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Abstract

Problem area

In many dynamical systems, the physics of the overall system can be modelled as the interaction

between several subsystems, each governed by its own laws of physics. A prime example of this

is rotorcraft flight, where aerodynamics and structural mechanics are closely coupled. In order

to simulate the dynamics of rotorcraft flight, a widely used approach is a Loose Coupling, in

which a structural dynamics model and a (computationally expensive) fluid dynamics model are

combined with a simplified aerodynamics model. However, even with a loose coupling approach

the fluid dynamics model needs to be solved many times before a coupled solution is found. The

goal of the present work is to reduce the amount of computational work needed for accurate

rotorcraft aeroelastic simulation.

Description of work

A one-dimensional model problem is constructed that resembles the rotorcraft simulation in a

very simple way. It is expected that established techniques from time series analysis can be used

to improve the convergence of the coupled models. Using the model problem various methods

for improving the loose coupling are evaluated.

Results and conclusions

The time series resulting from the convergence of the loosely coupled procedure can accurately

be modelled as an autoregressive process. This model is subsequently used to estimate the final

solution of the iterative procedure, improving the overall convergence rate.

Applicability

The described methods can be applied to rotorcraft simulations in order to reduce the amount

of computational work required or, alternatively, use more accurate models for the same amount

of computational work. This Master’s Thesis provides a basis for further research into the

applicability of time series analysis on rotorcraft loose coupling in particular and partitioned

procedures in general.
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CHAPTER 1

Introduction

Rotorcraft aerodynamics is considerably more complex than that of fixed wing aircraft. The high

aspect ratio and flexibility of the rotor blades result in a complex interplay between the inertial

and elastic forces in the structure and the aerodynamic forces acting on the blades. Depending

on flight conditions, the wake of the rotor can interact with the fuselage, tail rotor or the rotor

itself. An important and characteristic example of such an interaction is known as blade–vortex

interaction (BVI). Vortices coming off a rotor blade tip remain in the path of the rotor and

interact with one of the next blades. This can be the cause of large force fluctuations on the

rotor blade. The resulting blade deformations are the cause of the typical, loud sound produced

by a helicopter rotor.

To simulate rotorcraft flight, both computational structural dynamics (CSD) and computa-

tional fluid dynamics (CFD) play an important role. An accurate mathematical model of the

structure is needed to calculate the blade deformation under load. The CFD model needs to cap-

ture aerodynamic properties not only accurately, but also efficiently. The most straightforward

way to solve the coupled structural and fluid equations is to combine them into a single formu-

lation. This is called a monolithic scheme. In practice, however, especially in applied rotorcraft

research, a monolithic approach is almost never used, because it is difficult to integrate the two

different systems of equations in a single numerical procedure. More common are partitioned

schemes in which separate CSD and CFD solvers are used to solve the combined system. This ap-

proach has advantages in computational efficiency and software modularity, for example because

the models and implementations can follow the state of the art in each field separately. Only a

monolithic scheme can, however, maintain the conservation properties of the mathematical mod-

els it is based on at the CSD-CFD interface. Conservation requires strict compatibility on the

approximation spaces at the interface and other conditions on the discretisation, see [1], [2]. A

partitioned scheme can, however, be modified to be higher order accurate in energy conservation

([3]).

Because partitioned schemes use separate procedures to solve the fluid and the structural part

of the system, the coupling between the two components has to be explicitly defined. Various

earlier coupling efforts are described in [4], which provides an extensive review of current rotor-

craft CSD and CFD research. In a tightly coupled procedure, the fluid and structure solvers are

time-integrated together. Each time step the models exchange information about the state at

the fluid–structure boundary. To increase the accuracy for a tight coupling several variations of

this basic scheme are possible. For example subcycling the flow solver with a smaller time step or

calculating multiple iterations of both models in one time step. Another way of improving overall

accuracy is to do the time integration more accurately. In [3] for example, the time marching is
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done in a staggered approach, where the models are evaluated at interleaved points in time.

Loose coupling removes the requirement of information exchange at each time step. The

models are time-integrated separately and are only coupled e.g. once every rotor revolution. The

structural model calculates the blade motion for an entire revolution using a simplified model of

the aerodynamic forces on the rotor blades. This approximation can come from lifting line theory

or from an experimentally found lookup table. The coupling is then achieved by transferring

the calculated blade motion to the CFD model and using the computed airflow solution to find

better blade loads.

The advantages of a loosely coupled scheme become apparent if one takes rotor trim into

account. Because directly comparing experimentally measured trim angles with the simulated

results often leads to large discrepancies, the usual approach is to prescribe the total loads on the

rotor hub and let the simulation solve for trim. This procedure adds another level of iteration for

the convergence of the trimmed coupled system. For tight coupling this results in a procedure

that is currently [4] deemed too expensive. With loose coupling, however, the rotor trim can be

adjusted during the rotor structural calculations using the simplified aerodynamics model. This

is especially useful in the case of steady flight conditions, when the solution is assumed to be

periodic.

In the field of financial and statistical modelling a lot of problems are presented as a time

series. A time series is a set of data points corresponding to observations of a particular process

at different times. In econometrics a time series can for example be the price of a stock at the

start of the trading day. Another example application of time series analysis comes from climate

research, where the atmospheric history can be studied using the width of tree rings as the time

series.

The goal of time series analysis is to extract some properties from the time series that char-

acterise the underlying process. A large and important class of models that is used to describe

time series is that of the autoregressive models. These models correlate the current data point

with a finite or infinite number of previous points of the series with a linear system of equations.

When the model is fitted to all the past observations of the time series, it can be used to predict

the future course of the series.

The goal of the present work is to analyse and improve the loose coupling of an aeroelastic

rotor simulation for trimmed periodic flight conditions.

The loose coupling of the three models (CFD, CSD and trim) will be formulated as an in-

teraction law, in order to compare it to other uses of interaction laws in the literature. A

one-dimensional model problem is constructed that resembles the rotorcraft simulation, includ-

ing the trimming process, in a very simple way. Using the model problem several methods for

improving the loose coupling are proposed. It is expected that established techniques from time

series analysis can be used to improve the convergence of the coupled models.
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CHAPTER 2

Interaction laws

Using a partitioned scheme to solve problems involving complex interaction can be challenging

with respect to stability and convergence. A possible approach to overcome these problems

is the use of an interaction law. An interaction law replaces the boundary condition on the

partition boundary in one model with an alternative boundary condition. The new boundary

condition approximates the physics of the other model, without actually using the other model.

This way the models of which the partitioned scheme is composed of are decoupled. Usually

this interaction law is chosen as simple as possible, while retaining enough characteristics of the

original model to enhance convergence of the coupled system.

In this chapter the role of the interaction law on a coupled system will be investigated. First

some notation will be introduced so that the different interaction laws can be described in a

similar manner. Then two examples from the literature are presented in which interaction laws

play a role in the convergence behaviour of a coupled system. The second example, in Section

2.3, also includes some analysis about how the interaction law influences the coupled system.

Finally, in the last section the concept and notation of an interaction law are applied to the loose

coupling approach for rotorcraft aeroelastic modelling.

2.1. General formulation

To formalise the concept of an interaction law in the context of coupled systems, a general

formulation is given. Let S and F be the structural and fluid model with internal state x and y

respectively. The two models are coupled by requiring that some set of variables defined for both

models have unique values on the interaction surface Γ. These variables do not necessarily have

to be part of the internal state, but should be readily computable from it, using the functions

SΓ : Rnx 7→ RnΓ and FΓ : Rny 7→ RnΓ . The combined system can be described as

S(x) = 0

F(y) = 0

SΓ(x) = FΓ(y).

(2.1)

Instead of finding a solution for this system using a direct method, an iterative method is

used. In an iterative procedure the models are alternatingly solved until both are converged to

a fixed point. Instead of prescribing all the variables on Γ for both models, the set of variables

is partitioned into two parts. For one of the parts the values of the variables from FΓ are used

to prescribe the values in SΓ and conversely, the other part is used as the boundary condition
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for FΓ.

SΓ(x) =

[
SlΓ(x)

SrΓ(x)

]
FΓ(y) =

[
FrΓ(y)

F lΓ(y)

]
with

SlΓ(x),FrΓ(y)∈Rn1

SrΓ(x),FlΓ(y)∈Rn2

n1+n2=nΓ

The parts are called the left and right part, according to the side on which they appear in the

iterative procedure. The iterative procedure is given by{
S(xn) = 0

SlΓ(xn) = FrΓ(yn−1){
F(yn) = 0

F lΓ(yn) = SrΓ(xn).

(2.2)

In this general formulation it is not important how the models S and F are solved. In practice

an iterative method could very well be used for each of the models, resulting in a nested iterative

approach.

In the context of a helicopter rotor aeroelastic simulation, S could be the CSD model of the

rotor blade with x the deflection angles along the blade axis. F is the CFD model with y the

flow state, for example the density, fluid velocity and specific energy for all the grid points. A

possible way of coupling the systems is to let FrΓ(y) be the aerodynamic pressure of the airflow

on the rotor blade and SrΓ(x) the position and velocity of the blade. Every iteration of S then

solves the blade deflections using the aerodynamic forces and subsequently F solves the airflow

around the blade with the blade motion prescribed as a boundary condition.

It is important to note that if (2.2) converges, it will converge to a solution of (2.1). For if

yn = yn−1 then SlΓ(xn) = FrΓ(yn) and SrΓ(xn) = F lΓ(yn). By construction then also SΓ(xn) =

FΓ(yn).

2.1.1. Introducing the interaction law

An interaction law emerges from the observation that if SlΓ(xn) could be solved with FrΓ(yn)

instead of FrΓ(yn−1), the procedure would converge in one step. However, solving FrΓ(yn) together

with SlΓ(xn) reduces the iterative procedure to a direct method again, negating the advantage in

computational complexity of the iterative method. So instead an approximation F̃rΓ is used that

approximates the behaviour of FrΓ(yn) using only yn−1 (and possibly xn). The new coupling

equation resulting from the use of the approximation is called the interaction law.

A possible interaction law could be based on a linearisation of FrΓ around yn−1

FrΓ(yn) ≈ FrΓ(yn−1) +
∂FrΓ
∂y

∣∣∣∣
yn−1

(
yn − yn−1

)
. (2.3)

This formulation still contains yn, so it is not suitable yet to be used in (2.2). Linearisation of

F lΓ around yn−1 and applying the result to yn yields

F lΓ(yn) = F lΓ(yn−1) +
∂F lΓ
∂y

∣∣∣∣
yn−1

(yn − yn−1).

This equation can be rewritten using the relation F lΓ(yn) = SrΓ(xn) to

SrΓ(xn)− SrΓ(xn−1) =
∂F lΓ
∂y

∣∣∣∣
yn−1

(yn − yn−1).
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Using this equation in (2.3) requires inverting the Jacobian of F lΓ and yields

FrΓ(yn) ≈ FrΓ(yn−1) +

[
∂FrΓ
∂y

(
∂F lΓ
∂y

)−1
]
yn−1

(
SrΓ(xn)− SrΓ(xn−1)

)
. (2.4)

This approximation of FrΓ(yn) could already be used to replace FrΓ(yn−1) in (2.2), because it

only depends on known variables (yn−1 and xn−1) and on the state of the model that is to be

solved (xn). To simplify the calculation of the interaction law, a simple model is introduced.

Using a simple model

The Jacobian matrices in (2.4) can be very large, because they both involve y, the complete

internal state of F . Furthermore the second Jacobian is generally not invertible, because the

state y contains much more elements than the boundary conditions for F . However, the product

of the Jacobian and the inverse Jacobian is a much smaller matrix. The idea of the interaction

law is that this smaller matrix does not need to be computed directly, but can be replaced by a

similar matrix and the advantages of better convergence still hold.

This is where the simple model is introduced, as an approximation of the combined Jacobians.

As said, the simple model need not be the exact solution of the combined Jacobians, but can

be anything with the same general behaviour. Often it is derived from some sort of physical

interpretation, using a very simple representation, which can be easily (in a direct way) calcu-

lated. This simple model F̃ thus can be seen as a map from the boundary condition of F to the

boundary condition of S. The complete interaction law to be used as a replacement for FrΓ in

(2.2) is now

F̃rΓ = FrΓ(yn−1) + F̃
(
SrΓ(xn)− SrΓ(xn−1)

)
. (2.5)

When this interaction law is used in (2.2) instead of FrΓ the boundary condition for S is

changed. In the case that F̃ is linear the new boundary condition can be written with all the

unknown terms on the left hand side.

SlΓ(xn)− F̃ (SrΓ(xn)) = FrΓ(yn−1)− F̃
(
SrΓ(xn−1)

)
The boundary condition is now more complex, with an extra term containing xn on the left hand

side of the equation. If S itself is solved using an iterative procedure this means that the simple

model F̃ has to be calculated many times. So each S–F iteration becomes more computationally

expensive. But as the simple model should have the same general behaviour as F , it is expected

that there are less S–F outer iterations necessary.

A desirable property of an interaction law is that although it may change the convergence

path, the solution of the converged system is the same as the solution of the original coupled

system. For the interaction law as formulated in (2.5) this property holds if F̃ is linear and

SrΓ is continuous. It can be seen that this is the case by noting that when xn → x̄ then also

SrΓ(xn)→ SrΓ(x̄) under continuity of SrΓ. The contribution of F̃ in (2.5) then vanishes due to its

linearity. So if the new procedure converges, the approximated F̃rΓ is exactly equal to the original

FrΓ and the new procedure converges to the solution of the original partitioned system, regardless

of the choice for F̃ . Of course the choice of the simple model does influence the convergence of

the iterative procedure. If the simple model does not reflect the behaviour of the original model

F , the iterative method will not converge at all.
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The interaction law detailed above is only a example. A variation of this interaction law that

will be used later is

F̃rΓ = FrΓ(yn−1) + F̃ (SrΓ(xn))− F̃
(
SrΓ(xn−1)

)
. (2.6)

This interaction law loosens the requirement on F̃ and only requires it to be continuous.

2.2. Fluid–structure interaction with heat transfer

Interaction laws can be used in all sorts of problems involving partitioned procedures. For exam-

ple in [5] passenger comfort in an aircraft cabin is modelled. This is done by coupling a human

body thermoregulation model, an airflow model and a radiation model. The thermoregulation

model T and the flow model F are coupled by the requirement that the temperature T and heat

flow q on the body surface are the same for both models. The models and their coupling can be

described as

T (x) = 0

F(y) = 0

TΓ(x) = FΓ(y)

(2.7)

with TΓ(x) =

[
qb

Tb

]
, FΓ(y) =

[
qf

Tf

]
.

The vectors T and q are of equal length and the models T and F are well-posed if exactly one

of these vectors is prescribed. The coupled system can be solved with an iterative procedure by

specifying qb = qf as a boundary condition for T and Tf = Tb for F .

T lΓ(xn) = qnb FrΓ(yn−1) = qn−1
f

F lΓ(yn) = Tnf T rΓ (xn) = Tnb

Of course the role of temperature and heat flux could also be reversed. Both these approaches

were tried in [5], but it was found that neither resulted in a stable procedure.

The seemingly arbitrary distinction between the temperature as a boundary condition for one

model and the heat flow for the other suggests that it might be fruitful to use an approach which

is symmetric with respect to the variables used in the coupling. To this end an interaction law

is introduced for both the models. The interaction laws use a simple model to characterise the

other system. Each simple model is based on a linearisation using a heat-transfer coefficient h

to characterise the system it represents.

qb = hb(T0 − Tb)

qf = hf (Tf − T∞),
(2.8)

with T0 and T∞ suitable reference temperatures in the body and airflow respectively. Now instead

of using T lΓ(xn) = qn−1
f as the boundary condition for T , (2.8) is used to find the estimate q̃nf

using some fixed hf . As the heat-transfer coefficient hf is not known yet for the current iteration,

hn−1
f is used as an approximation. Also Tnf is not known yet, but from boundary condition for
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F lΓ it can be seen that it must be equal to Tnb . This leads to the revised boundary condition

F̃rΓ = q̃nf

= hf (Tnf − T∞)

= hn−1
f (Tnb − T∞).

Similarly, the flow model is solved using the new boundary condition

T̃ rΓ = T0 −
qnf
hnb
.

Using (2.8) to eliminate hn−1 from these equations, the revised boundary conditions of the

interaction law emerge

F̃rΓ = qn−1
f

Tnb − T∞
Tn−1
f − T∞

T̃ rΓ = T0 +
qnf
qnb

(Tnb − T0) .

In [5] the original system (2.7) is solved using these revised boundary conditions. The inter-

action law stabilises the system and the iterative procedure now converges.

To see why the coupling between the two models is now symmetric, the coupling equations

can be rewritten. From the form in which they appear in the original paper,

qnb = (Tnb − T∞) hn−1
f

qnf = (T0 − Tnf ) hnb ,

it is clear that with the application of the interaction law the arbitrary distinction between the

prescribed variables on the model boundaries is removed. The physical interpretation of this is

that the Dirichlet and Neumann boundary conditions in the original system are replaced by a

mixed boundary condition for both models.

