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Abstract 
 

This case-study is inspired by a practical problem that was identified by Epiqo. Epiqo is 

an Austrian company that wants to expand to other countries within Europe and to 

other domains within Austria with their e-Recruiter system. For the e-Recruiter system 

to work, it needs domain specific ontologies. These ontologies need to be built from 

the ground up by domain experts, which is a time-consuming and thus expensive 

endeavor. This fueled the question from Epiqo whether this could be done (semi-

)automatically.  

The current research presents a solution for semi-automatically enriching domain 

specific ontologies. We adapt the general Ontology-Based Information Extraction 

(OBIE) architecture of Wimalasuriya and Dou (2010), to be more suitable for domain-

specific applications by automatically generating a domain-specific semantic lexicon. 

We then apply this general solution to the case-study of Epiqo. Based on this 

architecture we develop a proof-of-concept tool and perform some explorative 

experiments with domain experts from Epiqo.  We show that our solution has the 

potential to provide qualitative “good” enough ontologies to be comparable to 

standard ontologies.   



 

8 

  



 

9 

Preface 
 

It has been a long road for me from my earliest days in the feeble Dutch education 

system up until this point. Despite all the opportunities that were available to me in 

life, the many, many obstacles I had to overcome have not made things easy. I am very 

proud to have achieved this milestone. But as Bill Clinton once said, “Success is not the 

measure of a man but a triumph over those who choose to hold him back.”  

 

First and foremost I would like to thank Klaus Furtmueller of Epiqo for his patience, 

support and wisdom, that he granted me during my masters project. Further, I would 

like to thank my supervisors of the University of Twente, Ivan Kurtev and Djoerd 

Hiemstra, for their valuable comments and guidance. I would also like to thank my 

family, friends and girlfriend, for their support and believe in my abilities. Lastly, I want 

to specifically thank Sander Nouta for his understanding and help. 

 

Joost F. Wolfswinkel, 2012, Enschede. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

10 

  



 

11 

Table of Contents 
 

Abstract ............................................................................................................................. 7 

Preface .............................................................................................................................. 9 

Table of Contents ............................................................................................................ 11 

1. Introduction ............................................................................................................ 15 

1.1. Background ..................................................................................................... 15 

E-Recruiting ............................................................................................................. 15 

Ontologies ............................................................................................................... 15 

Information Extraction and Ontology-Based Information Extraction ..................... 16 

Epiqo ....................................................................................................................... 16 

1.2. Problem Statement ......................................................................................... 17 

1.3. Research Objectives and Approach ................................................................ 17 

1.4. Outline ............................................................................................................. 18 

2. Related work ........................................................................................................... 19 

2.1. Information Extraction .................................................................................... 19 

2.2. Ontologies ....................................................................................................... 20 

2.3. Ontology Enrichment ...................................................................................... 20 

2.4. Ontology-Based Information Extraction ......................................................... 20 

General .................................................................................................................... 20 

IE in the OBIE field ................................................................................................... 23 

2.5. Performance Measurement ............................................................................ 23 

Precision and recall ................................................................................................. 23 

Complexity .............................................................................................................. 24 

3. Case study Epiqo ..................................................................................................... 25 

3.1. Environment .................................................................................................... 25 

Drupal ...................................................................................................................... 25 

E-Recruiter System .................................................................................................. 25 

3.2. Requirements .................................................................................................. 26 

Functional ................................................................................................................ 26 

Quality ..................................................................................................................... 27 

Platform .................................................................................................................. 27 

Process .................................................................................................................... 28 

3.3. Expectations of Epiqo ...................................................................................... 28 



 

12 

3.4. Architecture for Epiqo ..................................................................................... 28 

General System Architecture .................................................................................. 28 

DomainWordNet ..................................................................................................... 32 

DomainWordNet Builder Component .................................................................... 32 

Preprocessor Component ....................................................................................... 32 

Information Extraction Component ........................................................................ 34 

Suggestion Manager Component ........................................................................... 34 

3.5. Conclusions ..................................................................................................... 37 

4. Proof-of-concept Tool for Epiqo ............................................................................. 39 

4.1. The tool ........................................................................................................... 39 

4.2. DomainWordNet ............................................................................................. 40 

4.3. User Interface .................................................................................................. 40 

4.4. Summary ......................................................................................................... 41 

5. Experiments with Tool ............................................................................................ 43 

5.1. Rationale experiments .................................................................................... 43 

5.2. Experimental design ........................................................................................ 43 

5.3. Execution ......................................................................................................... 47 

Measurement 1 ....................................................................................................... 48 

Measurement 2 ....................................................................................................... 52 

Measurement 3 ....................................................................................................... 56 

5.4. Results and discussion..................................................................................... 60 

6. Conclusion ............................................................................................................... 63 

6.1. Contribution .................................................................................................... 63 

6.2. Limitations ....................................................................................................... 64 

6.3. Future work ..................................................................................................... 64 

Updating proof-of-concept ..................................................................................... 64 

Additional experiments ........................................................................................... 64 

Thoughts on improving/altering solution ............................................................... 65 

8. References ............................................................................................................... 67 

Appendices ...................................................................................................................... 71 

A. Task Sheet Domain Expert Experiment................................................................... 71 

B. Metrics Measurement 1-100 .................................................................................. 73 

C. Absent term listings measurement 1-100 .............................................................. 75 

D. Metrics Measurement 1-1.000 ............................................................................... 86 



 

13 

E. Absent term listings Measurement 1-1.000 ........................................................... 88 

F. Golden Standard Ontology GS ................................................................................. 96 

G. Measurements GS .................................................................................................. 99 

H. Golden Standard Ontologies GST100 and GST1.000 ............................................ 100 

I. Measurements GST100 and GST1.000 ................................................................... 103 

J. Metrics Measurement 3-100 ................................................................................. 104 

K. Metrics Measurement 3-1.000 ............................................................................. 106 

 

  



 

14 

  



 

15 

1. Introduction 
 

This chapter provides the background in section 1.1, the problem statement and 

research question in section 1.2, objectives and approach of the current research in 

section 1.3, and concludes with the outline of this report in section 1.4. 

 

1.1. Background 
 

This sub-section gives a short overview of the e-Recruiting domain, ontologies, the 

Information Extraction (IE) and the Ontology-Based Information Extraction (OBIE) 

fields, and the company Epiqo (where the case-study was performed).  

 

E-Recruiting 

 

Academically, e-Recruiting is a relatively young research field (Galanaki, 2000), with the 

first publications dating from 1998 (Bratina, 1998; Hogler, 1998). In the professional 

field, publications date back as far as 1984 (Gentner, 1984). “E-Recruiting is the online 

attraction and identification of jobseekers using corporate or commercial recruiting 

websites, electronic advertisements on other websites; or an arbitrary  combination of 

these channels including optional methods such as remote interviews and assessments, 

smart online search agents or interactive communication tools between recruiter and 

jobseeker/applicant with the goal of effectively selecting the most suitable candidate 

for a vacancy.” (Wolfswinkel et al., 2010) To clarify, a jobseeker is a person that is 

looking for a job. When this jobseeker applies for a job, he/she becomes an applicant. 

Recruiters are people who actively and passively seek people that somehow, at one 

point in the future become wanted by the organization(s) they work for. There are two 

types of e-Recruiting websites: commercial websites and corporate websites. 

Commercial e-Recruiting websites are portals that bring jobseekers and organizations 

together, for example monsterboard.nl. Corporate e-Recruiting websites are run by the 

organizations that seek to hire themselves. These corporate e-Recruiting websites are 

often part of their main website, for instance the career section of shell.com. 

 

Ontologies 

 

The word “ontology” is used in a wide range of different contexts, all defining 

ontologies differently. In this research we regard an ontology as a formal and explicit 

representation of knowledge in a certain domain. This knowledge is represented by 

concepts that have relationships with each other (Gruber, 1993; Studer et al., 1998). 

Ontologies can be used to represent some domain for software – this is the way that 

ontologies will be used for this system – or for communication purposes between 

human beings, in order for them to have the same conceptualizations of the domain 
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the ontology represents. This opposed to the Ontology from philosophy, which is about 

the nature of being (Aristotle, 350 B.C.E.).  

 

Information Extraction and Ontology-Based Information Extraction 

 

Information extraction (IE) is the automatic extraction of information from natural 

language sources. By processing the natural language texts, IE aims to identify 

(instances of) certain classes of objects and/or events and their possible relationships 

(Riloff, 1999; Russell and Norvig, 2003). IE is usually considered to be a subfield of 

Natural Language Processing (NLP).  

 

NLP is the field regarding the interaction between machines and natural languages. A 

subfield of IE called Ontology-Based Information Extraction (OBIE) uses ontologies for 

the information extraction process or even for constructing ontologies (Wimalasuriya 

and Dou, 2010). 

 

Epiqo 

 

Epiqo is an Austrian company that was founded in 2005, although at that time the 

company was called Pro.Karriere. Epiqo develops and manages web portals like 

absolventen.at. It attracts 60,000 visitors per month and has more than 12.000 

registered applicants, making it the biggest career platform for graduates in Austria. 

The development of this portal entailed, among other things, the development of 

several modules like for instance Rules and Content Taxonomy, which are built as 

Drupal modules as part of Epiqo’s e-Recruiting system “e-Recruiter”. Alongside the 

development of these modules, Epiqo partook in a semantic web research project 

within the Human Research domain. This project resulted in a web crawler that can 

crawl job advertisements, an information extraction engine to extract the needed 

information from these job advertisements, a web service module that communicates 

between Drupal and the crawler, a taxonomy manager to organize the taxonomy and 

an indexer that is based on SoIr, for matching between the résumés and the job 

advertisements. 

 

The vision of Epiqo is to “Develop a powerful, flexible and easy-to-use e-Recruiting 

solution for enterprises and publishers based on Drupal 7.” On top of that, Epiqo wants 

to expand beyond Austria, starting with the Netherlands. Potential customers would be 

organizations interested in: running their own recruiting portal, job boards for 

publishers, niche recruitment sites, customers that want to use it for talent and skills 

management or recruitment micro-sites. Epiqo seeks to develop a new system that will 

consist of a distribution of basic features, with the possibility for customers to request 

additional features. The basic features are job posting and administration, job search 

abilities, a résumé builder, applicant search abilities, an online application process, and 

a dashboard. Additional features are job and applicant recommender options, talent 
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pools, social network integration, a billing system, business intelligence and reporting, 

and data integration and exchange.  

 

1.2. Problem Statement 
 

In practice, ontologies need to be enriched or even build from scratch in various 

domains every day. Normally this is done by domain experts, which is a time-

consuming and thus expensive activity. Epiqo faces the same problem when entering 

new markets, whether it is adding either an additional natural language to an existing 

domain or adding a new domain all together. It costs a considerable amount of time 

and thus money to develop new ontologies, which hinders Epiqo to expand. Therefore, 

Epiqo seeks a way to be able build and/or enrich ontologies quicker. The expectations 

and intentions of semi-automatically enriching and constructing ontologies are that it 

will considerably reduce the required human effort in the process (Luong et al., 2009). 

Summarizing, Epiqo wants to save time and it is hypothesized that enriching ontologies 

semi-automatically for certain domains will be able to deliver this.  

 

This results in the following research question: is semi-automatically enriching 

a given ontology for a certain domain more time-efficient than enriching the 

same ontology manually? 

 

When asking such a question is it paramount that the quality of both ontologies are 

“good” enough for the goal they are created for. In this case, the semi-automatically 

enriched ontology needs to be usable for the use-case of Epiqo. We will use the so-

called completeness and exactness of both ontologies to reason about quality. These 

terms are explained in section 2.5. 

 

1.3. Research Objectives and Approach 
 

The objectives of this research are (1) to develop an approach for semi-automatically 

enriching domain-specific ontologies, (2) to design a software application that will be 

able to do this, (3) built a proof-of-concept of this software application for the Epiqo 

case-study, and (4) performance measurement of time, completeness and correctness 

of the result ontologies when using this proof-of-concept.  

 

First, we turn to extant literature on topics that deal with similar problems and 

research directions. Then, we develop an approach to semi-automatically enrich 

domain-specific ontologies according to the general OBIE architecture. Based on this 

more or less general solution, we design a software application that adheres to our 

architecture and addresses Epiqo’s requirements. We built a proof-of-concept of this 

architecture and finally perform experiments to be able to measure time, 

completeness and exactness. 
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1.4. Outline 
 

The next chapter delineates related work regarding Information Extraction, Ontology 

enrichment, Ontology-Based Information Extraction and Performance Measurement. 

Chapter 3 describes the case-study, the environment, the requirements and the 

architecture. Next, chapter 4 deals with our proof-of-concept. Chapter 5 describes the 

experiments that were performed. Finally, chapter 6 is the concluding chapter which 

describes our contribution, limitations and future work. 
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2. Related work 
 

This chapter delineates literature on topics that deal with similar problems and 

research directions as the current research. The information needed to enrich 

ontologies is mostly available in natural languages, which poses the problem of 

extracting the information from these natural language resources somehow. As said, in 

the literature, this is called Information Extraction (IE).  

 

The search started with ontology enrichment and information extraction. In this search 

we discovered a research field combining these fields called Ontology-Based 

Information Extraction (OBIE) (Wimalasuriya and Dou, 2010). Below a short report on 

our literature search: Information Extraction is described in section 2.1, in section 2.2 

we describe ontologies, then we describe ontology enrichment in general in section 

2.3, section 2.4 deals with OBIE, and finally in section 2.5 relevant performance 

measurements are discussed. 

 

2.1. Information Extraction 
 

As said, IE is the automatic extraction of information from natural language sources. By 

processing the natural language texts, IE aims to identify (instances of) certain classes 

of objects and/or events and their possible relationships (Riloff, 1999; Russell and 

Norvig, 2003). IE is usually considered to be a subfield of Natural Language Processing 

(NLP). IE in practice generally works for restricted domains or niches. The most simple 

IE systems are so-called attribute-based systems, which assume that the entire 

language source deals with one object of which the system attempts to extract 

attributes of this object. Regular expressions can be used to handle information 

collected from the language source. When the natural language source has more than 

one object, so-called relational-based IE systems can be used. Relational-based IE 

systems usually contain cascaded finite-state transducers, which are basically 

concatenations of finite-state automata (FSA) that transform text and pass it on to the 

next FSA. Often used FSA’s include tokenizers, complex word handling, basic group 

handling, complex phrase handling and structure merging. Tokenizers conform the 

stream of characters into tokens like words or numbers. The term complex word 

handling can be confusing, since it deals with combined words or phrases like 

“software engineer” or “joint venture”. Basic group handling divides the identified 

words into groups. These groups are (a subset of): verb, noun, adjective, adverb, 

pronoun, preposition, conjunction and interjection. Complex phrase handling combines 

the basic groups into phrases. Structure merging is the merging of the different 

structures found in complex phrase handling in order to remove redundant 

information (Russell and Norvig, 2003). Another widely used technique is the use of a 

gazetteer list, which is a list of words or phrases that can be recognized in the natural 

language source. In 2003, Gómez-Pérez et al. presented an overview of different 

ontology learning projects regarding the extraction of information from natural 

language sources. The methods needed for obtaining information from the Internet is 
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surveyed by Yang et al. (2003) and Wimalasuriya and Dou (2010), these include various 

classification techniques such as Support Vector Machines (SVM), Hidden Markov 

Models (HMM), Conditional Random Fields (CRF) and Linear Least-Squares Fit. Dumais 

et al. (1998) concluded that SVM are the most accurate and relatively fast to train. SVM 

is a model for machine learning, that divides the input into two groups: relevant and 

non-relevant (Chang and Lin, 2001; Joachims, 1998). Another often used IE method is 

the construction of partial parse trees, which can be seen as a shallow Natural 

Language Processing (NLP). When the natural language source is structured, like HTML 

or XML, the extraction can be easier or additional information can be collected from 

the structure (tags) themselves. Finally, relatively new is the extraction of information 

from the results of queries in web-based search-engines. This is often easily obtainable 

if the search-engines support the use via either REST or SOAP web-services. 

 

2.2. Ontologies 
 

As said, in this research we regard an ontology as a formal and explicit representation 

of knowledge in a certain domain. This knowledge is represented by concepts that 

have relationships with each other (Gruber, 1993; Studer et al., 1998).  

 

2.3. Ontology Enrichment 
 

Little approaches have been presented that discuss the use of machine learning for 

ontology enrichment from Internet sources (Agirre et al., 2000; Omelayenko, 2001). 

Luong et al. (2009) do present a framework for enriching ontologies using the Internet, 

with three major steps. First the Internet is searched and crawled for suitable natural 

language documents based on a relatively small hand-crafted domain ontology. 

Second, the top ten documents of the result of the first step are filtered using SVM 

classification based on the relevance for the domain of the ontology. Third, text mining 

is used to extract information from the result documents of the second step. Text 

mining is a widely used technique to extract tokens from natural language resources in 

a certain domain. The actual enriching of the ontology is not described in this particular 

paper, but suggested as a final step, before starting all over again, with the enriched 

ontology as input ontology.  

