for at least the minimum run time. However, if 

t = 0 was also in a running state, it would not have counted as a start and there would be no 

minimum runtime for that run. 

If we want to model this correctly, it means that when the plant ends a week in a running state, this 

should also be the case at t = 0 for the next week. The same goes for when the plant ends a period in 

idle state. This can be modeled with three constraints, of which one is already in the model. 

The first constraint which is already in the model is 
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 2�,-,a,{ = 1{  

This constraint ensures that the plant cannot be at to different states l at the same time during week 

i. The first new constraint in the model states that when plant ends running, it cannot be idle at t = 0 

in the next week. The second constraint ensures that if the plant ends idle during period i, it cannot 

be running at t = 0 in period i+1.  

Together, these three constraints force the model to choose a feasible solution which combines the 

end state in period i and the start state in period i+1. 

8.3 Implementation in Matlab 

 

 

The model described in Section 8.2 links the end state of one period to the beginning state of the 

next period. This is an improvement to the old model, but does not give a solution for the minimum 

run time and minimum idle time. This can be solved by making a model which gives the start- and 

end position more states which not only define the running state, but also for how many hours the 

plant has been running or has been idle. By creating the right constraints, the minimum run and idle 

times can always be satisfied. However, this model looks very much like a model where the whole 

valuation period is calculated at once, instead of being split up in smaller periods. This model 

increases the calculation time considerably as can be seen in Scenario 5.4. 

Because the considerable increase in calculation time, the small size of the error, and the fact that 

this error only occurs in scenarios without a constant heat demand. We choose to solve this problem 

by creating a new file in Matlab that detects any errors before the model gives the final output, and 

use a heuristic to fix these errors after the optimization.  

This new Matlab file makes a difference between two scenarios: A run which is shorter than the 

minimum runtime, and an idle time which is shorter than the minimum idle time. For both these 

scenarios are different ways to make the output feasible.  

8.3.1 Run between periods smaller than minimum run time 

 

There are several options to fix an infeasible solution yielded by the model where there is a runtime 

that is smaller than the minimum run time. These are: 

1. Do not make the short run, but instead make it extra idle time 

2. Decrease the idle time before run with the slack hours of the short run 

3. Decrease the idle time after the run with the slack hours of the short run 

4. Remove idle time between the run and the previous run 

5. Remove idle time between the run and the next run 

Options 2 and 3 both have two sub scenarios. In Scenario 2.1 and 3.1, the idle time before/after the 

short run is more than the minimum idle time plus the slack hours of the short run. In Scenario 2.2 

and 3.2, the runtime cannot be corrected in the idle time before or after the run. 

The influences of these solutions on the output are stated in Table 2. 
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Solution Effect on # 

starts 

Effect on Fuel 

Consumption 

Problem with 

heat demand? 

1 -1 -- Maybe 

2.1 0 + No 

2.2 0 ? Maybe 

3.1 0 + no 

3.2 0 ? Maybe 

4 -1 ++ No 

5 -1 ++ No 
Table 2: effects of different solutions on the short run problem 

The solutions that change the least to optimal solution from the model are 2.1 and 3.1. However, 

these are only feasible if the maximum fuel constraint allows for extra fuel consumption. If the 

yielded solution from the model is already too close to the maximum amount of allowed fuel, these 

solutions will be skipped by our heuristic. These solutions are also only possible when the idle period 

before (2.1) or after (3.1) the run has excess idle time that can be converted to runtime. 

The effects of Solution 2.2 and 3.2 are very hard to predict, as their changes will create new 

infeasibilities in the periods next to the original infeasible period. These infeasibilities again have to 

be solved until there is a run with excess runtime or an idle period with excess idle time. Because of 

the number of small changes these solutions can bring and the complexity of the changes that have 

to be made in the optimal solution, we have decided to not use these options in our heuristic.  

When Solution 2.1 and 3.1 are not feasible, the model has to choose between Solution 1, 4 and 5. If 

the amount of consumed fuel is equal or close to the maximum allowed amount, Solution 4 and 5 

become infeasible and the model will choose Solution 1. If the amount of consumed fuel is equal or 

close the minimum allowed amount, only Solution 4 and 5 a feasible. The heuristic will calculate both 

solutions and choose the most profitable solution.  

If the amount of fuel is not close to the minimum or maximum amount, the model will calculate the 

outcome of Solution 1, 4 and 5, and choose the most profitable one. 

A special scenario exists when there is a heat demand during the short run and the fuel consumption 

is already close or equal the maximum allowed of fuel. This is a scenario that cannot be made 

feasible by the model, as it will either violate the heat demand (solution 1) of the fuel constraint 

(Solution 2-5). The chances that this scenario will occur are very small. 

8.3.2 Idle time between periods smaller than minimum idle time 

 

In the second scenario, there is shorter idle time between periods than the minimum idle time. For 

this problem, there also are 5 solutions 

1. Instead of an idle period, the plant keeps running 

2. Decrease the runtime before the idle time with the slack hours of the idle time 

3. Decrease the runtime after the idle time with the slack hours of the idle time 

4. Remove the run between the idle time and the previous idle time 

5. Remove the run between the idle time and the next idle time 
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Option 2 and 3 both again have two sub scenarios. In Scenario 2.1 and 3.1, the runtime before/after 

the short idle time is more than the minimum runtime plus the slack hours of the short idle time. In 

Scenario 2.2 and 3.2, the slack of idle time cannot be corrected in the runtimes surrounding the short 

idle time.  

The impact of these solutions on the output are stated in Table 3. 

Solution Effect on # 

starts 

Effect on Fuel 

Consumption 

Problem with 

heat demand? 

1 -1 ++ No 

2.1 0 - Maybe 

2.2 0 ? Maybe 

3.1 0 - Maybe 

3.2 0 ? Maybe 

4 -1 -- Maybe 

5 -1 -- Maybe 
Table 3: effects of different solutions on the short run problem 

The heuristic for this situation is almost equal to the heuristic of the previous section. However, with 

the exception of Solution 1, all these solutions might create a problem with the heat demand, which 

leads to an infeasible solution. However, it is unlikely that these scenarios will occur often. 

Like in the previous section, Solution 2.1 en 3.1 are the preferred solutions, as they change the least 

to the optimal value, fuel consumption and on/off sequence. Solution 2.2 and 2.3 are skipped 

because of their complexity and the choice for Solution 1 or Solution 4 or 5 depends on the fuel 

consumption and impact on the profitability of the plant. 

8.4 Analysis 

 

 

In order to see the impact of the chosen heuristic, we created fictional scenarios in order for all 

options to be modeled. Because the input variables on energy prices are manipulated in order to 

force the model to generate different scenarios, it is almost impossible to compare the results on 

economic value. Because of this, we only compared the differences on fuel consumption, energy 

production and number of starts. For all scenarios, the maximum energy production level is 100 

MWh/h, and the minimum level is 10 MWh/h. The minimum run time and minimum idle time are 

both 12 hours. The efficiency of energy production is 50% 

8.4.1 Run between periods smaller than minimum run time 

 

Scenario 8.1 

In this scenario, we simulated a scenario with a runtime of 6 hours between two periods. The idle 

time before the run is 18 hours, and the idle time after the run is 12 hours. Fuel consumption is not 

close to either the maximum or minimum value. 