2.3. Viscous boundary layer interaction

Another example of an interaction law involves the viscous–inviscid interaction described by

Veldman in [6] and [7]. In an attempt to reduce the computational effort of simulating viscous

airflow around an airfoil, viscous flow is only calculated in a small layer around the airfoil. In

the flow domain outside the viscous layer, the airflow is assumed to be inviscid. The models are

coupled by requiring the density and flow speed of both models to be the same on the interface

between the viscous and inviscid flow, e.

In the viscous region the boundary-layer equations are used, which describe a thin boundary

layer around the airfoil. The influence of the boundary layer on the inviscid airflow is modelled

by a displacement effect, i.e. the airfoil appears thicker due to viscous effects. This displacement

δ∗ of the airfoil is incorporated in the inviscid model by using a surface transpiration concept,

where a non-zero normal velocity on the original airfoil boundary is prescribed. The boundary

condition for the inviscid model is

ρ0v0 =
∂

∂x
(ρeueδ

∗),
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e

δ∗
0

Figure 2.1.: Viscous–Inviscid interface e and displacement thickness δ∗, both exaggerated in thickness

with ρ0v0 the mass flux normal to the airfoil and ρeue the stream-wise mass flux at the edge of

the viscous layer.

For the purpose of this research the exact equations used to describe the viscous and inviscid

physics of the airflow are not important. It suffices to say that for a given airfoil geometry

and upstream flow conditions, both models can be expressed as a relation between the coupled

variables, ue and δ∗.

2.3.1. The iterative procedure and interaction law

In the work of Veldman the viscous model and the external inviscid flow are defined as ue = V (δ∗)

and ue = E(δ∗). Here the notation of Equation (2.2) will be used, in order to see the connection

with the general formulation of an interaction law. A straightforward iterative procedure could

be written as
V(xn) = 0

V lΓ(xn) = ErΓ(yn−1) = un−1
e

E(yn) = 0

E lΓ(yn) = VrΓ(xn) = δ∗n.

(2.9)

Here V(x) = ue − V (δ∗) and E(x) = ue − E(δ∗). The internal states x and y both contain ue

and δ∗ along the airfoil, in some not further specified way.

This procedure produces correct results for attached flows, but according to [6] it breaks

down when flow separation occurs. Near the singular points of flow separation there is a strong

interaction between the viscous and inviscid flow and no hierarchy between the models is present.

The viscous model used for V has a minimum for ue, corresponding to the onset of flow separation.

The iterative procedure breaks down when ue below this minimum is prescribed for V. Reversing

the order of information exchange solves this problem, as V can be solved for any δ∗, but leads

to a very slow converging procedure.

An interaction law is used to obtain a stable procedure, while still solving the original combined

system with as little extra computational work as possible. The interaction law consists of a

simple model as an approximation of E . This simple model is solved simultaneously with the

boundary-layer equations of V. The effect of this is that the boundary condition for V is not just

ue anymore, but also contains the simple model. This results in a stable procedure, even in the

presence of flow separation.

Usually the simple model is based on some physical representation that is simpler than that

of E . But this can lead to interaction laws that are still quite complex and increase the com-
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putational work required to solve V together with the simple model substantially. Because the

interaction law does not influence the solution resulting from the iterative procedure, it is not

strictly necessary that the simple model is derived from a physical representation of the system it

describes. In order to keep the interaction law simple, the proposed simple model I : ue = I(δ∗)

is constructed in a straightforward way based on the matrices describing the numerical models.

Let V, E and I be the matrix representation of the V , E and I respectively. In the no-

tation of Equation (2.9), V and E are the matrix representation of [0|Id]
T [V|V lΓ] (VrΓ)

−1
and

ErΓ
[
E|E lΓ

]−1
[0|Id], with Id the identity matrix and | the matrix stacking operator.

The simple model is constructed by dropping off-diagonals of E. This means that I can vary

from very simple, a matrix containing only the main diagonal of E, to a complete copy of E.

The proposed revised iterative procedure as formulated in the original paper is

(I−V)δ∗n = (I−E)δ∗n−1. (2.10)

Formulated as an interaction law the similarity to (2.6) is clear.

ẼrΓ = un−1
e +

(
I(δ∗n)− I(δ∗n−1)

)
In [7] it is shown that this interaction law results in a procedure that can solve the coupled

system in the presence of flow separation, except for the degenerate case I = E, i.e. no off-

diagonals are dropped. Even when I is reduced to the least possible complexity, a diagonal

matrix, the interaction law results in a stable procedure and the coupled system converges.

2.3.2. Analysis of the interaction law

To see why the interaction law results in a stable procedure, some matrix theory is required.

Statements here are based on theorems developed in [8] and [9]. Exact references and more

details can be found in [6] and [7].

First, E − V and I − V are assumed to be diagonally dominant and have positive diagonal

entries and non-positive off-diagonals, with all the eigenvalues in the stable half-plane. These

conditions on E−V lead to the fact that E−V is non-singular and (E−V)−1 ≥ 0. The iterative

procedure (2.10) is the repeated application of the operator (I −V)−1(I − E). The maximum

absolute value of the eigenvalues, the spectral radius ρ, of this operator is strictly less than unity.

ρ
(
(I−V)−1(I−E)

)
< 1

This means that the iterative procedure (2.10) is convergent and that it converges to (E−V)δ∗ =

0.

Moreover, if two matrices Ia and Ib are both simplifications of E, where Ib has more off-

diagonals dropped or than Ia, that is Ia ≤ Ib, then the spectral radius of the iterative operator

of Ia is not greater than that of Ib.

ρ
(
(Ia −V)−1(Ia −E)

)
≤ ρ

(
(Ib −V)−1(Ib −E)

)
.

This means that the number of iterations required to solve (2.10) increases monotonically with

the number of off-diagonals dropped from E.

Every iteration requires solving (2.10). The inverse of I − V is not calculated directly, but

the system is solved iteratively. Under the same assumptions as above it can be shown that the
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number of these sub-iterations decrease monotonically in the number of dropped off-diagonals in

I.

The two iterative processes show opposite convergence behaviour when the interaction law

I is simplified. To find the method with the overall lowest number of iterations, numerical

experiments have been performed by Veldman. In [7] it is shown that for both the simplest

interaction law, where only the main diagonal remains, and for the case I→ E, the total number

of sub-iterations required reaches a local minimum.

For the original problem to converge to a solution, all eigenvalues of E −V should lie in the

stable half-plane. As a measure of robustness, let τ( . ) denote the minimum real part of the

eigenvalues of a matrix. Then under the earlier assumptions for E−V and I−V it can be shown

that

τ(E−V) ≤ τ(Ia −V) ≤ τ(Ib −V),

with Ia ≤ Ib. So robustness of the interaction law increases as more off-diagonals are dropped.

An outline of the proof follows. By construction we have

E−V ≤ Ia −V ≤ Ib −V.

Now if each of these these three matrices are decomposed as A = αId − Â, with α sufficiently

large such that Â ≥ 0, then the Perron–Frobenius theorem can be used. This theorem states

that if Â ≥ 0 is an irreducible matrix then Â has a positive real eigenvalue equal to its spectral

radius ρ(Â) and ρ(Â) increases when any entry of Â increases.[9]

So if λ̂ is the largest real eigenvalue of Â, then τ(A) = α− λ̂. Moreover τ(A) is non-decreasing

in A, which concludes the proof.

2.4. Loose coupling in rotorcraft fluid–structure interaction

Current research on the simulation of steady forward rotorcraft flight is generally based on a

loose coupling method between a rotorcraft flight dynamics model and an aerodynamics solver

using, for example, the Euler [10] or Reynolds-averaged Navier–Stokes [11] equations. The flight

dynamics model usually consists of a CSD model describing the structure of the rotor blades,

integrated with a simplified CFD model for the aerodynamics and a trim procedure. The sim-

plified aerodynamics model can be a lookup table of experimentally found aerodynamic forces

or a lifting line model, possibly extended by including unsteady effects and a vortex wake. The

simplified model is usually called the 2D-CFD model, as it does not compute a full 3-dimensional

flow solution. The trim procedure adjusts the angles of the flight controls, which prescribe the

motion of the rotor blade at the root. The goal of the trim procedure is to adjust the control

angles such that the resulting mean total rotor hub loads are appropriate for the chosen flight

condition.

In order to make the results of the flight dynamics model more accurate, it is coupled to a

first principles CFD model. The loose coupling procedure is outlined below and also shown in

Figure 2.2.

• The flight dynamics code computes a trimmed periodic solution of a full rotor revolution.

This results in blade deformation x and aerodynamic forces (calculated by the simplified

model) on the rotor blade F 2D.
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• The CFD grid is deformed according to x and a flow solution is calculated. This results in

more accurate aerodynamic forces F 3D.

• The difference between the two aerodynamic loads is calculated, ∆F = F 3D − F 2D. This

delta load can be seen as the error of using the 2D model in the calculation of the flight

dynamics.

• The rotor is trimmed again by the flight dynamics model. The total aerodynamic loads

used in the trimming process is the sum of the forces calculated by the simplified model

and ∆F from the last CFD solution.

• The previous three steps are repeated until convergence is achieved.

The system is said to be converged if the total loads and pitch angles do not significantly change

from one coupling iteration to the next. In general if the 2D-CFD model is good enough, the

loose coupling will converge without the need for relaxation.

CSD Trim

aerodynamic loads

blade deformation

total hub loads

pitch angles

CFD CFD2D

delta loads

blade deformation

Flight Dynamics

Figure 2.2.: Schematic overview of the loose coupling approach

2.4.1. Loose coupling as an interaction law

To see how this loose coupling approach fits in the framework laid out in Section 2.1, the proce-

dure described above is presented in the formulation of Equation (2.2). First the three models

and their relations are stated on a conceptual level. Then an iterative procedure for solving this

combined system is proposed and finally it is shown that applying an interaction law permits

the resulting procedure to be transformed into the loose coupling approach.

The basic coupled system, without using a 2D-CFD model, consists of three parts: a CSD and

CFD model and a trim procedure. These three parts and their relations can be described as

S(x) = 0

F(y) = 0

T (L, θ) = 0

SΓ1(x) = FΓ1(y)

SΓ2
(x) = TΓ2

(L, θ).
(2.11)

Here S and F are the CSD and (full) CFD models, with the blade deflections x and fluid flow

state y. T is the trim procedure. For clarity its variables L, the mean total rotor hub loads, and

θ, the control angles, are written separately. It is important to note that x and y represent the

blade deformation and flow state for every time step in an entire rotor revolution of the periodic

solution. The combined system is to be solved for the free variable θ with prescribed L.

A possible iterative procedure to solve this system is shown in Figure 2.3. This is roughly

equivalent to a tightly coupled procedure for steady trimmed rotorcraft flight. Introducing a
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CFD CSD Trim

aerodynamic loads

blade deflections

total hub loads

pitch angles

Figure 2.3.: Schematic overview of a basic iterative approach

superscript n for the iterations in the inner loop and superscript k for the outer iterations, the

iterative procedure is 


S(xn) = 0

SlΓ1
(xn) = F 3D(yn−1)

SlΓ2
(xn) = θk−1{
F(yn) = 0

F lΓ1
(yn) = xn{

T (Lk, θk) = 0

T lΓ2
(Lk, θk) = L(xk).

(2.12)

First, the CSD and CFD models are iteratively solved with a fixed trim angle θk−1. The boundary

condition of S consists of the aerodynamic forces F 3D and the boundary condition of F are the

blade deflections x. When this combined procedure has converged the solution of the CSD model

xk is used to calculate the mean rotor hub loads L. Using the difference between this L and the

target loads, the trim procedure T calculates the new θk and the next outer iteration can begin.

In order for the trim procedure to be able to calculate θk, it must have some knowledge of the

effect of adjustments to θ on L. This can be for example an (estimated) influence matrix ∂L
∂θ .

Adding the simplified aerodynamics

In order to speed up the convergence of the coupled system, an interaction law is introduced.

The interaction law used instead of F 3D is very similar to the one shown in Equation (2.6). S
will be solved with F̃ 3D, an approximation for F 3D(yn), instead of F 3D(yn−1). In the interaction

law F 2D, the aerodynamic forces on the rotor blade as calculated by the simplified model, is used

to estimate the difference between F 3D(yn−1) and F 3D(yn).

F̃ 3D = F 3D(yn−1) +
(
F 2D(xn)− F 2D(xn−1)

)
The goal of the interaction law is to allow the combined system to be solved with fewer

iterations of the (computationally intensive) CFD model. This is done by moving the F from

the inner to the outer loop. To make that possible, first the terms of F̃ 3D are reordered, such

that a delta load as used in the loose coupling procedure appears.

F̃ 3D = F 2D(xn) +
(
F 3D(yn−1)− F 2D(xn−1)

)
= F 2D(xn) + ∆Fn−1

Now instead of updating ∆Fn in every iteration of S, a fixed ∆F is used. The result of this is

that the CSD and CFD models are detached. The boundary condition F̃ 3D and thus the solution

procedure for S does not depend anymore on information from F at inner iteration n− 1. This
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allows for F and T to swap places in the iterative procedure, such that the S–T iterations are

now the inner loop and the (ST )–F iterations are the outer loop. The revised iterative procedure

using the interaction law is then described by


S(xn) = 0

SlΓ1
(xn) = F 2D(xn) + ∆F k−1

SlΓ2
(xn) = θn−1{
T (Ln, θn) = 0

T lΓ2
(Ln, θn) = L(xn){

F(yk) = 0

F lΓ1
(yk) = xk

with ∆F k = F 3D(yk)− F 2D(xk).

(2.13)

This procedure to solve the original system (2.11) is exactly the formalised version of the described

loose coupling approach.

2.4.2. Remarks on the loose coupling approach

The role of the interaction law

It is important to note that the primary goal of the interaction law for the loose coupling

approach is different than for the examples described in Section 2.2 and 2.3. These previous

examples involved only two coupled models and the interaction law was necessary to facilitate

convergence of the coupling iterations. In contrast, the case described here involves three models

that have to be coupled. Also, in general the stability of the S–F coupling is not a problem

for practical rotorcraft aeroelastic simulations. The main problem is the computational load

required for solving the CFD model to the required accuracy without a prescribed trim.

While the interaction law will also have a positive influence on the convergence of the coupled

system, its main purpose here is to enable the CFD model to be moved to the outer loop. This

reduces the number of times this computationally expensive model needs to be solved.

Hierarchy in model coupling

The iterative treatment of the three coupled models has been shown with two different hierarchies.

The first with S–F in the inner loop and the second with S–T in the inner and F in the outer

loop. This suggests the possibility of a third method, in which the inner loop consists of F–T
and the CSD model is solved in the outer loop.

Because F and T are not directly coupled, but only indirectly through S, there is nothing to

iterate in the inner F–T loop. Thus this approach is actually the same as a non-hierarchical

approach, in which the three models are solved consecutively in one iterative loop. The indepen-

dence of F and T in the inner loop could be exploited by solving the two models at the same

time, in parallel. However for rotorcraft simulation this has no practical advantages, because

solving T is trivial compared to solving F .

The model hierarchy with an S–F inner loop could also be restored using an approximation of

S as an interaction law. It is deemed unlikely however that an interaction law can be found that

is simple but preserves enough of the behaviour of S to be useful. More importantly, with this
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approach F still resides in the inner loop of the hierarchy, with the corresponding computational

disadvantages, as discussed earlier.

Convergence and consistency of the modified procedure

Provided that the problem of solving the combined model is well posed, the choice of model for

the simplified aerodynamics does not influence the solution of the converged system. For if the

loose coupling converges then xn = xn−1 and thus F 2D(xn) = F 2D(xn−1). So in the boundary

condition SlΓ1
from (2.13) the two F 2D terms cancel and only F 3D(yk−1) remains. This means

that the loose coupling as described by (2.13) will converge to the same solution as the original

procedure (2.12), irrespective of the choice of the simple model F 2D. Of course it is still possible

that the loose coupling is not stable at all, perhaps even when the original procedure is. In

particular, it is expected that when the simple model is not a sufficiently good approximation of

the CFD model, the loose coupling will fail to converge.

In [10] it was shown that for a practical rotorcraft aeroelastic coupling the choice of 2D model

did have an influence on the solution of the coupled system. The solution was different when

another simplified model was used and neither matched the tight coupling solution used as a

reference. This was attributed to the fact that the CSD and CFD models were only coupled

in a few variables along the rotor blade. If for example only lift and drag are coupled between

the CFD model and the structural model and the lifting line 2D model additionally calculates a

pitching moment, the solution will depend on the choice of 2D model.

Another possible reason for different solutions found by the loose coupling is that the problem

of finding a trimmed solution is not well posed at all, i.e. there are multiple solutions. As the

choice of interaction law does influence the convergence path, it is possible that by changing the

2D model a different solution is found. This does not have to be a problem however, because

both solutions are equally valid. The solution can be checked by confirming that it is also a

solution of the tightly coupled procedure.

