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1 Introduction

Model checking is a well-known technique, which is used to verify the correctness of computer programs.
In model checking, instead of verifying the computer program itself, the computer program is represented
by a model called a state space, which is verified.

A major drawback of this approach is that the state space of a computer program quickly becomes
very large; a phenomenon also known as the state space explosion. Because state spaces are so large, it
is infeasible to verify large models.

To still be able to reason about such state spaces, without losing too much information about the
original model, techniques have been developed that reduce the size of a state space that guarantee to
preserve interesting information (for example deadlocks). One particular approach that proved to be
successful is partial-order reduction [15,21,22,26,27].

Traditionally, Partial-order reduction uses the fact that a lot of computer programs consist of sep-
arate subprocesses that are executed in parallel. Some tasks of a single subprocess depend on other
subprocesses’ tasks, but some do not. These independent tasks give rise to a lot of different possible
internal behaviors. However, the final result of the program is always the same, because the tasks are
independent. This results in redundant information in the state space. Partial-order reduction tries to
reduce state space models by removing this redundant information from the models.

To be able to apply partial-order reduction, there are two important requirements. First the parallel
components need to be known in advance, and second the actions of these components need to be known
in advance. In modern software systems, these two requirements are not fulfilled.

Actions within a single subprocess are always dependent on each other, because the order in which
they are executed cannot be changed. When there is no clear definition of the subprocesses, every
action is grouped in a single process and it will be difficult to identify independent actions. Because, in
modern software, threads are dynamically created and destroyed, we do not have a clear definition of the
subprocesses.

The requirement on the actions is necessary for a similar reason. When we do not know all the
actions in advance, it is impossible to determine the independent actions. It is is always possible that a
new action is found that is dependent with an action that was previously independent. Because modern
software dynamically allocates and deallocates memory structures, new actions are dynamically created.

Our interest is in graph transformation systems. In graph transformation systems [11] the require-
ments of partial-order reduction are also not fulfilled. Graph transformation systems do not know pro-
cesses, all actions are performed on a single shared graph, and actions are dynamically enabled and
disabled because they depend on the shared graph.

To deal with these dynamic systems, new dynamic partial-order reduction algorithms have been
constructed [14, 17]. In these dynamic algorithms, the dependency relation is no longer required in
advance. Instead the dependency relation can be generated on the fly while exploring the state space
and we no longer need to now the subprocesses and actions in advance.
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1.1 RESEARCH QUESTIONS INTRODUCTION

1.1 Research Questions

This master thesis revolves around the dynamic partial-order reduction algorithm based on probe sets
introduced in [17]. Although the theoretical concepts behind this algorithm are clear and proven to be
sound, no actual implementation of the algorithm exists and nothing is known about how the algorithm
performs in practice.

Therefore, the goal of our research is:

To discover if it is possible to develop an efficient implementation of the dynamic partial-order
reduction algorithm based on probe sets.

To reach our goal, we focus ourselves on answering the following questions:

1. Which cycle proviso should we use?

2. How do we determine the over-approximation of the missed actions?

3. How do we select probe sets?

4. What will be the input for the implementation?

5. How do we evaluate the efficiency of the algorithm?

1.2 Approach

The result of our research will be a tool: DRoP (Dynamic Reduction of Petri nets). We will use this tool
to find an answer to our research questions.

1.2.1 Cycle Proviso

Like static partial-order reduction algorithms, the probe sets algorithm needs a cycle proviso [17]. To
determine what a good cycle proviso is, we will develop, implement and compare multiple cycle provisos.

1.2.2 Over-approximation of the Missed Actions

The probe set algorithm determines the dependency relation by analysing the set of missed actions [17].
Static partial-order reduction needs to over-approximate the dependency relation, because determining
the exact relation is too expensive. For similar reasons, the probe set algorithm does not determine the
exact missed actions, but it makes an over-approximation.

In our research we will try to improve the efficiency of this over-approximation.

1.2.3 Probe Set Selection

In the dynamic partial-order reduction algorithm based on probe sets, probe sets determine which actions
will be explored [17]. To be able to achieve the best possible reduction, we should not select random valid
probe sets, but we should determine a strategy that suggests what ’good’ probe sets are. In our research
we will need to develop and implement different strategies, which we can compare.

1.2.4 Algorithm Input

Our interest is in applying the probe set algorithm to graph transformation systems, but the algorithm
is designed to work on entity-based systems. Graph transformation systems and entity-based systems
resemble each other, but it is not immediately clear how graph transformation systems can be represented
as an entity-based system.

To be able to focus our effort on other aspects of the implementation, DRoP is designed to work with
Petri nets, instead of graph transformation systems. Petri nets are still not entity-based systems, so we
still need to make a transformation from Petri nets to entity-based systems. However, because Petri nets
are simpler than graph transformation systems, the transformation will be easier to develop.

5



1.3 OVERVIEW INTRODUCTION

We choose Petri nets because they can be seen as a simpler version of graph transformation systems;
it is easy to translate an arbitrary Petri net to a graph transformation system where the graphs consists
only of nodes and contain no edges. And even though Petri nets can be considered as a simpler formalism
than graph transformation systems, it is still a powerful modeling concept with plenty of examples in
literature. So using Petri nets does not limit us when evaluating the effectiveness of the algorithm.

1.2.5 Evaluation

Dynamic partial-order reduction is designed to improve the weaknesses of static partial-order reduction.
Therefore, we do not only want to create an implementation of the algorithm, but we also want to verify
that it performs better than existing implementations of static partial-order reduction algorithms.

To verify that our implementation is actually able to perform better than existing algorithms, we will
compare DRoP with existing state space exploration tools that are able to apply partial-order reduction.

The performance of the different tools will be compared on different properties: the size of the
reduction (number of states and transitions in the state space) and the time and memory needed to
explore the reduced state space.

We will use two types of test models during our experiments: models with dynamic (de)allocation of
threads and objects, i.e. the type of models where dynamic partial-order reduction was designed for; and
models for which static partial-order reduction is already able to perform well.

In the first case we expect dynamic partial-order reduction to perform better than static partial-order
reduction. This means that it will generate a smaller state spaces and it will need less time and memory
to generate these state spaces.

In the second case, we expect dynamic partial-order reduction to be able to achieve the same reduction
as static partial-order reduction. However, since dynamic partial-order reduction is more complicated
than static partial order-reduction, we expect it will need more time and memory to generate the state
spaces.

1.3 Overview

First, this report will provide some background information in Chapter 2. We discuss static partial-order
reduction in Section 2.2, dynamic partial-order reduction based on probe sets in Section 2.3 and finally
Petri nets in Section 2.4.

In Chapter 3 we will discuss the cycle provisos and over-approximation that we will develop and that
are introduced in [17]. Next we will discuss how we select probe sets and the transformation from Petri
net to entity-based system in Chapter 4.

In the Sections 5.1, 5.2 and 5.3 we discuss the tools and the test models we use for our experiments
and the test setup.

Then we will discuss the results of the comparison of the different probe set selection strategies and
cycle provisos in Section 5.4 and we will compare DRoP with the other tools in Section 5.5.

Finally, we will present our conclusions in the last chapter.
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2 Background

This chapter provides the background information that is needed to understand the research in this thesis.
First some basic definitions are provided. Then the static partial-order reduction algorithm and the

dynamic partial-order reduction algorithm are discussed. Finally we introduce Petri nets, the models on
which the partial-order reduction algorithms are applied.

2.1 Definitions

In this chapter we discuss how to apply partial-order reduction on a labeled transition system (LTS). A
LTS is defined as follows.

Definition 1 (Labeled transition system). A transition system T is a tuple (S,A,→, s0, P, L) where

• S is a finite set of states.

• A ⊆ Act is a finite set of actions available for this transition system.

• → ⊆ S ×A× S is the transition relation, which labels every transition with an action.

• s0 ∈ S is the initial state.

• P is a set of propositions.

• L : S → 2P is the labeling function that assigns a set of propositions to each state.

For (s, a, s′) ∈ → we also write s
a→ s′.

For each state in the transition system we can refer to the set of enabled actions.

Definition 2 (Enabled actions). The set of enabled actions in state s of transition system T is defined
as:

∀s ∈ S : Enabled(s) = {a ∈ Act | ∃s′ ∈ S : (s, a, s′) ∈ →}

In this report, we are only concerned with a subset of all transition systems: the deterministic tran-
sition systems.

Definition 3 (Deterministic transition system). A transition system is deterministic when for each state
s ∈ S and action a ∈ A, the following holds:

∀(s, a, s′), (s, a, s′′) ∈ → : s′ = s′′

2.2 Partial-Order Reduction

2.2.1 Independence

The core concept in partial-order reduction is the independence of actions in a state space. Independent
actions are defined by a dependence relation.

Definition 4 (Dependency relation). A dependency relation is a relation D ⊆ Act×Act for a determin-
istic transition system T if it is reflexive and symmetric and for all a, b ∈ Act, (a, b) 6∈ D the following
two properties hold for all states s ∈ S:

(a enabled in s and s
a→ s′) =⇒ (b enabled in s⇔ b enabled in s′) (2.1)

(a, b enabled in s) =⇒ (∃s0, s1, s′ ∈ S : s
a→ s0

b→ s′ ∧ s b→ s1
a→ s′) (2.2)
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2.2 PARTIAL-ORDER REDUCTION BACKGROUND

Equation 2.1 states that when a and b are independent, and b is enabled after performing a, then
b should already have been enabled before a was executed, ie. independent actions do not enable each
other.

Equation 2.2 states that independent actions are commutative. This means that if a and b are both
enabled and independent, it is possible to execute both a · b and b · a, ie. independent actions do not
disable each other. Moreover, both executions should end up in the same state.

When actions are independent, it is possible to execute them in any order. Also the final state of the
system will be the same, whatever ordering of independent actions is chosen.

Because the final results of any ordering of independent actions are equal, we might choose not to
explore all possible orderings of independent actions. Instead only one ordering of independent actions
may be explored that represents all other orderings. This is what partial-order reduction does.

2.2.2 Defining the Dependency Relation

Defining a dependency relation is not easy, because (in)dependence is a global property. Take for example
the following assignments: x := z+y and x := z. These assignments seem to be dependent, because they
both assign the variable x a different value. However, if y would be 0 throughout the entire system, the
actions are actually equivalent and no longer dependent.

Because independence is a global property, it is not enough to look only at the actions themselves
when determining the dependency relation: the context in which the actions are applied also needs to be
taken into account. However, this is not feasible, because this entails exploring the entire state space to
determine the dependency relation and this negates the gains partial-order reduction would provide.

To counter this problem, partial-order reduction uses an over-approximation of the dependency rela-
tion. If two actions are not in the over-approximation, they are certainly independent. However, some
independent actions might not be detected, because they are in the over-approximated dependency rela-
tion. This guarantees that the partial-order reduction remains valid, but the reduction may be smaller
than what is theoretically possible. To over-approximate the dependency relation it is possible to use
only local criteria. Therefore the state space no longer needs to be completely explored to determine the
dependency relation (but only the actions themselves).

The most basic approximation of the dependency relation is made by assuming that actions are
dependent when either they are part of the same process or they use the same (global) variables. A
more accurate dependency relation can be gained by tweaking the second condition. For example, the
second condition could be changed so that actions that only read but not write the same variables are
independent. This requires extra resources to calculate the dependency relation, but since the over-
approximation will be smaller, the reduced state space will be smaller.

2.2.3 The Ample Set Approach

Three variants of partial-order reduction were more or less simultaneously introduced at the beginning
of the nineties: stubborn sets by Valmari [27] [26], persistent sets by Godefroid [15] and ample sets by
Peled [21] [22].

The three methods are very similar. They select a subset of the enabled actions in every state of a
deterministic transition system and include only those selected actions in the reduction. By varying the
constraints on the sets of selected actions, different properties are preserved by the reduction.

Because the three methods are very similar, we describe only one in this section, namely the ample
set approach of Peled, which is also nicely described in [18].

As said before, partial-order reduction selects a subset of the enabled actions for each state. In the
approach of Peled, this subset of actions is called the ample set. When exploring the state space, instead
of the enabled actions, only the actions in the ample set are explored. By posing more constraints on the
ample set, more properties of the original system are preserved in the reduced system.

In the following it is assumed that a dependency relation is given. This relation is not calculated by
the ample set algorithm.
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2.2 PARTIAL-ORDER REDUCTION BACKGROUND

Definition 5 (Ample set). ample(s) is the ample set for a given state s, for wich the following conditions
must hold:

ample(s) ⊆ Enabled(s) (2.3a)

ample(s) = ∅ =⇒ Enabled(s) = ∅ (2.3b)

According to Definition 5, the ample set for a given state must be a subset of the enabled actions in
that state, so no new behavior is introduced. The ample set is empty if and only if the set of enabled
actions is empty, so no new deadlocks are introduced.

With these ample sets, a reduced state space can be constructed.

Definition 6 (Reduced state space). A reduced state space is a deterministic transition system Tr,
constructed from a given original deterministic transition system To and a collection of ample sets for
To. The set of states (S), the set of actions (A), the initial state (s0), the set of propositions (P ) and the
labeling function (L) are unchanged in the reduction. The reduction does have a new transition function,
which is defined as follows:

→r= {(s, a, s′) ∈→o| a ∈ ample(s)}

Equation 2.3b guarantees that an ample set does not introduce a new deadlock. However, to preserve
all deadlocks in the reduction, an extra constraint is necessary.

Constraint 1 (Independence of future actions).

For all finite traces in the LTS s0
b1→ s1

b2→ · · · bn→ sn
a→ t :

If a depends on an action in ample(s0) then ∃i ∈ 1..n : bi ∈ ample(s0)
(2.4)

Equation 2.4 tells us that if an action a is dependent with the ample set in state s0, it cannot be
executed before an action in the ample set is executed. Another way of formulating this is that every
finite execution starting in s0 that does not contain any action from the ample set, cannot contain any
action that is dependent with an action in the ample set.

The intuition of Equation 2.4 is that all dependent actions are in the ample set. It is not necessary
to explore independent actions, because according to Equation 2.2 they will still be available in the next
state. Dependent actions will not be available in the next state, so they will have to be considered now.

Together Definition 5 and Equation 2.4 guarantee that any deadlock that is reachable in the original
transition system, is still reachable in the reduced transition system. Formally preservation of deadlocks
is defined as follows:

Definition 7 (Reachability). A state s ∈ S is reachable in a given transition system T when:

∃s0
a0→ . . .

an→ sn+1 : si ∈ S ∧ ai ∈ A ∧ (si, ai, si+1) ∈ →∧ sn+1 = s

Theorem 1 (Preservation of deadlocks). Given a deterministic transition system T and its reduction T ′

according to Definition 5 and Equation 2.4, the following holds:

∀s ∈ S : s reachable and deadlock in To =⇒ s reachable and deadlock in Tr

The following example demonstrates the necessity of Equation 2.4. Figure 2.1 contains the state space
of the dining philosophers problem with two philosophers. Equation 2.5 provides some ample sets for this
state space, which do not take Equation 2.4 into account. Therefore deadlock state s4 is not reachable
in the reduction.

ample(s0) = {getLeftFork1}, ample(s1) = {getRightFork1}, (2.5)

ample(s3) = {putLeftFork1}, ample(s6) = {putRightFork1}

These ample sets violate Equation 2.4, because getLeftFork2 · getRightFork2 is a trace starting in s0
where getRightFork2 is dependent with an action in ample(s0) (namely getLeftFork1), but no action from
ample(s0) is performed before getRightFork2.
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2.2 PARTIAL-ORDER REDUCTION BACKGROUND

s0

{think1, think2}

s1{think2} s2 {think1}

s3

{eat1, think2}
s4
∅

s5

{think1, eat2}

s6{think2} s7 {think1}

getLeftFork1 getLeftFork2

getRightFork1

getLeftFork2 getLeftFork1

getRightFork2

putLeftFork1

putRightFork1

putLeftFork2

putRightFork2

Figure 2.1: Dining philosophers, reduced (thick lines) according to Equation 2.5
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2.2 PARTIAL-ORDER REDUCTION BACKGROUND

s0 s1 s2 s3

a

a

a

a

b b

(a) Cycle example

s0

∅

s1{a} s2 {b}

s3

{a, b}

a b

b a

(b) LTL example

s0s1 s2

s3

{a}
s4{a} s5 {a}

s6 {c} s7{b}

c b

aa a

c b

(c) CTL example

Figure 2.2: Motivating examples for the additional partial-order reduction constraints.