 

2.4. Ontology-Based Information Extraction 

General 

 

A subfield of Information Extraction itself called Ontology-Based Information Extraction 

(OBIE) uses ontologies for the information extraction process and/or constructs an 

ontology. With the first approach, formal and explicit concepts from existing ontologies 

are used to guide the information extraction. The latter approach can be performed by 

building an ontology from the ground up, or enriching an existing ontology. OBIE 
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systems can be applied to either unstructured or semi-structured natural language 

texts. An example of an unstructured text is a text file, an example of a semi-structured 

text is a web-page with particular templates. To be able to use an OBIE system, text 

corpa are needed. Unfortunately, due to the youth of the field, there are no 

standardized text corpa available. But even if there would be, when working in a 

certain domain or niche, people often need to define the text corpus themselves 

because standards are not available for that particular domain or niche.  

 

Wimalasuriya and Dou (2010) define a general high-level OBIE architecture to which all 

OBIE systems should comply to. A graphical representation of this architecture can be 

found in figure 2.1. The text input of OBIE systems is usually first preprocessed before 

it goes through the IE module, were the actual extraction of information is performed. 

The ontology itself could be generated internally or by a separate ontology generator, 

which in turn uses a semantic lexicon. Domain experts could help the system build the 

ontology by making decisions for the system or changing the ontology afterwards. In a 

somewhat similar fashion, the domain expert could help the system with the 

information extraction. The output of an OBIE system is the information that is 

extracted from the text input, which can be stored in some sort of knowledge base or 

database. Sometimes, it is even part of some larger query answering system, which a 

user interacts with. 

 

Despite the youth of the OBIE field, it is full of potential (Kietz et al., 2000; Cimiano et 

al., 2004; Maynard et al., 2006). First of all, by automatically processing information 

that is represented in natural language texts, a vast amount of the information on the 

Internet can be accessed, which would not be possible manually. Second, it creates 

possibilities for automatic metadata generation, which contributes enormously to the 

concept of Semantic Web. Third and last, the quality of ontologies can be improved 

when using OBIE for the evaluation of the quality of ontologies (Wimalasuriya and Dou, 

2010). 
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FIGURE 2.1. THE GENERAL ARCHITECTURE OF AN OBIE SYSTEM FROM WIMALASURIYA AND 

DOU (2010) 
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IE in the OBIE field 

 

In section 2.1 IE was briefly introduced. A vast amount of the IE techniques that have 

been developed over the years have been adopted by OBIE systems (Wimalasuriya and 

Dou, 2010). In this subsection we will take a closer look at IE techniques that are of 

special interest for the purpose of the current research.  

 

The earlier mentioned gazetteer lists rely on finite-state automata recognizing words or 

phrases. The words or phrases that the system needs to recognize are somehow 

available to the system in the form of a list. This list is called a gazetteer list. Such lists 

are especially useful in identifying members of a certain category, like countries in 

Europe or former presidents of the United States. For our research, one can imagine 

that domains have certain categories of their own, possibly making gazetteer lists a 

useful method for information extraction. 

 

Analyzing the structure of input documents, like HTML or XML, can be used for two 

purposes. Namely, extracting additional information and pinpointing the location of 

certain information in a text source. In the OBIE field this is often used to fill knowledge 

bases with information from the web. 

 

Querying web-based applications is an upcoming method for extracting information 

from the web (Wimalasuriya and Dou, 2010). With querying web-based applications, 

the web can function as a big corpus of information. As said, querying such applications 

is easier if the search-engines support the use via either REST or SOAP web-services. In 

the OBIE field this is for instance used for collecting additional training samples. One 

can imagine that it is useful to query certain online databases such as a dictionary. 

 

Most OBIE systems use more than one IE technique and even combine techniques to 

get the most suited information possible. 

 

2.5. Performance Measurement 
 

Precision and recall 

 

In the IE field, performance measurement is mostly done using the metrics precision 

and recall. Precision is a measure of exactness, it is the percentage (reflected from 0 to 

1) of relevant items among the items that are retrieved. Recall is a measure of 

completeness, it is the percentage (reflected from 0 to 1) of retrieved relevant items 

compared to the relevant items overall. Usually, IE systems have to make a trade-off 

between precision and recall. Precision can be enhanced by only selecting those items 

that are surely correct, but this obviously reduces recall. Visa versa, enhancing recall 

can be achieved by extracting as much as possible, hereby reducing precision. 

Therefore, the so-called F-Measure is used, which is a weighted average of precision 
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and recall (denoted by β). We will use the following formulas for precision (P), recall (R) 

and the F-Measure (van Rijsbergen, 1979; Frakes and Baeza-Yates, 1992; Manning and 

Schütze, 1999; Han and Kamber, 2006): 

 

P = 
|          |⋂ |           |

|           |
       (1) 

 

R = 
|          |⋂ |           |

|          |
       (2) 

 

F-Measure = 
(      )                     

(             )         
     (3) 

 

When β is set to 1 in the F-Measure (formula 3), precision and recall are regarded to be 

of equal importance. To weigh precision higher than recall, β needs to be lower than 1. 

To weigh recall higher than precision, β needs to be higher than 1 (van Rijsbergen, 

1979). 

 

Complexity 

 

In order to evaluate a certain solution it is also important to be able to measure the 

time efficiency. This can be established by calculating the complexity of a certain 

architecture or algorithm. A mathematical notation called the Big-O notation can be 

used to characterize efficiency. These characterizations are based on the growth rate 

of a function. Functions with the same order growth rate will therefore be represented 

using the same Big-O notation (Fenton and Pfleeger, 1997). 

 

The characterization of a function goes as follows. All constants are ignored and only 

the dominating term is used to determine the characterization of the growth rate. The 

dominating term is in this case the fastest growing term.  

 

When applying this to software, we determine the Big-O of an operation and add for 

sequential operations and multiply for nested operations. For instance, we calculate 

O(1) for statements and O(n) for every loop. With one nested loop we would get O(n2).  
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3. Case study Epiqo 
 

This chapter describes our case-study at Epiqo. First we describe the environment in 

section 3.1, then we give the requirements of Epiqo regarding their architecture in 

section 3.2, after which we deal with the expectations of Epiqo of this solution in 

section 3.3. In section 3.4 we present the architecture for Epiqo. Finally, in section 3.5, 

we end with conclusions.  

 

3.1. Environment 
 

The system should work in the context of the current e-Recruiting solutions of Epiqo. 

Their current e-Recruiting solutions are a bundle of flexible and easy-to-use Drupal 

modules that together make up the previously briefly mentioned system called e-

Recruiter. The e-Recruiter system is a Drupal 7 distribution intended for building e-

Recruiting platforms.  

 

This section starts with a short introduction of Drupal, followed by an introduction of 

the e-Recruiter system of Epiqo.   

 

Drupal 

 

Drupal is an open source content management platform, which can be used to build a 

variety of websites/web-based applications. It was and is being developed in PHP and is 

distributed with the GNU General Public License. Drupal runs on any operating system 

that supports PHP, the Apache web server and at least one database management 

system like MySQL or PostgreSQL. It is an extensible and standard-compliant 

framework that comes with standard functionality called the Drupal Core. Additional 

functionality can be used by (installing and) enabling modules, either from Drupal itself 

or from third-parties. These modules should override functionality in the Drupal Core 

or add additional functionality, this way nothing in the Drupal Core needs to be altered, 

which ensures a stable base system. 

 

E-Recruiter System 

 

The e-Recruiter system of Epiqo allows for both recruiters and job seekers to register in 

their own qualities. After logging on, recruiters can find job seekers who could be 

interesting as applicants, job seekers can find jobs and/or companies. Features of the 

e-Recruiter system include job management, registration workflow, taxonomy support, 

and sophisticated search features. Job management allows recruiters to manage the 

job advertisements by filling out a template, linking to external job advertisements 

which are embedded in the website, or job advertisements in a file (for instance a pdf-

file). The taxonomy support module ensures easy point and click functionality when 
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filling out fields like occupational fields, location, or skills. The search features allow 

recruiters to find the best fit candidate for a job, and job seekers to find the best fitting 

job to apply for. 

 

The ontology definition language that is used by Epiqo in Drupal is the Simple 

Knowledge Organization System or SKOS (World Wide Web Consortium, 2012). SKOS 

can be used to represent knowledge organization systems using the Resource 

Description Framework (RDF), which is a World Wide Web Consortium (W3C) standard 

(World Wide Web Consortium, 2012). This standard was initially designed as a meta-

model of data, but is currently used as a data format.   

 

The current ontology of Epiqo is used (1) when a user creates his/her résumé, a 

selection of terms from the ontology can be made from a list or tag cloud, and (2) for 

information extraction from job advertisements (job location, the necessary skills, 

languages, field of study). For the information extraction, a look-up is done in the 

ontology. An annotation is added to both the jobs and résumés using the ontology.  

 

3.2. Requirements 
 

Below the functional, quality, platform, and process requirements for the architecture 

of the ontology enrichment system are explicated. These requirements were identified 

based on the wishes of different stakeholders of Epiqo. 

 

Functional 

 

The functional requirements are listed below.  

 

F.1  The system shall semi-automatically enrich a given ontology. 

F.2 The system shall enrich a given ontology based on information of the specific 

domain that can be obtained online. 

F.3  The system shall use the amount of appearances of a term in the given sample of 

job advertisements for selection of candidate terms. 

F.4  The system shall only regard nouns and component nouns as candidate terms, 

names of for instance companies or persons are to be disregarded. 

F.5 The system shall check whether a candidate term is a synonym of an existing 

term in the ontology. 

F.6 The system shall check whether a term is a category or is in a category. 

F.7  The system shall contain settings, which should at least allow for setting a 

threshold of the number of appearances of found terms to become a candidate 

term. 

F.8 The system could optionally have a step by step advice component, which allows 

for an user to accept or reject ontology alteration suggestions. 
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Requirement F.1, semi-automatically enriching the ontology, is the goal of the system 

based on the wishes of the management of Epiqo to save time and thus money. The 

second requirement, F.2, performing the enrichment process based on information 

from the internet, was formulated to ensure low cost and ease-of-use. For Epiqo, 

obtaining information from the internet is relatively easy, can be performed 

(semi)automatically and has low cost because of their current system which has 

advanced crawler capabilities. The domain experts of Epiqo noticed that the amount of 

appearances of candidate terms (requirement F.3) and the fact whether the terms are 

nouns (requirement F.4), indicate importance in most of the cases. Further, for the e-

Recruiter system to work properly, it is important to know which terms are synonyms 

of each other. This is captured in requirement F.5. Requirement F.6 reflects the wishes 

of the domain experts to be able to update and improve the structure of the ontology. 

The management of Epiqo and the domain experts, want to be able to set a threshold 

for the number of appearances of found terms to become a candidate term, this 

requirements is formalized in F.7. Requirement F.8 is an optional requirement for a 

step by step advice component, which will allow users (domain experts) to accept or 

reject alterations that the system suggests.  

 

Quality 

 

The quality requirements are listed below.  

 

Q.1  The enhancement capabilities of the system are important: good documentation 

shall be provided. 

Q.2 The system shall be built in a modular fashion: it shall adhere to the set Drupal 

standards and conventions of modules. 

 

Since the system is likely to be enhanced in the future, the enhancement capabilities 

are important. This is reflected in requirement Q.1. To make sure that the system can 

easily be distributed and used on various Drupal e-Recruiter installations, it is 

important to design the system with the Drupal standards and conventions in mind. 

This is captured in requirement Q.2. 

 

Platform  

 

The platform requirements are listed below.  

 

Pl.1  The system shall be designed for Drupal. 

Pl.2  The used database management system shall be MySQL. 

 

Since the e-Recruiter system, and all other software systems of Epiqo are developed in 

Drupal, both the management and the development departments of Epiqo want the 

system to be implemented in Drupal. Further, for compatibility reasons, the 
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development department suggests to use a MySQL as database management system. 

These requirements are captured in Pl.1 and Pl.2 respectively. 

 

Process 

 

The process requirement is listed below.  

 

Pr.1 The system shall be designed in close cooperation with Epiqo. 

 

The management of Epiqo wants the design of this system to be performed in close 

cooperation with their company Epiqo. This is reflected in requirement Pr.1. 

 

3.3. Expectations of Epiqo 
 

The domain experts of Epiqo would find the system useful when the ontologies that 

are semi-automatically built have a recall of at least 70 percent when compared to a 

standard ontology. The precision might be relevant the other way around. If the 

precision is very low, the quality of the standard ontology might be lower than of the 

semi-automatically built ontology. This would indicate that the system can provide 

better quality or at least quality improvements. 

 

3.4. Architecture for Epiqo 
 

The architecture of the system for Epiqo is based on the general OBIE architecture (see 

figure 2.1) from chapter 2 and the requirements from section 3.2. The architecture for 

Epiqo is graphically represented in figure 3.1 and explained below.   

 

General System Architecture 

 

To be able to enrich ontologies in basically any natural language within a certain 

domain, we propose a specific OBIE architecture. Since we are looking for a way to 

enrich an ontology based on natural text information (from the internet), the OBIE field 

is a perfect fit. By automatically processing information that is represented in natural 

language texts, a vast amount of the information can be accessed, which would not be 

possible manually. Besides this, the OBIE field is specifically applicable for use in 

particular domains, because the ontologies that are used for the information extraction 

can be domain specific. However, we believe that this can be taken a step further. 

Recall that the general OBIE architecture makes use of a semantic lexicon. For the 

English language, there is one available called WordNet (Princeton University, 2012). 

For a few other European languages there is a semantic lexicon called EuroWordNet 

(University of Amsterdam, 2012). Unfortunately, not all languages have freely 

accessible semantic lexicons, are qualitatively useful, or have semantics lexicons at all. 
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This poses a problem, since we want our solution to be applicable for any natural 

language. Besides this, there is another problem with using general semantic lexicons. 

Semantic lexicons will not know (all) jargon of a domain and the actual semantics can 

also differ from domain to domain.  

 

As said, we adapt the general OBIE architecture as presented by Wimalasuriya and Dou 

(2010) to be able to create OBIE systems for any language that also supports the jargon 

of the domain in question. To achieve this, we suggest to not use a standard provided 

semantic lexicon, but build a specific one with the system based on textual information 

from the Internet and the ontology in question. We replace the semantic lexicon with 

what we call the DomainWordNet. This ontology is built automatically by the system 

for a specific domain and functions as a semantic lexicon. Further, a DomainWordNet 

builder is added, which builds the DomainWordNet. Every word will have an entry in 

the DomainWordNet. Of these so-called terms, their frequency, possible synonyms, 

basic group (like for instance verb or noun), category, predecessor, and successor will 

be available. 

 

Naturally, to be able to extract information, one or more sources to extract this 

information from need to be available. In the case of Epiqo we want to enrich an 

ontology in the e-Recruiting domain, making it obvious to select sources from that 

domain. As said, websites with C.V.’s and job advertisements contain the candidate 

terms to be added to the ontology (like certain skills or professions). Job 

advertisements describe jobs in certain domains. The terms that can be found in these 

job advertisements make up the jargon of this domain relevant for e-recruiting 

purposes. C.V.’s can be much wider than one specific domain, because people tend to 

have experience in multiple fields and list special skills etc. Therefore a corpus of only 

job advertisements will be used as an information source. 

 

In order to collect this corpus of job advertisements, the Internet needs to be searched 

and/or crawled in some way. Epiqo has a crawler, which provides crawled job 

advertisements in HTML. To be able to use the job advertisements for IE purposes, we 

want to preprocess the HTML job advertisements to a more convenient structuring and 

format, analogous to the OBIE preprocessor from the general solution. This is 

necessary because the HTML that is provided by the crawler is not standardized and 

might contain other code like JavaScript.  
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FIGURE 3.1. SUGGESTED ARCHITECTURE FOR EPIQO 

As shown in figure 3.1, the architecture for the Epiqo consists of different entities: the 

DomainWordNet, preprocessor, IE component, DomainWordNet builder and 

suggestion manager. The crawler and the ontology are entities from the e-Recruiter 



 

31 

system of Epiqo. The rest resides in a custom Drupal module. The DomainWordNet will 

be created in the database, thus the following components need to be developed 

within the module: the preprocessor, IE component, DomainWordNet builder and 

suggestion manager. These components will be described more closely in following 

sections. 

 

 
FIGURE 3.2. THE DATAFLOW OF THE SYSTEM 
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In figure 3.2, the dataflow of the system is represented. The crawler provides a corpus 

of job advertisements in a certain domain. These job advertisements are preprocessed 

and ordered into natural text. From this corpus term information is extracted. All this 

information is stored in the DomainWordNet. The DomainWordNet in turn can be used 

to enrich the corresponding ontology. As said, the components and their inner 

workings will be described more closely in following sections. 