The treatment of the model coupling in this chapter presumes that each of the models solves

the entire periodic solution at once. In practice however, for example in Servera[10], but also

in the model problem described in Chapter 4, the coupling between the CSD model and either

the full or the simplified CFD model is done at every time step. This can alter the convergence

path, but should not result in a different converged periodic solution.
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CHAPTER 3

Autoregressive modelling of time series

A time series can be defined as a set of quantitative observations arranged in chronological order.

These observations can be analysed [12] and the properties of the time series derived from the

analysis can then be used to predict future development of the series.

Although based in economic modelling, time series analysis is also a valuable tool in engineer-

ing. In aircraft design for example, to analyse wing flutter, the motion of the wing is modelled

using an autoregressive model, often augmented with a moving average part.

In the context of this research, the interpretation of a time series is extended to a general

series of (possibly higher dimensional) data points. The data points of the time series do not

correspond to the value of some variable at a certain point in time, but to the intermediate result

after one iteration of an iterative procedure. To capture the properties of the time series, an

autoregressive model is used.

3.1. Autoregressive model

A discrete time stochastic process Xt is called an autoregressive process of order p, an AR(p)

process, if it can be described by the difference equation,

Xt = δ + φ1Xt−1 + . . .+ φpXt−p + ut, (3.1)

where δ is a constant term and ut a stochastic process, i.e. for every t ∈ N, ut is a random

variable. The p coefficients φj are the fixed parameters of the AR(p) process.

From now on only first order autoregressive processes will be considered. If Xt is assumed to

be a mean zero AR(1) process, Equation (3.1) simplifies to

Xt = φXt−1 + ut, (3.2)

with ut a mean zero stochastic process.

Suppose at some time t0 the value of Xt0 is known, then X at a later time t = t0 + τ can be

described by

Xt0+τ = φτXt0 +

τ−1∑
j=0

φjut0+τ−j .

As all the random variables uj have a zero mean, the expectation of Xt0+τ is

E[Xt0+τ ] = φτXt0 . (3.3)

So given the stated assumptions, the future of X can be predicted using an initial value Xt0

and the single parameter φ.
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3.1.1. Parameter estimation

In general the value of the parameter φ is not known a priori, but must be estimated from the

time series. A series of observations X0, . . . , XT can be used to calculate the T values of ut,

according to Equation (3.2). The ut terms can be interpreted as error terms. Fitting the model

by minimising the total error in a least squares sense therefore means that the best estimate for

φ is the one that minimises
T∑
t=1

|Xt − φXt−1|2 .

This leads to

φ =

∑T
t=1XtXt−1∑T−1
t=0 X2

t

. (3.4)

The fitted model is stable if |φ| < 1.

3.2. Vector Autoregressive model

In a vector autoregressive (VAR) process every observation in the time series is a vector. The

formulation of Equation (3.2) still holds for a VAR(1) process, but now with Xt and ut as N × 1

vectors and φ replaced by Φ, an N ×N matrix.

Again, the parameter matrix Φ can be estimated by solving for the smallest errors in the

observations in the least squares sense. For a series of observations X0, . . . , XT the estimated

parameter matrix is

Φ = BAT
(
AAT

)−1
(3.5)

with: A =
[
X0 · · · XT−1

]
B =

[
X1 · · · XT

]
.

The fitted model is stable if every eigenvalue λ of Φ lies within the unit circle, |λ| < 1.

3.2.1. Subset VAR model

In a VAR(1) model, every variable in theN×1 vectorXt depends on every variable of the previous

observation Xt−1. In other words, the matrix Φ is a full matrix. This does not necessarily reflect

the causal relationships between the variables of the process that is being modelled. Moreover,

it can be shown that using a model with more degrees of freedom in the parameter matrix than

there are in the underlying process results in less accurate predictions. For more information see

the detailed explanations by Lütkepohl[13].

A subset VAR model uses a sparse matrix to limit the number of autoregressive coefficients in

Φ. Apart from a more accurate modelling of the autoregressive process, a subset VAR model is

also useful when the size N of the vector Xt is larger than the available number of observations

T . In this case the choice of the full parameter matrix Φ is not uniquely defined. The parameter

matrix can be uniquely defined from the observations X0, . . . , XT if only up to TN non zero

elements are allowed.

In general there will be no a priori knowledge about the relationships between the variables of

the autoregressive process. This means that the decision of whether to include an autoregression
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parameter in the model or to restrict the corresponding element of Φ to zero has to be made

based on the available observations. Outlined below is a procedure as described in [13].

A good model is one that achieves a low total error with respect to the observed time series

while using as few nonzero parameters in Φ as possible. To formalise this notion of a good subset

model, the Akaikes Information Criterion (AIC) is used.

AIC = ln σ̃2 +
2

T
nparam (3.6)

σ̃2 =
1

T

T∑
t=1

|Xt −ΦXt−1|2 ,

with nparam the number of nonzero elements of Φ. The squared norm |.|2 is the sum of the squares

of the matrix elements, so σ̃2 denotes the prediction error averaged over all the observations. The

subset model chosen is the one that minimises the AIC. This strategy balances both requirements

of a good model.

Unfortunately, even for medium sized problems it is unfeasible to check all the possible restric-

tions, because there are 2N
2

possible combinations. Instead a top-down strategy is used where,

starting from a full VAR(1) model, coefficients are restricted to zero one at a time. If the re-

stricted model yields a lower AIC that restriction is kept, otherwise the parameter is included in

Φ again. Because Equation (3.5) can be split in N separate equations, the parameter estimation

given a specific restriction can be done independently per row. To make computations easier,

the calculation of the AIC is also done per row.

The procedure to find the optimal restricted parameter matrix is as follows. The first row of the

matrix Φ is estimated using the least squares method and the corresponding AIC is evaluated.

Then the first parameter is restricted to zero and the remaining coefficients are estimated again.

If the new AIC is lower, then the first parameter kept restricted, otherwise it is again included

in the model. The same procedure is repeated for the second parameter and so on, until the

complete set of restrictions for the first row of Φ is obtained. The same is done for the other

rows of the parameter matrix. The resulting matrix has nonzero entries for the parameters that

most accurately describe the modelled process.
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CHAPTER 4

Model problem

The model problem consists of a closed one-dimensional cylinder filled with gas, coupled to a

spring–loaded piston. See Figure 4.1 for a schematic overview. The attachment point of the

spring follows a prescribed, periodic motion. This model is similar to the one used in [1], but

with the spring attached to a moving wall. The goal of this model problem is to mimic the

qualitative behaviour of the CFD, CSD and trim procedures of a full rotorcraft simulation with

a model that is as simple as possible. This model can then be used to analyse different coupling

strategies.

In the model problem the mass–spring system represents the CSD model for the rotor blades.

The CFD model of the gas in the piston delivers a non-trivial force on the piston, analogous to

how the complex aerodynamic forces deform the rotor blades in rotorcraft. The forced periodic

motion of the spring attachment point induces a periodic solution of the combined fluid-structure

system. This represents the periodicity of steady forward flight conditions. The trimming process

is modelled by adjusting the spring constant. This indirectly alters the motion of the piston and

the aerodynamic forces exerted on it.

The model equations are presented in a space–time formulation and subsequently discretised

with a finite volume approach. This is roughly based on the discontinuous Galerkin finite element

method of Van der Vegt and Van der Ven[14]. An important advantage of this approach for

rotorcraft modelling is that local mesh refinement can be done naturally for both the space

and time dimensions, which is useful for capturing blade vortices. Furthermore, the periodicity

requirement becomes just another boundary condition, which is useful for modelling rotorcraft

in stationary flight. For the model problem, however, both advantages will not be used, in order

to keep the numerical procedure simple.

4.1. Governing Equations

The fluid in the cylinder of length l(t) is described by the Euler equations of gas dynamics in

conservative form, which in space–time formulation can be written as:

F : ∇ · F (U) = 0 (4.1)
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with F =

 ρu ρ

ρu2 + p ρu

ρue+ pu ρe

 , U(x̄) =

 ρρu
ρe

 , x̄ =

[
x

t

]

where

ρ : mass density

u : fluid velocity

e : total energy

p : pressure

x : length along the cylinder

t : time

This system is closed by using the state equation for a perfect gas

p = (γ − 1)(ρe− 1

2
ρu2),

with the ratio of specific heats γ assumed to be 1.4.

k

ps pa

mU

l

L

z

Figure 4.1.: Piston model problem

The structure is modelled with an ordinary differential equation describing a mass–spring

system with one degree of freedom:

S : m(L̈+ z̈) + kz = (ps − pa)A. (4.2)

Here z is the displacement of the structure relative to the spring equilibrium position, in the

same direction as L, so a positive ż means an increasing cylinder volume. m is the mass of

the piston, k the spring constant and A the surface area of the piston. The forcing term of the

spring equation is the difference of the force exerted by the fluid on the piston psA and the force

resulting from the atmospheric pressure paA outside the cylinder.

To describe the motion of the wall the spring is attached to, the equilibrium position is a

prescribed function of time L(t). The motion is chosen to be a simple sinusoidal with period tL,

mean value L̄ and amplitude ∆L.

L(t) = L̄+ ∆L cos (ωLt) ,

with ωL =
2π

tL

4.1.1. Boundary conditions and model coupling

At the fluid–structure interface conservation of mass, momentum and energy is satisfied by the

following dynamic and kinematic conditions.

FΓ ≡

pΓ

l

uΓ

 =

 ps

L+ z

L̇+ ż

 ≡ SΓ (4.3)
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The variables pΓ and uΓ denote the fluid pressure and velocity at the fluid–structure boundary.

Together (4.1), (4.2) and (4.3) describe the coupled fluid–structure system.

Due to the forced motion of the spring attachment point, work is done by the piston on the

gas. This work results in a net increase of energy in the fluid system. In order to obtain a

periodic solution the total internal energy of the system must be bounded. To this end the left

wall is kept at a fixed temperature. The moving right wall is modelled as an adiabatic wall, as

this results in a simpler boundary condition than the isothermal wall. The idea of this setup is

that energy added to the gas by the work of the piston can leave the system at the isothermal

left wall as an outward heat flux.

For S initial conditions zI and żI are given. F can either have an initial condition or a

periodicity requirement. For the model problem an initial condition is prescribed by the fluid

state that is defined by the parameters ρI , uI , pI .

4.1.2. Nondimensionalisation

All the variables and equations are nondimenionalised. The reference quantities for the scaling

are derived from the length L̄, density ρI and pressure pI . Additionally, the fluid variables

are scaled with the cylinder cross-section area A, such that Equation (4.1) describes the fluid

system in one-dimensional form. No new notation will be introduced, but instead all variables

are assumed nondimensional from now on. All relevant variables are listed in Table A.2 and the

dimensional values of the parameters are listed in Table A.1.

4.2. Fluid discretisation

The fluid is discretised using a space–time finite volume approach. In the time direction the

space-time domain is partitioned in evenly spaced space–time slabs of height ∆t. The domain Ω

for the space–time slab t ∈ [t0, t1] is depicted in Figure 4.2. The motion of the right boundary is

linearly interpolated between the values l0 = l(t0) and l1 = l(t1).

Along the spatial direction, Ω is divided into N evenly distributed elements. The length of

an element in the x-direction is h0 = l0/N and h1 = l1/N at time t0 and t1 respectively. The

element boundary ∂Ωi is divided into four parts. S− and S+ are the time boundaries of the

element, at time t0 and t1 respectively and Si−1 and Si are the left and right boundary, internal

to the space–time slab.

Ω: Ω1 ΩN

S−

h1

t0

t1

∆
t

h0 l0 l1

S+

∆xi

Si

Si−1

Ωi

x

t

Figure 4.2.: Fluid discretisation in one space–time slab

In each element Ωi the flow state is assumed to have a constant value, denoted UΩi .
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To construct the finite volume discretisation Equation (4.1) is integrated over an element Ωi

and the divergence theorem is applied. This results in

0 =

∫
Ωi

∇ · F (U)dΩ

=

∫
∂Ωi

F (U) · n̄ dS

with n̄ the unit outward space–time normal vector of the element boundary.

The length of each part of the boundary and the unit normal vector pointing in the positive t

direction for S−, S+ and in the positive x direction for Si are given by

‖S−‖ = h0 ‖S+‖ = h1 ‖Si‖ =
√

∆t2 + ∆x2
i

n̄− = n̄+ =

[
0

1

]
n̄i =

[
∆t

−∆xi

]
1

‖Si‖
.

The integral over the element boundary ∂Ωi can now be split into four parts. If F (U) is

assumed to have a unique value FS , constant on each of element boundary parts, the surface

integral can be reduced to∫
∂Ωi

F (U) · n̄ dS =

∫
S+

F (U) · n̄dS +

∫
S−

F (U) · n̄dS +

∫
Si

F (U) · n̄dS +

∫
Si−1

F (U) · n̄dS

=

∫
S+

FS+ · n̄+dS −
∫
S−

FS− · n̄−dS +

∫
Si

FSi · n̄idS −
∫
Si−1

FSi−1 · n̄i−1dS

= FS+
· n̄+‖S+‖ − FS− · n̄−‖S−‖+ FSi · n̄i‖Si‖ − FSi−1

· n̄i−1‖Si−1‖. (4.4)

4.2.1. Numerical flux

As U is not uniquely defined at the element boundary Sj the flux F (U) can not directly be used

in (4.4) as the value of FS . Instead a numerical flux is introduced. For the purpose of this model

problem, with the flow state assumed constant in an element, a simple Rusanov flux, as described

by Toro[15], will suffice. This flux is used at every part of the element boundary. The left state

UL is the state inside the element and the right state UR the state in the adjacent element.

FS · n̄ u H(UL, UR, n̄)

=
1

2
(F (UL) + F (UR)) · n̄+

1

2
(UL − UR)λ̄,

with λ̄ = max(λ̄L, λ̄R) λ̄L/R = max

∣∣∣∣∣∣∣
 u 1

u− a 1

u+ a 1

 · n̄
∣∣∣∣∣∣∣ a =

√
γp/ρ

The numerical flux is conservative, i.e. H(UL, UR, n̄) = −H(UR, UL,−n̄), so it can be used in

(4.4).

At the element boundaries between the different space–time slabs, S− and S+, this numerical

flux yields

FS− · n̄ = U t0Ωi
, FS+

· n̄ = UΩi ,

with U t0Ωi
the value of U at element Ωi in the previous space–time slab.

At the interior boundary parts in the space–time slab, Si, the flux is

FSi · n̄ = Hi with Hi = H(UΩi , UΩi+1 , n̄) for i = 1, . . . , N − 1.
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For i = 0, N the flux Hi must come from the boundary conditions.

Applying the expressions for FS · n̄ in (4.4) and rewriting them using Ĥi = Hi‖Si‖∆t−1 and

λ̂ = λ̄‖Si‖∆t−1 yields the following equation for each element Ωi.

h1UΩi − h0U
t0
Ωi

+ ∆t
(
Ĥi − Ĥi−1

)
= 0 (4.5)

with Ĥi =
1

2
(F (UL) + F (UR)) ·

[
1

−v

]
+

1

2
(UL − UR)λ̂,

λ̂ = max

(
|uL − v|+ aL

|uR − v|+ aR

)
, v =

∆xi
∆t

Here the wave speed λ̂ used in the approximate solution of the Riemann problem is an upper

bound of the characteristic wave speeds, as described in [15]. Note how the length of the boundary

cancels with the scaling of the normal and how the inner product with n̄ in the equation for λ̄

results in the correction of the fluid velocity with the element boundary velocity.

4.2.2. Boundary conditions

At the left and right boundaries of Ω a solid wall is assumed. On the left side of the domain

the wall is stationary and on the right side the wall is moving. Given the velocity v = ∆x
∆t of

the wall and the flow state U at the wall, the exact flux at the left and right boundaries of the

space–time slab can be calculated

F (U) · n̄ = F (U) ·

[
∆t

−∆xi

]
1

‖Si‖

= F (U) ·

[
1

−v

]
∆t

‖Si‖

=

 ρu− ρv
ρu2 + p− ρuv
ρue+ pu− ρev

 ∆t

‖Si‖

=

 ρ(u− v)

ρu(u− v) + p

ρe(u− v) + pu

 ∆t

‖Si‖
.

With the requirement for the solid wall, u = v, the flux simplifies to

F (U) · n̄ =

 0

p

pv

 ∆t

‖Si‖
. (4.6)

This means that the only variable from the flow state that needs to be specified at the boundary

is the pressure.

Right boundary: moving adiabatic wall

Because the length of the fluid domain is interpolated linearly between l0 and l1, the velocity of

the moving right wall, vr, is constant.

vr =
l1 − l0

∆t
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In the case of an adiabatic wall, the pressure at the wall should be such that there is no heat

transferred through the wall.

In a first attempt to achieve this, the pressure of the interior is simply extrapolated to the

wall. With the notation used in describing a Riemann problem, where pL denotes the pressure

in the element next to the wall and p∗ the pressure at the wall, this approach can be written as

p∗ = pL.