To preserve more properties than deadlocks, more constraints are necessary:

Theorem 2 (Preservation of safety properties [18]). To preserve safety properties, the following equation
must hold in addition to Definition 5 and Equation 2.4.

∀ Cycle s0
b0→ s1

b1→ · · · bn−1→ sn
bn→ s0 ∈ LTS :

∀a ∈ Enabled(s0) : ∃j ∈ {0..n} : a ∈ ample(sj)
(2.6)

Equation 2.6 is called the cycle breaking condition or cycle proviso. By adding this constraint, all
finite traces of a state space are preserved in the reduced state space. The properties that can be verified
with the finite traces are exactly the safety properties.

Without Equation 2.6, it is possible that the actions in the ample sets describe a loop. States that
are outside of this loop will then be cut off and are unreachable in the reduced state-space. By adding
this constraint, the ample sets need to provide the option to leave the loop, so that states outside the
loop can be examined.

For example, take Figure 2.2a. Here a and b are independent actions. Therefore, without Equation 2.6,
valid ample sets could be: ample(s0) = {a} and ample(s3) = {a} and the inner cycle of s1 and s2 is not
explored.

It is possible to extend the ample set approach to preserve even more properties such as LTL\© and
CTL\© properties. To preserve more properties than deadlocks, more constraints are necessary:

Definition 8 (Stutter actions). Action a is a stutter action when:

∀(s, a, s′) ∈ → : L(s) = L(s′)

So for a stutter action, the label of the source state is the same as the label in the target state.

Theorem 3 (Preservation of LTL\© [18]). To preserve LTL\©, the following must hold in addition to
Definition 5, Equation 2.4 and the cycle proviso in Equation 2.6.

ample(s) 6= Enabled(s) =⇒ ∀a ∈ ample(s) : a is stuttering (2.7)

By adding Equation 2.7 either all actions of a state are in the ample set of that state, or all actions
in the ample set are stutter actions. Because the actions in the ample set are stutter actions, the actions
in the ample set can be given priority without altering the stutter-trace and it can be proven that the
reduced state-space preserves LTL\© [18, Theorem 8.13].

For example, take Figure 2.2b. Without Equation 2.7, a valid ample set for s0 would be ample(s0) =
{a} or ample(s0) = {b}. With these ample sets, the reduced system will either include the trace with
labels ∅{a}{a, b} or the trace with labels ∅{b}{a, b}, while the original system contains both. So the LTL
formulas (¬b)U{a, b} and (¬a)U{a, b} do not hold for the original system, but do hold for one of the
reductions.
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2.3 DYNAMIC PARTIAL-ORDER REDUCTION BACKGROUND

By including Equation 2.7, all actions in s0 need to be explored, and the reduction satisfies the same
LTL\© formulas as the original system.

Finally, to preserve CTL\© one extra constraint is necessary.

Theorem 4 (Preservation of CTL\© [18]). To preserve CTL\©, the following equation should hold in
addition to Definition 5 and Equations 2.4, 2.6 and 2.7.

ample(s) 6= Act(s) =⇒ |ample(s)| = 1 (2.8)

Take, for example, Figure 2.2c. Because c and b are both independent of a, a valid ample set for state
s0 would be ample(s0) = {c, b}. In this case, partial-order reduction removes state s3 from the state
space. However, now the CTL formula AG(a =⇒ (AFb∨AFc)) does hold in the reduction, but it does
not hold in the complete state space.

By adding Equation 2.8 as a constraint on the ample set, states like s3, which basically model post-
poning a decision, are preserved in the reduction.

2.3 Dynamic Partial-Order Reduction

For static partial-order reduction as described in the previous section to work, two assumptions are made:

1. All actions are known in advance and there are finitely many.

2. A system consists of a fixed set of parallel processes.

Assumption 1 is necessary to define the dependency relation as described in Section 2.2.1. The
dependency relation is defined over all actions, and it needs to be known in advance. Assumption 2 is
necessary to determine the over-approximation as described in section 2.2.2. Not only the most simple
over-approximation, but most over-approximations depend on a clear definition of sub-processes.

Although classically these assumptions would hold, they do not always hold for modern systems. In
systems that support dynamic creation and deletion of objects, assumption 1 fails. A new object enables
new actions. Because the objects are created and deleted dynamically, the actions are also created and
deleted dynamically and it is impossible to determine the dependency relation in advance.

For systems that also allow dynamic creation and deletion of threads, assumption 2 also fails. There-
fore, it is also hard to determine the dependency relation with the known over-approximations.

Take, for example, Petri nets as discussed in Section 2.4. The available actions in a Petri net depend
on the tokens that are present. Since it is, in general, unknown in advance which tokens will be present
during the execution, the actions of the Petri net are unknown before execution.

In [17] a dynamic partial-order reduction algorithm based on probe sets is introduced, that is able to
deal with dynamic systems in which the above assumptions do not hold.

The two core concepts of the algorithm are missed actions and probe sets, which are combined with a
new definition of dependency. This section introduces these concepts together with the algorithm itself.

2.3.1 Dependency Relation and Definitions

In the probe set algorithm, dependency is defined using two sub-relations: a stimulation relation and a
disabling relation. In this section, these relations are defined in a abstract way. In the next section, they
are instantiated for a formalism called entity-based systems.

Definition 9 (Stimulation). a� b is an irreflexive relation that indicates that action a stimulates action
b. The intuition of this relation is that action a fulfills part of the precondition of action b. Therefore b
cannot occur directly before a.

Definition 10 (Disabling). a � b is a reflexive relation that indicates that action a disables action b.
The intuition of this relation is that action a violates a part of the precondition of action b. Therefore b
cannot occur directly after a.

Definition 11 (Influence). a influences b, a; b, is defined as a� b or b� a.

12
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s0

{think1, think2}

s1{think2} s2 {think1}

s3

{eat1, think2}
s4
∅

s5

{think1, eat2}

s6{think2} s7 {think1}

getLeftFork1 getLeftFork2

getRightFork1

getLeftFork2 getLeftFork1

getRightFork2

putLeftFork1

putRightFork1

putLeftFork2

putRightFork2

Figure 2.3: Dining philosophers state space

The influence relation is the probe set variant of the dependency relation. The main difference with
Definition 4 is that the influence relation is not symmetric.

The intuition of the influence relations is as follows. If action b is independent of action a, it should
be possible to execute action b before action a, so a should not stimulate b. Also, when b is independent
of a, it should still be possible to execute a after b occurred, so b should not disable a. Therefore if a; b,
a and b are dependent.

For example, take the actions of the example in Figure 2.3. This example shows a state space of the
dining philosophers problem with two philosophers.

A philosopher can only pick up its right fork after it has picked up his left fork. Therefore getLeftFork1�
getRightFork1 and getLeftFork2 � getRightFork2. It is impossible for both philosophers to pick up the
same fork, so getLeftFork1 � getRightFork2 and getRightFork2 � getLeftFork1.

With the influence relation it is possible to define an equivalence relation modulo permutation of the
independent actions over traces. As with static partial-order reduction, if two traces are equivalent, only
one has to be preserved by the reduction algorithm.

Similarly to the equivalence relation, a prefix relation can be defined.

Notation. In the following definitions w, u, and v are traces, i.e. sequences of actions.

Definition 12 (Equivalence modulo permutation of independent actions). ' ⊆ Act∗ × Act∗ is the
smallest transitive relation such that:

a 6; b =⇒ v · a · b · w ' v · b · a · w

Definition 13 (Weak prefix). The weak prefix, -, is defined as follows:

v - w ⇔ ∃u : v · u ' w

In the case of the dining philosophers example in Figure 2.3, getLeftFork1·getLeftFork2 ' getLeftFork2·
getLeftFork1, because getLeftFork1 6; getLeftFork2.

Similarly, getLeftFork1 - getLeftFork2 · getLeftFork1, because getLeftFork2 6; getLeftFork1.
With the above relations on traces, the following operations are defined.

Definition 14 (Enabled trace). Trace w is enabled in state s, s ` w when the actions in w can be
executed starting in s:

s ` w ⇔ ∃s′ : s
w→ s′

13
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Definition 15 (s after w).

s ↑ w := s′, such that s
w→ s′

When s ` w holds, trace w can be executed in state s. For example, in Figure 2.3 s0 ` getLeftFork1

holds but s1 ` getLeftFork1 does not. When s ` w holds, s ↑ w is the state that is reached after executing
w. So s0 ↑ getLeftFork1 = s1. When s ` w does not hold, s ↑ w is not defined.

Definition 16 (Difference).
w − v := u, such that v · u ' w

With the difference operation, it is possible to remove a weak prefix v from a trace w.

Definition 17 (Prime cause). The prime cause of action a in trace w, ↓aw is defined as follows:

↓aw := v, such that (w − v) 6; a ∧ ∀v′ - w : ((w − v′) 6; a =⇒ v - v′)

Intuitively the prime cause of action a in trace w is a weak prefix of w, such that the prefix contains
all actions of w that influence a (in)directly. Moreover, the prime cause is the shortest possible prefix for
which this holds.

For example, take Figure 2.3. The prime cause of getRightFork1 in getLeftFork1 is getLeftFork1.
The prime cause of putLeftFork1 in getLeftFork1 · getRightFork1 is getLeftFork1 · getRightFork1. Here,

getLeftFork1 is included in the prime cause not because it directly influences getLeftFork1, but because it
influences another action in the prime cause, namely getRightFork1. The getLeftFork1 action is necessary
in the prime cause, because the prime cause should be a weak prefix and getRightFork1 6- getLeftFork1 ·
getRightFork1.

2.3.2 Entity-Based Systems

The definitions in the previous section are abstract. In this section, some of these definitions are in-
stantiated in the context of entity-based systems to clarify them. Entity-based systems are used because
they are simple. However, other systems, such as graph transformation systems and Petri nets, can be
expressed as entity-based systems.

Notation. In the following definitions, Ent refers to the global set of all available entities. We keep using
the standard notation for a LTS, so the set of states and actions are denoted as S and Act etc.

Definition 18 (Entity-based actions). An action a is said to be entity-based when there exists finite
disjoint sets:

Ra ⊆ Ent, the set of entities read by a.
Na ⊆ Ent, the set of entities forbidden by a.
Da ⊆ Ent, the set of entities deleted by a.
Ca ⊆ Ent, the set of entities created by a.

With these actions and entities an entity-based transition system can be defined.

Definition 19 (Entity-based transition system). A deterministic transition system is entity-based when
all actions in the transition system are entity-based actions. Moreover, for all s ∈ S the following should
hold:

• There is a finite set Es ⊆ Ent, that is unique for each state. So Es = Es′ =⇒ s = s′.

• ∀a ∈ Act : s ` a def
(Ra ∪Da) ⊆ Es ∧ (Na ∪ Ca) ∩ Es = ∅.

• ∀a ∈ Enabled(s) : s ↑ a := Es↑a := (Es\Da) ∪ Ca.

Now entity-based systems are defined, it is possible to give a concrete definition of the stimulation
and disabling relations.

Definition 20 (Stimulation in entity-based systems).

a� b⇔ Ca ∩ (Rb ∪Db) 6= ∅ ∨Da ∩ (Cb ∪Nb) 6= ∅

Definition 21 (Disabling in entity-based systems).

a� b⇔ Da ∩ (Rb ∪Db) 6= ∅ ∨ Ca ∩ (Cb ∪Nb) 6= ∅

14
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2.3.3 Probe sets

With the entity-based systems and the new stimulating and disabling relation defined, we now introduce
the actual partial-order reduction algorithm.

The probe set algorithm consists of two major parts. The first part is a state space exploration,
which is done by using probe sets to select the new actions that are to be explored. This exploration can
however miss actions that do need to be explored. The exploration of these missed actions is handled by
the second part of the algorithm.

The probe set algorithm does not work directly with states, but it uses vectors.

Definition 22 (Vector). A vector (s, w) in a transition system is a tuple, where s ∈ S is a state and
w ∈ Act∗ is a trace. Moreover, s ` w must hold.

A vector (s, w) actually represents the state s ↑ w. The vector notation is used because it is necessary
for the missed action phase to know how a state was reached. The vectors that need to be explored are
placed upon a stack, which is processed by the algorithm.

The task of a probe set is, similar to the ample set, to select new vectors that should be placed on
the stack and explored. The general concept of a probe set, and how new vectors are selected is defined
below. However, for the probe set to generate correct explorations, more constraints are necessary. These
constraints are defined later in Definition 24.

Definition 23 (Probe set). A probe set ps,w for vector (s, w) is a partial function:

ps,w : Enabled(s ↑ w) ⇀ Act∗

The domain of a probe set is a subset of the enabled actions in the vector for which the probe set
is generated. Analogous to the ample set approach, this subset represents the actions that should be
explored. The image of the probe set is a trace, and represents the history that is no longer relevant
when the associated action is explored. So it represents the history that may be forgotten.

Concretely, the probe set ps,w is used to generate new vectors from vector (s, w) as follows:

newvectors := {(s ↑ ps,w(a), w · a− ps,w(a)) | a ∈ dom(ps,w)} (2.9)

The algorithm will not work if arbitrary actions are explored or arbitrary parts of the history are
forgotten. Therefore the following requirements are imposed on a probe set to guarantee a correct
exploration.

Definition 24 (Valid probe set). A probe set ps,w is a valid probe set for vector (s, w) when the following
conditions hold for all a ∈ dom(ps,w), b ∈ Enabled(s ↑ w):

a� b ∨ b� a =⇒ b ∈ dom(ps,w) (2.10a)

ps,w(a) 6-↓bw =⇒ b ∈ dom(ps,w) (2.10b)

ps,w(a) - ↓aw (2.10c)

Enabled(s ↑ w) 6= ∅ =⇒ dom(ps,w) 6= ∅ (2.10d)

The idea behind Constraint 2.10a is simple. When an enabled action disables another enabled action,
one of the actions will not be available in the next state and therefore the exploration of that action
cannot be postponed.

Constraint 2.10b and Constraint 2.10c are a bit more complicated, because the constraints are not
needed for the probe set phase, but for the missed actions phase. The missed actions phase is discussed
in Section 2.3.4.

Because actions are dynamically created, the dependency relation is generated on the fly. Therefore
the vector contains two types of actions: dependent actions, and actions of which the dependencies are
unknown. The actions with unknown dependencies are analyzed during the missed actions phase, so they
need to be remembered. Dependent actions, which are the actions in the prime cause, can be removed
(Constraint 2.10c).

When an action is not explored, the missed actions phase is also postponed. Therefore it is not allowed
to remove actions from the vector that have unknown dependencies with actions that are explored right
now; these actions are needed when the missed actions analysis is performed later on. This is expressed
in Constraint 2.10b.
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glf 1 grf 1 glf 2 grf 2 plf 1 prf 1 plf 2 prf 2

glf 1 � � �
grf 1 � � �
glf 2 � � �
grf 2 � � �
plf 1 � �
prf 1 � �
plf 2 � �
prf 2 � �

Table 2.1: The stimulation and disabling relations for the dining philosophers problem.

