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Abstract 

With this study, we aim to increase understanding of the insights that real option analysis (ROA) has to offer, particularly in comparison to dynamic decision tree analysis (DTA). We point out the fundamental theoretical shortcoming of applying a constant discount rate in the latter ap-proach, and explain how real options resolve this issue. Based on the fundaments of risk-neutral valuation and replicating portfolio concepts, we address different perspectives on how to treat non-hedgeable risks in a real option framework. We adopt an integrated view combining option pricing and decision analysis, which is theoretically consistent and allows an assessment of both market risk and private risk.  
To illustrate the practical application of real option analysis, we construct a model which deter-mines the optimal time to switch from gas production to electricity generation directly at the wellhead (Gas-to-Wire). To deal with the path-dependent price paths in this investment prob-lem, we use a combination of Monte Carlo simulation and a backwards regression algorithm. We construct forecasting models for natural gas and electricity prices. These models deal with the seasonal effects, price jumps, mean-reversion and time-varying volatility observed particularly in electricity prices. With a comparative study, we show that ROA provides results that signifi-cantly deviate from those yielded by DTA. 
Keywords:    real option analysis,    private risk, path-dependent, Monte Carlo simulation, time se-ries analysis, Bermudan swap option, backwards regression, Gas-to-Wire 
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Glossary 

Glossary financial theory American option Option which can be exercised at any time during the lifetime of the op-tion. 
Arbitrage Opportunity to make a risk-free profit at zero cost, making use of pricing inconsistencies in the market. 
Bermudan option Option which can be exercised at a number of pre-specified dates before maturity. 
Black-Scholes   formula Formula used to calculate the arbitrage-free price of a European option under a set of restrictive assumptions. 
Call option Derivative which grants the right to buy the underlying asset at a previ-ously specified price. 
Capital Asset     Pricing Model Classic model used to estimate the return required by investors based on the risk-free interest rate and the correlation of the asset return with the prevailing market return. 
Classic ROA Real option approach which relies on market replication of the project, considering private risk as a source of tracking error. 
Complete market Market model in which every financial asset can be replicated with a set of other financial assets, where all agents are able to trade all assets and no transaction costs exists.  
Convenience yield Benefits and costs stemming from possessing a commodity compared to holding its financial equivalent, caused by the opportunity to profit from temporary shortages and storage costs. 
Decision Tree Analysis Method used to value a project with embedded flexibilities by incorporat-ing decision points and probabilities of different scenarios, using a con-stant discount rate for all cash flows.  
Derivative Financial instrument which derives its value from that of an underlying asset, with the payoff depending on the specified conditions. 
Discounted Cash Flow Method used to value a project by discounting future cash flows at a con-stant rate in order to obtain the net present value. 
Discount rate Rate at which estimates of future cash flows are discounted, reflecting the time value of money and risk-adjustment. 
Diversification Reduction of risk by spreading investments, as such reducing the variance of the portfolio’s return. Perfect diversification leaves the investor ex-posed only to market movements. 
European option Option which can only be exercised at the end of its lifetime. 
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Futures contract Contract which obliges to buy/sell an asset at a certain point in the future, with the price to be paid determined today. 
Geometric     Brownian Motion Stochastic process to model the behaviour of asset prices over time, as-suming returns follow a normal distribution with constant parameters. 
Hedging Practice to reduce risk exposure by taking an offsetting position to a secu-rity. A perfectly hedged portfolio eliminates all market risk. 
Heteroskedasticity Term to describe varying variance over time. Unconditional heteroskedas-ticity does not depend on previous observations, conditional heteroske-dasticity does. 
Integrated ROA Real option approach which assumes that the market is partially complete, valuing the project part which can be replicated with arbitrage pricing and the remaining part with subjective valuation. 
Leverage Increasing the potential return of an investment with debt or by using derivatives, at the cost of a higher risk. 
MAD ROA Real option approach comparable to the subjective approach, assuming that the replicating portfolio is a twin security worth the subjectively es-timated value of the project. 
Market risk Part of project risks that can be replicated and hedged by financial instru-ments under the assumption of a complete market. 
Ornstein-Uhlenbeck model Extension of Geometric Brownian Motion that incorporates mean-reversion. As the simulated variable deviates more from its equilibrium level, the reverting effect becomes stronger. 
Portfolio The collection of investments held by an investor, which may include all forms of financial instruments. 
Private risk All project risks that cannot be hedged by market instruments, formally defined as the tracking error of the replicating portfolio. 
Put option Derivative which grants the right to sell the underlying asset at a previ-ously specified price. 
Real option Valuation method which explicitly values flexibilities in real-world pro-jects based on financial option theory. 
Replicating        portfolio Portfolio consisting of financial instruments, which replicates the payoffs of a real project in all market states and at all times. 
Return Logarithm of the price at a certain time divided by the return of the previ-ous time point, approximating the first difference of the price series over the specified interval. 
Revised classic ROA Real option approach which applies either option pricing or decision analysis, depending on the dominating type of project risk. 
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Risk-free rate Theoretical rate which investors can earn without being subject to any risk. Often approximated by the return on government bonds with very low default risk. 
Risk-neutral      valuation Valuation method which assumes an artificial risk-neutral price distribu-tion, allowing to use the risk-free rate as drift of the underlying. Provides the same value as real valuation if the complete market assumption holds. 
Security Term to describe a financial instrument, such as a stock, a bond or a de-rivative. 
Short-selling Selling assets borrowed from a third party, with the intention of buying back identical assets at a later time to return to the third party. This prac-tice allows to profit from price decline without making an initial invest-ment, but has an unlimited downside potential if not hedged. 
Spot contract Contract to buy or sell an asset at the current time against the prevailing market price. 
Subjective ROA 
 
 
 

Real option approach which assumes the subjective estimate of the project value can be considered a replicating portfolio, using its NPV as basis for option valuation under the assumption of market completeness.  
 
 

Swap option Option which grants the right to swap one stream of cash flows for an-other stream of cash flows. 
Time series Series of observations over a period of time, such as prices or returns. 
Twin security (Hypothetical) security traded on the financial market that is perfectly correlated with the real project.  
Vašíček model Mean-reverting stochastic model to replicate the behaviour of the interest rate over time. 
Volatility Standard deviation of the return on an asset, being used as a measure of uncertainty of return. 
Weighted Average Cost of Capital Estimate for the average cost of capital, consisting of the cost of debt and the cost of equity proportional to their share of total capital. 
Glossary energy market 30/30 ambition Goal of EBN to have 30% of Dutch natural gas produced from small gas fields by the year 2030. 
APX-ENDEX Dutch energy exchange, on which both short- and long-term contracts on natural gas and electricity are traded. 
Balancing market Electricity market on which electricity is traded to correct for misbalances between supply and demand on the short term.  
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Connectivity Rate at which the gas-containing volumes in a field are connected to each other, allowing a gas flow towards the well. 
Energie Beheer Nederland Dutch government-owned institute, involved in every gas winning opera-tion in the Netherlands as a facilitating partner. Also has an advisory task towards the Dutch government. 
Expansion factor Indicates how much gas will expand when it is retrieved from the reservoir. 
Gas-(Initially)-In-Place (Initial) amount of gas present in a reservoir.  Not all gas in a reservoir can be economically retrieved. 
GasTerra Major gas trading institute in the Netherlands, co-owned by Shell, Exxon, EBN and the Dutch state. Has the public task to buy gas produced at small gas fields when requested. 
Gas Transport Services Full daughter company of Gasunie, responsible for the transport of natural gas through the main transport networks. Also performs conversion opera-tions. 
Gasunie Government-owned institute which owns and manages the Dutch main gas distribution network. 
Gas intersection Planned function of the Dutch gas transport network to serve as a logistic centre for the transport and storage of natural gas in the north-west of Europe.  
Groningen gas field Major gas field located in the province of Groningen. It is the largest natural gas field in Europe and one of the largest in the world. Also referred to as the Slochteren gas field. 
Line-packing Storing natural gas in the transport network under high pressure. Varying the pressure allows to store less or more gas in the pipelines. 
Natural gas 
 

Gas mixture containing hydrocarbons which has a high energetic value. It is found in underground reservoirs. Natural gas is used as an energy source both directly and as input to generate electricity. It is also used as feedstock in the chemical industry. 
Nederlandse Aar-dolie Maatschappij E&P operator jointly owned by Shell and Exxon, being the largest natural gas producer in the Netherlands and the sole exploiter of the Groningen gas field. 
Nederlandse Mededingings-autoriteit          Energiekamer 

Competition regulator on the Dutch energy market, having the authority to enforce regulation on parties in the market. Also responsible for providing licenses to market parties. 
Net-to-gross ratio Part of the gross volume of a formation which can contain gas. 
Permeability Rate at which natural gas can flow through the porous rock formation. 
Porosity Percentage of a formation which can contain fluid or gas. 
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Reserve Economically retrievable amount of gas in a reservoir. 
Saturation Percentage of porous volume in a formation filled with gas. 
Small fields policy A Dutch government policy to stimulate the development of small gas fields in order to reduce the burden on the Groningen gas field. The policy com-prises a guaranteed sale of production, and fiscal advantages for projects at the North Sea. 
Spark spread Difference between the price of electricity and the price of the amount of input fuel required to generate the same amount of electricity. 
Tail-end gas field Gas field which is in a mature state of exploitation. 
TenneT Government-owned institute which owns and manages the Dutch electric-ity high-voltage transport network. 
TTF Virtual trading point for natural gas, which is facilitated by energy ex-change APX-ENDEX. 
Tubing Tube placed in the well through which the gas flows from the reservoir to the surface. The diameter of the tubing determines the pressure and the friction level within the well. 
Virgin gas field Currently unexploited gas field containing a small amount of gas. 
Volume Gross volume of the formation containing gas, measured by multiplying the area of the formation with its thickness. 
Acronyms and abbreviations AC Autocorrelation. 
ADF Augmented Dickey-Fuller. 
APX Amsterdam Power Exchange. 
AR Autoregressive. 
ARMA Autoregressive Moving Average 
ARIMA Autoregressive Integrated Moving Average. 
CAPM Capital Asset Pricing Model. 
DCF Discounted Cash Flow. 
DTA Decision Tree Analysis. 
EBN Energie Beheer Nederland. 
EBT Earnings Before Taxes. 
ENDEX European Energy Derivatives Exchange. 
EPCCI European Power Capital Cost Index. 



  x

EWMA Exponentially Weighted Moving Average. 
E&P Exploration and Production. 
GARCH Generalized Autoregressive Conditional Heteroskedasticity. 
GBM Geometric Brownian Motion. 
GIIP Gas-Initially-In-Place. 
GIP Gas-In-Place. 
HC High-caloric gas. 
LC Low-caloric gas. 
MA Moving Average. 
MAD Market Asset Disclaimer. 
MWh Megawatt hour. 
NAM Nederlandse Aardolie Maatschappij. 
NGL Natural Gas Liquid. 
NMa Nederlandse Mededingingsautoriteit. 
NPV Net Present Value. 
PAC Partial Autocorrelation. 
PRP Programme Responsibility Partner. 
ROA Real Option Analysis. 
UCCI Upstream Capital Cost Index. 
UOCI Upstream Operating Cost Index. 
VAR Vector Autoregressive. 
VEC Vector Error Correction. 
WACC Weighted Average Cost of Capital. 
Mathematical notations used C Real-world drift of an asset (excluding dividend payments). 
CD Risk-neutral drift of an asset (excluding dividend payments). 
E Relative error of option value Monte Carlo simulation. 
EF

 Adjusted relative error of option value Monte Carlo simulation. 
GHI Risk-neutral transition probability from state J to state K without consider-ing time value. 
CHIL  Risk-neutral transition probability from state J to state K when considering time value. 
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MNO(P) Autocovariance of lag P between time series . 
MNOQ(R) Sum of autocovariances MNO(P) to the third power providing autocorrela-tion-corrected standard error of skewness. 
MNOQ(S) Sum of autocovariances MNO(P) to the fourth power providing autocorre-lation-corrected standard error of kurtosis. 
T Variable indicating the size of a deterministic time trend for a single time step. 
TU Amplitude parameter for annual seasonal function. 
TVU Amplitude parameter for semi-annual seasonal function. 
W Correlation between asset and market return in CAPM. 
X Constant, used in several equations. 
NQY Cash flow at time Z. 
[(\,]^)_  Chi-square critical value with `a degrees of freedom and significance level b. 
`c Variable in Black-Scholes option pricing model. 
`_ Variable in Black-Scholes option pricing model. 
`a Degrees of freedom. 
d Market value of debt in WACC. 
dH Average daily effect of price series. 
de Average diesel oil price. 
df Exponential decline rate parameter of production rate. 
∆ Lag operator indicating the difference between an observation at time Z h 1 and at time Z. 
i Mathematical constant that is the base of natural logarithms. 
j Market value of equity in WACC. 
j4·5 Expected value of a variable. 
jl4NQY5 Expectation of real-world cash flow at time Z. 
jm4NQY5 Expectation of risk-neutral cash flow at time Z. 
inH  Jth largest eigenvalue of matrix o_ in Johansen procedure. 
jpb Expansion factor of gas in a reservoir. 
qY Random error term at time Z. 
r Market risk premium defined as the Sharpe ratio. 
s Intensity of Poisson arrival process in jump diffusion model. 
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st Intensity of Poisson arrival process for a downward price jump. 
su Intensity of Poisson arrival process for an upward price jump. 
Qv Price of futures contract maturing at time w. 
Qe Average fuel oil price. 
xHI Matrix in Johansen procedure. 
P Number of time lags indicating the number of time steps an observation 

lies before the observation at time Z. 
Py Number of autoregressive lags. 
Pz Number of moving-average lags. 
{ Hurst exponent indicating the persistence of a time-series trend. 
{| Indicator for null hypothesis in statistical tests. 
J Indicator for a certain state. 
K Indicator for a certain state other than J. 
} Average jump size in jump diffusion model. 
}T Jarque-Bera test statistic. 
}Ty]I Jarque-Bera test statistic adjusted for autocorrelation. 
}{4~��|�5 Johansen procedure test statistic for rank �� and � time series. 
� Dividend payment or net convenience yield. 
� Mean-reversion rate in Ornstein-Uhlenbeck process. 
oc � � �� matrix in Johansen procedure. 
o_ �� � � matrix in Johansen procedure. 
� Total expected return of an asset including possible dividends or net con-

venience yield. 
�� Average jump size in jump diffusion model. 
�H Jth central moment of a time series. 
�H Average monthly effect of price series, for month J. 
� Number of observations in a data set. 
�4·5 Cumulative normal distribution. 
�/x Net-to-gross ratio of a rock formation. 
� Constant volatility, square root of variance of returns. 
�Y Time-dependent volatility. 
�� Standard deviation of jump size in jump diffusion model. 



  xiii

�U Shifting parameter in annual seasoning function. 
�VU Shifting parameter in semi-annual seasoning function. 
�Y Value of a tracking portfolio at time Z. 
�NN Pearson correlation coefficient. 
��� Porosity of a rock formation. 
b Significance level. 
bHI Transition probability from state J to state K. 
�HI Discounted risk-neutral transition probability from state J to state K. 
� Mathematical constant bJ. 
� Risk-neutral/arbitrage-free value of a derivative. 
� Ljung-Box test statistic. 
� Correlation coefficient. 
�]  Required return on debt in WACC. 
�f| Initial production rate of a gas field. 
�fY  Production rate of a gas field at time Z. 
��  Required return on equity in WACC. 
�̂  Risk-free interest rate. 
�z Market return. 
�� Rank in Johansen procedure. 
f_ Coefficient of determination. 
fY Residual at time Z. 
fHY Residual for state J at time Z.  
fIY Residual for state K at time Z. 
f�� Residual sum of squares. 
�H Input variable in an artificial neural network. 
�GZ Saturation level of a rock formation. 
�x Sigmoid function in an artificial neural network. 
�� Average asset price over a certain amount of time. 
�� Price of electricity. 
�� Price of natural gas. 
�Y Price of the underlying asset at time Z. 
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��Y Spark spread at time Z. 
� � � � matrix in Johansen procedure, being the product of oc and o_F . 

�� � � � matrix in Johansen procedure used to remove autocorrelation at lag 
P. 

Z Time point expressed in days, also used as indicator of the value of another 
value at time Z. 

Z4\,]^5 Critical value of t-distribution with significance level b and `a degrees of 
freedom. 

w Maturity date of an option or contract, expressed as the total number of 
time steps. 

wGp Corporate tax rate. 
�Y     Vector containing deterministic parameters in Johansen procedure. 
O�o Volume of a rock formation. 
� Parameter reflecting weighted long-term volatility in GARCH model. 
�Y Wiener process at time Z. 
�H  Weighting variable with indicator J. 
�d Weighting variable for diesel oil price 
�Q Weighting variable for fuel oil price. 
  Prespecified strike price of an option. 
 Y Strike price of an option at time Z. 
p� Average return over a certain amount of time. 
pY Logarithmic return of an asset at time Z. 
p�,Y Logarithmic return of electricity spot price at time Z. 
p�,Y Logarithmic return of gas spot price at time Z. 
pI Payoff occurring only in state K. 
¡H,I Binary variable which has a value of 1 if J ¢ K and 0 if J £ K. 
¤ Output of artificial neural network. 
¥Y     Vector describing � time series. 
¦§ Variable in Hurst test, describing the summed deviation from the mean up to point �. 
¨(pY) Point Z in joint distribution of return pY . 
©HY     Vector in Johansen test. 
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Chapter 1 
 

1. Introduction  
 
 
 
 
 
 
 
 
 
 
 
 
The energy industry is becoming increasingly complex and uncertain. Operators in the industry face more difficult investment decisions, calling for advanced and flexible decision making tools. In this study the application of real option analysis is researched, which structures real world investment decisions in a way similar to financial options. To bring real option analysis into practice, in this study we construct an option model for an investment problem in the field of Gas-to-Wire production. 
We provide a background of the historical, present and future state of the Dutch energy industry. Energy producers have to deal with developments in legislation, markets, technology and resources. The involved uncertainties may present profitable opportunities, but more than ever require quick and adequate re-sponses to changing conditions.  From this perspective, it is interesting to con-sider the role that real option analysis could play in future decision making. The purpose of this study is to increase insight in the role real option analysis could have in the valuation of projects, particularly in the energy industry. We formally state our research goals in a number of research questions. Finally, we explain the methodology we use for this study. 
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1.1. Background 

At the time of writing this thesis, the Dutch energy market was going through a series of impor-
tant developments. As a consequence, exploiters of gas fields in the Netherlands face uncertain-
ties, opportunities and problems not encountered before. Decision making in such an environ-
ment is difficult, requiring support from advanced decision tools. Such a decision tool is real 
option analysis. By modelling real investment problems in an option framework, it explicitly 
addresses managerial flexibility with respect to changing and uncertain market conditions. In 
this study we focus on the application of real option valuation in the energy industry.  
The subsurface of the Netherlands is rich in natural gas. The Groningen gas field is the largest 
field in all of Europe and is in the top ten of largest fields worldwide 4Correljé et al., 20035. Doz-
ens of medium-sized gas fields also contribute to the amount of gas significantly. The Nether-
lands have made heavy use of this natural resource, having met the bulk of energy requirements 
with natural gas for the last decades. The exploitation of gas fields has been a major source of 
income for the Dutch state. Historically the large Groningen gas field helped providing all the 
natural gas demanded in the Netherlands. After decades of production its supply capacity has 
decreased significantly. Soon, the field will no longer be able to cover the gap between demand 
and the supply of other Dutch gas fields. To maintain the balancing function of the Groningen gas 
field as long as possible, the government stimulates the development of other gas fields in the 
Netherlands with protection and fiscal measures. The Groningen gas field holds natural gas 
which contains relatively little hydrocarbons, making it a low-caloric gas. Other Dutch gas fields 
often contain high-caloric gas. The main transport network and many applications are fitted to 
the composition of the Groningen gas, posing difficulties when the percentage of production from other fields increases (Energiekeuze, 2011). Energie Beheer Nederland (financial govern-ment partner participating in all gas field exploits) has the set the goal to produce 30 billion m3 of natural gas from fields other than the Groningen field in 2030, the so-called 30/30 ambition.  
Not only in the Netherlands, but also globally, fossil fuel sources suffer from strong depletion. In particular the mass-scale exploitation of oil has notable effects; we approach the point the de-mand for oil will exceed supply permanently. To be able to still meet energy demand in the fu-ture more sources need to be found. Hydrocarbon resources that were previously unattractive economically (e.g., oil/gas fields at sea and in difficultly accessible formations) are exploited now or will be in the near future, when production of the easier accessible fields is declining. Technological developments as well as market conditions are important for the exploitation of such fields.  
Another major trend is the transition to renewable energy. To stimulate such developments, producers of renewable energy have a preferred position in the energy market; they are stimu-lated fiscally and the energy they sell has priority over conventional energy. However, renew-able energy sources often have an intermittent output. To ensure that demand can be met at all times, natural gas has an important balancing function due to its flexible and fast production opportunities. As such, an increasing share of renewable energy affects the role of natural gas (Roadmap 2050, 2011). European energy markets were previously largely government-controlled, since about a decade ago the European Union has been striving for an integrated and liberalised energy market. The Dutch energy market has been open since 2004, yet competition is still quite underdeveloped. It is uncertain how liberalisation of the energy market will develop and what effects this will have.  
Under these circumstances companies seek innovative methods to develop fields with low eco-nomic attractiveness on the first view, such as marginal or almost depleted fields. A possible 
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manner to exploit such fields is Gas-to-Wire production, which is the generation of electricity 
from natural gas by placing a motor or turbine at the field itself. Laying pipelines and compress-
ing natural gas is then not required. Relatively high investments are required for Gas-to-Wire, 
therefore the profitability of such a project strongly depends on correct responses to uncertain-
ties. In this study, we will assess the application of real option valuation on Gas-to-Wire produc-
tion. 

1.2. Research purposes 

Real option analysis is a valuation technique based on financial option theory, treating real 
world projects as if they were financial assets. It distinguishes itself from traditional techniques 
by explicitly incorporating managerial flexibility during the project and the effect of altering the 
risk profile due to decisions made. The main goal of this study is to increase understanding of 
real option valuation and the possible merits it has regarding the valuation of flexibility com-
pared to those of other decision tools. We perform an extensive literature study to assess the 
different views on real options.  
A central issue in real option theory is the distinction between market and private risk; as op-
tions are valued under the assumption that the risk of price changes in the underlying asset can 
be hedged, in principle only risks that are liquidly traded on the market are eligible for option 
valuation. We address the presence of non-hedgeable 4private5 risk in real projects, and how 
such uncertainties can be treated in a real option structure. Another core aspect we research is 
the adjustment of discount rates to the changing risk profile of a real option. We describe how 
cash flows can be adjusted properly for risk, explaining how risk-neutral valuation can be ap-
plied for this purpose.  
We illustrate the application of real option valuation with a simple real option model applied to 
Gas-to-Wire production, determining the economically optimal point to switch from gas produc-
tion to electricity generation. The construction of this model shows how we can deal with the 
theoretic issues in a practical setting. The main goal of constructing the model is to compare the 
insights it offers compared to traditional decision making tools. We refrain from drawing strong 
conclusions about the real-world attractiveness of Gas-to-Wire; reliable data for this innovative 
production method is limited, and results are strongly influenced by project-specific factors. 
The value of the real option at a given point in time partially depends on the prices of natural gas 
and electricity respectively. We try to increase insight to the nature of the behaviour of these 
price series. Issues that we consider are the theoretical behaviour of the series, diagnostic test-
ing on historical price series, modelling techniques used in commodity pricing and estimating 
the risk-neutral drift. For the option model presented in this study we attempt to create realistic 
price models, without attempting to optimally reflect the observed behaviour. 

1.3. Research questions 

The main goal of the study is to answer in which respects real option analysis can provide addi-
tional value compared to the state-of-the-art decision tools that are applied in practice. We pose 
the main research question here: 

1.3.1. Main question 

How does the insight in the value of flexibility stemming from real option analysis on Gas-to-
Wire production compare to the insight obtained from dynamic decision tree analysis? 
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1.3.2. Sub-questions 

We pose seven sub-questions which together answer the main question. Table 1 provides an overview of the chapters in which these sub-questions are treated. To make the comparison between ROA and DTA, we must first specify what definition of ROA we use. For this, we address two core issues for which no trivial answers are available. Theoretically, private risks are not viable for option pricing; we study several viewpoints on how ROA can deal with such risks (question 1). The other issue is how we can adjust the discount rate towards the changing risk profile of a project (question 2). Answering these two sub-questions lays the groundwork of our real option model. To apply ROA on a Gas-to-Wire scenario, we must work out a structure for the investment problem. Our focus lies on the behaviour of the price series of natural gas and electricity (question 3), and how these characteristics can be modelled. We also consider as-pects on the technical side of production for both regular gas production and Gas-to-Wire (ques-tion 4), but do so in less detail. After identifying the separate processes, we see how we can combine them in a real option model (question 5). We test how the real option model distin-guishes itself by comparing it with a similarly structured decision tree model. We run several scenarios with both models, so that we can compare their results (question 6). Finally, we aim to provide some useful suggestions for further research, which could further increase the insights gained from ROA (question 7).  1) How can we address the presence of private risk in a project in a real option framework? 2) How can we account for the changing risk profile of a flexible project in discounting?  3) How can we model the behaviour of price series for natural gas and electricity? 4) What are the technical characteristics of gas- and Gas-to-Wire production? 5) How can we construct a real option for valuing Gas-to-Wire production? 6) How do the results of real option valuation compare to dynamic decision tree analysis with respect to the value of flexibility? 7) What further research can be performed to increase insight in the application of real op-tion valuation in practical settings? 
Sub-question Chapter Subject 1 Chapter 3 Real option theory    2 Chapter 3 Real option theory    3 Chapter 4  Chapter 5  Chapter 6  Chapter 7  

Introduction to price behaviour of energy commodities Diagnostic testing of historical data Description of modelling techniques Modelling and estimation of price models    4 Chapter 4  Chapter 8  General issues of Gas-to-Wire option Model-specific issues of Gas-to-Wire option    5 Chapter 8  Construction    6 Chapter 9  Chapter 10  Simulation setup and results Conclusions    7 Chapter 11  Suggestions for further research    
Table 1: Overview of the treatment of sub-questions per subject and chapter. 

1.4. Workflow In this section we describe the chronological steps we take in this study. The first step of the project is to increase insight in how the Dutch gas and electricity markets work. This includes a description of the physical production processes, legislation and the main parties involved. As the exploitation of a gas field can take multiple decades, it is important to have an insight in both 
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current and future developments in the energy market. The main information sources we use 
are standard works and internal sources within the Petroleum Geosciences department of TNO, 
complemented with information made publicly available by the main parties in the market. 
A great body of literature on real option analysis exists. Different schools of real option theory 
co-exist, each with their own view on what real options are and how they should be applied. We 
try to distinguish between these approaches and their implications, without attempting to ex-
plicitly compare them. Instead, we deduce the most suitable approach by testing their fits with 
option pricing theory. For this purpose, we pay special attention to the concept of risk-neutral 
valuation in option pricing, replicating portfolios and the distinction between market and pri-
vate risk.  
The behaviour of commodity price series is known to be notably different from that of financial 
stocks. In particular electricity prices follow a unique and complex pattern. We assess literature 
concerning the characteristics of these price series to gain more insight in their behaviour. 
Based on this information, we perform several diagnostic tests to check whether the actual be-
haviour of historical price data is consistent with theory. For each test we provide a theoretical 
introduction. We investigate a number of techniques in price series modelling. These techniques 
are used as building blocks of the eventual price series model. Based on the results of the diag-
nostic tests and the characteristics of the techniques assessed, we build price models for natural 
gas and electricity. We estimate their parameters based on the available price data. 
After assessing the theoretical issues we perform research on the characteristics of a Gas-to-
Wire project in a real option framework. Notable issues that we treat are the uncertainty of the 
reservoir size, physical production constraints and the required investments. We combine the 
price series models and several other components with models on well productivity and reser-
voir size into a real option model. We also build a dynamic decision tree on the same investment 
problem, to compare the performance and differences of both valuation techniques. Afterwards, 
we perform scenario to test for several developments we deem uncertain. The study is com-
pleted with a conclusion and recommendations for further research. These focus on both the 
application of real option analysis in general and the performance and possible improvements of 
the Gas-to-Wire model. 
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Chapter 2 
 

2. Introduction to natural gas and energy in the Netherlands 

 
 
 
 
 
 
 
 
 
 
 
To provide a background on the natural gas industry, we give a brief introduc-
tion in this chapter. First we discuss the physical nature of natural gas and its 
main applications. Then we give an overview of natural gas in the Netherlands, 
describing its importance in a historic, present and future perspective. In par-
ticular, we pay attention to the role of the major Groningen gas field.  Also we 
explain the production process of natural gas, with a focus on exploitation in the 
Netherlands. 
After describing the role of natural gas in the Netherlands in general, we go in 
more detail about the Dutch energy market. We describe the market structure 
for both natural gas and electricity. We pay attention to the transition from a 
national, government-controlled market to an integrated and liberalised Euro-
pean energy market, and the issues that play a role in this transition. Also we 
discuss some important trends, such as the transition to renewable energy and 
the preservation policy of the Groningen gas field. 
We describe the main parties involved in both the natural gas and electricity 
market, linking their roles in flowcharts. In a separate section, we explain what 
Gas-to-Wire production is and the position it has in the energy market. Finally, 
we explain the pricing processes for gas and electricity. We describe how prices 
are established, what characteristics they have and how future developments 
might affect prices. 
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2.1. Properties of natural gas 

Natural gas, as referred to in this study and as found in the Netherlands, is a gas mixture which 
consists mainly of several hydrocarbon gases 4particularly methane5 and some other gases (NaturalGas.org, 2011a). It is a combustible gas mixture; its high energetic value makes it a use-ful energy source. Natural gas can be converted into electricity, but it is also used directly by end-users. Some of its main applications by end-users are heating of buildings, water heating and cooking. Finally, natural gas is also used as a feedstock in the chemical industry. Natural gas is a relatively clean resource, causing less pollution than other fossil fuels (Eurogas, 2007; United States Environmental Protection Agency, 2007). Burning natural gas emits only minor amounts of soot, and releases far less carbon dioxide into the atmosphere than other fossil en-ergy resources. When speaking in the context of energy sources, natural gas is often simply dubbed gas. The terms ‘gas’ and ‘natural gas’ are used interchangeably in this study.  
Natural gas is found beneath the surface, accumulated in porous geological formations which lie under a denser layer of rock (NaturalGas.org, 2011a). To release the gas, a hole must be drilled through this layer of rock, allowing the gas to reach the surface. As the gas is usually under high pressure, it flows up by itself through the well. After being retrieved, the gas is led through a purification process in order to make the mixture feasible for transportation and usage. The composition of natural gas depends on its origin. In Table 2, we show the components usually present in natural gas and compare them to those present in Groningen gas (Van Thillo, 2008). The precise composition determines the energetic value of the gas (NaturalGas.org, 2011a). The Wobbe index relates the relative density of gas to its caloric value, and serves as an indicator for the interchangeability of fuel gases. Natural gas must be processed in such a way it can be of-fered in a certain composition. If the gas mixtures differ too much in quality, this would pose problems for the installations relying on natural gas. In practice this means the gas in a distribu-tion system must always have a Wobbe index within a certain margin.  