The results are however unsatisfactory. With increasing resolution of the space-time grid the

particle velocity in the element adjacent to the wall does not converge to the speed of the wall.

A second approach for modelling an adiabatic moving wall is described by Toro[15]. The

pressure comes from the solution of a Riemann problem where the left state is the state in

the element next to the wall and the right state comes from a dummy element. If the left

state is defined by ρL, uL and pL, then the dummy state is given by the conditions ρR = ρL,

uR = −uL + 2v and pR = pL. These particular left and right states allow the Riemann problem

to be solved analytically. The solution consists of either two shocks or two rarefaction waves.

If local subsonic flow is assumed, the fluid state at the wall is the star state from the Riemann

problem. The fluid velocity at the wall is then u∗ = v, suggesting that the dummy state was

chosen correctly to describe a wall moving with velocity v. The pressure at the wall is given by

p∗ =


pL

(
1 + γ−1

2
uL−v
aL

) 2γ
γ−1

if uL ≤ v,

pL

(
1 + γ γ+1

4

(
uL−v
aL

)2
(

1 +

√
1 +

(
γ+1

4
uL−v
aL

)−2
))

if uL > v.
(4.7)

Using this pressure in (4.6) yields a numerical procedure that follows the prescribed velocity

of the wall accurately.

Left boundary: fixed isothermal wall

Unfortunately, the flux associated with an isothermal boundary condition cannot be calculated

as easily as for the case of an adiabatic wall. This is because the Riemann problem can not be

solved analytically due to the fact that pR 6= pL. In [16] an alternative approach based on the

approximate Riemann solver of Osher is suggested. A dummy state is constructed that, when

used with the Osher solver, gives the desired properties at the wall (u∗ = 0 and T ∗ = T∞). The

resulting pressure at the wall to be used in (4.6) is

p∗ = pL

1 +
γ − 1

2

uL
aL

1 +
uL(a2

L − a2
∞)

aLa∞
aL+a∞
γ−1 + uL

a2
L+a2

∞
2


2γ
γ−1

.

The temperature requirement is expressed here as a prescribed speed of sound a∞. This speed

of sound is related to the temperature by a∞ =
√
γRgasT∞, with Rgas = cp− cv, the specific gas

constant. Notice the similarity of this expression for p∗ to that of the adiabatic wall for the two

rarefactions case with v = 0.

In testing this method, it was seen that the temperature at the wall was not reliably kept to a

fixed value. Thus the approach of directly calculating the flux was abandoned for the isothermal

left wall. Instead a dummy state is introduced and the numerical flux is calculated the same way
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as at the internal element boundaries. The dummy state U0 used in the numerical flux is defined

with

ρR = ρL ,
uL + uR

2
= 0 ,

TL + TR
2

= T∞.

Testing revealed that this implementation of the isothermal boundary condition was good in

maintaining the prescribed temperature at the wall and adequate in prescribing a vanishing

velocity at the fixed wall. The minor fluctuations of the fluid velocity at the fixed wall did not

lead to a net mass flux through the boundary over a complete period.

Expressions for the boundary flux

The final boundary conditions can now be expressed in a way that they can be used in (4.5). The

left isothermal boundary condition leads a dummy state U0 that can be used in the numerical

flux procedure.

Ĥ0 = Ĥ (U0, UΩ1
)

with U0 =


ρ1

−ρ1u1

ρ1e1 + 2
γ−1

(
p∞

ρ1

ρ∞
− p1

)
 (4.8)

Here ρ1, u1, e1 and p1 come from UΩ1
, the flow state in the leftmost internal element.

The right adiabatic boundary condition leads to a direct expression of the flux:

ĤN =

 0

p∗

p∗vr

 , (4.9)

with p∗ from (4.7) and vr the velocity of the right moving wall, the piston.

4.2.3. Iterative solution strategy

Applying Equation (4.5) to every element in the space–time slab Ω results in a system of equa-

tions. This system is to be solved for every space–time slab, analogous to time stepping in a

classical finite volume approach with only a space dimension.

In order to solve the system described by (4.5), (4.8) and (4.9), a pseudo-time integration

method is used. The quantity on the left hand side of (4.5) is called the residual, R. Finding

the solution for R(U) = 0 then amounts to finding the stationary point of

∂U

∂τ
+R(U) = 0.

with R(U) = h1UΩi − h0U
t0
Ωi

+ ∆t
(
Ĥi − Ĥi−1

)
The stationary point can be found with an iterative procedure.

Un+1 = Un − (∆τ)
−1
R(Un) (4.10)

with ∆τ =
h0 + h1

2
+ ∆tmax(λ̂i).

Here ∆τ is chosen such that a stable procedure results, which converges to a solution U in the

space–time slab Ω with a vanishing residual.
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4.3. Structure discretisation

The pressure at the fluid–structure interface is assumed to be constant in a space–time slab, so

if the forced motion of the spring L is interpolated linearly on a space–time slab, Equation (4.2)

can be solved analytically. The solution z(t) has the general form

z(t) = α0 sin (ω(t− t0)) + α1 cos (ω(t− t0)) + β0 + β1(t− t0),

with ω =

√
k

m
.

To satisfy the linear part of (4.2), the parameters β0 and β1 must be

β0 =
(ps − pa)A

k
− m

k
L̈(t0)

β1 = −m
k

1

∆t

(
L̈(t1)− L̈(t0)

)
.

The remaining parameters α0 and α1 are used to satisfy the initial conditions z(t0) = z0 and

ż(t0) = ż0.

α0 =
ż0 − β1

ω

α1 = z0 − β0

With these parameters known the values of z and ż at t = t1 can be calculated.

z1 = z0 cos (ω∆t) +
ż0

ω
sin (ω∆t) + β0 (1− cos(ω∆t)) + β1

(
∆t− 1

ω
sin(ω∆t)

)
ż1 = ż0 cos (ω∆t)− ωz0 sin (ω∆t) + β0ω sin (ω∆t) + β1 (1− cos(ω∆t))

4.4. Coupling methods

The fluid, structure and trim procedures of the model problem will be coupled in a way similar

to the coupling in the simulation of trimmed rotorcraft aeroelastics as described in Section 2.4.

4.4.1. Tight coupling

The approach shown in Figure 2.3 is based on a full space–time solver for both F and S, i.e. the

full periodic solution of either F or S is calculated before information is exchanged. In the model

problem explicit time stepping is used by solving each space–time slab separately. At each time

step the models are coupled and information is exchanged. This is comparable to the tightly

coupled procedure in rotorcraft simulations. By calculating a combined fluid–structure solution

for a number of periods, a periodic solution is obtained without a specific periodic boundary

condition.

Algorithm 1 gives an overview of how the systems are coupled. The goal is to find a periodic

solution for the piston motion, a periodic fluid flow state and a value for the trim parameter

T such that the average aerodynamic force on the piston, F̄ , is equal to some prescribed value

Ftarget. At the end of each outer iteration the trim procedure T chooses a new value Ti+1 that

(hopefully) results in a better F̄i+1. The stopping criterion ε need not be the same for the various

loops. The exact value used is not of importance to the current analysis, so it can be seen as a

placeholder. The exact nature of the trim procedure and which parameter of the model it uses

as the trim parameter T will be described in Section 4.5.
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Algorithm 1: Tightly coupled procedure for solving the model problem

initialise trim parameter T0 ; // guess

repeat i = 1, . . . // (T loop)
t = 0 ;

z0 = zI , ż0 = żI ;

initialise flow state U0 = UI ;

repeat j = 0, . . . // time stepping

initialise z0
1 , ż

0
1 ; // guess

repeat k = 1, . . . // S–F loop

Ukj = F(Uj−1, z0, z
k
1 ) ;

calculate pΓ from Ukj ;(
zk+1

1 , żk+1
1

)
= S(pΓ, z0, ż0) ;

until |zk1 − zk−1
1 | < ε;

t = t+ ∆t ;

(z0, ż0) = (z1, ż1) ;

until pΓ periodic;

calculate F̄i from periodic solution U ;

adjust trim: Ti+1 = T (Ti, F̄i) ;

until |F̄i − Ftarget| < ε;

4.4.2. Loose coupling

As shown in Figure 2.2, the basis of the loose coupling approach consists of the tight coupling

with the CFD model replaced by a simplified model. Once the CSD and the simplified fluid

model have converged to a trimmed periodic solution, the full CFD model is used to calculate a

correction on this estimate. The input for this corrector step is a vector z with the displacement

of the piston for one period. The result of the CFD model is used to construct a vector ∆p

which is the difference of the periodic pressure at the piston calculated by the simplified model

and the CFD model.

∆p = pΓ − p̂Γ (4.11)

The variables written in a bold face denote a vector with length Nt, the number of time steps in

one period.

Nt = tL/∆t

The pressure difference ∆p is then used in the next predictor step, where it is added to the

pressure calculated by the simple model p̂Γ. This result is the pressure from the fluid on the

pressure ps.

ps = p̂Γ + ∆p (4.12)

Due to the addition ∆p in the coupled procedure, the trim parameter needed to obtain Ftarget

will be different. However, because in this step the simple model is used, finding the new trim

parameter using multiple S–F loops is not computationally expensive. This process of predictor

and corrector steps repeats until the average aerodynamic force as calculated by the CFD model
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on the piston is close enough to the target value. The complete procedure is shown in Algorithm

2.

Algorithm 2: Loosely coupled procedure for solving the model problem

initialise trim parameter T0 ; // guess

initialise ∆p0(j) = 0 j = 0, . . . , Nt ;

repeat n = 1, . . . // F loop

repeat i = 1, . . . // S–T loop
t = 0 ;

z0 = zI , ż0 = żI ;

repeat j = 0, . . . // time stepping

initialise z0
1 , ż

0
1 ; // guess

repeat k = 1, . . . // simplified S–F loop
calculate p̂Γ with simplified model ;

ps = p̂Γ + ∆pn(j mod Nt) ;(
zk+1

1 , żk+1
1

)
= S(ps, z0, ż0) ;

until |zk1 − zk−1
1 | < ε;

t = t+ ∆t ;

(z0, ż0) = (z1, ż1) ;

until ps periodic;

save complete period of z0 and p̂Γ in zn and p̂nΓ ;

calculate F̄i from periodic solution ps ;

adjust trim: Ti+1 = T (Ti, F̄i) ;

until |F̄i − Ftarget| < ε;

t = 0 ;

t = 0 ;

z0 = zI , ż0 = żI ;

initialise flow state U0 = UI ;

repeat j = 0, . . . // time stepping

Uj = F (Uj−1, z
n(j − 1), zn(j)) ;

calculate pΓ from Ukj ;

∆pn+1(j mod Nt) = pΓ − p̂nΓ(j) ;

until pΓ periodic;

calculate F̄ from periodic solution U ;

until |F̄ − Ftarget| < ε;

Choice of simple model

The simplified model for the estimate of the pressure at the piston p̂Γ must still be specified. A

suitable approximation of the gas dynamics in the cylinder comes from the adiabatic expansion

of an ideal gas. For the case that there is no heat exchange, e.g. if the piston is moved very

rapidly, then the quantity pV γ is constant. With the initial pressure pI and initial fluid domain

length lI as reference this gives the approximation

p̂Γ = pI

(
lI
l

)γ
,
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with l the average length of the cylinder in the current space–time slab.

When comparing the result of a tightly coupled procedure with the full CFD model and a

coupling with this approximation, two problems become apparent. The first is that this simple

model does not show a rise in temperature as great as seen in the CFD model. The second is

that the tightly coupled procedure using the simplified model does not converge to a periodic

solution due to a lack of damping, which is not a problem when using the CFD model. The

damping in the CFD model is provided by the left boundary condition, where energy can flow in

and out the fluid domain. As there is no damping in the structure itself, some form of damping

from the fluid is necessary, because without damping the spring motion (which has a natural

frequency different from the forcing motion) will not fade away and no periodic solution will be

found.

To overcome these problems, the approximation is extended with two additional parameters.

The purpose of these parameters is not to reflect certain physical properties of the CFD model,

but rather to obtain a simplified model with a large-scale behaviour more similar to the CFD

model.

p̂Γ = pI

(
lI − C1

l − C1

)γ
− żC2 (4.13)

C1 induces greater pressure fluctuations because the cylinder of air seems smaller. This results

in a higher average pressure at the piston, more close resembling the pressure found by the CFD

procedure. The second parameter C2 is to provide artificial damping. This parameter has no

significant effect on the final periodic solution, but does decrease the number of periods in which

it is attained. The best values for these parameters are experimentally found. In Section 4.5.2

the solution of this simplified model is compared to the CFD solution for a range of values for

the trim parameter.

4.5. Trim adjustment

For the trim procedure two things are needed: a quantity derived from the solution of the

combined fluid–structure system and an adjustable parameter that influences that quantity in a

(more or less) predictable fashion.

In rotorcraft simulation for trimmed steady flight the quantities derived from the coupled

solution are the forces and moments on the aircraft. For the purpose of trimming it is not

necessary to know the exact loads over the whole length of the rotor blades. Likewise the

time varying loads do not have to be known, but only the average over one rotor revolution.

The trimmed quantity thus is generally chosen to be the mean rotor hub load. The equivalent

quantity in the model problem is the mean aerodynamic force on the piston,

F̄ =
1

tL

∫ tL

0

pΓAdt.

4.5.1. Choosing a trim parameter

Trim adjustments on rotorcraft are done by altering the prescribed angle of attack at the root of

the rotor blades over the course of a whole rotor revolution. The periodic motion of the blades

at the rotor hub is prescribed by some parameters that relate to the pilot controls. In general

there are three degrees of freedom for the controls and three components of the rotor hub load.
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As there is no adjustable parameter in the model problem that is obviously analogous to the

angle of attack of the blade root, several possibilities are examined. The considered methods for

trimming the fluid–structure model are the adjustment of the parameters describing the forced

motion, L̄ and ∆L, and the parameters used in the structural model, m and k. In Figure 4.3

the influence of adjusting each of these four parameters on F̄ is shown.

The trimming process is easiest when the relation between the trim parameter and F̄ is straight-

forward, preferably monotonic. For rotorcraft dynamics this is certainly not the case in the pres-

ence of aerodynamic effects like dynamic stall. However, for the analysis of the coupling methods,

the relation for the model problem should be kept simple to avoid slow convergence of the trim

procedure. A further requirement is that the simplified model shows the same general behaviour

for a varying trim parameter as the CFD model. Of course the models are not expected to match

exactly, but the simple model should at least be able to cover the same range of values for F̄ as

the CFD model in order for the loose coupling to be able to converge.

As can be seen in Figure 4.3(a), the force F̄ is not a monotonic function of L̄. The almost

sawtooth-like shape is from pressure waves reflecting on the left fixed wall and arriving at the

piston in or out of phase with the movement of the piston. As the value of L̄ needed to attain a

desired F̄ is not uniquely defined, this is not a good choice for the trim parameter.

For lower range of values for ∆L a linear approximation for its influence on the force F̄ is

reasonably accurate. The sudden increase of F̄ around ∆L = 0.12 in Figure 4.3(b) is the result

of the onset of local supersonic flow.

Figure 4.3(c) shows that the spring constant k can be a good candidate for the trim adjustment

parameter if its value is restricted to k > 0.0025. Preliminary tests have shown that this is indeed

the case. Using 1/k as the trim parameter works even better, because then the response of F̄ is

more or less linear over a greater range.

The last trimming strategy considered is varying the mass of the piston. This clearly has no

meaningful equivalent in rotorcraft, but that is not important to consider for the model problem.

The disadvantage of using m as the trim parameter is that the range for which F̄ depends more

or less linearly on m is very limited.

4.5.2. Effect of trim on the simple model

Based on the analysis in the previous section ∆L and 1/k are further investigated as possible

trim parameters. To evaluate how well suited a parameter is for trimming in a loosely coupled

procedure, the result of a tightly coupled procedure using the approximate model is compared

to the result of a procedure using the CFD model for the same range of parameter values.

It can be seen in Figure 4.4 that although 1/k could be approximated linearly over a great

range of values, the proposed simple model (4.13) does not result in a good approximation of

the behaviour of F̄ with respect to 1/k for any value of C1. The response of the simple model

to variations of 1/k is too flat, so a loosely coupled procedure with trimming on 1/k would not

converge, as the difference between the two models is too big.

For variations of ∆L Figure 4.4(b) shows that the simplified model indeed fails to capture the

subtleties of the behaviour of the CFD model. This is of course expected, but for ∆L < 0.12 the

simple model can be made to match the CFD results quite closely, which should result in good

convergence behaviour for the loose coupling procedure. For larger values of ∆L the difference

between the two models is so large that the loose coupling will most likely not converge at all,
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Figure 4.3.: Influence of several possible choices for the trim parameter on the mean aerodynamic

force F̄ on the piston. The green line signifies the value for the parameter that is used

when one of the others is varied, this is the value from Table A.1 in nondimensional form.
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but that is not necessarily a problem.