Example Exploration

To give a better understanding of the probe set algorithm, an example exploration is shown on the
dining philosophers example in Figure 2.3. Usually, the algorithm will need to calculate the stimulation
and disabling relations on-the-fly. But because we already have the complete state-space, it is possible
to provide this relation in advance. The stimulation and disabling relation for Figure 2.3 are given in
Table 2.1. In this table, getLeftFork1 is abbreviated to glf 1 etc.

The necessary steps for an exploration with probe sets are explained in the previous section. Al-
gorithm 1 combines these steps into a pseudo code. The algorithm keeps a stack of vectors left to be
explored V \Vp and pushes the initial state with the empty trace on the stack as the initial vector. New
vectors are produced according to Equation 2.9.

Algorithm 1 Probe set based state space exploration

1: let Vp ← ∅; //The set of already explored vectors
2: let V ← {(s0, ε)}; //The stack with vectors to be explored
3: while V \Vp 6= ∅ do
4: choose (s, w) ∈ V \Vp;
5: let Vp ← Vp ∪ {(s, w)};
6: choose probe set ps,w; //According to Equation 2.10
7: let V ← V ∪ {(s ↑ ps,w(a), w · a− ps,w(a))|a ∈ dom(ps,w)}; //According to Equation 2.9
8: end while

The execution of the exploration algorithm can be found in Table 2.2. For every iteration of the
loop, the following aspects are given: the set of unprocessed vectors (V \Vp), the currently considered
vector (s, w), the probe set generated in this iteration (ps,w) and the new vectors that are generated in
this iteration (∆V ). Figure 2.4 shows the explored state space. The thick edges are considered by the
algorithm, the thin edges are not.

Several interesting things can be observed from this execution. The most obvious and important
observation is that the right half of the state space is not considered, even though the probe sets are
valid according to Equation 2.10. In the reduction, every action should be explored at least once. In this
example, the action getRightFork2 is never explored. This is bad, because possible bad behavior after
this action cannot be detected. This is the exact situation that is dealt with by the second half of the
probe set algorithm: the missed actions phase, which is explained in the next section.

Besides the problem that certain parts of the state space are not explored, two more interesting
properties can be noted about the exploration itself. First, some states can be visited multiple times and
second the set of reached states depends on the chosen probe sets.

During the exploration, some states are explored multiple times. For example, the initial state q0
is visited during the first iteration, but also during the sixth iteration. It is important to do so. The
difference between the visits is that the state is reached with a different vector. Because the vector is
different, the missed actions phase of the algorithm can produce different results.

Instead of the current probe set in iteration six, the algorithm could have chosen ps,w(glf 2) = ε as
a valid alternative probe set. With the alternative probe set, action getRightFork2 would have been
explored, so the choice of the probe set influences the reached states.
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iteration V \Vp (s, w) ps,w ∆V
1 {(s0, ε)} {(s0, ε)} (glf 1 7→ ε) (s0, glf 1)
2 {(s0, glf 1)} {(s0, glf 1)} (grf 1 7→ glf 1) (s1, grf 1)

(glf 2 7→ ε) (s0, glf 1 · glf 2)
3 {(s1, grf 1), (s0, glf 1 · glf 2)

(s0, glf 1 · glf 2)}
4 {(s1, grf 1)} (s1, grf 1) (plf 1 7→ grf 1) (s3, plf 1)
5 {(s3, plf 1)} (s3, plf 1) (prf 1 7→ plf 1) (s6, prf 1)
6 {(s6, prf 1)} (s6, prf 1) (glf 1 7→ ε) (s6, prf 1 · glf 1)
7 {(s6, prf 1 · glf 1)} (qs, prf 1 · glf 1) (grf 1 7→ prf 1 · glf 1) (s1, grf 1)

(glf 2 7→ ε) (s6, prf · glf 1 · glf 2)
8 {(s6, prf · glf 1 · glf 2)} (s6, prf · glf 1 · glf 2)

Table 2.2: The execution of the exploration algorithm.

s0

{think1, think2}

s1{think2} s2 {think1}

s3

{eat1, think2}
s4
∅

s5

{think1, eat2}

s6{think2} s7 {think1}

getLeftFork1 getLeftFork2

getRightFork1

getLeftFork2 getLeftFork1

getRightFork2

putLeftFork1

putRightFork1

putLeftFork2

putRightFork2

Figure 2.4: State space for the dining philosophers, explored with the probe set algorithm

2.3.4 Missed actions

As can be seen in the example in the previous section, the exploration of the state space using only probe
sets is not sufficient. Some actions in the exploration of the state space are missed. Formally a missed
action is defined as follows.

Definition 25 (Missed actions). For a vector (s, w) an action a is a missed action when

s 6` w · a ∧ ∃v - w : s ` v · a

A missed action a in (s, w) is not only characterized by the action itself, but also by its prime cause in
the enabling trace v. Therefore a missed action a is given as: (↓a v) · a

So a is a missed action when: a is not enabled right now, but a would have been enabled if the
independent actions in the trace w were executed in a different order. Take, for example, vector
(s0, getLeftFork1 ·getLeftFork2). This vector has getRightFork2 as a missed action, because getLeftFork2 -
getLeftFork1 · getLeftFork2 and s0 6` getLeftFork1 · getLeftFork2 · getRightFork2, but s0 ` getLeftFork2 ·
getRightFork2.

This missed action is characterized by getLeftFork2 · getRightFork2. The prime cause is included, so
we know the shortest weak prefix in which the action would have been enabled.

In the probe set algorithm a subset of the missed actions, the set of freshly missed actions is used.
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Definition 26 (Fresh missed actions). An action a is freshly missed in vector (s, w · b), when a is missed
in (s, w · b) but not missed in (s, w). The set of fresh missed actions of a vector is denoted with fma(s, w)
and, like a missed action, a fresh missed action is prefixed with the prime cause of its enabling trace.

Because the algorithm explores one action at a time, every missed action is freshly missed exactly
once. By only considering fresh missed actions, a single missed action does not have to be processed
multiple times.

When an action a is freshly missed, the last action b must have some dependency with a and either
b � a or b � a must hold. This fact is used to decide on an over-approximation of the freshly missed
actions in the next section.

Besides the probe sets, the probe set algorithm will use the fresh missed actions to generate new
vectors to be explored. When some fresh missed actions are found during the exploration of vector (s, w),
the following new vectors will be generated besides those generated by the probe set.

newvectors := {(s ↑ v · a, ε) | ∀v · a ∈ fma(s, w)} (2.11)

For example, in Figure 2.4 getLeftFork2 · getRightFork2 is a fresh missed action for vector
(s0, getLeftFork1 · getLeftFork2). Therefore, according to Equation 2.11, vector (s5, ε) will be added to
the stack of vectors to be explored. The normal exploration using probe sets, will now also include the
remaining part of the state space that was not included before.

It can be shown that the probe set and missed actions phases together preserve deadlocks in the
reduction of an acyclic system.

2.3.5 Determining the Fresh Missed Actions

In each iteration of the algorithm, it is necessary to calculate the fresh missed actions for the vector that
is currently being considered.

As defined in Definition 25, the missed actions depend on the weak prefix of a trace. Determining all
possible weak prefixes effectively results in the entire state space being explored. This of course negates
any effects that might be gained by partial-order reduction. Therefore extra care is necessary when
determining the (fresh) missed actions.

In general, it is not easy to determine the missed actions in a efficient way. However, in the case
of entity-based systems, [17] proposes to use an over-approximation to calculate the missed actions: the
potentially missed actions.

To determine the potentially missed actions, two new definitions are necessary, which are similar to
Definition 14 and Definition 15, but which are only defined in the context of entity-based systems. In
these definitions only the presence of entities is considered, and not their absence.

Definition 27 (Weakly enabled action). An action a is weakly enabled in s, denoted as s 
 a, when:

(Ra ∪Da) ⊆ Es

So an action is weakly enabled in a state when the reader and deleter entities are present in the set
of entities associated with that state.

Definition 28 (s weakly after w). s weakly after w is denoted s ⇑ w and is defined as follows:

s ⇑ w def
Es ∪

⋃
a∈Aw

Ca

With s ⇑ w, the target state of the trace w starting in s is calculated, like with s ↑ w. However, in
the case of s ⇑ w entities are only created and not deleted.

With the above two definitions, the set of potentially missed actions is defined.

Definition 29 (Potentially missed actions). When (s, w ·b) is a vector, then action a is potentially missed
when:

s ⇑ w 
 a︸ ︷︷ ︸ ∧ ∃c ∈ Aw : c� a︸ ︷︷ ︸ ∧ b� a︸ ︷︷ ︸
2.12a 2.12b 2.12c

(2.12)

holds. The set of all potentially missed actions of vector (s, w) is denoted as pma(s, w).
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As discussed in the previous section, for all missed actions a in (s, w · b) either b � a or b � a holds.
Therefore a simple over-approximation would be all actions for which b � a or b � a holds. However, in
the case of b� a, action a is already explored according Equation 2.10a (or a is not a missed action) and
in the case of b � a it is possible to pose some extra constraints to make the over-approximation more
accurate.

While b � a, b must not enable a. Because if a is enabled, it is not a missed action. Therefore we
check that w contains an action that disables a before b is executed, Equation 2.12b.

Equation 2.12a states that a should be weakly enabled in s ⇑ w. If this would not be the case, a
requires the presence of an entity that is never present along w. So whatever permutation of action of
w is chosen, that entity will never be present. This last means that there cannot exist a weak prefix in
which a is enabled. So a is not a missed action.

2.3.6 Algorithm

Now, the fresh missed actions phase can be added to the algorithm. The new algorithm can be found in
Algorithm 2.

When the example in Table 2.2 is run again, a fresh missed action is detected in iteration 3. The
missed action is getRightFork2 with prime cause getLeftFork2. According to the new algorithm, the
vector (s5, ε) now also has to be explored. Eventually this will also result in the exploration of vectors
(s5, putLeftFork2) and (s7, putRightFork2), after which the algorithm returns to the initial state and is
done.

So in the case of this new algorithm all desired states are explored.

Algorithm 2 Probe set based state space exploration 2

1: let S ← ∅; //The set of states explored
2: let Vp ← ∅; //The set of already explored vectors
3: let V ← {(s0, ε)}; //The stack with vectors to be explored
4: while V \Vp 6= ∅ do
5: choose (s, w) ∈ V \Vp;
6: let Vp ← Vp ∪ {(s, w)};
7: for all v · a ∈ pma(s, w) do //Approximated according to Equation 2.12
8: let V ← V ∪ {(s ↑ v · a, ε)};
9: end for

10: choose probe set ps,w; //According to Equation 2.10
11: let V ← V ∪ {(s ↑ ps,w(a), w · a− ps,w(a))|a ∈ dom(ps,w)}; //According to Equation 2.9
12: end while

2.3.7 Cycles and Fairness

In contrast to the ample set approach on partial-order reduction, the probe set approach is not immedi-
ately able to preserve deadlocks in cyclic state spaces. To be able to deal with cycles, a proviso, similar
to Equation 2.6 for the ample set approach, is necessary.

See for example Figure 2.5. Without a cycle proviso it would be valid to explore only action a1 or a2
at every state. This does not only mean that the algorithm continuously cycles between states s0 and s3,
it also means that deadlock state s4 will not be found.

Static partial-order reduction does not suffer from this problem. Because actions a1 and a2 are
dependent with action c, Equation 2.4 will force the algorithm to explore action b in state s0.

To counter this problem in the probe set approach, only fair explorations of the state space are allowed.
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s0 s1 s2 s3 s4

a1

a2

a1

a2

b b

c

Figure 2.5: Probe sets and cycle proviso

Definition 30 (Fairness). Let V be the set of al vectors explored by the algorithm, and ps,w is the probe
set for a given vector (s, w) ∈ V .

An exploration of the state space is called fair if there exists a valuation function
ns,w : Enabled(s ↑ w)→ N, that assigns a natural number to every enabled action in the target of vector
(s, w) ∈ V .

Moreover, one of the following should hold for every a ∈ Enabled(s, w):

• Either a ∈ dom(ps,w), or

• ∃b ∈ dom(ps,w) : n(s↑ps,w(b),w · b−ps,w(b))(a) < ns,w(a)

The second constraint on the valuation function might seem complicated. However, (s ↑ ps,w(b), w ·
b − ps,w(b)) is defined in Equation 2.9 as the new vector that should be explored when action b is in
the probe set ps,w. Therefore n(s↑ps,w(b),w·b−ps,w(b)) denotes the valuation function of one of the explored
successors of vector (s, w).

The valuation function states that if an action a is enabled but not explored, the valuation of a in
one of the successor vectors should be strictly smaller than the valuation in the current vector. Because
the valuation is in N, the valuation cannot decrease indefinitely and the second condition guarantees that
the exploration of an enabled action cannot be postponed indefinitely.

Ensuring Fairness

[17] Shows one way to adapt Algorithm 2 to ensure fairness by means of an age function, which will be
discussed here. There are more ways to ensure fairness, which are discussed in Section 3.1.

The age function is used to track the age of actions. When an action is enabled but not explored, its
age increases. By requiring that the probe set contains at least one action whose age is maximal, fairness
can be ensured.

The aging function and its operations are formally defined as follows:

Definition 31 (Aging function). An aging function α is a partial function: α : Act ⇀ N.
To manipulate the age function, the following operations are defined.

α⊕A := {(a, α(a)) + 1 | a ∈ dom(α)} ∪ {(a, 0) | a ∈ A\dom(α)}
α	A := {(a, α(a)) | a ∈ dom(α)\A}

max (α) := {a ∈ dom(α) | b ∈ dom(α) : α(a) ≥ α(b)}
A satisfies α := α = ∅ ∨A ∩ max (α) 6= ∅

The algorithm is changed to use the aging function, as shown in Algorithm 3. In this new algorithm,
the vectors are extended to include an age function. On line 11 the aging function is updated; the age of
actions already in the age function is increased, the enabled actions are added and the actions that are
explored in the probe set are removed.

Finally, the newly generated probe sets must contain at least one element from max(α), as can be
seen on line 10.
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Algorithm 3 Probe set based state space exploration 3

1: let S ← ∅; //The set of states explored
2: let Vp ← ∅; //The set of already explored vectors
3: let V ← {(s0, ε, ∅)}; //Start with an empty age function
4: while V \Vp 6= ∅ do
5: choose (s, w, α) ∈ V \Vp;
6: let Vp ← Vp ∪ {(s, w, α)};
7: for all v · a ∈ pma(s, w) do //Approximated according to Equation 2.12
8: let V ← V ∪ {(s ↑ v · a, ε, ∅)};
9: end for

10: choose probe set ps,w, such that dom(ps,w) satisfies α; //According to Equation 2.10
11: let α← α⊕ Enabled(s ↑ w)	 dom(ps,w);
12: let V ← V ∪ {(s ↑ ps,w(a), w · a− ps,w(a), α)|a ∈ dom(ps,w, )}; //According to Equation 2.9
13: end while

2.3.8 Preserved properties

When considering the properties preserved by the probe set algorithm introduced in [17], it compares to
a basic partial-order reduction algorithm with a cycle proviso; the probe set algorithm preserves deadlock
states in cyclic state spaces. Note that in the probe set approach, the cycle proviso is not only necessary
to preserve safety properties, but also to preserve deadlocks in cyclic state spaces.

Theorem 5 (Preservation of deadlocks). Given a deterministic (and possibly cyclic) transition system
T and its reduction T ′ according to the probe set partial-order reduction algorithm in [17], the following
holds:

∀s ∈ S : s reachable and deadlock in T =⇒ s reachable and deadlock in T ′

2.4 Petri Nets

The partial-order reduction algorithms described in the previous sections are applied on Petri nets [23],
which are introduced in this section. Petri nets are not entity-based systems, so they cannot be used
directly. Section 4.2 shows how we transform Petri nets to entity-based systems.

