
MASTER THESIS

Evert F. Duipmans

EXAMINATION COMMITTEE
dr. Luís Ferreira Pires
dr. Ivan Kurtev
dr. Luiz O. Bonino da Silva Santos
dr. Dick A. C. Quartel

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE
SOFTWARE ENGINEERING

DOCUMENT NUMBER
EWI/SE - 2012-002

SEPTEMBER 2012

BUSINESS PROCESS MANAGEMENT

IN THE CLOUD WITH DATA AND 

ACTIVITY DISTRIBUTION





Abstract

Business Process Management (BPM) gives organizations the ability to identify, monitor

and optimize their business processes. A Business Process Management System (BPMS) is

used to keep track of business process models and to coordinate the execution of business

processes.

Organizations that want to make use of BPM might have to deal with high upfront invest-

ments, since not only software and hardware needs to be purchased, but also personnel

needs to be hired for installing and maintaining the systems. In addition, scalability can be

a concern for an organization. A BPMS can only coordinate a certain amount of business

process instances simultaneously. In order to serve all customers in peak-load situations,

additional machines are necessary. Especially when these machines are only rarely needed,

buying and maintaining the machines might become expensive.

Nowadays, many BPM vendors offer cloud-based BPM systems. The advantage of these

systems is that organizations can use BPM software in a pay-per-use manner. In addition,

the cloud solution should offer scalability to the user, so that in peak-load situations, ad-

ditional resources can be instantiated relatively easily. A major concern of cloud-based

solutions for organizations, is the fear of losing or exposing confidential data. Since the

cloud solution is hosted outside an organization and data is stored within the cloud, orga-

nizations fear they might lose control over their data.

In this report we consider a BPM architecture in which parts of a business process are

placed in the cloud and parts are placed on-premise. A decomposition framework for

automatically decomposing a business process into collaborating business processes for

deployment in the cloud or on-premise is developed in this work. The decomposition is

driven by a list of markings in which the distribution location for each of the activities in

a business process is defined. In addition, data restrictions can be defined, to ensure that

sensitive data does not cross the organizational borders.

The solution we present is business process language independent. An intermediate model

is used for capturing the behavior of a business process and the decomposition is per-

formed on this intermediate model, rather than on an existing language. The decompo-

sition framework consists of a transformation chain of three transformations, used for

converting a business process, defined in an existing business process language into an in-

stance of the intermediate model, performing the decomposition algorithm on the instance

and transforming the result back into a business process defined in an existing business

process language.

We analyze possible transformation rules, explain the implementation of the transforma-

tions and show an example of the decomposition framework by performing a case study.

iii





Preface

This thesis presents the results of the final assignment in order to obtain the degree Master

of Science. The project was carried out at BiZZdesign in Enschede. Finishing university is

a an important achievement in my life. Therefore, I would like to thank a couple of people:

First, I would like to thank Luís for being my first supervisor on behalf of the university.

Thanks for the great meetings and discussions we had. Your (red) comments helped me to

really improve the report.

Second, I want to thank Ivan, my second supervisor on behalf of the university. Although

we did not talk much about the subject of my thesis, I appreciate the conversations we had

about computer science, life and music. I wish you all the best in finding a new university

to continue your research.

Third, I would like to thank Luiz and Dick for supervising on behalf of BiZZdesign.

Thanks for the meetings we had during the last 6 months. The discussions we had helped

me to stay critical and obtain this result.

Fourth, I want to thank BiZZdesign for letting me perform my master assignment at their

office. I want to thank all the colleagues and fellow students in the company for their

support and the great time we had.

When I moved to Enschede three years ago, I barely knew anyone here. The last three

years I have met many people and I have been encouraged to try new (especially cultural)

activities. I want to thank my friends, my house mates and the other people I met the

last three years. Thanks for all the time we spend together and for helping me to have a

fantastic time in Enschede.

Finally, I want to thank my sister Amarins, my brother Gerard, and the most important

people in my life: my parents. Your love and support have helped me not only through

university, but also through life. Thanks for inspiring me to get the most out of life and

supporting me in every decision I have made.

Evert Ferdinand Duipmans

Enschede, September 2012

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Business Process Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 BPM lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Orchestration vs. Choreography . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Business Process Management System (BPMS) . . . . . . . . . . . . . 8

2.2 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 General benefits and drawbacks . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Service models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Cloud types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 BPM in the cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Combining traditional and cloud-based BPM . . . . . . . . . . . . . . 17

3 Approach 21
3.1 General development goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Transformation chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Intermediate Model 27
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Edge types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Mapping example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Decomposition Analysis 37
5.1 Single activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Sequential activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Composite constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Category 1: Moving the composite construct as a whole . . . . . . . . 40

5.3.2 Category 2: Start/end nodes with the same distribution location . . . 41

vii



viii CONTENTS

5.3.3 Category 3: Start/end node with different distribution location . . . . 43

5.4 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 Loop with condition evaluation before branch execution . . . . . . . . 47

5.4.2 Loop with condition evaluation after branch execution . . . . . . . . . 47

5.5 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Decomposition Implementation 53

6.1 Java classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Identification phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Partitioning phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Communicator node creation phase . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6 Choreography creation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Data dependency verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Business Process Language Selection 71

7.1 Amber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.1 Actor domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.2 Behavior domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.3 Item domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.4 BiZZdesigner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Auxiliary transformations 77

8.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2 Export/Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Parallel/Conditional block replacement . . . . . . . . . . . . . . . . . . . . . 80

8.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 Loop construct replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.5.1 Mark execution guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.5.2 Create data dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.6 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.6.1 Export/Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.6.2 BiZZdesigner script restrictions . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS ix

9 Case study 99
9.1 Talent show audition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.2 Marking activities and data items . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.3 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3.1 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3.2 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3.3 Replace constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3.4 Data dependency analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4.3 Creation of communicator nodes . . . . . . . . . . . . . . . . . . . . . 105

9.4.4 Choreography creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.4.5 Data restriction verification . . . . . . . . . . . . . . . . . . . . . . . . 105

9.5 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.5.1 Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.5.2 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.6 Example of data restriction violation . . . . . . . . . . . . . . . . . . . . . . . 108

9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

10 Conclusions 111
10.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2 Answers to the research questions . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix A Graph transformation 115
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2 Type Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3.1 Phases and priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126





1. Introduction

The structure of this chapter is as follows: Section 1.1 presents the motivation for this

work. Section 1.2 defines the research objectives. Section 1.3 describes the approach that

was followed to achieve the objectives. Section 1.4 presents the structure of this report.

1.1 Motivation

Business Process Management (BPM) has gained a lot of popularity the last two decades.

By applying BPM, organizations are able to identify, monitor and optimize their business

processes. This may lead to lower costs, better customer satisfaction or optimized pro-

cesses for creating new products at lower cost [1].

A business process can be described by a workflow, consisting of activities. The activities

in a process can be either human-based, system-based or a combination of both, in case

of human-system interaction. A Business Process Management System (BPMS) is often

used for coordinating the execution of a business process. The system manages business

process models and keeps track of running instances of the process models. A workflow

engine is used for the execution of the process models. The BPMS is equipped with a

monitoring tool, to give organizations the opportunity to get insight into running and

finished processes.

Organizations that want to embrace BPM technology might face high upfront investments,

since not only software, but also hardware needs to be purchased. In addition, personnel

needs to be hired for setting up and maintaining the system. Scalability can also be a

concern for companies that use BPM, since a process engine is only able to coordinate a

limited number of business process instances simultaneously. Organizations might need

to purchase additional machines to ensure that their customers can still be served during

peak load situations. When these situations only occur rarely, the additional machines

might make BPM expensive, since the fixed costs for maintenance still have to be paid by

the organization.

Cloud computing [2] gives users the opportunity of using computing resources in a pay-

per-use manner and perceiving these resources as being unlimited. The cloud computing

definition by the NIST [3] mentions three service models: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service (SaaS). Several software vendors offer

cloud-based BPM solutions. Instead of having to make upfront investments, organizations

can use BPM software in a pay-per-use manner. A cloud-based solution should also be

scalable, which gives organizations the freedom to scale up and down relatively easily

according to their needs.

1



2 CHAPTER 1. INTRODUCTION

A major concern for organizations is often the security of cloud-based solutions. Orga-

nizations fear that they might lose or expose sensitive data, by placing these data in the

cloud. In addition, not all activities might benefit from being placed in the cloud. For

example, the execution of non-computation-intensive activities might be as fast as in the

cloud, or even faster, if large amounts of data need to be sent to the cloud first, in order to

execute the activity. This might also make a cloud solution expensive, since data transfer

is commonly one of the billing factors of cloud computing.

The idea of splitting up a business process and placing activities and data in both the or-

ganization and the cloud has been proposed in [4]. The paper describes and architecture

in which organizations can place their sensitive data and non-computation-intensive ac-

tivities within the organization itself, whereas less sensitive data and scalable activities

can be placed in the cloud. Decomposition of the original monolithic process into separate

individual processes is however not addressed in [4].

1.2 Objectives

In this research we work towards an architecture, based on [4], in which two process en-

gines, one placed on-premise and one placed in the cloud, are used for coordinating a

business process. We split-up the original process and distribute it to both engines based

on location assignments for activities and data, to benefit from the advantages of both

traditional and cloud-based BPM.

The main research objective of this thesis is:

Business Process Management in the cloud with protection of sensitive data and
distribution of activities through the decomposition of monolithic business processes
into individual processes.

To achieve this goal, we developed a decomposition framework which is able to transform

a business process into several separate processes, based on activities that are marked with

a distribution location. During the development of the framework, the following research

questions are considered:

RQ1. Which approaches are available for decomposing a business process?
Much research has been performed on the decentralization of orchestrations. We

identified a base language to define our business process and we selected a technique

for specifying the process transformation.

RQ2. Which transformation rules can be applied to constructs within a business process?



1.3. APPROACH 3

We performed an analysis to identify possible transformation rules that are appli-

cable to our business processes, when nodes within the process are marked with a

distribution location.

RQ3. How to deal with data restrictions when decomposing a business process?
We introduced data dependencies between the activities in a business process by

performing data analysis and introduced a data restriction verification algorithm to

ensure that no data restrictions are violated during the decomposition transforma-

tion.

RQ4. How to verify the correctness of the decomposition solution?
We verified the correctness of the decomposition solution informally by showing that

the resulting business processes can be transformed back to the original business

process by merging the obtained business processes and removing the communica-

tion nodes.

1.3 Approach

To achieve the main objective of this research and answer the research questions, the fol-

lowing steps have been taken:

1. Perform a literature study on BPM and cloud computing, by looking at both subjects

individually, but by also investigating approaches in which BPM and cloud comput-

ing are combined.

2. Survey literature on the decomposition of business processes to find a representation

for business processes that captures their structure and semantics.

3. Define and implement transformation rules to enable decomposition of business

processes.

4. Test the framework by performing a case study.

5. Verify that activities are correctly distributed and no data restrictions are violated.

1.4 Structure

The remainder of this thesis is structured as follows.

Chapter 2 gives the background for our work. We introduce and discuss both Business

Process Management and Cloud Computing in some detail.



4 CHAPTER 1. INTRODUCTION

Chapter 3 defines the approach we use for the decomposition and discusses related work.

Chapter 4 introduces the intermediate model we use for the decomposition transforma-

tion.

Chapter 5 analyzes possible transformation rules for the decomposition phase.

Chapter 6 reports on the implementation of the decomposition transformation. Each of

the phases of the algorithm is explained in pseudo code.

Chapter 7 discusses the business process language we have selected for our lifting and

grounding transformation. The language is explained and a mapping between the busi-

ness process language and the intermediate model is investigated.

Chapter 8 discusses our lifting and grounding transformations. Each of the phases of the

transformations is explained with code examples.

Chapter 9 gives an example of the transformation chain, by performing the transforma-

tions on a case study.

Chapter 10 concludes this report and gives recommendations for further research.



2. Background

This chapter is structured as follows: Section 2.1 introduces Business Process Management

by explaining the BPM lifecycle, orchestrations and choreographies and the structure of

a BPMS. Section 2.2 describes cloud computing, by investigating the service models and

cloud types. The benefits and drawbacks for both cloud computing in general and each of

the service models are identified. Section 2.3 introduces BPM in the cloud by looking at

specific benefits and drawbacks and by introducing an architecture in which traditional

BPM and cloud-based BPM are combined.

2.1 Business Process Management

The goal of BPM is to identify the internal business processes of an organization, capture

these processes in process models, manage and optimize these processes by monitoring

and reviewing them.

Business process management is based on the observation that each product that a com-

pany provides to the market is the outcome of a number of activities performed [1]. These

activities can be performed by humans, systems or a combination of both. By identifying

and structuring these activities in workflows, companies get insight into their business

processes. By monitoring and reviewing their processes, companies are able to identify

the problems within these processes and can come up with improvements.

2.1.1 BPM lifecycle

The BPM lifecycle is an iterative process in which all of the BPM aspects are covered. A

simplified version of the BPM lifecyle is shown in Figure 2.1. Below we briefly introduce

each of the phases of the BPM lifecycle.

Design

In the design phase the business processes within a company are identified. The goal of

the design phase is to capture the processes in business process models. These models are

often defined using a graphical notation. In this way, stakeholders are able to understand

the process and refine the models relatively easily. The activities within a process are

identified by surveying the already existing business process, by considering the structure

of the organization and by identifying the technical resources within the company. BPMN

5



6 CHAPTER 2. BACKGROUND

 

Design 

Implementation 

Enactment 

Evaluation 

Figure 2.1: Schematic representation of the business process management lifecycle [1]

[5] is the most popular graphical language for capturing business process models in the

design phase.

When the business processes are captured within models, these models can be simulated

and validated. By validating and simulating the process, the stakeholders get insight into

the correctness and suitability of the business process models.

Implementation

After the business process models are validated and simulated, they have to be imple-

mented. The implementation of these models can be done in two ways:

1. One can choose to create work lists, with well defined tasks, which can then be as-

signed to workers within the company. This is often the case when no automation

is necessary or possible within the business process execution. The disadvantage of

working with work lists is that the process execution is hard to monitor. There is no

central system in which process instances are monitored, and this has to be done by

each employee within the company who is involved in the process.

2. In a lot of situations information systems participate in a business process, in which

case a business process management system (BPMS) can be used. A BPMS is able to

use business process models and create instances of these models for each process

initiation. The advantage of using a BPMS is that the system gives insight into the

whole process. The system is able to monitor each instance of a business process and

gives an overview of the activities that are performed, the time the process takes and

its completion or failure.



2.1. BUSINESS PROCESS MANAGEMENT 7

Business Process Management Systems need executable business models. The mod-

els defined in the design phase are often too abstract to be directly executed. There-

fore, they need to be implemented in an executable business process language, such

as BPEL [6]. In addition, collaborations between business processes can be described

by using a choreography language, such as CDL [7].

Enactment

When the business process models are implemented in the implementation phase, the

enactment phase can be started. In this phase the system is used at runtime, so that each

initiation of the process is monitored and coordinated by the BPMS. For each initiation

of a process, a process instance is created. The BPMS keeps track of the progress within

each of the process instances. The most important tool within the enactment phase is the

monitoring tool, since it gives an overview of the running and finished process instances.

By keeping track of these instances, problems that occur in a process instance can be easily

detected.

Evaluation

In the evaluation phase the monitored information that is collected by the BPMS is used

to review the business process. The conclusions drawn in the evaluation phase are used as

input for the next iteration of the lifecycle.

2.1.2 Orchestration vs. Choreography

An Orchestration describes how services can interact with each other at the message level,

including the business logic and execution order of the interactions from the perspective

and under control of single endpoint [8].

A choreography is typically associated with the public message exchanges, rules of inter-

action, and agreements that occur between multiple business process endpoints, rather

than a specific business process that is executed by a single party [8]. An example of a

language for defining choreographies is CDL [7]. CDL allows its users to describe how

peer-to-peer participants communicate within the choreography. Choreography specifica-

tions give organizations the opportunity to collaborate, using a collaborative contract. The

interaction between partners is clearly defined, but the implementation of the individual

orchestrations is the responsibility of each of the participants.



8 CHAPTER 2. BACKGROUND

2.1.3 Business Process Management System (BPMS)

Several vendors of Business Process Management software solutions offer complete suites

for modeling, managing and monitoring business processes. Inside these systems there

is a process execution environment, which is responsible for the enactment phase of the

BPM lifecycle [1]. An abstract schema of a typical BPMS is shown in Figure 2.2.

120 3 Business Process Modelling Foundation

This technological problem is also addressed by enterprise application inte-
gration systems, where adapter technology is in place to cope with this issue,
as discussed in Chapter 2.

In addition, the granularity with which legacy systems provide functional-
ity often does not match the granularity required by the business process. In
particular, legacy systems often realize complex subprocesses rather than in-
dividual activities in a business process. Sometimes, the processes realized by
legacy systems and the modelled business processes are not immediately com-
parable. These issues have to be taken into account when software interfaces
to existing information systems are developed.

One option to solving this problem is developing software interfaces that
make available the functionality provided by legacy systems with a granularity
that allows reuse of functionality at a finer level of granularity. The granularity
should match the granularity required at the business process level.

Depending on the legacy system, its complexity, software architecture,
and documentation, as well as the availability of knowledgeable personnel,
the required effort can be very high. If the need for finer-grained granularity
and efficient reuse of functionality is sufficiently high, then partial or complete
reimplementation can be an option.

3.11 Architecture of Process Execution Environments

So far, this chapter has discussed the modelling of different aspects of a busi-
ness process. This section looks into the representation of a business process
management system capable of controlling the enactment of business processes
based on business process models.

Business Process Environment

Process Engine

Service Provider 1 Service Provider n

Business Process Model

Repository

Business Process 

Modeling

. . . 

Fig. 3.39. Business process management systems architecture modelFigure 2.2: Schematic representation of a business process management system [1]

The tools shown in Figure 2.2 provide the following functionality:

• The Business Process Modeling component consists of tools for creating business

process models. It often consists of graphical tools for developing the models.

• Business Process Environment is the main component that triggers the instantiation

of process models.

• The Business Process Model Repository is a storage facility for storing process mod-

els as created by the modeling component.

• The Process Engine keeps track of the running instances of process models. It com-

municates with service providers in order to execute activities or receive status up-

dates.

• Service Providers are the information systems or humans that communicate with the

process engine. These entities perform the actual activities and report to the process

engine.



2.2. CLOUD COMPUTING 9

2.2 Cloud Computing

Cloud computing is one of the trending topics in Computer Science nowadays. Many mar-

ket influencing players as Microsoft, Google and Amazon offer cloud computing solutions.

The goal of this section is to introduce cloud computing from both a conceptual level and

a more concrete level. At first the general benefits and drawbacks of cloud computing are

explained briefly. The three common service models are introduced next and for each of

these service models its specific benefits and drawbacks are identified. After that, four

different cloud types are discussed.

2.2.1 General benefits and drawbacks

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network ac-

cess to a shared pool of configurable computing resources that can be rapidly provisioned

and released with minimal management effort or service provider interaction [3].

The idea of cloud computing is that users are offered computing resources in a pay-per-

use manner that are perceived as being unlimited. The cloud provider does not have any

expectations or up-front commitments with the user and it offers the user elasticity to

quickly scale up or down according to the user’s needs.

Cloud computing gives organizations several benefits:

• Elasticity
Instead of having to buy additional machines, computing resources can be reserved

and released as needed. This means that there is no under- or over-provisioning of

hardware by the cloud user.

• Pay-per-use
Cloud users are only billed for the resources they use. If a cloud user needs 20

computers once a week for some computation of one hour, it is only billed for these

computing hours. After that the computers can be released and can be used by other

cloud users.

• No hardware maintenance
The computing resources are maintained by the cloud provider. This means that

operational issues such as data redundancy and hardware maintenance are attended

by the cloud provider instead of the cloud user.

• Availability
Clouds are accessible over the Internet. This gives cloud users the flexibility to access

their resources over the Internet. Cloud users are able to use software or data that



10 CHAPTER 2. BACKGROUND

is stored in the cloud not only inside their organization but everywhere they are

provided with Internet access.

There are also drawbacks and threats in using cloud computing:

• Security
Data is stored inside the cloud and accessible through the Internet. In several situ-

ations cloud users deal with confidential information that should be kept inside the

cloud user’s organization. In these situations cloud computing might not be a good

solution, although there are solutions with cloud computing in which data is stored

inside the cloud user’s organization but applications are hosted in the cloud. There

are also technical solutions for making data unintelligible for unauthorized people,

for example, by using encryption algorithms.

• Availability
Clouds are accessible through the Internet. This gives cloud users the freedom to

work with the services wherever they have an Internet connection. The downside

is that when the Internet connection fails, for example, on the side of the cloud

provider, cloud users are not able to access their services any more. This might lead

to business failures, especially when the services are part of a business process.

• Data transfer bottlenecks
Users that use software systems might need to transfer large amounts of data in

order to use the system. Data should be transported not only from the user to the

system, but also to multiple systems in order to cooperate inside a company. Cloud

computing providers do not only bill the computation and storage services, but also

data transportation is measured and billed. For companies that deal with a lot of

data, cloud computing may be expensive because of the data transportation costs.

Another problem can be the time it takes to transfer data to the cloud. For example,

suppose that a company needs to upload a huge amount of data in order to perform

a complex computation, in which case the data transfer may take more time than the

computation itself. In these situations it might be faster and cheaper to perform the

computation inside the premises of the cloud user.

2.2.2 Service models

The National Institute of Standards and Technology (NIST) identifies three service mod-

els for cloud computing: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and

Infrastructure-as-a-Service (IaaS) [3]. The three service models are closely related and can

be seen as a layered architecture, as shown in Figure 2.3. Each service model is explained

in the sequel. For each of the models, its specific benefits and drawbacks are discussed for



2.2. CLOUD COMPUTING 11

both the user and the provider of the service models.
 

 

  

 

 

 

 

 

 

 

 

         Software-as-a-Service 

         Examples: Facebook, Youtube, Gmail 

Platform-as-a-Service  

Examples: Windows Azure, Google AppEngine, Force.com 

Infrastructure-as-a-Service  

Examples: Amazon EC2, GoGrid 

Application  
(Applications, Webservices) 

Platform 
(Software Frameworks, Storage providers) 

Infrastructure 
(Computation, Storage) 

Hardware 
(CPU, Memory, Disk, Bandwidth) 

Figure 2.3: An overview of the layers in cloud computing based on [9]

Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service is the lowest layer in the cloud computing stack. As shown

in Figure 2.3, IaaS combines two layers: the hardware layer and the infrastructure layer.

IaaS users are interested in using hardware resources such as CPU power or disk storage.

Instead of directly offering these services to the user, IaaS providers provide users with a

virtualization platform. Customers need to install and configure a virtual machine, which

runs on the hardware of the cloud provider. In this model, cloud users are responsible for

their virtual machine and cloud providers are responsible for the actual hardware. Issues

such as data replication and hardware maintenance are addressed by the cloud provider,

while the management of the virtual machine is performed by the cloud user.

Benefits of IaaS for cloud users are:

• Scalable infrastructure
The biggest advantage of IaaS is the elasticity of the service. Instead of having to buy

servers, software and data center capabilities, users rent these resources on a pay-

per-use manner. In situations where the workload of computer resources fluctuates,

IaaS might be a good solution. For example, consider a movie company that uses

servers for rendering 3D effects. The company has a small data center on-premise

which is used for the rendering, once a week. The rendering of one scene takes 50

hours when performed on 1 machine. By scaling up to 50 machines, the rendering

of the scene would take 1 hour. Scaling up the internal network of the company

might be an expensive operation considering the installation and maintenance of

the machines, especially when the servers are only used for rendering once a week.



12 CHAPTER 2. BACKGROUND

Instead of buying these machines, one might consider to rent the machines and only

pay for the rendering operation once a week.

• Portability
Since IaaS works with virtual machine images, porting an on-premise system to the

cloud or porting a virtual machine from one cloud to another can be relatively easy.

This, however, depends on the virtual machine image format that is used by the

cloud provider.

Drawbacks of IaaS for cloud users are:

• Virtual machine management
Although cloud users do not have to manage the rented computer hardware, cloud

users are still responsible for the installation and configuration of their virtual ma-

chine. A cloud user still needs experts inside its organization for the management of

these virtual servers.

• Manual scalability
IaaS does no offer automated scalability to applications. Users are able to run virtual

machines and might boot several instances of virtual machines in order to scale up

to their needs. Collaboration between the virtual machines has to be coordinated

and programmed by the cloud user.

Benefits for IaaS cloud providers are:

• Focus on hardware
Cloud providers are mainly focused on hardware related issues. Everything that is

software related, such as database management, threading and caching needs to be

performed by the cloud user.

• Exploiting internal structure
Several providers are able to offer cloud computing services as an extension to their

core business. For example, the Amazon infrastructure stack was originally built for

hosting Amazon’s services. By offering this infrastructure as a service, Amazon is

able to exploit its infrastructure and offer a new service to its customers at low cost.