Scenario 8.2 

In this scenario, we simulated a scenario with a runtime of 6 hours between two periods. The idle 

time before the run is 12 hours, and the idle time after the run is 18 hours. Fuel consumption is not 

close to either the maximum or minimum value. 
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Scenario 8.3 

In this scenario, we simulated a scenario where the consumed fuel is close to the minimum allowed 

amount. The idle time before and after the short run is 12 hours. 

 

Scenario 8.4 

In this scenario, we created a scenario where the consumed fuel is to the maximum allowed amount. 

The idle time before and after the short run is 12 hours. 

 

The results of these scenarios can be found in Table 4. 

Scenario Impact on Starts Impact on fuel 

consumption 

Impact on Energy 

production 

8.1 0 +120 +60 

8.2 0 +120 +60 

8.3 -1 +235 +120 

8.4 -1 -1205 -600 
Table 4: results Scenarios 8.1 - 8.4 

In the Scenario 8.1 the chosen solution by the heuristic is to fix the shortage in runtime in the idle 

time before the run.  Because in the old solution it is not profitable to turn on the CHP during these 

hours, the heuristic will choose to run at minimum power during these hours. This leads to an 

increase in energy production of the minimum power times the changed hours.  The increase in fuel 

consumption times the efficiency equals the increase in energy production. Scenario 8.2 is equal to 

Scenario 8.1, except that the run in lengthened to the idle time after the run instead of before. 

 

Scenario 8.3 forces the model to choose to change the idle time before or after the run into runtime. 

In this scenario, the chosen idle time has a length which is equal to the minimum idle time. The 

results of the heuristic are that the amount of starts decreases with 1. The energy production 

increases with the minimum power times the minimum run time, while the fuel consumption equals 

the power production divided by the efficiency minus the fixed amount of fuel used per start. 

Scenario 8.4 forces the model to shift the short on run to idle. This leads to one less start. The effect 

on power generation in this scenario is equal to the length of the short run times the maximum 

power. If the plant does not run on maximum power during the period, this amount will also be 

lower. The decrease in fuel consumption equals the power production divided by the efficiency 

minus the fixed amount of fuel used per start. 

8.4.2 Run between periods smaller than minimum run time 

 

In order to see the impact of the chosen heuristic, we created fictional scenarios in order for all 

options to be modeled. The parameters for these scenarios are the same as in Section 8.4.1 

 

Scenario 8.5 

In this scenario, we simulated a case with an idle time of 6 hours between two runs in different 

periods. The run before the idle time is 18 hours, and the runtime after the idle time is 12 hours. Fuel 

consumption is not close to either the maximum or minimum value. 



44 

 

Scenario 8.6 

In this scenario, we simulated a case with an idle time of 6 hours between two runs in different 

periods. The run before the idle time is 12 hours, and the runtime after the idle time is 18 hours. Fuel 

consumption is not close to either the maximum or minimum value. 

 

Scenario 8.7 

In this scenario, we simulated a case where the consumed fuel is close to the minimum allowed 

amount. The runtime before and after the idle period is 12 hours. 

 

Scenario 8.8 

In this scenario, we created a case where the consumed fuel is to the maximum allowed amount. The 

runtime before and after the idle period is 12 hours. 

 

Scenario 8.9 

In the last scenario, fuel consumption is close is close to the maximum allowed amount. The run time 

before and after the idle period is 12 hours. However, there is a heat demand during both runs 

 

The results of these scenarios can be found in Table 5. 

Scenario Impact on Starts Impact on fuel Impact on Energy 

production 

8.5 0 -1200 -600 

8.6 0 -1200 -600 

8.7 -1 +115 +60 

8.8 -1 -2405 -1200 

8.9 0 0 0 
Table 5: results scenario 8.5 – 8.9 

In the first two scenarios, the heuristic can choose the two preferred solutions. The effect of these 

solutions is that the energy production decreases with the converted hours (6) times the maximum 

power generation level. If the plant does not run on maximum power during the converted period, 

this amount will be lower. The decrease in fuel consumption equals the power production divided by 

the efficiency. 

In Scenario 6.3, the consumed fuel is close the minimum allowed amount, so the heuristic will choose 

to make a longer run instead of having idle time. This leads to an increase in energy production of the 

minimum power times the changed hours.  The increase in fuel consumption times the efficiency 

minus the fuel consumption per start equals the increase in energy production. 

In Scenario 6.4, the consumed fuel is close the maximum allowed amount, but the shortage in idle 

time cannot be fixed in the runtime before or after the shortage. The heuristic will than choose to 

skip either the run before or after the short idle run, depending on their economic value and heat 

demand. The energy production will decrease with the runtime of the skipped run times the power 

generated each hour. In our example this is the maximum amount, but this can be lower. The 

decrease in fuel consumption equals the power production divided by the efficiency minus the fuel 

cost per startup. 

Scenario 6.5 shows an infeasible scenario, where no solution can be chosen; partly changing the 

states of the previous or next run will lead to the same infeasibility, converting the idle to run 
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violates the fuel constraint, and converting the runs before or after to idle time violates the heat 

demand. However, these scenarios are unlikely to occur. 

8.5 Conclusion  

 

 

In this section, we wanted to find solutions for some inconsistencies and infeasibilities in the model. 

Most of these errors are caused by splitting the model into smaller periods.  

Some of the problems can be solved manually, by making a heuristic on how to react on different 

infeasible scenarios. Because this is not an optimization, it is not guaranteed that these fixes will give 

back the optimal solution. However, the solutions they yield will most of the times be feasible. 

 

Even though we did not find a heuristic for every infeasibility, we have showed that it is possible to 

improve the model without adding significant computation time. In a model where ramping 

constraints are taken into account, a same kind of heuristic can be used to make the model feasible.  
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9 Realistic Settings  

 

In this section, we will discuss realistic parameter settings for our research. For this model, there are 

three sets of parameters: The plant specific parameters (Maximum power etc.), contract parameters 

(allowed fuel consumption and starts) and project specific parameters (Fuel prices etc.).   

9.1 Plant specific parameters 

 

Plant specific parameters are parameters which are different for each CHP. In our model, these 

parameters are 

• Minimum power 

• Maximum power 

• Power generation efficiency 

• Minimum run time 

• Minimum idle time 

• Fixed costs per start 

• Fuel usage per start 

• Maximum Ramp up 

• Maximum Ramp down 

• Heat generation efficiency 

• Minimum power to heat ratio 

For the parameters above, we tried to find settings for a common CHP plant in the horticulture 

industry. However, in this industry there are a lot of different types of greenhouses which all have 

different heat and energy requirements. Because of this, we contacted the Dutch association for 

CHP, Cogen, for an average case description for a CHP in the Dutch horticulture industry.  

 

According to Cogen, an average CHP plant has a power capacity of 2MW. Unlike with a gas engine, a 

steam turbine can perform reasonably on part load (U.S. Environmental Protection Agency, 2008).  

However, in the literature, we have not found what the minimum part load of an extraction 

condensing steam turbine is. Because a steam turbine needs a certain amount of fuel to be able to 

produce steam, we estimate this amount to be 20% of the maximum capacity. 