 

DomainWordNet 

 

A DomainWordNet is an ontology within the e-Recruiter system. It contains the 

necessary information as defined in the general architecture: the frequency of a term, 

possible synonyms of a term, the basic group of a term, the category of a term, and the 

predecessors and successors of a term.  

 

DomainWordNet Builder Component 

 

This component provides the functionality to update the DomainWordNet, it provides 

an API to be used by other components. The available functions in the 

DomainWordNet API are: 

- Adding a term 

- Removing a term  

- Blacklisting a term 

- Updating a term 

 

Adding and removing terms are self-explanatory, these functions add and remove 

terms respectively. The blacklisting function puts the term on a blacklist (which is a 

gazetteer list), which hides the term from view of the DomainWordNet, but keeps it 

stored to make sure that it will not be suggested in the future. The last function, 

updating a term, gives access to change the fields of a term.  

 

Preprocessor Component 

 

This component takes a HTML job advertisement as input and strips every job 

advertisement from its HTML, Javascript, etc. tags and stores it. When removing the 

HTML tags, some information could get lost. For instance, a title or header should not 

be seen as a predecessor of the first word of the following section. To retain as much 

information as possible, the different sections are stored as new lines. Further, 

information could even be extracted from the semantics of HTML. Headers and titles 

not only become a new line, but one could argue that for instance a title could be of 

more importance than the average word in a certain piece of text. Lists in this 

particular use case might be skills a jobseeker should have or explicate what the 

organization is looking for in an employee. Therefore, these special instances are 
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marked by the preprocessor component, in order for the information extractor 

component to interpret. The instances to mark: 

- Headers: <H1>, <H2>, <H3>, <H4>, <H5>, <H6>. 

- Lists: <UL>, <IL>, <LI>, <OL>. 

- Title: <TITLE>. 

 

In the e-Recruiter system of Epiqo, there are three custom content types for storing job 

advertisements. The “Job per file upload”, the “Job per link”, and the “Job per 

template”. “Job per file upload” is used when a new job is created by uploading a file. 

“Job per link” is used for referencing to an existing job. “Job per template” is used 

when a job is created and all the details all directly available. Since the crawler puts all 

the crawled job in the “Job per link” content type, this is the content type that will be 

used by the preprocessor component.  

 

The “Job per link” content type has the following fields: 

- Title 

- Workflow state 

- Link 

- Organization 

- Region 

- Location 

- Occupational fields 

- Fields of study 

- Required languages 

- Required IT skills 

- Required general skills 

- Years of experience 

- Employment type 

- Status 

- Crawler 

 

The “crawler” field of the “Job per link” content type is a so-called field-collection. A 

field-collection is one field to which any number of fields can be attached. The 

“crawler” field has three fields attached:  

- XHTML job 

- Full HTML page 

- Crawler profile 

 

“XHTML job” contains the job advertisement itself in HTML from the company or job 

board website. “Full HTML page” is the entire page of the company or job board 

website on which the job advertisement appears. The XHTML job is an subset of the 

full HTML page. The “Crawler profile” is a reference to the “Crawler” custom content 

type, which contains the settings for the to-be-crawled websites. How the crawler 

works is outside the scope of this research, it simply provides the job advertisements in 
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the “Job per link” content type. We attached a fourth field to the “crawler” field-

collection: 

- Clean job 

 

Since the preprocessor component alters the data of the “XHTML job” field, the new 

field “Clean job” is added to this custom content type to store this data and keep the 

original data in the “XHTML job” field unchanged. 

 

Information Extraction Component 

 

Taking the “Clean job” text of every job advertisement as input, this component fills 

the DomainWordNet using the DomainWordNet builder.  

 

The following information is needed in the DomainWordNet: 

- Word  

- Frequency 

- Predecessors 

- Successors 

- Category of the term  

- Word group of the term 

- Context information 

 

As explained in the DomainWordNet section, this is stored in an ontology. On a higher 

level we assume the information to be readily available as values and do not worry 

about the way it is stored and/or retrieved. 

 

The IE component goes through the “clean jobs” word by word. When the current 

word is not in the DomainWordNet it is created. The category is looked up in Wikipedia 

(WikiMedia foundation, 2012) and the word group is looked up in the Google 

dictionary (Google, 2011). When the current word is in the DomainWordNet, the entry 

is updated.  

 

As can be seen in the dataflow in figure 3.2, this architecture is suitable for possible 

additional sources like Wikipedia or the dictionary. Due to the modular nature of the 

architecture, these components can be added in a straightforward manner. 

 

Suggestion Manager Component 

 

This component is intended for the domain expert to accept or reject the suggestions 

that this component finds. The accepting and rejecting of suggestions can be done by 

the user (domain expert) through an graphical user interface. 

 

The suggestion algorithm has two main foci, (1) finding new candidate terms to add to 

the ontology and (2) suggesting changes in the structure of the ontology. Notice that 
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the latter could actually also entail selecting new candidate terms, in that case a 

possible position is identified together with a potential structural change.  

 

The selection of new candidate terms is performed based on three main 

characteristics: its frequency in the corpus of job advertisements, its word type and its 

context in the job advertisement. As mentioned in the requirements in section 3.2, the 

domain experts of Epiqo noticed that the amount of appearances of candidate terms 

and the fact whether the terms are nouns, indicate importance in most of the cases. In 

this light the frequency and word type are used to determine importance. If a term has 

a predecessor or a successor which is in the ontology, the term is marked as a 

candidate term. Lastly, the marked HTML semantics are used to indicate possible 

important (related) terms. The algorithm is given below in pseudo code: 

 
term:  current term 

type:  word type of term 

pred:  predecessor of term 

succ:  successor of term 

freq:  frequency of occurrence of a term 

ont:  the ontology that is being enriched 

thres: threshold of tern frequencies 

title: an HTML title tag 

 

FOREACH term 

DO  IF (term.type == ‘noun’ OR term.type == ‘unknown’) 

  

THEN IF term.freq >= thres OR term ∈ title OR   

 (term.pred ∈ ont OR term.succ ∈ ont) 

 

THEN Select term as candidate term. 

  

 

Finding possible structural changes is performed in two different ways based on the 

category of the term in question. (1) If the category of a certain term A exists in the 

ontology as a certain term B, suggest term A as a child of B. (2) If a certain term C is the 

category of a certain term D in the ontology, suggest term C as a parent of term D. 

Further, HTML semantics are also used to determine structure. The algorithm is given 

below in pseudo code: 
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list:  an HTML list tag 

elem:  elements of list 

type:  word type of term 

term:  term in first header before list 

cand:  array with candidate terms 

add:  function to add a term to an array 

ont:  the ontology that is being enriched 

 

 

FOREACH list  

   

DO  FOREACH elem 

 

 DO IF (elem.type == ‘noun’ OR elem.type == ‘unknown’) 

   

THEN  IF   term ∈ ont 

 

THEN IF elem ∈ ont AND !term.isParentOf(elem) 

  

THEN Suggest term as parent of elem. 

 

ELSE Suggest elem as candidate term as a 

child of term. 

 

ELSEIF elem ∈ ont 

 

THEN  Suggest term as candidate term as a 

parent of elem. 

 

ELSE  Suggest term and elem as candidate 

terms with term as a parent of 

elem. 

 
 

Complexity 

 

To be able to determine the complexity of the algorithms we use the Big-O notation as 

described in section 2.5 of this report. 

 

The first algorithm, for finding candidate terms, starts with a FOREACH statement, 

which is a loop over all term entities. This has the complexity of O(n). Nested in this 

FOREACH statement is an IF statement. This IF statement contains an OR statement 

with two CONTAINS statements. These statements all have the complexity of O(1). 

Nested in the IF statement one more IF statements with complexity O(1). The body of 

the IF statement contains basically some simple RETURN statements, which also have 

complexity O(1). This makes the complexity of the first algorithm O(n), which means 

that it can be performed in linear time. 
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The second algorithm, for finding structural suggestions, starts with a FOREACH 

statement that loops over all found lists. This has the complexity of O(n). Nested in this 

FOREACH, is another FOREACH statement that loops over all elements of a list. This too 

has the complexity of O(n). The body of this FOREACH statement contains an IF 

statement with an OR statement with two CONTAINS statements. These statements all 

have the complexity of O(1). This IF statement contains two IF statements, both with 

complexity O(1). Only the first IF statement has another nested IF statement, which 

also has the complexity of O(1). Then rest of the bodies of the statements are simple 

RETURN statements with complexity O(1). This makes the complexity if this second 

algorithm O(n2), due to the loop nested in a loop. The algorithm can be performed in 

quadratic time. 

 

3.5. Conclusions  
 
The architecture for Epiqo should be able to adhere to the requirements defined in  

section 3.2 and function as a solution for the problem of Epiqo that their expansion is 

hindered by the time needed to create/enrich ontologies. The OBIE field presents an 

architecture that can be used as a starting point for the architecture for Epiqo. The field 

is applicable because of the automation possibilities for accessing large amounts of 

natural language texts and its domain specific nature. The general OBIE architecture 

presented by Wimalasuriya and Dou (2010) uses a semantic lexicon. Unfortunately, not 

all natural languages have freely accessible semantic lexicons, have semantic lexicons 

that are qualitatively useful, or have semantic lexicons at all. Besides this, semantic 

lexicons will not know (all) jargon of a domain and the actual semantics can also differ 

between domains.  

 

To overcome these problems with existing semantic lexicons, we suggest to build one 

for every (sub-)domain. We call this a DomainWordNet, which is also an ontology itself 

and replaces the standard semantic lexicon. To be able to build such a 

DomainWordNet we also add a DomainWordNet builder to the architecture.  
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4. Proof-of-concept Tool for Epiqo 
 

This chapter describes the proof-of-concept tool we developed based on the 

architecture for Epiqo, to be able to perform some exploratory experiments. First we 

introduce the tool and explain its setup in section 4.1, then in section 4.2 we explain 

how we designed the DomainWordNet. In section 4.3 the User Interface is depicted. 

Finally, in section 4.4, we draw some conclusions. 

 

4.1. The tool 
 

Based on the architecture for Epiqo from section 3.4, we developed a proof-of-concept 

tool to be able to perform real-life experiments with domain experts. After extensive 

prototyping on the e-Recruiter system of Epiqo, we discovered that, due to the nature 

and amount of work it would require, the e-Recruiter system is not suitable to be used 

for this proof-of-concept. The required work falls outside of the scope of this research, 

both in time and type of work. It would require adding significant functionality to 

several Drupal modules of both the Drupal community and Epiqo. The solution that 

was initially thought to be feasible, did in practice not turn out to deliver enough 

performance for the information extracting tasks. In concertation with Epiqo it was 

decided to develop a separate tool. To be able to realize a simple, fast and easy to be 

built proof-of-concept, we developed the tool in PHP with a MySQL database. 

 

For the proof-of-concept, both the crawler and the ontology from the e-Recruiter 

system are used. The rest of the components from the architecture for Epiqo are 

incorporated in the proof-of-concept tool. The tool has its own DomainWordNet and 

the preprocessing occurs similar to the way it was proposed for the e-Recruiter system. 

The information extraction in the Information extractor component however, is slightly 

modified. Since there is no coupling between the tool and the e-Recruiter system, it is 

not possible to use the ontology for the information extraction tasks. Unfortunately, 

the automatic insertion of terms into the ontology is also not possible due to the 

absence of this coupling. In order to still be able to enrich the ontology, the suggestions 

are given by our own proof-of-concept tool, while the ontologies are being built in the 

e-Recruiter system. In other words, the domain expert needs to use both systems at 

the same time and manually mutate the ontology in the e-Recruiter system based on 

the suggestions of the tool. For the learning process, a certain corpus of HTML job 

advertisements need to be loaded onto the server and a function needs to be called to 

start the learning process. The DomainWordNet can be queried and mutated by a set 

of functions from the DomainWordNet API. The Suggestion manager component has 

the same functionality as in the original architecture, using the DomainWordNet in a 

similar fashion.  
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4.2. DomainWordNet 
 

To make sure that all data that needs to be present in the DomainWordNet is readily 

available, all paths are saved. Figure 4.1 illustrates the path that is captured for the 

sentence “Drupal website development.”. Four paths and three terms are stored. 

 

 
FIGURE 4.1. THE PATH  

 

Storing all the paths ensures that the system is also able to find the predecessor and/or 

successor of a term, even if the term is a phrase. The predecessors and successors can 

be queried until the beginning cq. end of a sentence is reached. Due to these paths, the 

context is always available on demand.  

 

4.3. User Interface 
 

The proof-of-concept tool has a simple web-based User Interface (UI) that enables the 

user to navigate through the suggestions. The navigation through the suggestions goes 

as follows. Initially a list is shown with suggested terms, this is shown in figure 4.2. 

These terms are ordered based on the settings. The terms can be clicked, when a term 

is clicked all its predecessors and successors are shown. These terms can also be 

clicked. This way a phrase can be built recursively. For example, we click the word 

“Drupal” in the initial suggestion list. This gives us two lists, one with all the 

predecessors of “Drupal” and one with all the successors of “Drupal”, see figure 4.3. 

We then click on the successors term “developer”, see figure 4.4. This gives us the 

phrase “Drupal developer”, which is shown on top of the screen and all the 

predecessor terms and all the successor terms of this phrase. When we now click on 

either a predecessor or a successor of “Drupal developer”, we extent the phrase on the 

beginning or the end of the phrase and get all the predecessors and successors of the 

new, longer phrase. This is possible until no predecessors and successors of a certain 

phrase can be found. 

 

 
 

FIGURE 4.2. TERM LIST  
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FIGURE 4.3. TERM VIEW DRUPAL 

 

FIGURE 4.4. TERM VIEW DRUPAL DEVELOPER 

 

4.4. Summary 
 

It was discovered that the e-Recruiter system is not suitable to be used for this proof-

of-concept. The solution that was initially thought to be feasible, did in practice not 

turn out to deliver enough performance for the information extracting tasks. In 

concertation with Epiqo it was decided to develop a separate proof-of-concept tool in 

PHP with a MySQL database management system. This proof-of-concept tool adheres 

to the architecture for Epiqo from section 3.4 of this report, except for the separation 

between the to-be-enriched ontology and the crawler on one hand (e-Recruiter 

system) and the rest of the system on the other (proof-of-concept tool).  
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5. Experiments with Tool 
 

This chapter describes the exploratory experiments that we performed using our 

proof-of-concept with domain experts from Epiqo. In section 5.1 we introduce the 

experiments and provide our hypothesis. Next, in section 5.2, we describe our 

experimental design. In section 5.3 we delineate the execution of our experiments and 

provide provisional results. In section 5.4 we discuss the results of our experiments. 

 

5.1. Rationale experiments 
 

To be able to determine whether our solution can save a domain expert time in 

enriching an ontology, both the time that it takes enrich an ontology without the tool 

and the time it takes a domain expert with use of the tool need to be measured.  

 

Hypothesis:   

Using the proof-of-concept tool, that has learned from x job advertisements, 

enriching a given ontology will take a domain expert less time than when a 

domain expert who enriches the same ontology by going through x job 

advertisements by hand. 

 

However, to be able to compare these times, the result ontologies need to somehow 

be comparable. That is, the quality needs to be acceptably similar. We test the 

comparability using the performance measurement that was discussed in section 2.5. 

The by Epiqo suggested 70 percent recall between both ontologies will be used as an 

indicator for quality. As said, the precision actually works the other way around. If the 

precision is very low, the quality of the standard ontology might be lower than of the 

semi-automatically built ontology. Since all terms are chosen by domain experts, this 

would indicate that the system can provide quality improvements which were missed 

manually.  

 

 

5.2. Experimental design 
 

To be able to answer the hypothesis, we performed three experiments with each three 

tasks using three domain experts from Epiqo. Each domain expert performed one 

experiment. Two of the three tasks entailed using the proof-of-concept tool and the e-

Recruiter system. The third task entailed using just the e-Recruiter system. This last 

task required the domain experts to go through a sample of job advertisements by 

hand. This is comparable to how Epiqo currently creates ontologies of domains. Since 

the domain experts built the ontologies in the editor of the e-Recruiter system, the 

domain experts worked with an interface that they are familiar with. However, a short 

explanation of the proof-of-concept tool is necessary. This explanation together with 

the task sheet that was provided to the domain experts can be found in Appendix A.  
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The domain that will be used in the experiments is the Drupal domain. This domain was 

chosen because of the good knowledge the domain experts of Epiqo have of this 

domain. Since we seek to enrich ontologies, and not build them from scratch, we start 

with the following set of classifications (roots of the Drupal recruiting ontology based 

on experience from Epiqo) that make up the Drupal recruiting domain. We call these 

classifications the “main terms” of the ontology. 

- Drupal skills 

- Fields of study 

- General skills 

- Industry fields 

- IT skills 

- Occupational fields 

 

The domain experts had to perform the following tasks: 

- Without use of the proof-of-concept tool, the domain experts had to enrich an 

ontology based on sample of 100 testing job advertisements. The time it takes 

a domain expert to perform this task is measured. This task will from now on 

be referred to as manual-100. 