Drawbacks for IaaS cloud providers are:

• Under- and overprovisioning
Cloud providers have to offer their resources as if they are unlimited to the cloud

user. This means that a cloud provider needs to own enough resources in order to

fulfill the needs of a cloud user. These needs, however, may vary every time. Un-

derprovisioning of a data center causes that a cloud user might not be able to obtain

the resources it asks for, since the cloud provider does not have enough machines



2.2. CLOUD COMPUTING 13

available. Overprovisioning is extremely expensive, since servers are bought and

maintained, but are not used.

Platform-as-a-Service (PaaS)

Platform-as-a-Service is a service model in which users are offered a platform on which

they can develop and deploy their applications. The platform offers support for using

resources from the underlying infrastructure. Platforms are mostly built for a certain

domain such as, e.g., development of web applications, and are programming language-

dependent.

There are several cloud platforms available nowadays. Microsoft offers the Windows

Azure platform, which can be used for developing (web) applications and services based

on the .NET framework. Google’s App Engine is a platform for the development and de-

ployment of Go, Python and Java-based (web) applications.

Benefits of PaaS for cloud users are:

• Development platform
PaaS offers cloud users a platform on which they can manage and deploy their appli-

cations. Instead of having to manage issues such as scalability, load balancing and

data management, cloud users can concentrate on application logic.

• No hardware and server management needed
Customers can deploy applications relatively easily on the platform, since no net-

work administrators are necessary for installing and maintaining servers or virtual

machines.

Drawbacks of PaaS for cloud users are:

• Forced to solutions in the cloud
PaaS offers combinations of services. For example, Windows Azure provides users

with a .NET environment. The platform offers support for databases in the form

of SQL Azure. Application developers can choose to use a different database, but

have to perform difficult operations to install these services on the platform, or have

to host the database by a third-party. PaaS users are more or less forced to use the

solutions that are offered by the cloud provider in order to get the full benefits from

the platform.

Benefits for PaaS cloud providers are:

• Focus on infrastructure and platform
The software that runs on the platform is managed by the cloud user and the cloud



14 CHAPTER 2. BACKGROUND

provider is responsible for the infrastructure and the platform.

Drawbacks for PaaS cloud providers are:

• Platform development
The platform that is offered by the cloud provider is a piece of software. Complex

software is needed to offer services such as automatic scalability and data replication.

Faults in the platform can lead to failure of customer applications, so the platform

has to be fault tolerant and stable.

Software-as-a-Service (SaaS)

With Software-as-a-Service, cloud providers offer an application that is deployed on a

cloud platform. Users of the application access the application through the Internet, often

using a browser. One of the benefits of SaaS is that cloud providers are able to manage

their software from inside their company. Software is not installed on the computers of

the cloud users, but instead runs on the servers of the cloud provider. When a fault is

detected in the software, this can be easily fixed by repairing the software on the server,

instead of having to distribute an update to all the users.

There are several examples of Software-as-a-Service. For example, Google offers several

web applications, such as Gmail and Google Docs, as online services. Another example is

SalesForce.com, which offers CRM online solutions as a service.

Benefits of SaaS for cloud users are:

• Pay-per-use
Instead of having to purchase a license for each user of an application, organizations

are billed based on the usage of the software. A couple of years ago software was

often purchased on a pay-per-license base. Network administrators had to install

applications on the workstations of a cloud user’s company and for each application

instance the cloud user had to pay for a license, even if the user of a particular work-

station did not use the application. With pay-per-use, cloud users pay only for the

users and the usage time of the application.

• Updates
Applications in the cloud are managed by a cloud provider. The cloud provider is

able to perform updates to the software directly in the cloud. Instead of having to

distribute updates to the cloud user, the users always work with the most actual

version since they access the application in the cloud.

Drawbacks of SaaS for cloud users are:



2.2. CLOUD COMPUTING 15

• Data lock-in
Data lock-in is one of the typical problems of SaaS. In case cloud users decide to

work with another application of another provider, it might be hard to move the

data to this other application. Not every application provider stores data in a stan-

dardized way and interfaces for retrieving all the data from an application may not

be available.

Benefits for SaaS cloud providers are:

• Maintenance
Maintenance can be directly performed in the cloud application itself. Updates do

not have to be distributed to the cloud users but are directly applied upon the soft-

ware in the cloud.

Drawbacks for SaaS cloud providers are:

• Infrastructure needed
In traditional software deployment, software is shipped to the user. The hardware

on which the application is installed is managed by the user. With cloud computing,

the software runs on servers of the cloud provider. This means that cloud providers

have to perform infrastructure maintenance, or they have to rent infrastructure or a

platform for hosting their applications.

• Responsibility
Applications that run in the cloud are managed by the SaaS provider. When the

application in the cloud is not accessible or not working any more because of erro-

neous updates or changes in the software, cloud users are not able to work with the

software any more. It is a big responsibility for cloud providers to make sure the

software is kept up and running.

2.2.3 Cloud types

The cloud types identified in [10][3] are discussed below.

Public Cloud

A public cloud is provisioned for exclusive use by the general public. Cloud users access

the cloud through the Internet. Public clouds are widely available nowadays. For example,

companies as Microsoft, Google and Amazon offer public cloud computing services. The

biggest benefit of public clouds is that the management of the servers is provided by the



16 CHAPTER 2. BACKGROUND

third-party provider. Users just pay for the usage of the cloud, and issues as scalability

and replication are handled by the cloud provider.

Private Cloud

Private clouds are for exclusive use of a single organization. Private clouds can be hosted

inside or outside the cloud user’s organization and managed by the cloud user’s organiza-

tion itself or by a third-party provider. This form of cloud computing can be used when

cloud users have to deal with strict security concerns, in case data has to be hosted inside

the cloud user’s organization.

Hybrid Cloud

Hybrid clouds are created by combining a private and a public cloud. With hybrid clouds,

organizations can choose to store their critical data inside the company using a private

cloud, while the less critical data and services can be stored in the public cloud. The

hybrid cloud approach benefits from the advantages of both public and private clouds.

Scalability is maintained, since the public cloud is used for offering the services, while

data security is maintained by storing critical data in the private cloud.

Community Cloud

A community cloud is available for a specific community. Several companies that deal

with the same concerns may decide to host their services together, in order to collaborate.

Community clouds can be managed by one or more organizations within the community,

but the cloud may alternatively be hosted by a third-party provider.

2.3 BPM in the cloud

Cloud-based BPM gives cloud users the opportunity to use cloud software in a pay-per-use

manner, instead of having to make upfront investments on BPM software, hardware and

maintenance [4]. Systems scale up and down according to the cloud users needs, which

means that the user does not have to worry about over-provisioning or under-provisioning.

Privacy protection is one of the barriers for performing BPM in the cloud environment.

Not all users want to put their sensitive data in the cloud. Another issue is efficiency.

Computation-intensive activities can benefit from the cloud because of the scalability of

the cloud. Activities that are not computation-intensive, however, do not always benefit



2.3. BPM IN THE CLOUD 17

from cloud computing. The performance of an activity that is running on-premise might

be higher than in the cloud because of data that needs to be transferred to the cloud first in

order to perform the activity. These activities can also make cloud computing expensive,

since data transfer is one of the billing factors of cloud computing.

2.3.1 Combining traditional and cloud-based BPM

In most BPM solutions nowadays, the process engine, the activities and process data are

placed on the same side, either on-premise or the cloud. The authors of [4] investigated

the distribution possibilities of BPM in the cloud by introducing a PAD model, in which

the process engine, the activities involved in a process and the data involved in a process

are separately distributed, as shown in Figure 2.4. In this figure, P stands for the process

enactment engine, which is responsible for activating and monitoring all the activities, A

stands for activities that need to be performed in a business process, and D stands for the

storage of data that is involved in the business process. By making the distinction between

the process engine, the activities and the data, cloud users gain the flexibility to place

activities that are not computation-intensive and sensitive data at the user-end side and

all the other activities and non-sensitive data in the cloud.

The PAD model introduced in [4] defines four possible distribution patterns. The first

pattern is the traditional BPM solution where everything is placed at the user-end. The

second pattern is useful when a user already has a BPM system on the user-end, but the

computation-intensive activities are placed in the cloud to increase their performance.

The third pattern is useful for users who do not have a BPM system yet, so that a cloud-

based BPM system can be utilized in a pay-per-use manner and activities that are not

computation-intensive and sensitive data can be placed at the user-end. The fourth pattern

is the cloud-based BPM pattern in which all elements are placed in the cloud.

Business processes define two types of flows, namely a control-flow and a data-flow. The

control-flow regulates the activities that are performed and the sequence of these activi-

ties, while the data-flow determines how data is transferred from one activity to another.

BPM workflow engines have to deal with both control-flows and data-flows. A data-flow

might involve sensitive data, therefore, when a BPM workflow engine is deployed on the

cloud, data-flows should be protected.

In the architecture proposed in [4], the cloud side engine only deals with data-flow by

using reference IDs instead of the actual data. When an activity needs sensitive data, the

transfer of the data to the activity is handled under user surveillance through an encrypted

tunnel. Sensitive data is stored at the user-end and non-sensitive data is stored in the

cloud. An overview of the architecture proposed in [4] is shown in Figure 2.5.



18 CHAPTER 2. BACKGROUND

CloudOn-Premise

Data

Activities

Process Engine

(a) Traditional BPM

Data

Activities

Process Engine

Data

Activities

(b) On-premise BPM with cloud distribution

Data

Activities

Data

Activities

(c) Cloud BPM with on-premise distribution

Data

Activities

(d) Cloud BPM

Process Engine

Process Engine

Figure 2.4: Patterns for BPM placement, based on [4]1160 J. Comput. Sci. & Technol., Nov. 2010, Vol.25, No.6

Fig.2. Architecture of cloud-based BPM with user-end distribution.

Dealing separately with control data and business
data can also enhance the stability of our system. On
the one hand, when user-end crashes, the process in-
stance on the cloud-side can be suspended for the pro-
cess instance status is maintained on cloud-side. After
user-end resumes, the process instance can continue.
On the other hand, users’ sensitive data will not be
influenced when the process engine on cloud-side is un-
available, because the data can be stored in a local
repository that is under their own control.

3.3 Architectural Rationales

Our design objectives of cloud-based BPMwith user-
end distribution are as follows. Firstly, the cloud-
side engine handles process enactment by collaborating
with the user-end engine. These two engines can han-
dle activity execution and data storage on their own
side. Secondly, between cloud-side and user-end, there
mainly exists control data such as activity status or ser-
vice request, which does not contain business data but
reference ID. Lastly, business data exchanged between
cloud-side and user-end is also allowed but should be
under users’ surveillance through encrypted tunnel and
could be charged based on the amount of data trans-
ferred.

Fig.2 illustrates the novel cloud-based BPM, which
has an event-driven architecture supporting user-end
dependency and autonomy while maintaining logic in-
tegrity of an overall business process. As shown in
Fig.2, the solid arrow represents control-flow, and the
wide arrow represents data-flow. The non-sensitive
data is stored in the cloud repository, and users’
sensitive data, such as some business documents or
confidential financial reports, is stored in local repo-

sitory under their own control. There are mainly three
components (portal, user-end engine, and local repo-
sitory) installed at user-end, which could be a normal
PC. The cloud-side engine with activity scheduler is
built on large server clusters, which feature high per-
formance and scalability.

With this architecture, it is no longer necessary for
the sensitive data to be accessed by the cloud-side en-
gine especially when those data only need to be ex-
changed between user-end activities. When activities
distributed on cloud-side want to use the data in user-
end repository, the cloud-side engine must get autho-
rized by the user-end engine to obtain them.

Users that need the cloud-based BPM just have
to deploy these user-end components on their private
server, and then get the benefits of full-fledged BPM
system without losing control of their sensitive data.
Moreover, they can also make some further develop-
ment on the basis of these components to satisfy their
specific needs.

4 Key Issues with Scientific Exploration

In this section, we describe how we can ensure that
the cloud-side engine collaborates seamlessly with the
user-end components to maintain logic integrity of an
overall business process, and also discuss our optimal
distribution mechanism and privacy protection issues
in more detail.

4.1 Communication Between Cloud-Side and
User-End

In the communications between cloud-side and
user-end, six types of event are defined as carriers of

Figure 2.5: Architecture of a cloud-based BPM system combined with user-end distribu-

tion [4]

The costs for using cloud computing are investigated in several articles [2, 11]. In [4],

formulas are given for calculating the optimal distribution of activities, when activities

can be placed in the cloud or on-premise. The calculation takes into account the time

costs, monetary costs and privacy risk costs. By using these formulas, cloud users can



2.3. BPM IN THE CLOUD 19

make an estimation of the costs of deploying parts of their application on-premise and in

the cloud.





3. Approach

In this chapter we introduce the approach we have taken in this research project. This

chapter is structured as follows. Section 3.1 explains the general development goals. Sec-

tion 3.2 discusses related work on decomposition of business processes. Section 3.3 intro-

duces the transformation chain we use for the transformations.

3.1 General development goals

In this research we extend the work of [4] by focusing on the decomposition of business

processes into collaborating processes for distribution on-premise or in the cloud.

We identify a fifth pattern for a PAD model, in which process engines, activities and data

are placed in both the cloud and on-premise. This extension of the model is shown in

Figure 3.1.

CloudOn-Premise

Data

Activities

Data

Activities

(e) Combined

Process Engine Process Engine

Figure 3.1: Fifth PAD pattern

The architecture proposed in [4] also considers process engines on both the cloud and on-

premise sides, but the decomposition of the original process is not addressed there. In our

approach, we want to make use of two separate process engines to minimize the amount

of data that has to be exchanged between the cloud and on-premise. Each process engine

regulates both the control-flows and data-flows of a process.

Consider a process engine in which the output of one activity is the input for the following

activity. Figure 3.2a shows a situation in which a process is executed by a single process

engine situated on-premise, where some of the activities within the process are placed in

the cloud. Since the process is coordinated by the process engine, data is not directly sent

from activity to activity, but instead is sent to the process engine first. In case of adjacent

cloud activities, using one process engine on-premise leads to unnecessary data exchange

between the process engine and the cloud. By introducing a second process engine in the

cloud, we can avoid this problem. Adjacent activities with the same distribution location

do not have to send their data from cloud to on-premise, or vice versa, since the coordi-

nation can be performed by the process engine in the cloud. This situation is shown in

Figure 3.2b.

21



22 CHAPTER 3. APPROACH

a2

a1

a3

a4

input

CloudOn-Premise

output

input

output

output

input

input

output
P

ro
ce

ss
 E

n
gi

n
e

P
ro

ce
ss

 E
n

gi
n

e

input

output

a2

a1

a3

a4

input

CloudOn-Premise

output

input

output

output

input

input

output

P
ro

ce
ss

 E
n

gi
n

e

(a) One process engine

a2

a1

a3

a4

input

CloudOn-Premise

output

input

output

output

input

input

output
P

ro
ce

ss
 E

n
gi

n
e

P
ro

ce
ss

 E
n

gi
n

e

input

output

a2

a1

a3

a4

input

CloudOn-Premise

output

input

output

output

input

input

output

P
ro

ce
ss

 E
n

gi
n

e

(b) Two process engines

Figure 3.2: Data transfer between activities coordinated by process engines

Our overall goal is to create a transformation framework in which users can automati-

cally decompose a business process into collaborating business processes for distribution

on-premise and in the cloud, based upon a list in which activities and data are marked

with their desired distribution location. In addition, users should be able to define data

restrictions, to ensure that sensitive data stays within the premises of an organization. A

schematic overview of the transformation is shown in Figure 3.3.

3.2 Related Work

The purpose of this section is to identify techniques that can be applied for the decom-

position of business processes. Below, we discuss related work on the decomposition of

orchestrations. Several research groups have investigated the possibility of decentraliz-

ing orchestrations. In a centralized orchestration, a process is coordinated by a single or-

chestrator. Decentralized orchestrations are distributed among several orchestrators. By

distributing parts of a process over separate orchestrators, the message overhead may be

reduced, which potentially leads to better response time and throughput [12].

In [13, 12, 14, 15, 16], new orchestrations are created for each service that is used within

the business process, hereby creating direct communication between services, instead of

being coordinated by one single orchestrator. The business processes are defined in BPEL

[6]. Not only decomposition is defined, but also analysis on synchronization issues is per-

formed. The work captures a BPEL process first in a control-flow graph, which is used

in turn to create a Program Dependency Graph (PDG) [17]. The transformations are per-



3.2. RELATED WORK 23

Orchestration

Choreography

Orchestration Orchestration

On-premise Processa1

a3
a5

a6

Cloud Process

a2 a4

communication

Processa1

a2

a3

a4

a5

a6

Distribution list
Activity    On-premise    Cloud
a1            X
a2                                X
a3            X
a4                                X 
a5            X
a6            X

Tr
an

sf
o

rm
at

io
n

Figure 3.3: Example of decomposition

formed on PDGs and the newly created graphs are transformed back into BPEL. The parti-

tioning approach is based on the observation that each service in the process corresponds

to a fixed node and for each fixed node a partition is generated. In our approach we want

to create processes in which multiple services can be used. This partitioning algorithm is

therefore not suitable to our approach.

Research in [18, 19, 20] focuses on decentralization of orchestrations by using BPEL pro-

cesses. The main focus of the research is to use Dead Path Elimination (DPE) [6], for en-

suring the execution completion of decentralized processes. Using DPE also leads to very

specific language-related problems, therefore these research papers are only useful when

BPEL is selected as the input and output language of our transformation framework.

In [21], decentralization of BPEL processes is considered. The authors use a graph trans-

formation approach for transforming the BPEL process. The transformation rules are not

defined in the paper. The type graph with which the graph transformations are performed

is described and might be applicable to our situation.

In [22], the authors state that the current research on decentralizing orchestrations focuses

too much on specific business process languages. In most cases, implementation level lan-

guages, such as BPEL [6], are used. In our situation, the decision for distributing activities



24 CHAPTER 3. APPROACH

and data to the cloud is not only based on performance issues, but also on safety mea-

sures, regulated by the organization or government. The decision to execute an activity

on-premise or in the cloud might therefore be already taken in the design phase of the

BPM lifecycle.

3.3 Transformation chain

Instead of building a solution for a specific business process language, we opted for using

an intermediate model in which the structure and semantics of business processes are

captured. There are two reasons for using an intermediate model:

1. A business process is defined in a business process language using the syntax of

the language. The decomposition transformations we want to apply should comply

to the semantics of the business process language. We therefore need to lift the

original business process to a model in which the intended semantics of the model

are preserved.

2. By using an intermediate model, we can purely focus on the decomposition prob-

lems, without having to consider language specific problems. As a drawback, extra

transformations are needed for converting a business process to the intermediate

model and back.

Our approach consists of a transformation chain with 3 phases: a lifting phase, a decom-

position phase and a grounding phase. An overview of our approach is shown in Figure

3.4.

Transformation 1: Lifting
The lifting transformation transforms a business process defined in some business

process language into an instance of the intermediate model. Data analysis is per-

formed during this transformation phase to capture data dependencies between ac-

tivities in the process. This information is needed for ensuring that no data restric-

tions are violated during the decomposition transformation.

Transformation 2: Decomposition
The decomposition transformation transforms an instance of the intermediate model

according to an activity distribution list into a new instance of the intermediate

model that represents the decomposed processes and the communication between

the processes. The activity distribution list defines the distribution locations of each

of the activities in the resulting process. Furthermore, data restrictions can be de-

fined in the list. The distribution location of each data element used within the



3.3. TRANSFORMATION CHAIN 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
esig

n
 level Amber 

Models 

Tran
sfo

rm
atio

n
 1

 

Base language 

Activity 

distribution list 

CDL Model Cloud-based 

BPEL Model 

On-Premise 

BPEL Model 

Transformation 2 

Im
p

lem
en

ta
tio

n
 

level 

Business 

Process 

Language 
Transformation 1 

Intermediate 

representation 

Transformation 2 

Activity 

distribution list 

Intermediate 

representation Transformation 3 
Business 

Process 

Language 

Figure 3.4: Schematic representation of the transformation chain

process can also be defined, to ensure that the data element stays within the borders

of the defined location.

Transformation 3: Grounding
The grounding transformation transforms a decomposed intermediate model back to

an existing process language. Depending on the language which is used, the trans-

formation creates separate orchestrations for each of the processes and optionally a

choreography in which the cooperation between the processes is described.





4. Intermediate Model

This chapter defines the intermediate model we have used for the decomposition transfor-

mation. Section 4.1 defines the requirements that should be fulfilled by the intermediate

model. Section 4.2 compares several existing models to identify a suitable representation.

Section 4.3 defines our intermediate model by using graphical examples. Section 4.4 for-

mally defines our intermediate model. Section 4.5 shows how concepts from WS-BPEL [6]

are mapped to the intermediate model.

4.1 Requirements

The challenge for our intermediate model is to use a model which is reasonably simple,

but is still able to capture complex business process situations.

We used the control-flow workflow patterns defined in [23] for selecting the most common

workflow patterns. We decided not to support all of the control-flow workflow patterns

at first, since the intermediate model would get too complex. Instead, we identified the

patterns that are present in the business process languages WS-BPEL [6], WS-CDL [7],

Amber [24] and BPMN 2.0 [5, 25]. From the identified patterns, the most common patterns

were selected and used as requirements for the intermediate model. In future work, the

intermediate language can be extended to support more control-flow workflow patterns.

The following patterns should at least be supported by our intermediate model:

WP1: Sequence
The intermediate model should have a mechanism for modeling control flows, in

order to be able to express the sequence of execution of activities within a process.

WP2: Parallel Split
The intermediate model should support parallel execution of activities. A construct

is needed for splitting up a process into two or more branches, which are executed

simultaneously.

WP3: Synchronization
The intermediate model should have a mechanism for synchronizing two simultane-

ously executing branches. A synchronization construct is needed in which multiple

branches are joined into one executing branch.

WP4: Conditional Choice
The intermediate model should have a construct for executing a branch, based upon

an evaluated condition.

27



28 CHAPTER 4. INTERMEDIATE MODEL

WP5: Simple Merge
The intermediate model should have a construct for joining multiple alternative

branches, from which one is executed.

WP10: Arbitrary Cycles
The intermediate model should support a construct for modeling recursive behavior.

The requirements identified so far are all based on control-flows. In addition, the follow-

ing requirements should also be supported by our intermediate model:

Data dependencies
Since we might have to deal with sensitive data, it is crucial that the consequences of

moving activities around are measurable. By explicitly representing data dependen-

cies between nodes, the flow of data through the process can be monitored.

Communication
Since the original process needs to be split up into collaborating processes, there

should be a communication mechanism for describing that one process invokes an-

other.

4.2 Model selection

We compared existing models for their suitability to support the requirements of our inter-

mediate model. The models we compared were mainly taken from similar decentralization

approaches. The following models were considered: Program Dependency Graphs (PDG)

[17], Control Flow Graph [12], Protocol Tree [26] and Petri nets [27].

We analyzed all of the models and came to the following conclusions:

Program Dependency Graph
Program Dependency Graphs support data dependencies between nodes. Control

dependencies however, are not directly visible in these graphs. This means that com-

plex behaviors, such as parallel execution of nodes cannot be described by a PDG.

Control Flow Graph
Control Flow Graphs (CFG) can be used for modeling the control flow within a pro-

cess. The data dependencies between nodes however, are not visible in these graphs.

(Colored) Petri nets
Traditional Petri nets are not able to support all requirements we set for our inter-

mediate model. For example, data dependencies cannot be modeled in traditional

Petri nets. Data dependencies can be modeled thought in Petri net variants such as

Colored Petri Nets [28]. The downside of using Petri nets for modeling processes



4.3. MODEL DEFINITION 29

is that many different nodes are needed for representing a process. A transition

between two nodes is modeled with places, transitions, tokens and arrows, which

would bring overhead to our intermediate model.

Protocol Tree
Protocol Trees are able to capture only block-structured processes. Since we also

want to be able to capture graph-based structures, Protocol Trees are not directly

suitable to support our requirements.

Since none of the selected models completely satisfies our defined requirements, we de-

cided to define our own intermediate model. Our model is based upon Control Flow

Graphs, Program Dependency Graphs and Protocol Trees. The structure of a Control Flow

Graph is used for defining control-flows between nodes, and the model also contains data-

dependency edges to capture data-flows. The formal definition of Protocol Trees is used

as basis for the formal definition of our intermediate model.

4.3 Model definition

We use a graph-based representation for processes, since the base languages we targeted

are either block-structured or graph-structured [29].

A graph consists of nodes and edges. In our model, a node represents either an activity or

a control element. An edge defines a relation between two nodes. In order to be able to

capture complex constructs and data dependencies between nodes, we introduce multiple

specializations of nodes and edges. For each of the nodes and edges we also define a

graphical representation.

4.3.1 Node types

Activities

Activities can be modeled by activity nodes. Every activity node has at most one incoming

control edge and at most one outgoing control edge.

Parallel behavior

A process with parallel behavior can be modeled using flow and end-flow nodes. A flow

node splits an execution branch into multiple branches, which are executed simultane-

ously. The minimum number of outgoing control edges of a flow node is two. Multiple



30 CHAPTER 4. INTERMEDIATE MODEL

parallel branches can be joined into one execution branch by using the end-flow node. The

end-flow node has two or more incoming control edges and at most one outgoing control

edge. An example of parallel behavior modeled in the intermediate model is shown in

Figure 4.1a.