 

Because the heat demand and power demand vary during different periods in a year, we have 

modeled an extraction condensing steam turbine. For a CHP of this size and type, the electrical 

efficiency can be up to 37%. The thermal efficiency for a CHP this size and type is around 75%. A 

realistic minimal power to heat ratio for a steam turbine is 0,2 (Energy Nexus Group, 2002) 

 

Steam turbines require long warm-up periods in order to obtain reliable service and prevent 

excessive thermal expansion, stress and wear. The warm-up time for a steam turbine usually lies 

between 1 hour and 1 day, depending on the size of the CHP plant. (U.S. Environmental Protection 

Agency, 2008). Because Steam Engines come in the size range of 0,5 – 250 MW, we estimate the 

minimum idle time for our plant to be around 2 hours. We estimate the minimum runtime to be 
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approximately the same as the minimum idle time. 

 

In the literature, we did not find information regarding fixed or fuel costs of startups for a small 

steam engine CHP plant. As can be read in the next sections, our scenario works with a continuous 

heat demand. This means that the plant will always be on. If a heat storage device is added to the 

model, these costs become relevant. However, because the size of this CHP is relatively low 

compared to the size range of a CHP, we expect these costs and gains to be negligible.  

As already mentioned in the previous sections, ramping constraints are not taken into account in this 

thesis. We assume the CHP can ramp instantly 

To conclude, the most important parameters are summarized in Table 6. 

Parameter Value 

Minimum power generation level 0,4 MW 

Maximum power generation level 2 MW 

Power generation efficiency 43% 

Minimum run time 2 hours 

Minimum idle time 2 hours 

Heat generation efficiency 75% 

Minimum power to heat ratio 0,2 
Table 6: CHP parameters 

9.2 Contract Parameters 

 

Important input parameters for our research are the parameters in the contract between the gas 

recipient and the supplier. These parameters are the values of the take-or-pay clause, which equal 

the minimum and maximum allowed fuel consumption, and the allowed number of starts.  

 

Instead of estimating these values, we will first run all price scenarios to obtain optimal values for the 

fuel consumption and the number of starts. Next, we will change these variables in order to find out 

what their impact is on the total value of the CHP plant. We will simulate different take-or-pay values 

by increasing the minimum allowed fuel consumption or by decreasing the maximum allowed fuel 

consumption. In a scenario with constant heat demand, the number of starts is not a constraining 

value, as the plant always has to be running in order to meet the demand. However, when a heat 

storage device is added, the allowed number of starts becomes a more relevant parameter. 

9.3 Project Parameters 

 

Situation parameters are parameters which are specific for the time and place of the project. In our 

model, these parameters include the gas prices, the energy prices, and the heat demand.  

In order to simulate realistic scenarios gas prices and energy prices, we obtained historical data on 

the hourly trading prices for energy and gas in 2009, 2010 and 2011. These three years will be three 

different scenarios in our analysis.  
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In 2009, the average energy price was 39,16 euro per MWh and the average gas price as 12,19 euro 

per MWh. In 2010, these price were 45,38 euro and 17,41 euro. In 2011, these prices were 52,03 and 

22.64 euro. A graph of the energy prices and gas prices can be found in Appendix 11 

 

In 2009, the ratio of average energy price divided by the gas price times the efficiency is 1.38. In 2010 

this was 1.12 and in 2011 this was 0,99. Because of these numbers, we expect the plant to be more 

profitable in 2009 than in 2010 and 2011. 

In the literature we did not find a realistic heat demand for a smaller CHP in the horticulture. Instead, 

we look at another type of heat demand: the hourly heat generation of a district heating installation 

in the Netherlands. We scaled this heat demand with the size of our average plant (2 MW) to 

estimate the hourly heat demand for a smaller CHP in the horticulture. A graph of this heat demand 

can be found in Appendix 12. 

9.4 Conclusion 

 

In this section, we discussed the input parameters for our research. In the next section, we will run 

several scenarios for different years and different take-or-pay values in order to see the impact of 

these variables on the total value of the CHP plant. 
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10 Analysis  

 

In this Section, we will analyze the impact of different take-or-pay values and different price 

scenarios. We will combine the constructed model and the realistic settings from the previous 

sections and we will run different scenarios for different years. With the results of these scenarios, 

we will give an answer to the second research question; “What is the impact of take-or-pay contracts 

on the profitability of a CHP plant?“ 

10.1 Scenario descriptions 

 

To analyze the impact of different take-or-pay values in different price scenarios, we run scenarios 

with the parameters settings from Section 9. For each year, we first ran a scenario without fuel 

constraints. This yields the optimal solution and fuel consumption over that year. Next, we will run 

scenarios in which the fuel consumption is forced to be 5%, 10% of 20% higher or lower than the 

optimum amount. 

For most scenarios, the number of fuel intervals is equal to twenty. This ensures an accurate fuel 

usage. Because there always is a heat demand in the scenarios we run, we have set the number of 

possible starts and the state options both to one. This means the plant will only try iterations with 

zero starts, and with state options “on-on”. Appendix 10 shows a histogram with calculation times 

for each iteration for the scenario described above. Because our scenarios do not have starts 

incorporated, the number of starts and minimum run and idle time are no longer constraints. This 

speeds up the model enormously. 

 

For some scenarios, twenty fuel intervals took too much calculation time in the combination LP (over 

10 minutes). Most of these scenarios are run with a 20% lower amount of fuel. In order to get results 

for these scenarios, we set the number of fuel intervals to a lower level. This might lead to a slightly 

less optimal solution.  

Different delivery contracts exist within the gas industry. We approximate them with a contract with 

a daily gas price, a contract with a quarterly gas price, and a contract with a yearly gas price. We have 

run scenarios with all three contract types in order to find out whether there are relevant differences 

on the total value. 

In order to see whether there is impact between a contract with a daily gas price, a quarterly gas 

price, or a yearly gas price, we ran scenarios for all three scenarios. Lastly we ran a scenario for each 

year with the average quarterly price of all three years.  

 

The results of these scenarios can be found in Appendix 5 to 8. 

As can be seen in the scenario results, it is hard to say which type of contract yields the highest value 

for the gas recipient. In 2009, a quarterly gas price would have resulted in the highest value. In 2010, 

a daily gas price would have yielded the most income and in 2011, a yearly gas price would have 

generated the most income. Because there is no clear preference from our scenarios, we have taken 

the average of each year over all contract types and summarized this in the next sections 
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10.2 Results 2009 

 

 

A summary of the average results over 2009 are given in the table below. More detailed results of all 

scenarios over 2009 can be found in Appendix 5. If we do not take fuel constraints into account and 

we look at the fuel consumption over the three different contract types, the average optimal fuel 

consumption over 2009 was 33549 MWh with an optimal value of 123.418 euro. If we change the 

take-or-pay values of the contract, we gain the following results. 

2009 

Fuel change Optimal Value 

(123.418) 

Average percent 

value change 

Average percent value change 

per percent fuel change 

    

5% higher 122.190 -0,99% -0,20% 

10 % higher 118.383 -4,08% -0,41% 

20% higher N/A N/A N/A 

    

5% lower 122.379 -0,84% -0,17% 

10% lower 119.813 -2,92% -0,29% 

20% lower 110.165 -10,74% -0,54% 

    

5% range average 122.285 -0,92% -0,19% 

10% range 

average 119.098 -3,50% -0,35% 

20% range 

average 110.165 -10,74% -0,54% 
Table 6: Average results 2009 

The first column describes the deviation in fuel consumption from the optimal amount. The second 

column shows the optimal value related to the fuel consumption in the first column. The third 

column shows the difference in value to the optimal value, and the fourth column shows the 

decrease in value per percent change of fuel consumption. 