Component Percentage  Typical composition Percentage Groningen gas Methane 70-90 % 81.2 % Higher hydrocarbons 0-20 % 3.6 % Carbon dioxide 0-8 % 0.9 % Oxygen 0-0.2 % 0 % Nitrogen 0-5 % 14.3 % Hydrogen sulphide 0-5 % 0 % Rare gases Trace Trace 
Table 2: Typical composition of natural gas and composition of Groningen gas. 

2.2. Natural gas in the Netherlands In 1959, a major gas field was discovered in the province of Groningen (Correljé et al., 2003). As one of the largest gas fields in the world, it had the potential to supply the country with energy for decades. Upon its discovery the Dutch state decided to construct a nationwide gas transport network to make use of this newfound resource (Van Overbeeke, 2001; GasTerra, 2008). Nowa-days most buildings in the Netherlands are heated using natural gas, accounting for 78% of the direct natural gas consumption by Dutch households (Jeeninga, 1997; Energiewereld.nl, 2009). The remaining consumption consists of heating water and cooking. Beside the large direct con-sumption of natural gas, it is also the main source for generating electricity in the Netherlands. According to the Dutch Central Bureau of Statistics (CBS), in 2010 62.3% of the total amount of electricity generated in the Netherlands stemmed from natural gas (Centraal Bureau voor de Statistiek, 2011). In Table 3 the shares of energy sources in electricity generation are provided. 
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For the Dutch government, the exploitation of natural gas has been a major source of income, 
stemming from direct income, profit taxes and royalties on natural gas 4Correljé et al., 20035. 
Aside from the large share natural gas has in electricity generation, natural gas is also of impor-
tance to guarantee a stable electricity output towards end-users 4Tröster et al., 2011). Nuclear plants and coal-fired power stations are inflexible in responding to changes in short-term de-mand. Renewable energy sources are dependent on varying weather conditions such as wind and sunlight, and therefore provide an intermittent output. Furthermore, it is difficult, energy-inefficient and expensive to store an overproduction of electricity (He, 2007). In order to re-spond to changing demand patterns quickly, the generation of electricity from gas is a necessity. Electricity can quickly be generated from natural gas by undergoing a relatively simple process. Storage facilities and the gas transport system itself allow storing large amounts of gas for fast electricity generation when required. 

Source % of Dutch electricity generation 

Natural gas 62.3 % 
Coal 18.5 % Other fossil fuels 3.7 % Nuclear energy 3.4 % Renewable energy 9.4 % Other sources 2.7 % 

Table 3: Percentage of Dutch electricity generation by energy source (CBS, 2010). 

Several chemicals can be made from natural gas, which in turn are used to create products such as plastics, plywood, paints etc. Also natural gas becomes increasingly important as a fuel source for cars. In Table 4 we categorise the worldwide use of methanol, the main raw material pro-duced from natural gas (Wesselingh et al., 1991).  
Source % of methanol application Methanal 36 % Raw material to produce esters 22 % Solvents and diverse products 22 % Acetic acid 11 % Fuel 9 % 

Table 4: Percentage of worldwide applications of methanol (Wesseling et al., 1991). 

With the increasing collaboration between member states of the European Union, the role of the Dutch gas industry has become increasingly important from a European perspective as well. The Dutch gas reserves are the biggest of the European Union. The Netherlands currently export about two-thirds of their produced gas (Centraal Bureau voor de Statistiek, 2012). However, by the time of 2025 the government expects the Netherlands to be a net importer of gas (Rijksoverheid.nl, 2012b). The government plans for the Netherlands to function as ‘gas inter-section’ in the future, using the Dutch transport network and storage capacity to play a central role in importing and exporting gas in the northwest of Europe (Van der Hoeven, 2009a). 
2.3. Natural gas production in the Netherlands The first step in discovering natural gas fields is seismological research. Gas fields in the Nether-lands are usually found between 2000 and 4000 meters beneath the surface (Total E&P, 2012). By generating artificial vibrations and analysing the returning echoes, geophysicists can map the geological structure of a certain area. This is an important input to establish the probability of the presence of a gas field. If a high probability of a substantial volume of natural gas within a 
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certain structure is interpreted, an exploration well must be drilled to prove that gas is actually 
present (NaturalGas.org, 2011b). With an exploration well a more accurate estimate of the res-ervoir’s gas volume and gas quality can be obtained (Gas-Initially-In-Place: GIIP). In case the discovered natural gas reserve can be produced in an economically feasible manner, production wells are drilled on the site. Some processing of the gas is performed directly at the wellhead (NaturalGas.org, 2011c). Water and particulate solids (e.g., sand, salts) are removed on the spot, as these could damage or cloak the pipelines. Sand and other solid particles are removed by using scrubbers. Associated water is removed by a dehydration process. 
After the initial filtering of the retrieved natural gas, it is transported to a production facility by making use of low-pressure pipelines. Often these facilities are located on or nearby the field. In the facility heavier hydrocarbons, such as ethane, propane and butane are condensed in a sepa-rator by changing the temperature and pressure, so that they can be retrieved as individual commodities (NaturalGas.org, 2011c). These separate end-products are called natural gas liq-uids or NGLs (Energy Information Administration, 2006). If hydrogen sulphide, carbon dioxide or other acidic gases are present, they must be removed from the mixture. If sulphides are ob-tained, they can be used for the production of sulphur. Finally, traces of other matters such as helium and mercury should also be separated from the gas mixture. Once the gas has been proc-essed to a mixture with a certain percentage of methane (roughly 80% for the low-caloric net-work and about 90% for the high-caloric network (Hoezoandergas, 2012)) it is compressed, so that it can be transported through the high-pressure transport network (NaturalGas.org, 2011e). The Nederlandse Gasunie requires a pressure of 66 to 80 bar when receiving the gas on their transport network (Gasunie, 2008). Varying the pressure allows to store less or more gas in the network depending on demand. This storage method is called line-packing. More dense regional distribution networks connect the transport network to the end-users. 
The demand for natural gas is significantly higher during winters, because of its application to heating (Aalbers et al., 2007; NaturalGas.org, 2011d). Also within smaller time frames demand patterns can be observed, for example differences between day and night. Produced gas can be stored when there is no immediate demand. The transport network itself provides an amount of storage capacity due to its high pressure. Further, underground reservoirs are used to store gas. In general, more gas than demanded is produced from the primary gas fields in the summer, while in the winter demand exceeds production (Nederlandse Aardolie Maatschappij, 2011). This allows meeting peak demand during cold days when production capacity is insufficient. The pressure of a gas field decreases when it is gradually depleted.  A compressor or injection well may be required to increase the pressure of the produced gas artificially in order to meet the required pressure of the transport network, this results in higher marginal costs (Energeia, 2011). Also the location and size of a gas field determine the costs involved. Each field requires wells to be drilled, the placement of installations and connecting the site to the gas distribution network. Therefore, the amount of gas and the prevailing gas price must be sufficient to make the extraction of gas from a small field economically feasible. Exploiting gas fields on sea re-quires higher investments than on land. The profitable extraction of smaller gas fields is strongly dependent on the technologies available (TNO, 2008). Most gas fields have a lifetime between ten and thirty years. At the end of production, the installations should be dismantled and the environment should be brought back into its original state (Shell, 2006). Safety measures must be taken to ensure that no remaining gas escapes to the surface or to another subsurface forma-tion (Barclay et al., 2002). After inspection and approval of the measures taken the site is re-turned to its original owner. 
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2.4. Characteristics of the Dutch energy market 

The Dutch energy market has quite a complex structure with interaction between the private 
and public domain. Since the Electricity Act (1998) and Gas Act (2000) were introduced in the Netherlands, the energy market shifted from a government-controlled market to a more liberal one (Nederlandse Mededingingsautoriteit, 2012d). This liberalisation was in compliance with European Union guidelines, seeking to reach an open European energy market in the long term. Since 2004 Dutch consumers have been free to decide which energy company provides them with gas and electricity, while the companies can set their own prices (Rijksoverheid.nl, 2012d). Despite attempts to create an open market, several factors give cause for continued government intervention on the market. We briefly describe some of the main factors in this section. 

2.4.1. Importance of energy to society Energy is a driving factor for a nation’s society and economy. It is therefore important that a reliable and stable energy supply exists (Ministerie van Economische Zaken, Landbouw & Inno-vatie, 2011). The governmental policy-makers have to consider multiple factors to guarantee such a supply. There are certain risks involved when importing energy from politically unstable countries, relying on inflexible energy sources, making use of energy sources with unpredictable output and so on. Also some long-term visions would likely not be taken into consideration in a truly liberal market (Correljé et al., 2003). The government therefore retains a central role in the energy market as a policy maker. 
2.4.2. Monopoly positions Though the number of energy companies has increased in recent years, the traditional ones re-tain a powerful position in the market (Europa.eu, 2007; Sia Partners, 2011). Energy companies fall under the supervision of the Dutch competition regulator (Nederlandse Mededinging-sautoriteit or NMa) to prevent abuse of their position and to ensure that the energy market functions properly. For example, the regulator obliges companies to present sufficient informa-tion to end-users (Nederlandse Mededingingsautoriteit, 2012d). Another monopolistic aspect of the energy market is that the same transport- and distribution networks are used for all gas and electricity. It would be unfeasible if every energy company would have to construct its own net-work. As a consequence, the transport- and distribution networks are in the hands of so-called ‘natural monopolists’. These parties are subject to regulation as well.  
2.4.3. Stimulating exploitation of small gas fields Searching for and exploiting gas fields requires large investments, and is always paired with uncertainty of the amount of gas that can be retrieved. To stimulate producers to discover and exploit small gas fields, the government obliges the (partially state-owned) gas trading company GasTerra to buy all natural gas produced for a fair price and under reasonable conditions (Rijksoverheid.nl, 2012c). One of the reasons for this ‘small fields policy’ is to slow down the exploitation of the Groningen gas field. The term ‘small fields’ refers to all gas fields other than the Groningen gas field; the actual field size may be substantial. The policy helps to preserve the function of the Groningen gas field as swing producer and long-term natural gas reserve (Cor-reljé et al., 2003). 
2.4.4. Transition to renewable energy As the reserves of fossil fuels are expected to be depleted during the following decades, other sources of energy must be assessed to meet energy demand in the future. In addition, the Euro-pean Union has set goals to strongly reduce carbon dioxide emissions (Ministerie van Econo-mische Zaken, Landbouw & Innovatie, 2011). For these reasons, a large-scale transition from the current energy sources to renewable energy is planned. The government intervenes to stimulate 
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the development and use of renewable energy sources, enabling them to compete with the 
cheaper fossil fuels. 

2.4.5. Licensing of gas producers 

Producers must obtain a license from the government if they wish to explore a certain area for gas, exploit a gas field or store gas (Rijksoverheid.nl, 2012c). As searching for and exploiting gas fields are activities that may have consequences for the environment and the safety of the nearby-living residents, gas producers are not allowed to do so without formal approval of the Dutch state. For each license application, a study is performed to assess the consequences of proposed activities. 
2.4.6. Licensing of energy companies As energy companies have a responsibility towards society, they are subject to regulation and must obtain a license before entering the market. Some of the requirements an energy company has to meet are financial stability, providing clear information to end-users and offering reason-able payment arrangements before shutting down the energy supply to an end-user (Neder-landse Mededingingsautoriteit, 2012d).  
2.5. Parties in the Dutch energy market 

2.5.1. Gasunie The N.V. Nederlandse Gasunie, often referred to simply as Gasunie, is a state-owned company which possesses and manages the Dutch main gas transport network. Their core tasks are build-ing and maintaining the gas transport network, and the transportation and storage of natural gas (Gasunie.nl, 2012). Tasks related to transporting gas are performed by Gas Transport Ser-vices, a 100% subsidiary company of Gasunie. Gasunie operates two main transport networks, one for high-caloric gas (HC) and one for low-caloric gas (LC) (Correljé et al., 2003; Rijksover-heid.nl, 2012a). The natural gas from the Groningen gas field is LC, other Dutch fields provide HC. LC is delivered to households and exported to other countries, while HC is used by large industrial parties and for generating electricity by energy companies. Gas Transport Services can convert HC to LC by adding nitrogen. Conversion the other way around is merely an admin-istrative swap: LC is not physically turned into HC. Besides owning the Dutch gas transport net-work, Gasunie also (co-)owns several networks in other European countries. In these countries, the activities of Gasunie are subject to the regulations of the respective countries.  
2.5.2. Regional gas transmission system operators There are several regional parties which own and control the gas distribution network in a cer-tain area (Rijksoverheid.nl, 2012a). These regional networks have a high density, require a low gas pressure (some 8 bar), and distribute gas from the main transport network to the end-users. The law obliges these parties to be legally independent from the energy companies (Gaslicht.com, 2011). As some energy companies in the past also owned regional distribution networks, they had to place these networks in hands of independent entities. The Dutch state has a majority share in all these parties. Gas Transport Services charges a transport fee to re-gional gas transmission system operators. As most gas is produced in Groningen, this transport fee depends on the distance from their gas field, hence transportation becomes increasingly more expensive the farther away from Groningen. The transmission system operators recharge this fee to end-users. 
2.5.3. GasTerra GasTerra is a former part of the Nederlandse Gasunie. In 2005, it was split off from the Gasunie, as European guidelines prescribe that the transport and sale of gas should be carried out by 
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separate entities (GasTerra, 2012b). Gasunie retained the task of managing the transport net-work, while GasTerra took over the task to trade in natural gas. While the Gasunie is completely owned by the Dutch state, only half of the shares of GasTerra remained in the hands of the state (10% directly, 40% via Energie Beheer Nederland). The other shares are owned by Royal Dutch Shell (25%) and ExxonMobil (25%) (GasTerra, 2012a). GasTerra buys natural gas directly from the producers, consequently selling it to energy companies, industrial users or exporting it to other countries. They are obliged by law (specifically, Article 54 of the 2000 Gas Act) to procure gas from small field producers against a reasonable price (Van der Hoeven, 2009b; Energie Be-heer Nederland, 2012b). GasTerra has had a fixed annual profit of 36 million euros for years; they correct their contractual prices at the end of the year to obtain this profit (GasTerra, 2009). 
2.5.4. Other gas traders 

In addition to GasTerra, several other gas traders 4shippers5 are active in the Netherlands. 
These traders only entered the market recently as a result of the liberalisation; GasTerra is still 
the major gas trader in the Netherlands 4Van der Hoeven, 2010). Unlike GasTerra, other traders have no obligation to procure gas obtained from small fields. All traders must obtain a license before being allowed to trade in natural gas.  

2.5.5. Nederlandse Aardolie Maatschappij The Nederlandse Aardolie Maatschappij (NAM) is the largest producer of natural gas in the Netherlands, producing about 75% of Dutch gas (Nederlandse Aardolie Maatschappij, 2012). The company is owned by Shell (50%) and ExxonMobil (50%). NAM is the single exploiter of the Groningen gas field (in partnership with EBN), and as such operates the largest natural gas re-serve of the Netherlands. Half of the gas they produce stems from the Groningen gas field, 25% comes from smaller fields in the Netherlands, and 25% is produced from fields in the North Sea.  
2.5.6. Other E&P-operators Besides NAM, there are several other parties active in the discovery and exploitation of gas fields in the Netherlands. Such parties are called Exploration & Production-operators (E&P-operators or simply operators). As the Groningen gas field is exploited solely by NAM, the re-maining operators are active on other Dutch gas fields lying both on- and offshore. 
2.5.7. Energie Beheer Nederland Energie Beheer Nederland B.V. (EBN) is a company owned by the Dutch state, functioning as a partner in the discovery and exploitation of natural gas. EBN is not involved in these activities as an operator, but rather as a financial partner. EBN also facilitates Dutch E&P-operators with its expertise and knowledge (Energie Beheer Nederland, 2012a). When an operator obtains a li-cence allowing it to explore for natural gas in a certain area, by law it can request EBN to par-ticipate in the exploration process (Energie Beheer Nederland, 2012b). In this case, EBN will obtain a 40% share in the participation, aiding the operator in the searching process. They are subject to the same risk-and-reward profile as the operator. By splitting the costs, the producer has a lower financial threshold for starting the exploration process. After an operator has ac-quired a production license, EBN usually participates on a 40% basis as well. Unlike the explora-tion process, the operator has no say in this; only the government can decide to withhold EBN from participation (Energie Beheer Nederland, 2012b). The operator and EBN again are subject to the same risk-and-reward profiles. In case EBN did not participate in the exploration process, 40% of the costs for this process will be reimbursed. Besides their participation in a large num-ber of producing gas fields, EBN has an advisory role towards the policy makers of the govern-ment as well.  Further EBN owns a 40% share in GasTerra, and therefore has an influence in the trade of natural gas.  
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2.5.8. Energy companies Energy companies sell gas and/or electricity to end-users. The companies purchase natural gas from gas traders, electricity is bought from an intermediate trading party (Programme Respon-sibility Party), which is often owned by the energy company itself (Antwoordvoorbedrijven.nl, 2012). Energy companies operating in the Netherlands fall under the regulation of the NMa, but are free to set their own consumer prices. In recent years, new energy companies have entered the market, increasing the competition in the energy market. Most energy companies own in-stallations to generate electricity, but electricity can be procured from other producers or from abroad as well. When an energy company sells renewable energy without owning installations to produce it, they must purchase certificates representing a share in renewable energy produc-tion. The multiple roles of energy companies make it ambiguous which role is referred to when speaking of an energy company. Therefore, in this study we only use the term ‘energy company’ when referring to its role as supplier of gas and electricity to end-users connected to the distri-bution network, such as households and small industrial users. For its other roles, we use the terms ‘electricity producer’ and ‘Programme Responsibility Partner’ (trader) respectively. 
2.5.9. TenneT TenneT TSO B.V. (hereafter TenneT) manages the Dutch high-voltage network (TenneT, 2008).  It can be seen as the counterpart of Gasunie responsible for the electricity transport network, operating in a highly similar structure. TenneT is completely owned by the Dutch state (TenneT, 2012). It is responsible for the safe and effective transportation of electricity throughout the Netherlands.  
2.5.10. Regional electricity transmission system operators Low-voltage regional distribution networks are connected with the high-voltage network of TenneT, allowing the distribution of electricity to households and other end-users. These re-gional networks are owned and managed by several parties. The Dutch state has a majority share in all transmission system operators. Energy companies are no longer allowed to own a regional distribution network. The transportation costs recharged to end-users are the same for all regions in the Netherlands (Gaslicht.com, 2011). 
2.5.11. Electricity producers Electricity can be produced from several sources, all requiring a specific installation. In many cases, these installations are owned or partially owned by energy companies, but independent producers exist as well. A legal distinction is made between regular electricity and renewable electricity. When energy companies sell renewable electricity to consumers, they do not neces-sarily own such installations themselves. However, they need to purchase certificates from a producer of renewable energy, to prove that the electricity sold stems from a renewable energy source (Wetten.overheid.nl, 2012). 
2.5.12. Programme Responsibility Parties In the Dutch energy market, electricity is traded by an intermediate party between producers and energy companies, named a Programme Responsibility Party or PRP (TenneT, 2011). These parties make transactions for the supply of electricity. By reporting these transactions to Ten-neT on a daily basis, TenneT can measure and settle the difference between the actual and the transacted amount of electricity. PRPs must obtain a license from TenneT in order to be active as a trader. There are two types of PRPs: parties that are only allowed to trade, and parties that are responsible for the connections with the distribution network as well. Most energy companies have their own PRP to purchase electricity (Antwoordvoorbedrijven.nl, 2012).   
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2.5.13. Nederlandse Mededingingsautoriteit Energiekamer 

The Nederlandse Mededingingsautoriteit, abbreviated to NMa, is the Dutch competition regula-
tor. Its ‘Energiekamer’ 4Energy department5 is the department of NMa responsible for the regu-
lation of the Dutch energy market (Nederlandse Mededingingsautoriteit, 2012a). Its tasks are described in the Electricity Act and Gas Act. Among its core tasks are the licensing of parties active in the energy market, setting tariffs, evaluating the effectiveness of the transport and dis-tribution networks, and monitoring the developments in the energy market (Nederlandse Mededingingsautoriteit, 2012c). The NMa Energiekamer has an influence on all parties involved in the energy market, from the initial discovery processes to the final supply of electricity and gas to end-users. The goals of the regulator are to protect consumers, stimulate an open energy market and ensure that government policies are carried out. 

2.6. Value chain of the Dutch energy market Having described the main parties involved in the Dutch energy market in the previous section, a brief overview will be provided of how these parties are linked together. In Figure 1 we pro-vide an overview of the Dutch gas market. About 75% of Dutch natural gas is produced by the NAM and 25% by other operators. EBN has a stake in virtually all gas exploitations. Produced gas can be sold to GasTerra or other gas traders; recall that GasTerra is obliged to purchase gas from small fields against a fair price. Natural gas is delivered to one of the two main transport networks (owned and managed by Gasunie) under high pressure: one with high-caloric gas, one with low-caloric gas. These transport networks also allow for storage. From the main transport network, LC is distributed further to end-users by means of low-pressure regional distribution systems, owned and controlled by regional operators. Natural gas consumed by end-users is traded via energy companies. LC is also exported to other countries directly via the high-pressure network. HC can be sold to energy producers, who subsequently generate electricity from the gas. Also HC can be directly delivered to large industrial users. The HC transport net-work allows for export to other countries as well. 
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Figure 1: Value chain of the Dutch natural gas market. 

In Figure 2 we provide an overview of the Dutch electricity market. The structure of the Dutch 
electricity market is quite similar to that of the gas market. A major difference however is the 
absence of storage facilities, so that a constant balance between all parties must be established. 
As a consequence, the actual behaviour of gas and electricity markets is quite different, despite 
their comparable market structures. Electricity is produced from several sources, with a rele-
vant distinction made between renewable and non-renewable sources. Programme Responsibil-
ity Parties buy the produced electricity on a daily basis, consequently selling it to energy compa-
nies, industrial users or other countries. TenneT is responsible for the transportation of electric-
ity over the high-voltage network, after which regional operators transfer it to end-users using a 
denser low-voltage network. 
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Figure 2: Value chain of the Dutch electricity market. 

2.7. Gas-to-Wire 

Gas-to-Wire is a term used to describe the process of generating electricity from natural gas at 
or close to the source 4Thomas & Dawe, 20035. This is considered a different production method 
than the generation of electricity from gas at a centralized power plant. Gas-to-Wire places a gas 
motor or a gas turbine close to the gas field, allowing to convert gas into electricity directly. 
Generally the more efficient but heavier gas motors are placed on land, while the less efficient 
gas turbines are used at sea because of their lower weight which needs a lighter supporting 
structure. From here on, a gas motor or –turbine will be referred to as ‘generator’. 
Gas-to-Wire is a potential alternative to regular gas production for exploiting smaller fields in 
particular, which may not be worth the investments required to connect to the main gas trans-
port network 4Van den Berg, 2011; ABTechnology, 2012). Correljé et al. (2003) claim that the economic feasibility of exploiting a minor gas field is often dependent on the distance to the transport network. It might be possible to exploit a marginal gas field which is not economically feasible with regular exploitation (called ‘virgin fields’), or a gas field which is an advanced stage of depletion (also called a ‘tail-end field’). The electricity generated can be sold to energy com-panies, but also be used to power facilities close by, for example an installation at sea. 
The short distance between the gas field and motor or turbine does not allow for storing large amounts of gas, therefore managing the gas supply to the generator is one of the difficult fea-tures of Gas-to-Wire production (Van den Berg, 2011). The generator is able to produce electric-ity in a flexible manner and is able to deal with monotone changes in gas supply on short notice. However, technical problems occur when disturbing pulses such as impurities in the gas are present in the gas supply.  
According to Thomas & Dawe (2003), installing a pipeline connecting to the gas transport net-work and a wiring connecting to the electricity grid are almost equally expensive when the dis-tance is the same. It is therefore important to consider the nearest distance to the main electric-
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ity network and the main gas network when determining whether Gas-to-Wire is more profit-
able than regular gas production.  

2.8. Energy trading in the Dutch energy market 

2.8.1. Gas trading 

When natural gas consumption in the Netherlands started, the price of natural gas was indexed 
to the oil price or that of oil-based products. The reason for this is that gas could be priced just 
below the price of oil equivalents, thereby stimulating the use of natural gas. This relationship 
still exists, however not as directly. The spot market for gas has become increasingly important 
since the liberalisation of the market 4Clingendael International Energy Programme, 2008; Lewis, 2010), also pricing formulas referring to oil prices allow for deviation of the gas price. When active on the spot market, an operator can halt production or store gas while waiting for a favourable moment to sell. 
The Title Transfer Facility (TTF) is a virtual trading hub for natural gas in the Netherlands, which was established by the Gasunie in 2002. The TTF is facilitated by the Dutch energy ex-change APX-ENDEX, with APX responsible for short-term contracts and ENDEX for long-term contracts (Vlam & Custers, 2010). Prices on the TTF are determined by supply and demand (Gas Transport Services, 2012). Several contract lengths are available on the TTF, for example a day ahead, a month ahead, a quarter ahead and a year ahead. The total volume of gas present in the GTS transport network at a certain moment can be traded as many times as wanted, therefore the amount of gas traded at the TTF normally exceeds the physical volume by a factor called the ‘churn factor’. With a churn factor of 3.66 in 2007, the TTF was considered a moderately liquid market (European Energy Regulators, 2007). 
As largest trader in natural gas, GasTerra offers varying types of contracts next to the TTF. These contracts have prices indexed to crude oil or oil products, coupled to weights which determine the influence of these prices on the gas price (von Bannisseht, 2008b; GasTerra, 2012c). These formulas are notated in the form [number of months over which the average price is taken – number of months between averaging period and contract period – number of months for which the average price is valid]. The structure of a 6-2-6 contract is illustrated in Figure 3. 

Averaging period

(calculate average price)

Delay 

period

Contract period

(average price valid)

6 months 6 months2 months  
Figure 3: Structure of a 6-2-6 oil-indexed gas contract. 

The pricing formula applied can be valid for one or multiple years. GasTerra also offers the pos-sibility of fixed prices for the duration of a year, gas contracts based on the TTF price, and in some cases specific price arrangements. For large users, two oil-based price formulas can be used; the 3-0-3 and the 6-0-3 method. These contracts set a price for three months, based on the average fuel oil and diesel oil prices for the past three and six months respectively. The weight-ing variables for these prices can be adjusted by GasTerra. The following formula is applied: 
 �� ¢ X h �Q L Qe h �d L de (2.1) 

with 
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��  as the gas price 
X  as a fixed component 
de  as the average diesel oil price  
Qe  as the average fuel oil price 
�d  as the weighting variable for diesel oil  
�Q  as the weighting variable for fuel oil 

 
For suppliers to small users, the 6-2-6 method is applied. With this method the average fuel oil 
price over six months is taken, and set as contract price for the next six months with a delay of 
two months. The regional charge includes a fee which comprises the majority of the price. The 
following formula is used (Kofman & Ophuis, 2012): 

 �� ¢ 22.3
500 L Qe h fiºJ��Go XPG�ºi (2.2) 

with 
Qe  as the average fuel oil price 

According to Aalten (2010), the constant and the weighting variables in the formulas GasTerra 
applies to determine prices are modified in such a way that they coincide almost perfectly with 
the TTF prices. This observation is in line with GasTerra’s intention to abandon the direct price 
link to oil (Yamoah, 2007; Von Bannisseht, 2008a). The rationale behind this intention is that, 
since the liberalisation of the energy market, GasTerra cannot allow its prices to deviate much 
from the gas prices established at the exchange (Lomme, 2008). This would result in arbitrage 
opportunities and disturb the market.  