Conditional behavior

Branch selection based upon an evaluated condition can be modeled by using conditional

nodes. The conditional node (if-node) has two outgoing control edges. One edge is labeled

with “true” and is used when the evaluated condition yields true. The other edge is labeled

with “false” and is used otherwise. After the condition in the if-node is evaluated, only

one of the outgoing branches can be taken. Conditional branches can be joined by using

an end-conditional node (eif-node). This node converts multiple incoming branches into

one outgoing branch. An example of conditional behavior modeled in the intermediate

model is shown in Figure 4.1b.

rec

flow

act1 act2

eflow

rep

(a) Parallel behaviour

rec

if

act1 act2

eif

rep

false true

(b) Conditional behaviour

Figure 4.1: Modeling parallel and conditional behaviors

Loops

We defined one single node for modeling repetitive behavior in the intermediate model,

the so called loop-node. A loop-node evaluates a loop-condition and according to the

result of the evaluation, the loop branch is either executed or denied. The loop-node is

comparable to the if-node, since it also evaluates a condition and has outgoing “true”

and “false” edges. The outgoing branches, however are never joined. Instead, one of the

branches ends with an outgoing edge back to the loop-node. This branch is called the

loop-branch. The other branch points to the behavior which should be executed as soon as



4.3. MODEL DEFINITION 31

the loop-condition does not hold anymore.

The loop-node can be placed in the beginning or at the end of the loop-branch. The first

situation results in zero or more executions of the loop-branch, since the loop-condition

needs to be evaluated before the loop-branch is executed. In the second situation, the

loop-branch is executed at least once, since the loop-condition is evaluated after execution

of the loop-branch. An example of both scenarios is shown in Figure 4.2.

rec

loop

act1

rep

true

false

(a) Loop-node before loop-branch

rec

act1

loop

rep

true

false

(b) Loop-node in the end of the loop-branch

Figure 4.2: Modelling loops

Communication

Communication nodes model communication between two processes. The intermediate

model supports four possible communication nodes: invoke-request, invoke-response, re-

ceive and reply. These nodes can be used to model synchronous and asynchronous com-

munication.

The invoke-request-node (ireq-node) is used for invoking a process. The node has one

outgoing communication edge, which points to a receive-node, located in the process that

is invoked. The invoke-request-node does not wait until the execution of the invoked

process is finished, instead it proceeds to the successor node.

The invoke-response-node (ires-node) is used as a synchronization node for communica-

tion with other processes. The node has one incoming communication edge, which orig-

inates from a reply-node located in another process. The invoke-response-node waits for

the response from the other process, before continuing its execution.

In case of synchronous communication, a process (P1) uses an invoke-request-node to in-

voke another process (P2). The invoke-request-node follows its outgoing control edge,

which is connected to an invoke-response-node. This node, in turn, waits until process P2



32 CHAPTER 4. INTERMEDIATE MODEL

is finished, before continuing with process P1. In asynchronous communications, a pro-

cess (P1) invokes another process (P2) by using an invoke-request-node. After calling P2,

execution of P1 continues. Both situations are shown in Figure 4.3.

rec

ireq

ires

rec

act1

rep

...

(a) Synchronous communication

rec

ireq

...

rec

act1

...

(b) Asynchronous communication

Figure 4.3: Synchronous and asynchronous communication in the intermediate represen-

tation

4.3.2 Edge types

Our intermediate model distinguishes between control edges, data edges and communica-

tion edges.

Control edges

Control flow is modeled in the intermediate model by control flow edges, which are repre-

sented by solid arrows in our graphical notation. The node from which the edge originates

triggers the edge as soon as the execution of the nodes action has been finished. The

node in which the edge terminates waits for a trigger, caused by an incoming edge, before

it starts executing the action of the node. A control edge can be labeled with “true” or

“false”, in case the control edge originates from a conditional-node. When the evaluated

condition matches the label of the edge, the edge is triggered by the conditional-node.

Data edges

In Business Process Languages such as WS-BPEL [6], data flow between activities is de-

fined implicitly. Instead of sending data from activity to activity, activities can access

variables directly, provided that the activity has access to the scope in which the variable

is defined. By introducing data edges in our intermediate model, we are able to investigate



4.4. FORMAL DEFINITION 33

the consequences for data exchange of moving activities from one process to another. This

information is needed to verify if no data constraints are violated during the transforma-

tion. A data link is represented by a dashed arrow between two nodes in our graphical

notation. A data edge from node N1 to node N2 implies that data defined in node N1 is

used in node N2. Each data edge is provided with a label, in which the name of the shared

data item is defined.

Communication edges

Communication edges are defined between communication nodes. A communication edge

sends control and data to a different process. Communication edges are labeled with the

names of the data items that are sent over the edge.

4.4 Formal definition

In this section we define our intermediate model formally. We refer to concepts introduced

in Section 4.3. Formally, our intermediate model I is a tuple with the following elements

(A,C,S,ctype, stype,E,L,nlabel, elabel) where:

• A is a set of activity nodes.

• C is a set of communication nodes.

• S is a set of structural nodes (flow nodes, end-flow nodes, if nodes, end-if nodes and

loop nodes).

• ctype : C → {InvokeRequest, InvokeResponse,Receive,Reply} is a function that as-

signs the communicator type to a communication node.

• stype : S → {Flow,EndFlow,Conditional,EndConditional,Loop} is a function that

assigns a control node type to a control node.

• E is the set of all edges in the graph. Let E = Ectrl ∪Edata ∪Ecom. An edge is defined

by a tuple (n1, etype,n2) where etype ∈ {Control,Data,Communication} is the type of

the edge and n1,n2 ∈ A∪C ∪ S.

– Ectrl is the set of control flow edges. Let e = (n1,Control,n2) where n1,n2 ∈
{A∪C ∪ S} and e ∈ Ectrl .

– Edata is the set of data edges. Let e = (n1,Data,n2) where n1,n2 ∈ {A∪C∪S} and

e ∈ Edata.



34 CHAPTER 4. INTERMEDIATE MODEL

– Ecom is the set of communication edges. Let e = (n1,Communication,n2) where

n1,n2 ∈ C and e ∈ Ecom.

• L is the set of text labels that can be assigned to nodes and edges.

• nlabel : N → L, where N = A∪C ∪ S is a function which assigns a textual label to a

node.

• elabel : E→ L is a function which assigns a textual label to an edge.

4.5 Mapping example

In this section we show two examples of constructs in WS-BPEL [6] and how they are

mapped to the intermediate model.

The first example shows how a sequence construct in WS-BPEL is mapped to the interme-

diate model. The BPEL fragment is shown in Listing 4.1. A graphical representation of

the intermediate model obtained after the mapping is shown in Figure 4.4.

1 <sequence>

2 <receive ... variable="A" />

3 <assign>

4 <copy>

5 <from>bpel:doXslTransform(..., $A)</from>

6 <to variable="B" />

7 </copy>

8 </assign>

9 <reply ... variable="B" />

10 </sequence>

Listing 4.1: BPEL sequence example

The receive and reply elements in the BPEL fragment are mapped to communication nodes

and the assign element in BPEL is mapped to an activity node. In the BPEL example, vari-

able A is received and a part of the variable is copied to variable B by the assign element.

Eventually, variable B will be returned by the reply element. The data dependency edges

in the intermediate model show the data dependencies between the nodes.

rec

act1

rep

A

B

Figure 4.4: Graphical representation of the intermediate model generated from the first

BPEL example.



4.5. MAPPING EXAMPLE 35

The second example shows how a loop and a flow construct in WS-BPEL are mapped

to the intermediate model. The BPEL specification is shown in Listing 4.2. A graphical

representation of the obtained intermediate model is shown in Figure 4.5.
1 <sequence>

2 <receive ... variable="A" />

3 <while>

4 <condition>...</condition>

5 <flow>

6 <invoke name="act1" inputVariable="A" ... />

7 <invoke name="act2" inputVariable="A" outputVariable="B" />

8 </flow>

9 </while>

10 <reply ... />

11 </sequence>

Listing 4.2: BPEL loop example

The while element in the BPEL example is mapped towards a loop construct in which the

condition is evaluated before execution of the loop branch. The loop branch consists of a

flow element, which is mapped in the intermediate model to a parallel construct with a

flow and an end-flow node. The invokes that are executed within the parallel construct

are mapped to communication nodes. The invocation with name “act1” is mapped to an

asynchronous invocation element, since it expects no response. The invocation with name

“act2” is mapped to two synchronous invocation nodes, since the invocation needs to wait

for a response from the invoked service. Data dependencies are introduced between the

receive node and the invocation nodes, since the invocation nodes use the variable that

was received by the receive element.

rec

loop

flow

ireq ireq

ires

eflow

rep

A A

true

false

Figure 4.5: Graphical representation of the intermediate model generated from the second

BPEL example.





5. Decomposition Analysis

The goal of this chapter is to identify possible transformations for each of the constructs

defined in the intermediate model. In this analysis we take into account processes that are

hosted on-premise and have activities that should be allocated in the cloud, or vice-versa.

5.1 Single activity

When a single activity is marked for allocation to the cloud (shown in Figure 5.1a), the

solution shown in Figure 5.1b is suitable. In the solution, the activity is moved to a new

cloud process and called in the on-premise process by synchronous invocation nodes. By

using synchronous invocation, the execution sequence of the processes can be maintained,

since the node following the activity in the original process has to wait until the cloud

process is finished.

rec

act1

...

On-Premise
Process

(a) situation

rec

ireq

ires

...

rec

act1

rep

Cloud
Process

On-Premise
Process

(b) after

Figure 5.1: Moving a single activity from on-premise to the cloud

5.2 Sequential activities

When multiple sequential activities are marked for allocation to the cloud, the sequential

activities can be placed in two separate cloud processes, or the sequential activities can be

placed together in one cloud process. In this section we investigate four possible situations

that are applicable when dealing with sequential activities.

We first discuss the allocation of sequential activities to separate processes, as shown in

Figure 5.2. There are two possible solutions, which depend on the distribution of the

37



38 CHAPTER 5. DECOMPOSITION ANALYSIS

rec

act1

act2

...

On-Premise
Process

(a) situation

rec

act1

rep

rec

ireq

ires

ireq

ires

...

rec

act2

rep

Cloud
Process 1

On-Premise
Process

Cloud
Process 2

(b) solution 1

rec

act1

ireq

rec

ireq

rec

...

rec

act2

ireq

Cloud
Process 1

On-Premise
Process 1

On-Premise
Process 2

Cloud
Process 2

(c) solution 2

Figure 5.2: Applying rule for single nodes to sequential nodes

control links between the activities:

• Solution 1: Maintain control links on-premise
In the solution shown in Figure 5.2b, for each marked activity a new cloud process

is created. Synchronous invocation nodes are introduced in the on-premise process

for invoking the activities in the cloud.

In the original process, shown in Figure 5.2a, a control link is present between the

activities. Since both activities are placed in new processes, there is no direct control

link any more between the activities. In our first solution, a control link is introduced

between the created communication nodes in the on-premise process, to keep the on-

premise process together. The drawback of this solution is that there is unnecessary

communication between the cloud and on-premise, since the result of the first cloud

process is sent to the second cloud process via the on-premise process, instead of

sending it directly.

• Solution 2: Move control links to the cloud
In the second solution, shown in Figure 5.2c, both activities are moved to individual

cloud processes. The on-premise process calls the first cloud process. After execution

of the activity in the first cloud process, the second cloud process is called directly.



5.2. SEQUENTIAL ACTIVITIES 39

The second cloud process eventually gives a call back to the on-premise process.

The control link between the two activities in the original process, shown in Figure

5.2a, is moved to the cloud and placed between the invoke and receive of the first

and second cloud process. As a consequence, the on-premise process is no longer a

single process, but is decomposed into two separate processes.

Figure 5.3 shows the solutions for the second situation in which two sequential activities

are moved together to one cloud process. The following two solutions are applicable in

this situation:

rec

act1

act2

...

On-Premise
Process

(a) situation

rec

ireq

rec

...

rec

act1

act2

ireq

On-Premise
Process 1

Cloud
Process

On-Premise
Process 2

(b) solution 3

rec

ireq

ires

...

rec

act1

act2

rep

On-Premise
Process

Cloud
Process

(c) solution 4

Figure 5.3: Moving sequential activities as a block

• Solution 3: Splitting up on-premise processes
The first solution is to move the sequential activities to a new cloud process. By

moving these activities, a gap arises between the nodes that are placed before the

cloud process and the nodes after the cloud process. This solution is shown in Figure

5.3b.

This solution leads to many processes, since every time a sequence of nodes is placed

in the cloud, the on-premise process is split up.

• Solution 4: Replace by synchronous invocation node
The second solution shown in Figure 5.3c replaces the moved part in the on-premise

process with a control edge, hereby maintaining the structure of the on-premise pro-

cess.

Replication of the control link between the processes leads to more complex pro-

cesses, but the overall structure of the on-premise process is maintained, since the



40 CHAPTER 5. DECOMPOSITION ANALYSIS

cloud nodes are replaced by invocation nodes. This makes the on-premise process

more robust, since execution of the overall process is coordinated by the on-premise

process.

5.3 Composite constructs

Parallel constructs and conditional constructs can be generalized as composite constructs.

When looking at these constructs from a semantics perspective, their behavior is com-

pletely different. The syntax structure of both constructs is, however, quite similar. Both

constructs start with a node which splits the process into several branches. Eventually, the

branches join in an end-node, which closes the composite construct.

In this section we analyze all the decomposition possibilities for composite constructs. The

possibilities are categorized in three categories:

1. The start and end node (e.g., flw and eflw) and all the contents within the composite

construct are allocated to the same destination, and are kept together as a whole.

2. The start and end node have the same distribution location, but activities within the

composite construct need to be maintained locally.

3. The start and the end node have different distribution locations.

Section 5.2 shows that when sequential activities need to be distributed in the cloud, the

on-premise process can be either split up into individual processes or kept together. We

acknowledge that this situation is not only applicable to sequential nodes, but also to com-

posite nodes. In the remainder of this chapter we keep the on-premise process together,

when the start and end node of a composite node have the same distribution location, to re-

duce the number of solutions. For activities within branches of the composite constructs,

we move activities as a block and keep the surrounding process together, to reduce the

number of solutions. The possible decomposition rules can be applied recursively on each

of the branches of the composite constructs.

5.3.1 Category 1: Moving the composite construct as a whole

Figure 5.4a shows the situation where the start and end node and all the nodes in the

branches of the composite node are marked for allocation to the cloud. Figure 5.4b shows

the solution that is applicable in this situation. The construct is moved as a whole to a new

cloud process. In the on-premise process, synchronous invocation nodes are introduced to

call the cloud process.



5.3. COMPOSITE CONSTRUCTS 41

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

ireq

ires

rep

rec

flw

act1 act2

eflw

rep

On-Premise
Process Cloud Process

(b) solution

Figure 5.4: Moving the whole composite construct

5.3.2 Category 2: Start/end nodes with the same distribution location

Three possible situations exist with composite nodes, where the start and end node have

the same distribution location, and contents within the construct have a different distribu-

tion location. For those situations we present a solution in which the composite construct

itself is placed in only one process, either on-premise or in the cloud. The branches within

the composite construct are treated as sub processes and the earlier defined rules are re-

cursively applied on these sub processes. Activities within the branches of the composite

construct with the same distribution location as the construct itself are placed directly

within the construct. Activities with a different distribution location are placed in new

processes.

• Composite construct marked, one branch stays on-premise
Figure 5.5a represents the situation where the composite nodes are marked for allo-

cation to the cloud, but one branch should be executed on-premise. In the solution, a

new cloud process is created in which the composite construct is placed. Invocation

nodes are introduced in on-premise process 1 to invoke the cloud process. Activity

1 is placed directly within the construct. Activity 2 is placed in a new on-premise

process and is called by invocation nodes in the cloud process.

• Composite construct marked, all branches stay on-premise
Figure 5.6a shows the situation where the composite nodes are marked for distribu-

tion in the cloud, but the activities within the branches of the composite node need

to be distributed on-premise. As a solution, we distribute the composite nodes and

create subprocesses for each of the branches, as shown in Figure 5.6b.



42 CHAPTER 5. DECOMPOSITION ANALYSIS

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

ireq

ires

rep

rec

flw

act1 ireq

ires

eflw

rep

rec

act2

rep

On-Premise
Process 1 Cloud Process

On-Premise
Process 2

(b) solution

Figure 5.5: Composite construct marked, one branch stays on-premise

rec

if

act1 act2

eif

rep

On-Premise Process

false true

(a) situation

rec

ireq

ires

rep

rec

if

ireq

ires

ireq

ires

eif

rep

rec

act2

rep

rec

act1

rep

On-Premise
Process 1 Cloud Process

On-Premise
Process 3

On-Premise
Process 2

false true

(b) solution

Figure 5.6: Composite construct marked, all branches stay on-premise



5.3. COMPOSITE CONSTRUCTS 43

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

flw

ireq

ires

ireq

ires

eflw

rep

rec

act1

rep

rec

act2

rep

On-Premise Process

Cloud
Process 1

Cloud
Process 2

(b) solution

Figure 5.7: Composite construct stays on-premise, activities in the branches marked for

movement

• Composite construct stays on-premise, activities in the branches marked for move-
ment
In the final situation, the composite construct is allocated on-premise, but the branches

within the construct are marked for distribution in the cloud. This is the opposite

of the previous situation. Invocation nodes are introduced in the branches and both

activities are placed in separate cloud processes. The situation and the solution are

shown in Figure 5.7.

5.3.3 Category 3: Start/end node with different distribution location

The last category consists of situations in which the start-node and the end-node of the

composite construct have different distribution locations.

The following four situations are applicable:

• Start node and branches distributed on-premise, end node distributed in the cloud
Figure 5.8 shows the situation in which the start node and the branches of the com-

posite construct are marked for deployment in the cloud. The end-node needs to

be situated on-premise. As a solution, the start node of the composite construct is

placed together with the branches in a cloud process and the cloud process is in-

voked from on-premise process 1. Each of the branches of the composite construct



44 CHAPTER 5. DECOMPOSITION ANALYSIS

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

flw

act1

ireq

act2

ireq

rec

ireq

rec

rep

rec

eflw

rec

ireq

On-Premise
Process 1

On-Premise Process 2

Cloud Process

(b) solution

Figure 5.8: Start node and branches distributed on-premise, end node distributed in the

cloud

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

flw

ireq ireq eflw

act1

rec

act2

rec

ireq

rec

ireq

rec

rep

On-Premise Process 2 Cloud Process
On-Premise
Process 1

(b) solution

Figure 5.9: Start node distributed on-premise, branches and end node distributed in the

cloud



5.3. COMPOSITE CONSTRUCTS 45

ends with an invocation to a second on-premise process. In this second on-premise

process, the branches are joined. After the branches are joined, a notification is sent

from the second to the first on-premise process to notify that execution of the com-

posite construct has finished. The first on-premise process will reply to the invoker

of the process.

Since on-premise process 1 and 2 both have the same distribution location, one could

consider to place the reply node in the second on-premise process, instead of having

to notify the first process. This, however, has consequences for the calling behavior

of the process. The original process starts with a receive node and ends with a reply

node. This indicates that the process will be executed synchronously and the invoker

expects a reply from the process. In presented solution, the invoker will invoke on-

premise process 1 synchronously, just as in the original situation. This means that

on-premise process 1 needs a receive and a reply node. By moving the reply node to

on-premise process 2, on-premise process 1 has no reply node anymore and invoking

the process synchronously would not lead to a result. By introducing a callback from

on-premise process 2 to on-premise process 1, the calling behavior of on-premise

process 1 will conform to the calling behavior of the original process, since the reply

node is placed in on-premise process 1.

• Start node distributed on-premise, branches and end node distributed in the cloud
Figure 5.9 shows the situation in which the start node is placed on-premise and ac-

tivities in both branches are executed and joined in the cloud.

To preserve the calling behavior of the original process, two on-premise processes

are used. On-premise process 1 will be called and should have the same calling be-

havior as the original process. Therefore, the receive and reply node are situated in

this process. The process will invoke on-premise process 2 and wait for an invoca-

tion from the cloud process, which indicates that the composite construct has been

executed.

• Start node and one branch distributed on-premise, other branch and end node
distributed in the cloud
Figure 5.10 shows the situation in which the start node and one of the branches is

placed in the cloud. The end node of the composite construct is placed on-premise.

The second on-premise process invokes the first on-premise process to notify that

the execution of the composite construct has finished. This invocation is introduced

for the same reason as the earlier shown solutions in this category.

• Start node and one branch distributed in the cloud, other branch and end node
distributed on-premise
Figure 5.11 shows the situation in which one of the branches and the end node of a



46 CHAPTER 5. DECOMPOSITION ANALYSIS

composite construct are placed in the cloud. The call behavior of the original process

is preserved by placing the receive and reply node of the original process in the first

on-premise process.

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

ireq

rec

rep

rec

flw

act1

ireq

ireq

eflw

rec act2

rec

ireq

On-Premise
Process 1

On-Premise Process 2

Cloud Process

(b) solution

Figure 5.10: Start node and one branch distributed on-premise, other branch and end node

distributed in the cloud

rec

flw

act1 act2

eflw

rep

On-Premise Process

(a) situation

rec

flw

act1

ireq

ireq eflw

rec act2

rec

ireq

rec

ireq

rec

rep

On-Premise Process 2 Cloud Process
On-Premise
Process 1

(b) solution

Figure 5.11: Start node and one branch distributed in the cloud, other branch and end

node distributed on-premise



5.4. LOOPS 47

5.4 Loops

Loop constructs in the intermediate model are categorized into two categories:

1. Loops in which the loop condition is evaluated before the execution of the loop

branch.

2. Loops in which the loop condition is evaluated after the execution of the loop branch.

For both categories, we explain the possible decomposition solutions.

5.4.1 Loop with condition evaluation before branch execution

There are two situations possible when dealing with loop constructs in which the condi-

tional node is evaluated before the execution of the loop branch.

• Move construct as a whole
We omit the solution for this situation, since it is comparable to moving a composite

construct as a whole, which is explained in section 5.3.1. The complete construct

can be moved to a new process. The construct is replaced in the original process by

synchronous invocation nodes.

• Conditional node and nodes within loop branch are marked with different distri-
bution locations
We can treat the loop branch within the loop construct as a separate process, since

it is executed after a conditional node. A loop branch is only connected to the orig-

inal process through the conditional node. Treating the branch as a separate pro-

cess gives the opportunity to apply the other decomposition rules recursively on the

branch. Figure 5.12 shows the situation in which the condition of a loop construct is

moved to the cloud, whereas the activities within the loop branch are distributed in

an on-premise process.

5.4.2 Loop with condition evaluation after branch execution

When dealing with loops in which the condition of the loop is evaluated after execution of

the loop branch, two possible situations exist:

• Move construct as a whole
This situation is comparable to moving a composite construct as a whole. We omit

discussion of this situation since it is similar to the solution presented in section

5.3.1.



48 CHAPTER 5. DECOMPOSITION ANALYSIS

rec

loop

act1

rep

On-Premise
Process

true

false

(a) situation

rec

ireq

ires

rep

rec

loop

ireq

ires

rep

rec

act1

res

On-Premise
Process 1

On-Premise
Process 2

Cloud
Process

true

false

(b) solution

Figure 5.12: Decomposition of a loop construct, with conditional node in the cloud and

loop branch on-premise

• Conditional node and nodes within loop branch are marked with different distri-
bution locations
There are two possible solutions for dealing with this situation. In the first solution,

the loop branch and loop condition node are moved to a new process and are re-

placed in the original process by synchronous invocation nodes. In the newly created

process (loop process), the loop branch is taken and moved to a separate process and

called in the loop process by synchronous invocation nodes. This solution is shown

in Figure 5.13b.

The second solution is to move the loop branch to a separate process and rewrite

the loop construct to a loop construct in which the condition is evaluated before the

execution of the loop branch. The original process then first calls the loop branch, to

execute the branch once before evaluation of the condition. After this invocation, a

new invocation is used to call the loop process. In this loop process, the loop condi-

tion is evaluated first and depending on the result of the evaluation, the loop branch

will be executed in which on-premise process 2 is invoked. This second solution is

shown in Figure 5.13c.



5.4. LOOPS 49

rec

act1

loop

rep

On-Premise
Process

true

false

(a) situation

rec

ireq

ires

rep

rec

ireq

ires

loop

rep

rec

act1

res

On-Premise
Process 1

On-Premise
Process 2

Cloud
Process

true

false

(b) solution 1

rec

ireq

ires

ireq

ires

rep

rec

act1

res

rec

loop

ireq

ires

rep

On-Premise
Process 1

On-Premise
Process 2

Cloud
Process

false

true

(c) solution 2

Figure 5.13: Decomposition of a loop construct, with conditional node in the cloud and

loop branch on-premise



50 CHAPTER 5. DECOMPOSITION ANALYSIS

5.5 Design decisions

Below, we discuss the design decisions that we took for implementing the decomposition

transformation. These design decisions have been taken to simplify the implementation

of the decomposition transformation. In a later stage, the decomposition algorithm can be

extended to support more complex situations.

Process completeness
The input process for the transformation is restricted with the following constraints:

• The input process has at most one start node.

• The input process has at most one end node.