In 2009 the average gas price was a lot lower than the average electricity price. Because of this, the 

plant is in the money for a large proportion of the valuation period. As a result, the optimal amount 

of fuel consumption is close to the maximum amount. Because of this, we could not run a scenario in 

which the take-or-pay constraint forces the model to use 20% more fuel than the optimal amount. 

As we can see in the table above, the impact of fuel changes on the total value gets relatively higher 

when the percentage of fuel change gets higher. When the take-or-pay value forces the consumed 

fuel to be within a 5% range of the optimal fuel, the impact on the total value is less than 1 percent. 

10.3 Results 2010 

 

A summary of the average of the results over 2010 are given in the table below. More detailed 

results of all scenarios over 2010 can be found in Appendix 6. If we do not take fuel constraints into 

account and we look at the fuel consumption over the three different contract types, the average 
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optimal fuel consumption over 2010 was 29742 MWh with an optimal value of 29.133 euro. If we 

change the take-or-pay values of the contract, we gain the following results. 

2010 

Fuel change Optimal Value  

(29.133) 

Average percent 

value change 

Average percent value change 

per percent fuel change 

    

5% higher 28.502 -2,16% -0,43% 

10 % higher 26.896 -7,68% -0,77% 

20% higher 19.743 -32,22% -1,61% 

    

5% lower 28.457 -2,32% -0,46% 

10% lower 26.921 -7,59% -0,76% 

20% lower 20.943 -28,11% -1,40% 

    

5% range average 28.480 -2,24% -0,45% 

10% range 

average 26.908 -7,63% -0,76% 

20% range 

average 20.343 -30,16% -1,51% 
Table 7: Average results 2010 

As in 2009, the impact of fuel constraints on the total value gets higher as the consumed fuel differs 

more from the optimal value. Also, it seems that the effect of constraining the minimum and the 

maximum allowed fuel consumption have approximately the same result, with an exception in the 

20% range. In this range, an increase in fuel consumption leads to a total value which is 4.11 percent 

lower than a 20% decrease in fuel consumption 

10.4 Results 2011 

 

A summary of the average of the results over 2011 are given in the table below. More detailed 

results of all scenarios over 2011 can be found in Appendix 7. If we do not take fuel constraints into 

account and we look at the fuel consumption over the three different contract types, the average 

optimal fuel consumption over 2010 was 24331 MWh with an optimal value of -53.456 euro. If we 

change the take-or-pay values of the contract, we gain the following results.  

2011 

Fuel change Optimal Value 

 (-53.456) 

Average percent 

value change 

Average percent value change 

per percent fuel change 

    

5% higher -53.856 -0,75% -0,15% 

10 % higher -54.871 -2,65% -0,27% 

20% higher -58.836 -10,06% -0,51% 

    

5% lower -53.794 -0,63% -0,13% 

10% lower -54.724 -2,37% -0,24% 

20% lower -58.723 -9,85% -0,49% 

    

5% range average -53.825 -0,69% -0,14% 
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10% range 

average -54.798 -2,51% -0,25% 

20% range 

average -58.780 -9,96% -0,50% 
Table 8: Average results 2011 

The percentages in the summarized table over 2011 look a lot like the percentages over 2009. Also 

here, staying within a 5% range of the optimum fuel consumption will lead to a decrease in value of 

less than 1 percent. For all ranges, there hardly is any difference whether the minimum or the 

maximum fuel consumption is constrained.  

10.5 Results Overall 

 

If we take the average of the results in the previous three sections, we can make an estimation of the 

impact of fuel constraints on the total value of the plant. The combined average values over 2009, 

2010 and 2011 can be found in the table below. 

Average Results 

Fuel change Average percent 

value change 

Average percent value change 

per percent fuel change 

   

5% higher -1,30% -0,26% 

10 % higher -4,80% -0,48% 

20% higher -21,14% -1,06% 

   

5% lower -1,26% -0,25% 

10% lower -4,29% -0,43% 

20% lower -16,23% -0,81% 

   

5% range average -1,28% -0,26% 

10% range average -4,55% -0,46% 

20% range average -18,20% -0,91% 
Table 9: Average results overall 

Overall, we can see that the impact of changing the fuel constraint gets higher when the consumed 

fuel deviates more from the optimal solution. When the fuel constraints force the fuel consumption 

to be 5 percent higher or lower than the optimal amount, the total value decreases on average by 

1,28%. When the consumed fuel has to be 10% higher or lower than the optimal amount, the value 

decrease with an average of 4.55%. When the constraints force the fuel consumption to be 20% 

higher or lower than the optimal amount, the total value decreases with an average of 18,20%. 

In the table, we can see that a fuel consumption which is higher than the optimal value has a higher 

impact on the total value of the project than constraining the maximum allowed fuel consumption. 

In 2010, the percentage at which the value decreases is 2-3 times higher as in 2009 and 2011. A 

logical cause for this effect would be a higher standard deviation in the energy of gas prices. 

However, these standard deviations are higher in 2009 and lower in 2011. We have not found the 

reason why these percentages where this different from the other years. Because all other variables 

were constant, it must have something to do with the energy or gas prices. 
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If we compare the results from 2009, 2010 and 2011, it seems like there is a downward trend in 

profitability of a CHP. We should take into account that even though there is a negative value in 

2011, heat has been generated which otherwise had to be generated with a boiler. If this downwards 

trend continues in the next few years, a CHP as we modeled will not be profitable in the future. 

We have also run scenarios where the average quarterly gas price over three years has been taken as 

an indicator for the gas price in the contract. The results of these scenarios can be found in Appendix 

8. However, these results did not give new insights on the results we already have.  

10.6 Conclusion 

 

In this section, we have analyzed the results of several realistic scenarios in order to answer the 

question “What is the impact of take-or-pay contracts on the profitability of a CHP plant?“  

The main conclusions we can draw are: 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 5% percent 

higher or lower than the optimal fuel amount, this leads to an average value loss of 1,28%.  

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 10% 

percent higher or lower than the optimal fuel amount, this leads to an average value loss of 

4,55%. 

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 20% 

percent higher or lower than the optimal fuel amount, this leads to an average value loss of 

18,20%. 

 

• A take-or-pay contract that forces the amount of fuel that has to be consumed to be higher 

than the optimal amount, has more impact on the value of a plant than a constraint that 

force the fuel consumption to be less than the optimal amount. We have not found why this 

is the case. 

 

• There is no clear preference for a contract with daily, quarterly or yearly gas prices 

 

From our results, we can see that the impact on the value of a CHP increases as the take-or-pay 

constraints force the plant to deviate further from the optimal amount of fuel. Next to that, being 

forced to consume more gas than needed has a higher impact on the profitability than using less 

than the optimal fuel amount 

For different years, the impact of take-or-pay constraints is not always the same. In our scenarios, 

the impacts in 2010 are higher than in 2009 or 2011. We have not found a cause for this 

phenomenon in our data. 
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11 Conclusions and Recommendations 

 

11.1 Conclusions 

Our report started with two research questions: 

1.  “Can the existing power plant model of EnergyQuants be extended in order to be able to 

optimize a CHP plant?”  