2.4.1 Definition

The definition of Petri nets as used in this report is as follows:

Definition 32 (Petri net). A Petri net is a tuple: PN = 〈P, T,A,Ai〉, where

• P is the set places,

• T is the set of transitions,

• A ⊆ (P × T ) ∪ (T × P ) is the set of (normal) arcs,

• Ai ⊆ (T × P ) is the set of inhibitor arcs.

The places of a Petri net can contain zero or more tokens. These tokens can move through the arcs
and transitions to new places. A ’snapshot’ of the number of tokens on each location is called a marking :

Definition 33. A marking M : P → N is a function from the places to the natural numbers, that
represents the number of tokens present at a given location.

Usually, a Petri net PN is accompanied by an initial marking Mi, to denote the initial location of all
the tokens.

Tokens move from one place to another when a transition connecting those places fires. A transition
is able to fire when: all places that have an arc to the transition contain at least one token, and all places
that have an inhibitor arc from the transition to itself have zero tokens.

When a transition fires, one token is consumed from every place that has an arc to the transition,
and a token is produced on every place that has a normal arc from the transition to itself.
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Definition 34 (Enabled transition). A transition t in a Petri net is allowed to fire when:

• ∀(p, t) ∈ A : M(p) > 0

• ∀(t, p) ∈ Ai : M(p) = 0

Definition 35 (Firing a transition). When a transition t fires, a new marking Mnew is created from the
old marking Mold as follows:

Mnew =


Mold(p)− 1 if (p, t) ∈ A,
Mold(p) + 1 if (t, p) ∈ A,
Mold(p) otherwise.

Petri nets have no mechanism in place to decide which specific transition is allowed to fire, so when
multiple transitions are enabled for a single marking, one is chosen nondeterministically that is allowed
to fire.

It is possible to generate a state space in the form of a transition system for a Petri net. In such
a transition system each state represents a possible marking of the Petri net. The initial state of the
transition system represents the initial marking of the Petri net.

There exists a transition in the transition system when there exists a transition in the Petri net, which
when fired produces the marking represented by the target state from the marking represented by the
source state. The label of the transition transition system is the transition that needs to be fired in the
Petri net.

2.4.2 Example Petri Net

An example Petri net can be found in Figure 2.6. This is a Petri net describing the dining philosophers
example from from Figure 2.3.

The circles in the Petri net are its places and the rectangles are the transitions. The upper part of
the Petri net represents the first philosopher, and the lower part represents the second philosopher. The
two places in the middle represent the forks.
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fork1 0 fork20

thinking1

0

eating1

thinking2

0

eating2

putRightFork1

getLeftFork1 getRightFork1 putLeftFork1

getLeftFork2 getRightFork2 putLeftFork2

putRightFork2

Figure 2.6: A Petri net of the dinging philosophers example
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3 Algorithm Improvements

To improve the performance of the dynamic partial-order reduction algorithm based on probe sets, we
made a few changes to the algorithm. First we introduce a new cycle proviso, and we prove that the
new cycle proviso has the desired properties. Second, we describe a small improvement to the over-
approximation of the potentially missed actions.

3.1 Cycle Proviso

Section 2.3.7 introduces fairness and shows how fairness can be enforced by the means of an age function.
When an age function is used, the probe set should always include one of the oldest actions. This means

that an action should be explored as soon as possible, and postponing the action is almost impossible,
while this may be desired to achieve a larger reduction.

We introduce a second cycle proviso as an alternative to the aging function, which does allow actions
to be postponed.

Definition 36 (No duplicates cycle proviso). Given vector (s, w) and probe set ps,w:

• Either: ∀a ∈ dom(ps,w) : a 6∈ w.

• Or : dom(ps,w) = Enabled(s ↑ w) ∧ ∀a ∈ dom(ps,w) : ps,w(a) contains a.

With this cycle proviso, we are only allowed to explore actions that are not already in the trace of the
current vector. If this is not possible, we force the algorithm to explore every enabled action and we make
sure the new traces will not contain any duplicate actions by first removing the action we later append.
Since a� a, we are allowed to add action a to ps,w without changing any of the existing constraints.

With the no duplicates cycle proviso, the exploration is guaranteed to terminate.

Theorem 6 (Termination). The no duplicates cycle proviso in Definition 36 guarantees termination of
the probe set algorithm for finite state spaces.

Proof. Because no trace contains duplicate actions, the maximum number of traces we can generate is
equal to sum of the permutations for every combination of the actions, or:∑

w∈P(Act)

|w|!

Because the state space is finite, Act is finite, |P(Act)| is finite and the sum itself is finite. Because
Act is finite, |w| and thus |w|! are finite for every w. So the result of the sum is finite.

Because the maximum number of traces we can generate is finite and the number of states is finite,
the number of vectors we can generate is also finite and the exploration eventually terminates.

Besides guaranteeing termination, the no duplicates cycle proviso, like the cycle proviso for static
partial-order reduction, also ensures that no actions are ignored.

Theorem 7 (No ignoring). The no duplicates cycle proviso in Definition 36 guarantees that no actions
are ignored when a finite state space is explored.

Proof.
By Contradiction.

• Assume we have a vector (s, w) with action b enabled in sn = s ↑ w. Assume the remainder of

the exploration is sn
an+1→ sn+1

an+2→ · · · with ai 6= b for i > n, ie. action b is never explored in the
remainder of the exploration.

• Because action b is not explored, it must be independent with with ai for all i > n. Therefore
action b is never disabled, and it is enabled in every state si with i > n. Because action b is always

enabled, the sequence sn
an+1→ sn+1

an+2→ · · · does not contain a deadlock and it is infinitely long.
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• Because the state space is finite, the sequence sn
an+1→ sn+1

an+2→ · · · must contain a loop. Now we
have 2 cases:

1. No actions on the cycle are removed from the trace of the vector before the cycle
proviso detects the cycle.

• At some point the no duplicates cycle proviso will detect the cycle and explore every enabled
action. Since action b is always enabled, this includes action b. 	

2. Actions on the cycle are removed from the trace of the vector before the cycle proviso
detects the cycle.

• Assume no actions are removed until we reach state sk with k > n.

• Then we have a vector (s, w′) with w - w′ and w′ − w consists of ai for n < i < k.

• Since b is independent with and enabled before ai for n < i < k, ↓bw′ does not contain ai with
n < i < k.

• If ak+1 ∈ dom(ps,w′) contains an action ai with n < i < k, then ps,w′(ak+1) 6- ↓bw′.
• Therefore, according to Equation 2.10c, we cannot remove any action ai with n < i < k from

the vector, without exploring action b. Therefore, action b is not ignored when we remove an
action from the vector that is on the cycle. 	

3.2 Potentially Missed Actions

In [17] the potentially missed actions are the union of the actions defined by Equation 2.12 and the
actions in the following definition:

Definition 37 (Potentially missed actions 2). When (s, w · b) is a vector, then a is a potentially missed
action when

b� a

If an action is a potentially missed action according to the above definition, it is only a fresh missed
action if it was enabled in the previous state s ↑ w and is disabled by the last executed action b. It makes
much more sense to explore these type of actions during the probe set phase. We therefore removed
these actions from the potentially missed actions and we changed the first constraint on valid probe sets
(Equation 2.10a) from

a� b =⇒ b ∈ dom(ps,w)

to
a� b ∨ b� a =⇒ b ∈ dom(ps,w)
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4 Algorithm Implementation

The DRoP (Dynamic Reduction of Petri nets) tool is an implementation of the dynamic partial-order
reduction algorithm introduced in Section 2.3. Although the original paper [17] provides some suggestions,
the algorithm does not strictly define how a valid probe set should be selected. Therefore we present an
alternative strategy to select probe sets to the strategy introduced in [17]. We compare the new strategy
with the method suggested in [17] in Section 5.4.

The dynamic partial-order reduction algorithm takes entity-based transition systems as its input,
while DRoP will work with Petri nets. Therefore, DRoP contains a transformation layer that transforms
the Petri nets to entity-based systems. In Section 4.2 we introduce this transformation.

4.1 Probe Set Selection

In Section 2.3.3, probe sets are introduced and Definitions 23 and 24 define what a valid probe set is.
The requirements in these definitions are loose, and allow us to select different valid probe sets for a
single vector. To examine different selection strategies for probe sets, two strategies are implemented
and compared during the experiments: the reversing free selection strategy and the independent action
selection strategy.

4.1.1 Reversing Free Probe Set Selection

Definition 24 specifies when a probe set is valid. The probe set algorithm [17] also provides a way to
actually select a valid probe set within these bounds: the reversing free probe set selection strategy. This
strategy provides us with a more efficient way to calculate the missed actions and it is based on the
reversing actions.

Definition 38 (Reversing actions). Two entity-based actions a and b are reversing when either Ca∩Db 6=
∅ or Da ∩ Cb 6= ∅, ie. two actions are reversing when they (partially) undo each others effect.

A trace w is said to be reversing free when no two actions in w are reversing. Also, we use reva(w)
to denote the set of actions from trace w that are reversing with respect to action a.

With the definition of reversing free actions, we add an extra constraint to Definition 24:

reva(w) ⊆ ps,w(a) (4.1)

When an action is added to the probe set, the image at least needs to contain all the actions that
are reversing with this action (but it is allowed to contain more actions). It is clear that all actions in
reva(w) are also part of ↓a w. Therefore, this constraint does not conflict with the other constraints
already present in Definition 24.

Equation 4.1 states that all reversing actions need to be part of the image of the probe set. According
to Equation 2.9, these actions are removed from the vector, when new vectors are constructed. Together
this means that we will only explore vectors that have reversing free traces.

When a vector (s, w) has a reversing free trace w, two interesting propositions can be proven:

Proposition 1. For any action a, q ` w′ · a with w′ - w implies w′ =↓aw.

Proposition 2. fma(s, w) = {a ∈ pma(s, w) | s `↓a ·w}.

The above propositions provide us with a way to extract the fresh missed actions from the potentially
missed actions in an efficient way. Therefore, the reversing free probe set selection strategy allows us
to explore the fresh missed actions directly instead of the over-approximated potentially missed actions,
increasing the efficiency of the missed actions phase.

However, with this strategy Equation 2.10b in Definition 24 might cause more actions to be explored
in the probe set phase of the algorithm.
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4.1.2 Independent Action Probe Set Selection

To try and obtain a better reduction we introduce the independent action selection strategy, which selects
a probe set according to the following constraints.

Definition 39 (Independent action probe set selection strategy). Given vector (s, w)

if ∃a ∈ Enabled(s ↑ w), such that ∀b ∈ Enabled(s ↑ w), a 6= b =⇒ a 6�b ∧ b 6�a then
ps,w = {a 7→ ε}

else
ps,w = {c 7→ ↓cw | ∀c ∈ Enabled(s ↑ w)}

end if

In the independent action strategy, we explore only a single action that is independent of all other
currently enabled actions according to Equation 2.10a. This action has an empty image in the probe set,
so we do not need to check Equation 2.10b and Equation 2.10c because they trivially hold.

If such an independent actions does not exist, we explore every action, and we remove as many actions
from the vector as allowed by Equation 2.10c. Because we already explore every action, we do not need
to check Equation 2.10b.

The independent action strategy, is designed to circumvent Equation 2.10b in Definition 24. This
equation is relatively expensive, because it includes a prime cause and a weak prefix operation.

It also causes more actions to be explored, even if actions are independent. For example, when two
actions a and b are independent according to Equation 2.10a, we ideally only explore one of them. From
Equation 2.10a and Equation 21 we can derive that a and b do not share creators and erasers (Ca∩Cb = ∅
and Da∩Db = ∅) and therefore it is unlikely that a and b share reversing actions, because these reversing
actions would depend on the creators and erasers. When using the reversing free strategy to select actions
for the probe set, Equation 2.10b will force both action a and b to be explored, unless they have exactly
the same reversing actions in the current vector.

With the independent selection strategy, often only a single action is added to the probe set. Therefore
the probe set phase of the algorithm becomes more efficient. However, we also do not remove many actions
from the vectors, so the traces in those vectors can grow long, making the fresh missed actions phase less
efficient.

4.2 Petri Net Transformation

As discussed in Section 2.3, the dynamic partial-order reduction algorithm is applied on entity-based sys-
tems, while DRoP works on Petri nets. Therefore DRoP contains a transformation layer that transforms
Petri nets to entity-based systems.

Two transformations, a symbolic and a concrete transformation, were considered to be included in
DRoP. The symbolic transformation preserves the symbolic nature of the tokens in the Petri net, but
some changes to the partial-order reduction algorithm are necessary to accommodate this. In the concrete
transformation multiple tokens in a single place are considered as different entities. This is different from
the standard symbolic interpretation of the tokens, however no changes to the partial-order reduction
algorithm are necessary to support this transformation.

The final version of DRoP contains only the concrete transformation, as discussed in Section 4.2.3.

4.2.1 A Symbolic Transformation

The symbolic transformation is aimed at preserving the symbolic nature of Petri nets as much as possible.
To do this, we define a symbolic entity-based system. In this system, a state is not a set of entities, but
a multiset of entities. The global set of entities, Ent , is defined to be equal to the set of places in the
Petri net, P .

Definition 40 (Entity-based state). A symbolic state s is defined as a function s : P → N. s(p) defines
how many tokens are present in place p for symbolic state s.

The symbolic states are accompanied by symbolic actions that are defined as follows:
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Definition 41 (Symbolic Action). A symbolic action is a tuple 〈R,D,C,N〉, where:

R : P → N is the reader set
D : P → N is the eraser set
C : P → N is the creator set
N : P → N is the forbidden set

dom(F ) must be disjoint with dom(R), dom(D) and dom(C). dom(C) must be disjoint with dom(D).

Definition 42 (Enabled symbolic action). A symbolic action a = 〈R,D,C,N〉 is enabled in symbolic
state s, when:

∀p ∈ R ∪D : s(p) ≥ R(p) +D(p)

∀p ∈ R\D : s(p) ≥ R(p)

∀p ∈ D\R : s(p) ≥ D(p)

∀p ∈ N : s(p) = 0

Definition 43 (Executing a symbolic action). When executing the symbolic action a = 〈R,D,C,N〉 in
symbolic state s, the result is a new symbolic state s′:

∀p ∈ P : s′(p) = s(p) + C(p)−D(p)

Because the symbolic entity-based actions are different from the entity-based actions defined in [17],
it is necessary to redefine the stimulating and disabling relations for the symbolic entity-based transition
system to continue to be able to apply partial-order reduction.

There are two possible ways to redefine these relations: 1) a global definition and 2) a local definition.
The global definition for the dependency relations are similar to the original definitions in [17]. For

the global definition we only take the actions themselves into account. Therefore the global relation can
be defined in advance and it can be reused for different Petri nets that share the same actions. The global
definitions are as follows:

Definition 44 (Global symbolic stimulating relation). Given actions a = 〈Ra, Da, Ca, Na〉 and
b = 〈Rb, Db, Cb, Nb〉, the simulating relation is defined as follows:

a� b def
dom(Ca) ∩ (dom(Rb) ∪ dom(Db)) 6= ∅ ∨ dom(Da) ∩ dom(Nb) 6= ∅

Note that it is always allowed to create more entities (tokens), so we do not need to check the intersection
of dom(Da) and dom(Cb), as is the case in the original stimulating relation.

Definition 45 (Global symbolic disabling relation). Given actions a = 〈Ra, Da, Ca, Na〉 and
b = 〈Rb, Db, Cb, Nb〉, the disabling relation is defined as follows:

a� b def
dom(Da) ∩ (dom(Rb) ∪ dom(Db)) 6= ∅ ∨ dom(Ca) ∩ dom(Nb) 6= ∅

Note that it is always allowed to create more entities (tokens), so we do not need to check the intersection
of dom(Ca) and dom(Cb), as is the case in the original disabling relation.