• The start-node of each composite construct should have a corresponding end-

node, in which all of the branches of the composite construct are merged.

This decision was taken to avoid complex situations with multiple receive nodes

at the beginning of a process or multiple reply nodes at the end of a process. In

addition, the restrictions ensure that a process will never start or end with alternative

or simultaneously executing branches.

Grouping sequential activities
Sequential activities with the same distribution location are always placed together

in a process and are moved as a block to a new process, instead of being placed in

separate processes. This decision was made to reduce the number of processes that

will be generated during the decomposition transformation.

Keeping process together
When a sequence of activities is moved from one side to another, the surrounding

process is kept together, as shown in solution 4 of the sequential activities, shown in

Figure 5.3c. By keeping the process together, the original process will not be split

and only new processes are generated for activities with a different distribution lo-

cation than the original process. In the original process, these nodes are replaced by

communication nodes. Since the structure of the process is maintained, the calling

behavior of the process will also not change.

Branched activities treated as separate processes
Each branch within a composite construct is treated as a separate process. Nodes

with the same distribution location as the surrounding composite construct stay

within the branch of the construct. Nodes with a different distribution location are

moved to separate processes. This decision gives us the opportunity to use the de-

composition rules recursively on the branches of the composite constructs.



5.5. DESIGN DECISIONS 51

Composite construct start and end are distributed together
When dealing with composite constructs, we only allow the situation in which the

composite construct is kept together. Different distribution locations for start and

end nodes of composite constructs are not allowed. This decision was made to avoid

complex situations with composite constructs. By keeping the start and end node

together in the same process, we can treat them as block-structured elements [29] and

perform the decomposition operations recursively on the branches of the construct.

Loop branches treated as separate processes
The branches of both types of loops are treated as separate processes. In case of loop

constructs where the loop condition is evaluated after execution of the loop branch,

we use the first solution, which is shown in Figure 5.13c. By treating the loop branch

as a separate sub process we are able to use the decomposition rules recursively on

the branch and treat the loop construct as a block-structured element.





6. Decomposition Implementation

This chapter discusses the implementation of the decomposition transformation. We de-

cided to implement the transformation in two ways:

1. As graph transformation which was used for testing the steps of our algorithm. De-

tails about the graph transformation implementation can be found in Appendix A.

The initial decomposition transformation was created using graph transformations.

The tool Groove [30] provided us with a graph transformation environment in which

we could define transformation rules graphically. This gave us the opportunity to

purely focus on the decomposition rules, without having to deal with the underlying

data objects.

2. As a Java implementation of the algorithm. In this chapter we explain our Java solu-

tion, by using code fragments in pseudo code.

This chapter is structured as follows: Section 6.1 introduces the class diagram we have

used in our Java implementation of the transformation. Section 6.2 introduces the trans-

formation algorithm, by explaining each of the phases of the transformation. Section 6.3

to 6.6 discuss each transformation phase in detail. Section 6.7 discusses the verification

algorithm we used for validating our solution.

6.1 Java classes

A simplified version of the class diagram we used in the implementation of our Java trans-

formations is shown in Figure 6.1. We briefly explain each class below:

• Graph
Graph is the main class for defining processes. A graph consists of a list of nodes,

a list of edges, and a couple of functions for performing operations on the graph.

The getAllGraphsAndSubGraphs function can be used for getting a list of graphs,

in which the current graph is placed along with all the subgraphs that are available

within the graph. Sub graphs are branches within composite constructs, such as loop

branches or branches of a parallel/conditional constructs.

The classes Graph, Node and Edge all have a hash map of attributes in which addi-

tional information about the objects can be stored.

• Node
Node is the parent class for all the nodes. Each node has a unique name and dis-

tribution location, which indicates where the node should be located. The execu-

53



54 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

from

to

condNode

nodes

* edges

*

branches

*

trueBranch
1

falseBranch
1

loopBranch

1

graph

1

Graph

+ attributes : HashMap<String, Object>

+ List<Edge> getOutgoingEdges(node : Node, type : EdgeType)
+ List<Edge> getIncomingEdges(node : Node, type : EdgeType)
+ Edge findEdge(from : Node, to : Node, type : EdgeType)
+ List<Graph> getAllGraphsAndSubGraphs()
+ Node getNodeByName(String name)

Node

+ name : String
+ location : DistributionLocation
+ executionGuaranteed : boolean
+ attributes : HashMap<String, Object>

Edge

+ label : String
+ edgeType : EdgeType
+ attributes : HashMap<String, Object>

CommunicatorNode

+ type : CommunicatorType

ActivityNode

ParallelStart ParallelEnd

CompositeNode

+ T1 getStartNode()
+ T2 getEndNode()

T1, T2
LoopCondNode

+ evalBefore : boolean
+ branchNode : String

CondStart CondEnd

Partition

Node, Node

LoopConstruct

+ evalBefore : boolean

LoopCondNode, LoopCondNode

BranchedConstruct

- start : T1
- end : T2

+ List<Graph> getBranches()

T1, T2

ParallelConstruct

+ void addBranch(b : Graph)

ParallelStart, ParallelEnd

ConditionalConstruct

+ void setBranch(b : Graph, c : boolean)

CondStart, CondEnd

Figure 6.1: Class diagram of graph structure used in the Java implementation

tionGuaranteed attribute is used during the lifting transformation for optimizing

the data dependency analysis.

• Edge
An edge connects two nodes to each other. Each edge consists of a ‘from’ attribute,

which represents the node from which the edge originates, and a ‘to’ attribute, which

represents the node in which the edge terminates. Each edge has a specific edge type,

which is either Control, Data or Communication. In addition, a label can be attached



6.2. TRANSFORMATIONS 55

to the edge by using the label attribute.

• ActivityNode
Activity nodes are used to define activities within the process.

• CommunicatorNode
A communicator is a node that communicates with another process. The communi-

cator type of each communicator can be set by using the type attribute.

• CompositeNode
Composite nodes consist of at least one subgraph. Each composite node has func-

tions for getting the start and end nodes of the construct. These functions are im-

plemented by each child of the CompositeNode. The template defined for Compos-

iteNode is used for defining the type of the start and end node.

• Partition
The Partition class is used to group adjacent nodes with the same distribution loca-

tion.

• BranchedConstruct
BranchedConstruct is a construct in which an execution branch is split up into multi-

ple executing branches. We defined two subtypes of the construct for the time being:

ParallelConstruct and ConditionalConstruct. A ParallelConstruct uses ParallelStart

and ParallelEnd as respectively the start and end node for the construct, in case of a

ConditionalConstruct, the CondStart and CondEnd nodes are used as start and end

node, respectively.

• LoopConstruct
LoopConstruct can be used for modeling loops. The loop construct has a reference

to a LoopCondNode, which is the conditional node, and a loopBranch, which is the

graph that is executed when the condition that is evaluated yields true. The evalBe-

fore attribute is used for setting if the condition is evaluated before execution of the

loop branch or afterwards.

Figure 6.2 shows the enumeration types that are used in the Java implementation of the

transformations.

6.2 Transformations

The decomposition transformation transforms a process into multiple collaborating pro-

cesses. The transformation consists of 4 phases. Instead of creating a new graph during



56 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

<<enumeration>>
EdgeType

Control
Data
Communication

<<enumeration>>
DistributionLocation

OnPremise
Cloud

<<enumeration>>
CommunicatorType

InvokeReceive
InvokeResponse
Receive
Response

Figure 6.2: Enumeration types

each phase, the transformations modify the input graph. We briefly introduce these phases

by explaining the goal, the input and the output of each phase:

Phase 1: Identification

Goal: Collect all the subgraphs, branched constructs and loop constructs that are

nested in the graph, and mark each node with its desired distribution loca-

tion. In addition, temporary nodes are added to the beginning of branches

of branched constructs and loop constructs. These temporary nodes have the

same distribution location as the surrounding construct and are necessary for

correctly transforming the branches later on in the process.

Input:

• A graph that defines the original process.

• The activity distribution list.

Output:

• A list with all the subgraphs. These graphs represent process fragments,

which are sub-processes of the original process.

• A list with all the branched constructs.

• A list with all the loop constructs.

Phase 2: Partitioning

Goal: Partition adjacent nodes with the same distribution location. These nodes

should be placed together in one process and are therefore grouped together

in a partition.

Input:

• The list with all the identified process fragments, from the previous phase.



6.2. TRANSFORMATIONS 57

Output:

• No output. Nodes within the process fragments are grouped in partitions.

Phase 3: Communicator node creation

Goal: Walks through all the graphs and creates communicators between partitions.

The first two found partitions are examined by the algorithm. In both processes,

communicator nodes are introduced and communication edges are added to the

graph. The control edge that was present between the two partitions is deleted

from the graph. If there is a third partition, the algorithm removes the edge

between the second and third partition and merges the third partition with the

first partition, since the third partition always has the same distribution loca-

tion as the first partition. After the merge, the algorithm is repeated, until all

the communicators are created between the partitions and there are no parti-

tions left that can be merged.

Input:

• The list with all the partitioned graphs.

Output:

• No output. Adjustments are made to the inserted graphs.

Phase 4: Choreography creation

Goal: Remove the temporary nodes from the branched constructs and collect all the

created processes, the communication edges and the data edges.

Input:

• The list with all the identified graphs.

• The list with all the branched constructs.

• The list with all the loop constructs.

Output:

• The initial graph on which the transformations are performed.

• A list with the communication edges.

• A list with all the data edges.



58 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

In the following sections we explain each of these phases in more detail, by giving their

pseudo code. We use both procedures and functions. Procedures are functions that yield

no result.

6.3 Identification phase

The input of the decomposition transformation is one single process and an activity dis-

tribution list. In this step, an algorithm examines the process and identifies composite

constructs, loop constructs and branches within these constructs.

During the identification process, two additional tasks are performed:

1. Each of the nodes within the graph is marked with the distribution location of the

node, as defined in the distribution list. In case of conditional and flow constructs,

the distribution location of the start node of the construct is used as distribution

location for both the start and the end node of the construct.

2. For each branch of a conditional or flow construct, and for each loop branch, a new

temporary start node is added to the beginning of the branch. The temporary start

node is marked with the distribution location of the start node of the composite

construct. This node is used during the merging phase.

The algorithm is started by a call to the IdentifyProcessesAndMark procedure, with as

parameters the start node of the input graph and the input graph itself. DistrLoc is a

function that returns the desired distribution location for each node. Algorithm 1 shows

the pseudo code for the identification phase.

6.4 Partitioning phase

During the partitioning phase, adjacent nodes with the same distribution location are al-

located to the same partition. The algorithm is performed on each of the identified pro-

cesses. The algorithm walks through each process fragment and compares the distribution

location of a node with the distribution location of its successor node. When the distribu-

tion locations are the same, the nodes are placed in the same partition. Otherwise, both

nodes are placed in different partitions, and a new control edge is created to connect the

partitions to each other.

By applying this algorithm, the odd partitions will be merged, whereas the even partitions

are separate processes. In a possible optimization phase, the even partitions can also be

merged together.



6.4. PARTITIONING PHASE 59

Algorithm 1 Identification and marking algorithm
1: BranchedConstructs← {}
2: LoopConstructs← {}
3: P rocesses← {}

4: procedure IdentifyProcessesAndMark(n,g)
5: if n of type BranchedConstruct then
6: BranchedConstructs← BranchedConstructs∪ {n}
7: d← distrLoc(n.start)
8: n.location, n.start.location, n.end.location← d . Mark with distribution location
9: for all b ∈ n.getBranches() do

10: if |b.nodes| > 0 then
11: WorkOnBranch(b,d)
12: end if
13: end for
14: else if n of type LoopConstruct then
15: LoopConstructs← LoopConstructs∪ {n}
16: d← distrLoc(n.condition) . Mark with distribution location
17: n.condition.location, n.location← d . Mark with distribution location
18: WorkOnBranch(n.loopBranch,d)
19: else
20: n.location← distrLoc(n) . Mark with distribution location
21: end if
22: for all e ∈ g.getOutgoingEdges(n,Control) do . Follow outgoing edges
23: Identif yP rocessesAndMark(e.to,g)
24: end for
25: end procedure

26: procedure WorkOnBranch(branch,d)
27: P rocesses← P rocesses∪ {branch}
28: oldStart← branch.start

29: newNode← new ActivityNode() . Add temp start node
30: newNode.location← d . Mark with distribution location
31: branch.nodes← branch.nodes∪ {newNode}
32: branch.start← newNode

33: branch.edges← branch.edges∪ { new Edge(newNode,Control,oldStart)}
34: Identif yP rocessesAndMark(oldStart,branch)
35: end procedure

The pseudo code of the partitioning algorithm is shown in Algorithm 2.

Example

A graphical example of the steps that are performed by the algorithm is shown in Figure

6.3. The dashed blocks around the nodes in the figure represent the partitions.



60 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

Algorithm 2 Partitioning algorithm
1: procedure PartitionGraphs(P rocesses)
2: for all g ∈ P rocesses do
3: startNode← g.start

4: p← new P artition() . Create initial partition
5: p.location← startNode.location

6: g.nodes← g.nodes∪ {p}
7: g.start← p

8: partitionGraph(startNode,g,p)
9: end for

10: end procedure

11: procedure PartitionGraph(n,g,p)
12: p.graph.nodes← p.graph.nodes∪ {n} . Add node to partition
13: g.nodes← g.nodes − {n} . Remove node from graph
14: Edges← g.getOutgoingEdges(n,Control)
15: if |Edges| = 1 then
16: e← Edges.get(0)
17: g.edges← g.edges − {e} . Remove edge from graph
18: if e.to.location = n.location then . Following node in the same partition
19: p.edges← p.edges∪ {e}
20: P artitionGraph(e.to,g,p)
21: else
22: newP art← new P artition() . Following node in a new partition
23: newP art.location← e.to.location

24: g.nodes← g.nodes∪ {newP art} . Add new partition to graph
25: g.edges← g.edges∪ { new Edge(p,Control,newP art)} . Create edge between partitions
26: P artitionGraph(e.to,g,newP art)
27: end if
28: end if
29: end procedure

Activity 1 and 2 are marked for on-premise distribution and activity 3 and 4 are marked

for being moved to the cloud (colored nodes), as shown in Figure 6.3a.

At first, a new partition is created and the first activity (act1) is added to the partition (p1),

shown in Figure 6.3b. The successor node of activity 1 is examined. Since the successor

node (act2) has the same distribution location as the current node (act1), the successor

is added to the same partition as act1 and the control edge between the activities is also

moved to the partition, as shown in Figure 6.3c.

The algorithm moves on, by looking at the successor of activity 2, which is activity 3 (act3).

The distribution location of activity 3 is different than the distribution location of activity

2, which means that a new partition should be created for activity 3. A new partition (p2)

is created and activity 3 is placed in this partition. The control edge between activity 2 and



6.5. COMMUNICATOR NODE CREATION PHASE 61

Act1

Act2

Act3

Act4

(a)

Act1

Act2

Act3

Act4

p1

(b)

Act1

Act2

Act3

Act4

p1

(c)

Act1

Act2

Act3

Act4

p1

p2

(d)

Act1

Act2

Act3

Act4

p1

p2

(e)

Figure 6.3: Example of the partitioning algorithm

activity 3 is removed, and a new control edge is created to connect the previous partition

(p1) and the newly created partition (p2). This situation is shown in Figure 6.3d, where

the colored arrow between p1 and p2 represents the newly created control edge.

The next step is to examine the successor of activity 3, which is activity 4 (act4). Activity 4

has the same distribution location as activity 3, which means that the node can be added

to the same partition. The edge between the nodes is also moved to the partition. This

situation is shown in Figure 6.3e. Since there are no nodes left in the process to examine,

the algorithm terminates.

6.5 Communicator node creation phase

After the nodes in the processes are partitioned, communicators can be created between

partitions. Communication between processes is implemented by using synchronous com-

munication nodes. The algorithm takes the first partition of a process and identifies if

there is a succeeding partition. If this is the case, communication nodes will be introduced

at the end of the first partition for invoking the second partition. The second partition is

delimited by a receive and a reply communicator node. The control edge that was present

between the partitions is removed and replaced by communication edges. If there is a

third partition, this partition should have the same distribution location as the first par-

tition, since only two distribution locations are supported. The algorithm removes the

control edge between the second and the third partition and merges the first and the third

partition. The algorithm can now be repeated, until all communicators are created and no

partitions can be merged anymore.

During the first phase of the decomposition algorithm, we introduced temporary nodes at



62 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

the beginning of each branch. The function of these nodes for the decomposition process

should now become clear. When the decomposition algorithm is performed, the start node

of the process determines where the process is deployed. Consider a parallel construct

which is marked for being distributed on-premise, but the first activity within one of the

branches has been marked for allocation in the cloud. Since all the branches are consid-

ered as being separate processes, the decomposition algorithm is performed on the branch

and the algorithm thinks that the branch should be distributed in the cloud, whereas the

surrounding construct is situated on-premise. By introducing a temporary node with the

same distribution location as the surrounding construct to the beginning of the branch,

the algorithm knows where the process should be distributed and creates correct commu-

nicators.

The algorithm is shown in Algorithm 3 as pseudo code.

Algorithm 3 Communicator creation algorithm
1: procedure CreateCommunicators(P rocesses)
2: for all g ∈ P rocesses do
3: startP artition← g.start

4: CreateCommunicators(startP artition,g)
5: end for
6: end procedure

We will give a brief example of the algorithm on an example graph:

Example

Consider the partitioned process in Figure 6.4a. The algorithm starts by taking the first

partition and adding two communicator nodes (ireq, ires) connected by a control edge at

the end of the first partition. The second partition is placed in the cloud and surrounded

with a receive and reply node. The first partition, which is extended with invocation nodes,

is merged with the third partition (in which activity 4 is placed). This situation is shown

in Figure 6.4b. The next step for the algorithm is to examine partition 1 again. Since there

is a successor partition after partition 1, namely the partition in which activity 5 is placed,

a communicator should be created. The partition in which activity 5 is placed is moved to

a separate process and is surrounded with a receive and reply node. Invocation nodes are

added at the end of the first partition, to invoke the newly created process. The algorithm

can terminate now, since there are no other partitions succeeding partition 1.



6.5. COMMUNICATOR NODE CREATION PHASE 63

7: procedure CreateCommunicators(p,g)
8: if |g.getOutgoingEdges(p,Control)| = 1 then
9: p1p2Edge← g.getOutgoingEdges(p,Control).get(0)

10: p2← p1p2Edge.to
11: g.edges← g.edges − {p1p2Edge}

. Create InvokeReceive Node
12: invrecNode← new CommunicatorNode(InvokeReceive,p.location)
13: p.graph.edges← p.graph.edges∪ {newEdge(p.graph.end,Control, invrecNode)}
14: p.graph.nodes← p.graph.nodes∪ {invrecNode}

. Create Receive Node
15: recNode← new CommunicatorNode(Receive,p2.location)
16: p2.graph.edges← p2.graph.edges∪ {newEdge(recNode,Control,p2.graph.start)}
17: p2.graph.nodes← p2.graph.nodes∪ {recNode}
18: p2.graph.start← recNode

19: g.edges← g.edges∪ {new Edge(invrecNode,Communication, recNode)}
. Create Response Node

20: resNode← new CommunicatorNode(Response,p.location)
21: p2.graph.edges← p2.graph.edges∪ {newEdge(p2.graph.end,Control, resNode)}
22: p2.graph.nodes← p2.graph.nodes∪ {resNode}

. Create InvRes Node
23: invresNode← new CommunicatorNode(InvokeResponse,p.location)
24: p.graph.edges← p.graph.edges∪ {newEdge(invrecNode,Control, invresNode)}
25: p.graph.nodes← p.graph.nodes∪ {invresNode}
26: g.edges← g.edges∪ {newEdge(resNode,Communication, invresNode)}

. Combine partition 1 and 3 (if available)
27: if |g.getOutgoingEdges(p2,Control)| = 1 then
28: p2p3Edge← g.getOutgoingEdges(p2,Control).get(0)
29: p3← p2p3Edge.to
30: p.edges← p.edges∪ {newEdge(invresNode,Control,p3.graph.start)}

. Copy nodes and edges to partition 1
31: for all n ∈ p3.graph.nodes do
32: p.graph.nodes← p.graph.nodes∪ {n}
33: end for
34: for all e ∈ p3.graph.edges do
35: p.graph.edges← p.graph.edges∪ {e}
36: end for

. Update outgoing edges from partition 3
37: for all e ∈ g.getOutgoingEdges(p3,Control) do
38: e.f rom← p

39: end for
. Remove old edge and partition 2

40: g.edges← g.edges − {p2p3Edge}
41: g.nodes← g.nodes − {p3}
42: CreateCommunicators(p,g)
43: end if
44: end if
45: end procedure



64 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

Act1

Act2

Act3

Act4

Act5

p1

p2

p3

p4

(a)

Act1

ireq

ires

rec

Act2

Act3

repAct4

Act5

On-Premise
Process

Cloud
Process 1

p1∪p3
p2

p4

(b)

Act1

ireq

ires

rec

Act2

Act3

repAct4

ireq

ires

rec

Act5

rep

On-Premise
Process

Cloud
Process 1

Cloud
Process 2

p1∪p3

p2

p4

(c)

Figure 6.4: Example of the creating communicators algorithm

6.6 Choreography creation phase

In the last phase of the decomposition algorithm, all the created processes, communication

edges and data edges are collected. The temporary nodes that were added to the beginning

of the branches are removed. The processes, communication edges and data edges together

form the choreography description for the decomposed business process.

After the previous phases, all the graphs consist of partitions, that are connected to each

other by communication edges. Each partition is collected and is used as a separate pro-

cess. The first partition in a process however, might be part of a composite construct and is

therefore part of another process, namely the process in which the composite construct is

placed. Therefore, the first step of this phase is to walk through the composite constructs

and collect the created processes.

This algorithm consists of a couple of functions and procedures. The pseudo code of the

algorithm is shown in Algorithm 4. We briefly explain below the functions and procedures

that were used in the algorithm.

CollectOutputProcesses
The algorithm starts after a call to the CollectOutputProcess procedure. After the pro-



6.7. DATA DEPENDENCY VERIFICATION 65

cedure has finished, the OutProc list is filled with all the separate processes, ComEdges

list is filled with the communication edges between the processes and the DataEdges list

contains the data edges.

The procedure first walks through the lists with branched constructs and the list with loop

constructs and calls functions that deal with these constructs. After that, only the input

process (the process that was used in the first phase) is left for examination. The graphs

within the partitions of the input graph are copied to the output list and the communica-

tion and data edges are collected.

DealWithBranch
The DealWithBranch function performs operations on a branch of a branched construct

or a branch of a loop construct. The function takes the first partition from the branch and

removes the temporary start node from the graph within the partition. The branch of the

construct is eventually replaced by this graph.

The next step is to copy the communication edges within the branch to the ComEdges

list. The other partitions in the branch are copied to the OutProc list, since they represent

newly created processes.

The function returns the inner graph from the first partition, which should be assigned as

new branch graph in the construct.

6.7 Data dependency verification

Once the decomposition algorithm finishes, an algorithm for data verification is needed to

check if no data restrictions have been violated as a result of the decomposition transfor-

mation. The algorithm we have implemented assumes that the process engine on which

the process will be executed uses an execution strategy in which variables are used for

passing data between activities. For example, engines that execute WS-BPEL [6] processes.

The last phase of the decomposition algorithm results in three lists: 1. list with all the

created processes, 2. list with the communication edges between the processes and 3. list

with all the data dependencies. These lists together form the input for the verification

algorithm.

The Validate function walks through the list of all the data edges. For each data edge, the

‘from’ (n1) and ‘to’ node (n2) are selected. The label on the edge identifies the data item

that is involved in the data dependency relation. The nodeInWhichGraph function is used

to determine in which process the nodes are used. When the nodes are not in the same

process, the findNode function is used to find the path that should be walked to get from

n1 to n2. The nodes that were visited during the walk are collected in a list and represent



66 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

Algorithm 4 Choreography creation algorithm
1: OutP roc← {}
2: ComEdges← {}
3: DataEdges← {}
4: procedure CollectOutputProcesses(inputGraph,BranchedConstructs,LoopConstructs)
5: for all c ∈ BranchedConstructs do . Deal with branched constructs
6: if c of type P arallelConstruct then
7: ReplaceP arallelNodeP rocess(c)
8: else
9: ReplaceConditionalNodeP rocess(c)

10: end if
11: end for
12: for all c ∈ LoopConstructs do . Deal with loop constructs
13: ReplaceLoopNodeP rocess(c)
14: end for

15: for all n ∈ inputGraph.nodes do . Copy processes from the main graph
16: OutP roc←OutP roc∪ {n.graph}
17: end for
18: for all e ∈ g.edges do . Copy communication and data edges
19: if e.type = EdgeT ype.Communication then
20: ComEdges← ComEdges∪ {e}
21: else
22: DataEdges←DataEdges∪ {e}
23: end if
24: end for
25: end procedure

a walked path. After the path is found, the validatePath function is used to check if a data

restriction is violated by the current data edge relation. The data restriction is violated

whenever there is a node in the path list with a different distribution destination than the

data restriction location for the current data item. The nodes that violate a certain data

restriction are collected in a list and returned by the algorithm.