 

2. “What is the impact of take-or-pay contracts on the profitability of a CHP plant?“ 

In order to make the existing power plant model able to optimize a CHP plant, a 0-1 IP problem has 

been formulated which distributes the number of starts and fuel over different periods in the 

valuation period. This mathematical model has been implemented in Matlab to extend the already 

existing model. Next to that, a mathematical formulation on heat demand has been modeled and 

implemented in Matlab. To make the model work as it should, several other additions and fixes had 

to be made, which are described in Section 8.  

 

The new model is capable of working with a heat demand and can distribute starts and fuel in an 

optimal way over different periods in the valuation period. In order to be able to give a satisfactory 

answer to the second research question, realistic price data for the years 2009-2011 have been used. 

With this data, scenarios have been run in order to see the impact of different take-or-pay values on 

the total value of a CHP. 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 5% percent 

higher or lower than the optimal fuel amount, this leads to an average value loss of 1,28%.  

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 10% 

percent higher or lower than the optimal fuel amount, this leads to an average value loss of 

4,55%. 

 

• When take-or-pay constraints force a CHP to consume an amount of fuel which is 20% 

percent higher or lower than the optimal fuel amount, this leads to an average value loss of 

18,20%. 

A take-or-pay contract that forces the fuel consumption to be higher than the optimal amount has a 

higher impact on the value of the plant than when less fuel can be consumed. However, the latter 

might lead to an infeasible scenario where there is not enough fuel to meet the heat demand. 

If we look at the absolute value of the CHP, we can observe that the value decreases each year. 

Because our sample size consist of only three years, it is hard to say whether this is a trend or a 

coincidence. However, if it is a trend, CHP installations like we modeled might not be profitable 

anymore in the near future and it might cost less money to generate heat with a simple boiler. 
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11.2 Recommendations for further research 

 

In this report we considered the years 2009, 2010 and 2011 as historical data. In this sample, 2010 

reacts more sensitive on changes in fuel consumption than the other two years. It might be 

interesting to extend the sample size over more years in order to validate the results, as it is not 

certain whether 2010 was an exceptional year. If this is the case, our results might not be 

representative. When a larger sample is used, we can also see whether the downward trend is a 

coincidence in our data, or a real trend. 

Another interesting subject of further research is the CO� component of a CHP plant, which is already 

mentioned in Section 3.2. CO� demand can have impact on the capacity at which the plant has to 

run, and thus on the economic value of a power plant. Next to that, CO� emission rights have impact 

on the total value of the CHP plant. 

Most modern CHP plants can have a heat storage system, or a separate boiler next to the CHP. This 

gives a CHP the possibility to turn off during periods where producing energy is not profitable, while 

heating a greenhouse with heat from the storage. This leads to a more optimal solution. When a heat 

storage system is modeled, the number of starts a CHP can make becomes a relevant factor. 

Finally, other types of CHP plants can be interesting to model. Our current model assumes no 

connection to the power grid, which means that all the energy which is generated has to be used. 

When a power grid connection is present, generated energy can be sold. This means that there is less 

need for a variable power to heat ratio, so other CHP types become an interesting option to model.  
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Appendices 

 

Appendix 1: results Scenario 5.1 – Scenario 5.4 

 

Scenario 5.1: unbounded number of starts 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87.324  7.610  15.255  

2 7  85.003  7.610  15.255  

3 7  82.683  7.610  15.255  

4 7  80.042  7.610  15.255  

5 3  32.814  3.330  6.675  

Total 31  367.865  33.770  67.695  

Runtime = 12.79 seconds 

Scenario 5.2: maximum 15 starts 

Week# #starts Value Produced electricity Consumed Gas 

1 2  80.644  8.660  17.330  

2 2  78.100  8.660  17.330  

3 2  75.556  8.660  17.330  

4 6  78.810  7.820  15.670  

5 3  32.814  3.330  6.675  

Total 15  345.924  37.130  74.335  

Runtime = 14.00 seconds 

Scenario 5.3: maximum 3 starts per period 

Week# #starts Value Produced electricity Consumed Gas 

1 3  82.045  8.450  16.915  

2 3  79.545  8.450  16.915  

3 3  77.046  8.450  16.915  

4 3  74.208  8.450  16.915  

5 3  32.814  3.330  6.675  

Total 15  345.657  37.130  74.335  

Runtime = 7.95 seconds  

Scenario 5.4: 15 allowed starts, but only 1 period. 

Week# #starts Value Produced electricity Consumed Gas 

1 2  80.609  8.670  17.350  

2 1  76.744  8.750  17.505  

3 5  80.142  7.910  15.845  

4 5  77.421  7.910  15.845  

5 2  31.455  3.420  6.850  

Total 15  346.370  36.660  73.395  

Runtime = 161.83 seconds 
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Appendix 2: Results Scenario 6.1 – Scenario 6.8 

 

Scenario 6.1: 2 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87.324 7.610  15.255  

2 7  85.003 7.610  15.255  

3 7  82.683 7.610  15.255  

4 0  0 0  0  

5 3  32.814 3.330  6.675  

Total 24  287.823  26.160  52.440  

Runtime = 18.62 seconds 

Scenario 6.2: 3 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87.324 7.610  15.255  

2 7  85.003 7.610  15.255  

3 7  82.683 7.610  15.255  

4 0  0 0  0  

5 3  32.814 3.330  6.675  

Total 24  287.823  26.160  52.440  

Runtime = 28.14 seconds 

Scenario 6.3: 4 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87.324 7.610  15.255  

2 7  85.003 7.610  15.255  

3 7  79.016 5.983  12.000  

4 7  77.121 5.983  12.000  

5 3  31.167 2.564  5.142  

Total 31  359.631 29.749  59.652  

Runtime = 54.33seconds 

Scenario 6.4: 5 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87324 7.610  15.255  

2 7  84369 7.183  14.400  

3 7  82158 7.183  14.400  

4 7  71353 4.783  9.600  

5 3  32564 3.078  6.170  

Total 31  357.768 29.835  59.825  

Runtime = 63.54seconds 

Scenario 6.5: 6 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  87.325 7.610  15.255  
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2 7  85.003 7.610  15.255  

3 7  79.016 5.983  12.000  

4 7  77.121 5.983  12.000  

5 3  31.167 2.564  5.142  

Total 31  359.631  29.749  59.652  

Runtime = 76.92 seconds 

Scenario 6.6: 7 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7 85.788 6.840  13.714  

2 7 83.666 6.840  13.714  

3 7 81.544 6.840  13.714  

4 7 79.422 6.840  13.714  

5 3 29.488 2.196  4.407  

Total 31 359.908 29.555  59.265  

Runtime = 104.08 seconds 

Scenario 6.7: 10 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7 87.324 7.610  15.255  

2 7 84.369 7.183  14.400  

3 7 79.016 5.983  12.000  

4 7 77.121 5.983  12.000  

5 3 32.564 3.078  6.170  

Total 31 360.394 29.835  59.825  

Runtime = 298.28 seconds 

Scenario 6.8: 20 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7 86.580 7.183  14.400  