Of the four considered possibilities for choice of trim parameter, ∆L is the most likely to lead

to a successful loose coupling. Therefore the trim procedure T will adjust ∆L in order to search

for an average force on the piston F̄ that is equal to Ftarget.
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(a) F̄ vs. 1/k – The simple model does not show a

response to changing the spring constant k that is

similar to the response of the full CFD model.
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(b) F̄ vs. ∆L – Especially for small ∆L the

simple model quite reasonably approximates the

full CFD model.

Figure 4.4.: Comparison of three versions of the simplified model to the solution of the full CFD

model for two different choices of the trim parameter

4.5.3. Trim solution strategy

In steady forward flight the aircraft is said to be trimmed when the controls are such that the

mean total aerodynamic forces are equal to the weight and drag of the aircraft. The rotor hub

moments should be zero, with the exception of the yawing moment, which can be compensated

by the tail rotor in most rotorcraft configurations. Every degree of freedom of the controls has

a nontrivial influence on the rotor hub loads. To keep the trimming process simple, a linear

approximation with a fixed gradient is used. To estimate the Jacobian of the relation between

input (trim) and output (loads) a 3× 3 matrix is constructed called the sensitivity matrix. Each

column of this matrix consists of the difference of the loads resulting from a small perturbation

of one of the trim inputs with a reference load. The inverse of the sensitivity matrix is used to

determine in which direction the trim parameters should be adjusted in order to get closer to

the desired rotor hub loads.

For the model problem the trimming process consists of finding the right value for ∆L for which

the solution of the combined fluid–structure system yields an F̄ that is equal to some chosen

target. In this simple case the sensitivity matrix is a scalar and is denoted by δF̄ . It is determined

by two runs of the coupled model, for different, fixed, values of the trim parameter T0 and T1.

For subsequent trim iterations, the new value for the trim parameter, Ti+1, is determined by

linear extrapolation of the last parameter value Ti and its resulting force F̄i using the sensitivity
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matrix.

Ti+1 = Ti +
1

δF̄

(
Ftarget − F̄i

)
for i = 1, 2, . . . ,

δF̄ =
F̄1 − F̄0

T1 − T0
.

Although for the model problem the (1-dimensional) sensitivity matrix could be updated each

trim iteration, it is kept fixed in order to keep the procedure similar to the rotorcraft trimming

procedure.
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CHAPTER 5
Evaluation of the model problem and coupling

strategies

5.1. Untrimmed FSI coupling

5.1.1. Convergence to a periodic solution

In Section 4.4.1 it is assumed that after starting from some initial condition the transients will

disappear and a periodic solution will be obtained after some time. To validate this, a flow

solution is calculated for multiple periods by the combined fluid–structure model with the trim

kept fixed.

In Figure 5.1 the flow solution for 12 periods of the forcing motion is shown for two different

values of the trim parameter ∆L. The flow variables ρ, u and p are shown separately for the

whole space–time domain. Time is on the horizontal axis and the length along the cylinder on

the vertical axis. The oscillating motion of the piston is reflected by the curved upper boundary

of the domain.

Starting from the initial fluid state, perturbations of the mean flow state emerge at the moving

boundary and travel to the left side of the piston, where they are reflected. After several periods

the fluid does indeed seem to attain a periodic solution. The main difference between the flow

states for the two values of ∆L is that the larger ∆L results in a greater movement of the piston

and larger perturbations for the flow variables.

The simplified model does not calculate a complete fluid state, but only consists of an expres-

sion for the pressure at the piston pΓ. A common expression for the periodicity of the solution is

desired, so pΓ will be used to determine the periodicity of the solution for both the CFD model

and the simple model. Periodicity of pΓ does not necessarily mean that the whole fluid state is

periodic, but as this pressure at the interaction boundary is the only information from the CFD

model needed for the fluid-structure coupling, it suffices to measure periodicity this way.

Figure 5.2 shows the pressure on the piston for the same CSD-CFD model parameters as

before, over 20 periods of the forced motion. After a strongly non-periodic start the pressure

profile settles around t = 6, after 8 periods. During the next periods the pressure profile does

not change much anymore.

As was already shown in Section 4.5.1, the average pressure increases when ∆L increases. The

value of the average pressure at the piston (the red line in Figure 5.2) converges to the value

found in Figure 4.3(b) for the two trim parameter values. In the periodic pressure profile for

∆L = 0.11 a secondary peak can be seen that is not present in Figure 5.2(a). This is due to the

reflected wave hitting the piston on the start of the outgoing movement, whereas in the case of
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Figure 5.1.: Fluid flow for 12 periods of the CFD model for two different values of the trim parameter

∆L. The density, fluid velocity and pressure are shown in the space–time domain with

the length along the cylinder on the vertical axis. Time is on the horizontal axis.
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Figure 5.2.: Pressure at the piston for 20 periods of the CFD model.

The moving average for one period is shown in red. For ∆L = 0.11 the average pressure

converges to a higher value and the periodic pressure profile has a secondary peak.
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∆L = 0.04 the reflection coincides with pressure peak resulting from the ingoing motion of the

piston.

5.1.2. Comparison with the simple model

Figure 5.3 shows the pressure on the piston as calculated by the simplified model. For the

approximation the simple model is coupled to the CSD model using the same tight coupling with

fixed trim as with the full CFD model. This procedure is essentially the same as the inner loop

of the loose coupling. The only difference is that there is no ∆p correction applied.

As already shown in Section 4.5.2, the simple model with C1 = 0.72 underestimates the value of

pΓ, but does capture the relation with the trim parameter ∆L. The shape of the pressure profile

is much simpler compared to the result of using the full CFD model. The general behaviour,

however, matches that of the pressure calculated by the CFD model.

For illustration purposes the damping parameter C2 used in Figure 5.3 has been reduced by a

factor of ten to make the convergence to a periodic solution (especially for the case ∆L = 0.11)

clearly visible. When the normal value for C2 is used, the pressure profile looks periodic after

only 2 periods, as is the case in Figure 5.3 for ∆L = 0.04.
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Figure 5.3.: Pressure at the piston for 20 periods of the simplified model. (C1 = 0.72)

The moving average for one period is shown in red. Here also a greater prescribed

motion leads to a larger average pressure.
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To better quantify the convergence to a periodic resolution, Figure 5.4 shows the difference

between pΓ at time t and the pressure exactly one period before, plotted on a logarithmic scale.

If the models truly converge to a periodic solution, this periodic difference should go to zero. The

most important observation from this plot is that the CFD solution does not actually converge to

a periodic solution. Where the simple model shows steady convergence to a periodic solution, the

CFD model has reached maximum periodicity after about 12 periods. In practice the attained

periodicity of 10−4 may or may not be enough to give meaningful results. For the current research

it suffices though, because the emphasis is on the convergence of the outer iterations of the loose

coupling, not on the convergence to a periodic solution.
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Figure 5.4.: Periodic difference of 20 periods of the pressure at the piston for the case ∆L = 0.11.

The periodic difference of pΓ is plotted in green and the periodic difference of the one

period average is plotted in red and blue for the CFD and simple model respectively.

5.2. Coupled model with trimming

5.2.1. Tight coupling

Finding the right value of the trim parameter for a specified target pΓ involves multiple iterations

of the coupled CSD-CFD model with different trim parameter values. Figure 5.5 shows the tight

coupling converging to the ∆L required to reach the target. Each iteration shows the average

pressure at the piston of the periodic solution for a single value of the trim parameter. The first

two iterations, which are necessary to determine the sensitivity matrix, are not shown.

The convergence of pΓ shows oscillatory behaviour. In Figure 5.5(c) it can be seen that the

convergence is very slow for the first 10 iterations and somewhat better after that. The exact

convergence behaviour for the tight coupling is highly dependent on the chosen initial values for

∆L to determine the sensitivity matrix. In this case the sensitivity matrix is determined around

0.02, where the pΓ/∆L gradient is quite flat. If the sensitivity matrix would be determined
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(c) Relative error of pΓ on a logarithmic scale

Figure 5.5.: 20 iterations of the tightly coupled procedure (Algorithm 1) for finding the trim for

pΓ = 1.6 times the initial pressure in the cylinder
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around 0.05, convergence would be much better, but obviously the right value is not known in

advance, as it is the result of the trimming process.

5.2.2. Loose coupling

Figure 5.6 shows the convergence history of the loosely coupled procedure. The outer loop of

the loose coupling consists of finding a trimmed solution using the simple model, followed by a

single run of the CFD model with prescribed piston motion. The 20 CFD steps are plotted using

a solid marker. Each CFD step is preceded by several iterations of the simple model, plotted

with open markers.

For the loose coupling specified in Algorithm 2, the number of simple model runs is based on

how close the resulting pressure is to the target value. For the easy reading of the plots, here

a fixed number of 10 simple model runs is used. This is more than is necessary to get a good

estimate of pΓ, but as the simple model is not very computationally expensive, using a fixed

number is not a problem.

There are two types of oscillations visible in Figure 5.6. On a small scale there are the

oscillations resulting from trimming the simple model. As was the case with the tight coupling,

these oscillations appear because the sensitivity matrix is determined in a region where the simple

model has a flatter pΓ/∆L gradient compared to the region of the desired trim parameter value.

On a larger scale the oscillations occur after each CFD step. This is the result of the simple

model underpredicting the influence of the trim parameter on pΓ. In this case the simple model

first finds that ∆L = 0.09 is needed to attain a pΓ of 1.6. The CFD correction step shows that

this value of the trim parameter results in a pressure that is too large, around 2.0. Subsequently

∆p is adjusted and the simple model is trimmed again, this time converging to ≈ 0.035. Now

the CFD correction results in a lower pressure. This results in the stepwise oscillatory behaviour

seen in Figure 5.6(a).

Comparing the tight and the loose coupling after 20 CFD iterations shows that they attain

about the same relative error. It is important to note though, that the computational costs of

finding a periodic CFD solution for the loose coupling are about 2–3 times less. This is because

in the case of the loosely coupled model the length of the fluid domain is prescribed for the CFD

model run, so there is no interaction with the CSD model during the CFD computations and

consequently no subiterations are necessary to achieve a coupled fluid–structure solution. The

time needed to calculate a periodic solution using the simple model is negligible, so in terms of

computational cost the loose coupling can be said to converge faster than the tightly coupled

procedure.

An important observation is that the trim parameter found is the same (∆L ≈ 0.0484), so

the loose coupling is consistent with the tightly coupled procedure. It must be stressed that,

although a relative error of 10−3 would probably suffice for a rotorcraft aerodynamics simulation

for engineering purposes, the goal for this model problem, which is much simpler, is to obtain

better accuracy and faster convergence.

Convergence of periodic pΓ

It is informative to look at how the periodic pressure at the piston evolves during the outer

iterations of the loose coupling. Figure 5.7(a) shows the pressure at the piston as found by the
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(b) One period average pΓ. Solid diamonds are the CFD steps.
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(c) Relative error of pΓ on a logarithmic scale, after each CFD step

Figure 5.6.: 20 iterations of the loosely coupled procedure (Algorithm 2) for finding the trim for

pΓ = 1.6 times the initial pressure in the cylinder
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Figure 5.7.: Fluid pressure at the piston over a whole period. The first five and the last of the

iterations are labelled.

47



simple model. It converges to a fairly straightforward pressure profile. The first iteration has a

section with negative pressure. Here the simple model fails to give a physically meaningful result.

This does not lead to stability problems for the fluid–structure interaction however, because the

fluid pressure is only used to calculate the force on the piston. A negative fluid pressure means

the fluid exerts a force on the piston in the same direction as the force from the atmospheric

pressure pa outside the cylinder. It also does not affect the final outcome or the stability of the

trim procedure, because the coupling uses the average pressure as input to the trim procedure,

which remains positive.

Figure 5.7(b) shows pΓ of the periodic solution calculated by the CFD model. The solution

converges to a pressure profile with the average of the target pressure pΓ = 1.6. Finally, Figure

5.7(c) shows ∆p for 20 iterations of the loose coupling. For the middle part of the period it is

negative, meaning that in this region the simple model over predicts the fluid pressure compared

to the CFD model. The average of ∆p converges to a positive value, consistent with the earlier

observations that the simple model under predicts pΓ.
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CHAPTER 6

Improving the loose coupling convergence

In this chapter some strategies for improving the convergence of the loose coupling will be

explained and evaluated. The focus is on reducing the number of CFD solutions necessary to

get a fully coupled trimmed periodic solution.

6.1. Relaxation

A well known approach to stabilise a coupled iterative procedure and speed up its convergence

is to apply some amount of relaxation to the updates of the variables involved. In the loosely

coupled procedure there are two variables that are updated in the outer loop that are of impor-

tance. The result of the trimming process using the simple model is the periodic piston motion

z, which is used to prescribe the length of the fluid domain in the subsequent CFD iterations.

The periodic solution of the CFD model yields the pressure difference ∆p. This vector is then

used as a correction to the pressure calculated by the next round of the simple model. Both

relaxation on z and on ∆p are examined.

6.1.1. Relaxation on ∆p

The pressure difference ∆p can be written as a recurrence relation by combining Equations

(4.12) and (4.11)

∆pn+1 = pnΓ − p̂nΓ

= pnΓ − pns + ∆pn.
(6.1)

As can be seen in Figure 5.6 the simple model initially underestimates the pressure at the piston.

After the CFD model has calculated the periodic solution, ∆p is updated to reflect the difference.

When the simple model is used again to trim ps back to the target value, the next run of the CFD

model shows that the pressure was overestimated. ∆p now needs to be adjusted downwards.

The oscillatory behaviour of pΓ − ps, the average of the updates to ∆p, suggests that relaxed

updating of ∆pn could be beneficial to the convergence of the loose coupling. When relaxation

is applied with a parameter 0 < φ ≤ 1, Equation (6.1) becomes

∆pn+1 = φ (pnΓ − p̂nΓ) + (1− φ)∆pn

= φ (pnΓ − pns ) + ∆pn,
(6.2)

which for φ = 1 results in the old update rule.

Figure 6.1 indeed shows that convergence is much faster with relaxation applied to the updates

of ∆p. Where the unrelaxed loose coupling required 17 runs of the CFD model to achieve a

relative error of 10−3, the method using relaxation only needs 5 CFD solutions for the same
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(b) One period average pΓ. Solid diamonds are the CFD steps.
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(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.1.: 20 iterations of the loosely coupled procedure with relaxation on ∆p for φ = 0.7
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error. The relaxation parameter φ is set here to a fixed value of 0.7, which is experimentally

determined to yield good results for this instance of the model problem.

When looking at the results for more than 20 iterations of the loose coupling (Figure 6.6), it

can be seen that without relaxation the loose coupling does not converge beyond a relative error

of about 10−3. This is because the chosen parameter values for the simple model result in a

model that does not show a behaviour similar enough to the full CFD model. Relaxation can

help in this case however. For all the tested relaxation parameters, there was no lower bound

on the relative error reached, other than the machine precision of the floating point number

representation.

6.1.2. Relaxation on z
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(b) One period average pΓ. Solid diamonds are the CFD steps.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2010-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

re
la

tiv
e 

er
ro

r p
Γ

(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.2.: 20 iterations of the loosely coupled procedure with relaxation on z for φ = 0.95
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Instead of relaxing the updates of ∆p, another possibility is to apply the same method to z.

The resulting procedure also shows an improved convergence rate, as can be seen in Figure 6.2

for φ = 0.95.

The important difference between the two methods of relaxation is the range of parameter

values over which they produce improved results. For relaxation on ∆p any strategy with a

fixed φ where 0.5 < φ < 1 yields a better procedure than the loose coupling baseline, as can be

seen in Figure 6.6. In the case of relaxation on z, only for 0.9 < φ < 1 convergence improves.

For φ < 0.9 convergence is actually slower than the unrelaxed case. Therefore relaxation on ∆p

seems a better approach and from now on the focus will be on relaxation on ∆p.

6.1.3. Disadvantages of relaxation with a fixed parameter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200.00

0.02

0.04

0.06

0.08

0.10

∆
L
/L̄

(a) Evolution of the trim parameter ∆L throughout the iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201.0

1.2

1.4

1.6

1.8

2.0

2.2

p
Γ
/p̄

(b) One period average pΓ. Solid diamonds are the CFD steps.
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(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.3.: 13 iterations of the loosely coupled procedure with the simplified model using C1 = 0.89

instead of 0.69
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In the previous examples, the difference between the pressure found by the simplified model

and the CFD model oscillates between a positive and a negative adjustment. This is because the

chosen simplified model has a lower ∂F̄ /∂∆L gradient than the CFD model. As it is in general

unknown which configuration of the simplified model leads to the best prediction of the CFD

behaviour, it is instructive to look at the loose coupling using a simplified model with a different

value for the parameter C1. The simplified model is changed to react more strongly on changes

in ∆L, by using C1 = 0.89. Figure 6.3 shows the results of the unrelaxed loose coupling with this

adjusted simplified model. In this case the ∆p corrections after each CFD step are all negative

and instead of oscillating, the found trim parameter ∆L increases monotonically.