2.8.2. Electricity trading 

Electricity cannot be stored easily after it has been generated. When electricity is generated and 
cannot be used right away, it can be converted to another type of energy, allowing to regenerate 
electricity when required. Examples of this are storing electricity in a battery, or pumping water 
into a reservoir. Such conversions come at a cost, while a significant amount of energy is lost 
during the process as well 4Evans & Guthrie, 20075. Therefore the industry continuously seeks 
to match supply to the energy demand as well as possible 4Escribano et al., 20025. The demand 
pattern for electricity is highly variable. Electricity prices on the spot market are set by the hour, 
or even on shorter time intervals. Electricity is traded on the Dutch energy exchange APX-
ENDEX, comprising both spot contracts and future contracts. The spot market includes day-
ahead contracts, agreeing to physically deliver electricity the next day against the specified 
price. Spot prices are set via a bidding procedure that involves minimum and maximum prices 
set by APX-ENDEX 4Verkuyl et al., 20055. A significant amount of electricity trading takes place 
outside the APX-ENDEX as well. The German energy exchange EEX, as the leading energy ex-
change in Central Europe, also plays a role of note in the Netherlands. The Netherlands are a net 
importer of electricity, with the shortage of Dutch production often covered via EEX import 
4Armstrong et al., 20045. Furthermore, there is a specific balancing market for correcting short-
term misbalances in electricity supply. 
The variance of APX returns has shown a decreasing trend over the past years. Also large price 
jumps have occurred less. A possible explanation for this trend is the liberalisation and interna-
tional integration of the energy market, allowing to strike a better balance between supply and 
demand 4A. Huygen, personal communication, 30 March 2012). Another recent development is the ability to influence demand to some degree, enabling a better balance as well. At the same 
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time, there are also reasons to believe that variance will increase in the future. The increasing 
share of renewable energy makes the electricity production less predictable, the resulting im-
balances could have a strengthening effect on variance in returns.  
We can make a distinction between base-load and peak-load power plants 4Cordaro & New York 
Affordable Reliable Electricity Alliance, 20085. Base-load power plants generate electricity at a 
constant rate. When chosen rationally, base-load power plants are able to generate electricity at 
the lowest marginal costs. Physical constraints play a role as well; not all power plants are able 
to adapt their output in a flexible and/or efficient way. Energy companies are contractually 
bound to meet customer demand. When base-load production falls short to meet demand, peak-
load plants are therefore activated to fill the gap between supply and demand (He, 2007). The 
amount of time a peak-load plant is running can vary strongly (depending on their marginal 
costs and flexibility), from producing on a daily basis to only several hours a year. When demand 
increases prices rise, which can render power plants with higher marginal costs economically 
feasible. However, meeting demand has priority over maximising marginal profit from peak-
plant production. When production is unprofitable, only the demanded output is provided. 
When production is profitable, the plant could produce at maximum capacity and sell the excess 
production on the spot market.  
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Chapter 3 
 

3. Real option theory 

 
 
 
 
 
 
 
 
 
 
The previous chapter provided a background regarding the state of the Dutch 
energy market. It is now time to introduce the concepts of real option theory. 
Chapter 3 starts with an overview of traditional valuation methods. We point out 
which shortcomings these methods have, and how real options address them. 
The rationale behind real option analysis is illustrated by explaining how the 
famous Black-Scholes option pricing model can be applied to real world projects. 
We relax the strict assumptions of this model later on.  
As option pricing theory relies on risk-neutral valuation, we provide an explana-
tion of this concept. Option pricing theory only applies to liquidly traded finan-
cial instruments. Therefore it should be possible to construct a replicating port-
folio of financial instruments equivalent to the value and risk profile of the real 
project. We describe several approaches on this subject. Due to the inability to 
hedge against non-traded risks, real option theory distinguishes between private 
and market risk. We dedicate a section on how different types of uncertainty can 
be dealt with. 
Finally we treat various issues in real option pricing, especially where it differs 
from standard financial options. Volatility is noted to be particularly hard to es-
timate in real options when having multiple sources of uncertainty. Co-
dependencies may exist in the investment problem, notably between the size of 
the project and the investments required. Other issues considered are the effect 
of competition, the absence of a fixed maturity date, and suboptimal decision 
making.  
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3.1. Traditional valuation methods 

A large number of valuation methods exists to quantify the attractiveness of investments. In this 
section we will discuss the main valuation methods and their properties briefly, to allow for 
comparison with the real option methodology explained later in this chapter. Drury 420085 
identifies four valuation methods widely applied in practice, namely the Accounting Rate of Re-
turn, the payback method, the discounted cash flow analysis, and the Internal Rate of Return.  
The Accounting Rate of Return 4ARR5 divides the estimated annual profit by the average in-
vestment 4the initial investment minus final salvage value5, thereby obtaining the expected re-
turn of the project. The payback method calculates the time required to earn back an initial in-
vestment. The most commonly used valuation methods are based on discounted cash flow 4DCF5 
techniques. Using such methods, the cash flows during the lifetime of the project are identified 
and consequently discounted at a rate reflecting both the time value of money and the riskiness 
of the project. Net present value 4NPV5 or traditional DCF analysis assumes that future cash 
flows are deterministic, as soon as the production decision is made. To reflect both the time 
value and the riskiness of the project, a constant discount rate is applied to future cash flows. 
Usually the Weighted Average Cost of Capital 4WACC5 of the firm is used as discount rate. The 
discounted sum of cash flows is the present value of the project. If this value is bigger than 0, 
then it is a signal to accept the project. The Internal Rate of Return 4IRR5 applies discounting on 
the cash flows, seeking the discount rate which sets the discounted benefits equal to the re-
quired investment.  Stated otherwise, it provides the maximum discount rate which provides a 
nonnegative project value. Often both NPV and IRR are applied to obtain both a realistic value of 
the project and an upper bound discount rate. 
The traditional valuation methods have some important shortcomings. The ARR and the pay-
back method do not take into account the time value of money and the riskiness of the project, 
yet these properties are important to investors. The payback method also does not provide an 
expected return, making it unsuitable as a standalone tool to base investment decisions on. A 
flaw in IRR is that multiple solutions are available when positive and negative cash flows alter-
nate, with only one solution being economically relevant. Traditional DCF assumes that deci-
sions are irreversible, with new information getting available at a later time not altering the cash 
flows or intermediate decisions made. This is often not realistic. For example, when no gas is 
discovered in a certain area, it would make no sense to build a production facility. Yet such deci-
sions can be made in traditional DCF 4Prasanna Venkatesan, 20055, making this method unfit for 
projects with embedded flexibilities.  
Compared to the traditional methods discussed before, a more realistic approach is 4static5 De-
cision Tree Analysis 4DTA5. Project options are defined at decision nodes to allow managerial 
flexibility, while other nodes reflect uncertain events with certain probabilities assigned. Future 
cash flows are discounted, so DTA can be seen as an enhanced version of DCF 4Piesse et al., 
20045. A flaw in this approach is that the decisions made over time alter the risk profile of the 
project, which conflicts with applying a single risk-adjusted discount rate used to calculate the 
present value 4Brandão et al., 20055. For example, the learning phase of a project could be less 
risky than the production phase. Investors will expect to receive compensation in line with the 
degree of risk they are exposed to. Section 3.2 goes in more detail about the issue of discounting. 
In advanced applications of valuation methods, often a combination of DTA, Monte Carlo simula-
tion and decision optimisation algorithms is applied (Smith & McCardle, 1999). The decision 
tree serves as an input of state variables for the simulation, allowing to model both decisions 
and uncertain events. Using these state variables, at each endpoint in the tree simulation can be 
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performed, with uncertainties being modelled stochastically. Algorithms can be used on the 
simulated paths to optimise the production decisions made given the information available at 
that time. A constant discount rate is applied to all cash flows; usually sensitivity analysis is per-
formed to assess the effect of altering the discount rate. In this study we refer to such an ap-
proach as dynamic DTA. Some authors adopt a broad view on real options, which is discussed in 
Section 3.3. They state that the inclusion of managerial flexibility is sufficient to regard a valua-
tion method as real option valuation, meaning that the description above could also be viewed 
as a real option approach (Dias, 2012a). Others strictly consider a real option as an application 
of classic option pricing. Table 5 provides a brief summary of the valuation methods discussed in 
this section. 

Method Calculation Shortcomings 

Accounting Rate of Return 
4ARR5 

Average annual profit divided 
by average investment. 

Does not value time, risk and 
investment size. 

Payback method Time required to earn back 
initial investment. 

Does not value time, risk and 
investment size, provides no 
expected return. 

Discounted Cash Flow 
(DCF)/ Net Present Value 
(NPV) 

Project cash flows discounted 
with a rate reflecting both 
time value and risk. 

Does not incorporate the 
flexibility to respond to new 
information. 

Internal Rate of Return 
(IRR) 

Maximum discount rate which 
provides a nonnegative re-
turn. 

Does not incorporate the 
flexibility to respond to new 
information, provides no 
expected return.  

Decision Tree Analysis 
(DTA) 

Extension of DCF incorporat-
ing decisions and/or uncer-
tainties.  

Does not adjust the discount 
rate when the risk profile of 
the project changes. 

Table 5: Summary of traditional decision tools and their main shortcomings. 

3.2. Discount rate 

The DCF and DTA methods require the estimation of a discount rate. This factor has a great im-
pact on the NPV of a long-term project. In this section we address the theoretical background of 
discount rates, which is useful both to point out the theoretical flaw in DTA and its implications 
for risk adjustment. A discount rate should incorporate both the time value of money and com-
pensation for uncertainty of future cash flows (Robichek & Myers, 1966). Unfortunately, it is 
difficult to obtain a discount rate which is able to accurately reflect all the risks the project is 
subject to (Mun, 2002). To mention some, a project’s value can be influenced by inflation, the 
size of the company, credit risk, country risk, shareholder decisions, etc. Many random events 
can occur during the lifetime of a project, making it hard to derive a proper discount rate ana-
lytically. The most commonly used discount rate is the Weighted Average Cost of Capital 
(WACC). This is the average cost of capital for the company. In its basic form the WACC assumes 
that a company is funded with one source of equity and one source of debt, both demanding a 
single constant return. In practice companies can raise money from multiple sources with dif-
ferent expected returns (e.g., preferred stocks, warrants etc.), making the calculation of WACC 
more expansive. Note that interest costs are deducted from corporate profits, hence the inclu-
sion of corporate tax in the equation. 
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 �MNN ¢ ½ j
j h d L ��¾ h ½ d

j h d L �]¾ L 41 ¿ wGp5 43.15 

with 

j  as the market value of equity 

d  as the market value of debt 

��  as the cost of equity 

�]  as the cost of debt 

wGp  as the corporate tax rate 

 

A company must at least earn the WACC to satisfy owners, stock holders and creditors. If a com-

pany fails to do so, rational investors would not be willing to invest. Hence, a project discounted 

at the WACC should at least have an NPV of 0 in order to be attractive to the capital providers. 

However, the project may have a different risk profile than the company as a whole, meaning 

that investors would require a different return (Mun, 2002; Smith, 20055. Even if the project is 

not funded separately, the project will alter the overall risk profile of the company. By estimat-

ing the correlation of the project with market risk, the discount rate can be adjusted better to a 

specific project (Constantinides, 1978; Magni, 20095.  

 

To calculate the cost of equity models such as the Capital Asset Pricing Model (CAPM5 are ap-

plied. We explain the CAPM in this section for its general applicability and minimal data re-

quirement. Note that the CAPM is not necessarily the most accurate model to estimate the return 

required by equity holders. Other models, such as the three-factor model by Fama & French 

(19925, take into account more factors which influence return. Empirical evidence shows that 

such models provide more explanatory power on returns of diversified portfolios (Mun, 20025. 

The CAPM states that the expected return of an asset is equal to the risk-free rate plus a market 

risk premium depending on the relationship between the volatility of the asset’s return and that 

of the market return (Sharpe, 1964; Merton, 1973b5. The underlying reasoning of the model is 

that investors only care about the systemic risk (related to the movements of the market as a 

whole5 of the asset, as all other risks can be diversified away. Diversification means that non-

systemic risks are offset by holding many uncorrelated assets in a portfolio. The expected return 

under the CAPM is denoted as 

 

 �� ¢ �̂ h W(j(�z5 ¿ �̂ 5 (3.25 

with     

��      as the cost of equity 

�z  as the market return 

�̂   as the risk-free interest rate 

W  as the correlation between variances of the asset return and market return 

 

In mathematical form, the beta is described as W ¢ X�n(p, �z5/nG�(�z5 . It can be viewed as a 

number describing the volatility of the asset relative to the volatility of the market. In other 

words, the beta is a measure for part of the asset’s riskiness that cannot be removed through 

diversification. The risk premium for the asset is given by the term W(j(�z5 ¿ �̂ 5. 

 

Ang & Liu (20045 state that an appropriate discount rate for a project depends on the market 

return, the risk-free rate and the beta of the project. In contrast to the CAPM assumptions, these 

are all variable over time in reality. By incorporating stochastic forecasting models on these 

factors, we could obtain a more accurate present value (Geltner & Mei, 1995; Schulmerich, 
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20105. For traditional DCF, the use of a constant discount rate is often rationalised by assuming 

that the portfolio investment opportunity and the systemic risk exposure (i.e., the beta5 remain 

constant over time (Merton, 1973b; Fama & Schwert, 19975. For decision trees and real options 

these assumptions are less valid, as embedded flexibilities changes the nature of risk (Trigeor-

gis, 19965. 

 

As calculating a discount rate which accurately captures the uncertainties related to a specific 

project can be difficult, an alternative often used is to adopt a discount rate known to be applied 

to a similar project or a set of similar ones. Also management can subjectively set an internal 

hurdle rate, representing a minimal return required on a project in order to be accepted (Ruth-

erford, 20015. Determining the discount rate in such a way ignores the preferences of the mar-

ket, making the subjective approach flawed from a theoretical perspective. 

Summary of discounting in project valuation 

� In project valuation, future cash flows are discounted at a rate reflecting both time 
preference and uncertainties. 

� The most common discount rate used is the WACC, which is used as a measure for the 
minimum return required by investors.  

� The return required by shareholders is often calculated with the CAPM or a compara-
ble model. 

3.3. Introduction to real option analysis 

Real option analysis 4ROA5 is a method to value real world projects by modelling decisions in an 
option framework. Its application is based on the option theory used to value options on finan-
cial assets 4Luenberger, 1998). In finance, a standard option is the right, but not the obligation, 
to buy (call option) or sell (put option) an asset at a predefined strike price. This allows the 
holder of the option to defer the investment decision up to a certain date, waiting for new mar-
ket information (i.e., the asset price) to arrive. A rational holder of an option will only exercise 
the option if the asset price exceeds the predefined strike price at the decision point. In real op-
tions, the term ‘asset’ should be viewed in a broad sense. It is the value of the project, should it 
be undertaken. If the option is not exercised before maturity, the investor loses the cost of the 
option itself. ‘Classic’ ROA uses an approach similar to that of financial options. When the under-
lying risk of a project behaves as if it is traded, we can apply option pricing theory on real in-
vestment decisions. Two conditions required to apply the theory are that the uncertainty associ-
ated with the project is market risk (we will treat different sources of uncertainty later on) and 
that the decision maker has the managerial flexibility to make investment decisions based on 
new information. As such, a real option explicitly incorporates managerial flexibility. 
Real options address several aspects that are ignored in traditional decision making tools (Tri-
antis & Borison, 2001; Van de Putte, 20035. A real option values flexibility because it includes 
the possibility to alter the course of the project at the decision points in order to maximise profit 
or minimise losses given the information available at that time 4Copeland & Keenan, 1988; Mun, 
2002; Brandão et al., 20055. More specifically, a project is only undertaken if the NPV exceeds 0. 
Another distinction is that it adjusts the discount rate to the risk profile, which differs for the 
decision paths in a project with flexibility. Note that decision trees are able to model flexibility as 
well, but do not adjust the corresponding discount rates. 
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We will illustrate the analogy between financial options and real options by the Black-Scholes 
option pricing model, which is an application of risk-neutral pricing under strict assumptions (Black & Scholes, 1973). Despite the similarities, it should be noted the Black-Scholes formula is based on assumptions fitting financial options better than real options. Merton (1998), one of the founders of option pricing theory, warned against the application of option theory to real world problems. He stressed to consider the limitations of the model, and keep in mind what purpose it serves. The main limitations and assumptions of classic real option pricing will be assessed in detail later in this chapter, along with different approaches to deal with them. The Black-Scholes formula can be used to obtain the value of a European call or put option. The ma-jor assumptions of the Black-Scholes model are the following. 

� No arbitrage opportunities exist. 
� Cash can be borrowed and lent at a constant risk-free interest rate. 
� Buying and short-selling of the underlying asset is unrestricted. 
� No transaction costs exist. 
� The underlying asset’s price follows a lognormal distribution. 
� The underlying asset does not pay dividends. 

Under these assumptions we can create a hedged position, so that the value of the portfolio does not depend on the price of the underlying asset. We do this by constructing a portfolio consisting of the option, the underlying and cash (including negative amounts due to short-selling), so that price changes of the asset are offset by the other instruments. It is then possible to apply risk-neutral valuation.  
Translated to real options, a call option is the possibility to undertake a project; a put option is the possibility to abandon it. The formulas below are modified versions of the original Black-Scholes formula for the value of call and put options at time Z, including the effect of continuous dividend payments as well. 

 XGoo ¢ �YiÀÁ(vÀY)�(`c) ¿  iÀÂÃ(vÀY)�(`_) (3.3) 
 bÄZ ¢  iÀÂÃ(vÀY)�(¿`_) ¿ �YiÀÁ(vÀY)�(¿`c) (3.4) 

with 
�(·)  as the cumulative distribution function of a standard normal distribution, having

  an average of 0 and a standard deviation of 1 , 

`c ¢
o� Å�Y  Æ h (�̂ ¿ � h 0.5�_)(w ¿ Z)

�√w ¿ Z  , 

`_ ¢
o� Å�Y  Æ h (�̂ ¿ � ¿ 0.5�_)(w ¿ Z)

�√w ¿ Z  . 

The meanings of the symbols in both financial and real options are provided in Table 6 (Leslie & 
Michaels, 1997). 
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Symbol In financial options In real options 

  Strike price Present value of required expendi-
tures to exercise the option 

�Y Stock price Present value of expected net cash 
flows at Z 

Z Current time Current time 

w Time to expiry Time that decision is deferred 

� Volatility of stock price Volatility of present value of expected 
cash flows 

�̂  Risk-free interest rate Risk-free interest rate 

� Fixed cash dividends Costs to preserve the option 

Table 6: Legend of symbols of Black-Scholes model in financial and real options. 

In real options �Y represents the present value at time Z of the expected net cash flows, should 
the option be exercised. The strike price   describes the present value of the expenditures re-
quired to exercise the option 4Carlsson & Fullér, 20035. These costs are only incurred when the 
option is actually exercised, such as the costs to acquire an asset 4call option5 or to abandon a 
project 4put option5. The volatility � is defined as the square root of the variance of the project 
returns, based on the free cash flows. Returns are assumed to follow a Geometric Brownian Mo-
tion 4i.e., normally distributed and unrelated over time, standard deviation remains constant5. 
The option value increases with volatility. This is because an option holder profits from favour-
able movements of the value of the underlying, while downside risk is limited to losing the op-
tion value.  
In line with option pricing theory, cash flows in ROA are discounted using the risk-free interest 
rate �̂ . This is the 4theoretical5 return required when an investment has no possibility of de-
fault. Before discounting, we apply risk-neutral probabilities to calculate the expected cash 
flows. Several issues in real options make the application of risk-neutral valuation less natural 
than for financial options. Generally project-specific risks cannot be hedged; higher risk calls for 
a higher discount rate. Also companies, unlike financial institutes, are generally unable to bor-
row at or near the risk-free rate.  
For real options, ‘dividends’ � represent the costs to preserve the option, or the money draining 
away during the lifetime of the option (Leslie & Michaels, 1997). Examples are payments to pre-
serve production rights and money lost through competition. In practice, it is difficult to forecast 
and estimate the leakage of cash over the length of the option. Also these losses are generally not 
constant over time (Trigeorgis, 1996). Many real option practitioners therefore act as if no divi-
dend payments exist (Bodén & Åhlén, 2007). 
Flexibilities embedded in a project are usually not captured by a simple European call or put 
option. The project might comprise exercise- and abandonment decisions at different time 
points, multiple investment opportunities, strike prices variable over time, time-varying volatil-
ity, etc. (Trigeorgis, 1993a; Mun, 2002). Consequently, no analytical solutions can be found fre-quently. Instead, numerical approaches such as a binomial tree or simulation are required (Cor-tazar, 2000; Wood, 2007; Matsumoto et al., 2010). These methods approximate the analytical 
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value by dividing the partial differentials of the option in many steps. Having multiple options on 
a project could be considered as a portfolio of options. In general, the value of such a portfolio 
will be nonadditive due to interdependencies between the options. This means that the total 
value of flexibility is different from the sum of individual option values; they can be sub- as well 
as superadditive (Trigeorgis, 1993b; Trigeorgis, 1996).  
Real options are best suited for projects with large uncertainty and the managerial flexibility to respond to this uncertainty (Van de Putte, 2005; Kodukula & Papudesu, 2006). The value of flexibility is greatest when the NPV of the project without flexibility is close to 0, so that deci-sions are more likely to be taken during the course of the option. For decisions which are obvi-ously good or bad beforehand, flexibility provides little additional value. Also when management does not have the opportunity to react to uncertainty, ROA is not the most suitable choice for valuation. The application of option pricing theory on real world projects was recognized not long after its introduction (Myers, 1977). However, the field of real option analysis is still very much in development. Existing literature is often not explicit in its approach, also assumptions and conditions tend to vary (Borison, 2003; Sáenz-Diez & Gimeno, 2008). Application in practice remains limited (K. Huisman, personal communication, 4 May 2012). For these reasons, there is no readily applicable framework for real option valuation. 

Summary of real option theory 

� Real option theory is based on an analogy between investment decisions and financial options, modelling business decisions as the right to make an investment. 
� Real options explicitly address the value of flexibility in projects where management can flexibly respond to new information becoming available over time. 
� The Black-Scholes assumptions are generally less valid for real projects than for finan-cial assets.  
� Often analytical solutions are not available for real options due to their complexity. 

3.4. Risk-neutral valuation A core concept in option pricing is risk-neutral valuation. This technique is widely applied to obtain the value of derivatives1 by both academics and financial practitioners (Appeddu et al., 2012). The Black-Scholes model is an application of risk-neutral valuation under strict assump-tions. This section focuses on the main principles of risk-neutral valuation, providing an intuitive insight why risk-neutral valuation is used. For the mathematical properties of risk-neutral valuation, sources such as Luenberger (1998) and Bingham & Kiesel (2004) can be addressed. 
To calculate the present value of an asset, one could take the expected return of an asset, and then discount it based on the preferences of the investor. However, it is difficult to estimate the future growth rate of an asset’s value. Risk-neutral valuation provides a methodology which does not require estimating this rate (Miller & Park, 2002). The application of risk-neutral valuation requires two major assumptions. First, the market must be complete. This means that every good can be exchanged by any participant in the market without transaction costs (Mer-ton, 1973a; Constantinides, 1978). Every agent has perfect market information, so no trader has an advantage through knowledge. Also short-selling and borrowing are unrestricted and can be 
                                                                 
1 A derivative is a financial instrument that derives its value from that of an underlying asset. All forms of op-
tions fall under the term ‘derivative’. 
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done at the risk-free rate. Secondly, arbitrage opportunities are absent; there are no imbalances 
in the market which allow for the possibility of a risk-free profit at zero cost. When these as-
sumptions hold, a derivative can be replicated by holding a linearly weighted combination of 
securities (Gisiger, 2010). As arbitrage opportunities do not exist, this linear combination must 
have the same value as the derivative. If this were not the case, an investor could buy the 
cheaper of the two and sell the more expensive one, thus making a risk-free profit without a cost 
(Tilley, 1992). Risk-neutral valuation provides the unique arbitrage-free price of the derivative 
based on this principle. It does so by using the artificial concept of risk-neutral probabilities. We 
provide an example based on Gisiger (2010) to explain this concept. 
Suppose the economy can be in one of � states at time Z, with a specific state denoted as K (in 
reality an infinite number of possible states may exist). For every state a unique so-called Arrow 
security is available, which pays off a positive amount pI to the holder of the security when the 
asset reaches state K and zero otherwise. The real probability that the asset state will shift from 
an arbitrary state J to state K is denoted by bHI , with the sum of probabilities being equal to 1. We 
do not assume interest yet. Each security has a price representing the value the market places 
on this state. This means that the price of the security needs not to be equal to bHI L pI . For ex-
ample, a security paying off in a certain state could be perceived as a more valuable addition to 
one’s portfolio, therefore being priced higher than its rationally expected payoff. The discrete 
payoff structure described here is illustrated in Figure 4. 

State i

State 1

State 2

State ...

State n‐1

State n

x1

x2

x...

xn‐1

xn

pi2

pi...

pin‐1

pin

pi1

Asset state

time 0

Transition 

probability

Asset state

time 1

Security payoff

time 1

 
Figure 4: Example of discrete payoff structure in a fictive economy described by n Arrow securities 

(based on Gisiger, 2010). 
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Now we introduce a derivative, which returns the payoff of the security matching state K. This 
derivative can be considered as a portfolio of all Arrow securities. We price this derivative by 
using risk-neutral valuation, describing its value as �H . Contrary to what its name may indicate, 
risk-neutral valuation does not assume investors to be risk-neutral. All risk preferences of the 
market are incorporated in the actual security prices. As such, the real price of a security does 
not need to be consistent with the real probability of the asset ending up in the state K. Risk-
neutral probabilities can be viewed as the sum of state prices compounded to 1; we denote these 
probabilities as GHI . Multiplying each risk-neutral probability with the corresponding payoff p in 
state K provides the value of the derivative. Note that the real probabilities bHI are not required 
for this; their information is incorporated in the security prices. 

 �H ¢ Ê GHI L pI
§

IËc
 (3.5) 

So far we assumed that an investor is indifferent between receiving money at time 0 or at a later 
time. In reality, money has a time value due to time preference of people (they prefer money 
now over money at a later point in time), leading to the existence of interest. If we would not 
discount future cash flows, an investor could short-sell the complete set of securities and use the 
received sum to purchase a risk-free bond, earning the risk-free rate as the price of the securi-
ties remain constant. As such, the investor could make a risk-free profit without cost, which con-
tradicts the no-arbitrage assumption. Thus, future payoffs should be discounted at the risk-free 
rate �̂  to obtain the arbitrage-free price of today. The discounted state prices at time 0 then sum 
up to c

cÌÂÃ
 instead of 1, we denote these new probabilities as GHIL . We describe the time 1 risk-

neutral probabilities by �HI , compounding the probabilities GHIL  at the risk-free rate �̂  to obtain a 
present-time probability measure summing up to 1. Introducing time value leads to the follow-
ing set of equations: 

 �HI ¢ GHIL L Í1 h �̂ Î   ÏJ, K (3.6) 

 Ê �HI ¢ 1
§

IËc
 (3.7) 

 
�H ¢ 1

1 h �̂ Ê �HI L pI
§

IËc
 

(3.8) 

From these equations it follows that under risk-neutral valuation the expected prices grow at 
the risk-free rate. This is a powerful concept, as it is no longer required to estimate the actual 
growth rate. The drift of the asset value is effectively removed, instead replacing it with the risk-
free rate (Kat, 1998). The only parameter left to estimate is then the volatility. By for example 
filling in the Black-Scholes pricing formula, the implied volatility can be obtained. 
In a complete market, risk-neutral valuation and valuation under perfect delta hedging (offset-
ting the effect of price movements with a combination of financial instruments held simultane-
ously, see Section 3.5) provide the same derivative price. A perfectly hedged portfolio is riskless 
and as such must provide a risk-free return. Delta hedging and risk-neutral valuation are there-
fore mathematically equivalent. This helps understanding why the rather artificial risk-neutral 
valuation principle also applies to the real world when hedging is possible. If the assumption of 
a complete market does not hold, the risk-neutral probabilities are not unique. As the derivative 
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in that case cannot be fully replicated by holding securities, no single arbitrage-free price can be 
obtained for the derivative (Gisiger, 2010). Instead the value of the derivative will lie between 
some lower and upper bounds. When calculating the risk-neutral value of an option, uncertain-
ties which cannot be hedged are therefore theoretically not viable for risk-neutral valuation 
(Smith & Nau, 1995). Also other assumptions of the complete market often do not hold in prac-
tice. Such issues are sometimes addressed by assuming the market is approximately complete. 
In real option settings, the incompleteness of the market may be too substantial for such an as-
sumption to hold. Sections 3.5 and 3.6 go in more detail about treating non-hedgeable risks. 
Though the assumptions of risk-neutral valuation may sound strong, they need not to be more 
restrictive than those for DCF. Generally future cash flows are discounted with the WACC, for 
which the cost of equity is often calculated using the widely applied Capital Asset Pricing Model. 
The assumptions for the CAPM and risk-neutral valuation are the same (Birge & Zhang, 1998; 
Cudica, 2012). Thus, accepting the DCF methodology implicitly means that we accept the as-
sumptions for risk-neutral valuation as well.  

Summary of risk-neutral valuation 

� Risk-neutral valuation is a technique to estimate the arbitrage-free price of a derivative 
in a complete market. 

� It allows replacing the actual drift of an asset price by the risk-free rate, no longer re-
quiring to estimate this parameter. 

� The assumptions for risk-neutral valuation are strong, but often implicitly adopted in 
DCF as well. 

3.5. Replicating portfolio concept 

Risk-neutral pricing presumes a perfect hedge can be constructed for the portfolio held. If this is 
to hold in a real option setting, it is possible to construct a replicating portfolio for the project. In 
its most rigid form 4classic ROA5, this means that the project is replicated by a portfolio consist-
ing of market-driven instruments that is exactly equivalent (Brennan & Schwartz, 1985). Hence, holding a portfolio consisting of financial instruments (e.g., cash, assets, derivatives) should provide the exact same payoff as the project itself at all times and in all states. If this is possible, we can also construct a perfect hedging portfolio by mirroring the replicating portfolio (short-selling may be required for this), allowing to apply risk-neutral valuation. 
To retain the equivalence between the real project and the replicating portfolio, (continuous) adjustment of the portfolio might be required. We can do this under the assumption that no transaction costs exist in a complete market (Tilley, 1992). In reality, transaction costs are of course involved in trading. Constantinides (1986) justifies the assumption of no transaction costs by stating that the existence of transaction costs does not significantly alter the asset pro-portions held compared to the theoretical proportions. However, others argue the rigid com-plete market assumption in fact does significantly affect the validity of the theory (Mayshar, 1981; Haug & Taleb, 2011). At the very least, we should keep in mind the absence of transaction costs when applying the model (Merton, 1987). Another deviation from the complete market observed in practice is the presence of arbitrary opportunities arising due to market imperfec-tions. Such opportunities tend to be quickly corrected by the market itself (Tham, 2001). 
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The replicating portfolio concept assumes that the holder is able to borrow and lend at the risk-
free rate; generally only financial institutes are able to do so, or at least approach this rate. The 
risk-free rate is often estimated as the yield on a government bond with a very low default prob-
ability. However, there are no investments which guarantee a return with absolute certainty. 
The yield on government bonds varies over time. As financial options usually mature within 
months, it is often assumed that the rate remains constant. The longer the time to maturity, the 
weaker this assumption becomes. At the moment of writing this thesis interest rates are at a 
very low level, meaning that under risk-neutral valuation prices are expected to grow slowly.  
In reality a replicating portfolio is rarely found for a real project, we further address this issue in 
Section 3.6. Where some real option authors strictly hold on to the requirement of being able to 
construct a perfectly replicating portfolio, other authors have loosened this principle. They as-
sume that a replicating portfolio can also be derived by subjectively estimating the market value 
of the project 4Amram & Kulatilanka, 2002; Brealey et al., 20085. They justify the subjectively 
derived asset value by adopting a shareholder view. Valuation assesses how much a project con-
tributes to the value of the firm, thereby considering the project itself as if it were a traded asset 
4Borison, 20035. They value the project with traditional DCF 4hence without incorporating flexi-
bility5 to obtain a subjective estimate of the market value of the twin security. Some authors 
deem this value to be the best unbiased estimate of the project 4we call this assumption Market 
Asset Disclaimer or MAD5, and is consistent with the assumptions of DCF. Although the underly-
ing of a real option is generally not liquidly traded, we may chose to treat it as if it were a finan-
cial asset. The rationale is that we seek the arbitrage-free value of the project, as this is compa-
rable to the added value of the project to the market value of the company 4Benaroch & Kauf-
mann, 1999). Wrongly valuing the project would eventually result in arbitrage opportunities 
which are corrected by the market. Although the subjective- or MAD approaches are not as re-
strictive as the classic approach, the assumption of market completeness remains intact.  
Another real option approach is to consider the market to be partially complete (Smith & Nau, 1995; Smith, 2005). Arbitrage pricing is then explicitly considered to be applicable only on the part of the project that can be replicated with financial instruments. Subjective probabilities are applied on the part for which no portfolio can be constructed. A difficulty with this integrated approach is that it requires individually assessing each source of risk to see whether it can be replicated or not. In this study we adopt the integrated approach, mainly for its theoretical con-sistency. We expand on this and other approaches in Section 3.8, but first we need to address some other theoretical issues in ROA. 