- With use of the tool, the domain experts had to enrich an ontology based on 

the by the tool suggested terms. The proof-of-concept tool has learned from 

100 job advertisements. The time it takes a domain expert to perform this task 

is measured. This task will from now on be referred to as tool-100. 

- With use of the proof-of-concept tool, the domain experts had to enrich an 

ontology based on the by the tool suggested terms. The tool has learned from 

1.000 job advertisements. The time it takes a domain expert to perform this 

task is measured. This task will from now on be referred to as tool-1.000. 

 

The first domain expert, let’s call this expert DE1 had to perform the tasks in the 

following order: 

- Task 1: manual-100 

- Task 2: tool-100 

- Task 3: tool-1.000 

 

The second domain expert, let’s call this expert DE2, had to perform the same tasks in 

a different order. 

- Task 1: tool-100 

- Task 2: manual-100 

- Task 3: tool-1.000 

 

The third domain expert, let’s call this expert DE3, had to perform the same tasks in the 

same order as DE2. 

- Task 1: tool-100 

- Task 2: manual-100 

- Task 3: tool-1.000 
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Unfortunately only three domain experts where available at Epiqo, which makes the 

sample size of domain experts rather small. To be able to conclude anything 

statistically, one would require a significant larger sample of domain experts. Besides 

this, the sample size of job advertisements in the manual task is also relatively small. 

The choice for 100 job advertisements was made with the amount of manual labor for 

the domain experts in mind. It has to be a large enough sample to be able to generalize 

the outcome, on the other hand, it needed to be workable for the domain experts in a 

reasonable amount of time. Apart from this, the amount was selected without specific 

reasons. It could very well have been for instance 90 or 110. The third task of the 

domain experts is a factor 10 of the initial sample, this provides us with information 

about the scalability on one hand and accuracy with bigger sample sizes on the other. 

Since learning is inevitable to occur between the different tasks, the order of the tasks 

is slightly different for DE1 and DE2. This enabled us to reason about the learning 

effects. DE3 had to perform the experiment in the same order as DE2, because the 

results of DE2 suggested learning between the first and the second task. This will be 

substantiated in the next section. 

 

During the experiments, the domain experts were allowed to manipulate the 

ontologies however they saw fit based on the information they derive from the corpus 

of job advertisements/suggested terms. The domain experts were not however, 

allowed to change the main terms. This to ensure the comparability of the ontologies 

afterwards. Since these main terms are derived from the by Epiqo defined Drupal 

ontology, we did not expect this to pose a problem for the domain experts during the 

execution of the experiments. During each experiment the domain experts were asked 

to write down all the terms he/she uses from the corpus of job advertisements that did 

not directly found their way into the ontology. 

 

As said, the performance was measured by measuring the time it took the domain 

experts to perform a task and using the metrics precision and recall. These metrics are 

used to check the quality of the result ontologies to ensure comparability. When two 

ontologies are comparable, we can reason over the time needed to perform the tasks. 

For this comparability we strived for recall of 70 percent or higher, based on the 

opinions of the domain experts of Epiqo. Since the precision needs to be interpreted a 

little differently than normal, as explained in section 2.3, we do not use the F-measure. 
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We performed three different sets of measurements:  

Let: M100 – terms of ontology created with task manual-100 

 T100 – terms of ontology created with task tool-100 

 T1000 – terms of ontology created with task tool-1.000  

 S100 – suggested terms with task tool-100 

 S1.000 – suggested terms with task tool-1.000 

 

1. For every domain expert we compared M100 with T100 and with T1.000.  

2. For every domain expert we compared a golden standard with M100 and 

several golden standards with each other. 

3. For every domain expert we compared M100 with terms of ontologies that can 

be created when we adjust them based on lessons learned from the 

experiments. 

 

The next section will further elaborate on these sets of measurements. Before we do 

so, we would like to mention the limitations of this experimental design. 

 

The experiments were performed using domain experts from just one company: Epiqo. 

Further, the experiments just dealt with one domain: the Drupal domain. 

 

The sample size of domain experts is far from ideal. Generalizing over just three 

subjects is not really possible. Unfortunately, this is where the practical side came in. 

Epiqo did not have more domain experts available for performing the experiments. 

Apart from the sample size of domain experts, also the sample size of the samples of 

job advertisements that were used in the different tasks are relatively small and 

disjoint. Here we had to keep in mind that the tasks should remain do-able in a 

reasonable time-frame for the domain experts at Epiqo. The samples were deliberately 

disjoint to prevent too much learning.  

 

With the research question in mind, the time measurements of the tasks the domain 

experts performed in each experiment were of vital importance. Unfortunately, 

comparing the times of performing the task of enriching an ontology manually and 

enriching an ontology with use of the tool is only useful when the quality of both the 

ontology is comparable. Further, the rigid pre-set structure of the ontologies is 

necessary to be able to make more clear comparisons between the different 

ontologies. When besides the terms, the structure of the different ontologies also 

differ, it is much harder to compare quality.  

 

With these kinds of experiments, when the same domain expert performs three similar 

tasks in a sequential order, learning is inevitable to occur. Further, it is virtually 

impossible to determine the knowledge of the domain experts relative to each other. 

This makes it hard to determine whether certain choices are based on expert opinion 

or lack thereof.  
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5.3. Execution  
 

The goal of the current research and thus these experiments is to find out whether 

semi-automatically enriching a given ontology is more time-efficient than enriching the 

same ontology manually. But as said, before we can reason about this based on the 

experiments, we need to know whether the quality of the semi-automatically enriched 

ontologies are in comparison with the manual enriched ontologies. We will now discuss 

the results. We start with the direct results of the experiments, followed by the sets of 

measures we defined in section 5.2, to conclude with a synthesis of the whole.  

 

Tables 5.1, 5.2 and 5.3, show the distribution over the main terms in the ontology and 

the time per domain expert for the manual task, the task based on the suggestions of 

the tool that learned from 100 job advertisements and the task based on the 

suggestions of the tool that learned from 1.000 job advertisements respectively. 

 

The tool used for the tool-100 task provided 400 initial suggestions and 1.946 

suggestions for the tool-1.000 task. Each suggestion being a term that is suggested to 

be relevant for incorporation into the ontology and functions as a starting point for 

phrase inspection simultaneously.  

 

 DE1 DE2 DE3 

Drupal skills 17 11 8 

Fields of study 4 0 8 

General skills 10 5 3 

Industry fields 1 1 1 

IT skills 137 83 65 

Occupational fields 31 12 20 

Total 200 112 105 

    

Time 2:45 1:00 2:05 

TABLE 5.1. AMOUNT OF IDENTIFIED TERMS IN TASK MANUAL-100 AND TIME 

 

 DE1 DE2 DE3 

Drupal skills 1 6 3 

Fields of study 3 1 7 

General skills 6 3 1 

Industry fields 0 0 5 

IT skills 16 22 13 

Occupational fields 14 20 15 

Total 40 52 44 

    

Time 0:45 1:30 0:55 

TABLE 5.2. AMOUNT OF IDENTIFIED TERMS IN TASK TOOL-100 AND TIME 
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 DE1 DE2 DE3 

Drupal skills 6 8 3 

Fields of study 3 1 8 

General skills 11 4 1 

Industry fields 1 1 2 

IT skills 55 57 33 

Occupational fields 20 9 17 

Total 96 80 64 

    

Time 1:30 1:20 1:05 

TABLE 5.3. AMOUNT OF IDENTIFIED TERMS IN TASK TOOL-1.000 AND TIME 

 

From the results of the first two experiments with DE1 and DE2 we noticed the 

following (as can be seen in tables 5.1 and 5.2). DE2 performed the manual-100 task 

2.75 times faster than DE1. DE2 spend twice the amount of time on task tool-100 than 

DE1. This made us suspect some sort of learning about creating such an ontology. 

Therefore we performed a third experiment with DE3, giving this domain expert the 

same tasks as DE1 and DE2, but in the exact same order as DE2. DE3 performed the 

tasks in comparable times to DE1. When we look at the amount of selected terms, it 

seems that DE2 performs average for manual-100 and tool-1.000 and above average 

for task tool-100. So we assume that no significant learning has taken place between 

the manual-100 and the tool-100 task, which caused the extreme time difference 

between the tool-100 task and the manual-100 task of DE2.  

 

Measurement 1 

 

The first set of measurements compares M100 with T100 and M100 with T1.000 per 

domain expert. These comparisons were intended to check the quality of the 

ontologies of a domain expert when he/she uses the tool. This comparison is visually 

represented in figure 5.1. Ideally, the two circles overlap fully. Since the three samples 

of job advertisements that were used in the experiments are mutually exclusive and 

the sample sizes are relatively small, it is likely that some terms do not exist in both the 

sample that is used for the task manual-100 and the task tool-100 or tool-1.000 

respectively. Beware that the metric precision needs to be interpreted different than 

one might be used to. The precision measures how many terms are in the ontology of 

the task using the tool that are also in M100. But the terms that are not in M100 are 

not false positives per se. Those terms are also chosen by the domain expert, but were 

probably just not in the sample of 100 job advertisements of the manual-100 task.  
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FIGURE 5.1. MEASUREMENT 1 

Task manual-100 versus Task tool-100 

 

Here, M100 is regarded as the standard. The metrics precision and recall from section 

2.5 where determined per main term in the ontologies. The calculations and specifics 

can be found in Appendix B. Below the overall precision and recall of M100 compared 

to T100 are given per domain expert. 

 

 DE1 

Precision = 24 / 24 + 16 ≈ 0.60 

Recall = 24 / 200 ≈ 0.12 

 

DE2 

Precision = 25 / 25 + 27 ≈ 0.48 

Recall = 25 / 112 ≈ 0.22 

 

DE3 

Precision = 34 / 34 + 18 ≈ 0.65 

Recall = 34 / 105 ≈ 0.32 

 

The low recall of all three the domain experts, could be ascribed to the two disjunctive 

and small samples of 100 job advertisements M100 and T100. The low recall of DE1 is 

understandable given the relatively large difference between the number of identified 

terms in task manual-100 and those in task tool-100; 200 versus 40. For DE2 and DE3 

the same holds in a more moderate form; 112 versus 52 and 105 versus 44 

respectively.  

 

We listed the terms that are in M100, but not in T100 and determined the reason why 

these terms could not be selected by the domain expert. This list can be found in 

Appendix C. We defined six categories for terms that where selected for the ontology 
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in task manual-100 and not for the ontology in task tool-100. The categories with 

belonging frequencies of task tool-100 are given below in table 5.4.  

 

Cause of absence classifications DE1 DE2 DE3 

Term has no type 19 4 8 

Unknown term 70 31 26 

Not selected word type 8 7 9 

Frequency too low 49 22 22 

Phrase does not exist 15 16 9 

No apparent reason, was available 15 7 5 

Total 176 87 79 

TABLE 5.4. CAUSE OF ABSENCE CLASSIFICATIONS OF TASK TOOL-100 

The first category that we identified is the group of terms that actually were in the 

DomainWordNet, but did not have a type. This would probably have occurred when 

the webservice that was used to obtain the word type did not provide a word type 

available in the enumeration or when the webservice might have timed out. In this 

case a NULL was found and the term was not selected as a suggestion because of this. 

Table 5.4 shows that this was the case for nineteen, three and eight terms for DE1, DE2 

and DE3 respectively. The second category are the terms that were not in the 

DomainWordNet based on the learning sample T100. Seventy-three, three and eight 

terms were absent in the DomainWordNet for DE1, DE2 and DE3 respectively. The 

third category of terms had a word type that was not selected in the settings to be 

incorporated into the suggestions, such as word type “verb”. DE1, DE2 and DE3 had 

eight, seven and nine of such terms in M100 and not in T100 respectively. Category 

four are the terms that had a too low category to be suggested. As can be seen in table 

5.4, DE1 had 47 of such terms, DE2 had 22 of such terms and DE3 had 22 of such terms. 

The fifth category consists of phrases that were not suggested by the tool, this was the 

case for fifteen, seven and five terms of DE1, DE2 and DE3 respectively. The sixth and 

last category is the group of terms that actually was suggested to the domain experts 

and were in M100, but were not in T100. For some unknown reason the domain 

experts esteemed these terms to be valuable for the ontology during task manual-100, 

but disregarded them when they were suggested during task tool-100. 

 

This list of cause of absence classifications could be valuable data for improving the 

algorithm and settings. The third set of measures tests possible improvements based 

on these findings. 

 

Task manual-100 versus Task tool-1.000 

 

Here, M100 is regarded as the standard. The calculations and specifics of the precision 

and recall metrics of M100 compared to T1.000 can be found in Appendix D. Below the 

overall precision and recall of M100 compared to T1.000 are given for each domain 

expert. 
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 DE1 

Precision = 65 / 65 + 30 ≈ 0.68 

Recall = 65 / 200 ≈ 0.33 

 

DE2 

Precision = 45 / 45 + 35 ≈ 0.56 

Recall = 45 / 112 ≈ 0.40 

 

DE3 

Precision = 37 / 37 + 28 ≈ 0.57 

Recall = 37 / 105 ≈ 0.35 

 

When we compare the precision and recall of M100 versus T100 with M100 versus 

T1.000 of DE1 and DE2, both the precision and recall improve for the domain experts 

individually when the sample size of job advertisements is increased. For DE1 the 

precision increased with 0.08 and the recall with 0.21, which is a thirteen percent and a 

75 percent increase respectively. For DE2 the precision increased with 0.08 and the 

recall with 0.18, which is a seventeen percent and a 82 percent increase respectively. 

With DE3, precision decreased with 0.08, which is twelve percent, but did recall 

increased with 0.10, which is 40 percent. An overview of this comparison is given in 

table 5.5. 

 

 

 DE1 DE2 DE3 

Precision + 0.08  + 13% + 0.08  + 17% - 0.08  - 12% 

Recall + 0.21  + 175% + 0.18  + 82% + 0.10 + 40% 

TABLE 5.5. PRECISION AND RECALL OF COMPARISON M100 VS. T100 WITH M100 VS. T1.000 

 

Because the learning sample used with the task tool-1.000 is ten times bigger than the 

sample used for task tool-100, the suggestions are expected to be more accurate 

because M100 is disjoint with both T100 and T1.000. This would result in a higher 

precision. This is the case for DE1 and DE2, with an increase of fifteen and seventeen 

percent respectively. Yet, the precision of DE3 decreased with twelve percent. The 

direct results from tables 5.1, 5.2 and 5.3 do not give any clear indication as to what 

might have caused this decrease of precision for DE3.  

 

Although the samples are disjoint, the larger learning sample of job advertisements 

used in task tool-1.000 caused more terms from M100 to be present in T1.000 than in 

T100 for DE1, DE2 and DE3, with a 175 percent, 82 percent and 40 percent increase 

respectively.  

 

As for the previous comparison between M100 and T100, we listed the terms that are 

in M100, but not in T1.000 and determined the reason why these terms could not be 

selected. This list can be found in Appendix D. Here we also used the six identified 
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classifications and listed them in table 5.6 with the belonging frequencies per domain 

expert. 

 

Cause of absence classifications DE1 DE2 DE3 

Term has no type 32 5 11 

Unknown term 8 13 8 

Not selected word type 8 1 13 

Frequency too low 48 12 17 

Phrase does not exist 2 12 0 

No apparent reason, was available 37 24 19 

Total 135 67 68 

TABLE 5.6. CAUSE OF ABSENCE CLASSIFICATIONS OF TASK TOOL-1.000 

The amount of terms that were absent from T1.000 but were in M100 is lower for all 

domain experts. The increase in sample size does, as expected and shown with our 

recall metric, improve the ontology. Since the tool suggested more terms during task 

tool-1.000 than during task tool-100, it is to be expected that the webservice that was 

used to obtain the word type did not provide a word type available in the enumeration 

or when the webservice might have timed out a number of times more. Terms that 

were in M100 but not suggested, the unknown terms category, was reduced 

considerably with the increase of sample size. From 70 to eight, from 31 to thirteen 

and from 26 to eight for DE1, DE2 and DE3 respectively. The terms that were not 

suggested because of their word type or because their frequency was too low stayed 

about the same. The frequency of some terms got high enough to be suggested and 

other new terms surfaced which did not get a frequency higher than the threshold. 

Most of the phrases were available with the bigger sample. The terms that actually 

were suggested to the domain experts and were in M100, but were not in T1.000, is 

much higher. Thirty-seven, 24 and 19 as opposed to fifteen, seven and five of DE1, DE2 

and DE3 respectively. As with the previous comparison, for some unknown reason the 

domain experts esteemed these terms to be valuable for the ontology during task 

manual-100, but disregarded them when they were suggested during task tool-1.000. 

 

We expect the recall to increase even further when the sample is increased to for 

instance 10.000 job advertisements.  