6.8 Conclusion

The phases presented in this chapter together form our solution for the decomposition

transformation. By performing the phases on the subgraphs of the main graph, we can

avoid complex situations, since all the nodes in each graph are treated during the transfor-

mation as single nodes (i.e. without looking at the type of the node or the possible contents

within a node).

An optimization phase could be added to the decomposition transformation, to combine



6.8. CONCLUSION 67

26: procedure ReplaceParallelNodeProcess(c)
27: branches← {}
28: for all g ∈ c.branches do
29: branches← branches∪DealW ithBranch(g)
30: end for
31: c.branches← branches

32: end procedure

33: procedure ReplaceConditionalNodeProcess(c)
34: trueBranch← null

35: f alseBranch← null

36: for all g ∈ c.branches do
37: if |g.nodes| > 0 then
38: if c.trueBranch = g then
39: trueBranch←DealW ithBranch(g)
40: else
41: f alseBranch←DealW ithBranch(g)
42: end if
43: end if
44: end for
45: c.trueBranch← trueBranch

46: c.f alseBranch← f alseBranch

47: end procedure

48: procedure ReplaceLoopNodeProcess(c)
49: c.loopBranch←DealW ithBranch(c.loopBranch)
50: end procedure

51: function DealWithBranch(branch)
. Restore graph by removing temporary nodes

52: f irstP art← branch.start

53: oldE← f irstP art.graph.getOutgoingEdges(f irstP art.graph.start,Control).get(0)
54: f irstP art.graph.nodes← f irstP art.graph.nodes − {f irstP art.graph.start}
55: f irstP art.graph.edges← f irstP art.graph.edges − {oldE}
56: f irstP art.graph.start← oldE.to

57: for all e ∈ branch.edges do . Collect communication edges
58: ComEdges← ComEdges∪ {e}
59: end for
60: for all n ∈ branch.nodes do . Copy processes to output list
61: if n , branch.start then . Avoid start partition, since it is no separate process
62: OutP roc←OutP roc∪ {n.graph}
63: end if
64: end for
65: return f irstP art.graph

66: end function



68 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

Algorithm 5 Data restriction validation
1: function Validate(dataEdges,graphs)
2: result← new HashMap < String,List < Node >> ()
3: for all e ∈ dataEdges do
4: if e.f rom , e.to then . Determine the graphs in which the nodes of the edge are defined
5: startGraph← nodeInWhichGraph(e.f rom)
6: endGraph← nodeInWhichGraph(e.to)
7: dataItem← e.label

8: if startGraph , endGraph then
9: path← {}

10: if f indNode(e.to, startGraph,path, {}) then . Find path from e.from to e.to
11: result[dataItem]← result[dataItem]∪ validateP ath(e,path) . Validate path
12: end if
13: else
14: result[dataItem]← result[dataItem]∪ validateP ath(e, {}) . Validate e.from and e.to
15: end if
16: end if
17: end for
18: return result

19: end function

20: function nodeInWhichGraph(n,graphs)
21: for all g ∈ graphs do
22: for all sg ∈ g.getAllGraphsAndSubGraphs() do
23: if n ∈ sg.nodes then
24: return g
25: end if
26: end for
27: end for
28: return null
29: end function

some of the newly created processes, to reduce the amount of data that is sent between pro-

cesses. For example, in the communicator node creation phase odd partitions are merged,

whereas even partitions are identified as new processes. A possible optimization would be

to merge even partitions, based upon data dependency relations between nodes in parti-

tions. Consider two even partitions (p2 and p4) with a data dependency between a node

in p2 and a node in p4. When the partitions are separate processes, data needs to be sent

from p2 to p4 via an intermediate odd partition (p1). By merging the partitions, data is di-

rectly available for the activity in p4 and therefore, no data needs to be send from p2 to p4.

We implemented a simple version of this optimization, in which also the even partitions

are merged. This solution was added to the Java implementation and can be selected by an

extra input parameter, in which the partition merge type can be selected. In future work,

a more advanced solution can be used in which data dependencies between partitions is



6.8. CONCLUSION 69

30: function findNode(nodeT oFind,currentGraph,path,visitedGraphs,comEdges)
31: if currentGraph ∈ visitedGraphs then . Ensure that no infinite loops occur
32: return f alse

33: end if
34: visitedGraphs← visitedGraphs∪ {currentGraph}
35: if nodeT oFind ∈ currentGraph.nodes then
36: return true

37: end if
. Walk through invoking communicators in the process

38: for all n ∈ getCommunicators(currentGraph,CommunicatorT ype.InvokeRec,CommunicatorT ype.Response)
do

39: correspondant← getMatchingCommunicator(n,comEdges) . Get receiving communicator
40: correspondantGraph← nodeInWhichGraph(correspondant)
41: newP ath← path∪ {n} ∪ {correspondant} . Copy path
42: if f indNode(nodeT oFind,correspondantGraph,newP ath,visitedGraphs) then
43: path← newP ath . Copy the correct path
44: return true

45: end if
46: end for
47: return f alse

48: end function

used as basis for merging even partitions.

We verified the correctness of the decomposition solution informally by testing the so-

lution on several business processes. For each of the obtained results we removed the

communication nodes and replaced the communication edges with control edges, which

resulted in the original processes again. This indicates that the behavior of the process

itself is not changed by the transformation and no information from the original process

is lost during the decomposition transformation. In future work, one could use formal

verification to show the correctness of the rules.



70 CHAPTER 6. DECOMPOSITION IMPLEMENTATION

49: function getCommunicators(process, comT ype)
50: result← {}
51: for all g ∈ process.getGraphAndAllSubGraphs() do
52: for all n ∈ g.nodes do
53: if n of type CommunicatorNode∧n.type = comT ype then
54: result← result ∪ {n}
55: end if
56: end for
57: end for
58: return result

59: end function

60: function getMatchingCommunicator(process, communicationEdges)
61: for all e ∈ communicationEdges do
62: if e.f rom = node then
63: return e.to

64: else if e.to = node then
65: return e.f rom

66: end if
67: end for
68: return result

69: end function

70: function validatePath(originalEdge,path)
71: dataItem← originalEdge.label

72: distrLoc← getDataItemRestriction(dataItem)
73: result← {}
74: if distrLoc , null then
75: if originalEdge.f rom.location = distrLoc then
76: result← result ∪ {originalEdge.f rom}
77: end if
78: if originalEdge.to.location = distrLoc then
79: result← result ∪ {originalEdge.to}
80: end if
81: for all n ∈ path do
82: if n.location , distrLoc then
83: result← result ∪ {n}
84: end if
85: end for
86: end if
87: return result

88: end function



7. Business Process Language Selection

In this chapter we give an overview of the business processes language we have used in

the lifting and grounding phase. We decided to use Amber [24] as business process design

language in this work.

This chapter is structured as follows: Section 7.1 explains the concepts supported by Am-

ber. Section 7.2 discusses the mapping from the Amber concepts to the concepts of our

intermediate model.

7.1 Amber

Amber [24] is a business processes design language which is used as the base language

in BiZZdesigner. Amber has a graphical representation and is used for defining business

processes in the design phase of the BPM lifecycle.

Amber considers 3 domains, namely the behavior domain for modeling business process

behavior, the actor domain to model the participants involved in the processes, and the

item domain to model the items that are used by the process. These domains are briefly

introduced below.

7.1.1 Actor domain

The actor domain is used for describing organizations, departments, systems and people

carrying out business processes. The main concept within the domain is the actor. An actor

is a resource that performs a business process. In the actor domain, actors are structured

elements which might contain other actors. Interaction points can be used to model rela-

tionships between actors, and between an actor and the environment the actor interacts

with. A relation can consist of more than two interaction points in case multiple actors are

involved in the interaction. An example of an actor model is shown in Figure 7.1.

7.1.2 Behavior domain

The behavior domain is used for describing the behavior of a business process. The main

concept within this domain is action. An action represents an activity that is performed in

the environment. Each action has two essential properties: 1. a property that represents

the actor that performs the action, and 2. a property that represents the output of the ac-

tion. Triggers are special types of actions that are executed immediately, and can therefore

function as start nodes for a process. Actions are connected to each other by relations.

71



72 CHAPTER 7. BUSINESS PROCESS LANGUAGE SELECTION

82           Henk Eertink et al.

ment. They are the hooks where interaction-point relations couple actors. Interaction

points may be involved in multiple relations. Also, an interaction-point relation may

involve more than two interaction points.

Car

Insurance

Company

Car

Insurance

CompanyClaim

Acknowledgement
Claim

Assessment

Claim

Registration

Claim

Settlement

InsurantInsurantInsurance

Advisor

Insurance

Advisor

GarageGarage

Figure 4. A typical actor model

Figure 4 depicts a typical actor model, showing the parties involved in car insur-

ance claims. It includes a triple interaction-point relation, between the insurant, his

garage, and his insurance adviser. It also shows the internal structure of the car insur-

ance company, that is, the four departments involved in processing the claim. The

legend of this domain is given in Figure 5. Note that colours have no formal meaning

in these models.

Actions, Relations, and Behaviour Structuring

The basic concept in the behaviour domain is action. It models a unit of activity in

business processes. Actions carry two essential attributes: the actors involved in the

action and the result in terms of their outputs.

An action can only happen when its enabling condition is satisfied. These condi-

tions are formulated in terms of other actions having occurred yet, or not. The most

simple is the enabling relation. When put between actions a and b, it models the fact

that b cannot happen but after a has finished. Its mirror image is the disabling rela-

tion, modelling that b cannot happen any more, once a has occurred.

Figure 7.1: Example of actor model in Amber [24]

Relations between actions can be either enabling or disabling. Consider a process with

actions a and b, and a relation between these actions. In case of an enabling relation, b can

only be executed after a has finished. When a disabling relation is defined between a and

b, b cannot happen any more after a has been executed.

Parallel behavior and conditional behavior can be modeled by and-split/and-join and or-

split/or-join nodes, respectively.

Behavior can be grouped in blocks. Blocks can be nested, just like actors in the actor

domain. Blocks can be used for grouping behavior within a business process, but it is

also possible to use blocks for describing the behavior of the participants in the process.

In case part of a business process is defined in a block, the entry and exit points of the

block are defined and can be connected to other activities in the process. In case of an

interacting process, a block has interaction points that allow the interaction with the other

participating processes.

An example of a behavioral model in Amber is shown in Figure 7.2. Figure 7.2a shows an

example of a business process with behavior grouped in blocks, while Figure 7.2b shows

the behavior of multiple interacting participants.



7.1. AMBER 73

84           Henk Eertink et al.

namename

action

enabling relation

(a enables b)
disabling relation

(a disables b)

and-join and-split

or-join or-split

trigger

a b a b

Figure 7. Actions and enabling conditions

When a block separates behaviour between actions, a causality relation is cut. A

so-called entry or exit, depending on the direction of the causality relation, indicates

the cutting point (at the block’s edge). This type of structuring is typically, but not

exclusively, used for structuring in phases. Figure 8 shows a phased version of Figure

6.

fi rst phasefirst phasefi le claim

assess damage

main phasemain phase

assess claim

accept claim

reject claim

final  phasefinal  phase

settle claim

inform insurant

damage occurs

alter claim

main phasefirst phase

final  phase

Figure 8. A phased behaviour model

When a block separates behaviour inside actions, the action is divided in a number of

interactions. Interactions are related like interaction points in the actor domain. An

interaction can only happen simultaneously with all of its related interactions, which

must therefore all be enabled. This type of structuring is typically used for modelling

interaction between model elements. Figure 9 shows a version of Figure 6, in which

this type of structuring is used.

(a) Process with behavior grouped in blocks
                                                                       A Business Process Design Language           85

insurant behaviourinsurant behaviour

fi le claim

assess damage

settle claim

inform insurant

alter claim

damage occurs

insurance company behaviourinsurance company behaviour

fi le claim

assess damage

settle claim

inform insurant

accept claim

reject claim

garage behaviourgarage behaviour

assess damage

insurance company behaviour

insurant behaviour

garage behaviour

Figure 9. Interacting blocks

Although separately introduced here, phased and interaction-based structured may be

arbitrarily mixed.

block with subblocks

interaction

ternary interaction relation

binary interaction relation

a block with an entry and an exit

Figure 10. Behaviour structuring

Next to structuring, another way to tackle complexity in business models is to allow

similar elements to be described at once, as a group, instead of having to copy each of

them out individually. AMBER offers two facilities for this: replication and iteration.

receive claim collect assessmentsassess claim [3]

Figure 11. A replicated action

Replication can be used for actors, actions, interactions, and blocks, and indicates

that a number of replicas exist next to each other. Figure 11 shows a typical example,

(b) Process with interaction between participants

Figure 7.2: Example of behavior models in Amber [24]

7.1.3 Item domain

The item domain allows a process designer to describe the items that are handled in a

business process. Items can be related to both the actor and the behavior domain. In the

actor domain, items are coupled to interaction point relations, hereby indicating that the

item is involved in the relation. In the behavior domain, items are coupled to actions or

to interactions. An example of items in the actor domain is shown in Figure 7.3a, while

usage of items in the behavior domain is shown in Figure 7.3b.
                                                                       A Business Process Design Language           87

insurantinsurant insurance companyinsurance company

claim

Figure 14. An item coupled to an interaction point relation

Coupling items to elements of behaviour models is different in two ways. First, the

items are coupled to actions and interactions, instead of to interaction relations. This

is because interaction point relations are symmetric (that is, the interaction points

involved cannot have different roles), whereas interaction relations are not: each

interaction involved may have its own distinctive contribution to the relation.

Second, item coupling in behaviour models distinguishes between five modes: cre-

ate, read, change, read/change, and delete. This mode indicates what type of action is

performed on the item involved. Figure 15 shows an example in which these respec-

tive modes occur, from left to right.

destroy claimfi l l  out claim assess claim change claim improve claim

claim

* †

Figure 15. An item, coupled to actions in five ways

Notice that the example includes one single item, coupled to different actions. This

way of representing an item in an actor or behaviour model is called an item bar and

is very much like in IBM’s LOVEM (Helton et al., 1995). It is possible to use a dif-

ferent item bar for each coupling and let each of them refer to the same item.

Currently, AMBER does not include an item modelling language. Hence, so far

items are not structured, nor related. At the moment, the inclusion of such a language

is matter of investigation. A subset of UML will be used, extended with the link to

process models.

(a) Item in the actor domain

                                                                       A Business Process Design Language           87

insurantinsurant insurance companyinsurance company

claim

Figure 14. An item coupled to an interaction point relation

Coupling items to elements of behaviour models is different in two ways. First, the

items are coupled to actions and interactions, instead of to interaction relations. This

is because interaction point relations are symmetric (that is, the interaction points

involved cannot have different roles), whereas interaction relations are not: each

interaction involved may have its own distinctive contribution to the relation.

Second, item coupling in behaviour models distinguishes between five modes: cre-

ate, read, change, read/change, and delete. This mode indicates what type of action is

performed on the item involved. Figure 15 shows an example in which these respec-

tive modes occur, from left to right.

destroy claimfi l l  out claim assess claim change claim improve claim

claim

* †

Figure 15. An item, coupled to actions in five ways

Notice that the example includes one single item, coupled to different actions. This

way of representing an item in an actor or behaviour model is called an item bar and

is very much like in IBM’s LOVEM (Helton et al., 1995). It is possible to use a dif-

ferent item bar for each coupling and let each of them refer to the same item.

Currently, AMBER does not include an item modelling language. Hence, so far

items are not structured, nor related. At the moment, the inclusion of such a language

is matter of investigation. A subset of UML will be used, extended with the link to

process models.

(b) Item in the behavior domain

Figure 7.3: Usage of items in Amber models [24]



74 CHAPTER 7. BUSINESS PROCESS LANGUAGE SELECTION

7.1.4 BiZZdesigner

BiZZdesigner is a business process design tool built by BiZZDesign. The tool supports the

Amber language, and all the concepts within the language can be defined in the tool. In

addition, the tool offers support for writing scripts in order to perform complex operations

on business processes.

7.2 Mappings

In order to understand how the lifting and grounding transformations should be defined,

we need to identify how Amber elements can be mapped to our intermediate model.

As explained earlier, Amber consists of three domains. For our transformation, we only

assess the behavior domain and the item domain, since these domains contain the in-

formation we need for our transformation. The behavior domain is used for identifying

processes and the item domain is used for identifying data relations between activities and

data items.

The following mappings are used from elements in Amber to constructs of the intermedi-

ate model:

Basic Concepts
Actions, Triggers and EndTriggers in Amber are mapped onto activity nodes in the

intermediate model.

Conditional constructs
The Or-Split construct in Amber is mapped onto a conditional-node in the interme-

diate model. The Or-Join construct in Amber is mapped onto an end-contitional-

node in the intermediate model. An example of conditional behavior in Amber is

shown in Figure 7.4.

Start End

Act 1

Act 2

Figure 7.4: Conditional construct in Amber

Parallel constructs
The And-Split construct in Amber is mapped onto a flow-node in the intermediate

model. The And-Join construct in Amber is mapped onto an end-flow-node in the



7.2. MAPPINGS 75

intermediate model. An example of parallel behavior in Amber is shown in Figure

7.5.

Start End

Act 1

Act 2

Figure 7.5: Parallel construct in Amber

Loops
Since the intermediate model is able to represent two possible types of loops, two

loop mappings have been defined.

The situation in which the condition of a loop is evaluated before the execution of the

loop branch is shown in Figure 7.6. In this situation, the or-split element in Amber is

used as loop condition evaluator. This situation can be recognized by looking at the

incoming edges of an or-split element. When the or-split has an incoming loop edge

(represented by the double headed arrow) and in one of the branches, the actions are

marked for repetitive behavior, then the or-split is used for defining a loop condition.

No or-join node is needed, since the loop branch always points back to the or-split

element.

Start EndAct 1 Act 2

Figure 7.6: Condition evaluated before loop

The situation in which the condition of the loop branch is evaluated after execution

of the loop branch is shown in Figure 7.7. Here, the activities in the loop branch

are marked for repetitive behavior and the last activity in the branch points to an

or-split. The or-split has one outgoing loop edge, which points to the first node of

the loop branch.

Start EndAct 1 Act 2

Figure 7.7: Condition evaluated after loop



76 CHAPTER 7. BUSINESS PROCESS LANGUAGE SELECTION

Collaboration
After execution of the decomposition transformation, we have to consider the com-

munication between processes. In Amber, processes and their interactions can be

defined using subprocesses and interaction points. An example is shown in Figure

7.8.

OnPremise Process 1

Start Act 1 End

Cloud Process 1

Act 2 Act 3

Figure 7.8: Interactions between two processes

Restriction
In order to simplify the lifting and grounding transformation, we restrict our map-

pings to the following behaviors:

• Each and-split element should have a corresponding and-join element.

• Each or-split element should have a corresponding or-join element. The only

exception to this rule is when an or-split is used for defining loops. In this

situation, the or-split element should have an incoming or outgoing loop edge.

• Only enabling relations (edges), item relations and loop relations are examined

by the lifting algorithm.

• Subprocesses and constructs that are used in subprocesses, such as entry and

exit point are avoided by the lifting algorithm. The grounding algorithm will

create subprocesses for each generated process during the decomposition trans-

formation.

In future work, more advanced concepts from Amber can be implemented in the

lifting and grounding transformation.



8. Auxiliary transformations

This chapter discusses the implementation of the lifting and grounding transformations.

Section 8.1 discusses the approach we have used to define our lifting transformation. Sec-

tion 8.2 describes the model we use for exporting our business process from BiZZdesigner

and importing it in Java. Section 8.3 describes the algorithm we use for replacing the par-

allel and conditional nodes by block structured parallel and conditional nodes. Section 8.4

explains how loop nodes are replaced by block structured constructs. Section 8.5 describes

the algorithms we use to create data dependencies between the nodes in the business pro-

cess. Section 8.6 discusses the grounding transformation.

8.1 Approach

Since we use Amber as base language and BiZZdesigner as process modeling tool, we

would like to embed the complete transformation chain in BiZZdesigner, hereby giving

users the opportunity to directly apply the transformation chain on their processes.

In order to support the marking of activities and data items for allocation in the cloud,

we need to extend BiZZdesigner. In BiZZdesigner, profiles can be assigned to elements.

New profiles are introduced for marking activities with their distribution location and

data items with data restrictions. Two new profiles were added: OnPremise and Cloud. In

case of activities and other elements in the behavior domain, only the Cloud flag can be

set to the elements. When the flag is not set, the element is placed on-premise. In case of

data items, both flags can be set. When both or none of the flags are set, the element can

be moved without any restriction. When only one of the flags is set, the data should stay

within the premises of the marked location.

The decomposition transformation has been written in Java. The first step is to convert our

process defined in Amber to our intermediate model, which can be manipulated by our

decomposition algorithm. We implemented an export script in BiZZdesigner for export-

ing the relevant information from an Amber process into XML format. Some alternatives

are creating a Java parser for the BiZZdesigner file format, or a model-to-model transfor-

mation from the Amber metamodel to the intermediate model.

An XML parser is needed for reading the exported XML file and converting it to an in-

stance of our intermediate model. The import of the XML file has been built in a Java

project, which also performs some necessary steps on the intermediate model, such as

data dependency analysis and replacement of composite structures.

Below we briefly introduce each of the phases of the lifting transformation. For each phase,

we explain its goal, input and output.

77



78 CHAPTER 8. AUXILIARY TRANSFORMATIONS

1. Export/Import phase

Goal: Export the business process from BiZZdesigner into a format that can be rel-

atively easily imported by our Java implementation of the decomposition algo-

rithm.

Input: A business process defined in BiZZdesigner.

Output: An XML representation of the business process, which can be imported by

the decomposition algorithm.

2. Parallel/Conditional block replacement phase

Goal: The conditional and parallel elements need to be replaced by conditional and

parallel blocks. An algorithm is used for identifying these nodes and creating

new block structured elements.

Input: The imported graph.

Output: The updated graph, with replaced conditional and parallel elements.

3. Loop construct replacement phase

Goal: Find the loop conditional nodes and identify the loop branches that belong

to these nodes. The found elements are converted into block structured loop

constructs.

Input: A graph in which the conditional and parallel elements already have been

replaced by block structured elements.

Output: An updated graph, with loop structured block elements.

4. Data analysis

Goal: This phase consists of two steps: 1. analysis to determine whether execution

is guaranteed. 2. creation of data dependencies between nodes.

Input: The updated graph and a list with all the data relations between nodes and

data items.

Output: An updated graph, with data dependencies.

Below we discuss each of these phases in detail and describe the algorithms that we used

for implementing the phases.



8.2. EXPORT/IMPORT 79

8.2 Export/Import

We use a simple XML representation for exporting the Amber process from BiZZdesigner

and importing it in Java. The following XML format was used for describing a business

process and the distribution list.

1 <?xml version="1.0" ?>

2 <orchestration>

3 <nodes>

4 <node id="unique Id" type="Trigger|EndTrigger|Action|And-Split|And-

Join|Or-Split|Or-Join|LoopNode" name="String" branchNode="node.id"

? evaluateBefore="boolean"? />

5 </nodes>

6 <controlEdges>

7 <controlEdge from="node.id" to="node.id" label="String"? />

8 </controlEdges>

9 <dataItems>

10 <dataItem name="unique String" />

11 </dataItems>

12 <dataEdges>

13 <dataEdge node="node.id" dataItem="dataItem.name" type="C|R|RW|W|D" /

>

14 </dataEdges>

15 <distributionLocations>

16 <distribution node="node.id" location="OnPremise|Cloud" />

17 </distributionLocations>

18 <dataRestrictions>

19 <restriction dataItem="dataItem.name" location="OnPremise|Cloud" />

20 </dataRestrictions>

21 </orchestration>

Listing 8.1: XML structure used for exporting an Amber business process

The XML structure consists of 6 sections:

• Nodes
The Nodes sections contains the definition of all the nodes in the process. A unique

identifier is assigned to each node, so that we can refer to them in other parts of the

model. Each node is marked with its type. In case of an or-split that is used for

evaluating a loop condition, the node is marked with the type LoopNode. The name

of the node used in BiZZdesigner is stored in the name attribute.

In the case of loops, two additional attributes are available: 1. the evaluateBefore

attribute is set to true, in case the loopNode is evaluated before execution of the loop

branch. 2. The loopBranch attribute points to the node in the loop branch, from

which the loop edge originates, or in which the loop branch terminates, depending

on the evaluation type of the loop.

In the case of loop condition evaluation before loop branch execution, the loopNode

attribute points to the end node of the loop branch. Otherwise, the loopNode at-

tribute points to the start node of the loop branch. Loops are detected by searching

for loop edges.



80 CHAPTER 8. AUXILIARY TRANSFORMATIONS

• ControlEdges
The ControlEdges section consists of control edge definitions. For each control edge,

the originator and destination needs to be set, which is done by filling in the ‘from’

and ‘to’ attribute respectively. Each attribute refers to a node id, which refers to a

specific node. Additionally, a control edge can be labeled with a condition.

• DataItems
The DataItems section is used for declaring the data items that are used within the

process. For each data item one entry is added to the section, with the unique name

of the data item as attribute.