Summary of replicating portfolio concept 

� To be able to apply risk-neutral pricing, it should be possible to construct a portfolio of market instruments which replicates the payoff of the project for all states and times. 
� Some authors have loosened the replicating portfolio condition, stating that the project itself can be considered as a traded asset from a shareholders perspective. Others con-sider the market partially complete, and apply arbitrage pricing only on the part which can be replicated. 
� In practice it is rarely possible to construct a perfectly replicating portfolio for a real world project. The degree to which this affects the validity of real option analysis is still debated. 
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3.6. Types of uncertainty 

Following the replicating portfolio concept described in Section 3.5, in classic and integrated 
ROA we should make a distinction between uncertainties that can be replicated by financial in-
struments and uncertainties that cannot. Some different perspectives on types of uncertainty 
and how to deal with them in a real option framework are discussed in this section. 
When assessing uncertainty in future cash flows, one can distinguish between market risk and 
private risk. Market risk is risk that can be replicated by financial instruments. Individual com-
panies have no influence on it. Market information is revealed over time, thereby solving uncer-
tainty. An example of market risk is the risk caused by changing commodity prices, and can be 
hedged by taking a position in these assets. Private risk is more complex to define, as it should 
contain all sources of uncertainty that cannot be replicated by financial instruments 4Amram & 
Kulatilanka, 2002; Piesse et al., 20045. Some authors only consider technological uncertainty. 
This is a source of uncertainty which stays the same when no learning actions are undertaken, 
such as determining the size of a gas field (Hooper III & Rutherford, 2001). Such definitions do 
not cover all non-replicable risks. A type of uncertainty like the weather does not fall under the 
definition of technological uncertainty (as we cannot resolve it by undertaking action) but also 
is no market risk (as it is not correlated with the economy). The weather would be viewed as 
private risk, unless a derivative exists on the market which exactly reflects the uncertainty asso-
ciated with it. The reason for this is that a synthetic portfolio mimicking the project would then 
include this derivative, and as such can be hedged. As option theory assumes that perfect hedg-
ing is possible, only risks that can be hedged should be included in option pricing. The introduc-
tion of new types of derivatives allows more and more risks to be viewed as market risk. In 
practice it may therefore be difficult to clearly distinguish between types of risk.  
An issue often not assessed in literature is that risk may be correlated with the market, but that 
no derivate exists (Kaufman & Mattar, 2002). Considering this risk to be uncorrelated would 
then be incorrect, but it is no market risk either. Smith 420055 argues to treat the correlated part 
of such risks as market risk and the uncorrelated part as private risk. Merton 41998) provides a 
formal definition of private risk, stating that private risk can be measured as the tracking error 
of the portfolio representing the underlying asset (Amram & Kulatilanka, 2002). Mathematically 
the tracking error can be defined by `�Y �Y⁄ ¿ `�Y �Y⁄ , where �Y is the project value (the underly-
ing) and �Y is the value of the tracking portfolio. Applying this definition, the difference between 
the value of the replicating portfolio and the value of the underlying asset is considered private 
risk. As such, we can measure private risk objectively. 
In the gas industry, projects often comprise a large degree of private risks as well as market 
risks. Typically the size of the reserve is the main source of private risk, while the gas price is the 
main source of market risk. Two approaches are used to rationalise incorporating a certain de-
gree of private risk in the classic approach. We may assume that private risk is only minor after 
the option has been exercised, and will not have a great impact on the payoff (i.e., the market is 
approximately complete). The tracking error then increases with the amount of private risk. The 
second approach is to include such uncertainties in the valuation process, but assume that they 
can be hedged as well. We might be able to diversify away private risk by trading it with compa-
rable risks, even though these are not publicly traded (Mattar & Cheah, 2006). For example, the 
amount of gas present in a field is uncertain. If this risk could be traded with other fields subject 
to similar uncertainty, the risk could theoretically be traded and levelled out. In such a manner 
risks uncorrelated with the market could be hedged as well. Due to the absence of a liquid mar-
ket for such contracts, the assumption that private risk can be hedged in a manner comparable 
to market risk is controversial, but it might apply to a certain degree.  
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Summary of types of uncertainty in real options 

� Market risk is risk that can be replicated with financial instruments. Private risk can be 
defined as the tracking error between such a portfolio and the actual project. 

� Classic option valuation depends on the assumption of a complete market, meaning 
that only risks traded in the market can be included. Other real option approaches re-
lax these assumptions. 

� Private risk may be assumed hedgeable or neglectable relative to market risk, but it in-
creases the tracking error when applying only risk-neutral valuation. 

� In practice, it can be difficult to distinguish risks due to correlation with the market. 
Many risks therefore lie somewhere between private risk and market risk. 

3.7. Risk adjustment 

An essential characteristic of ROA is that it adjusts the discount rate to the varying risk profile of 
the project. Two approaches are possible for this (Triantis & Borison, 2001; Mun, 2002; Arnold 
& Crack, 20045. First, the discount rate adjusted for the riskiness of the project phase can di-
rectly be applied to the estimated future cash flows. Second, the future cash flows can be ad-
justed for their risk, obtaining their certainty equivalent instead. In such a way a risk-neutral 
distribution is created, allowing for risk-neutral valuation by discounting the adjusted cash 
flows at the risk-free interest rate. Both methods provide the exact same outcomes when cor-
rectly applied, risk-neutral valuation is usually preferred due to its easier implementation 4Birge 
& Zhang, 1998; Mun, 2002). As an option is a leveraged instrument, it has a more risky profile 
than the underlying asset (Cudica, 2012; Dias, 2012b). When working with real probabilities, the 
discount rate must therefore be consistent with the risk profile of the option to obtain the same 
value as with risk-neutral valuation.   
 
Suppose that we have an asset which provides a variable return p. To obtain the risk-neutral 
value of an option, we should remove the risk premium from the actual expected growth rate 
(denoted as C) of this asset (Tilley, 1992; Trigeorgis 1993b). The risk-neutral drift of the under-lying asset is the risk-free rate �̂  in case the equilibrium return � without paying dividends is earned (Cox & Ross, 1976). When the asset pays out constant dividends �, we add these to the growth rate to obtain the equilibrium return (Trigeorgis, 1996). From the CAPM, it follows that the growth rate plus the dividend payment is equal to the risk-free interest rate plus the market risk premium. The individual terms need not to be equal, only their sum. The following relation can be described for the equilibrium return � of the asset (Quigg, 1993; Dias, 2012b): 

 � ¢ G h � ¢ �̂ h rÒnG�(p) (3.9) 
The market price of risk r is defined by the Sharpe ratio (Constantinides, 1978; Sharpe, 1994; Saénz-Diez & Gimeno, 2008): 

 r ¢ j(p ¿ �̂ )ÒnG�(p ¿ �̂ ) (3.10) 
From this definition, it follows that the Sharpe ratio in fact measures the excess return received for the extra volatility the investor is subject to compared to a risk-free investment. When �̂  is constant this reduces to simply the volatility of the asset. The Sharpe ratio assumes that returns 
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are normally distributed, but when standard deviation is not too large the result can also be 
used for non-normally distributed returns. In reality investors care about skewness and kurtosis 
as well; statistics not reflected by the Sharpe ratio 4Scott & Horvath, 1980; Sharpe, 1994). Fur-ther the Sharpe ratio implicitly adopts the CAPM assumptions, meaning that investors only care about non-diversifiable risk. As private risk is considered to be uncorrelated with the market,  W ¢ 0 and thus can be diversified away (Luenberger, 1998; Mattar & Cheah, 2006). Investors will then only require the risk-free return on private risk, even though the risk in itself may be substantial. Note that reducing private risk leads to better investment decisions, as such increas-ing value to investors. When adopting the viewpoint that private risk cannot be diversified away in practice, we could also discount private risks at a higher rate (Mattar & Cheah, 2006).  
The risk-neutral cash flows jm can be obtained by deducting the market premium from the real cash flows jl. This market premium can be substituted by the second term in the CAPM (Smith, 2005; Samis et al., 2007). It follows that the certainty-equivalent cash flows can be defined as (Trigeorgis, 1996; Saénz-Diez & Gimeno, 2008): 

 jm(pY) ¢ jl(pY) ¿ rÒnG�(p) ¢ jl(pY) ¿ W(j(�z) ¿ �̂ ) (3.11) 
After reducing the estimated cash flows with the market risk premium, we can discount the cer-
tainty-equivalent cash flows jm at the riskless interest rate, thereby obtaining the present value 
(Schwartz & Trigeorgis, 2001).  

3.8. Integrated risk-neutral approach 

As seen in Section 3.6, several approaches are available regarding handling private risk. We can-
not point out a clear dominant view, as the manner chosen to deal with private risk depends on 
the vision of the modeller on real options. Borison (2003) distinguishes five real option ap-
proaches, which differ regarding their perspective on dealing with both types of risk. In Table 7 
we provide a brief overview of the properties of these approaches. We only focus on their back-
ground, ignoring differences such as the techniques applied, etc. In this study we choose to work 
with the integrated approach, because we believe it has the strongest theoretical foundations 
when we are required to deal with both types of risk. 
Cox et al. (1985) provide a description of a market model which we assume to hold for the real option approach we consider in this study. They adopt the viewpoint of a rational and well-diversified shareholder as described in the CAPM framework. This point of view complies with the theory of option valuation. Furthermore, the shareholder approach is in line with maximis-ing the market value of the company, which we consider to be a rational objective for real option valuation. Shareholders agree with the subjective assessment of management of private risk, while management discounts these cash flows with the risk-free risk to reflect the risk-neutral position of shareholders towards private risk. Under these assumptions, the integrated method results in a single theoretically correct option price. 
The integrated approach explicitly distinguishes between market risk and private risk, treating the first based on capital market information (i.e., risk-neutral valuation) and the latter based on subjective estimates. As such, we consider it as a combination of classic ROA and DTA. We be-lieve that this view is theoretically most consistent when the model should be able to deal with both types of risk. Note that the approach reduces to pure option pricing or -decision analysis when only one type of risk is considered. Smith (2005) opts for a fully risk-neutral integrated approach on real options. Under the assumption that private risks are uncorrelated with the market, the real probability distribution is consistent with the risk-neutral approach. This fol-
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lows from having a beta of 0 in the CAPM, so that shareholders require no additional return on 
private risk. The real probability is equivalent to the real distribution in this case, as 
CD\ÂÓ ¢ C\ÂÓ ¿ rÒnG�4p5 ¢ C\ÂÓ ¿ 0.  For non-market risks correlated to the market, the prob-
ability distribution lies between the real distribution and the risk-neutral distribution. We do 
this by subtracting the risk premium from the drift of the private risk for the part correlated to 
the market. The conditional drift for correlated private risk is obtained by 

 C\ÂÓ4b�n|��Z5 ¢ C\ÂÓ ¿ W4CzÔY ¿ �̂ 5 43.125 
ROA approach Key assumption Properties 

Classic approach A replicating portfolio consisting of mar-
ket instruments can be constructed for 
the project, so that risk-neutral valuation 
can be applied. 

�    Theoretical foundation con-
sistent with option pricing. 
�    Applies objective arbitrage 
pricing approach. 
�    Allows only for valuation of 
projects strongly dominated by 
market risk. 

 
Subjective approach  A subjective project value is estimated, for 

which the option value is calculated using 
risk-neutral valuation. 

�    Does not explicitly replicate a 
project with market instruments. 
�    Assumption of a replicating 
market portfolio is retained. 
�    Subjective judgment is theo-
retically inconsistent with arbi-
trage pricing assumptions. 

 
MAD approach2 The subjective estimate of the project 

without flexibility is considered a twin 
security which replaces the replicating 
portfolio. 

�    Provides a rationale for appli-
cation on most investment 
problems. 
�    Does not require distinguish-
ing between types of risk. 
�    Accuracy depends on how 
well assumption of market 
completeness holds. 

 
Revised classic   
approach 

When market risk dominates the project 
risk-neutral valuation is used on the en-
tire project, when private risk is dominat-
ing decision analysis is used. 
 

�    Recognises option pricing is 
not applicable to private risk. 
�    Requires quantifying the 
amounts of market- and private 
risks. 
�    Crude approximation when 
both types of risk are significant.                                                  
 

Integrated approach The market is partially complete with 
respect for the project, so that a replicat-
ing portfolio can be constructed for the 
embedded market risks and decision 
analysis is used on private risks. 

�    Combines arbitrage pricing 
with decision analysis to assess 
all types of risk. 
�    Combination of pricing tech-
niques is theoretically consis-
tent. 
�    Requires distinguishing 
between all sources of market- 
and private risk. 

Table 7: Summary of real option approaches with respect to private risk. 

 

                                                                 
2 The subjective approach and MAD approach are largely comparable, but MAD distinguishes itself by providing 
a more fundamental rationale by introducing a hypothetical twin security. 
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3.9. Estimating volatility 

In the Black-Scholes framework, the square root of variance measures the volatility � of the re-
turns provided by the asset 4Hull, 20085. Volatility is considered to be the most influential factor 
in the valuation of a real option, as an increase in volatility increases the upside potential of the 
investment 4Piesse & Van de Putte, 20045. The volatility used in a real option model is the vola-
tility of the returns of the underlying project, which in turn are affected by multiple uncertain-
ties.  
Many analytical approaches are available to estimate volatility. The simplest method is to take 
the standard deviation of the returns as volatility, keeping it constant over time. More advanced 
techniques allow for incorporating clustered volatility 4non-constant volatility correlated over 
time5 and mean-reverting behaviour. We will address such techniques in Chapter 6 of this the-
sis. Monte Carlo simulation is a numerical method to compute volatility which is particularly 
useful when dealing with multiple sources of uncertainty 4Van de Putte, 20055. We can model 
each source of uncertainty individually, including possible co-dependencies. We can then derive 
the volatility of the project from the obtained stochastic free cash flows. In real-world practice, 
ad hoc approaches are common as well 4Mun, 20025. An example is to base the volatility esti-
mate on management assumptions, fitting the volatility distribution based on their experience 
and insights. Obviously such estimates may not be in agreement with market estimates. 

3.10. Variable strike price 

When considering a financial option within the Black-Scholes framework, there is no depend-
ency between the strike price   and the stock price �Y; the strike price remains constant over 
time (Margrabe, 1978). For a real option however, we may expect the required investments to 
undertake the project increase over the course of years. Also a relation may exist between the 
value of the project and the development costs for the project. A larger gas field would require 
more production wells and pipelines for example, resulting in higher development costs than for 
a smaller field. For real options, a time-dependent strike price  Y is usually required. Another co-
dependency between  Y and �Y could be technological development. Through technological in-
novation, the efficiency of gas exploitation increases. This feature could be modelled by intro-
ducing a negative correlation factor between  Y and �Y over time. Also we can distinguish be-
tween incremental development and radical development. Small improvements are made con-
tinuously, but at times also technologic breakthroughs take place which greatly improve the 
efficiency of a process.  

3.11. Competition 

An aspect that could influence the value of the real option is competition. Without competition, 
only the market and the actions of the producer itself can affect values. As the holder of a finan-
cial option has the exclusive right to exercise it, absence of competition (e.g., by holding a patent 
or owning exploitation rights) is requisite to apply standard option valuation to real business 
situations.  When we need to include strategic decision making in a real option framework, we 
may do so by combining option pricing with game theory (Huisman, 2000). Game theory as-
sumes that each player will rationally attempt to maximise his profit, given his beliefs about the 
choices the other players will make. The solution to the problem is a Nash equilibrium, a state in 
which a player cannot improve his payoff by unilaterally changing his strategy given his beliefs 
of the other players’ strategies (Shoham & Leyton-Brown, 2009). Actions are chosen in such a 
way that they are in line with the perceived probability that other players choose certain actions 
(Varian, 1992). 
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In this study we ignore the influence of competition in the valuation. We assume that operators 
are price takers, whose actions have no effect on the price of commodities. Since operators of 
marginal fields only have a limited share in the market, we consider this to be a reasonable as-
sumption. Once a producer has obtained the exclusive exploitation rights of a field, producers 
are no longer competing for the same resource. This also limits the applications of the game 
theory when considering a single field. The phase before obtaining production rights is in fact 
competitive, but is not incorporated in our option model. Possibly the ongoing liberalisation of 
the energy market will increase competition, increasing the need to model competition. 
Incorporating a game structure which accurately reflects the competition and strategic decisions 
may strongly increase the complexity of a real option model. Among the aspects that we could 
consider are asymmetries of competing firms, leader- and follower strategies, production capac-
ity decisions, investments for technological improvement, etc. In general, we can assume that 
competition will decrease the value of an option 4He, 20075. 

3.12. Unspecified exercise and maturity dates 

The possible exercise- and maturity dates for a real option situation may not be defined as 
clearly as for a financial option 4Miller & Park, 20025. Project phases often do not have a strict 
deadline, but rather an estimated length which is subject to uncertainty as well. A delay may also 
exist between the decision to exercise the option and the actual exercise, for example when a 
production facility needs to be constructed. Another problem with the absence of an explicit 
expiration date for a real option is that decisions may be postponed indefinitely, leading to a 
time horizon for which no reasonable forecasts can be made. As option value increases with 
time, there is a risk of overvaluing the options value with expiration dates lying far in the future 
4Adner & Levinthal, 20025. Also it might be theoretically optimal to defer exercising the option 
forever when the growth rate of the asset exceeds the discount rate. A solution to prevent such 
problems is to set an expiration date for the option internally 4Adner & Levinthal, 20025. 

3.13. Suboptimal exercise policies 

A common point of criticism on real options is that it assumes an optimal exercise policy when 
calculating the option value, where ‘optimal’ means maximising expected value given current 
information. One may argue that managers do not necessarily make optimal decisions, and as 
such the option value could be lower than the value calculated under optimal exercise policies. 
Though this is a defendable point of view, Copeland & Tufano 420045 reason that the obtained 
value is useful in practice. They draw an analogy with financial options, which in reality are not 
necessarily exercised at the optimal time either. Yet they are still valued as if they were opti-
mally exercised. This is because we would not obtain the correct market price when based on 
suboptimal decisions. Pricing an option too low would create arbitrage opportunities. It is then 
possible to buy the option and short-sell the underlying to make a risk-free profit 4Natenberg, 
1994; Bingham & Kiesel, 2004). Though this might not be directly possible with real options, 
arbitrageurs would eventually be able to profit when projects are undervalued. 
Another point brought up by Copeland & Tufano (2004) is the merit of ‘option thinking’. Option 
thinking encourages rational decision making, basing decisions only on expected future cash 
flows. The awareness of management that flexibility is present in the project and can be ad-
dressed by making intermediate decisions is an important acknowledgement. The optimal exer-
cise value gives an indication what additional value can be obtained through managerial flexibil-
ity. Thus, although the real option value overstates the value compared to suboptimal decision 
making, the obtained value still has meaning in practice. Careful interpretation of the model and 
the resulting value are necessary to correctly appreciate the result, though. 
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Chapter 4 
 

4. Real option modelling in Gas-to-Wire production 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where the previous chapter focused on the theory of real option valuation, in 
this chapter we go in more detail describing the issues that play a role for the 
application of a real option on Gas-to-Wire production. First, we describe the 
problem that will be modelled in the option framework. The goal of the option 
model is to find the economically optimal time to switch from gas production to 
electricity production for a tail-end gas field.  
Two technological uncertainties are particularly important for the real option 
model: the distribution of the reservoir size and the productivity of the well. We 
provide some background information on these variables, along with the distri-
bution chosen for them. Another key factor for the option value is to understand 
how energy prices behave.We also assess the role of legislation. The corporate 
tax rate has a direct effect on the cash flows, as does the royalty producers have 
to pay on natural gas exploitation. The government seeks to stimulate the devel-
opment of smaller gas fields, several measures could be implemented for this in 
the future. 
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4.1. Problem description 

In this section we describe the global setup of our investment problem. The goal of the option 
model is to find the optimal time to shift from gas production to electricity production. Two 
sorts of fields are considered feasible for Gas-to-Wire production: virgin gas fields and tail-end 
gas field. As tail-end fields are already producing gas, the infrastructure to connect the field to 
the transport network is present. For virgin gas fields the investments for gas production should 
also be made, including the drilling of the well. Also the uncertainties regarding the reservoir 
size and well productivity are significantly larger for virgin fields. For these reasons, we apply 
the option model on a tail-end gas field in this study. In principle the model can also be applied 
on virgin fields with little modifications. During the lifetime of the option, several investments 
can be made.  We will treat these in more detail later in this chapter. When the pressure in the 
reservoir becomes too low, a compressor should be installed to bring the pressure up to the 
desired level for the transport network. When the decision is made to switch to electricity pro-
duction, this requires connecting a generator to be installed on the spot and set up the wiring 
between the generator and the electricity transport network.  

4.2. Uncertainty about reserve size 

A major source of technological uncertainty in natural gas exploitation is the amount of gas that 
can be obtained from the field 4Haskett, 20035. This uncertainty can be reduced by performing 
research, such as drilling exploration wells to check whether gas is present at that location 
4Laughton et al., 20045. However, uncertainty about the exact size of the field is still present 
when production has started. This uncertainty decreases during exploration, but even when 
production is ended some minor uncertainty might remain. In Figure 5, we provide an example 
of how the uncertainty distribution narrows down as more activity is undertaken. Note that the 
estimated mean can change as well when more information becomes available, while after the 
production phase of course only a marginal amount of gas remains.  
 

 
Figure 5: Reduction of reserve uncertainty distribution over time (based on Haskett, 2003). The esti-

mated mean changes over time as well.  
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The quantity of gas present in a tail-end reservoir 4Gas-In-Place or GIP53 can be estimated with 
the formula 

 xÕ� ¢ O�o L � x⁄ L ��� L �GZ L jpb 44.15 
with  O�o  as the volume of the formation �/x  as the net-to-gross ratio ���  as the effective porosity of the formation �GZ  as the gas saturation  jpb  as the expansion factor  Here, the volume is the area times the thickness, or the gross volume of the structure. The net-to-gross ratio indicates which volume of the reservoir can contain gas, since gas is only found in parts of the structure. The effective porosity is the percentage in the rock formation that can contain fluid or gas (the void space in the rock layer5. The gas saturation is the percentage of the porous volume filled with gas, the other part being water. Finally, the expansion factor shows how much the volume of gas will increase to compare the volume to that under surface condi-tions.  Not all Gas-In-Place can be retrieved from the field; GIP multiplied with a recovery rate gives the reserve that can actually be economically won.  The GIP formula presented here is a simplified one; much more detail can be incorporated (see 
for example Dake, 20015. By modelling the uncertainty distribution of the individual variables (usually as lognormal random variables5, a measure for the uncertainty of the quantity is ob-tained. The product of many lognormal random variables is also lognormal. Instead of individu-ally modelling each variable as random, a (truncated5 lognormal distribution is often used to model the reserve size (Kaufman, 19925. When the variables are modelled independently, corre-

lation effects between the variables should be assessed. 

A simplifying assumption we make in our model is that of perfect connectivity. This means that 

the gas from the entire reservoir is able to flow to the well unhampered, so that the full reserve 

can in principle be retrieved. In reality amounts of gas are often separated by dense rock forma-

tions, requiring multiple wells or field-enhancing techniques to allow the gas to reach the sur-

face. 

As a tail-end field is nearing the end of its production, the remaining uncertainty distribution 

should be small relative to the uncertainty at the beginning. We assume that the actual reserve 

size can be obtained at the start of the option life. This means we can draw a value from the un-

certainty distribution, which we then consider deterministic.  

4.3. Well productivity 

There are two forms of constraints which limit the output of a gas reservoir; reservoir con-
straints and well constraints. A well has a production capacity which is mainly determined by 
the diameter of its tubing and the pressure difference between the reservoir and the surface. 
When the field contains sufficient reserves and the pressure is high enough, the limiting factor in 
production is the well flow capacity. The production rate is then simply the maximum amount of 
gas that can flow to the surface. But when the reserves fall below a certain level, the pressure 
becomes too low and the well no longer produces at its maximum capacity.  
                                                                 
3 For virgin gas fields the term Gas-Initially-In-Place 4GIIP5 would be used, the formula remains unchanged. 
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Several techniques exist to improve the conditions of the field after reservoir constraints arise, 
increasing the production capacity of the well. These allow exploiting the field quicker and/or 
assessing more parts of the reservoir. Water or gases (such as CO2) can be injected in the reser-
voir, which increases the pressure again and drives the natural gas towards the well (Oldenburg 
et al., 2001). Another technique is hydraulic fracking, which is to create fractures in the rock 
formation by using pressurised liquids, thereby improving the speed at which the gas can flow 
through the reservoir (Montgomery & Smith, 2010).   
Production capacity does not necessarily increase linearly with the number of wells. When mul-
tiple wells are placed, the natural gas flow is divided over these wells. This might result in pro-
duction levels lower than maximal, depending on the amount of gas present in the reservoir and 
the distance between the wells. In general, for marginal gas fields which are eligible for Gas-to-
Wire production a single well is sufficient, provided that the field has high connectivity. The 
benefit of adding more wells usually does not outweigh the required investment. In this study, 
we therefore presume that only a single production well is active.  
 
When gas flows to the surface, it may contain water. When the gas pressure is insufficient, this 
water can form a layer at the bottom of the well, causing pressure against the upwards flow. If 
this pressure becomes too large, it stops the gas flow. A particular danger lies in temporarily 
shutting down the gas production. The water particles in the well will then drop down, after 
which the upwards pressure may be insufficient to restart production. A minimal rate of produc-
tion may therefore be required to prevent the well from collapsing. This implies that continuous 
production should take place at the final stage of exploitation. 
 
The main factor determining the output of a production well is the pressure of the reservoir. If 
the pressure is sufficiently high, the well is able to produce at maximum capacity. Another im-
portant factor is the permeability, which is the rate at which the gas can flow through the porous 
rock formation (Le Gallo et al., 1998). The gas flow from the reservoir to the surface goes 
through a tube placed in the production well (PetroStrategies, Inc., 2012). A choice the operator 
must make is the diameter of the tubing in the well. A large diameter allows for a gas flow with 
less friction. When the pressure drops below a certain level, the initial tubing can be replaced 
with a smaller one to increases the pressure in the tubing at the cost of increasing friction 
(Schlumberger Limited, 2012). By varying the inflow rate of the well, a balance between pres-
sure and production rate can be struck also. 
 
A decline curve can be used to model the decrease of production over time (Palacio & Blasin-game, 1993; Agarwal et al., 1998). The traditional decline curves are hyperbolic, harmonic (a special case of the hyperbolic function) or exponential functions (Arps, 1944; Petrocenter, 2012). The exponential production function declines the fastest and therefore provides the most conservative estimate, while the harmonic function provides the least conservative. For wells with a production history it is easier to determine a distribution than for virgin gas fields. His-torical production information can then be used to estimate the development of the production rate. The gas fields which are potentially suitable for Gas-to-Wire production are generally slowly declining with a relatively constant output for a long time, making a harmonic function the best fit of the three (J. Breunese, personal communication, 18 July 2012). Figure 6 shows the development of production rate over time using a harmonic production function. The harmonic production function is given by 

 �fY ¢ �f|/(1 h dfY L Z) (4.2) 
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with 
Z  as the production day �f|  as the initial production rate �fY  as the production rate at time Z dfY  as the decline rate parameter  The decline rate is dependent on the production rate at time Z:  dfY ¢ (df| �f|⁄ ) L �fY. It fol-lows that the decline rate decreases when the production rate drops. In the case of electricity generation, the generator capacity can be lower than the production rate of the well, meaning that production is lower than indicated by the harmonic function. To reflect this capped produc-tion level, we calculate the decline rate by inserting the generator capacity instead of the well capacity if the latter is higher, leading to a slower decline. To avoid having to solve the equation for PRÖ at every time step, we approximate the production rate by using �fYÀc as input for the decline rate at time Z. 

 

Figure 6: Example of a harmonic production function developing over time, using a 7.3% annual decline 

rate. Production can be seen to decline at a decreasing rate.    