The advantage of the global dependency relation is that it only depends on the actions. It can be
calculated in advance, and it will be valid for the entire exploration.

The disadvantage is that actions that are globally dependent are not always locally dependent. See
for example Figure 4.1. Here action T0 and action T1 disable each other because they both consume
tokens from the same place. However, the actual disabling occurs only when the last token in the place
is consumed. Therefore actions are marked as dependent more often than is necessary.

To counter the disadvantage of the global relation, a local relation can be defined that takes into
account the number of tokens a place currently contains. Therefore the actions are less often marked as
dependent. Formally the local dependency relations are defined as follows:

Definition 46 (Local symbolic stimulating relation). Action a stimulates action b in state s, denoted
a�s b, when:

a� b ∧ b 6∈ Enabled(s)
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P0

#5

P1 P2T0 T1

Figure 4.1: Example Petri net

Definition 47 (Local symbolic disabling relation). Action a disables action b in state s, denoted a�s b,
when:

a� b ∧ ∀p ∈ P : s(p)−Da(p) < Rb(p) +Db(p)

Because the dependency relations do now depend on the states of the transition system, the operations
that depend on the dependency relations also have to be redefined. For example, the influence and weak
equivalence relation are redefined as follows:

a;s b
def

a�s b ∨ b�s a

s0
a0→ s1

a1→ s2
a2→ s3

a3→ s4 ' s0
a0→ s1

a2→ s′2
a1→ s3

a3→ s4 ⇔ a1 6;s1 a2

A major drawback of the symbolic approach is that calculations involving weak equivalent traces
become much harder. For weak equivalent traces it is defined that their target is the same. However,
the states we pass before reaching the target are different for each weak equivalent trace. Because the
dependency relations rely on these states, weak equivalent traces can no longer just be substituted, but
we also have to perform extra calculations to discover the new intermediate states.

4.2.2 An Explicit Transformation

The symbolic transformation preserves the semantics of Petri nets, but it requires unwanted changes to
the algorithm. Therefore we have also defined an explicit transformation. With this transformation we
require much fewer changes to the original algorithm, but the semantics of Petri nets are not preserved
as well as with the symbolic transformation.

With the explicit transformation, we do not simply count the number of tokens at a specific place,
but we also add a unique identifier to each token. With this identifier it is possible to explicitly reference
a single token. Therefore, tokens can now be used as concrete entities.

Since we do not know in advance how many tokens a Petri net will contain before executing, it is not
possible to determine the token identifiers in advance. Therefore it is also not possible to determine all
the concrete actions in advance. Our solution is to represent the transitions in the Petri net as symbolic
actions and to provide a concretization function that transforms the set of symbolic actions to a set of
enabled concrete actions for any given state.

Below we use Entp to denote the set of all concrete entities in place p.

Concretization

The concretization function transforms a set of symbolic actions to a set of enabled concrete actions for
any given state. Only the enabled concrete actions are created; since the concretization is state specific,
disabled concrete actions would never be used.

The concretization consists of five phases. In the first four phases the concrete readers, the concrete
erasers, the concrete creator and concrete forbidden entities are determined. In the last phase, the
previous phases are combined to form the concrete actions.

Reader Phase Producing the possible concrete reader set occurs in two steps, as can be seen in
Algorithm 4.

First, concrete reader sets are created for each individual place (Line 5). This amounts to creating all
permutations of length R(p) of the tokens currently in place p.

Next, the different places are combined in the final result (Line 6). The result of this phase is a set of
sets CR. Each set in CR is a valid concrete reader set.
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Algorithm 4 Select concrete reader sets

1: given state s and transition t
2: let 〈R,D,C,N〉 ← AbstractAction(t); //Get the abstract action representing transition t.
3: let CR← {∅};
4: for all p ∈ P do
5: Zp = {E ⊆ s ∩ Entp | |E| = |R(p)|};
6: CR = {cr ∪ z | cr ∈ CR, z ∈ Zp};
7: end for

Eraser Phase The concretization of the eraser entities happens in exactly the same way as the con-
cretization of the reader entities. The result is a set of sets CE. Each set in CE is a valid concrete eraser
set.

Note that no restrictions are posed on the concretization of the eraser entities. This means that a
valid set of concrete eraser entities may contain an entity that is also present in a valid set of concrete
reader entities. Since the set of erasers and readers of a concrete action must be disjoint, we have to
check for this in the final phase of the concretization, where the erasers and readers are combined.

Creators Phase In contrast to the readers and eraser entities, only a single set of concrete creator
entities is necessary. Because we only create entities that are not already present, every set of concrete
creator entities we can create, will be equivalent.

Algorithm 5 shows how the creator entities are selected. The result is the set CC, which is a single
set containing the creator entities.

Algorithm 5 Select concrete creator entities

1: let 〈R,D,C,N〉 ← aa(t);
2: for all p ∈ dom(C) do
3: let E ⊆ Entp, such that |E| = C(p) and E ∩ s = ∅;
4: CC = CC ∪ E;
5: end for

Forbidden Phase The concretization function should only return enabled concretizations. Therefore
if any forbidden entity is present in the current state, this action does not return any concretizations.

If the current state does not contain any forbidden entities, this action can return concretizations.
However, we will not create any concrete forbidden entities. Tokens, and thus entities, are dynamically
created during the exploration of the state space. Therefore it is currently impossible to determine the
exact concrete forbidden entities.

Even if we do not have any concrete forbidden entities, the execution of actions will remain the same.
Only the enabledness of actions can change, but we already check if actions are enabled during the
concretization, so this does not matter.

Combining the Results In the final phase of the concretization, the results of the previous four phases
are combined. Algorithm 6 shows the pseudo-code for this phase.

The concrete readers CR and the concrete erasers CE, contain multiple valid concrete readers sets
and concrete erasers sets. We create a concrete action for every combination of a reader set and eraser
set, where both sets are disjoint.

We have only one concrete creator set, which is already disjoint from the others. Therefore, it can
directly be added to every concrete action we generate.

The set CA contains the final concrete enabled actions.

Algorithm 6 Combining the results

1: CA = {〈R,D,CC〉 | R ∈ CR,D ∈ CD,R ∩D = ∅};
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4.2.3 Comparison

Between the symbolic and explicit transformation, it is clear that the symbolic transformation better
preserves the semantics of Petri nets. In the explicit representation each token is unique, which leads to
multiple concrete actions that represent the same transition in the Petri net. In the symbolic represen-
tation every Petri net transition has exactly one action in the entity-based transition system.

By having multiple concrete actions per Petri net transition, the explicit representation does not
only change the semantics of the Petri net, it also blows up the state space of the transition system
exponentially. This happens because we need to explore every possible permutation of the tokens that
we can consume, while in the symbolic representation only one permutation suffices.

In contrast to Petri nets, the semantics of graph transformation systems are explicit. So while the
explicit representation is not well-suited for Petri nets, it is suited as a representation for graph transfor-
mation systems. Since the partial-order reduction algorithm is designed to be applied on graph transfor-
mation systems, the explicit representation better suits the purpose of the reduction algorithm.

Also, even though the symbolic representation itself is simpler, the reduction algorithm becomes less
efficient. The dependency relations either become a local relation, leading to much more calculations. Or
the dependency relations become a global inefficient over-approximation, that leads to less reduction. So
even though we do not have the explosion in actions as with the explicit transformation, exploring the
state space will still become more complex.

Because the symbolic representation essentially does not remove but only moves complexity, and
because the explicit representation fits the purpose of the partial-order reduction algorithm better, we
decided to implement only the explicit transformation in DRoP.
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5 Experiments

In this chapter, we discuss the tools, the models and the experiments that we performed to verify the
efficiency of DRoP.

First we compare the different probe set selection strategies introduced in [17] and developed in
Section 4.1 and the different cycle provisos introduced in [17] and developed in Section 3.1. The results
of these experiments can be found in Section 5.4.

Once we have decided which probe set selection strategy and cycle proviso yield the best result, we
verify that our implementation is actually able to perform better than existing algorithms. To do this, we
compare DRoP with existing state space exploration tools that are able to apply partial-order reduction.
The performance of the different tools are compared on different properties: the size of the reduction
(number of states and transitions in the state space) and on the time and memory needed to explore the
reduced state space. The results of this experiment can be found in Section 5.5 and the description of
the tools we use to compare DRoP with can be found in Section 5.1.

A description of the models that we use in our test can be found in Section 5.2. We use two types of
test models: the first type of models are models with dynamic (de)allocation of threads and objects, ie.
the type of models where dynamic partial-order reduction was designed to be used for; the second type
of models are models for which static partial-order reduction is already able to perform well.

In the first case, we show that DRoP performs better than existing tools in both the size of the
reduction and the amount of time and memory that is needed to explore the reduction. In the second
case we show that DRoP is able to achieve the same amount of reduction. However since dynamic partial-
order reduction is more complicated than static partial-order reduction DRoP has a small overhead in
the time and memory that is needed to explore the reduction.

Figure 5.1 below summarizes the models and the tools used in the experiments. It also shows how we
obtained the specific models for each tool.
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Figure 5.1: Overview of the experiments performed in this chapter.

5.1 Reference Tools

To verify the efficiency of DRoP, we explore our test models with different tools and compare the results.
The tools that we use as a reference are: LTSmin (version 2.0) [6], Spin (version 6.2.2) [8], and Helena
(version 2.1) [13].

DRoP

DRoP is our own implementation and its code can be found in the FMT git repository [4]. DRoP accepts
input models in the Petri Net Markup Language (PNML) [1,2,7]. To obtain the PNML models, we used
two methods: the first is to create these models ourselves, and the second way is to export the models
provided by Helena to PNML.

Not all the test models we use are available in Helena. When the models are available in Helena, we
perform our tests with both our own PNML model, and the PNML model exported from Helena. This
way, we can verify the quality of our own models. When the model is not available in Helena, we use
only our own model.
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Spin

Spin [8], which we use because of its popularity, is a well known state space exploration tool that has
been under development since the 1980’s. Spin takes its input as Process Meta Language (Promela)
models [16]. It compiles these models to C code, which in turn can be compiled to a model checker for
the original model.

One of the reasons that Spin became a popular model checker is that it is continuously kept up to
date by implementing new features as soon as a new breakthrough is reached in model checking research.
One such feature, the one that interests us, is support for partial-order reduction.

Because of the support of partial-order reduction together with the popularity of the model checker,
we decided to use Spin as a reference for DRoP. In our experiments, version 6.2.2 of Spin was used.

To compile the Promela models and run the exploration with Spin, the following commands are used:

spin -o3 -a /path/to/promela/model

gcc -o pan [-DNOREDUCE] pan.c

./pan

The -DNOREDUCE disables (static) partial-order reduction. The -o3 disables some automatic optimiza-
tions that are performed independent of partial-order reduction. By disabling these optimizations, Spin
produces the same complete state spaces as LTSmin.

LTSmin

Second we compare DRoP to the LTSmin [6] model checker which is created and maintained by our
research group, the Formal Methods and Tools group [5] at the University of Twente. LTSmin is build
around the PINS interface [10]. The PINS interface is an abstraction layer between state space exploration
back ends and language front ends, which allows for a modular design.

For example, by implementing a small translation layer for PINS, LTSmin can easily integrate with
existing tools. We will be using the Promela [16] and DiVinE [9] interfaces [28]. The PINS interface also
allows for a modular approach on the side of the exploration algorithms. One example is the partial-order
reduction layer, based on persistent sets, that was recently implemented [20].

For our experiments we used version 2.0 of LTSmin. We use DVE and Promela for input models,
Section 5.2 states for each model whether a DVE or Promela version of the model was used.

To run the DiVinE models, the following commands are used:

divine compile -l /path/to/divine/model

dve2lts-seq [--por] model2C

To run the Promela models, the following commands are used:

spinjal -o3 /path/to/promela/model

prom2lts-seq [--por] model.spinja

In both cases the --por option determines if (static) partial-order reduction will be enabled. The -o3

for the Promela models disables certain optimizations that are performed independent of partial-order
reduction. By disabling these optimizations for both LTSmin and Spin, both tools will generate the exact
same complete state spaces for the Promela models. This way, the comparison between the tools will be
more fair.

LTSmin uses tree compression to reduce the size of the state vectors, which the other tools do not.
This is to compensate for the design of LTSmin, which makes the state vectors larger when compared to
other tools.

Helena

Helena [12,13] is a state space exploration tool based on high-level Petri nets. High-level Petri nets, which
are not discussed in this report, are Petri nets where the tokens in the net can contain data. This makes
the definition of Petri nets more flexible and more compact. Helena is also able to export the high-level
Petri nets it uses to low-level Petri nets in PNML format, which is the input format of DRoP.
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We use Helena as a reference for DRoP, because it is also a tool that works based on Petri nets.
Because Helena is able to export PNML models, we also use it as an alternative source of test models.
For our experiments, version 2.1 of Helena was used.

To compile the Helena models and explore their state spaces, the following command is used:

helena --static-reductions=0 [--partial-order=1] /path/to/helena/model

The --partial-order=1 option is added to enable partial-order reduction. The
--static-reductions=0 option is used to disable the reductions that are performed by default.

5.2 Models

Two types of test models are considered when comparing the tools. The first type of models are models
with dynamic (de)allocation of threads and objects, ie. the type of models where dynamic partial-order
reduction was designed for. The second type of models are models for which static partial-order reduction
is already able to perform well.

The first type of models are taken from Flanagan’s paper [14] on dynamic partial-order reduction, the
second type of models are taken from the BEEM database [3].

Flanagan’s Examples

The first two examples are the indexer program and the file system program from Flanagan’s paper [14].

Indexer Program

The pseudo code of the indexer program can be found in Algorithm 7. This program revolves around a
hash table. Each thread in the program generates some messages, calculates the hash of these messages,
and tries to store those messages in the hash table.

The model contains three parameters, as can be seen in the table below. The number of messages
generated by each thread and the size of the hash table are fixed for every experiment, and are set to 4
and 128 respectively. This equals the values in [14], so we can compare the results. Multiple instances of
the model are verified, with an increasing number of threads. This way, we can verify models of increasing
size.

Name Variable Description

SIZE no The size of the hash table.
MAX no The number of messages generated per thread.
THREADS yes The number of threads.

Static partial-order reduction is unable to reduce the state space for this program, because all access to
the hash table must be marked as dependent. It is impossible to statically determine which hashes will be
generated in advance and therefore it is unknown which locations in the hash table are accessed. Therefore
we need to assume that every access to the hash table collides, and that every action is dependent.

When using dynamic partial-order reduction, we do not need to know all actions in advance. Therefore
dependencies can be resolved after the hashes have been generated, and it can be detected when collisions
actually occur. When the example is run with at most 11 threads, no hash collisions will occur, and we
expect that dynamic partial-order reduction is able to reduce the state space. For more than 11 threads,
hash collisions will occur in this model, and more actions become dependent. Therefore, dynamic partial-
order reduction will no longer be able to reduce as much after the number of threads exceeds 11.

To be able to use the model, the pseudo code in Algorithm 7 was converted to a promela model to
be used for the Spin and LTSmin tools, and a Petri net to be used in DRoP. All models can be found in
the examples directory of the git repository [4].
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Algorithm 7 Flanagan’s indexer program, taken from [14]

int SIZE = 128;
int MAX = 4;
int[SIZE] table;

function Thread(tid)
int m=0, w, h;
while true do //Repeat, getmsg() takes care of termination.

w := getmsg(); //Get a new message.
h := hash(w); //Hash the message.
while cas(table[h],0,w) == false do //Loop until table[h] is empty and store the message.

h := (h + 1) % SIZE;
end while

end while
end function

function getmsg(()) //Generate new messages until MAX messages are generated.
if m < MAX then

return (++m) * 11 + tid;
else

exit();
end if

end function

function hash(int w)
return (w * 7) % SIZE;

end function

File System Program

The pseudo code of the second example, the file system program, can be found in Algorithm 8. The
program is inspired by the synchronization mechanism of the Frangipani file system [25]. In this file
system, each file is represented by an inode. This inode contains a pointer to a block on disk that
contains the actual data of the file. Each block has a busy bit to indicate that is has been assigned to an
inode, and each individual inode and busy bit have a lock to regulate access.