 

Measurement 2 

 

We derived a “golden standard” GS based on the ontologies of the M100’s of the three 

domain experts and compared this ontology to the individual M100’s. We also derived 

a “golden standard” based on the ontologies of tasks tool-100 called GST100 and task 

tool-1.000 called GST1.000. In the second set of measurements we compare GS with 

the M100 of each domain expert and with GST100 and GST1.000 successively.  
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FIGURE 5.2. MEASUREMENT 2 

For a term to be selected for a golden standard ontology, terms had to adhere to two 

conditions.   

1. The term had be present in at least two of the three ontologies. 

2. The term had to be an exact, though case-insensitive, match.  

 

The golden standard ontology can be found in Appendix E. Table 5.7 shows the 

distribution over the main terms in the manual-100 ontologies of the domain experts 

and the Golden Standard. Table 5.8 shows the origin of the terms in the Golden 

Standard ontology, how many terms came from the manual-100 ontology of DE1 and 

DE2, DE1 and DE3, DE2 and DE3, and DE1, DE2 and DE3 respectively.  

 

 DE1 DE2 DE3 GS 

Drupal skills 17 11 8 8 

Fields of study 4 0 8 2 

General skills 10 5 3 3 

Industry fields 1 1 1 1 

IT skills 137 83 65 82 

Occupational 

fields 

31 12 20 11 

Total 200 112 105 107 

TABLE 5.7. DISTRIBUTION MAIN TERMS PER DOMAIN EXPERT AND GOLDEN STANDARD 
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 {DE1,DE2} {DE1,DE3} {DE2,DE3} {DE1,DE2, 

DE3} 

{DE1} 

{DE2} 

{DE3} 

Drupal skills  1 1 6 14 

Fields of study  2   8 

General skills  2  1 11 

Industry fields 1    1 

IT skills 22 21 1 38 83 

Occupational 

fields 

 6 1 4 37 

Total 23 32 3 49 154 

TABLE 5.8. SOURCE OF TERMS FOR GOLDEN STANDARD 

The calculations and specifics of the precision and recall metrics of the golden standard 

GS compared to M100 can be found in Appendix F. Below the overall precision and 

recall of the golden standard compared to M100 per domain expert are given. 

 

 DE1 

 Precision = 105 / 105 + 95 ≈ 0.53 

Recall = 105 / 107 ≈ 0.98 

 

DE2 

Precision = 75 / 75 + 37 ≈ 0.67 

Recall = 75 / 107 ≈ 0.70 

 

DE3 

Precision = 84 / 84 + 21 ≈ 0.80 

Recall = 84 / 107 ≈ 0.79 

 

Since DE1 has the most terms in M100, its precision compared to the golden standard 

is lower and the recall quite high. We expected DE3 to have the lowest recall and 

highest precision due to the fact that DE3 identified the least amount of terms. DE2 

however, scored lower on recall. DE2 has very little overlap with DE3 and less overlap 

with DE1 than DE3 has (as shown in table 5.8). This in combination with the fact that 

DE2 has selected more terms makes for a lower recall due to the impact of DE2 on GS.    

 

The golden standard ontology GST100 and the golden standard ontology GST1.000 can 

be found in Appendix G. Tables 5.9 and 5.11  show the distribution over the main terms 

in the tool-100 and tool-1.000 ontologies of the domain experts and the Golden 

Standard. Table 5.10 and 5.12 show the origin of the terms in the golden standard 

ontologies. 
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 DE1 DE2 DE3 GST100 

Drupal skills 1 6 3 1 

Fields of study 3 1 7 3 

General skills 6 3 1 1 

Industry fields 0 0 5 0 

IT skills 16 22 13 12 

Occupational 

fields 

14 20 15 11 

Total 40 52 44 28 

TABLE 5.9. DISTRIBUTION MAIN TERMS PER DOMAIN EXPERT AND GOLDEN STANDARD 

 

 {DE1,DE2} {DE1,DE3} {DE2,DE3} {DE1,DE2, 

DE3} 

{DE1} 

{DE2} 

{DE3} 

Drupal skills  1   8 

Fields of study  2  1 4 

General skills 1    8 

Industry fields     5 

IT skills  2  10 19 

Occupational 

fields 

 6 1 4 23 

Total 1 11 1 15 67 

TABLE 5.10. SOURCE OF TERMS FOR GOLDEN STANDARD 

 DE1 DE2 DE3 GST1.000 

Drupal skills 6 8 3 2 

Fields of study 3 1 8 3 

General skills 11 4 1 1 

Industry fields 1 1 2 1 

IT skills 55 57 33 30 

Occupational 

fields 

20 9 17 12 

Total 96 80 64 49 

TABLE 5.11. DISTRIBUTION MAIN TERMS PER DOMAIN EXPERT AND GOLDEN STANDARD 
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 {DE1,DE2} {DE1,DE3} {DE2,DE3} {DE1,DE2, 

DE3} 

{DE1} 

{DE2} 

{DE3} 

Drupal skills   1 1 12 

Fields of study  2  1 5 

General skills    1 13 

Industry fields 1    2 

IT skills 6 7  17 68 

Occupational 

fields 

2 7  3 19 

Total 9 16 1 23 119 

TABLE 5.12. SOURCE OF TERMS FOR GOLDEN STANDARD 

 

The calculations and specifics of the precision and recall metrics of the GS golden 

standard compared to GST100 and the metrics of GS compared to GST1.000 can be 

found in Appendix H. Below the overall precision and recall of the golden standard GS 

compared to GST100 and GST1.000 are given respectively. 

 

 GS compared to GST100 

 Precision = 18 / 18 + 10 ≈ 0.64 

 Recall = 18 / 107 ≈ 0.17 

 

 GS compared to GST1.000 

 Precision = 32 / 32 + 17 ≈ 0.65 

 Recall = 32 / 107 ≈ 0.30 

 

The disagreements of the domain experts in the result ontologies of task T-100 and 

task T-1.000 are too great to be able to get useful precision and recall measurements. 

The tables 5.9 and 5.11 show that the amount of terms in the golden standards is much 

lower than the average of the domain experts. The tables 5.10 and 5.12 show that 

most terms are only in one of the three ontologies. Therefore the recall can never get 

higher than 28 / 107 ≈ 0.26 and 49 / 107 ≈ 0.46 respectively. 

 

Measurement 3 

 

The third set of measurements quantify certain ideal circumstances. First we looked at 

category six of the classifications that were identified in the first measure, that for 

some unknown reason the domain experts esteemed these terms to be valuable for 

the ontology during task manual-100, but disregarded them when they were suggested 

during one of the tasks using the tool. When the domain experts had hypothetically 

chosen those terms both during task manual-100 and during task tool-100 the 

following comparison can be made: M100 versus (M100 ∩ S100) ∪ T100. When the 

domain experts had chosen those terms both during task manual-100 and during task 
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tool-1.000 the following comparison can be made: M100 versus (M100 ∩ S1.000) ∪ 

T1.000.  After this measure we look at the more ideal circumstances. 

 

M100 versus (M100 ∩ S100) ∪  T100 

 

Here, M100 is regarded as the standard. The calculations and specifics of the precision 

and recall metrics of M100 compared to (M100 ∩ S100) ∪ T100 can be found in 

Appendix I. Below the overall precision and recall of M100 compared to (M100 ∩ S100) 

∪ T100 are given per domain expert.  

  

 DE1 

Precision = 39 / 39 + 16 ≈ 0.71 

Recall = 39 / 200 ≈ 0.20 

 

DE2 

Precision = 32 / 32 + 27 ≈ 0.54 

Recall = 32 / 112 ≈ 0.29 

 

DE3 

Precision = 39 / 39 + 18 ≈ 0.68 

Recall = 39 / 105 ≈ 0.37 

 

For DE1, the precision and recall of M100 compared to T100 from measurement 1, 

were 0.60 and 0.12 respectively. So if DE1 would have selected the terms from the 

sixth category, the precision would have been eighteen percent higher and the recall 

would have been 40 percent higher. For DE2, the precision and recall of M100 

compared to T100 from measurement 1, were 0.48 and 0.22 respectively. In this case if 

DE2 would have selected the terms from the sixth category, the precision would have 

been thirteen percent higher and the recall would have been 32 percent higher. For 

DE3, the precision and recall of M100 compared to T100 from measurement 1, were 

0.65 and 0.25 respectively. So if DE3 would have selected the terms from the sixth 

category, the precision would have been twelve percent higher and the recall would 

have been twenty percent higher. 

 

M100 versus (M100 ∩ S1.000) ∪  T1.000 

 

Here, M100 is regarded as the standard. The calculations and specifics of the precision 

and recall metrics of M100 compared to (M100 ∩ S1.000) ∪ T1.000 can be found in 

Appendix J. Below the overall precision and recall of M100 compared to (M100 ∩ 

S1.000) ∪ T1.000 are given.  

  

DE1 

Precision = 102 / 102 + 30 ≈ 0.77 

Recall = 102 / 200 ≈ 0.51 
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DE2 

Precision = 69 / 69 + 35 ≈ 0.66 

Recall = 69 / 112 ≈ 0.62 

 

DE3 

Precision = 56 / 56 + 28 ≈ 0.67 

Recall =  56 / 105 ≈ 0.53 

 

For DE1, the precision and recall of M100 compared to T1.000 from measurement 1, 

are 0.68 and 0.33 respectively. When DE1 would have selected the terms from the 

sixth category, the precision would have been thirteen percent higher and the recall 

fifty-eight percent higher. For DE2, the precision and recall of M100 compared to 

T1.000 from measurement 1, are 0.56 and 0.40 respectively. When DE2 would have 

selected the terms from the sixth category, the precision would have been eighteen 

percent higher and the recall fifty-five percent higher. For DE3, the precision and recall 

of M100 compared to T1.000 from measurement 1, are 0.57 and 0.35 respectively. 

When DE3 would have selected the terms from the sixth category, the precision would 

have been eighteen percent higher and the recall fifty-one percent higher. 

 

With the bigger learning sample of task tool-1.000 in combination with the correction 

of the sixth cause of absence, the recall of three domain experts reaches a level of 

more than 50 percent.  

 

M100 versus More ideal  

 

Here, M100 is regarded as the standard. The first cause of absence classification, when 

a term did not have a type, is due to the use of a unreliable webservice. This could be 

prevented. The second cause of absence classification, unknown term, could be due to 

the fact that the term was not in the sample. This cannot be prevented without 

experiments with bigger samples of job advertisements. The third cause of 

classification, not selected word type, is debatable. It appears that not all of the terms 

that the domain experts select are nouns, but it does reduce the amount of suggestion 

considerably and only a few are left out for this reason. The next cause of classification, 

the fourth one regarding the frequency of a term, is also debatable. Reducing the 

threshold will increase the amount of suggestions considerably, but the amount of 

missed terms due to the threshold is relatively big. Creating a dynamic threshold that 

can be adjusted by the domain expert while using the tool could solve this. For the sake 

of the creation of the ideal T100 we assumed this would provide us with 50 percent of 

the previously missed terms. The fifth cause of absence, the phrase does not exist, 

cannot be prevented. This is like the unknown terms, the phrases are most likely not 

present in the sample. The sixth and last cause of absence, as explained earlier could 

be solved.  
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For this measure we assumed that the system always find the word type of a term, that 

the system does suggest half of the terms that were not suggested due to a too low 

frequency and domain experts are consistent. This gives us the following possible 

quality of the ontologies for M100 versus T100: 

 

 DE1 

Precision = 82 / 82 + 16 ≈ 0.84 

Recall = 82 / 200 ≈ 0.41 

 

DE2 

Precision = 47 / 47 + 27 ≈ 0.64 

Recall = 47 / 112 ≈ 0.42 

 

DE3 

Precision = 58 / 58 + 18 ≈ 0.76 

Recall = 58 / 105 ≈ 0.55 

 

This gives us the following possible quality of the ontologies for M100 versus T1.000: 

 

DE1 

Precision = 158 / 158 + 30 ≈ 0.84 

Recall = 158 / 200 ≈ 0.79 

 

DE2 

Precision = 80 / 80 + 35 ≈ 0.70 

Recall = 80 / 112 ≈ 0.71 

 

DE3 

Precision = 75 / 75 + 28 ≈ 0.73 

Recall = 75 / 105 ≈ 0.71 

 

By applying the lessons learned in the first two measurements, we achieved a recall 

over 70 percent for all domain experts. This showed that the quality needed for 

comparison can be achieved using our solution. 

 

  



 

60 

5.4.  Results and discussion 
 

Apart from the fact that generalizing over a sample of three domain experts is 

statistically not possible, the measured times did not unanimously show a time 

improvement when using the tool.  

 

Measurement one showed us that two samples of 100 job advertisements are not 

comparable enough for our purpose, we ascribe this to the fact that they are too small 

and disjoint. The sample of 1.000 job advertisements however, showed a great 

improvement. (Keeping in mind that the samples might still be relatively small and off 

course disjoint.) Based on these experiments we were able to identify six classifications 

of cause of absence of the terms that were in M100, but not in the belonging ontology 

that was being enriched using the tool. These are: 

1. Term has no type 

2. Term does not exist in DomainWordNet 

3. Terms with this word type are filtered out 

4. Terms with too low frequency are filtered out  

5. Phrase does not exist in DomainWordNet 

6. No apparent reason, was available in DomainWordNet 

 

Measurement two showed that the domain experts have a fair amount of agreement 

among each other when performing the manual-100 task. With the tool-100 and tool-

1.000 tasks however, the domain experts were mainly in disagreement. 

 

Measurement three was intended to show the effects that possible improvements on 

our proof-of-concept could have on the quality of the ontologies. These improvements 

were based on the six classifications of cause of absence that we identified in 

measurement one. From measurement three we can conclude that with the proper 

adjustments we can get the quality “good” enough to be able to compare the 

ontologies that are created manually and those with use of the tool.  

 

Due to the disagreements of the domain experts in the tasks tool-100 and tool-1.000 

and the inconsistent times between the domain experts, we were not able to conclude 

anything regarding the time-efficiency of the proof-of-concept. Unfortunately, this 

prevents us from being able to accept or reject our hypothesis. We did however, 

identify ways to improve the quality of the suggestions and thereby the quality of the 

ontologies that can be enriched using our solution. These are summed up in the first 

column of table 5.13, the second column shows the numbers of the causes of absence 

that are expected to be positively affected by the suggested improvements.  
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Suggested improvements Affects 

A. Eliminate dependencies 1 

B. Use bigger samples of job advertisements 2, 5 

C. Improve the filter rules 3, 4 

D. Use stemming 2, 3, 4, 5 

E. Use full algorithm 2, 5 

TABLE 5.13. SUGGESTIONS FOR QUALITY IMPROVEMENT ENRICHED ONTOLOGIES 

The first suggested improvement A is based on the first cause of absence, terms that 

did not have a type in the DomainWordNet. This was due to the dependence on third 

party webservices, which did not always provide the requested data. Eliminating all 

dependencies on third parties, by for instance running a dictionary within the system, 

will make sure that all necessary data will be available. The second suggested 

improvement B is based on the absence of some terms and phrases in the 

DomainWordNet. The result ontologies from different tasks, based on different 

samples, were compared. Since the samples that were used for the experiments were 

relatively small and disjoint, not all terms were in both samples. Comparing the results 

from the tasks tool-100 and tool-1.000, shows that the amount of terms that are 

identified for both ontologies increases. Therefore we suggest to use bigger samples of 

job advertisements. The third suggested improvement C is based on the filter rules that 

were used in the experiments. Both the selected word types and the frequency 

surfaced as being too strict. From the information from the domain experts of Epiqo 

we decided to regard only nouns as word type, the experiments show that the domain 

experts also select words with other word types. Since there was nothing known about 

frequencies we set the threshold practically at random on 10. We suggest to make 

both these filter options, word type and frequency threshold, a dynamic setting which 

can be altered real-time. This way the domain expert can adjust the word type and 

frequency at will by looking at the changes it produces in the suggested terms 

instantly. The fourth suggested improvement D is based on all but the first and last 

cause of absence. By applying stemming, more terms will be regarded as the same 

term. This will result in higher frequencies and more positive hits. The fifth and last 

suggested improvement E is based on the fact that we did not use the full algorithm as 

described in section 3.4, because in our proof-of-concept tool there is no coupling 

between the ontology and the intelligence of the system. We expect this to provide 

additional terms and phrases in the suggestions and thereby lowering the missing 

terms and phrases. 
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6. Conclusion 
 

This is the concluding chapter of this report and provides insight in the contribution 

that the current research provides in section 6.1, its limitations in section 6.2 and 

possible future research directions in section 6.3. 

 

6.1. Contribution 
 

Our research objectives were (1) developing an approach for semi-automatically 

enriching  domain-specific  ontologies,  (2)  designing  a software application  that  will 

be able  to  do  this,  (3)  building a proof-of-concept of this software application for the  

Epiqo case-study, and (4) performance measurement of time, completeness and 

correctness of the result ontologies when using this proof-of-concept.  