4.4. Price series for energy commodities 

In this section we discuss some properties of energy prices, which may be relevant for our 
model. In Chapter 5 we perform diagnostic tests to evaluate these characteristics; here we pro-
vide a more general discussion. Stock price forecasts are often modelled based on the Black-
Scholes model. This model states that prices follow a Geometric Brownian Motion 4GBM5 over 
time; a normal distribution of price changes with volatility being constant over time. There is a 
general consensus this model does not accurately describe the behaviour of price series of 
commodities 4Deng, 20005. The price of a commodity tends to revert back to a 4possibly time-
varying5 long-term equilibrium level (Deaton & Laroque, 1992; Pao, 2007). Some possible ex-
planations for this so-called ‘mean-reversion’ observed for energy commodities are the balance 
between supply and demand, economic planning and the cyclic development of exploration 
techniques (Anderluh, 2007). Producers may strive to maintain a price level which maximises 
profit in the long run, withholding commodities from the market in times of low prices (Dias, 
20045. The force reverting back to the mean becomes stronger the farther away from the equi-
librium level.  
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Another property which is not appropriately modelled with the GBM is the occurrence of price 
jumps (Merton, 1976). Jumps are most notably present in electricity prices and form a signifi-
cant risk in the energy market if not properly managed. The tails of a normal distribution do not 
capture such behaviour and therefore predict extreme price changes much more seldom than 
observed in practice. A sudden extremely sharp rise in energy prices can emerge due to an event 
such as a temporary supply shortage, for example caused by an outage or failure of the trans-
mission infrastructure (Blanco & Sonorow, 2001; Knittel & Roberts, 2005). Another explanation is the occurrence of periods with unexpectedly high demand (Christensen et al., 2011). The weather often plays a role in this. End-users generally pay a fixed contract price for electricity, making their demand inelastic with regard to the spot price. As the price tends to revert back quickly to its previous level after a jump, such an event is also called a spike in the series.  
The demand for energy is not constant, but varies over time both in the short and in the long term. In the gas demand, a clear seasonal pattern can be observed (Energy Information Admini-stration, 2011). Due to its application for heating, the demand for gas in the winter months is much higher than in the summer months. Electricity also has a seasonal demand pattern (Koopman et al., 2005). In the winter demand for electricity is higher, as more hours of lighting are required and more indoor activities take place. It is also possible that a higher electricity demand exists during the summer due to the use of air conditioning, yet this strongly depends on which market is analysed (He, 2007). Demand patterns can also be noted on shorter terms. Particularly because of industrial activity, a difference in energy demand between week and weekend days exists (Nogales et al., 2002). Furthermore, energy demand is higher during the day than during the night, even when comparing the hours of the day differences are observed. 
When considering the price of a commodity in finite supply as a function of marginal cost plus an interest rate, in the long term a U-shape of the price over time could be expected (Slade, 1982). Initially costs decrease due to technological development, thereby lowering the marginal costs. However, when resources are gradually depleted, it becomes more difficult to produce the commodity, hence increasing the marginal cost. At a certain point in time, the increased diffi-culty in production will outweigh technological development, which causes an upward drift in price from then on.  Natural gas production has existed for decades and gas becomes more diffi-cult to win, indicating that gas production is currently in the upward slope. 
As most electricity in the Netherlands is generated using natural gas, possibly a statistical rela-tionship exists between gas and electricity prices. The overall demand for energy affects both prices, while gas and electricity prices may affect each other directly as well. Though one would generally expect both prices to move in the same direction, a negative relationship is a possibil-ity as well. When other energy sources are used relatively more to generate electricity (such as an increased share of renewable energy), this will decrease the demand for natural gas and thus may decrease prices, while the electricity price could be unaffected.  
The GBM assumes that volatility remains constant over time. In reality, the volatility of energy prices often turns out to be variable over time. This feature, dubbed heteroskedasticity, exists in a conditional form (depending on previous values) and an unconditional form (Alexander, 2001). In the unconditional form periods of high and low volatility can be predicted, in the con-ditional form this is not possible. For energy commodities usually unconditional heteroskedas-ticity can be observed, for example as a result of seasonal patterns. 
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4.5. Sales strategies 

In this study we assume that all gas trading takes place based on oil-indexed contracts. This is 
the most common method in the current market. We assume that the producer can choose be-
tween a 3-0-3 and a 6-0-3 contract after the previous contract expires. Due to the convergence 
between GasTerra prices and TTF prices 4Section 2.8.1), we consider the publicly available TTF 
prices to be equivalent to the GasTerra prices. We presume that all electricity to be sold on the 
daily spot market, where prices are quoted for the next day. The producer then makes a produc-
tion decision on a daily basis. In Chapter 7 stochastic spot price models for gas and electricity 
are constructed. 
Aside from the contracts defined in this study, several other contract forms exist. This means 
that in reality other sales strategies than the ones described in the model can be used. For ex-
ample, futures contracts with several maturities can be traded. Over-the-counter contracts can 
be made between the producer and a third party, setting their own parties and conditions. For 
electricity also a special balance market exists. At this market, electricity is traded to correct 
misbalances at short notice (Schiffers, 2010). In swing contracts no fixed amount to be delivered 
is specified, instead leaving some slack for uncertainty in supply and demand. Finally, it is possi-
ble to sell gas or electricity on foreign markets as well, though this imposes some restrictions. 
The possibility of trading in futures contracts could influence the sales strategy particularly 
when the market is in backwardation or contango (McCormack et al., 20035. In backwardation, 
the prices of futures lie below the expected spot price. In such a case one could decide to sell the 
commodity now and buy the future contracts to retrieve the commodity cheaper at a later date. 
In contango, the price of a futures contract lies above that of the expected spot price. One could 
then make a profit could by physically holding the commodity and sell futures on the commod-
ity. This strategy is especially applicable to natural gas, as it can be stored easily and at low 
costs.  

4.6. Distance to transport network 

An important consideration when deciding whether or not to invest in a gas field is its distance 
to the gas- or electricity transport network. Connecting the field to the transport network re-
quires substantial investments, whether it is gas or electricity that is transported. The costs of 
transporting gas or electricity to the main grid are dependent on the distance to the 4nearest5 
connection point, the surface it must cross, whether the grid must be laid in sea or on land etc. 
The most straightforward models for this determine the Euclidian distances between the gas 
field and the chosen connection point to supply the gas or electricity. We may use this simple 
approach to obtain a rough estimate for the costs, but a more detailed cost profile should be 
determined individually for each project. A possibility that could be considered in future studies 
is the development of central hubs, to which several gas fields can connect. From this central 
hub further transport could take place, reducing the costs to connect to the grid for the pro-
ducer. Such hubs currently do not exist. In this study, we assume a distance of 10 kilometres to 
the electricity transport network, which is considered a moderate distance. 

4.7. Generator properties 

The current price of a gas turbine or motor required for Gas-to-Wire production is about 8 mil-
lion euro. A single generator can convert 50.000 m3 to electricity daily. It is expected to be able 
to produce ten to fifteen years, after that a big revision of about 3 million euro is required. The 
minimum input required is about half of its capacity, under this level the generator has difficul-
ties to remain operating. Though generators are flexible units, they are still subject to limitations 
and constraints which decrease the production levels compared to theoretically optimal produc-
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tion. He 420075 identifies some physical constraints on electricity-generating facilities. As Gas-
to-Wire is a recent innovation, only rough estimates about generator properties are available. 

� Efficiency: The efficiency of a generator is related to the capacity utilised. Often a gen-
erator reaches optimal efficiency when producing at its maximum capacity. A generator 
has an efficiency of 35 to 40%, meaning that up to 65% of the energetic value of natural 
gas is lost in the generation process 4Janssen et al., 2012). In consultation with TNO we 
assume a generator with a slightly higher efficiency of 45%. 

� Ramp rate: The gas supply to a generator needs to change monotonically. Therefore, a 
certain amount of time is required to change the generation capacity from one level to 
the other. Compared to other power plants, this rate is quite short: within minutes the 
desired rate can be reached. When a generator produces for an entire day, the ramp rate 
can be ignored without strong consequences. 

� Minimum up time and down time: Though generators are flexible, the supply of gas 
cannot instantly be opened or stopped. For this reason, a generator has to keep running 
for a certain amount of time when started, and must stay down for a certain amount of 
time when shut down as well. Again, when production decisions are made for daily pro-
duction we believe this aspect can be neglected.  

� Startup and shutdown cost: Usually some costs are made when starting up or shutting 
down a generator. A distinction can be made between a straight cost component and a 
fuel cost component. These costs are influenced by several other factors as well. In this 
study we incorporate startup- and shutdown costs in the variable costs. 

� Breakdown rate: Generators are subject to unexpected breakdowns, requiring repara-
tion before production can be continued. It is not known when a generator will break 
down and how long reparation will take. Such events are often modelled by means of a 
Poisson process 4or another distribution fitting the characteristics of the breakdown 
rate5, allowing for simulation of random breakdown events and uncertain repair times. 
For a well-maintained generator the breakdown rate is low, we consider it to be zero.  

� Maintenance rate: Apart from unexpected breakdowns, a generator needs regular 
maintenance. Unlike reparations, maintenance can be planned in advance. The mainte-
nance rate can be modelled as a fixed percentage of down time. Downtime is roughly 2% 
a year; we assume that maintenance takes place during non-production days. The an-
nual maintenance costs lie about 15% of the purchasing cost of the generator.  

4.8. Dutch tax regime When calculating the free cash flows related to the projects, it is necessary to pay attention to the tax regime (Sureth, 2002; Kretzschmar et al., 2005). Changes in taxation affect the value of a real option; Kretzschmar et al. (2005) state that a dynamic tax forecast significantly impacts the option value, as unlike for financial options the tax effect on the asset and the real option cannot be separated. We provide a short overview of the Dutch tax regime on gas producers in this sec-tion. The current profit tax rate is 20% on annual profits up to € 200,000 and 25% for all profits over that amount (See Article 22, Wet op de vennootschapsbelasting 1969, 2012). Over the past years, a decreasing trend in Dutch profit tax rates can be observed. In a 2011 report, KPGM states that they believe a worldwide trend of decreasing corporate tax rates has come to an end, and no further sharp decreases should be expected (Kannekens & Campbell, 2011).  
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Currently fiscal losses can be subtracted from the taxable profits over the previous year 4carry 
back5 and the nine following years 4carry forward5, as described in Article 15ab of the Wet op de vennootschapsbelasting 1969 (2012). In the oil and gas industry, the carry forward principle is particularly important for compensating costs made during the exploration phase and setting up the production installation. The carry back principle is especially applicable for the costs in-curred during the abandonment phase after the field is exploited. Intermediate losses can also be deducted, but the losses incurred before and after the production phase are generally most significant. Under Dutch legislation, carry back has priority over carry forward when both are applicable (Lips, 2010). 
Taxable income is often defined as the Earning Before Taxes (EBT). This income is, in its most basic form, given by 

 Earnings Before Tax ¢ Revenues – Expenses (4.3) 
Expenses consist not only of operation costs, but also overhead costs (e.g., administrative costs), 
interest costs, depreciation, amortisation etc. Tax regulation should be applied to properly allo-
cate such costs on a specific project. In particular the effect of depreciation on free cash flows 
can be significant. Most commonly, depreciation is done by taking the difference between the 
initial investment and the expected salvage value (Belastingdienst, 2012). This difference is 
divided by the economic or technical life time, whichever is shorter. A maximum of 20% of the 
investment can be subtracted from profit annually. After a depreciation method has been cho-
sen, it must be applied consistently (Jorissen et al., 2009). In the option model, we perform de-
preciation linearly in accordance with the technological lifetime of the investment. 
Apart from the profit taxes (which are paid to the Ministry of Finance), gas producers are also 
obliged to pay a 12% royalty of their annual revenue to the Ministry of Economic Affairs, as the 
natural gas resources are property of the Dutch state. Gas producers exploiting marginal fields 
at the North Sea are allowed to deduct 25% of their investment costs from the profit over which 
they are supposed to pay profit taxes to the state 4Rijksoverheid, 2012c). With this measure, the 
Dutch government seeks to stimulate the development of gas fields which are otherwise eco-
nomically unattractive.  

4.9. Legal developments 

A factor which potentially has a great impact on the profitability of exploiting minor gas fields is 
legislation 4Mun, 20025. This section highlights some relevant legal developments in the indus-
try. Due to their uncertain nature these are not included in the model, but may serve to interpret 
the results based on current legislation. We expect that new regulation and/or fiscal measures 
will be favourable towards innovative exploitation of minor gas fields. The rationale behind this 
is that the government wishes to stimulate exploitation, but under the current conditions this is 
hardly feasible from an economical point of view. 
No clear legislation yet exists on the direct generation of electricity from small gas fields. Where 
there is a guarantee that gas produced from small fields can be sold to GasTerra, in the electric-
ity market there is no comparable rule or trading party. Also it is not known yet how the gener-
ated electricity will be put to use. For example, electricity generated from the fields could be 
used to stabilise the intermittent output of windmills.   
In the framework of renewable energy biogas may become an issue. This gas can be mixed with 
natural gas, thereby partly fulfilling the demand of natural. Further electricity produced from 
renewable sources has preference over electricity generated from other sources. As the gov-
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ernment attempts to stimulate the use of renewable sources, the effect of their policies might 
affect the conventional production of natural gas 4European Commission, 20085.  
The small fields policy is related to the balancing function of the Groningen gas field, which 
meets the demand which is not met by other Dutch gas fields. In roughly fifteen years the Gron-
ingen gas field will no longer be able to meet the remaining demand completely. The Nether-
lands will then have to import natural gas as well. When this happens, there is a realistic possi-
bility that the current small fields policy will undergo a significant transformation to adapt to 
the new situation. 
It is common practice that produced gas is compressed and subsequently delivered to the main 
transportation network. For minor gas fields, we can imagine that such fields will deliver di-
rectly to the low-pressure distribution network or a specific client. This form of exploitation 
does not fall under the small fields policy, hence producers are not protected by means of a 
guaranteed sales contract. When direct production for low-pressure networks will be intro-
duced, new regulation could be implemented.  
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Chapter 5 
 

5. Diagnostic testing of price data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Diagnostic testing is an important concept in modelling price series. When ap-
plied on historical data, it provides insight in the characteristics of the series. 
This insight allows picking suitable techniques for the forecasting models. After 
modelling is completed, we can also apply diagnostic testing to check if assump-
tions have been satisfied. In this chapter our focus lies on the testing the proper-
ties of the raw data. Appendix II shows the results of diagnostic testing on the 
residuals of the price models as constructed in Chapter 7.   
We perform diagnostic tests for normality, autocorrelation, stationarity, mean-
reversion, time effects, correlation and cointegration between gas and electricity 
series. A brief theoretical introduction is provided for each test performed. We 
include graphs and plots to visually illustrate the behaviour of the series. 
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5.1. Purpose of diagnostic testing 

In finance, the price development of an asset is often described as a time series: a sequence of 
price observations over time. When forecasting the development of a certain price series, the 
model should capture the features incorporated in the actual series. Before attempting to model 
a price series, we should perform several diagnostic tests on the available historical data to gain 
insight in the properties of the series. Based on these properties, we can make an underpinned 
choice for the modelling techniques to be applied. After a model has been constructed, diagnos-
tic testing again is required to test whether theoretical assumptions are met. A significance level of 0.05 or 0.01 is most common in diagnostic testing (Keuzenkamp & Magnus, 1995). In this chapter we adopt a significance level of 0.05 for all tests applied. As the purpose of the tests is mainly to gain insight into the behaviour of the series, we feel that a level of 0.01 would be too strict. Several tests are performed with the commercial software package EViews 7.  

5.2. Historical data sets We perform diagnostic testing on the historical data for gas and electricity prices. The sample containing gas prices was obtained from the website of APX. It contains daily gas prices (All-Day Index, expressed in euro per MWh) from 2 January 2006 up until 31 December 2011. APX calcu-lates these prices by taking the volume-weighted average price of all orders delivered during the day (APX-ENDEX, 2012). As such, no prices are available for days during which no transactions took place (356 in total). Only the first two years of the set include daily prices for every day of the year. For this reason, not all week days are equally represented, and small gaps exist be-tween consecutive prices. For analytical convenience we ignore these gaps; we act as if all prices follow each other up directly. An alternative would be to fill the gaps with estimated prices, us-ing techniques such as interpolation or some forecasting model. However, this way we would make assumptions about the behaviour of the series beforehand, contradicting the purpose of this chapter. Still, we realise that the use of discontinuous data may influence the results of our tests, particularly when time lags play a role. We therefore check whether the full data set has the same distribution as the 2006-2007 subset, as the latter contains no gaps. For this, we use Kuiper’s test,4 which tests the null hypothesis that the empirical cumulative distributions of both sets are equivalent. Its test statistic is defined by (Stephens, 1965): 

 Ø
ÙÚ ��Û� h �Û h 0.155 h 0.24

Ü ��Û� h �Û Ý
Þ

L ß supÀàáVâáàÍX`â ãää(�Y) ¿ X`aåãæ(�Y)Î ¿ infÀàáVâáàÍX`â ãää(�Y) ¿ X`aåãæ(�Y)Îç 
(5.1) 

with � and �Û as the number of observations in the full set and the subset respectively, X`a as the empirical cumulative distribution function, and �Y as the price at time Z. We find that our calcu-lated test value of 4.138... exceeds the 5% critical value of 1.747 (Stephens, 1970). We therefore reject H0, and find that the subset and the full set have different empirical distributions. This result does not lead us to definite conclusions (with large samples even small differences may be significant), but the difference might be caused by the inconsistencies within the full set. We use the 2006-2007 subset to double-check the outcomes of our tests, when we find notable differ-ences we report these in the results. 
                                                                 
4 Kuiper’s test is closely related to the Kolmogorov-Smirnov test. In comparison, it is better able to deal with tail 
deviations and patterns in the data, making it more fitting for the gas price series we compare. It requires no 
assumptions about the distribution of the data, or dividing data in bins such as the chi-square test. 
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In 2005, the Dutch electricity exchange APX closed access to historical electricity prices, making 
data available only to paying members 4Enreadt, 20055. We received a set of electricity prices 
from APX for the purpose of this study. The sample includes daily electricity prices 4base prices5 from 1 November 1999 until 23 March 2012; prices are quoted for all days. Prices are expressed in euro per MWh. It should be noted that electricity prices are also quoted intra-daily (hourly or a custom time interval). Prices fluctuate significantly during a day, so that in practice trading on the spot market consists of more than trading on a daily basis. Intra-daily data were not avail-able for this research. 

5.3. Visual observation of price series 

As the first testing step, we informally assess the series by visually analysing their pattern over 
time. This gives us an indication of the relevant properties of the series. Also it may provide us 
with information not picked up by formal tests. We provide plots of the daily gas price 4Figure 
75 and the daily electricity price 4Figure 85 of the available data. Figure 9 combines both graphs 
in one plot, including only days for which both prices are quoted. The calendar years on the x-
axes are shown on fixed 400-day intervals (gas) and 1000-day intervals (electricity); remember 
that for the gas series not all years have an equal amount of data. 

 
Figure 7: Gas prices APX 2006-2011. In the long terms prices seem to fluctuate around 18 €/MWh. Peri-

ods of high and low volatility appear to alternate. 

The price series in Figure 7 appears to fluctuate around a certain equilibrium level, moving only 
little in the long run. A wave-like shape can be observed. The time frame is too short however to 
see whether it is a recurring sine-like pattern, a slow mean-reverting process, or perhaps com-
pletely random. The wave is too long to be explained by annual seasonal effects, with roughly 
three years between the peaks. Periods of high and low volatility can be distinguished. On the 
left side of the graph a remarkable price spike can be observed. We informally checked some 
possible explanatory factors such as the weather, electricity prices, and incidents in the industry, 
but found no qualitative explanation why this particular spike occurred. 
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Figure 8: Electricity prices APX 1999-2012. The spikes can be clearly distinguished from the regular 

price levels. Volatility can be seen to decrease over the years. Closer observation reveals a mild seasonal 

pattern. 

Consistent with the theoretic assumptions of electricity price behaviour, the price series for 
electricity as shown in Figure 8 is highly volatile. Occasionally large spikes are observed, with 
prices far exceeding the average price level for a short period of time. Further a recurring wave 
pattern may be observed, possibly indicating seasonal effects and mean-reversion.  

 
Figure 9: Gas price and modified electricity price series 2006-2011. Peaks and dips seem to coincide at 

some points (e.g., between 2008-2009), but the electricity prices are seen to be much more volatile. 

By taking the first difference of a price series, we obtain the 4raw5 return series. Diagnostic test-
ing is generally performed on return series rather than on price series, as these have several 
analytical properties not found in price series 4Quantitivity.wordpress.com, 2011). Often loga-
rithmic returns are used in econometric analysis; these approximate the value of raw returns for 
small price differences. Logarithmic returns are defined by the expression pY ¢ o� ( �Y �YÀc⁄ ). 
Unlike a prices series, a logarithmic return series provides values of an equal measure. If prices 
are assumed to be lognormally distributed, then their corresponding logarithmic returns are 
normally distributed. Logarithmic returns can be summed to obtain the compounded return 
over a period of time, thereby retaining the normality property. Finally, logarithmic returns are 
mathematically convenient when performing operations such as differentiation and integration. 
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A shortcoming of logarithmic returns is that they cannot be calculated when negative prices 
exist.5 When we use the term ‘return’ in this study, we always refer to the logarithmic return.  
In Figure 10 and Figure 11, we plot the daily logarithmic returns for natural gas and electricity 
respectively. The gas returns appear to show some volatility clustering, containing periods of 
highly volatile returns as well as periods of low volatility. Some rare spikes in returns can be 
clearly distinguished in Figure 10. The electricity returns in Figure 11 exhibit a strongly volatile 
pattern. Spikes occur quite frequently. After the liberalisation of the Dutch energy market in 
2004, the return pattern becomes notably less extreme. In general, the volatility of electricity 
returns seems to have decreased over the years.   

 
Figure 10: Daily logarithmic gas returns APX 2006-2011. Alternating periods of high and low volatility 

can be distinguished. 

 
Figure 11: Daily logarithmic electricity returns APX 1999-2012. The decreasing trend in volatility can be 

clearly observed here. 

                                                                 
5 Negative prices can occur in electricity pricing, but are not present in the APX sample. 
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5.4. Stationarity  

5.4.1. Theory of stationarity 

An important aspect to consider when modelling a time series is stationarity. Intuitively, a sta-
tionary process is a data-generating process that remains the same over time. Stationary series 
have convenient analytical properties not present in nonstationary series, allowing to perform 
several statistical tests which are not applicable to nonstationary series 4Alexander, 2001; 
Mishra et al., 2010). We can make a distinction between strong stationarity and weak stationar-
ity. A return series pc, … , pY is strongly stationary if the joint distribution ¨(pc), … , ¨(pY)  is the 
same as the joint distribution ¨(pcÌ�), … , ¨(pYÌ�), where Z is a finite number of points and P can 
be any integer (Myers, 1989). In other words, the distribution is independent of the point in 
time; any time frame of Z points should have the same distribution. A series is considered weakly 
stationary if a covariance between ¨(pY) and ¨(pYÌ�) exists which depends solely on P for any 
¨(pY), ¨(pYÌ�). This implies that both the expected value and the variance of ¨(p) do not depend 
on the point in time. Weak stationarity is measured by taking the first difference of the series 
and creating a new series from it (i.e., ∆pY ¢ pYÌc ¿ pY for all Z), applying a stationarity test on 
the new series. When a time series happens to be nonstationary, it is usually transformed in 
such a way it becomes weakly stationary. This can be done by inserting variables which explain 
certain movements in the series, such as a linear trend. A well-known test to check a series for 
weak stationarity is the augmented Dickey-Fuller (ADF) test. Other stationarity tests include the 
original Dickey-Fuller test and the Philip-Perron test 4Wang & Tomek, 20045. We apply the ADF 
test as it often provides the best results for finite samples. We explain the ADF test based on the 
original test and its later extension. 
The original Dickey-Fuller test checks for the presence of autocorrelation � between pY and pYÀc. 
The series is nonstationary if such a correlation is found (Yaffee & McGee, 1999). Three versions 
of the test exist: testing for a lagged term, a lagged term with an intercept (i.e., a constant allow-
ing for a mean other than 0) and a lagged term with an intercept and a deterministic time trend. 
Not accounting for a constant or trend could substantially reduce the power of the test when it is 
actually present in the series. Incorrect inclusion of these factors can also reduce the power of 
the test. The original Dickey-Fuller test presumes that residuals follow a Geometric Brownian 
Motion, causing a misfit when higher-order autocorrelation is present in the series. The aug-
mented Dickey-Fuller test builds on the original test, but removes autocorrelation for higher 
lags up to a specified number. The test requires specifying a number of P lags to be set, while the 
real number of lags is usually unknown. A common method for this is to use an information cri-
terion, comparing the extra explanatory value of adding a lag to the cost of adding an extra pa-
rameter. Calculating an information criterion helps to select the optimal number of lags. The 
augmented Dickey-Fuller test is performed on the following model. 

 ∆pY ¢ X h TZ h (� ¿ 1)pYÀc h �c∆pYÀc h é h ��Àc∆pYÀ�Ìc h qY (5.2) 
with X as a constant, T as a deterministic time trend, � as the correlation between pY and pYÀc, P 
as an indicator for the lag size, ��Àc as a weight parameter, ∆pYÀ�Ìc as a lag term and qY as the 
error term at time Z. 
The critical values from the t-distribution cannot be applied for the Dickey-Fuller test. Instead, 
the test has a table with its own critical values. The test statistic of the augmented Dickey-Fuller 
test is given by dividing the estimator of � ¿ 1 by its own standard error. The test defines the 
null hypothesis as � ¢ 1. If this is the case, it follows that pY ¿ pYÀc ¢ qY (ignoring deterministic- 
and lag effects), which means that the series follows a random walk and as such is not stationary 
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(Hurn, 2009). If the null hypothesis is rejected (which happens when the test statistic is smaller 
than the critical value, the test statistic is a negative number), this means that no unit root is 
found in the series, so the series is stationary. The augmented Dickey-Fuller test can be 
performed in EViews, the program determines the optimal number of lags according to the 
selected information criterion.  

5.4.2. Results of testing for stationarity 

We test the return series for stationarity, performing the augmented Dickey-Fuller test in 
EViews. The test is performed for a constant and a linear trend. The linear trend is particularly 
relevant for the electricity price series, which appears to have a decreasing trend in the size of 
returns. The results of the stationarity tests are presented in Figure 12 and Figure 13. For both series, the null hypothesis of nonstationarity is soundly rejected at the 5% level. Hence, both return series appear to be stationary. We checked whether the tests would provide different outcomes when assuming no linear trend, but for both series the null hypothesis was still re-jected. Further we tested for the 2006-2007 subset for gas, for which {| is also rejected. These results not shown here. As the test results indicate that both return series are stationary, we can apply other diagnostic tests on them without further modification. 
Null hypothesis: Gas returns  has a unit root Exogenous: Constant, Linear trend Lag Length: 12 (Automatic – based on AIC, maxlag¢24)  t-statistic Prob.* Augmented DickeyAugmented DickeyAugmented DickeyAugmented Dickey----Fuller test statisticFuller test statisticFuller test statisticFuller test statistic    ----14.3545514.3545514.3545514.35455    0.00000.00000.00000.0000    Test critical values: 1% level -3.963084    5% level -3.412275    10% level -3.128070       *MacKinnon (1996) one-sided p-values. 
Figure 12: EViews results of augmented Dickey-Fuller test on gas return series. The test statistic is 

smaller than the critical values, indicating that the series is stationary. 

Null hypothesis: Electricity returns has a unit root Exogenous: Constant, Linear trend Lag Length: 31 (Automatic – based on AIC, maxlag¢31)  t-statistic Prob.* Augmented DickeyAugmented DickeyAugmented DickeyAugmented Dickey----Fuller test statisticFuller test statisticFuller test statisticFuller test statistic    ----16.5554616.5554616.5554616.55546    0.00000.00000.00000.0000    Test critical values: 1% level -3.960078    5% level -3.410804    10% level -3.127197       *MacKinnon (1996) one-sided p-values. 
Figure 13: EViews results of augmented Dickey-Fuller test on electricity return series. The test statistic is 

smaller than the critical values, indicating that the series is stationary. 

In Section 5.5, we also test the price series for stationarity, finding that the electricity price se-ries is stationary as well. We want to explain the implications these results could have for our diagnostic tests. The stationarity of the electricity price series indicates that we could apply some diagnostic tests directly on this series. This may be preferable, because with the conver-sion from prices to returns some information is lost. However, the gas price series is not station-ary, for comparability we continue testing on the return series. Also, in general literature de-scribes tests only for return series, these may require modification for testing on price series. Finally, our interest is in constructing price-generating processes, so that we are more inter-ested in the properties of the return series. 
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5.5. Cointegration 

5.5.1. Theory of cointegration 

When two or more price series appear to be moving in the same direction in the long term, these 
series could be cointegrated 4Mandal & Van de Weide, 2011a). This means that the series share 
a common stochastic drift; the spread between the series is mean-reverting. If two or more non-
stationary time series have a linear combination that is stationary, these series are cointegrated. 
When one or more series are stationary, cointegration cannot exist. Two series are considered 
cointegrated if they are both nonstationary, but there exists a linear combination ¥Y that is sta-
tionary (Engle & Granger, 1987): 

 ¥Y ¢ ��,Y ¿ ���,Y (5.3) 
with ¥Y as the linear combination, ��,Y and ��,Y as the gas and electricity prices respectively, and 
� as a weighting parameter. Obviously we could use a more general description of the right-
hand side series as well.  
Several tests exist for identifying cointegration relationships. The Engle-Granger test is strongly 
based on the augmented Dickey-Fuller test (Engle & Granger, 1987). A problem with this test is 
that � in (5.3) will be wrongly estimated when the series are in fact not cointegrated. Regres-
sion will then result in a value of � minimising the error, causing the null hypothesis to be re-
jected too often. A further disadvantage of the Engle-Granger test is that it only allows testing for 
a single cointegration relationship at a time (Alexander, 2001). A test that allows testing for 
multiple cointegration relationships simultaneously is the Johansen procedure. This procedure 
is commonly applied when testing for cointegration (Sørensen, 2005). In its general form, ¥Y is 
described as a vector of � nonstationary time series. These are cointegrated when �� ì � sta-
tionary linear combinations exist, where �� stands for the rank number. The Johansen proce-
dure is performed on the following model (Johansen, 1991; Segura & Braun, 20045: 

 
∆¥Y ¢ í¥YÀ� h îc∆¥YÀc h é h î�∆¥YÀ�Ìc h ��Y h qY 

∆¥Y ¢ ïcïÛ_¥YÀ� h îc∆¥YÀc h é h î�∆¥YÀ�Ìc h ��Y h qY 
45.45 

with P as the lag order, � as a weighting parameter, �Y as a vector containing deterministic re-
gressors 4such as a constant, trend, seasonal effects etc.5, îc to î� as � � � matrices and qY as the 
error term at time Z. If the hypothesis holds that the series are cointegrated, it follows that 
ïcïÛ_ ¢ í. í is an � � � matrix being the product of ïc and ïÛ_     4ïÛ_     is a scaled matrix of ï_5, which 
are matrices of the size � � �� and �� � � respectively. To find the cointegration rank, the num-
ber of linear correlations between ∆¥Y and ¥YÀc after removal of autocorrelation is tested. First, 
we introduce three new variables: 

 
©|Y ¢ ∆¥Y 

©cY ¢ 4∆¥ÛYÀc, … , ∆¥ÛYÀ�Ìc, �Y , 1)Û 
©�Y ¢ ¥YÀ� 

(5.5) 

From these terms, matrices ðHI are defined as 

 ðHI ¢ wÀc Ê ©HY©FIY
v

YËc
 (5.65 
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Here, w is the number of observations in the series and J and K are state indicators having a value 
of 0, 1 or P. ©|Y and ©�Y are regressed on ©cY using least squares regression, yielding residuals 
f|Y and f�Y respectively. In a sense, this regression filters out the deterministic effects and dis-
turbances considered noise. The residual sum of squares is denoted as 

 f��HI ¢ 1
w Ê fHYfÛIY

v

YËc
 (5.75 

The residual sums of squares can be used to estimate í, namely by f����Àcf���|. The matrix ï_ is 
estimated as the eigenvectors of the residuals which represent a cointegration relationship. The 
corresponding eigenvalues inH  for each column of eigenvectors can be found by solving  

 ñinH ¿ f����
Àc _⁄ f���|f��||Àcf��|�f��Û��

Àc _⁄ ñ ¢ 0 45.85 
The maximum likelihood function for �� is given by 

 òzyóÀ_ v⁄ (��5 ¢ |f��||| ô(1 ¿ inõö )
ÂÔ

HËc
 (5.95 

This function is maximised when all eigenvalues up to and including inÂÔ are nonzero, while all higher eigenvalues are 0. The Johansen procedure is a sequential test, starting at testing the 
hypothesis of 0 cointegrating relations and moving up to the point it fails to reject the hypothe-
sis. The test statistic for the presence of �� cointegration relations is given by 

 }{4~��|�5 ¢ ¿w Ê o�41 ¿ inH)
§

HËÂÔÌc
 (5.10) 

Due to the nonstationarity of the time series eligible for the procedure, the Johansen procedure 
has its own table with critical values, to which the calculated test statistic is compared. When 
multiple cointegration relations are found, the forecasting series can be modelled using a Vector 
Error Correction (VEC) model. A VEC model is essentially a VAR model as briefly explained in 
Section 5.10, expanded with terms to account for the cointegration relationship (Engle & 
Granger, 1987). The results of the Johansen test help establishing such a model.  