Each thread in the file system program in Algorithm 8 picks an arbitrary inode, and when this inode
is node yet assigned with a block, the threads tries to find an unused block and assigns it to the inode.
We are not interested in the actual assignment of blocks to inodes, but only to the locking mechanism
protecting this operation. Therefore, threads only assign the busy bit.

The program contains three parameters, as can be seen in the table below. The number of inodes and
the number of blocks are fixed for every experiment, and are set to 32 and 26 respectively. This equals
the values in [14], so we can compare the results. Multiple instances of the model are verified, with an
increased number of threads. This way, we can verify models of increasing size.

Name Variable Description

NUMBLOCKS no The number of blocks in the file system.
NUMINODES no The number of inodes in the file system.
THREADS yes The number of threads.

Static partial-order reduction is unable to reduce the state space for this program. Because we are
unable to statically determine which inodes and blocks will be accessed (and thus we are unable to
determine if there are collisions), we have to assume every action collides. Therefore all actions become
dependent and nothing can be reduced.

When using dynamic partial-order reduction, we do not need to know all actions in advance. Therefore
dependencies can be resolved after we know which inodes and blocks are accessed, and it can be detected
when collisions actually occur. When the number of threads is at most 13, there are no collisions and
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we expect that dynamic partial-order reduction is able to reduce the state space. When there are more
than 13 threads, collissions will occur, and more actions become dependent. Therefore we expect that
dynamic partial-order reduction is not able to reduce as much when the number of threads exceeds 13.

To be able to use the model, the pseudo code in Algorithm 8 was converted to a Promela model to
be used for the Spin and LTSmin tools, and a Petri net to be used in DRoP. All models can be found in
the examples directory of the git repository [4].

Algorithm 8 Flanagan’s File System Program, taken from [14]

int NUMBLOCKS = 26;
int NUMINODE = 32;
boolean[NUMINODE] locki;
int[NUMINODE] inode;
boolean[NUMIBLOCK] lockb;
boolean[NUMIBLOCK] busy;

function Thread(tid)
int i, b;
i := tid % NUMINODE; //Select a random inode.
acquire(locki[i]); //Acquire the lock on the inode.
if inode[i] == 0 then //If the inode has no block, assign one.

b := (i*2) % NUMBLOCKS;
while true do //Loop until an unused block is found.

acquire(lockb[b]) //Lock the block.
if !busy[b] then //If the block is unused, assign it to the inode.

busy[b] := true;
inode[i] := b;
release(lockb[b]);
break; //An empty block was found, so quit seraching.

end if
release(lockb[b]);
b := (b+1) % NUMBLOCKS; //Go to the next block.

end while
end if
release(locki[i]);
exit();

end function

BEEM Models

Besides the two models from Flanagan’s paper [14], two models are chosen from the BEEM database [3]:
Lamport’s bakery algorithm [19] and Szymanski’s mutual exclusion algorithm [24]. The BEEM database
is essentially a list of models and statistics that is meant to be used for benchmarking model checkers.
The models of the BEEM database are divided into sections, according to the purpose of the algorithms.
Both models we selected are models from the mutual exclusion section of the database, because mutual
exclusion algorithms lend themselves well to be represented as a Petri net.

Bakery Algorithm

The pseudo code of the Lamport’s bakery algorithm [19] can be found in Algorithm 9. The bakery
algorithm is a mutual exclusion algorithm that is based on a waiting line at the bakery. When a thread
wants to enter the critical section, it picks a ticket with a number that is one higher than all other
currently assigned tickets. The thread that has the ticket with the lowest number, is allowed in the
critical section first. When two threads get a ticket at the same time, they can acquire the same number.
In this case, the thread with the lowest tid is allowed in the critical section first.

37



5.2 MODELS EXPERIMENTS

The bakery algorithm has two parameters, as can be seen in the table below. By increasing the
number of threads, the model gets larger and it is possible to verify the model with different sizes. The
maximum ticket number is an artificial upper bound on the the ticket numbers the threads can acquire.
The bakery algorithm itself does not have this limit. But then the ticket numbers could increase infinitely,
thus creating an infinite state space. Since we are unable to explore infinite state spaces, we impose a
maximum ticket number to make the state space finite. Using this approach introduces extra deadlock
states to the state space, namely when a thread cannot acquire a ticket because the maximum ticket
number is already reached. Since we add this limit to the model for every tool, all models will still
contain the same number of deadlock states. In our experiments we also increase the maximum ticket
number to get larger models. All models can be found in the examples directory of the git repository [4].

Name Variable Description

MAX (m) yes Artificial maximum ticket number.
NUMTHREADS (p) yes The number of threads.

In our experiments we use different versions of the bakery model. For the Spin and LTSmin tools
we use the Promela and DVE versions from the BEEM database respectively and Helena has its own
model lna included with the Helena binaries. For DRoP we have created our own model, but we also
exported the Helena version of the model. Therefore we can run DRoP with different input models.
The parameters in the models from the BEEM database are not easily changed. Therefore we do not
have a BEEM counterpart (and thus Spin and LTSmin model) for every model we created ourselves and
exported from Helena.

Algorithm 9 Lamport’s bakery algorithm

boolean[NUMTHREADS] entering = false;
int[NUMTHREADS] number = 0;

function thread(tid)
entering[tid] = true; //Signal that we are picking a ticket number.
number[tid] = 1 + max (number[0], number[1], . . . , number[NUMTHREADS-1]); //Pick a

number.
entering[tid] = false; //Signal that we have picked a ticket number.
for all i ∈ 1..NUMTHREADS-1 do //Check the ticket numbers of all threads.

while entering[i] do //If thread i is busy picking a ticket number, wait until it is done.
end while
while number[i] != 0 & (number[i] < number[tid] | (number[i] == number[tid] & i < tid)) do
end while //If thread i has a lower ticket number, wait until it exits the critical section.

end for
Critical section
number[tid] = 0; //Signal we have left the critical section.

end function
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Szymanski’s Algorithm

Algorithm 10 shows the pseudo code of Szymanski’s mutual exclusion algorithm [24]. This algorithm
guarantees mutual exclusion of the critical section for any number of threads, with only a fixed amount
of memory per thread. The algorithm is modeled after a waiting room. First, threads have to enter a
waiting room. Then the door of the waiting room is locked, and the threads in the waiting room are
allowed in the critical section one by one. When the waiting room is empty again, the next group of
threads may enter.

In more detail, when a thread wants to enter the critical section it first has to pass through the waiting
room and it sets it flag to 1 to signal other processes it wants to enter the waiting room. When the
waiting room is empty (all flags are 0 or 1), all processes that currently waiting, enter the waiting room.
To signal this, all threads change their flag from 1 to 2 or 3. When all threads are in the waiting room,
they set their flag to 4, and no other threads can enter the waiting room until it is empty again. When
the waiting room is closed (ie. not empty), all threads in the room are allowed in the critical section in
the order of their tid.

Szymanski’s algorithm has a single parameter: the number of threads. In our experiments we increase
the number of threads, to explore increasingly larger models.

Name Variable Description

NUMTHREADS yes The number of threads.

In our experiments we use different versions of Szymanski’s algorithm. For the Spin and LTSmin
tools we use the Promela and DVE versions from the BEEM database respectively and Helena uses its
own model included with the Helena binaries. For DRoP we have created our own model, but we also
exported the Helena version of the model. Therefore we can run DRoP with different input models. The
parameters in the models from the BEEM database are not easily changed. Therefore we do not have a
BEEM counterpart (and thus Spin and LTSmin model) for every model we create ourselves and exported
from Helena.

Algorithm 10 Szymanski’s algorithm

int[NUMTHREADS] flag = 0;

function thread(tid)
flag[tid] = 1; //Signal we want to enter the waiting room.
while ∃ i ∈ 0..NUMTHREADS-1 : flag[i] 6∈ {0,1,2} do //Wait until the waiting room is empty.
end while
flag[tid] = 3; //Enter the waiting room.
if ∃ i ∈ 0..NUMTHREADS-1 : flag[i] == 1 then

flag[tid] = 2; //If more threads want to enter the waiting room . . .
while 6 ∃ i ∈ 0..NUMTHREADS-1 : flag[i] == 4 do
end while //. . . wait until they have done so.

end if
flag[tid] = 4; //Close the waiting room, and signal that we are to enter the cs.
while ∃ i ∈ 0..tid-1 : flag[i] 6∈ {0,1} do //Wait until all threads with a lower tid have passed the cs.
end while
Critical section
while ∃ i ∈ tid+1..NUMTHREADS-1 : flag[i] 6∈ {0,1,4} do
end while //Wait until all threads with a higher tid are aware they can leave the waiting room.
flag[tid] = 0; //Signal that we have left the critical section.

end function
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5.3 Test Setup

Before continuing to the results of the experiments, this section first discusses how the results are gathered.
Each exploration is run on a machine with an Intel E5520 CPU. If the exploration is not finished

within one hour, or if the exploration requires more than 20GB of memory, the exploration is cancelled
and we remove intermediate results. These time and memory limits are monitored and enforced by the
memtime program.

For the LTSmin, Spin and Helena tools each experiment is run 5 times. The final result is the average
of these results.

DRoP is written in Java. The initial run of Java is always worse than successive runs, because at the
start the JVM still has to initialize its optimizations. Because the result of the first run is always bad,
experiments with DRoP are run 6 times. The final result for the experiments with DRoP is the average
of the second through the sixth run.

As discussed in Section 5.1, DRoP randomly selects a probe set, when multiple valid probe sets are
available. The choice of probe sets is very important to the amount of reduction we can obtain. Therefore
we use a different random seed for every test run, so different random probe sets are selected every run.
This way we avoid that our results are extremely good or extremely bad because of a (un)lucky random
selection of probe sets.

The results of the experiments are collected from the following sources.

#Nodes Time Memory

DRoP Internal System.currentTimeMillis() Runtime.getRuntime().totalMemory() -

Runtime.getRuntime().freeMemory()

LTSmin Tool output memtime output memtime output
Spin Tool output memtime output memtime output

Helena Tool output memtime output memtime output

For DRoP, the data is collected directly inside the source code. The time is measured by the differ-
ence in the result of System.currentTimeMillis() at the start and end of the exploration. The memory
usage is measured by a call to Runtime.getRuntime().totalMemory() -

Runtime.getRuntime().freeMemory() after a single call to garbage collector at the end of the explo-
ration.

For the other tools, the number of states is read from the output of the tool itself. For the amount of
time and memory that was used, the output of memtime is used. By relying on memtime, the results are
not completely accurate, especially for the memory usage. However, each tool uses different (compression)
techniques to store the state space they are exploring, so by relying on the output from the tools, we will
still have an inaccurate result. Therefore we have chosen to use memtime to at least have a consistent
method in measuring memory usage.

5.4 Reduction for Different DRoP Configurations

In the first experiment we try to determine which probe set selection strategy and which cycle proviso
give the best performance of DRoP. To do this, we explore the state spaces of Flanagan’s examples [14]
described in Section 5.2, with the following four combinations of strategies.

• Reversing free probe set selection (Section 4.1.1) with the aging proviso (Definition 31).

• Reversing free probe set selection (Section 4.1.1) with the no duplicates cycle proviso (Definition 36).

• Independent action probe set selection (Section 4.1.2), with the aging proviso (Definition 31).

• Independent action probe set selection (Section 4.1.2), with the no duplicates cycle proviso (Defi-
nition 36).
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Figure 5.2: The number of nodes in Flanagan’s examples [14] obtained by DRoP for different combinations
probe set selection strategies and cycle provisos.

2 4 6 8 10 12 14 16

101

102

103

104

105

106

Number of Threads

N
u

m
be

r
o
f

V
ec

to
rs

File system program

2 4 6 8 10 12

102

103

104

Number of Threads

N
u

m
be

r
o
f

V
ec

to
rs

Indexer program

Reversing free, aging Reversing free, no duplicates
Independent action, aging Independent action, no duplicates

Figure 5.3: The number of vectors in Flanagan’s examples [14] obtained by DRoP for different combina-
tions probe set selection strategies and cycle provisos.
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Threads All Rev. + age Rev. + DRoP Indep. + age Indep. +DRoP
Nodes Nodes Red. Nodes Red. Nodes Red. Nodes Red.

1 6 6 0% 6 0% 6 0% 6 0%
2 36 29 19% 29 19% 36 0% 31 14%
3 216 123 43% 130 40% 216 0% 64 70%
4 1296 481 63% 555 57% 1296 0% 94 93%
5 7776 1783 77% 2146 72% 7776 0% 56 99%
6 46656 6369 86% - - - - 72 100%
7 279936 22151 92% - - - - 85 100%
8 - - - - - - - 153 -
9 - - - - - - - 173 -

10 - - - - - - - 177 -
11 - - - - - - - 204 -
12 - - - - - - - 252 -
13 - - - - - - - 263 -
14 - - - - - - - 1097 -
15 - - - - - - - 10395 -
16 - - - - - - - 55060 -

Table 5.1: Comparison of the four different exploration strategies for Flanagan’s file system program.

Threads All Rev. + age Rev. + DRoP Indep. + age Indep. +DRoP
Nodes Nodes Red. Nodes Red. Nodes Red. Nodes Red.

1 13 13 0% 13 0% 13 0% 13 0%
2 169 148 12% 146 14% 169 0% 157 7%
3 2197 1636 26% 1674 24% 2197 0% 171 92%
4 28561 - - - - 28561 0% 243 99%
5 371293 - - - - - - 279 100%
6 - - - - - - - 184 -
7 - - - - - - - 234 -
8 - - - - - - - 405 -
9 - - - - - - - 817 -

10 - - - - - - - 1416 -
11 - - - - - - - 1572 -

Table 5.2: Comparison of the four different exploration strategies for Flanagan’s indexer program.
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Figure 5.2, Table 5.1 and Table 5.2 show the number of nodes in the reduced state spaces for each
strategy. Figure 5.3 shows the number of vectors needed to calculate the reduced state space for each
strategy.

Note that the indexer program did not finish exploration within the set limits. Because we expect an
exponential growth we added a dummy result to show this expectation in our graphs.

From both figures it can easily be concluded that the independent action selection strategy in com-
bination with the no duplicates cycle proviso performs the best; it is the only combination for which the
state space does not increase exponentially.

It can also be seen that the number of nodes is greater than the number of vectors and that the
number of nodes does not necessarily increase as the model size increases and can, in fact, decrease.

Ideally, the number of vectors is an upper bound on the number of nodes in the state space. Each
vector represents exactly one node, its target, and multiple vectors can represent a single node. The fact
that the number of nodes is larger than the number of vectors, is because vectors do not only represent
their target, but also a path, and intermediate calculations are performed on this path.

Take for example the simple state space below in Figure 5.4 with vector (s0, a1 · a2 · b1). The probe
set of the vector could be p = b2 7→ b1. According to Equation 2.9 the new vector with this probe set will
be (s2, a1 · a2 · b2). This new vector does not only contain a new target state, but also the new states s2
and s4. DRoP does not always generates these new states, but it cannot avoid generating some of them.