 

All four research objectives were met. We developed an approach for semi-

automatically enriching domain-specific ontologies by adapting the general OBIE 

architecture of Wimalasuriya and Dou (2010). We added the DomainWordNet, a 

semantic lexicon that is built automatically based on relevant input. Apart from not 

needing a semantic lexicon in the desired natural language, which is the case with 

traditional methods, our approach will also ensure that the semantic lexicon is truly 

specific for the particular domain. The architecture that we designed for Epiqo makes 

use of this approach and adheres to the requirements set by Epiqo. A proof-of-concept 

was developed that was used for experiments with domain experts from Epiqo. The 

results of these experiments were used for performance measurement. 

 

Our research question was: is semi-automatically enriching a given ontology for a 

certain domain more time-efficient than enriching the same ontology manually? We 

were not able to obtain conclusive data to be able to answer the research question, we 

did generate data regarding quality. We showed that our solution has the potential to 

provide qualitative “good” enough ontologies to be comparable to standard 

ontologies. We thrust that this provides future researchers the opportunity to enhance 

and expand our exploratory experiments to be able to answer our research question in 

the future. To do so, one should take into account the lessons learned from our 

experiments: 

- The tool was too dependent on third party services 

- The samples of job advertisements were too small 

- Too little sound data was available to create adequate filter rules 
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6.2. Limitations 
 

Due to the fact that this is a case-study, most of our findings are only based on data 

obtained from Epiqo. Since Epiqo operates in the e-Recruiting domain, our data is 

almost fully restricted to this domain.  

 

The experiments are bound by the following limitations:  

- The samples came from only one sub-domain: Drupal jobs within the e-

recruiting domain. 

- The sample size of domain experts is small. 

- The samples of job advertisements are small. 

- The samples of job advertisements are disjoint. 

- There is a rigid pre-set structure to the ontologies. 

- Possible learning effects between tasks. 

- Unknown knowledge of the domain experts. 

 

6.3. Future work 
 

Updating proof-of-concept 

 

Based on the lessons learned from the exploratory experiments testing our proof-of-

concept, we expect that the proof-of-concept can be adjusted in such a way, that we 

can get the quality of the ontologies enriched based on the suggestions of our solution 

“good” enough to be comparable to manually enriched ontologies. The necessary 

adjustments to our proof-of-concept are: 

- Running a local dictionary on the machine that runs the tool, this way, if a 

certain term exists, the word type can be stored. 

- Creating a real-time setting for the user (domain expert) to constantly be able 

change the frequency threshold on run-time. This should minimize the terms 

that get lost due to a too low frequency of the term in the DomainWordNet. 

- Add a coupling with the ontology that is being enriched. This way the full 

functionality of our solution can be tested. 

- Stemming should be added, the proof-of-concept tool does not perform any 

stemming at all. It is even useful to perform extreme stemming and regard 

“theming” and “theme development” as the same terms. 

 

Additional experiments 

 

One of the lessons we learned from the experiments of the current research was that 

domain experts esteemed some terms to be valuable for the ontology during task 

manual-100, but disregarded them when they were suggested during the tasks using 

the tool. One of the possible reasons for this could be that the UI of the tool is not clear 
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enough. To solve this, or at least to be sure that this is not an issue, we suggest future 

research to perform the following experiment: 

- Performing experiments to obtain an optimal UI, it could be that domain 

experts miss terms due to the interface. 

 

To be able to conclude whether our solution will or will not safe time when enriching 

ontologies, additional experiments need to be conducted: 

- New experiments using the updated version of our proof-of-concept tool, with 

a much bigger sample of domain experts. Time would again need to be 

measured. It would be interesting if future research would also measure the 

saturation of the ontologies in relation to the time. This way it would also be 

known how much time it takes domain experts to reach certain levels of 

saturation, making the experiments more comparable among the domain 

experts. 

 

In the case that it seems fruitful to proceed investigating this solution, we would 

suggest future research to broaden the scope by performing the following 

experiments: 

- Additional new experiments in different domains. 

- Additional new experiments in different settings, like different (types of) 

organizations. 

 

Thoughts on improving/altering solution 

 

The general solution for Epiqo could be improved by updating the Suggestion manager 

in such a way that multiple domain experts can provide their opinion on the 

suggestions. Letting the majority of the domain experts decide whether a suggestion 

should be accepted, could provide an instant golden standard ontology. With some 

more functionality, like comments or suggestions from one domain expert to the 

others, it could potentially have an even greater positive impact on the quality of semi-

automatically generated ontologies.  
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Appendices 
 

A. Task Sheet Domain Expert Experiment 
 

Experiment DE 
 
In this experiment you will be asked to enrich an ontology three times. Please use the 
editor in the e-Recruiter system to do so and only use the plugin as an information 
source. Please use the synonym functionality of the e-Recruiter system for synonyms. 
Please fulfill each task completely before starting the next and do not go back. Perform 
the tasks in an ascending order, first task 1, then task 2 and finally task 3. Please record 
time per task. 
 
Reaching the e-Recruiter system 
Please use your favorite browser to go to the following address:  

http://recruiter4.joost.dev1.zites.net 
 
User:  “********” 
Password: “*******” 
 
and 
 
User:  “********” 
Password: “********” 
 

 
In the grey shortcut bar (second bar from the top), three links are visible. Task 1, Task 2 
and Task 3 respectively. These links will guide you to the taxonomy that you will enrich 
for each task.  
 
Reaching the plugin 
Please use your favorite browser to go to the following address:  

http://jfwolfswinkel.nl 
 
User:  “********” 
Password: “********” 
 

Three links will appear. Task 1, Task 2 and Task 3 respectively. These links will guide 
you to the resources needed to perform each task. 
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Task 1 
Based on the terms/phrases provided by the plugin, enrich the ontology in the system. 
Perform this task however you see fit, but keep track of all the suggested terms that 
you use to enrich the ontology that do not go into the ontology one-to-one. This can be 
done in a text-file called “Task 1”. 
 
Task 2 
Manually go through all the provided 100 job advertisements and enrich the ontology 
“Task 2” in the system. Perform this task however you see fit, but keep track of all the 
terms/phrases from the job advertisements that you use to enrich the ontology that do 
not go into the ontology one-to-one. This can be done in a text-file called “Task 2”. 
 
Task 3 
Based on the terms/phrases provided by the plugin, enrich the ontology in the system. 
Perform this task however you see fit, but keep track of all the suggested terms that 
you use to enrich the ontology that do not go into the ontology one-to-one. This can be 
done in a text-file called “Task 3”. 
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B. Metrics Measurement 1-100 
 
DE1 
Precision = 24 / 24 + 16 ≈ 0,60 
Recall = 24 / 200 ≈ 0,12 
 
Drupal skills (17 items vs. 1 item) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 17 ≈ 0 
 
Fields of study (4 items vs. 3 items) 
Precision = 1 / 1 + 2 ≈ 0,33  
Recall = 1 / 4 ≈ 0,25 
 
General skills (10 items vs. 6 items) 
Precision = 4 / 4 + 2 ≈ 0,66  
Recall = 4 / 10 ≈ 0,40 
 
Industry fields (1 item vs. 0 items) 
Precision = 0 / 0 + 0 ≈ 0 
Recall = 0 / 1 ≈ 0 
 
IT skills (137 items vs. 16 items) 
Precision = 12 / 12 + 4 ≈ 0,75  
Recall = 12 / 137 ≈ 0,09 
 
Occupational fields (31 items vs. 14 items) 
Precision = 7 / 7 + 7 ≈ 0,50  
Recall = 7 / 31 ≈ 0,23 
 
DE2 
Precision = 25 / 25 + 27 ≈ 0,48 
Recall = 25 / 112 ≈ 0,22 
 
Drupal skills (11 items vs. 6 items) 
Precision = 1 / 1 + 5 ≈ 0,17 
Recall = 1 / 11 ≈ 0,09 
 
Fields of study (0 items vs. 1 item) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 0 ≈ 0 
 
General skills (5 items vs. 3 items) 
Precision = 0 / 0 + 3 ≈ 0 
Recall = 0 / 5 ≈ 0 
 
Industry fields (1 item vs. 0 items) 
Precision = 0 / 0 + 0 ≈ 0 
Recall = 0 / 1 ≈ 0 
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IT skills (83 items vs. 22 items) 
Precision = 19 / 19 + 3 ≈ 0,86 
Recall = 19 / 83 ≈ 0,23 
 
Occupational fields (12 items vs. 20 items) 
Precision = 5 / 5 + 15 ≈ 0,25 
Recall = 5 / 12 ≈ 0,42 
 
DE3 
Precision = 34 / 34 + 18 ≈ 0,65 
Recall = 26 / 105 ≈ 0,25 
 
Drupal skills (8 items vs. 3 items) 
Precision = 0 / 0 + 3 ≈ 0 
Recall = 0 / 8 ≈ 0 
 
Fields of study (8 items vs. 7 items) 
Precision = 3 / 3 + 4 ≈ 0,43 
Recall = 3 / 8 ≈ 0,38 
 
General skills (3 items vs. 1 items) 
Precision = 0 / 0 + 1 ≈ 0 
Recall =  0 / 3 ≈ 0 
 
Industry fields (1 item vs. 5 items) 
Precision = 1 / 1 + 4 ≈ 0,20 
Recall = 1 / 1 ≈ 1,00 
 
IT skills (65 items vs. 13 items) 
Precision = 12 / 12 + 1 ≈ 0,92 
Recall = 12 / 65 ≈ 0,18 
 
Occupational fields (20 items vs. 15 items) 
Precision = 10 / 10 + 5 ≈ 0,67 
Recall = 10 / 20 ≈ 0,50 
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C. Absent term listings measurement 1-100 
 
DE1 
Drupal skills 

Term Type Freq (path) Available 

CCK NULL  N 

Custom module 
development 

Noun noun noun 8 20 Y 

Display Suite Verb noun 0 1 N 

Drush Unknown 2 N 

Image Cache Noun - 0 2 N 

Node Queue Noun - 0 1 N 

Organic Groups - noun 0 101 N 

Panels noun 4 N 

Press Flow Verb verb 3 0  N 

Theming verb 19 N 

Ubercart unknown 17 Y 

Ubercart Bulk 
Discount 

Unknown - - 17 0 0 N 

Ubercart Coupon Unknown -  17 0 N 

Ubercart Free Order Unknown - - 17 0 0  N 

Ubercart Product 
Keys 

Unknown - - 17 0 0 N 

Views noun 9 N 

Zen Theme - noun 0 19 N 

 

General skills 

Term Type Freq (path) Available 

Decision making 
skills 

Noun noun noun 0 0 93  N 

Presentation skills noun noun 0 93 N 

Relationship skills Noun noun 0 93 N 

Team collaboration 
skills 

Noun noun noun 0 0 93 N 

Team player Noun noun 95 2 Y 

Writing skills Noun noun 1 93 Y 

 
Fields of study 

Term Type Freq (path) Available 

Engineering noun 14 Y 

Life Sciences Noun noun 6 1 N 

Math - 0 N 

  

Industry fields 

Term Type Freq (path) Available 

eCommerce unknown 4 N 
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IT skills 

Term Type Freq (path) Available 

*NIX Unknown - N 

.NET unknown - N 

Adobe Acrobat Pro - - - - N 

Akamai - - N 

Android noun 4 N 

Application Server Noun noun 16 0 / 0 14 N 

ASP - - N 

C NULL 1 N 

C# - - N 

C++ - - N 

CakePHP - - N 

CGI - - N 

CodeIgnitor - - N 

ColdFusion - - N 

COTS noun 1 N 

CURL - - N 

CVENT - - N 

CVS NULL - N 

DAS - - N 

DB2 - - N 

DHTML NULL - N 

DNS - - N 

Dojo Noun 1 N 

DOM - - N 

Dreamweaver Unknown 1 N 

Eclipse - - N 

EXT - - N 

Firefox Unknown 2 N 

Flash Verb 12 N 

FTP NULL - N 

GIMP - - N 

Git Noun 4 N 

Gomez - - N 

Google Analytics Verb unknown 5 1 / 1 5 N 

Googlemap - - N 

Hibernate Verb 2 N 

HTTP NULL - N 

HttpUnit unknown 2 N 

Illustrator - - N 

Internet Explorer Unknown - 6 -  N 

Java noun 7 N 

JIRA - - N 

Joomla Unknown 3 N 

JPA design - noun 0 64 N 

jQuery Mobile Unknown adjective 21 0 N 

jSON unknown 2 N 
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JSP Unknown 2 N 

JUnit - - N 

LDAP Unknown 1 N 

Magento Unknown 1 N 

Memcache NULL - N 

Mercurial - - N 

Microsoft Dynamics Unknown - 2 - N 

Microsoft IIS Unknown unknown 2 1 / 1 2 N 

Microsoft Office Unknown noun 2 0 / 0 22 N 

MochiKit - - N 

Moodle - - N 

MS Access NULL noun - 9 N 

MS Excel NULL - - - N 

MS Outlook NULL - - - N 

MS PowerPoint NULL - - - N 

MS Project NULL noun - 71 N 

MS SQL NULL NULL - - N 

MS Word NULL noun - 7 N 

MVC Unknown 2 N 

Objective-C - - N 

Omniture - - N 

OOAD Unknown 2 N 

OOP Unknown 1 N 

OpenId Unknown 2 N 

Perl Noun 3 N 

Phonegap - - N 

Photoshop Verb 2 N 

PhPUnit Unknown 2 N 

Plone - - N 

Prototype Noun 1 N 

Prototyping - - N 

Python Noun 9 N 

Querqus - - N 

RDBMS - - N 

REST Verb 1 N 

RHEL - - N 

Rspec - - N 

RSS NULL - N 

Ruby Noun 4 N 

Ruby on Rails Noun preposition - 4 - - N 

SaaS Unknown 3 N 

Safari Noun 2 N 

SAML - - N 

SAN Noun 7 N 

SCAP - - N 

SDLC Unknown 1 N 

Section 508 
compliance 

Noun - - 5 - -  N 

SEO Unknown 6 N 

Shell scripting - verb - 3 N 
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Silverlight Unknown 2 N 

Smarty - - N 

SOAP - - N 

SQL NULL - N 

SSH - - N 

SSO - - N 

Subversion Unknown 1 N 

Sysadmin - - N 

Telnet - - N 

Test Driven 
Development 

Noun adjective noun 8 0 0 / 0 0 178 N 

Titanium Noun 1 N 

Unfuddle - - N 

Unit Testing Noun verb 5 3 / 3 21 N 

Unix Noun 7 N 

Varnish Noun 2 N 

VBScript - - N 

Virtualmin - - N 

Visual Studio Adjective noun 0 2 N 

VLAN - - N 

VPN - - N 

W3C standards - noun - 8 N 

WAMP Unknown 1 N 

Webmin - - N 

Website Baker noun - 38 - N 

Wireframes Noun 1 N 

Wordpress Unknown 4 N 

XHTML NULL - N 

XML NULL - N 

YUI - - N 

Zend Noun 1 N 

 
Occupational fields 
 

Term Type Freq (path) Available 

.NET Developer - noun - 156 N 

Consultant Noun 7 N 

Contractor noun 9 N 

Designer Noun 23 Y 

Developer Noun 156 Y 

Drupal 7 Developer Unknown - noun 399 - -  N 

Drupal Back End 
Developer 

Unknown noun 
noun noun 

399 0 - -   N 

Drupal Configurator Noun - 399 - N 

Drupal Module 
Developer 

Noun noun noun 399 5 0 N 

Drupal Programmer Noun noun 399 53 Y 

Drupal Software 
Developer 

Noun noun noun 399 0 0 N 

Freelance Adjective noun 0 9 N 
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Contractor 

Freelancer Noun 2 N 

Integrator Noun 1 N 

Programmer Noun 12 Y 

Project manager Noun noun 71 6 / 6 29 Y 

Quality engineer Noun noun 10 0 / 0 9 N 

Requirements 
engineer 

Noun noun 50 2 / 2 9 Y 

SEM Specialist NULL noun - 5 N 

Senior Drupal 
Developer 

Adjective unknown 
noun 

- - - / 2 399 2 Y 

Team Lead Noun verb 95 2 / 2 21 Y 

Tech Lead Noun verb 7 1 / 1 21 N 

Web Application 
Development 

Noun noun noun 246 6 2 / 6 16 2 / 2 
5 178 

Y 

Web Development Noun noun 23 178 / 247 23 Y 

Web Software 
Developer 

Noun noun noun 247 0 -  N 

 
 
 
DE2 
Drupal skills 

Term Type Freq (path) Available 

Block creation Noun noun 1 8 N 

Core API Noun - 8 - N 

Display Suite Verb noun - 1 N 

Drupal template 
theming 

Unknown noun verb 399 51 -  N 

Drupal UI theming Unknown unknown 
verb 

399 3 - N 

Drush Unknown 2 N 

Image Cache Noun - 1 N 

Node Queue Noun - 1 N 

Panels Noun 4 N 

Views Noun 9 N 

 
 

Fields of study 

Term Type Freq (path) Available 
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General skills 