5.5.2. Results of cointegration testing 

Before testing the price series for possible cointegration, first we must test the price series (in-
stead of the return series tested previously) on stationarity, again using the Augmented Dickey-
Fuller test. For series to be cointegrated, both series must be nonstationary, but a stationary 
linear combination of both should exist. We show the results of the tests in Figure 14 and Figure 
15. At the 5% level, the t-statistic for the gas price series is higher than the 5% critical value; it 
follows that the price series for gas is not proven to be stationary. For the electricity price series, 
the hypothesis of nonstationarity is rejected at the 5% level, indicating that the electricity price 
series is stationary. Because one of the series is stationary, cointegration between both price 
series cannot exist. No further testing is required. 
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Null hypothesis: Gas prices has a unit root 
Exogenous: Constant, Linear trend 
Lag Length: 13 (Automatic – based on AIC, maxlag=24) 
 t-statistic Prob.* 
Augmented DickeyAugmented DickeyAugmented DickeyAugmented Dickey----Fuller test statisticFuller test statisticFuller test statisticFuller test statistic    ----2.7221922.7221922.7221922.722192    0.22760.22760.22760.2276    
Test critical values: 1% level -3.963084  
  5% level -3.412275    10% level -3.128070       *MacKinnon (1996) one-sided p-values. 
Figure 14: EViews results of augmented Dickey-Fuller test on gas price series, indicating nonstationarity. 

Null hypothesis: Electricity prices has a unit root Exogenous: Constant, Linear trend Lag Length: 30 (Automatic – based on AIC, maxlag¢31)  t-statistic Prob.* Augmented DickeyAugmented DickeyAugmented DickeyAugmented Dickey----Fuller test statisticFuller test statisticFuller test statisticFuller test statistic    ----7.0203797.0203797.0203797.020379    0.00000.00000.00000.0000    Test critical values: 1% level -3.960078    5% level -3.410804    10% level -3.127197       *MacKinnon (1996) one-sided p-values. 
Figure 15: EViews results of augmented Dickey-Fuller on electricity price series, indicating stationarity. 

5.6. Autocorrelation 

5.6.1. Theory of autocorrelation Autocorrelation is the correlation between two observations in the same time series, where the lag indicates the number of time steps between both observations (Taylor, 2008). It is of inter-est to test for autocorrelation of returns, as it gives insight in how returns are related over time. For example, negative autocorrelation indicates that positive returns tend to be followed by negative returns and vice versa, such information can be used when constructing the forecasting model. To see whether returns exhibit volatility clustering, an autocorrelation test can be per-formed on the squared returns (Mandal & Van der Weide, 2011b). Alternating positive and negative returns may have similar volatilities, but this is only observed when all tested observa-tions have the same sign.  
A simple autocorrelation test is the Box-Pierce test. Its test statistic is the weighted sum of squares of autocorrelation for each lag. The idea behind the test is that for a large number of observations, the test statistic would be distributed according to a chi-square distribution. The test was later improved by Ljung & Box so that the test statistic would more closely resemble the chi-square distribution (Ljung & Box, 1978). Nowadays the Ljung-Box test is the most com-mon autocorrelation test. We provide the Ljung-Box test statistic (also known as Q-statistic) in Equation (5.11). 

 � ¢ �(� h 2) Ê �DH_� ¿ J�
HËc  (5.11) 

where � is the sample size, P the number of lags being tested, and �DH  the sample autocorrelation at lag J, defined as 
 �DH ¢ Ê pYpYÀ�§

YË�Ìc / Ê pY_
§
YËc  (5.12) 
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where pY describes the observation at time Z. Note that the test statistic is additive: if autocorre-
lation is significant for a certain lag length, it is also significant for all greater lag lengths. The 
null hypothesis states that data are i.i.d., and is rejected for the chosen significance level b if the 
test statistic exceeds the critical value as specified in the chi-square distribution: � ÷ [(\,]^)_ , 
where the degrees of freedom `a are equal to the number of lags P. 
One of the issues when performing the Ljung-Box test is the question up to which number of lags 
the data should be tested. Testing for an insufficient number could potentially ignore correla-
tions between data, yet testing for too many lags negatively affects the robustness of the test. 
Burns (2002) suggest that the number of lags should be no more than 5% of the length of the 
series. Due to day-of-the-week effects described in literature, the autocorrelation test should at 
least include 7 lags, corresponding to the 7 days in a week. We can imagine autocorrelation ef-
fects spanning much larger time frames as well though, for example annual effects. 
After a time series is modelled, residuals should have no clear pattern remaining. Instead only 
random errors should occur. Therefore, no autocorrelation between the error terms should ex-
ist. The Ljung-Box test can be applied on the residuals to test whether this condition is satisfied. 

5.6.2. Results of testing for autocorrelation 

We test the return series for the presence of autocorrelation in EViews. We present the test re-
sults in the form of a correlogram. Autocorrelation (denoted as ‘AC’) is tested up to 36 lags. In 
addition, also partial correlations are tested (denoted as ‘PAC’ in the correlogram). The partial 
correlations represent the autocorrelation remaining after taking removing the effect of auto-
correlation for smaller lags. For each lag the Ljung-Box test statistic is provided (‘Q-stat’ in the 
correlogram), indicating whether autocorrelation is present at that lag. The probabilities in the 
correlogram (‘Prob. H0’) show the probability that the null hypothesis of no autocorrelation 
holds. Because the Ljung-Box test statistic is additive, a significant correlation for a certain lag 
means that autocorrelation is significant for all higher lags as well. The significance of the indi-
vidual correlation coefficients is indicated by dotted lines, EViews uses ø2 √�⁄  as the 5% stan-
dard error bounds. 
The correlogram for gas returns (Figure 16) provides high Ljung-Box Q-stats and low corre-
sponding probability values, indicating that significant autocorrelation is present. The first auto-
correlation term is negative and quite notable; all other autocorrelation terms are generally 
insignificant and appear to be random in sign. However, performing the same test on the 2006-
2007 subset provides a very comparable autocorrelation pattern. Of course the subset, since it 
comprises a substantial part of the full set, has a strong effect on the pattern of the full set as 
well. Still, this result may indicate some pattern for which we have no explanation. We assess the 
strong first-lag negative autocorrelation+ in Chapter 7 by estimating a mean-reverting model, 
which by nature incorporates negative correlation between returns. Higher-lag autocorrelation 
is not addressed further, as it is generally insignificant and lacks a clear pattern. 

The correlogram for electricity returns (Figure 17) shows a repeating autocorrelation pattern, 
each time having six consecutive negative autocorrelations followed by one large positive auto-
correlation term.  This pattern can be explained by the large prize differences between week- 
and weekend days. The positive seventh lag correlation is mainly caused by the strongly nega-
tive returns occurring on most Saturdays; from Equation (5.12) it follows that this yields highly 
positive autocorrelation estimates. For lags other than (a product of) seven, these negative re-
turns may have either a positive or negative effect on autocorrelation, depending on the sign of 
the return we compare it to. The fact that most lags show negative correlation indicates that the 
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series in general exhibits negative autocorrelation, and that only the weekend day effect breaks 
this pattern. Partial correlations are particularly notable within the same week, but the weekly 
effects remain observable also for larger lags. The Ljung-Box test indicates that the autocorrela-
tion is significant. Note that, opposed to the gas price series, most higher-lag autocorrelation is 
significant as well. In Section 7.3 we assess this autocorrelation pattern by incorporating binary 
variables for each day of the week. 
We also perform the Ljung-Box test on the squared returns of gas and electricity to check for 
volatility clustering. The corresponding correlograms are not displayed in this study. The 
squared gas returns are significantly autocorrelated, indicating volatility clustering. Especially 
the first and sixth lag display strong autocorrelation. It is difficult to provide a qualitative expla-
nation for this effect, partially because the irregularity of price data. We will not address the 
observed sixth lag autocorrelation further. Autocorrelation is also significantly present in the 
squared electricity returns, displaying a weekly pattern as well. 

Autocorrelation Partial correlation Lag AC PAC Q-stat Prob. H0 

       1 -0.154 -0.154 43.851 0.000 2 0.000 -0.025 43.852 0.000 
3 -0.034 -0.038 45.937 0.000 
4 -0.009 -0.020 46.074 0.000 
5 0.067 0.063 54.459 0.000 
6 -0.055 -0.037 59.956 0.000 
7 -0.036 -0.051 62.368 0.000 
8 -0.047 -0.060 66.502 0.000 
9 -0.025 -0.047 67.630 0.000 10 0.000 -0.022 67.630 0.000 11 -0.030 -0.035 69.280 0.000 12 0.027 0.017 70.649 0.000 13 -0.064 -0.060 78.151 0.000 14 0.016 -0.009 78.635 0.000 15 0.012 0.004 78.895 0.000 16 -0.007 -0.013 78.985 0.000 

17 0.015 0.001 79.395 0.000 
18 -0.047 -0.042 83.437 0.000 
19 -0.018 -0.043 84.007 0.000 
20 0.052 0.035 89.040 0.000 21 -0.041 -0.037 92.159 0.000 22 0.026 0.007 93.373 0.000 
23 0.002 0.014 93.379 0.000 
24 0.026 0.023 94.591 0.000 25 -0.002 -0.003 94.597 0.000 
26 0.006 0.005 94.672 0.000 
27 0.007 0.004 94.765 0.000 
28 -0.042 -0.042 98.031 0.000 
29 0.004 -0.015 98.057 0.000 
30 -0.015 -0.014 98.466 0.000 31 -0.002 -0.100 98.475 0.000 
32 0.000 -0.007 98.475 0.000 
33 0.000 0.014 98.475 0.000 
34 -0.015 -0.022 98.922 0.000 
35 -0.012 -0.019 99.186 0.000 36 -0.014 -0.027 99.556 0.000 

     

Figure 16: Correlogram for gas returns, testing for autocorrelation up to 36 lags. Significant autocorrela-

tion is present in the sample; the dotted lines indicate the 5% standard errors (±0.047). Higher lags 

appear to have random signs. 
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Autocorrelation Partial correlation Lag AC PAC Q-stat Prob. H0 
       

  

1 -0.173 -0.173 136.08 0.000 2 -0.204 -0.241 324.14 0.000 3 -0.082 -0.184 354.84 0.000 
4 -0.052 -0.183 366.91 0.000 
5 -0.178 -0.351 510.24 0.000 6 -0.034 -0.356 515.44 0.000 
7 0.484 0.241 1580.00 0.000 
8 -0.044 0.026 1588.90 0.000 
9 -0.152 -0.045 1693.80 0.000 

10 -0.043 -0.028 1702.20 0.000 
11 -0.027 -0.031 1705.50 0.000 12 -0.180 -0.139 1852.20 0.000 13 -0.035 -0.190 1857.80 0.000 14 0.441 0.131 2741.50 0.000 15 -0.032 0.010 2746.10 0.000 16 -0.139 -0.030 2834.00 0.000 17 -0.033 -0.020 2838.90 0.000 18 -0.062 -0.097 2856.10 0.000 19 -0.165 -0.124 2979.80 0.000 20 -0.017 -0.149 2981.10 0.000 21 0.449 0.115 3898.70 0.000 22 -0.041 -0.001 3906.40 0.000 23 -0.137 -0.031 3991.90 0.000 24 -0.045 -0.047 4001.10 0.000 25 -0.051 -0.068 4012.90 0.000 26 -0.127 -0.028 4086.90 0.000 27 -0.030 -0.102 4090.90 0.000 28 0.446 0.120 4996.10 0.000 29 -0.040 0.040 5003.40 0.000 30 -0.142 -0.002 5095.80 0.000 31 -0.044 -0.005 5104.80 0.000 32 -0.062 -0.050 5122.10 0.000 33 -0.144 -0.058 5217.10 0.000 34 -0.019 -0.090 5218.70 0.000 35 0.430 0.062 6062.80 0.000 36 -0.029 0.012 6066.50 0.000 

     

Figure 17: Correlogram for electricity returns, testing for autocorrelation up to 36 lags. Significant auto-

correlation is present in the sample; the dotted lines indicate the 5% standard errors (±0.030). A weekly 

pattern can be observed. 

5.7. Time effects 

5.7.1. Theory of time effects Time effects are predictable deviations of a price series based on a time indicator. As the de-mand for gas and electricity varies depending on the day of the week and the time of the year, it is possible that these differences are reflected in their prices. Accounting for such time effects improves the accuracy of the forecasting models. We expect time effects for electricity to be stronger due to its lack of storage possibility. Storage of gas makes it possible to mitigate de-mand effects, particularly in the short term for which storage costs are low. 
A visual observation of the price series can give a first indication of daily or seasonal effects. We can observe daily differences by a repeating weekly pattern in the graph. Alternatively, we can construct chronological time series for each day of the week, plotting all seven series in the same figure. In this way daily differences can be observed more clearly; we can see whether daily prices consistently differ from each other. The seasonal effect can be observed as an annual wave pattern, we may note a semi-annual peak as well.  
To formally test whether time-related patterns are present in a time series, Franses (1992) sug-gests first estimating an autoregressive model for the entire series, and then checking whether this model fits the subsets sorted on time indicators as well. If the hypothesis that the parameter 
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estimates are the same for all subsets is rejected, it is implied that a time pattern is present in 
the series. When applying a conventional F-test on the residuals of the models estimated for the 
entire series and the subsets, assumptions of normality and GBM property of the error term 
need not to be valid. To test for time effects, we perform a simple regression test based on He 
420075. We test two regression models against each other, one with and one without a time ef-
fect: 

 �Y ¢ �� h qY 45.135 
 �Y ¢ �� h ¡H,IdH h qY (5.145 

where �Y is the asset price at time Z, �� is the average price of the entire sample, ¡H,I is a binary variable indicating the day or month, dH is a variable which sets the equation equal to the daily 
or monthly average (i.e., the average deviation from the mean) and qY as the error term with an 
N(0,σ2) distribution. Except for the term dH both models are identical. The expected value of the 
prices forecasted by (5.13) is given by (5.15), the forecasts of (5.14) are given by (5.16). 

 j¸�Y¹ ¢ �� (5.15) 
 jú�Yû¡H,I ¢ 1ü ¢ �� h dH (5.16) 

To test whether the time effects are significant, we compare the performances of models (5.13) 
and (5.14) in an F-test, calculating the F-value as 

 Q_nGoÄi ¢
Åf��1 ¿ f��2

n_ ¿ nc
Æ

f��2
� ¿ n_

 (5.17) 

where RSS1 stands for the squared sum of the residuals for (5.13), RSS2 stands for the squared 
sum of the residuals for (5.14), nc stands for the number of variables in (5.13), n_ stands for the 
number of variables in (5.14), and � stands for the number of data points in the sample to which 
both models are applied. The null hypothesis is that the factor dH is not significant (i.e., dH ¢ 0), 
and will be rejected if the calculated F-value exceeds the specified critical value. 

5.7.2. Results of testing for time effects 

We test the historical data sets for daily and monthly deviations. As already seen in Section 5.6, 
autocorrelation in the electricity series strongly resembles a weekly pattern.  Holidays are also 
known to have different and predictable deviations; these effects are not tested for because we 
expect them to have limited influence on the cash flows of the project. To test whether seasonal-
ity is present in the set of gas prices, first we perform a visual test to see the monthly deviations 
from the average price level. In Figure 18 we provide a plot of these deviations. We note that the 
prices in January, November and December are higher than during the rest of the year. For the 
rest of the year, differences are usually small and without a clear pattern. Though prices are 
higher in the winter, a wave-like seasonal pattern cannot be observed from this data. Regressing 
a sine function on the deviations yields an f_ of 0.57, indicating a rather poor fit. Figure 7 also 
does not show repeating seasonal patterns. Following the procedure of He (2007), we formally 
test the significance of monthly deviations. When the calculated F-value exceeds the critical 
value, {|: the seasonal parameter has no significance influence, is rejected. As can be seen in 
Table 8, the monthly deviations that are significant at the 5% level are January, April, August, 
November and December. In our gas price model, we will address monthly deviations with bi-
nary variables, rather than fitting a sine function. 
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Figure 18: Average monthly deviations from average gas price 2006-2011, with fitted sine function. The 

winter months show notably higher average prices, but no clear sine pattern can be distinguished. 

Month F-value 5% Critical value Result 

January 31.62 3.90 Reject H0 
February 0.90 3.90 Not reject H0 
March 0.04 3.90 Not reject H0 
April 4.80 3.90 Reject H0 
May 2.32 3.90 Not reject H0 
June 3.22 3.90 Not reject H0 
July 0.71 3.90 Not reject H0 
August 12.99 3.90 Reject H0 
September 0.48 3.90 Not reject H0 
October 1.13 3.90 Not reject H0 
November 17.45 3.90 Reject H0 
December 10.64 3.90 Reject H0 

Table 8: F-test for monthly effects in gas prices. Deviations are significant for 5 months at the 5%-level. 

Next, we test the daily deviations for the gas prices, starting with a visual observation. As 2006 
and 2007 are the only years which include price data for every day, we plot the gas price series 
per day for these years in chronological order. This way, every day of the week is equally repre-
sented in the graph. From Figure 19, the daily prices appear to follow a highly similar path. 
There is no visual indication that any day has a significantly different pattern than the other 
days. Figure 20 shows the percentual deviations from the average price level. We note that 
weekend prices are somewhat lower, but most deviations are less than 1% of the price. We per-
form the F-test to assess the presence of daily deviations. In Table 9 we show that no significant 
daily effects are present in the analysed gas price date. We therefore will not include daily devia-
tions in the gas price model. 
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Figure 19: Gas prices 2006-2007 sorted by weekday. 

No significant deviations can be observed. 

Figure 20: Average daily deviations from average 

gas prices 2006-2011. 

Day F-value 5% Critical value Result 

Monday 0.00 3.93 Not reject H0 
Tuesday 0.10 3.93 Not reject H0 
Wednesday 0.10 3.93 Not reject H0 
Thursday 0.00 3.93 Not reject H0 
Friday 0.09 3.93 Not reject H0 
Saturday 0.06 3.93 Not reject H0 
Sunday 0.08 3.93 Not reject H0 

Table 9: F-test results for daily effect in gas prices 2006-2011. No significant deviations are found. 

We perform the same tests for the electricity prices between 1999 and 2012. In Figure 21, the 
average monthly deviations of the total average are given. A single wave-like pattern can be 
observed during the year; the f_ of the regressed sine function is 0.83. The largest differences 
are observed for the months January, June and September; we try to address these deviations by 
estimating a semi-annual sine function as well in the modelling phase. From Figure 8 it may be 
difficult to observe the seasonal pattern due to its high volatility. The F-test results of testing for 
monthly effects in electricity prices are provided in Table 10. Six deviations are considered to be 
significant. Naturally deviations are not significant for every month, as periods of moderate de-
mand provide prices close to the mean. The fact that half of the deviations are significant indi-
cates incorporating a seasonal effect in the forecasting model would improve its accuracy. 
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Figure 21: Average monthly deviations from average electricity prices 1999-2012, with fitted sine func-

tion. A sine-like pattern can be observed, differing most notable for January, June and September. 

Month F-value 5% Critical value Result 

January 7.83 3.86 Reject H0 
February 0.43 3.87 Not reject H0 
March 31.44 3.87 Reject H0 
April 46.90 3.87 Reject H0 
May 20.12 3.87 Reject H0 
June 1.95 3.87 Not reject H0 
July 0.89 3.87 Not reject H0 
August 0.01 3.87 Not reject H0 
September 0.14 3.87 Not reject H0 
October 18.97 3.87 Reject H0 
November 18.01 3.87 Reject H0 
December 2.79 3.86 Not reject H0 

Table 10: F-test results for monthly effects in electricity prices 1999-2012. Six months have significantly 

deviating prices. 

Finally, daily effects in the electricity series are tested. As the spikes in electricity prices have a 
strong effect on the scale when plotting the daily series, we set an upper bound of € 100 for plot-
ting Figure 22. Prices above this bound were removed from the sample to make the differences 
between daily price series better observable.6 As for the gas price series we only show the 2006-
2007 subset; the high volatility of the series would make it difficult to observe the differences 
for larger samples. We note that the price series for weekend days are consistently below the 
week day price series. The average daily deviations of the prices clearly show this, as can be 
noted in Figure 23. We perform an F-test on the full data set to formally research the differences 
between daily electricity prices. The results in Table 11 indicate that all differences are statisti-
cally significant at the 5% level, except for Friday.  

                                                                 
6 The removal of prices causes some minor shifts between the graphs, as extreme prices are more often ob-served during week days. 

-15%

-10%

-5%

0%

5%

10%

15%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
e

r
c

e
n

tu
a

l 
m

o
n

th
ly

 d
e

v
ia

ti
o

n

Month



  67 

  
Figure 22: Electricity prices 2006-2007 sorted by 

weekday. Weekend prices are notably lower.    
Figure 23: Average daily deviation from average 

daily electricity price 1999-2012. 

Day F-value 5% Critical value Result 

Monday 12.43 3.87 Reject H0 
Tuesday 32.44 3.87 Reject H0 
Wednesday 17.47 3.87 Reject H0 
Thursday 21.76 3.87 Reject H0 
Friday 1.50 3.87 Not reject H0 
Saturday 185.73 3.87 Reject H0 
Sunday 983.37 3.87 Reject H0 

Table 11: F-test results for daily effect in electricity prices 1999-2012. Six daily deviations are statisti-

cally significant. 

5.8. Mean-reversion of price series 

5.8.1. Theory of mean-reversion 

A number of definitions exist for the concept of mean-reversion (Exley et al., 2004). In this 
study, when using the term mean-reversion, we refer to a process which exhibits negative corre-
lation between differences over disjoint intervals. Several tests exist to indicate whether a series 
is mean-reverting or not. However, we did not find a generally accepted test, perhaps due to the 
absence of a single prevailing definition of the process. 
 
Visually, we can observe mean-reversion in plots of the price series when prices stay close to a 
long-term trend, and revert stronger to this trend when prices drift away from the trend. A 
graph of the return series should show alternating periods of positive and negative returns, with 
smaller returns around the mean and larger returns when deviating from the trend line. Accord-
ing to Fama & French (1988), mean-reversion in the stationary component of price series can be 
observed by the presence of negative autocorrelations in returns. If the price series is stationary, 
this is another indicator that mean-reversion exists. A more formal test to indicate mean-
reversion is to calculate the Hurst exponent (Cajueiro & Tabak, 2005; Sánchez Granero et al., 
2008). The origins of this approach lie in the field of hydrology, but it was later applied in fi-
nance as well. The intuition behind this test is to relate the rate of decrease in autocorrelation to 
increasing time lags. The test model is described by 
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 X�þ ¢ �Gp(¦c, … , ¦§5 ¿ �J�4¦c, … , ¦§5Ü1�∑ 4pY ¿ p�5_§YËc
 (5.185 

with 
¦§ ¢ Ê pY ¿ p�§

YËc     
pY describes the return at time Z and p� is the average return for the subseries of length �. X is a constant and { is a number called the Hurst exponent, with 0 ì { ì 1.  In the test, first the 

right-hand side of Equation (5.18) is calculated. Then we use least squares regression to calcu-

late X and {. When the Hurst exponent is a number ì 0.5, the series is considered to be mean-

reverting as it has no persistent trend (Qian & Rasheed, 2004). The closer the Hurst exponent is 

to 0, the stronger the mean-reverting effect. Note that the denominator in (5.18) represents the 

volatility of the series, so that the range in the numerator is proportionally rescaled. 

5.8.2. Results of testing for mean-reversion of price series 

Visually, we observe that the price series stays close to the average price levels in the long run 
(see Figure 7 and Figure 8). Prices deviate from these levels, but over the course of years move 
only little on average. The gas price is shown to revert slowly, having periods of years in which 
the price is constantly above or under the average price level. The electricity price seems to be 
reverting to its mean quicker. From the correlograms presented in Section 5.6, it follows that 
negative correlations are found in both gas and electricity returns. This is an indicator for the 
existence of mean-reversion. Stationarity of the electricity price series has been proven in Sec-
tion 5.4, this was not the case for the gas price series. We calculate the Hurst exponent for the 
gas and electricity series, using the entire sample sets. We show the results of the tests in Table 
12. Both estimates for { are smaller than 0.5, indicating that both series are mean-reversion. 
The Hurst exponent for the electricity series is stronger than for the gas series. This shows that 
the reverting effect is stronger for the electricity series, which is in line with the observed visual 
patterns.  

Series Hurst exponent (�) Result 

Natural gas 0.41494    { < 0.5, so the series is mean-reverting 

Electricity 0.20172    { ì 0.5, so the series is mean-reverting 
Table 12: Estimated Hurst exponents for gas and electricity price series, both indicating mean-reversion. 

5.9. Normality 

5.9.1. Theory of normality 

A simplifying assumption often made in price series modelling is that returns follow a normal 
distribution. If returns are normally distributed, they can be modelled with the Geometric 
Brownian Motion. For this reason the return series are often tested for normality (Alexander, 
2001). The test is also applied to the residual after constructing a model, to check whether the 
error term can be modelled as a Geometric Brownian Motion. 
Normality can be visually observed by plotting the returns in a histogram, which should resem-
ble a bell-shaped curve. Some well-known formal tests for normality are the Shapiro-Wilk test, 
the Kolmogorov-Smirnov test and the Jarque-Bera test. Frain (2007) states the Jarque-Bera test 
outperforms the other normality tests in most cases. In financial data analysis it is the most 
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commonly applied test. We perform the Jarque-Bera test in this study as well, due to the auto-
correlation we proved in Section 5.6 some modifications are required. The Jarque-Bera test can 
be performed to test whether a data set has the skewness and kurtosis matching a normal dis-
tribution (Jarque & Bera, 1987; Alexander, 2001). A normal distribution has a skewness of 0 and 
a kurtosis of 3. Under the condition that returns are independent of each other (i.e., no autocor-
relation), the standard errors of these moments are approximated by Ò6/� and Ò24/� respec-
tively, where � stands for the number of observations and should be sufficiently large. The Jar-
que-Bera test statistic }T is given by 

 }T ¢ �
6 ½��i��i��_ h 1

4 (�Ä�Z��J� ¿ 3)_¾ (5.19) 

with 

��i��i�� ¢
1
�∑ (pH ¿ p�)R§HËc

Å1
�∑ (pH ¿ p�)_§HËc Æ

R/_ 

�Ä�Z��J� ¢
1�∑ (pH ¿ p�)S§HËc

Å1�∑ (pH ¿ p�)_§HËc Æ_ 

{| is a joint hypothesis stating that the skewness is 0 and the excess kurtosis (i.e., the deviation 
from 3) is 0. The test statistic has a chi-squared distribution. When the test statistic exceeds the 
specified critical value, we reject the null hypothesis. Hence, normality is then rejected based on 
skewness and kurtosis. In EViews, the Jarque-Bera test statistic is readily available, combined 
with the probability that {| is not rejected (i.e., non-normality is not proven). 
As stated before, the estimates of the standard errors are invalid when returns are autocorre-
lated. One approach would be to first remove autocorrelation from the series, and then apply the 
Jarque-Bera test on the new series. A disadvantage of this approach is that it first requires speci-
fying a model which removes autocorrelation, while we have not started modelling yet. Alterna-
tively, it is possible to adjust the estimated variance of skewness and kurtosis for autocorrela-
tion. Following the approach of Lobato & Velasco (2004), we modify the Jarque-Bera test statis-
tic to account for the variance stemming from correlation. First we calculate the autocovariance 
(ACV) for all � ¿ 1 possible lags P. Autocovariance is defined as 

 MNO(P) = 1
� Ê (pY ¿ p�)(pYÌ|�| ¿ p�)§À|�|

YËc  (5.20) 
Consequently, these autocovariances are taken to the power of 3 (for skewness) or 4 (for kurto-
sis) and summed: 

 
MNOQ(R) ¢ Ê MNQ(P)R§Àc

�ËcÀ§
 

MNOQ(S) ¢ Ê MNQ(P)S§Àc

�ËcÀ§
 

(5.21) 

The second, third and fourth central moments of the series are required as well, these are given 
by 
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 �H ¢ 1
� Ê (pY ¿ p)H§

YËc
 (5.22) 

for J ¢ 2, 3, 4 
Finally we define the adjusted test statistic, here called }Ty]I 

 }Ty]I ¢ � L �R_

6 L MNOQ(R) h � L (�S ¿ 3�__)_

24 L MNOQ(S)  (5.23) 

Like in the original test, the test statistic is compared to the critical value from the chi-squared 
distribution, and we reject normality when the test statistic exceeds the critical value. Caution 
should be taken when interpreting the test result; for modelling purposes the result only holds 
meaning when the model actually succeeds in fully removing autocorrelation. The adjusted test 
does not reflect the actual distribution of the raw data set. Bao (2012) endorses the method 
proposed by Lobato & Velasco (2004), but warns that bias-correction in finite samples may not 
be sufficient, particularly when testing on a large excess kurtosis. 

5.9.2. Results of testing for normality 

EViews combines a plotted histogram with descriptive statistics of its distribution, and calcu-
lates the Jarque-Bera test statistic for the series. Due to the presence of autocorrelation in the 
series, these figures do not say much about their normality; we only add Figure 24 and Figure 25 
to provide some insight in the actual distributions of the return series. Performing the adjusted 
Jarque-Bera test yields test statistics of 24,148 for gas returns and 1,838 for electritity returns. 
In Table 6 the results of the tests are shown. At the 0.05 significance level, electricity returns are 
shown to follow a normal distribution after removing autocorrelation. For gas returns this is not 
the case. We note that these values are much lower than the Jarque-Bera test statistics shown in 
Figure 24 and Figure 25, indicating that the distributions would approach normality better after 
removing autocorrelation. In the case of gas returns the GBM is still considered a 
misspecification. The consequence of these findings is that the GBM can be applied for the 
electricity price model, granted that autocorrelation is fully removed. For the gas price model 
this is unsufficient, further refinements are then required to apply the GBM in a statistically 
sound manner. 

 
Figure 24: Histograms and descriptive statistics of gas returns 2006-2011. 
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Figure 25: Histogram and descriptive statistics of electricity returns 1999-2012. 

Series Adjusted Jarque-

Bera test statistic 

Chi-square critical 

value at p=0.05 

Result 

Gas returns 24148 1935 Reject H0, returns not 
normally distributed. 

Electricity returns 1838 4683 Not reject H0, returns 
not proven to be non-
normally distributed.  

Table 13: Results of adjusted Jarque-Bera test on gas and electricity returns. 