• DataEdges
The DataEdges section relates dataItems to nodes in the process. Each relation is

described by using an dataEdge element, in which the node attribute refers to node

id and dataItem refers to a data item. For each edge, the interaction type is defined.

The following interaction types are available: Create (C), Read (R), Read-Write (RW),

Write (W) and Destroy (D).

• DistributionLocations
The DistributionLocations section consists of elements that relate node identifiers

with their intended destination.

• DataRestrictions
In this section, data items can be marked with a distribution location. A data restric-

tion defines that a data item can only be used within the defined location. As soon

as the data crosses the border of the location, the restriction is violated.

8.3 Parallel/Conditional block replacement

8.3.1 Analysis

Figure 8.1 shows the class diagram for the parallel and conditional constructs. Both classes

inherit from the abstract class BranchedConstruct. Templates are used for defining the

specific types of the start and end nodes of the constructs. The name and location attribute

are taken from the Node class, which is shown in the full class diagram in Figure 6.1.

The ParallelConstruct and ConditionalConstruct classes are block structured elements.

The original start and end node of the construct are stored in the start and end attribute,

respectively. The branches of the constructs are stored either in a branches list, in case of a

ParallelConstruct, or in the variables trueBranch and falseBranch, in case of a Condition-

alConstruct.



8.3. PARALLEL/CONDITIONAL BLOCK REPLACEMENT 81

BranchedConstruct

+ name : String
+ location : DistributionLocation
+ start : T1
+ end : T2

+ List<Graph> getBranches()

T1, T2

ParallelConstruct

- branches : List<Graph>

+ List<Graph> getBranches()
+ void addBranch(Graph branch)

ParallelStart, ParallelEnd
ConditionalConstruct

- trueBranch : Graph
- falseBranch : Graph

+ List<Graph> getBranches()
+ Graph getBranch(boolean branch)
+ void setBranch(boolean branch)

CondStart, CondEnd

Figure 8.1: Class diagram for branched constructs

Figure 8.2a shows an example of a process with conditional nodes. The part of the process

that is changed and replaced with a conditional construct is represented by the marked

area in the figure. A unique number has been assigned to each edge. The edges (e1 and

e4) are edges that need to be updated. After the replacement, edge e1 should point to the

conditional construct instead of pointing to the if-node and edge e4 should originate from

the conditional construct instead of originating from the eif-node. The other edges (e2a,

e2b, e3a, e3b) need to be removed from the graph.

Figure 8.2b shows the graph, after the conditional nodes are replaced with a conditional

construct. The contents of the conditional construct are shown in Figure 8.2c.

rec

if

act1 act2

eif

rep

e1

e2a (true) e3a (false)

e2b e3b

e4

(a) Before replacement

rec

Conditional Construct

rep

e1

e4

(b) After replacement

if

eif

act1

act2

Start

End

trueBranch

falseBranch

Conditional Construct

(c) Contents of block

Figure 8.2: Creation of branched constructs



82 CHAPTER 8. AUXILIARY TRANSFORMATIONS

8.3.2 Algorithm

The first step after importing the intermediate model is to match composite constructs

and replace the nodes by a new instance of a composite construct. The algorithm starts

by calling the StartCompositeNodeReplacement function, with the source graph as input.

The result of the function is the input graph, with replaced composite constructs. An

outline of the function is shown in Algorithm 6.

Algorithm 6 StartCompositeNodeReplacement
1: function StartCompositeNodeReplacement(graph)
2: ReplaceCompositeNodes(graph.getStartNode(), graph,graph, {})
3: return graph

4: end function

ReplaceCompositeNodes is the main function, which is used for walking through the

graph and identifying conditional and parallel nodes. The pseudo code of the function

is shown in Algorithm 7. The function consists of the following steps:

1. Check if the current node that is examined by the algorithm has been processed

before. Since there might be loops in the graph, we have to ensure that the algorithm

does not iterate infinitely. When a node has already been visited, the function returns

null.

2. When the current node is a start node of a conditional construct, a new conditional

construct should be generated. This is done by invoking the ReplaceConditionalN-

ode function. The current node is changed to the generated construct.

3. When the current node is a start node of a parallel construct, a new parallel construct

should be generated. The function ReplaceParallelNode is called to perform this

operation. The current node is changed to the generated construct.

4. When the current node is an end node of a composite construct, the algorithm re-

turns the current node.

5. In case of other types of nodes, the node is copied to the newly generated graph. The

node is added to the visited list.

6. The outgoing edges of the current node are examined and for each outgoing edge,

the ReplaceCompositeNodes function is called.

The ReplaceConditionalNodes function creates ConditionalConstruct nodes. The pseudo

code of the function is shown in Algorithm 8. The function consists of the following steps:

1. A new conditional construct node is created and the original conditional start node

is set as start node within the construct.



8.3. PARALLEL/CONDITIONAL BLOCK REPLACEMENT 83

Algorithm 7 ReplaceCompositeNodes
1: function ReplaceCompositeNodes(n,newGraph, lookupGraph,V isited)
2: if n ∈ V isited then . Step 1
3: return null
4: else if n of type ConditionalStartNode then . Step 2
5: n← ReplaceConditionalNodes(n,newGraph, lookupGraph,V isited)
6: else if n of type P arallelStartNode then . Step 3
7: n← ReplaceP arallelNodes(n,newGraph, lookupGraph,V isited)
8: else if n of type ConditionalEndNode∨n of type P arallelEndNode then . Step 4
9: return n

10: else . Step 5
11: newGraph.nodes← newGraph.nodes∪ {n}
12: V isited← V isited ∪ {n}
13: end if
14: for all e ∈ lookupGraph.getOutgoingEdges(n,Control) do . Step 6
15: newGraph.edges← newGraph.edges∪ {e}
16: o← ReplaceCompositeNodes(e.to,newGraph, lookupGraph,V isited)
17: if o , null then
18: result← o

19: end if
20: end for
21: return result

22: end function

2. The outgoing edges of the conditional start nodes are examined, and for each out-

going edge a new branch graph is created. The ReplaceCompositeNodes function is

used for walking through the branches and for adding the nodes to the newly cre-

ated branches. The ReplaceCompositeNodes algorithm returns the conditional end

node, which belongs to the conditional construct. After the branch is created and

the end node is discovered, the edges from the last node in the branch towards the

conditional end node are removed from the branch graph. The branch is set either as

true or false branch in the conditional construct, depending on the label of the edge,

between the conditional start node and the first node in the branch.

3. A check is needed to ensure that the algorithm has found a correct end node for the

construct. When no end node is found, or when a parallel end node is found instead

of a conditional end node, the algorithm yields an exception, since the input graph

is not valid.

4. The end node is set as end node in the conditional construct and the construct is

added to the newly created graph.

5. The incoming edges of the conditional start node need to be updated, since they need

to point to the conditional construct at this point.



84 CHAPTER 8. AUXILIARY TRANSFORMATIONS

Algorithm 8 ReplaceConditionalNodes
1: function ReplaceConditionalNodes(n,newGraph, lookupGraph,V isited)
2: construct← new ConditionalConstruct() . Step 1
3: construct.start← n

4: endNode← null

5: for all e ∈ lookupGraph.getOutgoingEdges(n,Control) do . Step 2
6: branch← new Graph()
7: endNode← ReplaceCompositeNodes(e.to,branch, lookupGraph,V isited)
8: if e.label = true then
9: construct.trueBranch← branch

10: else
11: construct.f alseBranch← branch

12: end if
13: for all oldE ∈ branch.getIncomingEdges(endNode,Control) do
14: branch.edges← branch.edges − {oldE}
15: end for
16: end for
17: if endNode = null ∨ endNode not of type ConditionalEndNode then . Step 3
18: throw Exception “No valid end node found. The graph is invalid.”
19: else
20: construct.end← endNode . Step 4
21: newGraph.nodes← newGraph∪ {construct}
22: for all e ∈ lookupGraph.getIncomingEdges(n,Control) do . Step 5
23: e.to← construct

24: end for
25: for all e ∈ lookupGraph.getOutgoingEdges(endNode,Control) do . Step 6
26: e.f rom← construct

27: if e.to ∈ V isited then
28: newGraph.edges← newGraph.edges∪ {e}
29: end if
30: end for
31: end if
32: V isited← V isited ∪ {endNode}
33: return construct

34: end function

6. The outgoing edges of the conditional end node need to be updated. The conditional

construct should be selected as the originator of each of these edges.

The ReplaceParallelNodes function is almost the same as the ReplaceConditionalNodes

function. Instead of having to determine if a branch is either the true branch or the false

branch, the function just adds the newly created branch to the branches list within the

newly created construct. By taking the code of ReplaceConditionalNodes and replacing

step 2 by the pseudo code, shown in Algorithm 9, the ReplaceParallelNodes function is

obtained.



8.4. LOOP CONSTRUCT REPLACEMENT 85

Algorithm 9 ReplaceParallelNodes (partially)
1: function ReplaceParallelNodes(n,newGraph, lookupGraph,V isited)
2: ...
3: for all e ∈ lookupGraph.getOutgoingEdges(n,Control) do . Step 2
4: branch← new Graph()
5: endNode← ReplaceCompositeNodes(e.to,branch, lookupGraph,V isited)
6: construct.branches← construct.branches∪ {branch}
7: for all oldE ∈ branch.getIncomingEdges(endNode,Control) do
8: branch.edges← branch.edges − {oldE}
9: end for

10: end for
11: ...
12: end function

8.4 Loop construct replacement

8.4.1 Analysis

Figure 8.3 shows a class diagram fragment for using loop constructs. The LoopConstruct

class consists of a condNode attribute, in which the conditional loop node will be stored.

The branchNode attribute is filled during the export/import phase and points to the node

that was present in the Amber process on the other side of the loop edge. The evaluateBe-

fore attribute indicates whether the loop condition is evaluated before or after execution

of the loop branch and the loopBranch attribute is a graph, which contains the activities

that are executed in the loopbranch.

Figure 8.4a shows a process with a loop. The marked part will be replaced by a loop block.

The blue edges (e1 and e5) need to be updated after the replacement. Edge e1 needs to

point to the loop block after replacement and edge e5 needs to originate from the loop

block. The result after the replacement is shown in Figure 8.4b. Figure 8.4c shows parts of

the contents of the loop construct. The edges e4 and e3 have been removed and the loop

branch is separated from the conditional node.

8.4.2 Algorithm

The loop construct replacement algorithm consists of several functions. For both types

of loops, two different approaches are needed. The algorithm is started by calling the

StartLoopNodeReplacement function, with the graph as input parameter. In this graph,

the parallel and conditional nodes should already have be replaced by block structured

nodes. The algorithm maintains a queue of graphs that need to be examined by the algo-

rithm. For each graph, a function is called to get the graph and all the subgraphs within



86 CHAPTER 8. AUXILIARY TRANSFORMATIONS

condNode

CompositeNode

+ T1 getStartNode()
+ T2 getEndNode()

T1, T2

LoopConstruct

+ evaluateBefore : boolean
+ loopBranch : Graph

LoopCondNode, LoopCondNode

Node

+ name : String
+ location : DistributionLocation
+ executionGuaranteed : boolean
+ attributes : HashMap<String, Object>

LoopCondNode

+ evalBefore : boolean
+ branchNode : String

Figure 8.3: Class diagram for loop constructs

rec

act1

act1

loop

rep

e1

e2

e3

e4 (true)

e5 (false)

(a) Before replacement

rec

Loop Block

rep

e1

e5

(b) After replacement

loop Condition

act1

act2

Loop branch

Loop Construct

e2

(c) Contents of block

Figure 8.4: Creation of loop constructs

the graph. Subgraphs are graphs that are located in composite constructs within the graph.

For example, the branches of a conditional construct are subgraphs of the graph in which

the conditional construct is located.

For each graph, the algorithm will call the FindLoopNodes function, which searches for

instances of the LoopCondNode class within the nodes list of a graph. These nodes are cre-

ated during the export/import phase and represent loop condition nodes. When a Loop-



8.4. LOOP CONSTRUCT REPLACEMENT 87

CondNode is found, the algorithm will check if the node will be evaluated before or after

the loop branch. Depending on this decision, either the createConstructWithPreEvalua-

tion function or the createConstructWithPostEvaluation function is called.

Algorithm 10 Loop construct identification
1: graphQueue← {}

2: function StartLoopNodeReplacement(graph)
3: graphQueue← newQueue(graph.getAllGraphsAndSubGraphs())
4: while !graphQueue.isEmpty() do
5: g← graphQueue.take()
6: loopNodes← FindLoopNodes(g)
7: if |loopNodes| > 0 then
8: loopNode← loopNodes.f irst()
9: if loopNode.evaluateBef ore then

10: createConstructW ithP reEvaluation(g, loopNode)
11: else
12: createConstructW ithP ostEvaluation(g, loopNode)
13: end if
14: end if
15: end while
16: return graph

17: end function

18: function FindLoopNodes(g)
19: result← {}
20: for all n ∈ g.nodes do
21: if n of type LoopConditionalNode then result← result ∪ {n}
22: end if
23: end for
24: return result

25: end function

Loop construct with evaluation of condition after branch execution

Creation of a loop construct in which the loop branch is executed after the evaluation of the

loop condition is the simplest case, since the branchNode attribute of the LoopCondNode

points to the start node of the loop branch. Algorithm 11 shows the outline of the algo-

rithm. The createLoopConstruct function is used to create the loop construct. After the

loop construct is created and inserted in the graph as replacement for the nodes involved

in the loop, the algorithm will add the current graph to the queue again. This is necessary,

since there might be more loop nodes in the process. In addition, the loop branch of the

newly created construct is added to the queue, to search for nested loops.



88 CHAPTER 8. AUXILIARY TRANSFORMATIONS

Algorithm 11 CreateConstructWithPostEvaluation
26: procedure createConstructWithPostEvaluation(g, loopNode)
27: branchStartNode← loopNode.branchNode

28: construct← createLoopConstruct(g, loopNode,branchStartNode)
29: graphqueue← graphqueue∪ {construct.graph} ∪ {g}
30: end procedure

The createLoopConstruct function creates a new instance of a LoopConstruct. The condi-

tional node is set and the copyUntilConditionalNodeFound function is used for walking

through the loop branch and moving the nodes and edges from the original graph to the

loop branch graph. The code for this function is shown in Algorithm 13. After the loop

branch is created, the conditional node needs to be removed from the input graph and the

loop edge, between the conditional node and the start node of the loop branch needs to be

deleted from the input graph. The last step is to update edges in the input graph.

Algorithm 12 CreateLoopConstruct
31: function createLoopConstruct(g, loopNode,branchStartNode)
32: construct← new LoopConstruct() . Create construct
33: construct.condNode← loopNode

34: construct.evaluateBef ore← loopNode.evaluateBef ore

35: g.nodes← g.nodes∪ {construct}
. Create loop branch

36: copyUntilConditionalNodeFound(branchStartNode, loopNode,construct.loopBranch,g, {})
. Remove old node/edge

37: g.edges← g.edges − {g.f indEdge(loopNode,branchStartNode,EdgeT ype.Control)}
38: g.nodes← g.nodes − {loopNode}

. Update old edges
39: for all e ∈ g.getIncomingEdges(branchStartNode,EdgeT ype.Control) do
40: e.to← construct

41: end for
42: for all e ∈ g.getIncomingEdges(loopNode,EdgeT ype.Control) do
43: e.to← construct

44: end for
45: for all e ∈ g.getOutgoingEdges(loopNode,EdgeT ype.Control) do
46: e.f rom← construct

47: end for
48: end function

Loop construct with evaluation of condition before branch execution

The function CreateConstructWithPreEvaluation, shown in Algorithm 15, deals with loops

in which the loop condition is evaluated before execution of the loop branch. The first step

of the function is to find the start node of the loop branch. Since the loop edge, shown in



8.5. DATA ANALYSIS 89

Algorithm 13 CopyUntilConditionalNodeFound
49: procedure copyUntilConditionalNodeFound(curNode,condNode,newGraph, lookupGraph,visited)
50: if curNode ∈ visited then . Security check to avoid infinite loops
51: return
52: else
53: visited← visited ∪ {curNode}
54: end if

. Remove node from lookupGraph and add to newGraph
55: lookupGraph.nodes← lookupGraph.nodes − {curNode}
56: newGraph.nodes← newGraph.nodes∪ {curNode}
57: for all e ∈ g.getOutgoingEdges(curNode,EdgeT ype.Control) do
58: lookupGraph.edges← lookupGraph.edges − {e}
59: if e.to , condNode then
60: newGraph.edges← newGraph.edges∪ {e}
61: copyUntilConditionalNodeFound(e.to,condNode,newGraph, lookupGraph,visited)
62: end if
63: end for
64: end procedure

Figure 7.6, points from the last node in the loop branch to the loop condition node. By

examining the outgoing edges from the loop condition and walking the paths until the

end node of the branch is found, we can determine which of the paths is the loop branch.

The isLoopBranch function is used for checking which of the paths is the loop branch. The

code of the algorithm is shown in Algorithm 14.

After the start node of the loop branch has been found, the CreateLoopConstruct is used

to create the construct and copy the nodes within the loop branch from the original graph

to the loop branch graph inside the loop construct.

8.5 Data analysis

After the intermediate model is created, data analysis needs to be performed to discover

the data dependencies between nodes. During the export/import phase, data edges were

created, which relate a data item to a node. Each data edge contains a type, which indicates

if a node creates, reads, writes or destroys the data.

Our data analysis algorithm consists of two phases. At first, for each node in the interme-

diate model the boolean property executionGuaranteed is set. This property indicates if

the node is always executed in the model, or if an execution is possible in which the node

is not executed. This information helps us to reduce the number of data dependencies

between nodes.

The second phase create data dependencies between the nodes in the intermediate model



90 CHAPTER 8. AUXILIARY TRANSFORMATIONS

Algorithm 14 IsLoopBranch
65: function isLoopBranch(curNode,branchEndNode,g,visited)
66: if curNode ∈ visited then
67: return false
68: else
69: visited← visited ∪ curNode

70: end if
71: if curNode = branchEndNode then
72: return true
73: end if
74: for all e ∈ g.getOutgoingEdges(curNode,EdgeT ype.Control) do
75: if isLoopBranch(e.to,branchEndNode,g,visitedNodes) then
76: return true
77: end if
78: end for
79: return false
80: end function

that share the same data items.

Below, we will describe both the algorithms we use for data analysis.

8.5.1 Mark execution guarantees

The first step of the data analysis is to set the executionGuarantee property for every node

in the process. The property indicates if the execution of the node is guaranteed, in case of

normal behavior, i.e. behavior in which the process is completely executed without being

interrupted because of failure.

Execution of nodes is not guaranteed when:

1. A node is placed in a branch of a conditional construct. Conditional constructs eval-

uate a condition, to decide which of the outgoing branches needs to be executed.

Since the condition is evaluated at runtime, execution of activities in a branch can-

not be guaranteed.

2. Nodes are placed in the branch of a loop construct, where the loop condition is eval-

uated before the execution of the loop branch. Since the loop condition may yield

false immediately, the execution of the loop branch is not guaranteed

Our algorithm for marking nodes with execution guarantees is shown in Algorithm 16.

The following steps are taken in the algorithm:

• Step 1: The executionGuaranteed attribute is set for the current node



8.5. DATA ANALYSIS 91

Algorithm 15 CreateConstructWithPreEvaluation
81: procedure createConstructWithPreEvaluation(g, loopNode)
82: branchEndNode← loopNode.branchNode

83: branchStartNode← null

. Find the start node of the loop branch
84: outgoingEdges← g.getOutgoingEdges(loopNode,EdgeT ype.Control)
85: if |outgoingEdges| = 0∨ |outgoingEdges| > 2 then
86: throw exception “Invalid number of outgoing edges for loop conditional node”
87: else if |outgoingEdges| = 1 then
88: branchStartNode← outgoingEdges.get(0).to
89: n1IsLoopBranch← isLoopBranch(branchStartNode,branchEndNode,g, {loopNode})
90: if !n1IsLoopBranch then
91: throw exception “No loop branch found”
92: end if
93: else
94: n1← outgoingEdges.get(0).to
95: n1IsLoopBranch← isLoopBranch(n1,branchEndNode,g, {loopNode})
96: n2← outgoingEdges.get(1).to
97: n2IsLoopBranch← isLoopBranch(n2,branchEndNode,g, {loopNode})
98: if (n1IsLoopBranch∧n2IsLoopBranch)∨ (!n1IsLoopBranch∧!n2IsLoopBranch) then
99: throw exception “No loop branch found”
100: end if
101: branchStartNode← (n1IsLoopBranch)?n1 : n2
102: end if

. Create the loop construct and add graphs to the queue
103: construct← createLoopConstruct(g, loopNode,branchStartNode)
104: graphQueue← graphQueue∪ {construct.loopBranch} ∪ {g}
105: end procedure

• Step 2: When the current node is a BranchedConstruct (either a ConditionalCon-

struct or a ParallelConstruct), the executionGuaranteed attribute of the start node

and end node of the construct is set. For each of the branches of the construct, the

procedure is called recursively. When the current node is a ConditionalConstruct,

the execution of the nodes within the branches is not guaranteed and thus, the guar-

anteed parameter of the function should be changed to false.

• Step 3: In case of a LoopConstruct, the executionGuaranteed attribute needs to be

set for the loop condition node. The executionGuaranteed attribute value for each

of the nodes within the loop branch depends on if the loop condition is evaluated

before or after execution of the loop branch.

• Step 4: The outgoing edges of the current node are followed.



92 CHAPTER 8. AUXILIARY TRANSFORMATIONS

Algorithm 16 MarkExecutionGuarantees
1: procedure MarkExecutionGuarantees(n,g,guaranteed)
2: n.executionGuaranteed← guaranteed . Step 1
3: if n of type BranchedConstruct then . Step 2
4: n.start.executionGuaranteed,n.end.executionGuaranteed← guaranteed

5: for all branch ∈ n.branches do
6: if n of type ConditionalConstruct then
7: MarkExecutionGuarantees(branch.start,branch,f alse)
8: else
9: MarkExecutionGuarantees(branch.start,branch,guaranteed)

10: end if
11: end for
12: else if n of type LoopConstruct then . Step 3
13: n.conditionalNode.executionGuaranteed← guaranteed

14: if n.evaluateConditionBef ore then
15: MarkExecutionGuarantees(n.loopbranch.start,n.loopbranch,f alse)
16: else
17: MarkExecutionGuarantees(n.loopbranch.start,n.loopbranch,guaranteed)
18: end if
19: end if
20: for all e ∈ g.getOutgoingEdges(n,Control) do . Step 4
21: MarkExecutionGuarantees(e.to,g,guaranteed)
22: end for
23: end procedure

8.5.2 Create data dependencies

During the import phase, data edges were created. A data edge relates a node to a dataitem

together with a type. The type indicates whether the node creates, reads, writes or destroys

the data item. The goal of the data dependency analysis algorithm is to walk through the

whole graph once for each data item and collect the possible writers for the data item dur-

ing the walk. As soon as a node (n) is reached, that uses the data item, a data dependency

edge will be created from each of the possible writers, to n. The algorithm is based upon

the data analysis idea in [20], in which the possible writer sets for nodes are collected.

We separated the algorithm in a couple of procedures, to be able to better explain the

algorithm.

The AnalyzeDependencies procedure walks through the list with all the declared data

items. For each of the data items, the data edges in which the data item is used are selected

and collected in a hashmap, where the key is the node involved and the value is the data

edge. The CreateDataDepencies algorithm will be called to walk through the graph.

The CreateDataDependencies procedure consists of 4 steps:

• Step 1:



8.5. DATA ANALYSIS 93

Algorithm 17 Data dependency analysis
1: procedure AnalyzeDependencies(graph,dataItems,dataEdges)
2: for all dataItem ∈ dataItems do
3: curEdges← {}
4: for all e ∈ dataEdges do
5: if e.dataItem = dataItem then
6: curEdges← curEdges∪ {e.node => e}
7: end if
8: end for
9: CreateDataDependencies(graph.start,graph,graph,curEdges, {})

10: end for
11: end procedure

The possible writer set is updated first. This is done by using the UpdatePossi-

bleWriter function. If the currently examined node is defined in the data edges

hashmap, the type of the data edge is considered. Depending on this type the fol-

lowing actions are taken:

– Create: The list with possible writers is extended with the current node. A data

dependency edge will be created from the current node pointing to itself, to

define the creation of a data item.

– Read: Data dependency edges will be created from each of the possible writers

to the current node.

– Write or ReadWrite: Data dependency edges will be created from each of the

possible writers to the current node. If the execution of the node is guaranteed,

the possible writers list will be cleared. Nodes that will be examined later that

read the data item only need a data dependency edge to the last writer. Since

the execution of the node is guaranteed, only the last writer is a possible writer

for the node. The last step is to add the node to the possible writers set.

– Destroy: Data dependency edges will be created from each of the possible writ-

ers to the current node. The possible writers list will be cleared, since the item

is destroyed.

• Step 2: If the current node is a LoopConstruct, the algorithm will be called recur-

sively on the loop branch.

• Step 3: If the current node is a BranchedConstruct, the algorithm will be called re-

cursively on each of the branches. During the execution of the algorithm on the

branches, changes to the possible writer list are monitored. When new possible writ-

ers are added, they are collected in a separate list. After the algorithm has finished

for each branch, the algorithm will check if new writers have been selected. In this



94 CHAPTER 8. AUXILIARY TRANSFORMATIONS

situation, the old writer list is cleared and filled with the newly found writers.