Term Type Freq (path) Available 

communication 
skills 

Noun noun 21 18 Y 

interpersonal skills Adjective noun - 93 N 

project 
management skills 

Noun noun noun 71 11 5 Y 

verbal skills Adjective noun - 93 N 

written skills Verb noun - 93 N 

 

Industry fields 

Term Type Freq (path) Available 

e-commerce Noun 4 N 

 
IT skills 

Term Type Freq (path) Available 

.NET - - N 

Akamai CDN - - - - N 

Android 
development 

Noun noun 4 - N 

ASP - - N 

Basic subversion 
usage 

Adjective unknown 
noun 

- - - N 

C - - N 

C# - - N 

C++ - - N 

CakePHP - - N 

CGI - - N 

Coldfusion - - N 

CURL - - N 

CVS Knowledge - - - N 

Design patterns Noun noun 64 - 
 

N 

DNS - - N 

Document Object 
Model 

Noun noun - 5 - -  N 

Dojo Noun 1 N 

Drupal Unknown 399 Y 

Eclipse - - N 

Ext JS - - - - N 

frameworks Noun 8 N 

FTP - - N 

game development Noun noun 4 2 N 

GIMP - - N 

Git usage Noun noun 4 - N 

HTML5 - - N 

iphone Unknown noun 8 -  N 
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development 

Java Noun 7 N 

JOOMLA Unknown 3 N 

jQuery Mobile Unknown adjective 21 -  N 

jSON Unknown 2 N 

JSP Unknown 2 N 

Junit - - N 

LDAP Unknown 1 N 

Microsoft IIS Unknown unknown 2 1 N 

Microsoft SQL Unknown - 2 - N 

mobile development 
frameworks 

Adjective noun noun - - - N 

MochiKit - - N 

Moodle - - N 

Objective-C - - N 

OOP Unknown 1 N 

OpenId Unknown 2 N 

Perl Noun 3 N 

PHP5 - - N 

phpUnit Unknown 2 N 

REST verb - N 

Ruby noun 4 N 

Shell scripting - - - - N 

Silverlight Unknown 2 N 

SOAP - - N 

software design Noun noun 34 - N 

software 
implementation 

Noun noun 34 - N 

SQL - - N 

SSH - - N 

SSO techniques - noun - - N 

Telnet - - N 

Unix Noun 7 N 

VBScript - - N 

VLAN - - N 

VPN - - N 

WEB 2.0 - - N 

web services Noun noun 247 2 Y 

Wordpress Unknown 4 N 

YUI - - N 
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Occupational fields 
 

Term Type Freq (path) Available 

backup systems 
administrator 

Noun noun - 1 - -  N 

Developer Drupal Noun unknown 156 90 Y 

Drupal Back End 
Developer 

Unknown noun 
noun noun 

399 - - - N 

Drupal Configurator Unknown - 399 N 

Drupal Themer Unknown unknown 399 55 Y 

PHP Architect Unknown noun 98 - N 

PHP expert Unknown noun 98 1 Y 

 
 
  



 

83 

DE3 
Drupal skills 

Term Type Freq (path) Available 

CCK NULL - N 

Display Suite Verb noun - - N 

Image Cache Noun - 1 - N 

Node Queue Noun - 1 - N 

Organic group - noun - - N 

Panels noun 4 N 

Theming verb - N 

Views noun 9 N 

 

Fields of study 

Term Type Freq (path) Available 

Computer 
Engineering 

Noun noun 19 2 Y 

Information Systems Noun noun 41 2 Y 

Math - - N 

Software design Noun noun 34 - N 

Systems Analysis Noun noun 22 - N 

 

General skills 

Term Type Freq (path) Available 

Analytical skills Adjective noun - - N 

Communication 
skills 

Noun noun 21 18 Y 

Team collaboration 
skills 

Noun noun noun 95 - - N 

  



 

84 

Industry fields 

Term Type Freq (path) Available 

 
IT skills 

Term Type Freq (path) Available 

ASP - - N 

C NULL - N 

C# - - N 

C++ - - N 

ColdFusion - - N 

COTS Noun 1 N 

css3 - - N 

CURL - - N 

DB2 - - N 

DHTML NULL - N 

Dreamweaver Unknown 1 N 

Eclipse IDE - - - - N 

EXT - - N 

Flash - - N 

GIMP - - N 

Git Noun 4 N 

Gomez - - N 

Hibernate Verb - N 

HTML5 - - N 

HTTP NULL - N 

Illustrator - - N 

Java Noun 7 N 

JIRA - - N 

Joomla Unknown 3 N 

jSON Unknown 2 N 

JSP Unknown 2 N 

Junit - - N 

memcache NULL - N 

Microsoft Office Unknown noun 2 - N 

Microsoft SQL Unknown NULL 2 -  N 

MVC Unknown 2 N 

OOAD Unknown 2 N 

OOP Unknown 1 N 

Photoshop Verb - N 

phpUnit Unknown 2 N 

Python Noun 9 N 

Rspec - - N 

Ruby Noun 4 N 

SEO Unknown 6 N 

Silverlight Unknown 2 N 

Smarty - - N 

SQL NULL - N 

Subversion Unknown 1 N 

Ubercart Unknown 17 Y 
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UNIX Noun 7 N 

Varnish Noun 2 N 

VBScript - - N 

Visual Studio Adjective noun - - N 

WAMP Unknown 1 N 

Wordpress Unknown 4 N 

xhtml NULL - N 

xml NULL - N 

YUI - - N 

 
Occupational fields 
 

Term Type Freq (path) Available 

Drupal 7 Developer Unknown - noun 399 - - N 

Drupal Back End 
Developer 

Unknown noun 
noun noun 

399 - - - N 

Drupal Configurator Unknown - 399 - N 

Drupal Consultant Unknown noun 399 - N 

Junior Drupal 
Developer 

Adjective unknown 
noun 

- - - N 

LAMP Engineer Noun noun 20 - N 

PHP Architect Unknown noun 98 - N 

Requirements 
engineer 

Noun noun 50 2 Y 

Senior Drupal 
Developer 

Adjective unknown 
noun 

- - - N 

Senior Web 
Software Developer 

Adjective noun 
noun noun 

- - - - N 
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D. Metrics Measurement 1-1.000 
 
DE1 
Precision = 65 / 65 + 30 ≈ 0,68 
Recall = 65 / 200 ≈ 0,33 
 
Drupal skills (17 items vs. 6 items) 
Precision = 5 / 5 + 1 ≈ 0,83  
Recall = 5 / 17 ≈ 0,29 
 
Fields of study (4 items vs. 3 items) 
Precision = 1 / 1 + 2 ≈ 0,33  
Recall = 1 / 4 ≈ 0,25 
 
General skills (10 items vs. 11 items) 
Precision = 6 / 6 + 5 ≈ 0,55 
Recall = 6 / 10 ≈ 0,60 
 
Industry fields (1 item vs. 1 item) 
Precision = 1 / 1 + 0 ≈ 1 
Recall = 1 / 1 ≈ 1 
 
IT skills (137 items vs. 55 items) 
Precision = 43 / 43 + 12 ≈ 0,78  
Recall = 43 / 137 ≈ 0,31 
 
Occupational fields (31 items vs. 20 items) 
Precision = 10 / 10 + 10 ≈ 0,50  
Recall = 10 / 31 ≈ 0,32  
 

DE2 
Precision = 45 / 45 + 35 ≈ 0,56 
Recall = 45 / 112 ≈ 0,40 
 
Drupal skills (11 items vs. 8 items) 
Precision = 2 / 2 + 6 ≈ 0,25 
Recall = 2 / 11 ≈ 0,18 
 
Fields of study (0 items vs. 1 items) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 0 ≈ 0 
 
General skills (5 items vs. 4 items) 
Precision = 2 / 2 + 2 ≈ 0,50 
Recall = 2 / 5 ≈ 0,40 
 
Industry fields (1 items vs. 1 items) 
Precision = 1 / 1 + 0 ≈ 1,00 
Recall = 1 / 1 ≈ 1,00 
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IT skills (83 items vs. 57 items) 
Precision = 38 / 38 + 19 ≈ 0,67 
Recall = 38 / 83 ≈ 0,46 
 
Occupational fields (12 items vs. 9 items) 
Precision = 2 / 2 + 7 ≈ 0,22 
Recall = 2 / 12 ≈ 0,17 
 
DE3 
Precision = 37 / 37 + 28 ≈ 0,57 
Recall = 37 / 105 ≈ 0,35 
 
Drupal skills (8 items vs. 3 items) 
Precision = 1 / 1 + 3 ≈ 0,25 
Recall = 1 / 8 ≈ 0,13 
 
Fields of study (8 items vs. 8 items) 
Precision = 6 / 6 + 2 ≈ 0,75 
Recall = 6 / 8 ≈ 0,75 
 
General skills (3 items vs. 1 item) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 3 ≈ 0 
 
Industry fields (1 item vs. 2 items) 
Precision = 1 / 1 + 1 ≈ 0,50 
Recall = 1 / 1 ≈ 1,00 
 
IT skills (65 items vs. 33 items) 
Precision = 19 / 19 + 14 ≈ 0,58 
Recall = 19 / 65 ≈ 0,29 
 
Occupational fields (20 items vs. 17 items) 
Precision = 10 / 10 + 7 ≈ 0,59 
Recall = 10 / 20 ≈ 0,50 
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E. Absent term listings Measurement 1-1.000 
 
DE1 
Drupal skills 
 

Term Type Freq (path) Available 

CCK NULL - N 

Display suite Verb NULL - - N 

Drush Unknown 8 N 

Image cache Noun noun 24 2 Y 

Node queue Noun noun 37 2  Y 

Press flow Verb verb 9 1  N 

Theming verb 118 N 

Ubercart Unknown 105 Y 

Ubercart Bulk 
Discount 

Unknown noun noun 105 2 2 Y 

Ubercart Coupon Unknown noun 105 2 Y 

Ubercart Free Order Unknown adjective 
noun 

105 0 - N 

Ubercart Product 
Keys 

Unknown noun noun 105 3 2 Y 

Zen theme Noun noun 11 5 Y 

 

Fields of study 

Term Type Freq (path) Available 

Engineering noun 67 Y 

Life Sciences Noun noun 50 6 Y 

Math noun 2 N 

  

General skills 

Term Type Freq (path) Available 

Decision making 
skills 

Noun NULL noun 6 - - N 

Presentation skills Noun noun 21 5 Y 

Relationship skills Noun noun 28 1 Y 

Team collaboration 
skills 

Noun noun noun 658 2 2 Y 

 
 
IT skills 

Term Type Freq (path) Available 

*NIX Unknown 3 N 

Adobe Acrobat Pro Noun noun noun 27 1 1 Y 

Akamai Unknown 4 N 

Apache NULL - N 

Application server Noun noun 197 4 Y 
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C NULL - N 

C# - - N 

C++ - - N 

CGI NULL - N 

CodeIgnitor Unknown 5 N 

ColdFusion Unknown 7 N 

COTS Noun 2 N 

CURL Verb 2 N 

CVENT Unknown 1 N 

CVS NULL - N 

DB2 - - N 

DHTML NULL - N 

DNS NULL - N 

DOM Noun 8 N 

Dreamweaver Unknown 6 N 

Eclipse Noun 8 N 

EXT Unknown 6 N 

Flash verb 63 N 

FTP NULL - N 

GIMP Noun 1 N 

Gomez Unknown 1 N 

Googlemap Unknown 4 N 

Hibernate verb 7 N 

HTTP NULL - N 

HttpUnit Unknown 6 N 

Illustrator Noun 9 N 

Internet Explorer Unknown noun 77 6 Y 

JIRA Unknown 2 N 

JPA design Unknown noun 1 1 N 

JQuery mobile Unknown adjective 216 4 Y 

JUnit - - N 

LDAP Unknown 7 N 

Mercurial NULL - N 

Microsoft Dynamics NULL NULL - - N 

Microsoft IIS NULL unknown - 8 N 

MochiKit Unknown 1 N 

Moodle Unknown 3 N 

MS Excel NULL NULL - - N 

MS Outlook NULL noun - 3 N 

MS Project NULL noun - 466 N 

MS SQL NULL NULL - - N 

MS Word NULL NULL - - N 

Objective-C Unknown 3 N 

Omniture Unknown 1 N 

OOAD Unknown 6 N 

OpenId Unknown 6 N 

Phonegap Unknown 1 N 

Photoshop Verb 59 N 

PhPUnit Unknown 7 N 



 

90 

Plone Unknown 2 N 

Prototyping Verb 3 N 

Querqus Unknown 1 N 

RDBMS NULL - N 

REST Verb 19 N 

RHEL Unknown 1 N 

Rspec - - N 

RSS NULL - N 

Ruby on Rails Noun NULL noun 22 - - N 

SAML Unknown 1 N 

SAN Noun 72 Y 

SCAP Unknown 1 N 

SDLC Unknown 11 Y 

Section 508 
compliance 

Noun - - 5 - -  N 

Shell scripting NULL verb - 40 N 

Silverlight Unknown 5 N 

Smarty Noun 8 N 

SQL NULL - N 

SSH Unknown 9 N 

SSO Unknown 2 N 

Subversion NULL - N 

Sysadmin Unknown 1 N 

Telnet Noun 1 N 

Test Driven 
Development 

Noun adjective noun 58 1 1 Y 

Titanium Noun 5 N 

Unfuddle Unknown 6 N 

Unit Testing Noun NULL 32 11 Y 

Varnish Noun 7 N 

VBScript Unknown 1 N 

Virtualmin Unknown 2 N 

VLAN Unknown 1 N 

VPN NULL - N 

W3C standards - NULL - N 

WAMP Unknown 6 N 

Webmin Unknown 2 N 

Website Baker Noun noun 374 1 Y 

Wireframes Noun 15 Y 

XHTML NULL - N 

XML NULL - N 

 
Occupational fields 
 

Term Type Freq (path) Available 

.NET Developer .Noun noun 1 1229 Y 

Consultant Noun 47 Y 

Contractor NULL - N 

Designer Noun 119 Y 

Developer Noun 1229  
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Drupal 7 Developer Unknown – noun 3288 - - N 

Drupal Back End 
Developer 

Noun noun noun 
noun 

3288 2 2 2  Y 

Drupal Configurator Noun unknown 3288 355 Y 

Drupal Programmer Noun noun 3288 395  

Drupal Software 
Developer 

Noun noun noun 3288 356 353 Y 

Freelance 
Contractor 

NULL NULL - - N 

Freelancer Noun 22 Y 

Integrator Noun 6 N 

Programmer Noun 107 Y 

Quality engineer Noun noun 84 0 N 

Requirements 
engineer 

Noun noun 332 6 Y 

SEM Specialist NULL noun - 10 N 

Senior Drupal 
Developer 

Adjective noun 
noun 

78 3288 73 Y 

Tech Lead Noun verb 18 2 Y 

Web Application 
Development 

Noun noun noun 1458 163 29 Y 

Web Development Noun noun 1458 240 Y 

Web Software 
Developer 

Noun noun noun 1458 8 7 Y 

 
DE2 
Drupal skills 

Term Type Freq (path) Available 

Block creation Noun noun 10 1 Y 

core API Noun - - - N 

Display Suite Verb noun - - N 

Drupal template 
theming 

Unknown noun verb 3288 356 - N 

Drupal UI theming Unknown unknown 
verb 

3288 2 - N 

Drush unknown 8 N 

Image Cache Noun - 24 2 Y 

Node Queue Noun - 37 2 Y 

Panels Noun 26 Y 

 

Fields of study 

Term Type Freq (path) Available 
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General skills 

Term Type Freq (path) Available 

communication skills Noun noun 185 140 Y 

interpersonal skills Adjective noun - - N 

project management 
skills 

Noun noun noun 466 45 16 Y 

 

Industry fields 

Term Type Freq (path) Available 

 
IT skills 

Term Type Freq (path) Available 

.NET - - N 

Akamai CDN - - - N 

android 
development 

Noun noun 24 1 Y 

Apache2 - - N 

Basic subversion 
usage 

Adjective unknown 
noun 

- - - N 

C# - - N 

C++ - - N 

CGI - - N 

ColdFusion - - N 

CURL - - N 

CVS knowledge - noun - - N 

design patterns Noun noun 558 6 Y 

DNS - - N 

Document Object 
Model 

Noun noun - - - - N 

Dojo Noun 13 Y 

Drupal Unknown 3288 Y 

frameworks Noun - N 

FTP - - N 

GIMP - - N 

Git usage Noun noun 50 - N 

HTML5 - - N 

iphone development Unknown noun 43 - N 

jQuery Mobile Unknown adjective 216 4 Y 

JSP Unknown 23 Y 

JUnit - - N 

Microsoft IIS Unknown unknown - - N 

Microsoft SQL Unknown - - - N 

mobile development 
frameworks 

Adjective noun noun - - - N 

Moodle - - N 

PHP unknown 933 Y 

PHP5 - - N 
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phpUnit unknown 7 N 