2 7 83.090 6.583  13.200  

3 7 81.034 6.583  13.200  

4 7 78.979 6.583  13.200  

5 3 32.204 2.821  5.656  

Total 31 361.886 29.751  59.656  

Runtime = 1379.60 seconds 
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Appendix 3: Results Scenario 6.8 – Scenario 6.16 

 

Scenario 6.9: 2 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 1 79.030 8.790 17.585 

2 7 83.551 8.379 16.793 

3 7 81.046 8.379 16.793 

4 7 78.542 8.379 16.793 

5 3 32.466 3.593 7.201 

Total 25 354.634 37.520 75.165 

Runtime = 25.08 seconds 

Scenario 6.10: 3 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 2  72.237 11.192  22.394  

2 6  83.880 7.820  15.670  

3 7  82.683 7.610  15.255  

4 7  80.363 7.610  15.255  

5 3  32.814 3.330  6.675  

Total 25  351.976 37.562  75.249  

Runtime = 27.65 seconds 

Scenario 6.11: 4 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 1 79.030 8.790 17.585 

2 7 83.551 8.379 16.793 

3 7 81.046 8.379 16.793 

4 7 78.542 8.379 16.793 

5 3 32.466 3.593 7.201 

Total 25 354.634 37.520 75.165 

Runtime = 40.09 seconds 

Scenario 6.12: 5 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 4  78.178 10.067  20.153  

2 6  83.880 7.820  15.670  

3 6  81.514 7.820  15.670  

4 7  80.363 7.610  15.255  

5 2  28.664 4.316  8.641  

Total 25  352.599 37.632  75.389  

Runtime = 58.58 seconds 

Scenario 6.13: 6 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 4  86.048 10.067  20.153  
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2 6  83.551 7.820  15.670  

3 6  81.046 7.820  15.670  

4 7  80.363 7.610  15.255  

5 2  25.676 4.316  8.641  

Total 25  356.683 37.632  75.389  

Runtime = 55.32seconds 

Scenario 6.14: 7 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 5  80.740 9.584  19.193  

2 5  77.965 9.584  19.193  

3 7  82.683 7.610  15.255  

4 7  80.363 7.610  15.255  

5 3  32.814 3.330  6.675  

Total 27  354.565 37.718  75.572  

Runtime = 77.29 seconds 

Scenario 6.15: 10 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  86.048 8.384  16.803  

2 7  83.551 8.379  16.793  

3 7  81.046 8.379  16.793  

4 7  78.542 8.379  16.793  

5 2  28.664 4.316  8.641  

Total 30  357.851 37.837  75.823  

Runtime = 118.33 seconds 

Scenario 6.16: 20 fuel intervals 

Week# #starts Value Produced electricity Consumed Gas 

1 7  86.048 8.384  16.803  

2 7  83.551 8.379  16.793  

3 7  81.046 8.379  16.793  

4 7  78.542 8.379  16.793  

5 3  30.967 3.953  7.921  

Total 31  360.154 37.474  75.103  

Runtime = 704.85 seconds 
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Appendix 4: Results Scenario 7.1 – Scenario 7.4 

Scenario 7.1:  constant heat demand of 10 MWh/h 

Week# #starts Value Produced Electricity Produced Heat Consumed Gas 

1 0 34.840 7.993 1.680 17.755 

2 0 32.470 7.993 1.680 17.755 

3 0 30.100 7.993 1.680 17.755 

4 0 27.730 7.993 1.680 17.755 

5 0 10.126 3.309 720 7.375 

Total 0 135.266 35.282 7.440 78.395 

Runtime = 12.94 seconds 

Scenario 7.2: no heat demand on day 8-17 

Week# #starts Value Produced Electricity Produced Heat Consumed Gas 

1 0  34.840 7.993  1.680  17.755  

2 6  83.684 7.690  0  15.410  

3 2  51.260 7.952  960  16.925  

4 0  27.730 7.993  1.680  17.755  

5 0  10.126 3.309  720  7.375  

Total 8  207.640 34.937  5.040  75.220  

Runtime = 55.81 seconds 

Scenario 7.3: constant heat demand of 20 MWh/h 

Week# #starts Value Produced Electricity Produced Heat Consumed Gas 

1 0  -15.520 7.683  3.360  18.904  

2 0  -17.782 7.683  3.360  18.904  

3 0  -20.045 7.683  3.360  18.904  

4 0  -22.308 7.683  3.360  18.904  

5 0  -11.219 3.184  1.440  7.884  

Total 0  -86.874 33.918  14.880  83.499  

Runtime is 13.22 seconds 

Scenario 7.4: Random heat demand between 0 and 20 

Week# #starts Value Produced Electricity Produced Heat Consumed Gas 

1 0  36.893 8.151  1.588  17.975  

2 0  32.546 8.156  1.627  18.026  

3 0  25.571 8.066  1.784  18.010  

4 0  25.255 8.082  1.721  17.976  

5 0  10.326 3.380  685  7.481  

Total 0  130.591  35.837  7.405  79.468  

Runtime is 13.77 seconds  
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Appendix 5: Results realistic Scenario 2009 

 

Daily gas price 

2009 Daily Gas Price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No 

constraint 

121.951 33.774 12.392 3.718 0 133.63  

        

5% higher 120.758  35.463 13.118 3.718 0 152.35  

10% higher 116.588 37.153 13.845 3.718 0 146.54  

20% higher N/A N/A N/A N/A N/A N/A Infeasible 

due to 

max fuel 

        

5% lower 120.755 32.086 11.665 3.718 0 136.48  

10% lower 118.009 30.397 10.939 3.718 0 143.12  

20% lower 107.414  27.013 9.484 3.718 0 175,32 8 fuel 

intervals 
 

2009 Daily Gas Price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point 

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -1.193 -0,98% -238,6 -0,20% -238,6 -0,20% 

10% higher -5.363 -4,40% -536,3 -0,44% -834 -0,68% 

20% higher N/A N/A N/A N/A N/A N/A 

       

5% lower -1.196 -0,98% -239,2 -0,20% -239,2 -0,20% 

10% lower -3.942 -3,23% -394,2 -0,32% -549,2 -0,45% 

20% lower -14.537 -11,92% -726,85 -0,60% -1059,5 -0,87% 

 

Quarterly gas price 

2009 Quarterly Gas Price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

     0   

No 

constraint 

125.065 33.148 12.122 3.718  129.28  

     0   

5% higher 123.837  34.806 12.835 3.718 0 140.18  
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10% 

higher 

120.320   36.463 13.548 3.718 0 154.58  

20% 

higher 

N/A N/A N/A N/A N/A N/A Infeasible 

due to max 

fuel 

        

5% lower 124.120   31.490 11.409 3.718 0 130.02  

10% 

lower 

121.600  29.829 10.695 3.718 0 129.49  

20% 

lower 

111.783  26.510 9.268 3.718 0 147.85  

 

2009 Quarterly Gas Price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point 

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -1.228 -0,98% -245,6 -0,20% -245,6 -0,20% 

10% higher -4.745 -3,79% -474,5 -0,38% -703,4 -0,56% 

20% higher N/A N/A N/A N/A N/A N/A 

       

5% lower -945 -0,76% -189 -0,15% -189 -0,15% 

10% lower -3.465 -2,77% -346,5 -0,28% -504 -0,40% 

20% lower -13.282 -10,62% -664,1 -0,53% -981,7 -0,78% 

 