New states can also be calculated by the missed actions analysis. Take again vector (s2, a1 · a2 · b2)
in the same state space. The missed actions analysis requires us to consider the weak prefix b2, and we
need to explore state s5 to determine its enabled actions. However, state s5 does not have any missed
actions, so no new vectors will be produced, even though new states were found.

s0

s1 s2

s3 s4 s5

s6 s7

s8

a1 b1

a2

b1 a1

b2

b1

a2 b2
a1

b2 a2

Figure 5.4: Example state space.
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Figure 5.5: The minumum, maximum and average number of nodes in Flanagan’s file system program
and indexer program [14] for the independent action probe set selection strategy and the no duplicates
cycle proviso

Both in the file system program and the indexer program, the number of nodes decreases sometimes,
while size of the model increases. One possible explanation is selecting a ‘bad’ probe set, when there are
multiple valid probe sets to choose from. To rule out this possibility, a random valid probe set is chosen
when there are multiple options. Each test run is performed with a different random seed, so the change
the number of nodes increases because bad probe sets are chosen decreases.

Figure 5.5 show some detailed results for these experiments with the independent action strategy in
combination with the DRoP cycle proviso. Besides the average number of nodes, we also show the median
number of nodes, and the worst and the best run.

The figure shows a difference between the best and the worst run, but it is very small. Moreover, the
decrease in nodes as we saw in the average, returns in the median, maximum and minimum amount of
nodes. Therefore it is unlikely that the number of nodes increases because the unlucky selection of probe
sets.

It is unknown what the exact cause is for the decrease in nodes. However, since the number of vectors
does not show the same decrease, the problem is likely unrelated to the exploration strategy.

5.5 Comparison between DRoP and other Tools

In the previous section we compared different options for the implementation of DRoP. In this section
we will compare the best options for DRoP, the independent action probe set selection strategy with the
cycle proviso in Equation 36, with already existing tools capable of partial-order reduction, namely Spin
and LTSmin. We will first discuss the examples from Flanagan [14], then the examples from the BEEM
database [3].
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5.5 COMPARISON BETWEEN DROP AND OTHER TOOLS EXPERIMENTS

5.5.1 Flanagan’s Examples

Threads DRoP LTSmin Spin
Complete Reduced Complete Reduced Complete Reduced

1 6 6 0% 12 12 0% 12 12 0%
2 36 31 14% 133 111 17% 133 111 17%
3 216 64 70% 1464 1066 27% 1464 1066 27%
4 1296 94 93% 16105 10301 36% 16105 10301 36%
5 7776 56 99% 177156 99240 44% 177156 99240 44%
6 46656 72 100% 1948717 952171 51% 1948717 952171 51%
7 279936 85 100% 21435888 9100934 58% 21435888 9100934 58%
8 - 153 - - - - - - -
9 - 173 - - - - - - -

10 - 177 - - - - - - -
11 - 204 - - - - - - -
12 - 252 - - - - - - -
13 - 263 - - - - - - -
14 - 1097 - - - - - - -
15 - 10395 - - - - - - -
16 - 55060 - - - - - - -

Table 5.3: The number of nodes in the (reduced) state space for Flanagan’s file system program for
different tools.

Threads DRoP LTSmin Spin
Complete Reduced Complete Reduced Complete Reduced

1 13 13 0% 28 28 0% 28 28 0%
2 169 157 7% 757 203 73% 757 211 72%
3 2197 171 92% 29080 2003 93% 29080 1972 93%
4 28561 243 99% 1309288 21653 98% 1309288 21478 98%
5 371293 279 100% 107233101 540564 99% - 538633 -
6 - 184 - - 3566907 - - 3561666 -
7 - 234 - - 54332225 - - - -
8 - 405 - - - - - - -
9 - 817 - - - - - - -

10 - 1416 - - - - - - -
11 - 1572 - - - - - - -

Table 5.4: The number of nodes in the (reduced) state space for Flanagan’s indexer program for different
tools.
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Figure 5.6: The size of the state space for Flanagan’s examples for different tools.

Table 5.3 shows the size of state space of Flanagan’s file system program for the different tools.
Table 5.4 shows the same for the indexer program. Figure 5.6 presents the size of the state spaces for
both examples in graphical form.

Note that the indexer program did not finish exploration within the set limits. Because we expect an
exponential growth we added a dummy result to show this expectation in our graphs.

For both examples, DRoP performs better than LTSmin and Spin in size of the reduced state space.
This is expected, because Flanagan’s examples are what dynamic partial-order reduction is designed to
be used for.

For the indexer program, all tools are able to achieve a large reduction. However, the size of the state
space still grows exponentially for the LTSmin and Spin tools. The most plausible explanation is that
because we created the models ourselves, the model for DRoP combines several dependent actions into
one. As a result, LTSmin and Spin have to explore all interleavings of these dependent actions, while
DRoP only has to explore a single action.
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Figure 5.7: The time needed to explore the state space of Flanagan’s examples for different tools.
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Figure 5.8: The memory needed to explore the state space of Flanagan’s examples for different tools.
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5.5 COMPARISON BETWEEN DROP AND OTHER TOOLS EXPERIMENTS

Figure 5.7 and Figure 5.8 show the time and memory needed to explore the state space of Flanagan’s
examples. The exact results can be found in the Appendix in Table A.3 and Table A.4. It should be
noted that the results in these tables can be inaccurate, since the time and memory usage is measured
using memtime.

Two small remarks can be made about these results. First, in case we are exploring the small models
with at most three or four threads, DRoP takes more time and memory than existing tools. As can be
seen in Table 5.3 and Table 5.4 DRoP and the other tools are only able to reduce the state space a little.
This reduction is not enough to compensate the extra effort that DRoP has to spend to perform dynamic
partial-order reduction.

Second, the memory usage of DRoP in the case of Flanagan’s indexer program is variable. However,
the memory usage remains manageable in contrast to the other tools, whose memory usage increases
exponentially. Therefore we are not concerned with this for now.
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5.5 COMPARISON BETWEEN DROP AND OTHER TOOLS EXPERIMENTS

5.5.2 BEEM Examples

Threads DRoP LTSmin Spin Helena
DRoP Helena

p2m2 1% 10% N/A% N/A% 0%
p2m3 19% 18% N/A% N/A% 0%
p2m4 43% 20% N/A% N/A% 0%
p2m5 36% 18% N/A% N/A% 0%
p2m6 7% 15% N/A% N/A% 0%
p2m7 18% 28% N/A% N/A% 0%
p2m8 28% 19% N/A% N/A% 0%
p2m9 14% N/A% 12% 0% 0%
p3m2 28% 9% N/A% N/A% 0%
p3m3 20% 10% N/A% N/A% 0%
p3m4 18% - 4% 0% 0%
p3m5 17% N/A% N/A% N/A% 0%
p3m6 17% N/A% N/A% N/A% 0%
p3m7 19% N/A% N/A% N/A% 0%
p4m2 42% - N/A% N/A% 0%
p4m7 - N/A% 3% 0% -

p4m12 - N/A% 3% 0% -
p5m5 - N/A% - 0% -

Table 5.5: Amount of reduction achieved by different tools for the bakery example. Extract from Table A.1
(“N/A” = model not available, ”-” = model could not be explored).

Threads DRoP LTSmin Spin Helena
DRoP Helena

1 0% 0% 35% 1% 0%
2 0% 36% N/A% N/A% 0%
3 8% 4% 51% -2% 1%
4 13% - N/A% N/A% 3%
5 23% - 64% 12% 7%

Table 5.6: Amount of reduction achieved by different tools for the Szymanski’s algorithm. Extract from
Table A.2 (”N/A” = model not available, ”-” = model could not be explored).
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Figure 5.9: Number of nodes for the BEEM models

Table 5.5 and Table 5.6 show how much reduction each tool is able to achieve for the bakery example
and Szymanski’s algorithm respectively. Table A.1 and Table A.2 in de Appendix also include the number
of nodes for the complete and reduced explorations. In Figure 5.9, the number of nodes in the state spaces
is graphically represented.

For the bakery example, we can see that DRoP achieves the same amount of reduction as the other
tools, and sometimes it achieves more reduction.

For Szymanski’s algorithm, DRoP performs better than Spin and Helena. However, LTSmin is able
to reduce much more than DRoP. A possible explanation is that the complete state spaces of the models
used by DRoP already contain much fewer states, as can be seen in Table A.2. Therefore they probably
contain fewer independent actions and it is impossible to reduce these models much further.
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Figure 5.10: Time needed to explore the BEEM models
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5.6 SUMMARY EXPERIMENTS

Figure 5.10 and Figure 5.11 show the amount of time and memory needed to explore the state spaces
of the BEEM models. The exact results can be found in the Appendix in Table A.5 and Table A.6. It
should be noted that the results in these tables can be inaccurate, since the time and memory usage is
measured using memtime.

For the bakery example, DRoP behaves as expected. The amount of reduction in the bakery model is
small, and dynamic partial-order reduction is more complicated. Therefore, we see that DRoP requires
more time and memory to explore the models. Although the difference is small, it is probably still the
cause that it is impossible to explore the larger models with DRoP, while this is possible with Spin and
LTSmin.

When comparing the amount of time and memory needed by DRoP to explore the state space of
Szymanski’s algorithm, we see that it is much less when compared to the other tools. The state spaces of
the models explored by DRoP are also much smaller, so this is as expected. From the graph in Figure 5.10
we can see that the slope of the time needed by DRoP is lower compared with the other tools, and in
Figure 5.11 we can see that the slope for the memory usage by DRoP is comparable to the other tools.
Therefore we assume that the time and memory needed by DRoP will only differ with a constant factor,
when we would increase the size of the model.

For both BEEM models, DRoP is unable to explore the larger models that are exported from the
Helena tool. Probably this is caused by the format of the model. For example, the model for the bakery
algorithm with three threads and a maximum ticket number of four that we created is an XML document
of 160kB and the same model exported from Helena is an XML document of 179MB. So while both
models describe the same algorithm, the model exported from Helena is much larger. Therefore it is to
be expected that the exploration of the model exported from Helena requires more time and memory.

5.6 Summary

In the previous sections we have seen several experiments. This section provides a summary of their
results.

In our first experiments in Section 5.4 we compared different probe set selection strategies and cycle
provisos for DRoP. During these experiments, the combination of the independent action probe set
selection strategy (Section 4.1.2) and the no duplicates cycle proviso (Section 3.1) clearly provided the
largest reductions.

In the same experiments, we discovered that the number of states is larger than the number of vectors,
while the number of vectors should be an upper bound on the number of states. Although a vector only
represents a single state, its target state, it also contains a path that can be used to reach this state.
Changes in these paths also result in new states being discovered.

In Section 5.5 we compared DRoP with other tools. For the models that we expected to only work with
dynamic partial-order reduction, DRoP performed better than most tools. This means DRoP achieved
a larger reduction in less time and memory than other tools. It should be noted that the models do not
have an equal amount of states for every tool. However, for Flanagan’s examples the difference in number
of states alone is to small to account for the difference in time and memory.

For Flanagan’s indexer program, some of the other tools were also able to achieve a large reduction,
however their state spaces would still grow exponentially. This is probably caused by differences in the
input models.

The last experiments showed that static and dynamic partial-order reduction perform equally, when
static partial-order reduction is already able to perform well. This means that the reduction both algo-
rithms are able to achieve is equal.

As expected DRoP needs more time and memory to explore the models, because the dynamic partial-
order reduction algorithm is more complicated. However, we should take into account that the number of
states in the models was not equal for every tool, especially in Szymanski’s mutual exclusion algorithm.
Therefore, the results the results for time and memory usage are not as reliable as in the previous
experiments.
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6 Conclusions

In this master thesis we introduced partial-order reduction and the limitations of static partial-order re-
duction when we want to apply this on modern computer programs that dynamically create and destroy
threads and objects in memory. To counter these limitations we discussed dynamic partial-order reduc-
tion, which attempts to solve the limitations of static partial-order reduction by dynamically creating the
important dependency function during the exploration of the state space instead of statically determining
this dependency relation in advance.

We also wondered if the technically superior but more complicated dynamic partial-order reduction
algorithm would be able to perform as well in practise as existing static partial-order reduction algorithm.
To verify this we tried to answer the following questions:

1. Which cycle proviso should we use?

2. How do we determine the over-approximation of the missed actions?

3. How do we select probe sets?

4. What will be the input for the implementation?

5. How do we evaluate the efficiency of the algorithm?

Cycle Proviso In Section 3.1 we introduced an alternative cycle proviso to the one introduced in [17].
The cycle proviso is used to select a new probe set together with the selection strategy when the algorithm
detects a cycle during the exploration. The cycle proviso introduced in the original algorithm [17] was
based on exploring every action as soon as possible, and did not allow the exploration of actions to be
postponed. With the new cycle proviso the exploration of actions can be postponed without weakening
the guarantees of the dynamic-partial-order reduction algorithm. During our experiments we compared
both cycle provisos and showed that by using the new proviso we could gain better reductions.

Over-approximation of the Missed Actions We made a small improvement to the over-approximation
of the potentially missed actions as described in Section 3.2. Some missed actions in the over-approximation,
we could easily detect during the generation of the probe sets. By changing the requirements on valid
probe sets, we can avoid a part of the expensive missed action analysis.

Probe Set Selection To be able to efficiently apply the dynamic partial-order reduction algorithm,
some parameters of the algorithm needed to be tweaked. One important thing we did was create a probe
set selection strategy. The paper that introduces partial-order reduction on probe sets [17] suggests an
selection strategy based on reversing actions that allows for optimizations in the missed action analysis
of the algorithm at the cost of a more complicated probe set phase. However, our experiments show
that the reductions we gain by using this strategy could be improved. As an alternative we suggested a
selection strategy based on independent actions that allows for an efficient probe phase at the cost of a
less efficient missed actions phase. We implemented both strategies in DRoP and compared them in our
experiments. In our experiments, our strategy based on independent actions out-performed the selection
strategy based on reversing actions.

Input As input for DRoP we decided to use Petri nets. To support this we first created a transformation
from Petri nets to the entity based systems used by the dynamic partial-order reduction algorithm. In this
transformation we chose a non-standard approach to Petri nets by using an explicit interpretation of the
tokens, instead of a symbolic one. Entity-based systems also have a concrete interpretation, so this choice
made the transformation layer simpler. It also makes it easier to extend the implementation to support
another formalism that holds our interest: graph transformation systems, since graph transformation
systems also have a concrete interpretation. The transformation layer only assumes that entities can be
represented by a type and an identifier. Every formalism that can be expressed in this form, can easily
be supported by DRoP by simply adding a new transformation class to the implementation.
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6.1 FUTURE WORK CONCLUSIONS

Evaluation of Efficiency Our research was not only focused on improving the efficiency of the
dynamic-partial-order reduction algorithm; we also wanted to show that the algorithm performs bet-
ter or just as good as static-partial-order reduction. To verify this, we did not only run experiments with
DRoP, but also with existing tools capable of partial-order reduction. In our experiments we differentiated
between two types of experiments. Experiments with models for which dynamic partial-order reduction
was designed, and where static partial-order reduction would not be able to gain (much) reduction. And
experiments in which we expected dynamic and static partial-order reduction to be able to achieve the
same amount of reduction.

In the experiments where we used models that work well with dynamic partial-order reduction, DRoP
achieves greater reductions in less time and with less memory than existing partial-order reduction tools.

When we use models for which static and dynamic partial-order reduction are on equal ground, we
achieve equal reduction and only a little extra time and memory are necessary. It is impossible to achieve
equal reduction with the same amount of time and memory as a static partial-order reduction algorithm,
simply because the dynamic partial-order reduction algorithm is more complicated and requires more
overhead.

Alternative Dynamic Partial-order Reduction Algorithm Besides the probe set algorithm, an-
other dynamic partial-order algorithm is introduced by Flanagan in [14]. This algorithm has been im-
plemented and experimented with, and it has been shown that it is able to produce greater reductions
than static partial-order reduction. However, the algorithm in [14] is not able to deal with cyclic state
spaces. By using techniques to shorten vectors and by including the cycle proviso, the probe set based
algorithm is able to deal with cyclic state spaces. Our experiments also confirm this property, so the
probe set based algorithm is an improvement over the algorithm introduced in [14].