• Step 4: The outgoing edges of the current node are followed and the algorithm con-

tinues to the next node.

12: procedure CreateDataDependencies(n,graph, lookupGraph,dataEdges,posWriters)
13: UpdateP ossibleW riters(n,graph, lookupGraph,dataEdges,posWriters) . Step 1
14: if n of type LoopConstruct then . Step 2
15: CreateDataDependencies(n.loopBranch.start,n.loopBranch, lookupGraph,dataEdges,posWriters)
16: else if n of type BranchedConstruct then . Step 3
17: newP osWriters← {}
18: newWritersFound← f alse

19: for all branch ∈ n.branches do
20: posWritersBranch← posWriters

21: CreateDataDependencies(branch.start,graph, lookupGraph,dataEdges,posWritersBranch)
22: if posWritersBranch , posWriters then
23: newP osWriters← newP osWriters∪ posWritersBranch

24: newWritersFound← true

25: end if
26: end for
27: if newWritersFound then
28: posWriters← newP ossibleW riters

29: end if
30: end if
31: for all e ∈ graph.getOutgoingEdges(n,Control) do . Step 4
32: CreateDataDependencies(e.to,graph, lookupGraph,dataEdges,posWriters)
33: end for
34: end procedure

8.6 Grounding

The previous sections described all the actions that were needed for lifting the a BiZZde-

signer model to an instance of the intermediate model. In this section we look at the

grounding transformation, in which the lists that were created during the decomposition

transformation are used to obtain a new BiZZdesigner model.

8.6.1 Export/Import

The outcome of the decomposition transformation were 3 lists: a list with all the processes,

a list with all the communication edges between those processes and a list with all the data

edges. During the export phase, data is read from these lists and converted into an XML

representation, which in turn is imported by a script in BiZZDesigner. The following XML

format is used:



8.6. GROUNDING 95

35: procedure UpdatePossibleWriters(n,graph, lookupGraph,dataEdges,posWriters)
36: if n ∈ dataEdges.keys then
37: de← dataEdges.getV alueForKey(n)
38: switch de.type do
39: case Create
40: posWriters← posWriters∪ {n}
41: CreateDataEdge(lookupGraph,n,n,de)

42: case Read
43: CreateDataEdges(lookupGraph,posWriters,n,de)

44: case ReadWrite ∨Write
45: CreateDataEdges(lookupGraph,posWriters,n,de)
46: if n.executionGuaranteed then
47: posWriters← {}
48: end if
49: posWriters← posWriters∪ {n}

50: case Destroy
51: CreateDataEdges(lookupGraph,posWriters,n,de)
52: posWriters← {}

53: end switch
54: end if
55: end procedure

56: procedure CreateDataEdges(g,writers,n,dataEdge)
57: for all writer ∈ writers do
58: CreateDataEdge(g,writer,n,dataEdge)
59: end for
60: end procedure

61: procedure CreateDataEdge(g,f romNode, toNode,dataEdge)
62: e← new Edge(f romNode, toNode,Data)
63: e.label← dataEdge.dataItem

64: g.edges← g.edges∪ {e}
65: end procedure



96 CHAPTER 8. AUXILIARY TRANSFORMATIONS

1 <?xml version="1.0" ?>

2 <choreography>

3 <dataItems>

4 <dataItem name="unique String" distributionLocation="OnPremise|Cloud"

restrictionViolated="boolean"? />

5 </dataItems>

6 <orchestrations>

7 <orchestration name="String" distributionLocation="OnPremise|Cloud">

8 <nodes>

9 <node id="unique Id" type="Trigger|EndTrigger|Action|And-Split|

And-Join|Or-Split|Or-Join|Interaction"

10 name="String" repeated="boolean"? restrictionViolated="boolean"

? />

11 </nodes>

12 <edges>

13 <edge from="node.id" to="node.id" type="Control|Loop" label="

String"? />

14 </edges>

15 </orchestration>

16 </orchestrations>

17 <interactionEdges>

18 <edge from="node.id" to="node.id" type="Control" />

19 </interactionEdges>

20 <dataEdges>

21 <edge from="node.id" to="dataItem.name" type="Data" relationType="C|R

|RW|W|D" />

22 </dataEdges>

23 </choreography>

Listing 8.2: XML structure used for importing the choreography in BiZZdesigner

The XML file represents a choreography description and consists of 4 parts:

• Data items
The dataItems section contains the data items that were used in the process. Each

data item has a unique name and a distribution location, which is the restriction

which was set for the data item. The restrictionViolated attribute is used for setting

if the data restriction was violated during the decomposition.

• Orchestrations
In the orchestrations section, each of the processes that was created is described.

For each process the nodes and edges are defined. Each node has a name, an Amber

type, and a unique id. The attribute restrictionViolated is set when this node violates

a data item restriction and the repeated boolean is set, if the activity is part of a loop

branch.

Edges consist of a reference to an originator node and a terminator node and a type,

which is either a control in case of a control edge, or loop in case of a loop edge. The

label attribute can be used to assign a label to the edge.

• Interaction Edges
This section contains edges between processes, so called communication edges.

• Data Edges
In this section, nodes are connected to the data items they use. For each data edge,



8.6. GROUNDING 97

the interaction type is set, using the relationType attribute.

8.6.2 BiZZdesigner script restrictions

The script language within BiZZdesigner has a couple of restrictions. In this section we

explain which restrictions we faced and which alternatives we used.

• Interaction relation
For each process, a new sub process is created in the behavioural model. Interac-

tions between those subprocesses should be performed by using interaction edges

between interaction elements. BiZZdesigners script engine however, does not allow

interaction edge creation. Therefore, we decided to create entry and exit elements for

each interaction element and connect those elements with each other, using normal

enabling relations.

• Automatic layout
BiZZdesigner has no automatic layout mechanism. The created script will therefore

just place the created elements on the canvas and users need to layout the diagram

manually.





9. Case study

In this chapter we perform our transformation chain on a real-life example, the talent show

audition. Below, the case is explained and for each of the phases in the transformation

chain, intermediate results are shown.

9.1 Talent show audition process

Consider that a television broadcast company wants to produce a new singing competition

show. The company uses an on-line registration system, in which contestants can register

for the show. In order to get selected for the show, contestants need to upload an audi-

tion video, in which they are performing a song, and some personal information, so that

producers can contact them when the contestant is selected for the show. The selection

procedure of the contestants consists of two parts. At first, producers and a jury look at

all the videos and directly select contestants for the show. The other video auditions are

placed on the website of the show and visitors of the website can vote on the videos they

like. The highest voted video auditions are selected and added to the contestants.

Start

Store personal info

Store video

Convert video

Video

Personal Information

Verify video

conversion needed

no conversion needed Assign video id

Video ID

*

Store Video ID EndUser uploads video

*

Notify user

User sends personal info

*

Figure 9.1: Business process of the on-line registration system

The business process of the on-line registration system is shown in Figure 9.1. The first

step for the user is to upload a video. After the video is uploaded, the process is split up

into two separate simultaneously executing branches:

1. The first branch performs operations on the uploaded video. At first, the video is

stored in a folder on the server. After that, a verification algorithm is used to check

if the video is valid. This operation also determines the videos properties, such as

the format, size and quality. For the producers it is important that the videos are

all in the same format, in order to speed up their selection process. In addition,

when the videos need to be placed on the website, one video format is also needed.

Therefore, a conversion step is needed. The conversion step is only performed when

99



100 CHAPTER 9. CASE STUDY

the video does not comply to the selected format yet. After conversion, a unique

video identifier is assigned to the video.

2. The second branch waits for personal information that should be submitted by the

user. When the information is provided, the personal information is stored in a

database.

After the branches merge again, the video identifier should be stored within the database

of personal information. This step is necessary to know which video audition belongs to

which personal information. After the personal information is updated, a notification is

sent to the user and the business process is terminated.

9.2 Marking activities and data items

The television broadcast company expects a large amount of auditions. Since the storage

of videos might take a lot of space, and operations on the videos, such as video conversion,

are computation-intensive operations, the company has decided to make use of cloud com-

puting for storing the videos and performing operations on the videos. The personal infor-

mation of the process, however, should stay within the premises of the television broadcast

organization. Therefore, the business process mainly runs on the server on-premise, while

parts of the process are outsourced to the cloud.

Figure 9.2 shows the business process, marked with distribution locations and data re-

strictions. The activities that should be performed in the cloud are marked with the cloud

flag. In Figure Figure 9.2, these activities are marked with a dark background color. The

personal information data item is marked with a data restriction, which states that the

item should stay on-premise. This is shown in Figure 9.2 by the shaded data item.

Start

Store personal info

Store video

Convert video

Video

Personal Information

Verify video

conversion needed

no conversion needed Assign video id

Video ID

*

Store Video ID EndUser uploads video

*

Notify user

User sends personal info

*

Figure 9.2: Business process with marked activities and data restrictions



9.3. LIFTING 101

9.3 Lifting

Once activities have been marked with a distribution location, and a data restriction has

been placed on the Personal Information data item, the transformation chain can be started.

At first, the lifting transformation is performed. Below we show three intermediate results

which have been generated by our Java implementation during the lifting transformation.

9.3.1 Export

The first step of the lifting process is to export the business process to an XML represen-

tation. A fragment of the XML that was exported by BiZZdesigner is shown in Listing

9.1.
1 <?xml version="1.0" ?>

2 <orchestration>

3 <nodes>

4 <node id="n0" type="Trigger" name="Start" />

5 <node id="n1" type="Action" name="Store personal info" />

6 ...

7 </nodes>

8 <controlEdges>

9 <controlEdge from="n11" to="n6" label="" />

10 <controlEdge from="n12" to="n3" label="conversion needed" />

11 ...

12 </controlEdges>

13 <dataItems>

14 <dataItem name="Personal Information" />

15 <dataItem name="Video" />

16 ...

17 </dataItems>

18 <dataEdges>

19 <dataEdge node="n1" dataItem="Personal Information" type="W" />

20 <dataEdge node="n7" dataItem="Video" type="C" />

21 ...

22 </dataEdges>

23 <distributionLocations>

24 <distribution node="n0" location="OnPremise" />

25 <distribution node="n2" location="Cloud" />

26 ...

27 </distributionLocations>

28 <dataRestrictions>

29 <restriction dataItem="Personal Information" location="OnPremise" />

30 </dataRestrictions>

31 </orchestration>

Listing 9.1: XML fragment of the exported Amber process

9.3.2 Import

The exported XML file is imported by our Java application. A new instance of the in-

termediate model is created from the file. In addition to our Java transformations we

also implemented a graphical export function to show the intermediate results during the

transformations. Figure 9.3a shows the intermediate model that has been generatedfrom

the imported XML file.



102 CHAPTER 9. CASE STUDY

Start (n0)

User uploads video (n7)

Store personal info (n1)

And-join (n11)

Store video (n2)

Verify video (n4)

Convert video (n3)

Or-join (n13)

Or-split (n12)

Assign video id (n5)

Store Video ID (n6)

Notify user (n8)

And-split (n10)

End (n14)

User sends personal info (n9)

conversion needed

no conversion needed

(a) After import

n10_comp

n12_comp

Start (n0)

User uploads video (n7)

And-split (n10)

Store video (n2)

User sends personal info (n9)

And-join (n11)

Store Video ID (n6)

Verify video (n4)

Or-split (n12)

Or-join (n13)

true Convert video (n3)

false

Assign video id (n5) Store personal info (n1)

Notify user (n8)

End (n14)

(b) Replacement of composite constructs

Figure 9.3: Representation of the intermediate model



9.4. DECOMPOSITION 103

9.3.3 Replace constructs

Figure 9.3b shows the graphical representation of the intermediate model, in which the

parallel and conditional nodes are captured within composite constructs.

9.3.4 Data dependency analysis

After the composite construct are created in the intermediate model, a data dependency

analysis is performed. Figure 9.4 shows the intermediate model of the business process

with the data dependencies between the items. We explain below a couple of data depen-

dencies, shown in the Figure 9.4:

• Node n7 has a data dependency edge to itself, which means that the data item (in

this case Video) is created during the execution of the activity.

• The activity Assign video id (n5) has a two data dependencies, both relating to the

Video data item. The two incoming data dependencies mean, that both activities

from which the data dependency edges originate are possible writers to the Video

data item. Since the execution of the Convert Video (n3) activity is not guaranteed

because it is in a conditional branch, activity n5 does not know if n3 has written to

the item. Therefore, activity n2 is also a possible writer and a data dependency edge

exists between n2 and n5.

9.4 Decomposition

The decomposition transformation can be started after the data dependencies have been

determined. For each of the phases of the decomposition transformation, we will explain

what happens with the process and show some of the intermediate results.

9.4.1 Identification

During the identification phase, the activities that need to be distributed in the cloud are

marked. In addition, in each of the branches of a composite construct, a temporary node

is added with the same distribution location as the composite construct.

9.4.2 Partitioning

In the partitioning phase, adjacent nodes marked with the same distribution location

are placed together in a partition. This is shown in Figure 9.5. Each of the subgraphs



104 CHAPTER 9. CASE STUDY

n10_comp

n12_comp

Start (n0)

User uploads video (n7) Video

And-split (n10)

Store video (n2)

Video

User sends personal info (n9)

And-join (n11)

Store Video ID (n6)

Verify video (n4)

Video

Convert video (n3)

Video

Assign video id (n5)

Video

Or-split (n12)

Or-join (n13)

true

false

Video

Video ID

Video ID

Personal Information

Store personal info (n1)

Personal Information

Personal Information

Notify user (n8)

End (n14)

Figure 9.4: Data dependencies in the intermediate model



9.5. GROUNDING 105

(branches) is treated as a separate process, therefore within a partition there might be

multiple partitions within a composite construct. The shaded nodes in 9.5 represent the

nodes that are marked for movement to the cloud, which were identified in the identifica-

tion phase.

9.4.3 Creation of communicator nodes

During the next phase, communicators are created between partitions. Consider Partition1

and Partition2 in Figure 9.5. Partition1 is allocated on-premise and Partition2 is marked

for movement to the cloud. Partition1 is extended with invocation nodes and Partition2 is

extended with a receive-node at the beginning of the partition and a reply-node at the end

of the partition.

9.4.4 Choreography creation

After the communicators are created, the separate processes are collected and the tem-

porary nodes that were added in the identification phase are removed. The result that is

obtained after this phase is shown in Figure 9.6.

9.4.5 Data restriction verification

The decomposition transformations are finished now and data restriction verification is

needed to verify that no data restrictions were violated during the transformations. The

verification algorithm collects the data items that were violated, and selects the activities

that violate these data items. The information obtained in this phase is used during the

grounding transformation. In this example, no data restrictions are violated.

9.5 Grounding

The next step in the transformation chain is the grounding transformation, in which the

intermediate model is transformed back to an Amber model.

9.5.1 Export

In order to allow BiZZdesigner to display the result of the decomposition transformation,

the intermediate model is transformed into a format that can be imported by BiZZde-



106 CHAPTER 9. CASE STUDY

process0

partition0

n10_comp

partition1

partition2

n12_comp

partition3

partition4

Start (n0)

User uploads video (n7) Video

And-split (n10)

Store video (n2)

Video

temp0temp2

And-join (n11)

Store Video ID (n6)

Verify video (n4)

Video

Convert video (n3)

Video

Assign video id (n5)

Video

Or-split (n12)

Or-join (n13)

true

temp1

false

Video

Video ID

Video ID

User sends personal info (n9) Personal Information

Store personal info (n1)

Personal Information

Personal Information

Notify user (n8)

End (n14)

Figure 9.5: Intermediate model after the partitioning phase



9.5. GROUNDING 107

process0

n10_comp

process1

n12_comp

Start (n0)

User uploads video (n7) Video

And-split (n10) Store video (n2)

Video

InvokeReceive1User sends personal info (n9)

And-join (n11)

Store Video ID (n6)

InvokeResponse1

Receive1

Personal Information

Store personal info (n1)

Personal Information

Personal Information

Notify user (n8)

End (n14)

Verify video (n4)

Video

Convert video (n3)

Video

Assign video id (n5)

Video

Or-split (n12)

Or-join (n13)

true

false

Video

Video ID

Video ID

Response1

Figure 9.6: Intermediate model after the choreography creation phase



108 CHAPTER 9. CASE STUDY

signer. Part of the XML output that was generated by the grounding transformation is

shown in Listing 9.2.

1 <?xml version="1.0" ?>

2 <choreography>

3 <dataItems>

4 <dataItem name="Video" />

5 <dataItem name="Personal Information" distributionLocation="OnPremise

" />

6 ...

7 </dataItems>

8 <orchestrations>

9 <orchestration name="process0" distributionLocation="OnPremise">

10 <nodes>

11 <node id="n0" name="Start" type="Trigger" />

12 ...

13 </nodes>

14 <edges>

15 <edge from="n0" to="n7" type="Control" label="" />

16 ...

17 </edges>

18 </orchestration>

19 <orchestration name="process1" distributionLocation="Cloud">

20 <nodes>

21 <node id="Receive1" name="Receive1" type="Interaction" />

22 ...

23 </nodes>

24 <edges>

25 <edge from="Receive1" to="n2" type="Control" label="" />

26 ...

27 </edges>

28 </orchestration>

29 </orchestrations>

30 <interactionEdges>

31 <edge from="InvokeReceive1" to="Receive1" type="Communication" />

32 ...

33 </interactionEdges>

34 <dataEdges>

35 <edge from="n2" to="Video" type="Data" relationType="W" />

36 ...

37 </dataEdges>

38 </choreography>

Listing 9.2: XML fragment of the created choreography

9.5.2 Import

During the import phase, the XML format is converted into a new behavioral model in

BiZZdesigner. The resulting process is shown in Figure 9.7. The result consists of two

collaborating processes. The first process is meant for deployment on-premise and invokes

the second process, which is meant for deployment in the cloud.

9.6 Example of data restriction violation

The example we have presented did not violate any data restrictions. However, we show

in the sequal what happens when a data violation is introduced. By updating the business



9.6. EXAMPLE OF DATA RESTRICTION VIOLATION 109

Video

Personal Information

Video ID

process0

Start User uploads video

InvokeReceive1 InvokeResponse1

User sends personal
info

Store personal info

Store Video ID Notify user End

process1

Receive1

Store video Verify video

Convert video

Assign video id

Response1

no conversion needed

conversion needed

*

**

Figure 9.7: Business process with marked activities and data restrictions

process and marking the Store Video ID activity for movement to the cloud, as shown in

Figure 9.8 a data restriction will be violated during the transformations.

Personal
Information

Video ID

Store Video ID

Figure 9.8: Business process with marked activities and data restrictions

Figure 9.9 shows the result after the applying the transformation chain on the business

process. For violated data items and activities that violate a data restriction, a special flag

is set. By setting this flag, the items will be colored red in the resulting Figure. The data

item Personal Information is colored red, which indicates that the data restriction on the

data item is violated. The red colored nodes (Receive0 and Store Video ID) are the nodes

that violate the data restriction.



110 CHAPTER 9. CASE STUDY

Video ID

Personal Information

Video

process0

Start User uploads video

InvokeReceive2 InvokeResponse2

User sends personal
info

Store personal info

InvokeReceive0 InvokeResponse0

Notify user End

process1Receive0

Store Video ID

Response0

process2

Receive2

Store video Verify video

Convert video

Assign video id

Response2

no conversion needed

conversion needed

*

**

Figure 9.9: Business process with marked activities and data restrictions

9.7 Conclusion

This case study demonstrates that the transformations can be performed automatically.

The Java implementation has been extended with a function to export intermediate results

as images. The initial process was created by hand and the marking of activities and data

item was also performed by hand. The layout of the resulting model was corrected by

hand, since BiZZdesigner has no automatic layout functionality.



10. Conclusions

This chapter provides the conclusions of our work. We describe the general conclusions,

answer the research questions and identify possible future work.

10.1 General Conclusions

In this thesis, we explained the design and implementation of a decomposition framework

for decomposing monolithic business processes into multiple processes that can be exe-

cuted in the cloud or on-premise. The decomposition is driven by a distribution list, in

which the activities of the original business process are marked with their desired distri-

bution locations, and data restrictions can be added, to ensure that data items stay within

a certain location (on premise or in the cloud).

We explained the BPM lifecycle and cloud computing and introduced an already existing

solution, in which an architecture was built for combining traditional BPM with cloud-

based BPM. We extended this work by identifying a new distribution pattern, in which

process engines are placed both on-premise and in the cloud.

A transformation chain was defined for our decomposition framework. The decision was

made to use an intermediate model for defining the decomposition transformation. This

intermediate model is a semantic model in which the main concepts of a business pro-

cess are captured. The decomposition transformation was designed for working on the

intermediate model. By performing the operations on the intermediate model, the de-

composition solution is business process language-independent and is suitable for both

processes defined in the design and implementation phase of the BPM lifecycle. In order

to work with existing business process languages, transformations are needed for convert-

ing an existing business process language into the intermediate model and back, the so

called lifting and ground transformation, respectively.

An analysis was performed to identify the decomposition rules that should be supported.

From these rules, a selection was made for the implementation of the transformation. The

algorithm that was used for the decomposition transformation was first implemented us-

ing graph transformations. After that, the algorithm was implemented in Java. We also

built a data verification algorithm to verify if data restrictions were violated as a result of

the decomposition transformation.

We selected Amber [24] as the business process language, and developed the lifting and

grounding transformations for this language. Algorithms were designed for replacing con-

ditional, parallel and loop nodes by block structured elements, and a data dependency

analysis algorithm was designed for discovering data dependencies between activities.

111



112 CHAPTER 10. CONCLUSIONS

We tested the decomposition framework on multiple examples. In this thesis, we used the

talent show audition case study, to show how the framework can be applied to real-life

business processes.

10.2 Answers to the research questions

The research questions that we defined for this thesis have been answered:

RQ1. Which approaches are available for decomposing a business process?
In Chapter 3.2, we identified related work on the decomposition of processes. Most

of the discovered work focuses on the BPEL [6] language. Our work focuses mainly

on the design level of the BPM lifecycle, since the decision for deployment locations

of data and activities is not only a choice at the implementation level. At the design

level, issues such as security of data and governance rules already influence if activ-

ities can be placed in the cloud or on-premise. The approaches that were used in the

related work focused on language specific issues, whereas general information about

the decomposition of processes was not available. Eventually, we based our inter-

mediate model on models used in related work, and defined our own decomposition

rules.

RQ2. Which transformation rules can be applied to constructs within a business process?
In Chapter 5 we analyzed possible transformation rules for each of the constructs

that are available in our intermediate language. We made a selection from these

solutions for our decomposition transformation and implemented them.

RQ3. How to deal with data restrictions when decomposing a business process?
In order to identify the consequences for data restrictions when decomposing a busi-

ness process, data dependencies were added to the intermediate model for capturing

the data relations between nodes in the process. The data dependencies were defined

by performing a data analysis on the original process. After the execution of the de-

composition transformation, a data verification algorithm is used for validating that

no data restrictions were violated during the transformation.

RQ4. How to verify the correctness of the decomposition solution?
We analyzed the main transformation rules for each of the types of nodes that are

available in the intermediate model. The transformation rules are recursively ap-

plied to graphs and graph fragments within composite constructs. By taking the re-

sult of the decomposition transformation and replacing the communicators by con-

trol edges, the original process can be obtained. This means that during the trans-

formation, no information is lost from the process and the behavior of the process



10.3. FUTURE WORK 113

has not changed. In future work, formal verification can be used for proving the

correctness of the decomposition transformation.

10.3 Future Work

During the implementation of our work, we identified several research opportunities for

future work:

Implementation
In our work, we focused on the design level of the BPM lifecycle and on the decom-

position rules for business processes. Deployment of the processes on-premise and

in the cloud, however, has not been tested, since our base language is not executable.

By choosing for an executable business process language as base language for the lift-

ing and grounding transformations, the deployment of the newly created processes

can be tested and the behavior of the newly created processes can be compared with

the original process at runtime.

Extend intermediate model
Before we defined our intermediate model, we selected requirements for this model,

namely a subset of the workflow patterns in [23]. In future work, the intermediate

model can be extended to support more workflow patterns. In addition, the model

can be extended to model exceptional behavior. This extension is needed when deal-

ing with process languages such as WS-BPEL [6] or BPMN2.0 [5, 25].

Implement additional decomposition rules
In our work, we performed an analysis of possible decomposition rules. We iden-

tified solutions and made design decisions on these solutions. The decomposition

transformation can be extended with more complete transformations, such as the

support of composite constructs in which the start and end nodes have different dis-

tribution locations.

Extend distribution locations
Our work considers two possible distribution locations: the cloud an on-premise.

In future work, the number of distribution locations could be extended. This gives

organizations the opportunity to use multiple cloud vendors and define multiple

on-premise locations, for example for distributing parts of a business process to dif-

ferent departments within an organization, or distributing parts of a process to other

organizations.