5.10. Cross-correlation 

5.10.1. Theory of cross-correlation 

Returns of an asset are often not independent of the movements of other assets in the market; 
they tend to be related in some way. A common measure for such a relationship is the correla-
tion coefficient, which is the linear co-dependency between two variables. To distinguish corre-
lation between times series from autocorrelation within a time series, the former is also referred 
to as cross-correlation. In the case of gas and electricity prices, the fact that natural gas serves as 
physical input for producing electricity is a reason to suspect they are co-dependent. Correlation 
can be positive or negative. If correlation is positive, one asset moving up in price means that the 
other asset is likely to move up in price as well. For negative correlation this relationship is in-
verse. A cross-correlation of 0 does not necessarily mean that the series move independent of 
each other, but interdependency may be lagged or described by some nonlinear relationship 
(Yule, 1926). A correlation test should be performed always on the return series. Calculating the 
correlation between the price series would place a very high weight on early returns. This is 
because prices are basically an integral of returns up to time Z, i.e., �Y ¢ �| h � pH

Y
HËc . Therefore 

the correlation of price series has little practical value for forecasting models.  
We can make a distinction between unconditional correlation (constant over time) and condi-
tional correlation (time-varying). Unconditional correlation between two return series can only 
exist in case the series are jointly covariance-stationary, meaning that the covariance between 
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Series: ELECRETURNS
Sample 1999 6527
Observations 4528

Mean       0.000117
Median  -0.018728
Maximum  3.538937
Minimum -2.671960
Std. Dev.   0.348493
Skewness   0.739464
Kurtosis   12.85255

Jarque-Bera  18727.05
Probability  0.000000
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returns ��,Y and ��,YÀ� depends only on the lag P (Alexander, 2001). We can test this property by 
first estimating a bivariate vector autoregression model (VAR)7, which is defined as 

 ¥Y ¢ �X�X��h �Mc,c Mc,_M_,c M_,_�¥YÀc h �q�,Yq�,Y� (5.24) 
where ¥Y is the vector containing the gas and electricity returns at time Z, X� and X� are con-
stants for the gas and electricity series respectively, q�,Y and q�,Y are error terms, and Mc,c to M_,_ 
are parameters to be estimated. As the model can be rewritten as a set of linear equations, we 
can estimate them independently with ordinary least squares regression. After doing so, we can 
solve the quadratic equation (5.25). 

 1 ¿ Z� �Mc,c Mc,_M_,c M_,_� ¦ h 	Mc,c Mc,_M_,c M_,_	 ¦_ ¢ 0 (5.25) 

where Z� �Mc,c Mc,_M_,c M_,_� is the trace of the matrix (the sum of the main diagonal), 	Mc,c Mc,_M_,c M_,_	 is the 
determinant of the matrix and ¦ can be a real or a complex number (Lay, 2006). If at least one 
solution of the quadratic equation lies outside the unit circle in the complex plane (a circle with 
a radius of 1), the series is jointly covariance-stationary. Only then it is possible to meaningfully 
calculate unconditional correlation between the returns. 
The Pearson correlation coefficient (PCC) can be calculated to check whether the series are cor-
related (Rodgers & Nicewander, 1988; Hull, 2010; Ruiz et al., 2012). The Pearson correlation 
coefficient is given by 

 �NN ¢
1�∑ (p�,Y ¿ p��)(p�,Y ¿ p��)§YËc

Ü1�∑ (p�,Y ¿ p��)_§YËc L Ü1�∑ (p�,Y ¿ p��)_§YËc
 (5.26) 

where � is the number of observations, p�,Y and p�,Y are gas and electricity returns at time Z re-
spectively, and the barred returns represents the mean. The sample distribution of the PCC fol-
lows a Student distribution with � ¿ 2 degrees of freedom, its test statistic is given by 

 Z_nGoÄi ¢ �NN
Ü1 ¿ �NN_

� ¿ 2
 (5.27) 

Even if series are jointly covariance-stationary, the PCC outcome may not be meaningful. This is 
because the correlation coefficient is calculated under the assumption that observations are i.i.d. 
and normally distributed (Yule, 1926; Hanssens et al., 2003). If autocorrelation is present in the 
series the variance of the joint distribution is increased, which is then incorrectly reflected in the 
PCC (Stephenson, 1997). Also due to time effects lagged correlation effects can be present; cal-
culating the PCC with a time lag may influence results. Stated formally, the calculated cross-
correlation is then assumed to be a function of autocorrelation. If the series are not normally 
distributed, the significance test provides inaccurate test statistics, so we cannot state with cer-
tainty whether correlation is significant or not. Therefore, time series should be detrended and 
normalised first to establish a truly meaningful cross-correlation (Podobnik & Stanley, 2008; 
Horvatic et al., 2011).  
                                                                 
7 The univariate version of this model (AR) is briefly explained in Appendix I. 
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Aside from unconditional correlation, more complex dependencies can exist between the series 
as well. Tests for such dependencies are not performed in this study, but we briefly mention 
some for completeness. A technique to discover nonlinear relations is Transfer Function Identi-
fication (Hanssens et al., 2003; Borghers & Wessa, 2012). This involves calculating the so-called 
half slope ratio. The value of this ratio allows estimating transformation parameters which ad-
just time series in such a way that non-linear relations become linear. Correlation can then be 
estimated based on the adjusted series. Authors such as Conlon et al. (2008) and Plerou et al. 
(2008) apply Random Matrix Theory to discover complex interdependencies between time se-
ries. This approach consists of comparing the eigenvalues of an estimated correlation coefficient 
matrix to those of randomly generated matrices, checking for statistically significant deviations 
between them to filter out interdependencies that are not directly observable.  

5.10.2. Results of testing for cross-correlation 

As the return series for natural gas does not include a value for each date, first we remove the 
matching non-trading days from the return series for electricity. For the remaining data, the 
VAR(1) model as described in (5.24) is estimated. The following quadratic equation is obtained: 

1 h 0.28438¦ h 0.01960¦_ ¢ 0 
Solving this equation yields real solutions of -5.98… and -8.52…, which both lie outside the unit 
root circle. Hence, cross-correlation can be estimated for the series. As the series exhibit auto-
correlation and non-normality, this coefficient says little about the actual sign, magnitude and 
significance of the correlation between both series. 
We obtain a Pearson correlation coefficient of 0.0760 or 7.6%. We perform a t-test to assess the 
significance of this coefficient. Though the return series for natural gas is not normally distrib-
uted, the large sample size of 1837 might be sufficient for the test to obtain a reasonable esti-
mate of significance. The t-test yields a t-value of 2.3065. The 5% critical value is 1.6525, hence 
the cross-correlation is statistically significant at this level, under the assumption that cross-
correlation is a function of autocorrelations. 

5.11. Price jumps 

5.11.1. Theory of price jumps 

A price jump as referred to in this study is a large price deviation from the prevailing price level, 
which can be either positive or negative. What deviation is considered ‘large’ is up to debate; no 
formal definition of a jump exists. Mathematically a jump is considered to be a point or set of 
points at which the return function is not continuous (Merton, 1976). For an infinitely small 
time interval, the GBM only allows for infinitely small movements, while a jump is an instanta-
neous large moment on an infinitely small time interval. Unfortunately, this mathematical defini-
tion provides no guidance on how to distinguish jumps in a discrete time series. 
A simple practical definition of a jump is a price which differs from the unconditional mean by 
three times the standard deviation or more, informally dubbed the 3� procedure (Mancini & 
Renò, 2006; He, 2007).8 When prices are generated by the GBM, such extreme price levels 
should occur very rarely. The presence of jumps therefore implies fatter tails than observed in a 
normal return distribution. Note that jumps by itself increase the standard deviation of the se-
ries, causing the 3� border to increase. As jumps are rare events, it is difficult to model a gener-
                                                                 
8 The same procedure may be applied on the return series, but makes it more difficult to distinguish jumps from other processes such as mean-reversion. 
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ating process for them based on a limited amount of observations. The available historical data 
may contain too few jumps to estimate their frequency, expected size and volatility.  

5.11.2. Results of testing for price jumps 

Using the 3� procedure, we distinguish seven prices meeting this criterion in the gas price se-
ries, out of a total of 1837 observations. This corresponds to about 0.38% of the series. We show 
the filtered series containing only the jumps in Figure 26. The filtered series consists of seven 
subsequent days with unusual high prices. Therefore, only a single extreme return in the series 
causes the jump, with the prices following after the jump returning towards a more moderate 
level. Based on only a single event, no generating process can be estimated for the series. Also, 
the effect of such rare jumps on the project value will be limited. For these reasons, we do not 
explicitly consider jumps in the gas price model.  
We perform the same procedure on the electricity price series, as illustrated in Figure 26. For 
the electricity price series 53 jumps are found, accounting for roughly one percent of the sample. 
Jumps cause very high standard errors for skewness and kurtosis, indicating why the adjusted 
Jarque-Bera test proves normality and at the same time we note a large number of jumps. The 
number of jumps indicates that they play a significant role in the price process for electricity. 
Recall that the series is more volatile in the earlier years than in later years, meaning that the 
average standard deviation does not reflect the standard deviations of more recent data. When 
only the later years were considered, standard deviation would be smaller, perhaps resulting in 
more prices being regarded as jumps which fall within the 3σ boundaries now. In Chapter 7, we 
estimate a jump diffusion process to account for jumps in our electricity price model. 

Figure 26: Jumps filtered from gas price sample 2006-2011 (left) and from electricity price sample 

1999-2012 (right). 

As a key reason to separate jumps is to improve the normality property of a time series, we redo 
the normality test on the series without the jumps. Autocorrelation for both series remains sig-
nificant and largely unchanged, so we again apply the adjusted Jarque-Bera test. For the gas se-
ries, }Ty]Idrops notably to 20,663; this value still far exceeds the critical value. For the electrici-
ty sample, }Ty]I in fact sharply increases to 30,831, so that we must now reject the hypothesis of 
a normal distribution. The absence of jumps strongly decreases the standard errors in the test 
statistic, causing the remarkable difference. Still, removing jumps should improve the normality 
property (the regular }T confirms this presumption, providing a new value of 8,4855. These 
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seemingly inconsistent results raise questions about the performance of the adjusted Jarque-
Bera test, even though Bao (2012) warned for distortions in case of a large excess kurtosis. 

5.12. Chapter summary 

In this section we provide an overview of the diagnostic tests performed in this chapter. Recall 
the purpose of these tests was to increase insight in how the historical price series behave. 
Based on this knowledge, we determine our focus for the modelling techniques relevant for our 
price models. Table 14 shows the key results and their implications for modelling for all tests. 
Test Key results Implications 

Stationarity Both return series are stationary. Several statistical tests can be applied on these series mean-ingfully.  Cointegration Electricity price series is stationary, so no coin-tegration relationship can be established. Possible co-dependency can-not be described by cointegra-tion.  Autocorrelation Gas prices contain significant autocorrelation, no clear pattern was found.  Electricity prices contain significant autocorre-lation, a clear weekly pattern was observed.  

Autocorrelation effects should be removed from the series.   Autocorrelation in electricity prices caused by time effects. 
Time effects Gas: No significant differences in day prices. Prices in winter months significantly higher than average, no smooth seasonal pattern.  Electricity: Weekend prices significantly lower than average. A statistically relevant seasonal pattern is observed.  

Gas price model should ac-count for monthly deviations.    Electricity price model should account for daily deviations and seasonal pattern. 
Mean-reversion Both price series are mean-reverting; the ef-fect is stronger for electricity prices than for gas prices, being rescaled for the difference in volatility.  

Price models should incorpo-rate mean-reversion.  

Normality Gas prices are not normal after removing auto-correlation.  Electricity prices are normal after removing autocorrelation. 

The GBM is applicable for electricity after removing autocorrelation. Results are not valid when autocorrela-tion is not completely re-moved.  Cross-correlation The return series are jointly covariance-stationary, calculated in the presence of auto-correlation. The cross-correlation is 7.6%. 
Cross-correlation can be cal-
culated, but has little practical 
meaning due to violated as-
sumptions. 
 

Price jumps Gas prices contain almost no jumps. 
 
 
Electricity prices contain many jumps. 

Gas jumps are ignored in 
modelling. 
 
Electricity jumps should be 
estimated by a separate proc-
ess. 
 

Table 14: Summary of diagnostic tests. 
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Chapter 6 
 

6. Techniques for modelling energy prices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are many models and techniques available to model the behaviour of price 
series. In this chapter, we briefly discuss some main models are, as well as sev-
eral important processes often used to extend basic models. For incorporating 
mean-reversion, we discuss the Ornstein-Uhlenbeck process. We treat the jump 
diffusion model for its ability to cope with unpredictable price jumps. To account 
for deterministic time effects, we describe the use of binary variables and the 
sinusoid time function. GARCH is explained as it can be applied to reflect time-
varying volatility. We include a brief overview of techniques that were re-
searched, but not used in this study. To conclude the chapter, we explain how we 
can estimate the risk-neutral drift of commodity prices. 
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6.1. Geometric Brownian Motion 

The Geometric Brownian Motion (GBM) is the most basic model to generate a price path (Hull, 
2008). In the Black-Scholes framework, asset prices are expected to follow the GBM. Often a 
linear trend is also added, reflecting an expected long-term return. Returns following the GBM 
with a linear trend are defined as 

 pY ¢ C`Z h �`�Y (6.1) 
with 

pY  as the return at time t 
C  as the deterministic drift 
�  as the volatility or standard deviation 
�Y  as a Wiener process representing a continuous-time random walk 

 
In the long term a price series following (6.1) is expected to follow the deterministic drift C, but 

the path moves randomly due to the Wiener process incorporated. The larger the volatility rela-

tive to the drift, the stronger the prices may deviate from the drift. The drift and volatility are 

both assumed to be constant, so that the return process does not change over time. The return 

process is normally distributed; the rationale behind this assumption is that returns are influ-

enced by a large number of independent random variables. This makes their sum approximately 

normally distributed by the Central Limit Theorem. Samuelson (1965) provides a proof for price 

changes being normally distributed in a market with perfect information. The empirical validity 

of the GBM is widely debated (Mandelbrot, 1963; Luenberger, 1998; Marathe & Ryan, 2005). 

6.2. Ornstein-Uhlenbeck process 

Processes may not follow a random walk as suggested by the GBM, but rather fluctuate around 

some long-term mean. The Ornstein-Uhlenbeck process is a modification of the geometric 

Brownian motion that incorporates mean-reversion (Uhlenbeck & Ornstein, 1930), described by  

 pY ¢ �(��¿�Y)`Z h �`�Y (6.2) 

In this model, �� represents the mean price, �Y represents the price at time Z and � represents the 

rate at which the price returns to its long-term average. This equation shows that the larger the 

difference between price at time Z and the long-term price level is, the stronger the movement 

back towards the mean becomes. The term ��¿�Y increases in size the more �Y deviates, causing a 

stronger effect. If the process reverts to an equilibrium level which changes linearly over time, 

we can include this by replacing �� by (�� h C�Y`Z). The Ornstein-Uhlenbeck process is often in-

corporated in more complex models, allowing to model mean-reverting behaviour of multiple 

variables such as prices, interest rates and volatilities. 

6.3. Jump diffusion model 

The jump diffusion model assumes that the occurrence of price jumps follows a Poisson process, 

while the mean and volatility of the jump size can be modelled with a lognormal distribution 

(Merton, 1976; Tankov & Voltsckova, 2009). The Poisson assumption implies that price jumps 

occur independently of each other and have an identical distribution. In Equation (6.3) we show 

how the Poisson jump is modelled (Craine et al., 2000). The last term of the equation is an addi-

tion to the standard GBM process. This extension is used to correct the GBM for the fat tails in 

returns that are often observed in finance. 
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 pY ¢ C`Z h �`�Y h }`� (6.35 
Here the jump size } is drawn from a normal distribution }~�(��, ��_) and `� is a Poisson 
counter with intensity φ, so that ���
(`� ¢ 1) ¢ s`Z. 
A shortcoming of the original jump diffusion model as developed by Merton (1976) is that it 

does not incorporate mean-reversion (Cartea & Figueroa, 2005). Therefore after a jump occurs 
the price is not corrected, but it rather remains at its new level. Including a mean-reverting term 
allows the price to return quickly to its equilibrium level after a jump, which is a more realistic 
representation of spikes observed in energy prices. This means we should replace the first term 
of (6.3) with that of the Ornstein-Uhlenbeck process described in Equation (6.2). De Jong & Hu-
isman (2002) state that the mean-reverting parameter � is generally overestimated in order to 
correct for reversion after jumps. We can avoid this problem by separating the jump model from 
the model describing the normal market state, i.e., estimating Jdq on a data set containing only 
the filtered jumps. It is often difficult to estimate the parameters of a jump diffusion model in an 
accurate manner (Gijbels et al., 2005). Particularly how to return to the regular price behaviour 
after a jump occurs is a notable issue. Authors have proposed several ad hoc approaches such as 
correlated positive and negative jumps, special mean-reverting parameters for jumps, etc., yet 
no uniform approach exists on how to estimate and model a jump generating process. 

6.4. Binary variables 

As stated before, the price of electricity is subject of many predictable patterns. Such patterns 
can be assessed by including binary variables ¡H,I in the model, having a value of 1 if the current 
state J equals a certain state K (e.g., day, week, season) and a value of 0 if not (Knittel & Roberts, 
2005): 

 ¡H,I ¢ �0, J £ K
1, J ¢ K

~ (6.4) 

This way, we can apply parameters associated with a certain state when suitable, and ignore 
them if other parameters are more fitting. As such, the model can quickly respond to changing 
states. A disadvantage of including binary variables is that it quickly expands the number of pa-
rameters we need to estimate. Also, particularly when applied to larger time frames, shock ad-
justments can occur when changing from one time frame from the other, while the actual transi-
tion process is often smoother (Lucia & Schwartz, 2002). 

6.5. Sinusoid time function 

The seasonal pattern observed in energy prices is often seen to follow a wave-like pattern. This 
pattern can be explained by the strong relation between temperature and the energy demanded 
for heating and cooling. As temperature changes gradually over the year, so does the price. A 
way to model this smooth seasonal effect is by incorporating a sinusoid function (Pilipovic, 
1998). When we observe multiple wave patterns (e.g., energy prices are high both during winter 
and summer), we can capture this effect by adding another sinusoid function with another fre-
quency. We provide a generic example of a sinusoid function below. It contains a deterministic 
time trend, an annual wave pattern and a semi-annual wave pattern.9  

                                                                 
9 Leap years cause minor shifts when applying this formula. These can be accounted for by using the number 365.25 instead of 365, but we believe the effect in absolute price differences is minor for a 20-year forecast. 
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 TZ h TU ß�J� ½2�Z
365 h �U¾ç hTVU ß�J� ½4�Z

365 h �VU¾ç (6.5) 
with  

T  as a deterministic time trend 
Z   as the time point 
TU  as the annual amplitude parameter 
TVU  as the semi-annual amplitude parameter 
�U  as the annual shifting parameter 
�VU  as the semi-annual shifting parameter 

6.6. Co-dependency modelling 

When a linear relationship exists between certain factors in the models (such as cross-
correlation between two price series), we can model this by correlating the Wiener processes 
(or another random process) of the different models. Only one Wiener process is then truly ran-
dom, with the depending processes being partially correlated with this process. This relation-
ship is described by Heston (1993). From his model, we can derive the following relation:  

 `�c,Y ¢ Ò�`�_,Y + Ò1 ¿ �`�R,Y (6.6) 
where � represents the correlation between `�c,Y and `�_,Y; `�_,Y and `�R,Y are independent 
GBMs. Note that the third GBM is not applied in the model, but serves as a dummy to correlate 
the other two GBMs.  
The correlation model described in Equation (6.6) is a basic one. More complex techniques al-
low for the incorporation of non-linear dependencies and time-varying relationships. Such mod-
els are not used in this study, but merely described as reference. Silvennoinen & Teräsvirta 
(2008) and Hull (2010) identify several classes of co-dependency models. Models such as Vector 
Error Correlation Model (VECM) and multivariate GARCH directly estimate a coefficient covari-
ance matrix which describes co-dependencies within the model. Another approach is to describe 
risk factors in several independent equations, correlating the dependent variables with these 
equations. We mention these so-called multi-factor models in Appendix I. With the application of 
copulas, complex marginal distributions of variables are transformed into well-known distribu-
tions. For example, the Gaussian copula transforms a marginal distribution in a standard normal 
distribution. The joint distribution can then be estimated more easily (Meuci, 2011). The copula 
chosen has a strong effect on the estimated co-dependency between the actual distributions, so 
often multiple copulas should be tested (Venter, 2002). 

6.7. Constant volatility 

The simplest and most common approach to estimate the volatility of a time series is to calculate 
the standard deviation of the time series, and apply this number as the volatility for every fore-
casting step. In this way, a constant and unconditional estimate for volatility is obtained. We 
provide the formula for constant volatility estimation below (Alexander, 2001). 

 � = � 1
� ¿ 1 Ê(pH ¿ p�)_

§

HËc
 (6.7) 
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where � is the number of observations, pH  represents the JÖ� observation and p� represents the 
average of observations. The assumption of constant volatility might oversimplify the dynamics 
of price moments. Volatility is known to fluctuate over time in many cases. Often quiet and ac-
tive periods of trading alternate, causing periods of low and high volatility. Applying the average 
volatility then structurally provides incorrect estimates. Choosing an appropriate time window 
for the estimation of volatility is important; too small a window provides inaccurate results, 
while too large a window may include data no longer relevant for forecasting (Hull, 2008).  

6.8. GARCH 

A technique allowing to describe volatility that varies over time is the GARCH model, standing 
for Generalized Autoregressive Conditional Heteroskedasticity (Bollerslev, 1986). GARCH allows 
for volatility to vary over time and revert back to a long-term mean (Alexander, 2008; Zivot, 
2008). Also it helps to explain fat tails in returns and asymmetric effect in volatility changes. 
These characteristics make GARCH suitable to incorporate several aspects of volatility often 
observed in practice. 
When estimated on historical data, a GARCH model is basically an autoregressive moving aver-
age (ARMA) model applied on the squared residuals of a model (Zivot, 2008). We briefly explain 
the properties of an ARMA model in Appendix I. A general GARCH model contains p moving av-
erage terms (ARCH terms) and q autoregressive terms (GARCH terms). Large ARCH terms indi-
cate a quick response to market movements, large GARCH terms account for a more persistent 
volatility. The variance equation for a GARCH(p,q) model is given by Equation (6.8). 

 �Y_ ¢ � h qY h Ê �H�YÀH_ h
\

HËc
Ê �IqYÀI

�
IËc

 (6.8) 

with  
�Y  as the volatility at time Z 
�  as the weighted long term mean of volatility 

  b  as the number of ARCH lags 
�  as the number of GARCH lags 

  qY  as the error term at time Z  
�H   as weighting variable for the Jth ARCH lag  

 �I  as weighting variable for the Kth GARCH lag 
 
Restrictions on the model are that � � 0, �H ÷ 0 and �I ÷ 0. This is to ensure that the model 
always returns a positive volatility. To obtain a stationary process, an additional restriction we 
impose is that ∑ �H h\

HËc ∑ �I ì 1�
IËc . If the sum of weights is equal to or exceeds 0, there is no 

mean-reverting force in the model, likely causing volatility estimates to explode or converge to 0 
(Ravanelli et al., 2005; Hull, 2008). If the GARCH model is stationary, we may still obtain tempo-
rary extreme estimates though (Klüppelberg & Lindner, 2010). Some authors suggest setting the 
parameter � at 0, stating that it is unnatural to assume a lower bound on variance (Lindberg, 
2011). However, in the long term the expected value of a stationary GARCH model converges to 
a variance of �/(1 ¿ ∑ �H h\HËc ∑ �I)�IËc . When applying the model for long term forecasts, it 
therefore makes sense to set the convergence level equal to the long-term variance, an estima-
tion technique known as variance targeting (Francq et al., 2009).  



  81 

A difficulty with GARCH models is that they must be well-calibrated in order to properly reflect 
the actual volatility, which ideally is done by using a large amount of historical data (Alexander, 
2001). In the absence of such data, the structure of the volatility changes could be wrongly 
specified, and provide estimates worse than a constant volatility model would. Disturbances in 
the historical data can have a significant effect on the estimates. The most applied form of 
GARCH is the GARCH(1,1) model. Higher lag models are generally not preferred because their 
coefficients are less robust and more difficult to estimate, usually obtaining just a local optimum 
(Alexander, 2001; Zivot, 2008). This is because higher lag models often have many local minima 
and maxima.  

6.9. Other modelling techniques 

This chapter described several modelling techniques suitable for forecasting models on com-
modity prices. We researched several other techniques which are not used for the models in this 
study. To increase understanding of these techniques and for their possible use in future re-
search, they are described in Appendix I. We provide a very brief description of them here. 

� ARIMA model: AR models place a certain weight on past observations as input for the 
forecast, MA models do the same for past error terms. AR and MA terms are often com-
bined in a single forecasting model, called an ARMA model. Additionally, the lag differ-
ences between past observations may have explanatory power too. An ARMA model in-
cluding differenced terms (denoted as I) is called an integrated model (ARIMA).  

� Exogenous variables: Can be added to a forecasting model to explicitly include the ef-
fect of a certain variable. This way, we can address qualitative insights in future devel-
opments. When exogenous variables can be forecasted with accuracy, they can reduce 
the residuals of the model. 

� Multiple-factor model: Allows for several parameters to be modelled stochastically, 
such as the convenience yield and the interest rate. Such extensions may better ap-
proximate reality. Multiple-factor models are more difficult to estimate than single-
factor models, usually requiring algorithms such as the Kalman filter to estimate unob-
servable parameters. Also we may require historical futures contract prices. 

� Regime-switching model: Distinguishes two or more regimes corresponding to a cer-
tain state. Each regime has its own distribution, which can function independently of the 
other distributions. A transition matrix contains the Markov probabilities for shifting 
from one regime to the other. Regime-switching models allow for better parameter es-
timation when clearly different market states can be distinguished.  

� Artificial neural network: Connects a set of exogenous input variables in a hidden 
layer and performs mathematical operations to match these inputs with the desired 
output. As such, it can establish complex (mathematical) relationships between input 
variables otherwise unobservable. 

� Wavelet transformation: A technique which decomposes a series in multiple series of 
different frequencies, making use of an algorithm to do so. The wavelet transformation 
is particularly applicable to transform a nonstationary series into a number of station-
ary series. 
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6.10. Estimating risk-neutral drift with futures prices 

It is difficult to estimate the real long-term drift of an asset. The reason for this is that it requires 
measuring a factor that is not observable because it lies in the future. The application of risk-
neutral valuation eliminates the need to estimate this parameter. For stocks, under the risk-
neutral measure, the expected price grows at the risk-free rate, leaving out the need to estimate 
the real-world drift α. However, this method is generally not applicable for commodities. Users 
who physically hold a commodity may be able to profit from temporary shortages. This so-called 
gross convenience yield fluctuates over time, and is based on an inverse relation with inventory 
levels (Gibson & Schwartz, 1990). Further, when physically holding a commodity, storage costs 
decrease the return value. Possible costs when holding a commodity are the costs for the storage 
facility, maintenance, insurance, etc. Deducting the storage costs from the convenience yield 
provides a cash flow comparable to a dividend payment: � ¢ º���� X��ni�Ji�Xi ¤Jio` ¿
�Z��Gºi X��Z�, sometimes referred to as the net convenience yield. When using the term con-
venience yield in this study, we refer to its meaning of net convenience yield. We need to ac-
count for this dividend-like payment (usually but not necessarily positive)10 when estimating 
the drift. We illustrate this procedure with a set of equations (Trigeorgis, 1996). Say that the 
total expected return � for an investor holding the commodity is given by 

 � ¢ C h � (6.9) 
This return is equivalent to the risk-free rate plus the market risk premium as defined in the 
Sharpe ratio 4recall Section 3.75, so 

 � ¢ �̂ h r� 46.10) 
From setting equal Equation (6.9) and (6.10) 

 C h � = �̂ h r�  
it follows that 

 C ¿ r� = �̂ ¿ �  
We know that the risk-neutral drift α� of an asset is equal to its real drift minus a market-risk 
premium, see Equation (3.11). Thus, the risk-neutral drift of a dividend-paying asset is given by 

 CD = C ¿  r� = �̂ ¿ � (6.11) 
A convenient method to determine � is to assess futures contracts on the commodity (Trigeor-
gis, 1996; Luenberger, 1998; Casassus, 2004). A futures contract (or simply ‘futures’) is an 
agreement between two parties to trade an underlying asset at a specified maturity date for a 
specified price. Futures are standardised contracts traded on the exchange. Settlement of the 
contract may take place physically or financially, the contracts are often traded many times be-
fore maturity. 
No costs are involved to enter into a futures contract, except for the transaction costs. In a liquid 
market, the futures price will therefore be adjusted so that the present value of all cash flows is 
equal to 0. First we will consider this mechanism while ignoring dividends. To prevent arbitrage 
opportunities, the futures price should be equal to the expected spot price at maturity (Mandler, 
                                                                 
10 In particular commodities held only for investment purposes, such as precious metals, are known for having negative net convenience yields. 
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2003). If this were not the case, a risk-free profit could be made by taking a position in the fu-
tures contract and an inverse position in the underlying. If the futures price exceeds the current 
spot price plus the risk-free return until maturity, the investor is cheaper off by buying the un-
derlying now, missing out only on the interest rate had the money been invested in a risk-free 
bond instead. It follows that the futures price discounted at the risk-free rate must equal the 
current spot price. 
For commodities, the relationship between spot price and futures price is often more complex 
due to the convenience yield (Trigeorgis, 1996; Dinceler et al., 2005). As the commodity is not 
physically held when holding a futures contract, the ‘dividend’ component is not included in its 
pricing. When futures contracts on commodities in plentiful supply11 are liquidly traded, their 
real values are therefore equivalent to the risk-neutral expectation of the spot price at time w. 
Hence, we can obtain the risk-neutral growth rate when prices of futures contracts with differ-
ent maturity dates w are available. Say that the prices of two futures contracts are available, with 
maturity dates wc and w_ respectively (with w_ ÷ wc). Expressed as a function of the spot price 
and the risk-neutral drift, the values of these contracts are then given by: 

 Q_ = �i��v�  
Qc = �i��v�  (6.12) 

It follows that the risk-neutral drift α� between date 1 and 2 is 
 CD = o�(Q_ Qc⁄ )

w_ ¿ wc  (6.13) 
The spot price can be considered as a special case of a futures contract, namely a futures con-
tract at maturity (future and spot prices converge to the same level at the maturity date to avoid 
arbitrage). So, in Equation (6.13) Qc may be substituted with �Y as well. The calculated drift de-
pends on the futures contracts used in the equation. When many futures contracts with different 
maturities are available, a futures curve can be constructed which represents the risk-neutral 
price development over time. The curve of the expected real spot price lies above the futures 
curve by a risk premium. 
 