Yearly gas Price 

2009 Yearly gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No 

constraint 

123.238  33.726 12.371 3.718 0 132.82  

        

5% higher 121.975  35.415 13.097 3.718 0 145.56  

10% 

higher 

118.241  37.100 13.821 3.718 0 144.08  

20% 

higher 

N/A N/A N/A N/A N/A N/A Infeasible 

due to 

max fuel 

        

5% lower 122.262  32.040 11.646 3.718 0 166.58  

10% 

lower 

119.831  30.351 10.920 3.718 0 165.48  

20% 

lower 

111.299  26.974 9.468 3.718 0 121.50  12 fuel 

intervals 
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2009 Yearly gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -1.263 -1,02% -252,6 -0,20% -252,6 -0,20% 

10% higher -4.997 -4,05% -499,7 -0,41% -746,8 -0,61% 

20% higher N/A N/A N/A N/A N/A N/A 

       

5% lower -976 -0,79% -195,2 -0,16% -195,2 -0,16% 

10% lower -3.407 -2,76% -340,7 -0,28% -486,2 -0,39% 

20% lower -11.939 -9,69% -596,95 -0,48% -853,2 -0,69% 
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Appendix 6: Results realisctic Scenario 2010 

 

Daily gas price 

2010 Daily Gas Price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint 30.158 30.071 10.837  3.718 0 133.27  

        

5% higher 29.428 31.575 11.446 3.718 0 147.65  

10% higher 27.733  33.080 12.093 3.718 0 144.78  

20% higher 20.030   36.088 13.386 3.718 0 152.54  

        

5% lower 29.372  28.567 10.152 3.718 0 132.55  

10% lower 27.707 27.061 9.505 3.718 0 138.80  

20% lower 21.416 24.049 8.210 3.718 0 197.72 12 fuel 

intervals 

 

2010 Daily Gas Price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point 

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -730 -2,42% -146 -0,48% -146 -0,48% 

10% higher -2.425 -8,04% -242,5 -0,80% -339 -1,12% 

20% higher -10.128 -33,58% -506,4 -1,68% -770,3 -2,55% 

       

5% lower -786 -2,61% -157,2 -0,52% -157,2 -0,52% 

10% lower -2.451 -8,13% -245,1 -0,81% -333 -1,10% 

20% lower -8.742 -28,99% -437,1 -1,45% -629,1 -2,09% 

 

Quarterly gas price 

2010 Quarterly gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint 29.115  29.568 10.583 3.718 0 129.77  

        

5% higher 28.527  31.047 11.219 3.718 0 146.10  

10% higher 27.057  32.525 11.854 3.718 0 144.00  

20% higher 20.260  35.486 13.128 3.718 0 280.35  
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5% lower 28.525 28.089 9.947 3.718 0 124.03  

10% lower 27.111  26.608 9.310 3.718 0 133.04  

20% lower 21.402 23.650 8.038 3.718 0 98.97 12 fuel 

intervals 

 

2010 Quarterly gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -588 -2,02% -117,6 -0,40% -117,6 -0,40% 

10% higher -2.058 -7,07% -205,8 -0,71% -294 -1,01% 

20% higher -8.855 -30,41% -442,75 -1,52% -679,7 -2,33% 

       

5% lower -590 -2,03% -118 -0,41% -118 -0,41% 

10% lower -2.004 -6,88% -200,4 -0,69% -282,8 -0,97% 

20% lower -7.713 -26,49% -385,65 -1,32% -570,9 -1,96% 

 

Yearly gas price 

2010 Yearly gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint 28.125  29.586 10.590 3.718 0 122.46  

        

5% higher 27.552   31.066 11.227 3.718 0 132.83  

10% higher 25.897  32.549 11.865 3.718 0 385.13  

20% higher 18.938  35.507 13.137 3.718 0 136.66  

        

5% lower 27.474 28.106 9.954  3.718 0 125.27  

10% lower 25.944 26.618 9.314 3.718 0 128.24  

20% lower 20.010 23.668 8.046  3.718 0 137.39 12 fuel 

intervals 

 

2010 Yearly gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point 

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -573 -2,04% -114,6 -0,41% -114,6 -0,41% 
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10% higher -2.228 -7,92% -222,8 -0,79% -331 -1,18% 

20% higher -9.187 -32,66% -459,35 -1,63% -695,9 -2,47% 

       

5% lower -651 -2,31% -130,2 -0,46% -130,2 -0,46% 

10% lower -2.181 -7,75% -218,1 -0,78% -306 -1,09% 

20% lower -8.115 -28,85% -405,75 -1,44% -593,4 -2,11% 
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Appendix 7: Results realisctic Scenario 2011 

 

Daily gas price 

2011 Daily gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint -53.865  24.363 8.345 3.718 0 128.64  

        

5% higher -54.306  25.582 8.869 3.718 0 138.31  

10% higher -55.373   26.800 9.393 3.718 0 135.47  

20% higher -59.760   29.238 10.441 3.718 0 254.40 10 fuel 

intervals 

        

5% lower -54.262  23.145 7.821 3.718 0 139.90  

10% lower -55.242   21.921 7.295 3.718 0 134.79  

20% lower -59.412   19.485 6.247 3.718 0 158.82 12 fuel 

intervals 

 

2011 Daily gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -441 -0,82% -88,2 -0,16% -88,2 -0,16% 

10% higher -1.508 -2,80% -150,8 -0,28% -213,4 -0,40% 

20% higher -5.895 -10,94% -294,75 -0,55% -438,7 -0,81% 

       

5% lower -397 -0,74% -79,4 -0,15% -79,4 -0,15% 

10% lower -1.377 -2,56% -137,7 -0,26% -196 -0,36% 

20% lower -5.547 -10,30% -277,35 -0,51% -417 -0,77% 

 

Quarterly gas price 

2011 Quarterly gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint -53.404 24.331 8.331 3.718 0 124.68  

        

5% higher -53.783 25.548 8.854 3.718 0 128.96  

10% higher -54.784  26.766 9.378 3.718 0 136.86  

20% higher -58.595  29.202 10.425 3.718 0 131.85  
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5% lower -53.726  23.114 7.808 3.718 0 122.54  

10% lower -54.658  21.898 7.285 3.718 0 125.74  

20% lower -58.602 19.464 6.238  3.718 0 92.53 12 fuel 

intervals 

 

2011 Quarterly gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -379 -0,71% -75,8 -0,14% -75,8 -0,14% 

10% higher -1.380 -2,58% -138 -0,26% -200,2 -0,37% 

20% higher -5.191 -9,72% -259,55 0,49% -381,1 -0,71% 

       

5% lower -322 -0,60% -64,4 -0,12% -64,4 -0,12% 

10% lower -1.254 -2,35% -125,4 -0,23% -186,4 -0,35% 

20% lower -5.198 -9,73% -259,9 -0,49% -394,4 -0,74% 

 

Yearly gas price 

2011 Yearly gas price 

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint -53.098  24.300 8.318 3.718 0 125.23  

        

5% higher -53.478  25.515 8.840 3.718 0 134.09  

10% higher -54.457 26.730 9.363  3.718 0 136.88  

20% higher -58.153  29.163 10.409 3.718 0 127.22  

        