When there are no oscillations in the CFD correction steps, relaxation using a fixed parameter

with a value of φ < 1 does not help to speed up convergence, but rather slows it down, as can

be seen in Figure 6.4. A value of φ > 1 could be used, but as this can easily lead to an unstable

procedure, this approach is not further investigated.
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Figure 6.4.: 50 iterations of the loosely coupled procedure with the simplified model using C1 = 0.89

instead of 0.69, using relaxation on ∆p with fixed φ

In general, success of the relaxation strategy is highly dependent on the choice of φ, as can be

seen in Figures 6.4 and 6.6 . The best choice of φ depends on the model parameters and how

closely the simple model matches the CFD model. This makes it difficult to have a successful

relaxation strategy using any fixed φ that is robust for a large range of model parameters.

6.1.4. Aitken relaxation

In order to remove the need for setting φ directly, a dynamical approach to setting the relaxation

parameter is used. A suitable strategy for determining φ is Aitken relaxation, as described by

Küttler and Wall[17]. The method uses the previous two iterations to determine the new value

of the relaxation parameter.

φn = φn−1 (Pn)
T (

Pn+1 −Pn
)

(Pn+1 −Pn)
T

(Pn+1 −Pn)
,

with Pn+1 = pnΓ − pns

For the update after the first iteration φ0 is set to 1.
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(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.5.: 20 iterations of the loosely coupled procedure with Aitken relaxation on ∆p
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The results for the application of Aitken relaxation to the loose coupling are shown in Figure

6.5. It performs better than relaxation with fixed φ.

During the coupling iterations φn is mostly set to values in the range 0.4− 1.0, but with some

outliers as high as 1.4. Because the dynamically determined value for the relaxation parameter

can also be greater that 1 if necessary, Aitken relaxation also improves the convergence speed

when the simplified model with C1 = 0.89, as described in Section 6.1.3, is used.

6.1.5. Summary of results for relaxation
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Figure 6.6.: Comparison of different relaxation strategies for the loose coupling

To compare the relaxation strategies, Figure 6.6 shows the convergence rate for relaxation on

∆p for several fixed φ and for the Aitken method. All relaxation strategies clearly improve on

the non-relaxed procedure. Aitken relaxation is slightly better than the best fixed φ found, but a

significant improvement in case the a priori choice of the fixed φ was less suitable (e.g. φ = 0.9).

This, together with the fact that Aitken relaxation is appropriate for a wider range of simplified

model parameters makes it the best choice of relaxation strategy.

6.2. A basic autoregressive model

In this section the convergence properties of the loose coupling procedure will be analysed.

These properties will be exploited by using a very simple autoregressive model to improve the

convergence of the coupled procedure.

6.2.1. An alternative expression for the convergence criterion

To see how the convergence of the loose coupling can be further improved, it is instructive to

look at the criterion for convergence. The outer loop is said to be converged if |pnΓ − ptarget| < ε.

Here pnΓ denotes the average of the vector pnΓ with the fluid pressure on the piston for one period.
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(In Algorithm 2 this criterion is defined in terms of the force F on the piston, but the pressure

can be used equivalently.)

The inner S–T loop iterates until ps → ptarget to within some ε. As the S–T iterations are

relatively cheap, ps can be made sufficiently close to ptarget on the scale of the error in the outer

loop |pnΓ − ptarget|, that it can be said that when the inner loop is converged ps = ptarget holds.

This means that the convergence criterion of the outer loop can be written as |Pn| < ε with

Pn = pnΓ − pns .

Here pns is the pressure on the structure resulting from the converged solution of the inner S–T
using the simple model, in the nth outer iteration and can be written as

pns = p̂nΓ + ∆pn.

Using the same notation as in Section 4.4.2, p̂nΓ denotes the pressure on the piston as calculated

by the simple model. The superscript n is added to make the outer iteration explicit. The

correction term ∆pn is the difference between the CFD solution and the simple model solution

in the previous iteration,

∆pn = pn−1
Γ − p̂n−1

Γ . (6.3)

Rewriting (6.3) to include Pn gives a recursive formula for ∆pn. This is the scalar equivalent

of Equation (6.1).

∆pn+1 = pnΓ − p̂nΓ
= Pn + pns − p̂nΓ
= Pn + ∆pn

So the quantity Pn is exactly the increment of the average of ∆p in the nth outer iteration. This

means that convergence of the whole coupling is equivalent to convergence of ∆pn to some limit.

Let the limit of the sequence ∆pn be denoted ∆p. The central idea that forms the basis for

further improvements of the loose coupling is that convergence can be improved by adjusting

∆pn+1 after each outer iteration, such that its average is equal to ∆p. As the limit ∆p is

unknown, it must be estimated based on previous coupling iterations.

6.2.2. Estimation of ∆p

The increments Pn of ∆pn can be seen as the jumps at every CFD iteration, for example in

Figure 5.6(b). The fairly linear behaviour of the relative error on the logarithmic scale suggests

that Pn can be accurately modelled by a simple autoregressive model,

Pn+1 = φ Pn.

Figure 6.7 shows that a simple geometric sequence is indeed a reasonable approximation of the

sequence Pn. In this example Pn from an unaltered loose coupling is compared to the geometric

sequence starting at P 2 and continuing with a common ratio of φ = −0.65. The estimate follows

Pn pretty well until about n = 12, where the vanishing of Pn starts to slow down. But as Pn

has already decreased almost two orders of magnitude, the resulting estimate of ∆p will still be

accurate enough to be a useful estimate.
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Figure 6.7.: Comparison of relative error to a geometric sequence with φ = −0.65

The autoregressive model can be used to find the estimate ∆̃p of the limit ∆p. In the case of

this simple first order AR model the limit can be calculated explicitly; At the end of iteration n

(when ∆pn+1 is known) the estimate is

∆̃p = ∆pn+1 +

∞∑
i=1

φiPn

= ∆pn+1 +
φ

1− φ
Pn, for − 1 < φ < 1.

Estimation of AR parameter φ

The simplest way of estimating φ is by using the ratio of the last two iterations.

φ = Pn/Pn−1 (6.4)

6.2.3. Adjustment of ∆p

With the estimate of ∆p known, the next step is to adjust the vector ∆p such that its average

is equal to ∆̃p. The vector ∆p is defined element-wise as

∆pn+1(j) = pnΓ(j)− p̂nΓ(j) , j = 0, . . . , Nt. (6.5)

Two different methods for adjusting ∆p are considered. The first is to add a constant term to

every pressure in ∆p.

∆pn+1(j) =
(
pnΓ(j)− p̂nΓ(j)

)
+
(

∆̃p− (pnΓ − p̂nΓ)
)

, j = 0, . . . , Nt (6.6)

The second is to multiply every pressure in ∆p with a constant term.

∆pn+1(j) =
(
pnΓ(j)− p̂nΓ(j)

) ∆̃p

pnΓ − p̂nΓ
, j = 0, . . . , Nt (6.7)

Both methods result in a ∆p that has the average of ∆̃p. The multiplicative version (6.7)

has the advantage that it maintains the overall shape of ∆p. In particular the zero crossings

stay at the same place in the vector, whereas with the additive adjustment from (6.6) the zero

crossings of ∆p shift. Testing revealed however that in practice the additive version yields better

results. Convergence was consistently slower with the multiplicative adjustment. In the following

examples thus only the additive adjustment will be used.
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6.2.4. Application of the adjustment
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(b) One period average pΓ. Solid diamonds are the CFD steps.
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(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.8.: 25 iterations of the loosely coupled procedure with a ∆p correction only after the third

iteration

In Figure 6.8 it is shown how the convergence of the loose coupling is improved when ∆p is

adjusted. After the third iteration φ is estimated using (6.4) to be −0.73. Using this estimate

Equation (6.6) is used to calculate ∆p to be used in the fourth iteration. Immediately a big

decrease in the relative error of about one order of magnitude can be seen. Compared to the

unaltered loose coupling (Figure 5.6) the relative error after 25 CFD steps is somewhat smaller.

For a better convergence the adjustment of ∆p should happen more often. After adjusting

∆p, however, the Pn that results does not follow the expected pattern anymore. If the estimate

∆̃p is good, the next Pn will be much smaller than expected, as was observed in Figure 6.8.

Because the way of estimating φ, (6.4), is only based on the last two iterations, applying the
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(c) Relative error of pΓ after each CFD step, on a logarithmic scale

Figure 6.9.: 25 iterations of the loosely coupled procedure with ∆p corrections every 3 iterations
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adjustment after every CFD iteration leads to an unstable procedure.

Figure 6.9 shows the result of adjusting ∆p every third iteration. Equation (6.6) is applied

after CFD steps 2, 5, 8, . . . and for the other iterations the normal updating procedure (6.5)

is used. This allows the relative error to settle again in a geometric sequence before another

adjustment is made. There is clearly a large decrease in the relative error when the adjustment

is applied compared to the unaltered loose coupling. Although convergence is more erratic and

the relative error does not reduce monotonically, the prediction of ∆p is good enough to attain

an overall better convergence rate over the first 25 iterations.

6.2.5. Summary of the results
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Figure 6.10.: Comparison of several strategies using the estimate ∆̃p after different CFD iterations

Figure 6.10 shows the result of suggested improvements of the loose coupling. The convergence

to the target pΓ is shown for 50 iterations of the loose coupling. It can be seen that the adjustment

of ∆p only after the third iteration results in a better convergence for the first 15 iterations,

but then also hits a lower bound on the relative error, just like the unaltered loose coupling.

The strategy of adjusting ∆p every iteration indeed results in a diverging procedure. Updating

every second iteration or less results in procedures that are a significant improvement over the

loose coupling. The best results are obtained with an update after every fourth iteration. This

strategy is comparable in convergence rate to the Aitken relaxation from Figure 6.6 in the first

30 iterations.

6.3. Improving the AR model

The simple autoregressive model from the previous section was already a good improvement on

the loose coupling. In this section it is shown that the application of the basic time series analysis

introduced in Chapter 3 leads to further improvements in the convergence of the coupled system.
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6.3.1. Using more of the history of P n

Instead of using only the last two observations for the estimation of φ, the complete observed

history of Pn can be used. The future development of the average Pn is estimated using an

AR(1) model, as explained in Section 3.1. Instead of the simple estimate for the parameter φ

from Equation (6.4), φ is now chosen such that the total squared error σ2 is minimised.

σ2 =

n∑
i=1

∣∣P i − φP i−1
∣∣2
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Figure 6.11.: Convergence of using the complete history of Pn

Figure 6.11 shows that this approach yields a procedure that converges significantly better than

the procedure using only the last two observations. The greatest improvement in convergence

rate comes from the fact that it is now possible to apply the adjustment to ∆p every outer

iteration of the loose coupling. With the previous approach using Equation (6.4), adjusting

every iteration resulted in an unstable procedure. By using the complete history of Pn, the

estimates for φ converge to a single value instead of having a different φ estimate every iteration.

Because of this, it does not matter much for the estimate of φ whether Pn was adjusted in the

previous iteration or not.

6.3.2. Using the whole vector ∆p

In the previous section Pn, the increment of the average of ∆p, was used to estimate φ. A

possible enhancement in the estimation of φ can be to discard the simplification of only using

the averages and use the whole vector instead. Figure 6.12 shows how the increments of the full

vector ∆p evolve during the outer iterations. It can be seen that the whole vector also shows

the same oscillatory behaviour during the coupling iterations as the average did (Figure 6.7).

This suggests that it is possible to estimate the whole vector with an autoregressive model. In
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Figure 6.12.: Incremental updates for ∆p for 20 coupling iterations

this model each increment Pn of ∆p is a scaled version of the previous increment.

Pn = ∆pn+1 −∆pn

P̃n+1 = φ Pn
(6.8)

Note that φ is still a scalar here, so the above does not constitute a VAR model as described

in Section 3.2. In particular, the forecast of Pn is still based on the additive update rule of

Equation 6.6.

The value for the parameter φ at iteration n is solved in a least square sense.

φn = arg min
φ

n∑
i=1

∑
j

∣∣Pi(j)− φ Pi−1(j)
∣∣2

Figure 6.13 shows that this approach yields a procedure that converges somewhat better than

the procedure using the average values.

6.3.3. Using a higher order AR(p) model

Until now the autoregressive models only expressed the relation between two consecutive elements

of the series Pn. A higher order autoregressive model, i.e. an AR(p) model with p > 1, can be

used to model the relation between several lagging terms of the series. For example, an AR(2)

model can be defined as

Pn = φ1 Pn−1 + φ2 Pn−2.

Tests using a second order AR model to fit the Pn series did not lead to better predictions

and hence no better convergence was obtained. This is most likely due to the fact that a first

order model already describes the series very good. Adding more degrees of freedom by using a

second order model can then only have a detrimental effect on prediction accuracy. In further

sections only first order models will be handled.
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Figure 6.13.: Convergence of using the whole vector ∆p for estimating the autoregression parameter

6.3.4. A simple VAR approach

The model from Section 6.3.2 can be seen as a VAR(1) model by rewriting it in matrix notation.

Pn = Φ Pn−1 (6.9)

with Φ =


φ

φ

. . .

φ


This can be seen as a subset VAR model, with the non-diagonal entries restricted to zero and

additionally, the diagonal entries of the parameter matrix restricted to have the same value.

The difference of this VAR(1) model with the model of Equation (6.8) lies in how the estimate

of the future development of Pn is used to update ∆pn+1 for the next outer iteration. Instead

of first predicting the scalar ∆̃p and then updating ∆pn+1 such that its average is equal to ∆̃p,

here the VAR approach is used. In the next outer iteration ∆̃p is used instead of ∆pn+1.

∆̃p = ∆pn+1 +

∞∑
i=1

P̃i

with P̃i = ΦiPn

Figure 6.14 shows that this direct translation of the previous approach into a VAR model

results in significantly worse convergence behaviour of the loose coupling. This simple VAR

approach is, however, a good basis to start exploring similar models with the parameter matrix

Φ having another structure.

6.3.5. A subset VAR approach using only diagonal entries

A natural extension of the previous approach is to allow only diagonal entries in Φ, but not

to require them to have the same value. Essentially, each element of Pn has its own scalar
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Figure 6.14.: Convergence of the loose coupling using a simple VAR model

autoregressive model. The matrix Φ in Equation (6.9) then becomes

Φ =


φ1

φ2

. . .

φNt


with φj = arg min

φ

n∑
i=1

∣∣Pi(j)− φ Pi−1(j)
∣∣2 .

This does raise some stability concerns, however. Although on average the vector Pn is

decreasing in absolute value, the individual values are not. In Figure 6.12 it can be seen that

at some places in the vector, for example at the zero crossings, the next iteration has a larger

value. The corresponding autoregressive parameter φ, one of the diagonal entries of Φ, will

then be estimated with an absolute value larger than 1. As a result, ∆̃p cannot be estimated,

because not all the eigenvalues of Φ lie within the unit circle. This is prevented by the additional

requirement that every diagonal element of Φ lies inside the range [−0.95, 0.95].

The result of using this approach is shown in Figure 6.15. It performs about the same as the

approach from the previous section, i.e. a bit worse than the previously found best method.

6.3.6. A VAR approach using the average as reference

Instead of comparing each element of Pn to its own value in the previous iteration, it can also be

compared to the average of the vector Pn in the previous iteration. The matrix Φ then consists

of all identical columns, with each column representing the best fit for the shape of the vector,
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Figure 6.15.: Convergence of the loose coupling using a diagonal VAR model

scaled with the average of the previous iteration.

Φ =
1

Nt


φ1 φ1 · · · φ1

φ2 φ2 · · · φ2

...
...

. . .
...

φNt φNt · · · φNt

 (6.10)

with φj = arg min
φ

n∑
i=1

∣∣Pi(j)− φ P̄i−1
∣∣2 (6.11)

The matrix Φ will always have small eigenvalues, because of the 1
Nt

term.

The result of using this approach is shown in Figure 6.16. It can be seen that this approach

achieves good convergence when the adjustment is applied after every iteration of the loose

coupling.

6.3.7. Including more nonzero elements

When the matrix Φ is fitted using the average as reference, as in the previous section, the

autoregressive model is of course not a perfect fit for the sequence of vectors Pn resulting from

the loose coupling iterations. There is still a residual error σ̃2. For row j of the system of

equations this residual is

σ̃2
j =

n∑
i=1

∣∣Pi(j)− φjP̄i−1
∣∣2 ,

which in matrix notation can be written as

σ̃2
j =

n∑
i=1

∣∣[Pi −ΦPi−1
]

(j)
∣∣2 .

The proposed approach in this section is to allow an element in every row to be adjusted freely

from the other elements in order to minimise the residual error. Which element in each row is
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Figure 6.16.: Convergence of the loose coupling using an average-based VAR model

0 10 20 30 40 50
number of CFD iterations

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

re
la

tiv
e 

er
ro

r p
Γ

unaltered loose coupling
all entries equal per row
1 free entry per row
2 free entries per row
3 free entries per row
4 free entries per row
5 free entries per row

Figure 6.17.: Convergence of the loose coupling using a VAR model with limited degrees of freedom

per row
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adjusted is not given a priori, as for example was the case with the diagonal Φ, but is determined

by choosing the element that decreases the residual error the most. This can be done multiple

times, each time selecting an additional element in a row that is allowed to have a different value

than the value found by using the average as reference.