Shell scripting - - - N 

Silverlight unknown 5 N 

software design Noun noun 284 11 Y 

software 
implementation 

Noun noun 284 -  N 

SSH - - N 

SSO techniques - noun - - N 

Telnet - - N 

VBScript - - N 

VLAN - - N 

VPN - - N 

WAMP Unknown 6 N 

WEB 2.0 - - N 

web services Noun noun 1458 167 Y 

 
Occupational fields 
 

Term Type Freq (path) Available 

backup systems 
administrator 

Noun noun - 12 4 4 Y 

Developer Drupal Noun unknown 1229 297 Y 

Drupal Back end 
Developer 

Unknown noun 
noun noun 

3288 2 2 2 Y 

Drupal Configurator Unknown - 3288 - N 

drupal programmer Unknown noun 3288 1 Y 

PHP Architect Unknown noun 933 47 Y 

php developers Unknown noun 933 5 Y 

PHP Expert Unknown noun 933 8 Y 

Themer unknown 76 Y 

Web Designer Noun noun 1458 3 Y 

 
DE3 
Drupal skills 

Term Type Freq (path) Available 

CCK NULL - N 

Display Suite Verb NULL - - N 

Image Cache Noun noun 24 2 Y 

Node Queue Noun noun 37 2 Y 

Organic group Adjective noun - - N 

Panels Noun 26 Y 

Theming verb - N 

 

Fields of study 

Term Type Freq (path) Available 

Math noun 2 N 

Systems Analysis Noun noun 232 3 Y 
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General skills 

Term Type Freq (path) Available 

Analytical skills Adjective noun - - N 

Communication skills Noun noun 185 140 Y 

Team collaboration 
skills 

Noun noun noun 658 2 2 Y 

 

Industry fields 

Term Type Freq (path) Available 

 
IT skills 

Term Type Freq (path) Available 

Apache NULL -  N 

C NULL - N 

C# - - N 

C++ - - N 

ColdFusion Unknown 7 N 

COTS Noun 2 N 

css3 - - N 

CURL Verb - N 

DB2 - - N 

DHTML NULL - N 

Dreamweaver Unknown 6 N 

Eclipse IDE Noun NULL 8 2 N 

EXT Unknown 6 N 

Flash Verb - N 

GIMP Noun 1 N 

Gomez Unknown 1 N 

Hibernate Verb - N 

HTML5 - - N 

HTTP NULL - N 

Illustrator Noun 9 N 

JIRA Unknown 2 N 

jSON Unknown 20 Y 

JSP Unknown 23 Y 

Junit - - N 

memcache Unknown 10 Y 

Microsoft Office NULL noun - - N 

Microsoft SQL NULL NULL - - N 

MVC Unknown 19 Y 

OOAD Unknown 6 N 

OOP Unknown 12 Y 

Photoshop Verb  - N 

PHP Unknown 933 Y 

phpUnit Unknown  7 N 

Rspec - - N 

Silverlight Unknown  5 N 
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Smarty Noun 8 N 

SQL NULL - N 

Subversion NULL - N 

Varnish Noun 7 N 

VBScript Unknown 1 N 

Visual Studio Adjective noun - - N 

WAMP Unknown 6 N 

Web services Noun noun 1458 167 Y 

xhtml NULL - N 

xml NULL - N 

YUI Unknown 13 Y 

 
Occupational fields 
 

Term Type Freq (path) Available 

Drupal 7 Developer Unknown - noun 3288 - - N 

Drupal Back End 
Developer 

Unknown noun 
noun noun 

3288 2 2 2 N 

Drupal Configurator Unknown unknown 3288 6 Y 

Drupal Consultant Unknown noun 3288 393 Y 

Junior Drupal 
Developer 

Adjective unknown 
noun 

- - - N 

LAMP Engineer Noun noun 171 2 Y 

PHP Architect Unknown NULL 933 47 Y 

Senior Developer Adjective noun - - N 

Senior Drupal 
Developer 

Adjective unknown 
noun 

- - -  N 

Senior Web 
Software Developer 

Adjective noun 
noun noun 

- - - - N 
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F. Golden Standard Ontology GS 
Drupal skills 

 CCK 1,2,3 

Display Suite 1,2,3 

Drush 2,3 

Image Cache 1,2,3 

Node Queue 1,2,3 

Panels 1,2,3 

Theming 1,3 

Views 1,2,3 
 
Fields of study 

 Computer Science 1,3 

Math 1,3 
 
General skills 

 Analytical skills 1,3 

Communication skills 1,2,3 

Team collaboration skills 1,3 
 
Industry fields 

 eCommerce 1,2 
 
IT skills 

 .NET 1,2 

AJAX 1,2,3 

Apache 1,2,3 

ASP 1,2,3 

C 1,2,3 

C# 1,2,3 

C++ 1,2,3 

CGI 1,2 

ColdFusion 1,2,3 

COTS 1,3 

CSS 1,2,3 

CURL 1,2,3 

DB2 1,3 

DHTML 1,2,3 

DNS 1,2 

Dojo 1,2 

Dreamweaver 1,3 

Drupal 1,2,3 

Eclipse 1,2 

EXT 1,3 

Flash 1,3 

FTP 1,2 

GIMP 1,2,3 
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Git 1,3 

Gomez 1,3 

HTML 1,3 

HTML5 2,3 

HTTP 1,3 

Illustrator 1,3 

Java 1,2,3 

JavaScript 1,2,3 

JIRA 1,3 

Joomla 1,2,3 

Jquery 1,2,3 

jQuery Mobile 1,2 

jSON 1,2,3 

JSP 1,2,3 

JUnit 1,2,3 

LAMP 1,2,3 

LDAP 1,2 

Linux 1,2,3 

Memcache 1,3 

Microsoft IIS 1,2 

Microsoft Office 1,3 

MochiKit 1,2 

Moodle 1,2 

MVC 1,3 

MySQL 1,2,3 

Objective-C 1,2 

OOAD 1,2,3 

OOP 1,2,3 

OpenId 1,2 

Perl 1,2 

PHP 1,2,3 

Photoshop 1,3 

phpUnit 1,2,3 

Python 1,2,3 

REST 1,2 

Rspec 1,3 

Ruby 1,2,3 

SEO 1,3 

Shell scripting 1,2 

Silverlight 1,2,3 

Smarty 1,3 

SOAP 1,2 

SQL 1,2,3 

SSH 1,2 

Subversion 1,3 

Telnet 1,2 
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Unix 1,2,3 

Varnish 1,3 

VBScript 1,2,3 

Visual Studio 1,3 

VLAN 1,2 

VPN 1,2 

WAMP 1,2,3 

Web services 1,2,3 

Wordpress 1,2,3 

XHTML 1,2,3 

XML 1,2,3 

YUI 1,2,3 

Zend 1,2 
 
Occupational fields 

 Drupal 7 Developer 1,3 

Drupal Back End Developer 1,2,3 

Drupal Configurator 1,2,3 

Drupal Programmer 1,2,3 

Drupal Themer 1,2,3 

PHP Architect 2,3 

Project manager 1,3 

Requirements engineer 1,3 

Senior Drupal Developer 1,3 

Web Designer 1,3 

Web Developer 1,3 
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G. Measurements GS 
DE1 

Precision = 105 / 105 + 95 ≈ 0.53 

Recall = 105 / 107 ≈ 0.98 

 

DE2 

Precision = 75 / 75 + 37 ≈ 0.67 

Recall = 75 / 107 ≈ 0.70 

 

DE3 

Precision = 84 / 84 + 21 ≈ 0.80 

Recall = 84 / 107 ≈ 0.79 
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H. Golden Standard Ontologies GST100 and GST1.000 
 
GST100 
 
Drupal skills 

 Module development 1,3 
 
Fields of study 

 computer science 1,2,3 

information technology 1,3 

software engineering 1,3 
 
General skills 

 management skills 1,2 
 
Industry fields 

  
IT Skills 

  AJAX 
 

1,2,3 

Apache 
 

1,2,3 

CSS 
 

1,2,3 

Drupal 
 

1,3 

HTML 
 

1,2,3 

Javascript 1,2,3 

Jquery 
 

1,2,3 

LAMP 
 

1,2,3 

Linux 
 

1,2,3 

MySQL 
 

1,2,3 

PHP 
 

1,2,3 

Web services 1,3 
 
Occupational fields 

 drupal developer 1,3 

drupal programmer 2,3 

drupal themer 1,3 

marketing manager 1,3 

php developer 1,2,3 

product manager 1,3 

project manager 1,3 

senior developer 1,3 

software developer 1,2,3 

web designer 1,2,3 

web developer 1,2,3 
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GST1.000 
 
Drupal skills 

 rules 
 

2,3 

views 
 

1,2,3 
 
Fields of study 

 computer science 1,3 

information technology 1,2,3 

software engineering 1,3 
 
General skills 

 technical skills 1,2,3 
 
Industry fields 

 e-commerce 1,2 
 
IT skills 

  AJAX 
 

1,2,3 

ASP 
 

1,2,3 

CSS 
 

1,2,3 

Drupal  
 

1,3 

Firefox 
 

1,3 

Git 
 

1,2,3 

HTML 
 

1,3 

Java 
 

1,2,3 

Javascript 1,2,3 

Joomla 
 

1,2,3 

Jquery 
 

1,2,3 

json 
 

1,2 

LAMP 
 

1,2,3 

Linux 
 

1,2,3 

MVC 
 

1,2 

MySQL 
 

1,2,3 

OOP 
 

1,2 

Perl 
 

1,2,3 

PHP 
 

1,3 

python 
 

1,2,3 

Ruby 
 

1,2,3 

SEO 
 

1,3 

SOAP 
 

1,2,3 

Solr 
 

1,2 

SVN 
 

1,3 

Ubercart 
 

1,3 

Unix 
 

1,2,3 

XSLT 
 

1,2,3 

YUI 
 

1,2 
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Zend 
 

1,2 
 
Occupational fields 

 Business analist 1,3 

drupal architect 1,2 

drupal developer 1,2,3 

drupal engineer 1,2 

drupal themer 1,2,3 

marketing manager 1,3 

php developer 1,3 

product manager 1,3 

project manager 1,3 

software engineer 1,3 

web designer 1,3 

web developer 1,2,3 
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I. Measurements GST100 and GST1.000 
GS compared to GST100 

Precision = 18 / 18 + 10 ≈ 0.64 

Recall = 18 / 107 ≈ 0.17 

 

GS compared to GST1.000 

Precision = 32 / 32 + 17 ≈ 0.65 

Recall = 32 / 107 ≈ 0.30 
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J. Metrics Measurement 3-100 
DE1 
Precision = 39 / 39 + 16 ≈ 0,71 
Recall = 39 / 200 ≈ 0,20 
 
Drupal skills (17 items vs. 3 item) 
Precision = 2 / 2 + 1 ≈ 0,66 
Recall = 2 / 17 ≈ 0,12 
 
Fields of study (4 items vs. 4 items) 
Precision = 2 / 2 + 2 ≈ 0,50  
Recall = 2 / 4 ≈ 0,50 
 
General skills (10 items vs. 8 items) 
Precision = 6 / 6 + 2 ≈ 0,75  
Recall = 6 / 10 ≈ 0,60 
 
Industry fields (1 item vs. 0 items) 
Precision = 0 / 0 + 0 ≈ 0 
Recall = 0 / 1 ≈ 0 
 
IT skills (137 items vs. 16 items) 
Precision = 12 / 12 + 4 ≈ 0,75  
Recall = 12 / 137 ≈ 0,09 
 
Occupational fields (31 items vs. 24 items) 
Precision = 17 / 17 + 7 ≈ 0,71  
Recall = 17 / 31 ≈ 0,55 
 
DE2 
Precision = 32 / 32 + 27 ≈ 0,54 
Recall = 32 / 112 ≈ 0,29 
 
Drupal skills (11 items vs. 6 items) 
Precision = 1 / 1 + 5 ≈ 0,17 
Recall = 1 / 11 ≈ 0,09 
 
Fields of study (0 items vs. 1 item) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 0 ≈ 0 
 
General skills (5 items vs. 5 items) 
Precision = 2 / 2 + 3 ≈ 0,40 
Recall = 2 / 5 ≈ 0,40 
 
Industry fields (1 item vs. 0 items) 
Precision = 0 / 0 + 0 ≈ 0 
Recall = 0 / 1 ≈ 0 
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IT skills (83 items vs. 24 items) 
Precision = 21 / 21 + 3 ≈ 0,88 
Recall = 21 / 83 ≈ 0,25 
 
Occupational fields (12 items vs. 23 items) 
Precision = 8 / 8 + 15 ≈ 0,35 
Recall = 8 / 12 ≈ 0,67 
 
DE3 
Precision = 39 / 39 + 18 ≈ 0,68 
Recall = 31 / 105 ≈ 0,30 
 
Drupal skills (8 items vs. 3 items) 
Precision = 0 / 0 + 3 ≈ 0 
Recall = 0 / 8 ≈ 0 
 
Fields of study (8 items vs. 9 items) 
Precision = 5 / 5 + 4 ≈ 0,56 
Recall = 5 / 8 ≈ 0,63 
 
General skills (3 items vs. 2 items) 
Precision = 1 / 1 + 1 ≈ 0,50 
Recall =  1 / 3 ≈ 0,33 
 
Industry fields (1 item vs. 5 items) 
Precision = 1 / 1 + 4 ≈ 0,20 
Recall = 1 / 1 ≈ 1,00 
 
IT skills (65 items vs. 14 items) 
Precision = 13 / 13 + 1 ≈ 0,93 
Recall = 13 / 65 ≈ 0,20 
 
Occupational fields (20 items vs. 16 items) 
Precision = 11 / 11 + 5 ≈ 0,69 
Recall = 11 / 20 ≈ 0,55 
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K. Metrics Measurement 3-1.000 
DE1 
Precision = 102 / 102 + 30 ≈ 0,77 
Recall = 102 / 200 ≈ 0,51 
 
Drupal skills (17 items vs. 13 items) 
Precision = 12 / 12 + 1 ≈ 0,92  
Recall = 12 / 17 ≈ 0,71 
 
Fields of study (4 items vs. 5 items) 
Precision = 3 / 3 + 2 ≈ 0,60  
Recall = 3 / 4 ≈ 0,75 
 
General skills (10 items vs. 14 items) 
Precision = 9 / 9 + 5 ≈ 0,64 
Recall = 9 / 10 ≈ 0,90 
 
Industry fields (1 item vs. 1 item) 
Precision = 1 / 1 + 0 ≈ 1 
Recall = 1 / 1 ≈ 1 
 
IT skills (137 items vs. 65 items) 
Precision = 52 / 52 + 12 ≈ 0,81  
Recall = 52 / 137 ≈ 0,38 
 
Occupational fields (31 items vs. 36 items) 
Precision = 26 / 26 + 10 ≈ 0,72  
Recall = 26 / 31 ≈ 0,84  
 
DE2 
Precision = 69 / 69 + 35 ≈ 0,66 
Recall = 69 / 112 ≈ 0,62 
 
Drupal skills (11 items vs. 12 items) 
Precision = 6 / 6 + 6 ≈ 0,50 
Recall = 6 / 11 ≈ 0,55 
 
Fields of study (0 items vs. 1 items) 
Precision = 0 / 0 + 1 ≈ 0 
Recall = 0 / 0 ≈ 0 
 
General skills (5 items vs. 6 items) 
Precision = 4 / 4 + 2 ≈ 0,67 
Recall = 4 / 5 ≈ 0,80 
 
Industry fields (1 items vs. 1 items) 
Precision = 1 / 1 + 0 ≈ 1,00 
Recall = 1 / 1 ≈ 1,00 
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IT skills (83 items vs. 66 items) 
Precision = 47 / 47 + 19 ≈ 0,71 
Recall = 47 / 83 ≈ 0,57 
 
Occupational fields (12 items vs. 18 items) 
Precision = 11 / 11 + 7 ≈ 0,61 
Recall = 11 / 12 ≈ 0,92 
 
DE3 
Precision = 56 / 56 + 28 ≈ 0,67 
Recall =  56 / 105 ≈ 0,53 
 
Drupal skills (8 items vs. 6 items) 
Precision = 4 / 4 + 3 ≈ 0,57 
Recall = 4 / 8 ≈ 0,50 
 
Fields of study (8 items vs. 9 items) 
Precision = 7 / 7 + 2 ≈ 0,78 
Recall = 7 / 8 ≈ 0,88 
 
General skills (3 items vs. 3 item) 
Precision = 2 / 2 + 1 ≈ 0,67 
Recall = 2 / 3 ≈ 0,67 
 
Industry fields (1 item vs. 2 items) 
Precision = 1 / 1 + 1 ≈ 0,50 
Recall = 1 / 1 ≈ 1,00 
 
IT skills (65 items vs. 41 items) 
Precision = 27 / 27 + 14 ≈ 0,74 
Recall = 27 / 65 ≈ 0,42 
 
Occupational fields (20 items vs. 22 items) 
Precision = 15 / 15 + 7 ≈ 0,68 
Recall = 15 / 20 ≈ 0,75 