Calculation and recommendations
In our work, we did not focus on the actual costs of the original process and the



114 CHAPTER 10. CONCLUSIONS

created processes. In future work, a calculation framework can be designed and

implemented to take costs into account. In addition, the framework should give

recommendations concerning which activities or data should be placed at which lo-

cation. Formulas for calculating the actual costs of distributing activities and data

in the cloud were defined in [4]. These formulas can be extended and used for the

calculation framework. Research is needed to identify all the factors that influence

the costs of using BPM on-premise or in the cloud.



A. Graph transformation

During this project we used Groove [30] for implementing the graph transformations. The

graph transformations were only used to test our transformation strategy and for more

formally defining our transformation steps. In the remainder of this chapter we introduce

the concept of graph transformations, show the type graph that was used and the rules

that were created for our decomposition transformation.

A.1 Introduction

Groove [30] is the graph transformation tool that was used for testing and implementing

our decomposition transformation. We will give a very brief overview of the concepts that

can be expressed with the language. More information about graph transformations can

be found in [30].

A graph transformation consists of an initial model and a set of rules that can be applied

to the graph. Each rule matches a pattern in the source graph and makes changes to the

graph. The rules are composed graphically in Groove. A type graph is used for capturing

the possible nodes and relations that may occur in the graph.

A graph transformation rule may consists of:

• Matching elements
Elements that should be matched in the graph. These elements are displayed in

Groove in gray. Relations between elements that are matched are displayed by black

lines.

• Removing elements
Elements that are marked for deletion are colored blue. The transformation engine

will match the elements in the graph and eventually delete them when executing the

rule.

• Creating elements
The green elements in the transformation rule are the elements that will be created

by the transformation engine, when executing the rule.

• Embargo
An embargo can be used to define elements or relations that should not be present

in the graph.

115



116 APPENDIX A. GRAPH TRANSFORMATION

A.2 Type Graph

DataDependency

LoopNode

evaluateAfter

evaluateBefore

ConditionalNodeFlowNode

ComplexNodeCommunicator

SequentialNode

Activity

End

Start

Node

Cloud

OnPremise

name: string

Partition

Transformation

Decomposition

Finished

RemovePartitions

Invoke Receive Reply

DataItem

name: string

dataItem

send branch

false

contains

next

from

loopbranch

true

end

to

start

Figure A.1: Type Graph of the intermediate model in Groove

Figure A.1 shows the type graph that is used for the graph transformation. In this section

we give an overview of the types that are defined in the typegraph and the relation between

the elements.

A graph model consists of nodes which are connected to each other by edges. A process

does always start with a “Start” node and ends with an “End” node. The following nodes

are available in the type graph:

Node
The “Node” type is an abstract type from which all the possible node types inherit. The

type is provided with two possible flags (OnPremise and Cloud) for marking a node with

its distribution location. In addition, a name attribute is added to the type, to be able to

attach an identifier to a node.

SequentialNode
“SequentialNode” is an abstract subtype of “Node”, which is used as parent node for all



A.2. TYPE GRAPH 117

types that have a direct successor node. As a consequence, inheritance from this type

has an “next” edge, which points to the successor node. The only node type that does

not inherit from the “SequentialNode” type is the “End” node, since it does not have a

successor.

• Start
“Start” nodes are used for marking the beginning of a process. Not only the main

process starts with this node, but also branches of composite constructs start with a

“Start” node.

• Activity
Activities within a process are modeled by using “Activity” nodes.

• Communicator
Three types of communicators are available in the type graph: “Invoke”, “Receive”

and “Reply”. The nodes correspond to the nodes defined in the intermediate model.

A communicator has an incoming and/or outgoing send node, which defines com-

munication between two communicators. The intuition of the “Invoke” node is that,

when the node only has an outgoing send edge, the process is asynchronous and con-

tinues after sending a request to another process. When the node has an outgoing

send edge and an incoming send edge, the node first invokes the other process and

waits until the “reply” node replies to the “invoke” node.

• Partition
A “Partition” node is used for grouping sequences of nodes with the same distri-

bution location. The node has outgoing “contains” edges to all the nodes that are

contained by the partition. The start and end node of a partition are marked with an

additional start and end edge.

• Complex nodes
“ComplexNode” Is the super type for nodes with multiple branches. The outgoing

edges defined for this type are used in combination with specific sub types of the

node. The choice has been made to define these edges on the abstract “ComplexN-

ode” type, even when they are not valid for certain sub constructs, to avoid that

additional transformation rules need to be defined for each of the specific types. The

following node types inherit from the “ComplexNode” type:

– FlowNode
A “FlowNode” is used for defining parallel behavior. The node has two or more

branch edges, which point to subprocesses that are executed in parallel. The

outgoing next edge of the node corresponds to the path which is taken after

execution of both branches is finished. Instead of using a join node, the intuition



118 APPENDIX A. GRAPH TRANSFORMATION

End

Start

Activity

OnPremise

name = "act1"

ConditionalNode

OnPremise

Activity

OnPremise

name = "act3"

Start

Activity

Cloud

name = "act2a"

End

Start

Activity

Cloud

name = "act2b"

End

next

next

true

next
next

next

next

next

next

false

(a) Situation with a conditional construct

End

Activity

Cloud

name = "actLoop"

Start

Activity

OnPremise

name = "act2"

LoopNode

OnPremise

evaluateBefore

Activity

OnPremise

name = "act1"

Start

End

next

next

loopbranch

next
next

nextnext

(b) Situation with a loop

Figure A.2: Type Graph of the intermediate model in Groove

of the construct is that the “FlowNode” waits until both branches are finished,

before the next edge is followed.

– ConditionalNode
The “ConditionalNode” is used for defining conditional behavior. The node has

two outgoing edges, labeled with either true or false, which correspond to the

evaluated condition in the “ConditionalNode”. Likewise as with the “FlowN-

ode”, the “ConditionalNode” defines a next edge, which points to the path that

is taken after the branch is executed. An example of usage of conditional con-

structs in our graph model is shown in Figure A.2a.

– LoopNode
The “LoopNode” is used for defining loops in the graph. The node has an out-

going loopbranch edge, which points to the subprocess which is executed in

the loop. The node can be marked with a evaluateAfter or evaluateBefore flag,

which defines if the condition should be evaluated at the beginning of the loop



A.3. TRANSFORMATION RULES 119

or at the end of the loop. The next edge points to the node that are executed

when the loop condition does not longer hold. An example of a graph with a

loop is shown in Figure A.2b

DataDependency
A “DataDependency” can be used for modeling data dependencies between nodes. A data

dependency between two nodes is created by creating a “DataDependency” object which

has an incoming from edge originating from the node in which a certain data item is de-

fined or changed. The outgoing to edge points to the node which uses the data item. The

data dependency also points to a “DataItem” object, which contains the data item that is

used.

Transformation
The “Transformation” type is used during the graph transformation for marking the phase

of the transformation. The graph transformation consists of two phases: the decomposi-

tion phase and the partition removal phase. The rules of the transformation are prioritized

to define the execution sequence of the rules. Some rules defined in the phases might con-

flict. For example, in the decomposition phase the graph transformation tries to define

partitions for adjacent nodes with the same distribution location. In the removal phase

however, these partitions are merged and removed again. By removing a partition, the

earlier defined rules in the decomposition phase are applicable again, which might cause

an infinite loop in the graph transformation. A solution would be to split the phases into

two separate transformations, but Groove has no support for this. Instead, we decided to

introduce a specific node for marking the current phase of the transformation. A “Trans-

formation” type is created a the beginning of the overall transformation, which defines the

state in which the graph transformation is working. During the decomposition phase, only

decomposition rules are applicable and during the partition removal phase, the decompo-

sition rules are disabled.

A.3 Transformation Rules

A.3.1 Phases and priorities

The graph transformation consists of two phases. At first, the decomposition phase is

used in which nodes are grouped in partitions and communicators between partitions are

created. The second phase is the partition removal phase, in which all the partitions are

removed again, so that only the processes and communication edges between the processes

remain.

Table A.1 shows an overview of all the rules that are used and the priority of the rules.



120 APPENDIX A. GRAPH TRANSFORMATION

Rules with higher priority take precedence over rules with lower priority. The execution

sequence of rules with the same priority is at random.

Phase Rule name Priority

Decomposition startDecompositionPhase 8

Decomposition replaceCompositeNodes 7

Decomposition mergePartitions 7

Decomposition addActivityToPartition 6

Decomposition createStartPartition 5

Decomposition createFollowUpPartition 5

Decomposition createCommunicatorBranch 4

Decomposition createCommunicator 4

Partition Removal startPartitionRemovalPhase 3

Partition Removal removePartition 2

Partition Removal removeFirstPartition 1

Partition Removal finishTransformation 0

Table A.1: Transformation rules with their priority

In the remainder of this section we will explain each of the transformation rules in more

detail.

A.3.2 Rules

Rule startDecompositionPhase (Priority 8)

This rule starts the decomposition phase. The constraint in the rule specifies that their

should not be any transformation currently going on and their should not be communica-

tors, since communicators indicate that the process is already a collaboration with multi-

ple processes. A transformation node is created and the decomposition phase is selected

as next phase in the transformation. Figure A.3 shows the graphical representation of the

rule.

Communicator

Transformation Transformation

Decomposition

Figure A.3: Definition of startDecompositionPhase in Groove



A.3. TRANSFORMATION RULES 121

Rule replaceCompositeNodes (Priority 7)

When dealing with a complex node, the start nodes of the branches should be marked

with the same distribution location as the complex node itself. This is necessary in a later

stadium of the transformation, when partitions are created. The rule matches the distribu-

tion location, which is stored in the distrLoc variable. When the start node in a branch is

not yet marked with the distribution location, the distribution location is set to the node.

The graphical representation of the rule is shown in Figure A.4.

Node

Start

+ ?distrLoc

! ?distrLoc

ComplexNode

?distrLoc

Transformation

Decomposition

next

branch|loopbranch|true|false

Figure A.4: Definition of replaceCompositeNodes in Groove

Rule mergePartitions (Priority 7)

The mergePartitions rule is performed when two sequential partitions have the same dis-

tribution location. The second partition will be removed and all the nodes from the second

partition will be added to the first partition. In addition, a “next” edge will be created

from the “end” node of the first partition to the “start” node of the second partition. A

new “end” edge will be created from the first partition to the last node of the partition that

will be removed. The “next” edge of the first partition will point to the succeeder of the

partition that will be removed. The graphical representation of the rule is shown in Figure

A.5.

Rule addActivityToPartition (Priority 6)

When a Partition is followed by SequentialNode with the same distribution location as

the Partition, the SequentialNode should be added to the partition. A new next edge will

be created between the last node in the Partition and the SequentialNode. The partition

needs a new end edge pointing to the SequentialNode and the partitions next edge points

now to the succeeder of the SequentialNode. The graphical representation of the rule is

shown in Figure A.6.



122 APPENDIX A. GRAPH TRANSFORMATION

SequentialNode

Node

∀

Node

Node

Partition

?distrLoc

Partition

?distrLoc

SequentialNode

next

next

end

@

contains

contains

end

end

next start

next

Figure A.5: Definition of mergePartitions in Groove

SequentialNode

Node

SequentialNode

?distrLoc

Partition

?distrLoc

Transformation

Decomposition

end

next

next

end

next

next

contains

Figure A.6: Definition of addActivityToPartition in Groove

Rule createStartPartition (Priority 5)

The createStartPartition rule creates a partition for the first node that is defined after a

Start node. The rule ensures that the node is not yet placed in a partition. A new partition

is created and the edges “start”, “contains” and “end” are created. The “next” edges from

the Start node to the SequentialNode and from the SequentialNode to the following Node

(n2) are removed and new “next” edges are placed from the Start node to the Partition and

from the Partition to the following. The graphical representation of the rule is shown in

Figure A.7.



A.3. TRANSFORMATION RULES 123

Partition

Start

SequentialNode

?distrLoc

Partition

?distrLoc

Node

Transformation

Decomposition

next

=

next

contains

end

start
next

next

Figure A.7: Definition of createStartPartition in Groove

Rule createFollowUpPartition (Priority 5)

When a Partition is followed by a SequentialNode, with a different distribution location as

the Partition and the SequentialNode is not yet placed in a Partition, then a new Partition

should be created for the node. The new Partition will be marked with the distribution lo-

cation of the SequentialNode and will point to the SequentialNode with the “start”, “con-

tains” and “end” edges. A new “next” edge will be created between the partitions. The

graphical representation of the rule is shown in Figure A.8.

Transformation

Decomposition

Node

Partition

?distrLoc
SequentialNode

?distrLoc
Partition

Partition

?distrLoc2
next

start

next

end

=

next

contains

next

Figure A.8: Definition of createFollowUpPartition in Groove

Rule createCommunicatorBranch (Priority 4)

The createCommunicatorBranch rule is used when the first partition (p1) inside a branch

has a different distribution location as the complex construct from which the branch origi-

nates. In this situation a new partition (p2) will be added to the branch in which an Invoke



124 APPENDIX A. GRAPH TRANSFORMATION

node is created for invoking the partition p1. Partition p1 will be extended with a Receive

and a Reply node. The graphical representation of the rule is shown in Figure A.9.

Transformation

Decomposition

Partition

?distrLoc

Invoke

?distrLoc

Partition

?distrLoc2

! ?distrLoc

Start

?distrLoc

Node

SequentialNode

SequentialNode

Receive

?distrLoc2

Reply

?distrLoc2

end

contains

end

contains

end
next

start

start

next

next

send

start

next

next

next

send

contains

Figure A.9: Definition of createCommunicatorBranch in Groove

Rule createCommunicator (Priority 4)

The createCommunicator rule creates communication nodes between two partitions with

a different distribution location. The first partition will be extended with an Invoke node,

which synchronously invokes the second partition. The second partition will be extended

with a Receive and a Reply node. The second partition will be removed from the original

process, since it is now an individual process. The graphical representation of the rule is

shown in Figure A.10.

Rule startPartitionRemovalPhase (Priority 3)

The rule is used for changing from the decomposition to the remove partitions phase. The

flag of the Transformation node is changed by the rule. The graphical representation of



A.3. TRANSFORMATION RULES 125

Transformation

Decomposition

Invoke

?distrLoc

Partition

?distrLoc2

Partition

?distrLoc

Start

Node

SequentialNode

SequentialNode

Receive

?distrLoc2

Reply

?distrLoc2

SequentialNode

contains

next

next

next

start

contains

next

start

next

contains

next

sendend

end

next

end

send
end

Figure A.10: Definition of createCommunicator in Groove

the rule is shown in Figure A.11.

Transformation

− Decomposition

+ RemovePartitions

Figure A.11: Definition of startPartitionRemovalPhase in Groove

Rule removePartition (Priority 2)

The removePartition rule removes a partition and connects the contents of the partition

with the node before the partition and the node after the partition. The graphical repre-

sentation of the rule is shown in Figure A.12.

Rule removeFirstPartition (Priority 1)

This rule matches Partitions that have no incoming and outgoing next nodes. The graphi-

cal representation of the rule is shown in Figure A.13.



126 APPENDIX A. GRAPH TRANSFORMATION

Transformation

RemovePartitions

Partition

SequentialNode

SequentialNode

SequentialNode

Node

start

next

next

end

next

next

Figure A.12: Definition of removePartition in Groove

Node

SequentialNode

Partition
Transformation

RemovePartitions

next

next

Figure A.13: Definition of removeFirstPartition in Groove

Rule finishTransformation (Priority 0)

When all the previous rules are applied, the finishTransformation rule is used to update

the Transformation node and change the phase from the remove partitions phase to fin-

ished. The graphical representation of the rule is shown in Figure A.14.

Transformation

− RemovePartitions

+ Finished

Figure A.14: Definition of finishTransformation in Groove

A.4 Example

In Figure A.15, an example is shown of a process defined using our type graph. By apply-

ing the introduced rules, the graph in Figure A.16 is obtained.



A.4. EXAMPLE 127

End

Activity

Cloud

name = "Act2b"

End

Start

LoopNode

Cloud

evaluateBefore

Activity

Cloud

name = "Act2b"

End

Start

Activity

OnPremise

name = "Act2a"

End

Start

FlowNode

OnPremise

name = "Flow1"

Activity

OnPremise

name = "Act1"

Start

next

next

loopbranch

next

next

next

next

next

next

branch

next

next

branch

Figure A.15: Example of a process in Groove



128 APPENDIX A. GRAPH TRANSFORMATION

Reply

Cloud

Invoke

OnPremise

Receive

Cloud

Reply

Cloud

Invoke

OnPremise

Receive

Cloud

Activity

Cloud

name = "Act2b"

End

End

FlowNode

OnPremise

name = "Flow1"

Start

OnPremise

Activity

Cloud

name = "Act2b"

LoopNode

Cloud

evaluateBefore

Activity

OnPremise

name = "Act2a"

Start

Cloud

End

Activity

OnPremise

name = "Act1"

End

Start

Start

OnPremise

branch

loopbranch

next

branch

next

next

nextnext

nextsend

next

next

next

next

next

next

send

next

send

next

send

Figure A.16: Result after the transformation in Groove



Bibliography

[1] M. Weske, Business Process Management: Concepts, Languages, Architectures. Springer,

2007.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the clouds: A berkeley view

of cloud computing,” Tech. Rep. UCB/EECS-2009-28, EECS Department, University

of California, Berkeley, Feb 2009.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute
of Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[4] Y.-B. Han, J.-Y. Sun, G.-L. Wang, and H.-F. Li, “A cloud-based bpm architecture with

user-end distribution of non-compute-intensive activities and sensitive data,” J. Com-
put. Sci. Technol., vol. 25, no. 6, pp. 1157–1167, 2010.

[5] O. M. Group, “Business Process Model and Notation (BPMN) Version 2.0.” http:

//www.omg.org/spec/BPMN/2.0/PDF, Jan. 2011.

[6] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, Sterling,

D. König, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu, “Web Services

Business Process Execution Language Version 2.0.” OASIS Committee, 2007.

[7] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto, “Web

Services Choreography Description Language Version 1.0.” World Wide Web Consor-

tium, Candidate Recommendation CR-ws-cdl-10-20051109, 2005.

[8] M. P. Papazoglou, Web Services - Principles and Technology. Prentice Hall, 2008.

[9] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-

search challenges,” Journal of Internet Services and Applications, vol. 1, pp. 7–18, 2010.

10.1007/s13174-010-0007-6.

[10] H. Jin, S. Ibrahim, T. Bell, W. Gao, D. Huang, and S. Wu, “Cloud types and ser-

vices,” in Handbook of Cloud Computing (B. Furht and A. Escalante, eds.), pp. 335–355,

Springer US, 2010.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of doing science

on the cloud: the montage example,” in Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC ’08, (Piscataway, NJ, USA), pp. 50:1–50:12, IEEE Press, 2008.

[12] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing composite web services.”

online, 2002.

129

http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF


130 BIBLIOGRAPHY

[13] M. G. Nanda and N. Karnik, “Synchronization analysis for decentralizing composite

web services,” in Proceedings of the 2003 ACM symposium on Applied computing, SAC

’03, (New York, NY, USA), pp. 407–414, ACM, 2003.

[14] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution of composite

web services,” in Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004 (J. M.

Vlissides and D. C. Schmidt, eds.), (Vancouver, BC, Canada), pp. 170–187, ACM,

2004.

[15] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized orchestration

of composite web services,” in Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, WWW Alt. ’04, (New York, NY, USA),

pp. 134–143, ACM, 2004.

[16] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Orchestrating composite web ser-

vices under data flow constraints,” in Proceedings of the IEEE International Conference
on Web Services, ICWS ’05, (Washington, DC, USA), pp. 211–218, IEEE Computer

Society, 2005.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph and

its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, pp. 319–349, July

1987.

[18] R. Khalaf and F. Leymann, “E role-based decomposition of business processes using

bpel,” in Proceedings of the IEEE International Conference on Web Services, ICWS ’06,

(Washington, DC, USA), pp. 770–780, IEEE Computer Society, 2006.

[19] R. Khalaf, O. Kopp, and F. Leymann, “Maintaining data dependencies across bpel

process fragments,” in Proceedings of the 5th international conference on Service-
Oriented Computing, ICSOC ’07, (Berlin, Heidelberg), pp. 207–219, Springer-Verlag,

2007.

[20] O. Kopp, R. Khalaf, and F. Leymann, “Deriving explicit data links in ws-bpel pro-

cesses,” in Proceedings of the 2008 IEEE International Conference on Services Computing
- Volume 2, SCC ’08, (Washington, DC, USA), pp. 367–376, IEEE Computer Society,

2008.

[21] L. Baresi, A. Maurino, and S. Modafferi, “Towards distributed bpel orchestrations,”

ECEASST, vol. 3, 2006.

[22] W. Fdhila, U. Yildiz, and C. Godart, “A flexible approach for automatic process de-

centralization using dependency tables,” in ICWS, pp. 847–855, 2009.



BIBLIOGRAPHY 131

[23] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,

“Workflow patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[24] H. Eertink, W. Janssen, P. Luttighuis, W. Teeuw, and C. Vissers, “A business process

design language,” in FM99 Formal Methods, Springer Berlin / Heidelberg, 1999.

[25] O. M. Group, “BPMN 2.0 by Example Version 1.0 (non-normative).” http://www.

omg.org/spec/BPMN/2.0/examples/PDF, Jan. 2002.

[26] R. Seguel Perez, Business protocol adaptors for flexible chain formation and enactment.
PhD thesis, Eindhoven University of Technology, 2012.

[27] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE,

vol. 77, pp. 541–580, Apr. 1989.

[28] K. Jensen, “Coloured petri nets,” in Petri Nets: Central Models and Their Properties
(W. Brauer, W. Reisig, and G. Rozenberg, eds.), vol. 254 of Lecture Notes in Computer
Science, pp. 248–299, Springer Berlin / Heidelberg, 1987. 10.1007/BFb0046842.

[29] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “The difference between graph-

based and block-structured business process modelling languages,” Enterprise Mod-
elling and Information Systems Architectures, vol. 4, no. 1, pp. 3–13, 2009.

[30] A. Rensink, I. Boneva, H. Kastenberg, and T. Staijen, “User manual for the groove tool

set,” 2011.

http://www.omg.org/spec/BPMN/2.0/examples/PDF
http://www.omg.org/spec/BPMN/2.0/examples/PDF

	Frontpage
	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Approach
	1.4 Structure

	2 Background
	2.1 Business Process Management
	2.1.1 BPM lifecycle
	2.1.2 Orchestration vs. Choreography
	2.1.3 Business Process Management System (BPMS)

	2.2 Cloud Computing
	2.2.1 General benefits and drawbacks
	2.2.2 Service models
	2.2.3 Cloud types

	2.3 BPM in the cloud
	2.3.1 Combining traditional and cloud-based BPM


	3 Approach
	3.1 General development goals
	3.2 Related Work
	3.3 Transformation chain

	4 Intermediate Model
	4.1 Requirements
	4.2 Model selection
	4.3 Model definition
	4.3.1 Node types
	4.3.2 Edge types

	4.4 Formal definition
	4.5 Mapping example

	5 Decomposition Analysis
	5.1 Single activity
	5.2 Sequential activities
	5.3 Composite constructs
	5.3.1 Category 1: Moving the composite construct as a whole
	5.3.2 Category 2: Start/end nodes with the same distribution location
	5.3.3 Category 3: Start/end node with different distribution location

	5.4 Loops
	5.4.1 Loop with condition evaluation before branch execution
	5.4.2 Loop with condition evaluation after branch execution

	5.5 Design decisions

	6 Decomposition Implementation
	6.1 Java classes
	6.2 Transformations
	6.3 Identification phase
	6.4 Partitioning phase
	6.5 Communicator node creation phase
	6.6 Choreography creation phase
	6.7 Data dependency verification
	6.8 Conclusion

	7 Business Process Language Selection
	7.1 Amber
	7.1.1 Actor domain
	7.1.2 Behavior domain
	7.1.3 Item domain
	7.1.4 BiZZdesigner

	7.2 Mappings

	8 Auxiliary transformations
	8.1 Approach
	8.2 Export/Import
	8.3 Parallel/Conditional block replacement
	8.3.1 Analysis
	8.3.2 Algorithm

	8.4 Loop construct replacement
	8.4.1 Analysis
	8.4.2 Algorithm

	8.5 Data analysis
	8.5.1 Mark execution guarantees
	8.5.2 Create data dependencies

	8.6 Grounding
	8.6.1 Export/Import
	8.6.2 BiZZdesigner script restrictions


	9 Case study
	9.1 Talent show audition process
	9.2 Marking activities and data items
	9.3 Lifting
	9.3.1 Export
	9.3.2 Import
	9.3.3 Replace constructs
	9.3.4 Data dependency analysis

	9.4 Decomposition
	9.4.1 Identification
	9.4.2 Partitioning
	9.4.3 Creation of communicator nodes
	9.4.4 Choreography creation
	9.4.5 Data restriction verification

	9.5 Grounding
	9.5.1 Export
	9.5.2 Import

	9.6 Example of data restriction violation
	9.7 Conclusion

	10 Conclusions
	10.1 General Conclusions
	10.2 Answers to the research questions
	10.3 Future Work

	Appendix A Graph transformation
	A.1 Introduction
	A.2 Type Graph
	A.3 Transformation Rules
	A.3.1 Phases and priorities
	A.3.2 Rules

	A.4 Example

	Bibliography