The result of using this approach is shown in Figure 6.17. For comparison the method of

the previous section is shown in red. It can be seen that adding one entry per row gives better

convergence, but any subsequent increase of the number of nonzero elements in Φ only decreases

convergence. It can thus be concluded that two different values per row give the autoregressive

model enough degrees of freedom to fit the series Pn accurately.

6.3.8. An AIC-based subset VAR approach

The last possible improvement to the prediction of ∆p is to use the subset VAR technique with

the Akaike Information Criterion as introduced in Section 3.2. The difference with the approach

from the previous section is that the first estimate for the parameters is not necessarily based on

the average P . Furthermore, the number of unique (nonzero) elements in each row of Φ is not

fixed, but is determined by using the AIC to find the best number of parameters.

Using the average as reference yields a more stable procedure than only predicting based on

individual elements of the previous P. However, the AIC gives a penalty for every nonzero

element in Φ, which means that a matrix like (6.10) will not have a low AIC. To overcome

this problem, the procedure for finding the parameter matrix with the lowest AIC is used on a

modified matrix Φ̂, an Nt × Nt + 1 matrix where the last column contains the autoregressive

coefficients with the average as reference. The vector P̂ is the vector P augmented with its

average P ,

P̂n =
[
Pn
∣∣∣Pn] = APn,

where A =


1 0. . .

0 1
1
Nt

· · · 1
Nt

 .

After n outer iterations of the loose coupling the new estimate ∆̃p of the pressure difference

is

∆̃p = ∆Pn +

∞∑
i=0

(
Φ̂A

)i
Pn,

with Φ̂ the minimiser of

AIC = ln σ̃2 +
2

n
nparam

where σ̃2 =
1

n

n∑
i=1

∣∣∣Pi − Φ̂P̂i−1
∣∣∣2 ,

and nparam the number of nonzero elements in Φ̂ under the condition that the eigenvalues of Φ̂A

lie within the unit circle. The heuristic used for finding the AIC-minimising Φ̂ is the top-down

strategy from Section 3.2.1.
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Figure 6.18.: Convergence of the loose coupling using an AIC-based subset VAR model

The results of this subset VAR approach are shown in Figure 6.18. Convergence is improved

only when the adjustment of ∆p applied every other iteration. This is quite a step back from

the previous best result.

6.4. Comparison of autoregressive techniques

Figure 6.19 shows the best results from the autoregressive models of Sections 6.2, 6.3.2 and 6.3.7

compared against the original loose coupling and the procedure using Aitken relaxation. The

basic AR model performs slightly worse then Aitken relaxation. The improved scalar AR model

and the constrained VAR model have the best convergence.

The rate of convergence is measured in the number of CFD iterations required to get pΓ close

to ptarget to within a certain error. The idea here is that the number of CFD iterations is a

reasonable proxy for the amount of computational work involved. In comparison with the CFD

model the other physical models involved (the simple CFD model, the CSD model and the trim

model) indeed all require significantly less work, both for this model problem and for an actual

rotorcraft simulation. The adjustment of ∆p using relaxation or an AR model is computationally

trivial. However, for the VAR methods of Sections 6.3.7 and 6.3.8 the overhead of the adjustment

between the loose coupling outer iterations can become quite significant. This is because in order

to find the element of Φ that gives the largest reduction of the AIC a linear least-squares problem

has to be solved for each of the approximately Nt
2 candidate elements. For the model problem

with the parameter values from Table A.1 (N = 400, Nt = 300) this resulted in the wall clock

time doubling from one hour to two hours compared to the unaltered loose coupling.
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Figure 6.19.: Comparison of convergence using Aitken relaxation and several AR models
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CHAPTER 7

Conclusions

Interaction laws

In Chapter 2 several examples were shown where the use of an interaction law improves the

convergence of a partitioned iterative procedure modelling a coupled system. The concept of an

interaction law can also be applied to the three models involved in simulating trimmed rotorcraft

flight, resulting in the well-known loose coupling approach.

The use of an autoregressive model to predict the delta loads in further iterations can be seen

as another interaction law. So the first interaction law uses the simple model as an approximation

to the full CFD model and the second interaction law extrapolates the discrepancy between those

models in order to find an even better estimate of the final CFD solution.

The formulation of the loose coupling as an interaction law can give more insight as to why

this approach works. Further study is needed to see what conditions the simple model must

satisfy in order to actually improve the convergence of the loose coupling and whether the use

of the autoregressive models influences that. This could be done by studying the effect of the

interaction law on the eigenvalues of the partitioned system, as was done in Section 2.3.

Model problem

The goal of the model problem was to find a simple coupled CFD-CSD system that still had

some resemblance to the rotorcraft physics. That proved to be the case, although of course the

real verification of that can only be seen by applying the found improvements to a real rotorcraft

simulation.

A possible improvement to the coupling approach of the model problem that has not been

researched is to run the CFD model for fewer periods between each CSD-simple model iteration.

This has the effect that the trim is being adjusted more often, before the CFD model has reached

a periodic solution. A variation of this is to make use of the space-time formulation of the CFD

model and calculate a periodic solution with increasing accuracy, interspersed with trimming

iterations of the CSD-simple model. In that situation both the convergence to a periodic CFD

solution and the convergence to a trimmed CSD-coupled solution are combined in each situation,

so it would be interesting to see whether an autoregressive model can still be used to improve

the convergence.

The Aitken relaxation strategy for the delta loads exchanged between the CFD and CSD

models proved to be a simple way to improve convergence. This method achieves good results

without any analysis necessary. It assumes very little of the convergence process and is thus more

general than the autoregressive approach. Better results can be achieved, however, by carefully

modelling the time series.
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Time series analysis

The time series Pn resulting from the loose coupling can be analysed adequately with an au-

toregressive model. The fitted model can then be used to enhance convergence in subsequent

iterations of the loose coupling.

A simple AR model (Section 6.3.2) works the best for the model problem. The fact that

neither a higher order AR model, nor a VAR model leads to better results could mean that the

convergence of the loose coupling results in a simple series that can be accurately modelled with

a simple AR model. This should be verified on more accurate rotorcraft coupled models.

A complicating aspect of the time series analysis for the loose coupling is that the result of

the autoregressive modelling is used to adjust the time series itself. This causes the underlying

model to change and could lead to a slower convergence of the series. More analysis is needed

to study the effect of the adjustments on the series prediction.

Applicability to rotorcraft modelling

The easiest improvement to add to a rotorcraft coupled procedure is the Aitken relaxation. In

the literature it has shown to perform well in a wide variety of situations.

For the autoregressive approach it first has to be checked which type of model best fits the

coupling data from a large scale simulation. The list of models presented in Section 6.3 are a

good starting point for this analysis, but it can be extended with simple and more advanced

VAR techniques.

Furthermore the computational feasibility of extensive autoregressive modelling has to be

considered, as the vectors and matrices will be much larger. Each data point in the time series

being analysed is a vector with the number of elements equal to the amount of interface nodes

between the CSD and CFD models. It is likely that it is not possible to consider as many different

subset models as was done in Section 6.3.8 and a simpler model must be chosen.

It is expected, however, that the CFD model will still account for the largest part of the

computational work. This means that even when the autoregressive method proposed takes

considerable effort to fit to the convergence data, it will still improve the overall run time of the

simulation by drastically reducing the number of outer iterations needed to reach the desired

accuracy. This can for example make it possible to use more advanced CFD models during the

design process of a new rotor blade, when many model runs are necessary for the iterative design

process.
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APPENDIX A

List of variables and parameters

L̄ 96.0 m

∆L 9.0 m

A 0.50 m2

ρI 1.25 kg/m3

uI 0.0 m/s

pI 1030 hPa

pa 3000 hPa

m 24.0 kg

k 120000 N/m

zI 0.0 m

żI 0.0 m/s

N 400

tL 0.26 s

∆t 1/300 tL

C1 0.72 L̄

C2 2.18 pI

Table A.1.: Parameter values used in numerical experiments
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dimensions

x length along the cylinder t time

cylinder geometry

l(t) length of the cylinder at t

z(t) displacement of the spring

L(t) prescribed structure motion

L̄,∆L mean length and amplitude of prescribed motion

tL, ωL period and frequency of prescribed motion

A cross-sectional area of the cylinder

structure parameters

m mass of the piston k spring constant of the structure

fluid variables defined on (x, t) for t > 0 and 0 < x < l(t)

ρ mass density e total energy

u fluid velocity p pressure

U fluid state = [ρ ρu ρe]
T

initial conditions

ρI , uI , pI initial fluid state (UI)

zI , żI initial spring displacement and velocity

lI initial length of the cylinder

variables at fluid–structure interface

pa pressure from outside on the piston

ps(t) pressure on the piston from inside the cylinder

uΓ(t), pΓ(t) fluid velocity and pressure at the piston

p̂Γ(t) pressure from the simple model

discretisation parameters

N number of elements in one time slab

∆t time step

Nt number of time steps in one period

vectors of length Nt

z periodic motion of the piston

ps periodic fluid pressure on the piston

pΓ, p̂Γ periodic fluid pressure of the CFD and simple model at the piston

∆p difference between CFD and simple model pressure

Table A.2.: List of symbols
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APPENDIX B

Model problem Python code

modelparameters.py

from numpy import array, sqrt, pi

resolution = "high"
N, nsteps, residual_tolerance = {’verylow’: (15, 15, 1e-8 ),

’medium’: ( 60, 60, 1e-9 ),
’high’: ( 400, 300, 1e-9 ),

}[resolution]
periodicity_tolerance = 8.0e-3

# Model parameters in SI units
L_D = 96.0 # m Length of the cylinder
D_D = 0.8 # m Diameter of the cylinder
rho_I_D = 1.25 # kg/m3 Density in the cylinder
p_I_D = 1030e2 # Pa Pressure in the cylinder
p_a_D = 3000e2 # Pa Pressure outside the cylinder
m_D = 24.0 # kg Mass of the piston
k_D = 120000 # N/m Spring constant
z_I_D = 0.0 # m Initial displacement of the spring
v_I_D = 0.0 # m/s Initial velocity of the spring
DL_D = 9.0 # m Amplitude of right wall motion
t_L_D = 0.26 # s Period of prescribed motion
t_end_D = t_L_D*12 # s Simulation end time
dt_D = t_L_D/nsteps # s Simulation time step

gamma = 1.4
def p_f(U):

return (gamma - 1.0) * (U[2] - 0.5 * U[1] * U[1] / U[0])

# Scale factors for nondimensionalization
l_S = L_D
rho_S = rho_I_D
p_S = p_I_D
v_S = sqrt(p_S/rho_S)
t_S = l_S / v_S
m_S = rho_S * l_S**3
k_S = p_S * l_S

# Dimensionless time parameters
dt = dt_D / t_S
t_end = t_end_D / t_S
Nperiod = int(round(t_L_D/dt_D))
omega_L = 2.0 * pi / (dt * Nperiod)

A = pi/4.0 * (D_D/l_S)**2
p_a = p_a_D / p_S * A

# Dimensionless inital fluid state in the cylinder, scaled with the area of the piston
rho_I = rho_I_D / rho_S * A
p_I = p_I_D / p_S * A
U_I = array([rho_I, 0.0, p_I / (gamma-1.0)])

z_I = z_I_D / l_S
v_I = v_I_D / v_S

# Dimensionless parameters
L = L_D / l_S
DL = DL_D / l_S
k = k_D / k_S
m = m_D / m_S

modelvariables.py

from numpy import zeros, ones, ceil

def reset_time():
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from modelparameters import N, dt, t_end

# Reset time variables
global t, ti
t = 0.0
ti = 0

# Reset variables to save complete time-dependent history
global l_all, U_all, pGamma_all
l_all = zeros([1+ceil(t_end/dt)])
pGamma_all = zeros([1+ceil(t_end/dt)])
U_all = ones([N, 3, 1+ceil(t_end/dt)])

reset_time()

CFD approx.py

from modelparameters import gamma, dt, p_I

C1 = 0.72
C2 = 2.18

l_I = 0.0

def calculate_pressure(l0, l1):
l = (l0 + l1) / 2
v = (l1 - l0) / dt
length_ratio = (l_I - C1) / (l - C1)

return p_I * length_ratio ** gamma - v * p_I * C2

CFD spacetime.py

from numpy import sqrt, log10, absolute, maximum, zeros, array, arange, vstack, newaxis
from modelparameters import gamma, p_f, N, dt, Nperiod, residual_tolerance, U_I

RT_inf = p_f(U_I) / U_I[0]

# Calculate flow solution for one time slab
def _timeslab_spacetime(l0, l1, U_t0, U):

h0 = l0 / N
h1 = l1 / N

H_hat = zeros([N+1, 3])

# Pseudo time stepping
for n in xrange(2000):

# Left boundary: add dummy state before calculating numerical flux
U_xl = U[0,:]
rho_l = U_xl[0]
rhou_l = - U_xl[1]
rhoe_l = - U_xl[2] + 2/(gamma-1.0) * RT_inf * rho_l + rhou_l**2 / rho_l
U_l_dummy = array([rho_l, rhou_l, rhoe_l])
U_d = vstack([U_l_dummy, U])

# Calculate F1
rho_inv = 1.0 / U_d[:,0]
u = U_d[:,1] * rho_inv
a = sqrt(gamma * (gamma-1.0) * (U_d[:,2] * rho_inv - 0.5 * u**2))
F1 = zeros([N+1,3])
F1[:,0] = U_d[:,1]
F1[:,1] = (gamma-1.0) * U_d[:,2] + (3.0-gamma)/2.0 * U_d[:,1]**2 * rho_inv
F1[:,2] = gamma * U_d[:,2]*u - (gamma-1.0)/2.0 * U_d[:,1] * u**2

# Estimate largest eigenvalue lambda_hat
v = arange(0.0, N+1) * (h1-h0) / dt
lambda_l = absolute(u[0:N] - v[0:N]) + a[0:N]
lambda_r = absolute(u[1:N+1] - v[0:N]) + a[1:N+1]
lambda_hat = maximum(lambda_l, lambda_r)
lambda_hat_max = max(lambda_hat)

# Calculate numerical flux
H_hat[0:N,:] = 0.5 * (F1[0:N,:] + F1[1:N+1,:]) \

- 0.5 * v[0:N,newaxis] * (U_d[0:N,:] + U_d[1:N+1,:]) \
+ 0.5 * lambda_hat[0:N,newaxis] * (U_d[0:N,:] - U_d[1:N+1,:])

# Right boundary: use *-state to calculate flux directly
U_xr = U[N-1,:]
a_r = sqrt(gamma * (gamma-1.0) * (U_xr[2] - 0.5*U_xr[1]**2/U_xr[0]) / U_xr[0])
uva_r = (U_xr[1]/U_xr[0] - (l1-l0)/dt) / a_r
if uva_r <= 0:

p_star = p_f(U_xr) * (1 + (gamma-1.0)/2 * uva_r) ** (2*gamma/(gamma-1.0))
else:

p_star = p_f(U_xr) * (1 + gamma*(gamma+1.0)/4 * uva_r**2 * (1 + sqrt(1+(4/(gamma+1.0)/uva_r)**2)))
H_hat[N,0:3] = [0, p_star, (l1-l0)/dt * p_star]
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# Calculate residual from fluxes and do pseudo time step
res = h1 * U - h0 * U_t0 + dt * ( H_hat[1:N+1,:] - H_hat[0:N,:] )
dtau = 1.0 / ((h0+h1)/2 + dt * lambda_hat_max)
U = U - dtau * res

# Stop iterating when required precision is reached
res_max = absolute(res).max(0)
if res_max.max() < residual_tolerance:

break

#print "\tCFD: %d" % n, "\t(%4.1f %4.1f %4.1f)" % tuple(log10(res_max)), " - ",
return U

def calculate_pressure(l0, l1):
from modelvariables import ti, U_all

# Set fluid state in previous time slab
if ti == 0:

U_t0 = zeros([N, 3])
U_t0[:,:] = U_I.copy()

else:
U_t0 = U_all[:,:,ti-1]

# Initial guess for fluid state
if ti < Nperiod*5:

if ti < 3:
U = U_t0.copy()

else:
U = 3 * U_all[:,:,ti-1] - 3 * U_all[:,:,ti-2] + U_all[:,:,ti-3]

else:
U = U_all[:,:,ti-Nperiod].copy()