Conclusion By developing DRoP we have successfully shown that it possible to apply dynamic partial-
order reduction and gain greater reductions without using much more resources. We have also shown
that our dynamic partial-order reduction algorithm is able to deal with cyclic state spaces.

6.1 Future Work

In this master thesis, we wanted to show that dynamic partial-order reduction is feasible. DRoP did an
excellent job on providing this proof, but this does not mean that the tool is finished. We think that
more work is necessary in the following subjects:

• Vector representation.

• Probe set selection strategy and cycle proviso.

• Experimentation.

• Code optimization.

Besides the important subjects above, the following subject is also very interesting and fun to inves-
tigate, but is maybe less urgent:

• Preserve more properties in the reduced state space (e.g. LTL and CTL).

Vector Representation

Vectors consist of a start state and a trace, which represent a single target state, namely the state that
we reach when we execute the trace in the start state. So, the number of vectors should be an upper
bound on the number of nodes in the state space. However, as discussed at the end of Section 5.4, this
is not the case.

Each vector does represent a single target state, but the vector also stores the path to this state in
its trace. Vectors that represent successive target states do not necessarily have overlapping traces, and
therefore more states are visited when we calculate the path that vectors represent.
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DRoP already calculates targets for new vectors from the target of old vectors in an attempt to
minimize the number of states visited because of the above problem. However, extra states are still
needed to calculate the start states of vectors and the missed actions.

More time should be spent on how vectors are represented and calculated to minimize the amount
of states that we need in our calculations but that we do not want to explore. Besides improving the
handling of vectors, we could also select different probe sets to generate more efficient vectors.

Probe Set Selection Strategy and Cycle Proviso

In this thesis we introduce a new strategy to select probe sets and a new cycle proviso. The basis of this
new strategy and proviso is empirical: by applying the algorithm by hand on some small examples, the
new strategy and proviso seemed to work well.

While the strategy and proviso still work well in the experiments with larger models, we do not have a
good mathematical analysis of why this strategy and proviso results in a good exploration. Making such
an analysis may yield new insights on why they work, and these insights then may allow us to improve
the strategy and proviso.

Another disadvantage of the current strategy is that is contains no heuristics on how to select a good
probe set, when multiple valid probe sets can be selected. Our experiments show that the number of
states in the reduced state space does depend on what probe sets are selected. Therefore it is important
that some strategy is developed to determine which probe sets are the best.

Finally it should be noted that the probe set selection strategy does directly determine which vectors
are created. Therefore a new smart strategy might be able to (partially) solve the problems with the
vector representation described above.

Experiments

We have presented several experiments in this thesis that verify that partial-order reduction based on
probe sets works. We have also been able to draw some interesting conclusions and we know where our
future effort should be pointed. However, to firmly establish that DRoP is also a good implementation of
the dynamic partial-order reduction algorithm, it should be subjected to more experiments with different
models.

Code Optimization

DRoP has been created to be an efficient implementation of the probe set algorithm. However, we believe
it is still possible to improve the code further and to decrease the time and memory DRoP needs to reduce
state spaces.

Properties

The current version of the algorithm only preserves deadlocks in the reduced state space. Static partial-
order reduction algorithms, such as the persistent set approach [26,27] and the ample set approach [21,22],
are also able to preserver safety properties, LTL properties and CTL* properties.

Our cycle proviso preserves the same properties as the cycle proviso for static partial-order reduction.
This includes invariants, which constitute a large part of the safety properties.

It should be easy to extend the algorithm to preserve all safety, LTL and CTL* properties. To preserve
LTL properties we need the notion of stuttering actions. Static partial-order reduction explores either
only stuttering enabled actions, or all enabled actions in every state. This constraint does not conflict in
any way with the constraints currently in place on probe sets. Therefore it should be straightforward to
modify this constraint to enable dynamic partial-order reduction to preserve LTL properties.

To preserve CTL* properties, static partial-order reduction either explores a single enabled action
or all enabled actions in every state. This is something we have already incorporated in our probe set
selection strategy and cycle proviso, so it should be straightforward to enable dynamic partial-order
reduction to preserve CTL* properties.
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A Tables

This appendix contains some of the tables with the result of the experiments in Chapter 5.

A.1 State Space Sizes

Threads DRoP (DRoP model) DRoP (Helena model) LTSmin
Comp. Reduced Comp. Reduced Comp. Reduced

p2m2 85 84 1% 205 184 10% N/A N/A N/A%
p2m3 159 128 19% 351 288 18% N/A N/A N/A%
p2m4 237 136 43% 497 396 20% N/A N/A N/A%
p2m5 315 203 36% 643 528 18% N/A N/A N/A%
p2m6 393 367 7% 789 674 15% N/A N/A N/A%
p2m7 471 384 18% 935 674 28% N/A N/A N/A%
p2m8 549 395 28% 1081 878 19% N/A N/A N/A%
p2m9 627 541 14% N/A N/A N/A% 1506 1320 12%
p3m2 1494 1077 28% 5773 5226 9% N/A N/A N/A%
p3m3 3843 3091 20% 12454 11164 10% N/A N/A N/A%
p3m4 6978 5707 18% 21466 - - 32919 31445 4%
p3m5 10796 8975 17% N/A N/A N/A% N/A N/A N/A%
p3m6 14833 12365 17% N/A N/A N/A% N/A N/A N/A%
p3m7 18983 15460 19% N/A N/A N/A% N/A N/A N/A%
p4m2 33153 19279 42% 197364 - - N/A N/A N/A%
p4m7 - - - N/A N/A N/A% 7866401 7644120 3%

p4m12 - - - N/A N/A N/A% 29047471 28118640 3%
p5m5 - - - N/A N/A N/A% 253131202 - -

Threads Spin Helena
Comp. Reduced Comp. Reduced

p2m2 N/A N/A N/A% 205 205 0%
p2m3 N/A N/A N/A% 351 351 0%
p2m4 N/A N/A N/A% 497 497 0%
p2m5 N/A N/A N/A% 643 643 0%
p2m6 N/A N/A N/A% 789 789 0%
p2m7 N/A N/A N/A% 935 935 0%
p2m8 N/A N/A N/A% 1081 1081 0%
p2m9 1506 1506 0% 1227 1227 0%
p3m2 N/A N/A N/A% 5773 5773 0%
p3m3 N/A N/A N/A% 12454 12454 0%
p3m4 32919 32919 0% 21466 21466 0%
p3m5 N/A N/A N/A% 31615 31615 0%
p3m6 N/A N/A N/A% 42282 42282 0%
p3m7 N/A N/A N/A% 53141 53141 0%
p4m2 N/A N/A N/A% 197364 197364 0%
p4m7 5325075 5325075 0% - - -

p4m12 17080914 17080914 0% - - -
p5m5 203817680 203817680 0% - - -

Table A.1: The size of the state space of the bakery example for different tools and model configurations
(”N/A” = model not available, ”-” = model could not be explored).
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A.1 STATE SPACE SIZES TABLES

Threads DRoP (DRoP model) DRoP (Helena model) LTSmin
Comp. Reduced Comp. Reduced Comp. Reduced

1 5 5 0% 17 17 0% 20264 13190 35%
2 25 25 0% 489 315 36% N/A N/A N/A%
3 112 103 8% 20264 19379 4% 1128424 552572 51%
4 469 407 13% - - - N/A N/A N/A%
5 1894 1458 23% - - - 79518740 28251303 64%

Threads Spin Helena
Comp. Reduced Comp. Reduced

1 20264 20098 1% 17 17 0%
2 N/A N/A N/A% 489 488 0%
3 1013455 1031694 -2% 20264 20079 1%
4 N/A N/A N/A% 1128424 1092638 3%
5 74842972 65930161 12% 79518740 73878755 7%

Table A.2: The size of the state space of Szymanski’s algorithm for different tools and model configurations
(”N/A” = model not available, ”-” = model could not be explored).
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A.2 Time and Memory Requirements

DRoP LTSmin Spin
Threads Time Memory (GB) Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red.

1 0.0 0.0 0.005 0.005 0.1 0.1 0.004 0.004 0.1 0.1 0.004 0.004
2 0.0 0.0 0.006 0.009 0.1 0.1 0.004 0.004 0.2 0.2 0.004 0.004
3 0.1 0.1 0.018 0.016 0.1 0.1 0.004 0.004 0.2 0.2 0.130 0.130
4 0.2 0.1 0.117 0.030 0.4 0.4 0.044 0.044 0.4 0.3 0.134 0.130
5 1.6 0.1 0.761 0.049 4.6 5.0 0.053 0.050 2.5 1.3 0.177 0.156
6 15.7 0.2 3.042 0.078 59.0 60.5 0.138 0.115 28.5 9.2 0.693 0.403
7 284.0 0.2 3.630 0.116 780.5 743.8 1.215 0.589 380.1 99.5 6.502 2.834
8 - 0.2 - 0.143 - - - - - - - -
9 - 0.3 - 0.104 - - - - - - - -

10 - 0.5 - 0.135 - - - - - - - -
11 - 0.5 - 0.300 - - - - - - - -
12 - 0.7 - 0.462 - - - - - - - -
13 - 0.9 - 0.547 - - - - - - - -
14 - 2.2 - 0.836 - - - - - - - -
15 - 27.1 - 0.675 - - - - - - - -
16 - 534.0 - 0.967 - - - - - - - -

Table A.3: The time and memory required by different tools to explore Flanagan’s file system program.

DRoP LTSmin Spin
Threads Time Memory (GB) Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red.

1 0.0 0.1 0.022 0.030 0.1 0.1 0.004 0.004 0.2 0.2 0.004 0.004
2 0.1 0.2 0.087 0.062 0.1 0.1 0.004 0.004 0.2 0.2 0.130 0.004
3 1.6 0.6 0.770 0.277 0.7 0.1 0.047 0.004 0.8 0.2 0.144 0.130
4 29.0 1.3 3.337 0.374 32.9 0.5 0.120 0.047 27.4 0.3 0.862 0.136
5 717.9 2.5 6.869 0.607 3263.6 10.8 5.575 0.075 - 3.9 - 0.432
6 - 4.1 - 2.932 - 89.5 - 0.232 - 23.1 - 2.214
7 - 6.1 - 1.292 - 1653.2 - 2.929 - - - -
8 - 8.6 - 3.288 - - - - - - - -
9 - 11.7 - 2.288 - - - - - - - -

10 - 16.6 - 0.596 - - - - - - - -
11 - 22.6 - 1.097 - - - - - - - -

Table A.4: The time and memory required by different tools to explore Flanagan’s indexer program.
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DRoP (DRoP model DRoP (Helena model) LTSmin
Threads Time Memory (GB) Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red.

p2m2 0.1 0.2 0.003 0.016 0.3 0.9 0.081 0.340 N/A N/A N/A N/A
p2m3 0.1 0.2 0.006 0.024 0.9 3.0 0.094 0.171 N/A N/A N/A N/A
p2m4 0.2 0.3 0.012 0.039 2.5 8.6 1.145 1.224 N/A N/A N/A N/A
p2m5 0.2 0.2 0.017 0.057 5.5 27.8 0.384 0.482 N/A N/A N/A N/A
p2m6 0.2 0.3 0.023 0.084 15.2 79.5 0.588 0.658 N/A N/A N/A N/A
p2m7 0.2 0.3 0.033 0.109 31.1 133.4 0.947 1.101 N/A N/A N/A N/A
p2m8 0.2 0.3 0.044 0.111 58.0 262.2 1.514 1.760 N/A N/A N/A N/A
p2m9 0.1 0.4 0.058 0.152 N/A N/A N/A N/A 0.1 0.1 0.004 0.004
p3m2 0.2 1.0 0.068 0.270 7.3 140.1 0.408 0.346 N/A N/A N/A N/A
p3m3 0.5 5.5 0.209 0.110 70.7 1619.0 0.736 2.537 N/A N/A N/A N/A
p3m4 2.1 17.7 0.647 0.662 442.0 - 2.591 - 0.1 0.3 0.004 0.032
p3m5 2.3 20.3 0.741 0.518 N/A N/A N/A N/A N/A N/A N/A N/A
p3m6 4.9 43.1 1.385 0.404 N/A N/A N/A N/A N/A N/A N/A N/A
p3m7 7.1 55.3 2.730 0.447 N/A N/A N/A N/A N/A N/A N/A N/A
p4m2 24.7 51.7 2.707 0.357 1084.3 - 4.529 - N/A N/A N/A N/A
p4m7 - - - - N/A N/A N/A N/A 25.4 86.4 0.243 0.243

p4m12 - - - - N/A N/A N/A N/A 100.0 325.3 0.859 0.860
p5m5 - - - - N/A N/A N/A N/A 1250.3 - 5.427 -

Spin Helena
Threads Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red.

p2m2 N/A N/A N/A N/A 8.4 8.3 0.012 0.012
p2m3 N/A N/A N/A N/A 8.4 8.3 0.012 0.012
p2m4 N/A N/A N/A N/A 8.2 8.2 0.012 0.012
p2m5 N/A N/A N/A N/A 8.2 8.2 0.012 0.012
p2m6 N/A N/A N/A N/A 8.2 8.3 0.012 0.012
p2m7 N/A N/A N/A N/A 8.2 8.3 0.012 0.012
p2m8 N/A N/A N/A N/A 8.3 8.2 0.012 0.012
p2m9 0.2 0.2 0.004 0.004 8.2 8.2 0.012 0.012
p3m2 N/A N/A N/A N/A 8.1 8.0 0.012 0.012
p3m3 N/A N/A N/A N/A 8.2 8.1 0.012 0.012
p3m4 0.2 0.2 0.130 0.130 8.2 8.2 0.012 0.012
p3m5 N/A N/A N/A N/A 8.0 8.1 0.012 0.012
p3m6 N/A N/A N/A N/A 8.2 8.2 0.012 0.012
p3m7 N/A N/A N/A N/A 8.3 8.0 0.012 0.012
p4m2 N/A N/A N/A N/A 8.2 8.2 0.012 0.012
p4m7 12.2 12.2 0.408 0.408 - - - -

p4m12 39.4 40.1 1.021 1.021 - - - -
p5m5 759.5 752.2 14.703 14.703 - - - -

Table A.5: The time and memory required by different tools to explore Lamport’s bakery algorithm
(”N/A” = model not available, ”-” = model could not be explored).
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DRoP (DRoP model DRoP (Helena model) LTSmin
Threads Time Memory (GB) Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red. Comp. Red.

1 0.0 0.0 0.003 0.003 0.1 0.1 0.003 0.006 0.1 0.4 0.004 0.032
2 0.1 0.1 0.003 0.003 0.2 1.0 0.073 0.423 N/A N/A N/A N/A
3 0.1 0.2 0.003 0.018 11.6 1123.2 1.919 1.009 3.8 17.4 0.078 0.053
4 0.1 0.2 0.014 0.130 - - - - N/A N/A N/A N/A
5 0.3 3.1 0.076 1.374 - - - - 454.4 1390.3 2.814 1.325

Spin Helena
Threads Time Memory (GB) Time Memory (GB)

Comp. Red. Comp. Red. Comp. Red. Comp. Red.

1 0.2 0.2 0.130 0.104 10.9 10.8 0.012 0.012
2 N/A N/A N/A N/A 10.7 10.9 0.012 0.012
3 2.9 2.5 0.183 0.184 11.2 11.2 0.012 0.012
4 N/A N/A N/A N/A 14.1 13.0 0.012 0.012
5 278.2 185.3 5.076 4.545 825.8 557.4 0.012 0.012

Table A.6: The time and memory required by different tools to explore Szymanski’s mutual exclusion
algorithm (”N/A” = model not available, ”-” = model could not be explored).
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