5% lower -53.394 23.084 7.795  3.718 0 125.10  

10% lower -54.273  21.868 7.272 3.718 0 173.87  

20% lower -58.156  19.438 6.227 3.718 0 85.61 12 fuel 

intervals 

 

2011 Yearly gas price 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -380 -0,72% -76 -0,14% -76 -0,14% 
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10% higher -1.359 -2,56% -135,9 -0,26% -195,8 -0,37% 

20% higher -5.055 -9,52% -252,75 -0,48% -369,6 -0,70% 

       

5% lower -296 -0,56% -59,2 -0,11% -59,2 -0,11% 

10% lower -1.175 -2,21% -117,5 -0,22% -175,8 -0,33% 

20% lower -5.058 -9,53% -252,9 -0,48% -388,3 -0,73% 
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Appendix 8: quarterly average gas price over 3 years 

 

2009 

2009  

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

       1 Jan to 

30 Dec 

No constraint -23.978 21.498 7.125 3.718 0 127.62  

        

5% higher -24.343 22.573 7.587 3.718 0 128.83  

10% higher -25.070 23.650 8.051 3.718 0 127.48  

20% higher -27.782  25.808 8.978 3.718 0 93.73 12 fuel 

intervals 

        

5% lower -24.253  20.423 6.663 3.718 0 139.51  

10% lower -25.159  19.345 6.199  3.718 0 90.74 12 fuel 

intervals 

20% lower -28.665  17.193 5.274 3.718 0 346.72 12 fuel 

intervals 

 

2009 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -365 1,52% -73 0,30% -73 0,30% 

10% higher -1.092 4,55% -109,2 0,46% -145,4 0,61% 

20% higher -3.804 15,86% -190,2 0,79% -271,2 1,13% 

       

5% lower -275 1,15% -55 0,23% -55 0,23% 

10% lower -1.181 4,93% -118 0,49% -181,2 0,76% 

20% lower -4.687 19,55% -234,35 0,98% -350,6 1,46% 

 

2010 

2010  

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint 28.584 29.740 10.657  3.718 0 125.87  

        

5% higher 27.842  31.229 11.297 3.718 0 133.30  
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10% higher 26.116 32.715 11.936 3.718 0 132.77  

20% higher 17.193 35.693 13.216 3.718 0 69.84 10 fuel 

intervals 

        

5% lower 28.003  28.253 10.017 3.718 0 126.21  

10% lower 26.285  26.765 9.377  3.718 0 84.48 12 fuel 

intervals 

20% lower 20.307 23.789 8.098 3.718 0 309.39 12 fuel 

intervals 

 

2010   

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous point  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous point 

5% higher -742 -2,60% -148,4 -0,52% -148,4 -0,52% 

10% higher -2.468 -8,63% -246,8 -0,86% -345,2 -1,21% 

20% higher -11.391 -39,85% -569,55 -1,99% -892,3 -3,12% 

       

5% lower -581 -2,03% -116,2 -0,41% -116,2 -0,41% 

10% lower -2.299 -8,04% -229,9 -0,80% -343,6 -1,20% 

20% lower -8.277 -28,96% -413,85 -1,45% -597,8 -2,09% 

 

2011 

2011  

Fuel  

constraint 

Value Fuel  

Consumption 

(MWh) 

Energy 

production 

(MWh) 

Heat 

Production 

(MWh) 

Starts Runtime 

(sec) 

Remarks 

        

No constraint 106.877 36.282 13.470  3.718 0 140.26  

        

5% higher 104.944  38.096 14.250 3.718 0 157.66  

10% higher N/A N/A N/A N/A N/A N/A Infeasible 

due to 

max fuel 

20% higher N/A N/A N/A N/A N/A N/A Infeasible 

due to 

max fuel 

        

5% lower 105.936  34.467 12.690 3.718 0 141.78  

10% lower 103.645  32.652 11.909 3.718 0 143.13  

20% lower 94.700  29.021 10.348 3.718 0 960.38  
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2011 

change in 

fuel 

constraints 

Value 

Decrease 

Value 

Decrease 

% 

Value 

decrease  

per 

percent 

change 

Percentage 

of value 

decrease 

per 

percent 

change 

Value decrease 

per percent 

change compared 

to previous run  

Percentage 

Value 

decrease per 

percent 

change 

compared to 

previous run 

5% higher -1.933 -1,81% -386,6 -0,36% -386,6 -0,36% 

10% higher N/A N/A N/A N/A N/A N/A 

20% higher N/A N/A N/A N/A N/A N/A 

       

5% lower -941 -0,88% -188,2 -0,18% -188,2 -0,18% 

10% lower -3.232 -3,02% -323,2 -0,30% -458,2 -0,43% 

20% lower -12.177 -11,39% -608,85 -0,57% -894,5 -0,84% 

  



75 

 

Appendix 9: impact of smaller runs on total run time 

 

Valuation 

horizon 

Starts Runtime with 

periods of 1 

week (sec) 

Runtime in 1 

period 

(sec) 

Value 

multiple 

periods 

Value 1 

period 

Value 

difference 

       

1 week 7 8.81 8.81 87.324 87.324 0% 

2 weeks 7 14.52 27.45 163.079 163.170 0,06% 

3 weeks 7 20.41 34.14 235.790 236.045 0,11% 

4 weeks 7 26.45 56.31 305.698 306.273 0,19% 

5 weeks 7 34.12 65.00 355.828 356.695 0,24% 

       

2 weeks 10 15.87 58.93 167.325 167.372 0,03% 

3 weeks 10 22.67 133.18 240.258 240.425 0,07% 

4 weeks 10 29.17 83.82 310.380 310.829 0,14% 

5 weeks 10 36,34 85.16 360.642 361.296 0,18% 
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Appendix 10: Histogram iteration calculation time 
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Appendix 11: Gas and Energy prices 

 

2009 
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2010 
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2011 
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Appendix 12: Heat Demand 
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Appendix 13: Description of LP_Solve 

 

lp_solve is a custom Matlab file to solve mixed integer linear programming (MILP) problems of the 

following format. 

;,<	5 = )J ∗ <  *. +.			K ∗ < ≤ $   										50$ ≤ < ≤ 5"$  										<(�!+)	,%	�!+�%	  

In order to solve this MILP, lp_solve needs the following input: 

f: n vector of coefficients for a linear objective function. 

A: m by n matrix representing linear constraints. 

b: m vector of right sides for the inequality constraints. 

e: m vector that determines the sense of the inequalities: 

  e(i) = -1  ==> Less Than 

  e(i) =  0  ==> Equals 

  e(i) =  1  ==> Greater Than 

vlb: n vector of lower bounds 

vub: n vector of upper bounds.  

xint: vector of integer variables.  

In this description, ;,<	5 = )J ∗ < is the objective function. The vector x is the set of decision 

variables and K ∗ < ≤ $ is the set of constraints ot the model. 

When all input variables are given, lp_solve will try to find a feasible optimal solution consisting of 

optimal objective value, and the corresponding optimal set of decision variables. In case of the 

existing plant model, the decision variables are for each hour the running status of the plant (on or 

off), whether to turn the plant on or off, and the amount of electricity produced. 

lp_solve is based on linear programming in Matlab and is currently used to determine the optimal 

value for a normal power plant. We will also use lp_solve to be able to optimally distribute the 

number of starts and fuel consumption over different periods during the valuation period. 

 