U = _timeslab_spacetime(l0, l1, U_t0, U)
U_all[:,:,ti] = U

pGamma = p_f(U[N-1,:])
return pGamma

FSI timestepping.py

from math import sqrt, sin, cos, pi
from numpy import log10, average, isnan

import CFD_spacetime
import CFD_approx
import modelvariables
from modelparameters import residual_tolerance, periodicity_tolerance, dt, Nperiod, A, omega_L, p_a

def reset_time():
modelvariables.reset_time()
from modelparameters import z_I, v_I, L, DL, k, m
global ti_periodic, z_0, v_0, _omega_km, _m, _k_inv, length, dlengthdtt
ti_periodic = 0
z_0 = z_I
v_0 = v_I
_omega_km = sqrt(k/m)
_m = m
_k_inv = 1.0 / k
length = lambda t: L + DL * cos(omega_L * t)
dlengthdtt = lambda t: - DL * omega_L**2 * cos(omega_L * t)
CFD_approx.l_I = length(0)

reset_time()

# Structural model
def calculate_structure(p_s, dLdtt0, dLdtt1):

sin_dt = sin(_omega_km*dt)
cos_dt = cos(_omega_km*dt)
beta0 = (p_s - p_a - _m * dLdtt0) * _k_inv
beta1 = _m * (dLdtt0 - dLdtt1) / dt * _k_inv
z_1 = z_0 * cos_dt + v_0 * sin_dt/_omega_km + beta0 * (1.0 - cos_dt) + beta1 * (dt - sin_dt/_omega_km)
v_1 = v_0 * cos_dt - z_0 * sin_dt*_omega_km + beta0 * sin_dt*_omega_km + beta1 * (1.0 - cos_dt)
return z_1, v_1

# Use prescribed l_period
def do_timestep_prescribed_l(l_period, pGamma_period):

from modelvariables import t, ti
global ti_periodic

# Calculate fluid state
l0 = l_period[ti % Nperiod]
l1 = l_period[(ti+1) % Nperiod]
pGamma = CFD_spacetime.calculate_pressure(l0, l1)

82



# Update ti_periodic if solution is not yet periodic
if abs(pGamma - pGamma_period[ti % Nperiod])/pGamma > periodicity_tolerance:

ti_periodic = ti
pGamma_period[ti % Nperiod] = pGamma

# Advance timestep
modelvariables.ti = ti + 1
modelvariables.t = t + dt

# Use structural model
def do_timestep(l_period, pGamma_period, pDelta, UseApprox=False):

from modelvariables import t, ti
global ti_periodic, z_0, v_0

L0 = length(t)
L1 = length(t+dt)
l0 = L0 + z_0
if ti < Nperiod*5:

l1 = L1 + z_0 + v_0 * dt
else:

l1 = l_period[(ti+1) % Nperiod]
dLdtt0 = dlengthdtt(t)
dLdtt1 = dlengthdtt(t+dt)

# Initial guess for pressure on structure
if ti < Nperiod*5:

if ti < 3:
pGamma = pGamma_period[(ti-1) % Nperiod]

else:
pGamma = + 3 * pGamma_period[(ti-1) % Nperiod] \

- 3 * pGamma_period[(ti-2) % Nperiod] \
+ 1 * pGamma_period[(ti-3) % Nperiod]

else:
pGamma = pGamma_period[ti % Nperiod]

# Fluid-Structure loop
for loop_k in xrange(2000):

# Calculate structure response
z_1, v_1 = calculate_structure(pGamma, dLdtt0, dLdtt1)

# Stop fluid-structure iterations when converged
if loop_k > 0:

l1_res = abs(l1 - (L1 + z_1))
#if not UseApprox:
# print "\t %2d: (%7.3f)" % (loop_k, log10(l1_res))
if l1_res < residual_tolerance:

break
l1 = L1 + z_1

if UseApprox:
# Calculate pressure on structure with approximate model
pGamma_hat = CFD_approx.calculate_pressure(l0, l1)
pGamma = pGamma_hat + pDelta[ti % Nperiod]

else:
# Calculate pressure on structure with CFD model
pGamma = CFD_spacetime.calculate_pressure(l0, l1)

# Update ti_periodic if solution is not yet periodic
if abs(pGamma - pGamma_period[ti % Nperiod])/pGamma > periodicity_tolerance:

ti_periodic = ti
#print "t = %.4f \t " % t, "l = %.4f - %.4f \t pGamma = %.3f" % (l0, l1, pGamma/A)

modelvariables.l_all[ti] = (l0 + l1) / 2
l_period[(ti+1) % Nperiod] = l1
modelvariables.pGamma_all[ti] = pGamma
pGamma_period[ti % Nperiod] = pGamma

# Advance timestep
modelvariables.ti = ti + 1
modelvariables.t = t + dt
z_0, v_0 = z_1, v_1

def do_timesteps_until_periodic(l_period, pGamma_period, pDelta, UseApprox=False, PrescribeLength=False):
import modelparameters
print "DL =%6.3f : " % modelparameters.DL,
while modelvariables.t < modelparameters.t_end-dt/2:

if PrescribeLength:
do_timestep_prescribed_l(l_period, pGamma_period)

else:
do_timestep(l_period, pGamma_period, pDelta, UseApprox)

#if UseApprox and modelvariables.ti > 4*Nperiod and ti_periodic < modelvariables.ti - Nperiod:
# break
if isnan(average(pGamma_period)):
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break
pGamma_avg = average(pGamma_period) / A
print "pGamma =%6.3f (%5.1f)\t(periods:%4.1f)" % \

(pGamma_avg, log10(abs(pGamma_avg-1.6)/1.6), modelvariables.t*omega_L/(2*pi))
return pGamma_avg

modelproblem.py

from numpy import inf, isnan, logical_not, logical_or, average, sum as asum, dot, transpose, clip, log, ndarray
from numpy import zeros, ones, atleast_1d, atleast_2d, atleast_3d, ravel, vstack, hstack, concatenate, flatnonzero
from numpy.linalg import lstsq
from numpy.ma import MaskedArray
from scipy.optimize import fmin_powell
import string

import FSI_timestepping
import modelparameters
from modelparameters import A, p_S, l_S, Nperiod

target_pGamma_D = 1.6 * p_S

RelaxFixedZ = False
RelaxFixedDeltaP = False
RelaxFixedPhi = 0.8
RelaxAitken = False

UseArAdjust = 0
ArCoefficientType = 1
PDeltaAdjustmentType = 1
ArOrderP = 1

def reset_coupling():
global convergence_history, phi_hist, pDelta_increment, pGamma_period_history
convergence_history = []
pDelta_increment = zeros([50, Nperiod])
pGamma_period_history = []
phi_hist = []
global l_period, pGamma_period, pDelta
l_period = zeros([Nperiod])
pGamma_period = zeros([Nperiod])
pDelta = zeros([Nperiod])

reset_coupling()

def do_timesteps_until_periodic(UseApprox=False):
global l_period, pGamma_period, pDelta
reset_coupling()
FSI_timestepping.reset_time()
return FSI_timestepping.do_timesteps_until_periodic(l_period, pGamma_period, pDelta, UseApprox=UseApprox)

def do_find_parameter_loose(n_max=50):
global pDelta
DL_D_approx = modelparameters.DL_D
for n in range(n_max):

if (UseArAdjust > 0 and n > 1 and ((n-2) % UseArAdjust) == 0) or (UseArAdjust < 0 and n == -UseArAdjust):
def AR(phi, sequence):

retval = phi[0] * sequence[-1]
for m in range(1, min(len(phi), len(sequence))):

retval = retval + phi[m] * sequence[-1-m]
return retval

print "determining phi...",

# Determine coefficients used for pDelta adjustment
if ArCoefficientType == 1: # Use last averages

P1, P2 = average(pDelta_increment[n-2,:]), average(pDelta_increment[n-1,:])
phi = P2/P1

elif ArCoefficientType == 2: # Use last complete vectors
Ps1, Ps2 = pDelta_increment[n-2,:], pDelta_increment[n-1,:]
phi = dot(Ps1, Ps2) / dot(Ps1, Ps1)

elif ArCoefficientType == 3: # Use all averages
Ps1, Ps2 = average(pDelta_increment[0:n-1,:], 1), average(pDelta_increment[1:n,:], 1)
phi = dot(Ps1, Ps2) / dot(Ps1, Ps1)

elif ArCoefficientType == 4: # Use all complete vectors
Ps1, Ps2 = ravel(pDelta_increment[0:n-1,:]), ravel(pDelta_increment[1:n,:])
phi = dot(Ps1, Ps2) / dot(Ps1, Ps1)

elif ArCoefficientType == 5: # Use least squares AR (same as #4, but with possible higher order AR)
def RMS_AR(phi):

vector_AR = atleast_1d([(AR(phi, pDelta_increment[0:i,:]) - pDelta_increment[i,:]) for i in range(1, n)])
return asum(vector_AR ** 2) + asum(phi ** 2) * 1e-14

minres = fmin_powell(RMS_AR, zeros(ArOrderP), full_output=1)
phi = atleast_1d(minres[0])

else:
phi = zeros([Nperiod, Nperiod+1])
PP1 = hstack([pDelta_increment[0:n-1,:], transpose(atleast_2d(average(pDelta_increment[0:n-1,:], 1)))])
PP2 = pDelta_increment[1:n,:]
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if ArCoefficientType == 6: # VAR using constant diagonal (same as #4 with adjustment #3)
PP1r = ravel(PP1[:,0:Nperiod])
phi[xrange(Nperiod),xrange(Nperiod)] = dot(PP1r, ravel(PP2)) / dot(PP1r, PP1r)

if ArCoefficientType == 7: # VAR using diagonal
for i in xrange(Nperiod):

phi[i,i] = clip(dot(PP1[:,i], PP2[:,i]) / dot(PP1[:,i], PP1[:,i]), -0.95, 0.95)
if ArCoefficientType >= 8 and ArCoefficientType < 9: # VAR using average

PP1_avg = PP1[:,Nperiod]
for i in xrange(Nperiod):

phi[i,Nperiod] = dot(PP1_avg, PP2[:,i]) / dot(PP1_avg, PP1_avg)
PP1_all = PP1[:,:Nperiod]
for m in xrange(int((ArCoefficientType-8)*10+0.5)):

PP2_all = PP2 - transpose(dot(phi, vstack([transpose(PP1_all), atleast_2d(average(PP1_all, 1))])))
phi_all = dot(transpose(PP2_all), PP1_all) / asum(PP1_all*PP1_all, 0)
j_error_all = asum( (phi_all * atleast_3d(PP1_all) - atleast_3d(PP2_all))**2 , 0)
min_errors_j = MaskedArray(j_error_all, logical_or(abs(phi_all)>1.0, phi[:,:-1]!=0.0)).argmin(axis=1)
for i in xrange(Nperiod):

phi[i,min_errors_j[i]] = phi_all[i,min_errors_j[i]]
if ArCoefficientType == 9: # subset VAR

for i in xrange(Nperiod):
phi_mask = zeros([Nperiod+1], dtype=’bool’)
for m in xrange(7):

sigma2_ref = asum((dot(PP1, transpose(phi[i,:])) - PP2[:,i])**2, 0) + 2e-20
AIC_ref = log(sigma2_ref/(n-1)) + 2.0 / (n-1) * m
sigma2 = ones([Nperiod+1]) * inf
for j in flatnonzero(logical_not(phi_mask)):

phi_mask[j] = True
try:

phi_masked = lstsq(PP1[:,phi_mask], PP2[:,i], rcond=0.1)[0]
sigma2[j] = asum((dot(PP1[:,phi_mask], transpose(phi_masked)) - PP2[:,i])**2, 0) + 2e-20

except:
sigma2[j] = inf

if j == Nperiod: sigma2[j] = sigma2[j] - 1e-20
phi_mask[j] = False

CannotImprove = False
for j in sigma2.argsort():

AIC_j = log(sigma2[j]/(n-1)) + 2.0 / (n-1) * (m+1)
if AIC_j > AIC_ref and flatnonzero(phi[i,:]).size > 0:

CannotImprove = True
break

phi_mask[j] = True
phi_masked_new = lstsq(PP1[:,phi_mask], PP2[:,i], rcond=0.1)[0]

# This is stricter than necessary, but using eigenvalues does not really work
if all(abs(phi_masked_new[flatnonzero(phi_mask)<Nperiod]) < 1.0):

phi[i,phi_mask] = phi_masked_new
break

phi_mask[j] = False
if CannotImprove:

break
#print "row %2d: [%s]" % (i, string.join([’x’ if b else ’_’ for b in phi_mask], ’’))

phi_hist.append(average(phi))
print "done, phi:", ("%s, nonzeros: %d" % (phi.shape, flatnonzero(phi).size) if isinstance(phi, ndarray) else phi)

# Adjustment of pDelta
if PDeltaAdjustmentType == 1: # Average additive

pDelta = pDelta + phi / (1.0 - phi) * average(pDelta_increment[n-1,:])
elif PDeltaAdjustmentType == 2: # Average multiplicative

pDelta = pDelta + phi / (1.0 - phi) * average(pDelta_increment[n-1,:]) * (pDelta / average(pDelta))
elif PDeltaAdjustmentType == 3: # Vector adjustments

pDelta = pDelta + phi / (1.0 - phi) * pDelta_increment[n-1,:]
elif PDeltaAdjustmentType == 5: # Vector adjusments (same as #3, but with possible higher order AR)

last_pDelta_increment = list(pDelta_increment[0:n,:])
for i in xrange(100):

last_pDelta_increment.append(AR(phi, last_pDelta_increment))
pDelta = pDelta + pDelta_increment[-1]

elif PDeltaAdjustmentType == 8: # VAR
last_pDelta_increment = pDelta_increment[n-1,:].copy()
for i in xrange(100):

last_pDelta_increment = dot(phi, concatenate([last_pDelta_increment, [average(last_pDelta_increment)]]))
pDelta = pDelta + last_pDelta_increment

global pGamma_period
# Find solution of trimmed simple model
DL_D_approx = do_find_parameter(DL_D_approx, UseApprox=True)
pGamma_period_approx = pGamma_period.copy()

if RelaxFixedZ: # Relax on z
global l_period, l_period_old
if n > 0:

phi = RelaxFixedPhi
l_period = phi * l_period + (1.0-phi) * l_period_old

l_period_old = l_period.copy()

# Solve CFD with prescribed motion
modelparameters.DL = DL_D_approx / l_S
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FSI_timestepping.reset_time()
pGamma_D = FSI_timestepping.do_timesteps_until_periodic(l_period, pGamma_period, pDelta, PrescribeLength=True) * p_S

# Update Delta p
phi = 1.0
if RelaxFixedDeltaP: # Relax on Delta p with fixed phi

phi = RelaxFixedPhi
elif RelaxAitken: # Use Aitken relaxation on Delta p

if n > 0:
R_n0 = pDelta_increment[n-1,:] / phi_hist[n-1]
R_n1 = pGamma_period - pGamma_period_approx
phi = - phi_hist[-1] * dot(R_n0, R_n1-R_n0) / dot(R_n1-R_n0, R_n1-R_n0)

phi_hist.append(phi)
pDelta = phi * (pGamma_period - pGamma_period_approx) + pDelta

convergence_history.append((DL_D_approx, pGamma_D))
if isnan(pGamma_D):

return

pDelta_increment[n,:] = phi * (pGamma_period - pGamma_period_approx)
pGamma_period_history.append(vstack([pGamma_period, pGamma_period-pDelta]))
print ’pDa: [%s]’ % (’,’.join([’%7.4f’ % (x/A) for x in average(pDelta_increment[0:n+1,:], 1)]))
print ’phi_hist: [%s]’ % (’,’.join([’%7.4f’ % x for x in phi_hist]))

if abs(pGamma_D - target_pGamma_D) / target_pGamma_D < 1e-12:
break

DL_D_ref1 = 4.0
DL_D_ref2 = 6.0
def do_find_parameter(DL_D_initial, UseApprox=False, n_max=10):

# Determine slope of DL-p line (sensitivity matrix)
modelparameters.DL = DL_D_ref1 / l_S
FSI_timestepping.reset_time()
pGamma_ref1 = FSI_timestepping.do_timesteps_until_periodic(l_period, pGamma_period, pDelta, UseApprox=UseApprox)
modelparameters.DL = DL_D_ref2 / l_S
FSI_timestepping.reset_time()
pGamma_ref2 = FSI_timestepping.do_timesteps_until_periodic(l_period, pGamma_period, pDelta, UseApprox=UseApprox)
d_pGamma_d_DL_D = (pGamma_ref1 - pGamma_ref2) / (DL_D_ref1 - DL_D_ref2)

# Trim iterations
DL_D_loop = DL_D_initial
for n in range(n_max):

modelparameters.DL = DL_D_loop / l_S
FSI_timestepping.reset_time()
pGamma_D = FSI_timestepping.do_timesteps_until_periodic(l_period, pGamma_period, pDelta, UseApprox=UseApprox) * p_S
convergence_history.append((DL_D_loop, pGamma_D))

# Adjust trim
DL_D_loop = DL_D_loop + (target_pGamma_D - pGamma_D) / p_S / d_pGamma_d_DL_D
if DL_D_loop < 0.0 or isnan(DL_D_loop):

print "*",
DL_D_loop = 0.1

return DL_D_loop
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