 
 
 
 
 
 
 
 
                                                                 
11 A commodity with a finite nature can be plentiful in supply as well. In this context, ‘plentiful’ refers to a com-modity which can be easily obtained by any market participant. 
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Chapter 7 
 

7. Construction of price forecasting models 

 
 
 
 
 
 
 
 
 
 
Based on the diagnostic tests and the techniques treated in the previous chap-
ters, we now construct the price forecasting models for natural gas and electric-
ity. Consistent with option pricing theory, we adopt a risk-neutral approach. The risk-neutral drifts are estimated based on the available futures contract informa-
tion.  
The gas price model is relatively simply, keeping in mind only average contract 
prices are required eventually. We use binary variables for monthly deviations, 
and an Ornstein-Uhlenbeck process for the stochastic part. The forecasted prices 
follow the behaviour of the actual series closely. Significant higher-lag autocorre-
lation remains present in the residuals. 
We combine five techniques to construct the electricity price model. It contains a 
sinusoid function and daily binary variables to reflect time effects, a mean-
reverting stochastic process, a GARCH model for volatility, and a jump-diffusion 
model for price jumps. The price model does not fully remove the autocorrela-
tion pattern.  In the discussion of this study we provide some suggestions to im-
prove the electricity price model. 
We attempt to calculate a meaningful cross-correlation, applying the constructed 
models to remove time effects and autoregressive trends as much as possible. 
However, lagged correlations reveal that a significant time pattern is present in the correlation between the series. Therefore we choose not to use the lagged 
correlation, instead assuming no linear dependency exists between both series.   

 



  85 

7.1. Estimating risk-neutral drifts 

Following the approach described in Section 6.10, we use futures contracts to estimate the drift 
of gas and electricity prices. We obtained the publicly available future prices of 4 April 2012 
from the ENDEX website. Future contracts of several lengths are traded, with maturities ranging 
from a week ahead to several years ahead. However, the number of contract lengths available is 
still quite limited, making it difficult to accurately estimate all effects that theoretically could be 
derived from futures price data. ENDEX applies an averaging method to obtain a value for quar-
terly, seasonally or yearly futures contracts. To prevent arbitrage opportunities, they make cor-
rections on the monthly prices (APX-ENDEX, 2011). This procedure causes some marginal de-
viations between monthly contracts and contracts over a longer period of time. 
In order to estimate the long-term drift, we do not include seasonal or quarterly contracts; the 
seasonal effects incorporated in these contracts hamper the analysis of long-term effects. Fu-
tures on natural gas are available until 2018, futures on electricity until 2017. The future curves 
plotted in Figure 27 include the average spot prices over 2011 and the subsequent calendar year 
futures. For the year 2012 no calendar year futures prices are available, we determine the value 
of this year with interpolation.12 We add a linear trend line to represent the average risk-neutral 
drift. 

Figure 27: Futures curves of natural gas (left) and electricity (right) in blue, with a regressed linear 

trend line in red. 

The futures prices of natural gas clearly lie above the current spot price, but are expected to 
decrease slowly after 2013, ending in an almost flat line. This might indicate that the current 
demand for gas is high relative to production, so investors prefer to acquire natural gas in the 
nearby future over the same commodity at a later time. The electricity price is expected to in-
crease only little over the coming years, before sharply increasing between 2016 and 2017. It is 
unknown what causes this sudden rise and whether this trend is expected to continue in the 
years after. 
 

The exploitation of a gas field usually lasts longer than the five or six years represented in the 
futures curves. Additionally, the ENDEX is considered only a moderately liquid market. These 
factors make it difficult to determine a long-term trend. Ideally the risk-neutral drift would sim-
                                                                 
12 Taking the average spot prices over 2012 until 4 April would not represent the average of the year, as this set would be biased towards the winter prices. 
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ply follow the futures curve, yet extrapolating the curve is difficult due to the irregular patterns 
of both curves. Instead of extrapolating the curve, we take the average trend as the risk-neutral 
drift. This means that the simulated prices will differ from the observed risk-neutral process in 
the short term and provides a conservative estimate after those years. Absent the insight how 
prices are expected to develop in the long term, taking the average drift seems to be a justified 
decision. The average drift is calculated by filling in Equation (6.13) for all maturities following 
each other (e.g., 2014/2013, 2015/2014 etc.) and taking the average value. The drift between 2011 and 2013 is assumed to be constant. Completing this procedure gives an annual risk-neutral drift of 2.435% for the gas price and 1.249% for the electricity price. Dividing these numbers by 365 gives the daily drift. These outcomes are quite close to some long-term fore-casts of real drifts, as presented in Section 8.3. This may indicate that the average trend is closer to reality than the extrapolated trend. We will test for an alternative high-drift scenario as well. 

7.2. Modelling gas price series We model the gas price series with a deterministic function describing monthly effects and a stochastic part modelled with the Ornstein-Uhlenbeck model. In the option model, we assume that natural gas is sold via contracts based on the average gas price of three or six months. The main characteristic of the gas price series is therefore to provide realistic averages, with short-term behaviour being less important. Ornstein-Uhlenbeck appears to be a suitable choice for this. It includes the mean-reversion property, without requiring to estimate short-term devia-tions.  
Following Lucia & Schwartz (2002), we decompose the movements of prices in a deterministic time pattern and a stochastic process. Diagnostic testing revealed the existence of some monthly effects; the deterministic part can take account of these movements. First the series must be deseasonalised, and then we can estimate the Ornstein-Uhlenbeck model on the newly created series. As stated in the test results, no clear seasonal pattern can be distinguished. For this rea-son, we account for seasonality by including binary variables ¡H,I     for each month J. The monthly price effects are denoted by �H , representing the deviation from the logarithm of the price. In Table 15 the estimated monthly effects are presented. 
Parameter Estimate 

Mc 0.138 
M_ -0.021 
MR -0.046 
MS -0.081 
M� -0.030 
M� -0.051 
M� -0.011 
M� -0.064 
M� 0.015 
Mc| -0.030 
Mcc 0.104 
Mc_ 0.086 

Table 15: Estimated monthly deviations from average logarithmic gas price. 

We now estimate the Ornstein-Uhlenbeck process for the deseasonalised price series. Smith 
(2010) performed an empirical test on the accuracy of several estimation methods on the Orn-
stein-Uhlenbeck model, and concluded that least squares and maximum likelihood provide the 
best results overall, but are relatively poor on estimating the mean-reversion parameter. Meth-
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ods such as jack-knife maximum likelihood13 can provide more accurate results on this aspect, 
but perform poorly overall. To estimate the parameters of the gas series we apply the least 
squares method as proposed by Van den Berg (2010). The following values are obtained: 
Parameter Estimate 

�� 2.867 
� 0.015 
� 0.063 

Table 16: Parameter estimates of logarithmic Ornstein-Uhlenbeck process for stochastic gas price. 

To incorporate the risk-neutral drift of the price, the equilibrium price level must increase over 
time. We do this by adding the risk-neutral drift calculated in the previous section to the equilib-
rium price at every time step. In Figure 28, we show two sample paths randomly generated with 
the forecasting model, with the logarithmic series converted back to real prices. The blue graph 
represents the historical price series. It can be seen that the actual price series includes periods 
of clustered volatility, which is not reflected well in the forecasted series.  

 
Figure 28: Randomly simulated gas price paths compared to historical gas price series (blue). Apart 

from the lack of volatility clustering, behaviour seems comparable. 

In Figure 29, we plot a graph using the stochastic part of the previous day’s price (i.e., the price 
minus the time effect) as input for each day-ahead forecast. The blue line represents the actual 
data, the red line the forecast. Again, the differences in volatility can be observed. Overall the 
simulated series seems to follow the behaviour of the actual series quite closely. Following He 
(2007), we perform 5000 price simulations to compare the first four moments of the simulated 
series to those of the actual series. We show the results in Table 17; they indicate a stronger 
right-side tail than observed in the historical data.  The positive risk-neutral drift is used instead 
of the negative historical drift, explaining the higher mean value. 
 
 
 
                                                                 
13 With jack-knifing, the parameters are recalculated leaving out one or more observations, thereby estimating the bias and standard error of the statistic. 
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Moment Historical price series Simulated price series 

Mean 18.769 21.783 
Standard deviation 5.871 7.570 
Skewness 0.111 0.991 
Kurtosis 0.613 1.485 

Table 17: Comparison between moments of historical and simulated gas prices. 

We obtain the residuals of the model by taking the difference between the expected value of the 
day-ahead forecast and the actual price. We perform residual testing in Appendix II, we present 
our main findings here. Autocorrelation is reduced and insignificant for the first two lags, but 
significant autocorrelation remains for higher lags. Particularly the 9th lag shows noticeable 
autocorrelation. Including an MA(9) term to the model removes significant autocorrelation, but 
it is unlikely this autocorrelation is a structural effect. Instead, removing the seven price jumps 
depicted in Figure 26 also removes significant autocorrelation. The Jarque-Bera test still rejects 
normality of the residuals; some outliers strongly affect their distribution. The f_ when applying 
day-ahead forecasting on the actual series is 0.96. 
More advanced volatility modelling techniques such as GARCH or a mean-reverting stochastic 
volatility might be able to reflect heteroskedasticity better. Since contract prices are based on 
average prices over at least three months and a large number of simulations is performed, we 
believe that the assumption of constant volatility will not have a strong effect on the option 
value. 

 
Figure 29: Randomly simulated day-ahead forecast of gas price compared to historical gas price series. 

The forecasted series follows closely, but is more volatile at some points.  

7.3. Modelling electricity price series 

The first issue we address is the part of the data set that we should use for parameter estima-
tion. The volatility has shown a decreasing trend over the years, but some developments (see 
Section 2.8) indicate that volatility may increase again in the future. Using a too recent time 
window might underestimate volatility. We note that the pattern before the liberalisation of the 
Dutch energy market in 2004 is more fickle than afterwards. Due to the structural difference 
between both markets, we estimate parameters based on the historical prices from 2004 to 
2012, assuming that the behaviour of future prices is approximated by an average of this period. 
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The series from 2004 to 2012 were tested again for mean-reversion and stationarity, resulting 
in the same conclusions as in Chapter 5. The price series is still mean-reverting and the return 
series still satisfies the stationarity property. We do not show the results of these tests here. 
Diagnostic testing in Section 5.7 revealed that significant differences in daily- and monthly 
prices exist. We again decompose movements in a deterministic time pattern and a stochastic 
pattern. Pilipovic (1998) proposes a sine function to account for seasonal patterns, or a double 
sine function if both a winter and a summer peak exist in the prices. We estimated both the sine 
and double sine function; the double sine function provided a higher adjusted coefficient of de-
termination and is therefore preferred. Following He (2007), we add binary variables to account 
for the day of the week: 

 TU ½�J� 2�Z
365 h �U¾ h TVU ½�J� 4�Z

365 h �VU¾ h Ê ¡H,IdH
�
HËc  (7.1) 

where TU, �U, TVU, �VU and dH (for i ¢ 1,…,7) are constant parameters to be estimated.14 In this 
equation, TU Å�J� _�Y

R�� h �UÆ represents the annual trend, TVU Å�J� S�Y
R�� h �VUÆ the semi-annual 

trend and dH is the average daily deviation from the weekly average. Finally, ¡H,I     is a binary vari-
able representing the day of the week. 
We linearly regress Equation (7.1) on the price series, estimating all parameters simultaneously. 
A single constant is added as a shifting parameter, which must be removed afterwards. Note that 
the constant only serves as a temporary intercept. We show the estimates of the parameters in 
Table 18. Representing only average deviations, the deterministic time function does not com-
pletely remove time effects. We show an example of the deterministic seasonal component (in 
red) in Figure 30, compared to the actual log of the price series in 2007.15 It can be seen that the 
seasonal trend follows the actual behaviour of the series, showing a sharp price decrease during 
weekends and a slight wave-pattern over the year. 

    

Table 18: Parameter effects of time function for logarithmic electricity price. 

                                                                 
14 A deterministic linear trend is also added in other applications, but this would not allow for incorporating a risk-neutral drift based on futures contracts. 
15 A single year allows observing the time trend better in a graph. The year 2007 was chosen for roughly lying in 
the middle of the sample. 

Parameter Estimate 

TU  0.109 
�U  2.197 
TVU -0.039 
�VU  0.101 
dc  0.096 
d_  0.152 
dR  0.138 
dS  0.122 
d�  0.085 
d� -0.084 
d� -0.290 
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Figure 30: Historical logarithmic electricity price series and estimated seasonal trend for the year 2007. 

The comb-like pattern of the historical series is strongly reduced after correcting for the time trend.  

For the stochastic part, several modelling techniques are available. A general approach is to dis-
tinguish between a normal and extreme behaviour of the series, either with different regimes or 
by adding jumps. He (2007) compares the performance of several stochastic models, concluding 
that regime-switching models provide results closer to the historical data than jump diffusion 
models. However, a jump diffusion model also captures the behaviour of the electricity prices 
quite well. In this study we estimate a jump diffusion model on the deseasonalised price series, 
as it does not require using an algorithm for the estimation of the parameters. For the purpose 
of this research a model reflecting the behaviour of the commodity is sufficient; we do not seek 
to optimise with respect to historical data. 
We filter out jumps from the deseasonalised price series by removing all prices more than three 
standard deviations away from the mean, obtaining 16 jumps. This is quite a small amount 
(about 0.5% of the total), making it difficult to accurately derive the intensity of arrival. In addi-
tion, jumps only occur in the early years of the sample. To allow for both upwards and down-
wards jumps, we adopt a dual jump diffusion model. The processes for upward jumps (÷ 3�) 
and downward jumps (ì ¿3�) can then be modelled independently, allowing for better pa-
rameter estimation. Under the assumption that the entire trajectory of the process is known 
(which is reasonable for a sufficiently large sample), Makhnin (2008) states that the intensity of 
jumps occurring can be estimated as  

 sD ¢ 1
w Ê Õ(Z  w)v

Y!c  (7.2) 
with w as the total number of observations and Õ as a function providing a value of 1 if a jump 
occurs at time Z, and 0 otherwise. This is simply the maximum likelihood estimator for the Pois-
son arrival parameter (Larsen & Marx, 2006). For the series above, this procedure results in an 
estimated average arrival time of 0.003658 for an upward jump and 0.001663 for a downward 
jump, denoted as su and st respectively. The homogenous Poisson process implies that both 
arrival processes are constant over time and all jumps occur independently of each other. We 
assume that prices to revert back to the equilibrium price level after a jump, that is �� h CDZ. Fur-
ther we add the restriction that only a single jump can occur during a day. The probability of a 
jump occurring is then the cumulative Poisson distribution for 1 jump up until an infinite num-
ber of jumps, calculated as 1 minus the chance of no jump occurring. The probability of a posi-
tive price jump occurring at any given day is then 
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1 ¿ iÀ"#su|

0! ¢ 0.0037 … 
and for a negative jump it is 

1 ¿ iÀ"%st|
0! ¢ 0.0017 … 

We take the average price and standard deviation as the mean jump size and volatility respec-
tively. In the model we treat jumps as prices instead of returns. The resulting jump size distribu-
tions are �(5.087771, 0.2131895 for the upwards jumps and �(2.683667, 0.0665715 for the 

downward jumps. We model the remaining deseasonalised series without jumps with an Orn-

stein-Uhlenbeck model, alike to the model estimated for the gas price.  Estimation of the series 

yields the following results: 

Parameter Estimate 

�� 3.775 
� 0.180 
� 0.131 

Table 19: Parameter estimates of logarithmic Ornstein-Uhlenbeck process for electricity price. 

In Appendix II we provide the results of diagnostic testing on the residuals of this model. Though 
reducing autocorrelation, except for the first lag autocorrelation is still significantly present in 
the residuals. Also the weekly effect remains observable, indicating that volatility is higher on 
weekdays as well. By estimating a GARCH model, we attempt to remove this autocorrelation. 
Equation (6.8) shows the structure of a GARCH model. The maximum likelihood estimator for a 
GARCH model is given by (Hull, 2008): 

 ô  & 1
Ò2��DY_

ipb ß¿fY_2�DY_
ç'   v

YËc  (7.3) 
with �DY_ as the estimator of GARCH variance at time Z and fY as the model residual. Equation 
(7.3) is maximised locally16 under the restrictions described in Table 20. 

Restriction Purpose of restriction 

�/(1 ¿ Ê �H h
\

HËc
Ê �I
�

IËc
) = 0.180241_ Makes long-term expected variance converge 

to average variance. 

Ê �H h
\

HËc
Ê �I
�

IËc
ì 1 Ensures GARCH process is stationary. 

�, �H , �I ÷ 0   Ï J, K Ensures estimated variance is always positive. 
Table 20: Restrictions on the GARCH estimation algorithm. 

Moving average terms have a direct effect on the autocorrelation of a particular lag; autoregres-
sive terms have a more lingering effect. Moving average terms are therefore better suitable to 
address autocorrelation stemming from weekly effects. As a starting point, we include a con-
                                                                 
16 The estimation algorithm used provides a local optimum depending on the starting values; parameter estima-tions may vary when trying to reproduce the result. 
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stant and seven moving average terms in the GARCH model to account for the weekly effect. 
Then we add autoregressive terms up to seven lags to see if these yield any improvement. We 
use the Akaike information criterion as the decision rule for adding terms, we do not add new 
terms if these do not decrease the criterion any further. Using the confidence bounds proposed 
by Meko (2009), we remove terms which are statistically insignificant at the 5% level from the 
model, and maximise the maximum likelihood estimator again without the omitted variables. 
Following this methodology, we obtain a GARCH((7),(1,6,7))17 model.  

Parameter Estimate 

X 0.001 
GARCH(7) 0.618 
ARCH(1) 0.076 
ARCH(6) 0.054 
ARCH(7) 0.221 

Table 21: Parameter estimates of GARCH((7),(1,6,7)) model. 

Figure 31 shows the volatility estimates using the GARCH((7),(1,6,7)) model when applied on 
the historical data set, compared to the squared residuals of the model and the estimated con-
stant volatility. We can see that the GARCH model is able to capture the behaviour of the residu-
als to a certain degree. Figure 32 compares randomly simulated volatilities using the constant 
volatility estimate and the GARCH model. The volatility clustering property of the latter model 
can be clearly distinguished. In Appendix II, we perform several diagnostic tests on the GARCH 
model. Our results indicate that the GARCH model improves the properties of the residuals and 
removes the weekly pattern in autocorrelation, but the residuals are still significantly autocorre-
lated and not normally distributed. More specifically, the model consistently underestimates the 
more extreme residuals. These extreme residuals are likely to stem from behaviour unexplained 
in the current model. This issue is not resolved in this study; the discussion in Chapter 11 in-
cludes some suggestions to better capture this behaviour. 

 
Figure 31: GARCH((7),(1,6,7)) model applied on residuals electricity price model. The GARCH variance 

fits the squared residuals to a certain degree, but does not capture the more extreme residuals. The 

improvement compared to constant volatility can be clearly observed.  

                                                                 
17 In this notation only included (G)ARCH terms are mentioned, whereas the standard notation means ‘up to’ the specified number. For example only the 7th GARCH term is included in the model, not all terms from 1 to 7. 
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Figure 32: Comparison between logarithmic volatilities simulated with constant variance (blue) and 

GARCH model (red). The GARCH simulation clearly shows volatility clustering. 

We construct the eventual price series by taking the deterministic time trend, and adding either 
the stochastic return or a jump to this trend. Random errors determine the movements in 
GARCH volatility. We cap the stochastic price at €1000, considering all prices above this level as 
outliers (see Section 8.3.6. for a rationale). We show two randomly generated electricity price 
series in Figure 33, compared with the historical price data of 2006-2009. The latter is repre-
sented by the blue graph. In Figure 34 we show the results of a simulation that uses the previous 
day historical price as input for the next day forecast and random errors for the GARCH volatility 
(not based on actual residuals). We exclude jumps from this series, as the main equation is not 
fit to these prices. As the volatility of the historical series decreased over the years and we ex-
pect forecasted electricity prices to be more volatile than this, in the last part of the graph it can 
be noted the simulated series exhibit more volatile behaviour. Table 22 compares the moments 
of the historical and simulated series. The model provides more skewed results with a higher 
kurtosis; this is likely to be attributed to the extreme variances GARCH occasionally returns. The 
effect on the mean and standard deviation is limited though. 

Moment Historical price series Simulated price series 

Mean 48.829 50.843 
Standard deviation 20.253 21.943 Skewness 2.193 3.499 Kurtosis 12.883 31.512 

Table 22: Comparison between moments of historical and simulated electricity prices. 

The f_ statistic of the model is 63.9%. At least part of this low explanatory power is explained by ignoring the decreasing trend of volatility, thereby consistently over- or underestimating volatility compared to historical values.18 We believe that the model as it stands now is sufficient for our research purpose, but for real-world applications better estimates are likely required. In Chapter 11 we do some suggestions to improve the performance of the electricity price model in future research. 

                                                                 18 As the expected error value is 0, the GARCH model has no effect on the explanatory power. 
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Figure 33: Sample electricity price paths compared to historical price series 2006-2009 (blue). The 

simulated graphs should represent the average behaviour of the historical series. 

 
Figure 34: Day-ahead forecast compared to historical electricity price series without jumps 2004-2012. 

The simulated series tends to overestimate volatility towards the end. 

7.4. Cross-correlation between return series 

As stated in the previous sections, the constructed forecasting models do not fully remove auto-
correlation effects in the time series. Also in Section 5.9 we show that the raw return series are 
not normally distributed when not corrected for autocorrelation, while the natural gas series 
remains non-normal even when autocorrelation would be fully removed. The series do there-
fore not meet the requirements described in Section 5.10 to calculate cross-correlation. Never-
theless we have strongly reduced autocorrelation and time patterns. Therefore we check 
whether a relevant correlation coefficient can be estimated, under the following two assump-
tions: 

� The cross-correlation is a function of the remaining autocorrelation in the series. 
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� The number of observations is sufficient to calculate a reliable significance value for the 
non-normal series. 

To be able to estimate correlation, we detrend the historical price series as much as possible. By 
directly applying our pricing models on the historical data and using the historical drifts, we 
remove the time effects and the mean-reverting effect. We divide the obtained returns by their 
volatility estimates to scale them better. After performing these operations, the resulting series 
for electricity is close to normally distributed. The series for gas contains a number of extreme 
values which strongly skew its distribution. To assess this issue, we remove ‘extreme’ outliers 
from the sample. We define extreme outliers as observations which are removed from the first 
and third quartile by more than five times the interquartile difference. Following this procedure 
we remove 51 outliers from the adjusted gas series. Note that this approach increases the accu-
racy of the correlation estimate, but at the same time ignores unexplained movements in the 
series. Some theoretical validity is traded in to obtain a more meaningful coefficient. After re-
moving the outliers, the series is normally distributed. 
Calculating the correlation coefficient yields a value of 5.77%, which is statistically significant at 
the 5% level. Due to the infrequencies in the data set, the assessment of lagged correlation does 
not exactly equal the actual time lag in days. Still, calculating the lagged correlation (with the 
electricity series following the gas series with lag Z h P) for 50 lags reveals a clear time pattern, 
meaning that the constructed series are still not sufficiently detrended. The estimated coefficient 
could therefore be caused by time effects unaccounted for in the model. For this reason, we must 
assume that no cross-correlation exists between the series. Improving the properties of the 
model or assessing non-linear relationships is required to account for possible co-dependencies 
between the series. 
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Chapter 8 
 

8. Constructing the real option model 

 
 
 
 
 
 
 
 
 
 
 
 
In this chapter, we construct the real option model for Gas-to-Wire production. 
We consider an investment problem where gas is produced initially, and we can 
shift to electricity generation every year. The daily production decision for elec-
tricity generation is based on the spark spread. 
We explain the structure of both the real option model and the dynamic decision 
tree. In most respects the latter is the same as the real option model, differing on 
the discount rate applied and the use of real probability distributions instead of 
risk-neutral ones. We provide an overview of the key assumptions in the final 
section of the chapter. 
In Section 8.2, we find estimates for the parameters used in the simulation 
model. This includes the risk-free rate, the WACC, the drifts for market prices 
and cost developments, and the investment costs.  
We choose Monte Carlo simulation as the method to calculate the option value, 
mainly because its ability to deal with path-dependent payoffs. Also it is flexible 
and insightful for others, allowing for further modifications and expansion. To be 
able to calculate the American option value with simulation, we have to compute 
the expected continuation values. We use the Longstaff-Schwartz algorithm to 
perform a backwards regression on the simulated price paths. 
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8.1. Real option structure 

In this section, we outline the main properties and assumptions of the option model. Section 8.7 
provides a more extensive overview of the key assumptions. We apply the option model on a 
tail-end field. This means that the gas production facilities have already been established, and 
pipelines connecting the production site to the transport network are laid as well. A single pro-
duction well is active on the field. We set the maturity of the option at twenty years, starting at 
the beginning of 2012 and maturing at the end of 2031. We consider amounts of exploitable gas 
remaining after maturity lost; in practice our simulated fields are always abandoned before ma-
turity. We can make the decision to switch from gas production to electricity generation at the 
start of every year; the decision goes into effect immediately. The decision is irreversible, mean-
ing that we cannot switch back to gas production after exercising the option.  
Gas is produced continuously. Every three months, we choose to fix either the six-month aver-
age (6-0-3 contract) or the three-month average (3-0-3 contract) for the next three months, 
whichever offers the higher price. Electricity produced is sold on the spot market on a daily ba-
sis. We base the production decision on the spark spread, which should be greater than the pre-
specified threshold in order to produce. The electricity produced is sold the same day. We draw 
the amount of Gas-in-Place from a lognormal distribution, considering GIP an uncorrelated pri-
vate risk that is resolved before applying the option model. Determining the reserve can be 
viewed as a decision tree placed before the option model (Dias, 2012c). Investment- and pro-
duction costs are private risks with a correlation to the market; we further assess this property 
in Section 8.4.3. We assume the growth of costs to be deterministic. The gas price and electricity 
price are the market risk in the real option, and are modelled by stochastic processes. 

8.2. Decision tree structure 

To compare the performance of the real option with that of other dynamic evaluation tools, we 
construct a decision tree model as well. We structure this model in mostly the same way as the 
real option model, basically only differing on the point of risk adjustment. Risk-neutral simula-
tion and –discounting as seen in ROA implicitly risk-adjusts cash flows to the project’s risk pro-
file, because the risk-neutral drift is equivalent to the real drift minus the market risk premium. 
This is a feature not reflected in the DTA; recall that a decision tree only uses real probabilities 
and a single discount rate incorporating risk preference (see Section 3.2). This means that we 
use the real probability distribution for price simulation instead of risk-neutral simulation. More 
specifically, we use the real drift C instead of the risk-neutral drift CD. Further we replace the 
risk-free discount rate by the WACC. DTA makes no distinction between market risk and private 
risk. Every cash flow is estimated according to its real probability distribution and discounted at 
the same rate. For the remainder, the real option model and the decision tree are the same. The 
daily production decisions and the investment decisions made are equal. We use the same ran-
dom number streams for both simulations, as we perform them parallel.  

8.3. Parameter values 

8.3.1. Discount rates for risk-neutral and real valuation 

In a risk-neutral framework we discount future cash flows at the risk-free interest rate. This is 
the return which supposedly can be earned without a probability of default. Literature usually 
suggests using the return on United States treasury bonds with equal length as the option as the 
risk-free interest rate, being approximately risk-free as they never defaulted. As we consider the 
exploitation of a Dutch gas field, Dutch government bonds are the most natural choice for the 
risk-free rate. At 3 July 2012 the annual return on a 20-year Dutch government bond was 
2.672% (Forexpros, 2012).  
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At the moment of writing this thesis, interest rates are at a historical low point. It is unlikely that 
the current interest rate will be representative for the lifetime of the option. The reason why we 
still choose this interest is that it is not clear how a stochastic interest rate would affect the risk-
neutral drift estimated for the market prices. This is because the risk-neutral drift for a com-
modity is calculated with the risk-free interest rate and the convenience yield; recall that 
CD ¢ �̂ ¿ �. We cannot estimate a stochastic process for � with our data. With sets of historical 
futures prices and interest rates available, it would be possible to assess the changes in dividend 
and drift in relation to the �̂ . We could then model �̂  and CD stochastically. 
Several discounting approaches exist (Lewis et al., 2009). We can make arguments for both con-
tinuous and discrete compounding, with continuous compounding being somewhat more con-
servative. Also combinations of discrete and continuous compounding are used. In the model, 
we apply discrete annual compounding. For the decision tree, we use the WACC as the discount 
rate. As the simulation is not based on an actual case, we must presume a WACC. Reports of E&P 
operators indicate that most of them use a WACC between 10 and 15% (Ramos, 2008; Kokin & 
Dzuba, 2009; Hira & Wood, 2012). In this study, we take a WACC of 12.5% as discount rate.  

Valuation method Discount rate 

Real option 2.672% 
Decision tree 12.500% 

Table 23: Risk-neutral and real annual discount rates. 

8.3.2. Real drift of gas and electricity prices 

For the real option model, we estimated the risk-neutral drift for the gas and electricity prices 
based on the prices of APX ENDEX futures contracts. The decision tree requires estimating real 
drifts. We use the 2030 outlook from the European Commission to estimate these drifts (Euro-
pean Commission, 2003). We discuss this approach along with some other possibilities in this 
section. 
A common method to estimate the real drift of prices is to extrapolate the average drift of his-
torical data (Pindyck, 1999). This method has several disadvantages. Most importantly, it does 
not incorporate insights in future developments which could alter the price. Also, the choice and 
length of the time window used may have a great effect on the estimate. Applying extrapolation 
on our full historical data sets, the annual real drift would be 4.27% for the electricity price and   
-4.49% for the gas price. Considering the positive drifts observed in futures contracts, the nega-
tive estimate for gas is a counterintuitive result. These findings would only be consistent in case 
of a large negative convenience yield, meaning that the costs of storing natural gas would have 
to exceed the benefits of holding it by far. 
From Equation 43.95 it follows that we could also estimate the real drift by adding the market 
premium to the risk-neutral drift that we obtained from the futures contracts. This approach 
would be most consistent with real option theory, and allow for the most valid comparison be-
tween ROA and DTA. However, to estimate the market premium we would need a data set con-
taining both futures- and spot prices, which was not available for this study.  
Some large research institutes and companies present outlooks in which they reflect on long-
term developments in the energy industry. Some of them provide an expected price develop-
ment as well. Usually these studies have a global or continental focus; detailed country-specific 
outlooks are rare. As long-term price developments are strongly influenced by macroeconomic 
forces, we believe there is no objection to use Europe-oriented studies to estimate Dutch price 
developments. The European Commission 420035 forecasts an average annual drift of 2.80% for 
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the European gas price up to 2030, measured as percentage of the prevailing gas price. They 
make use of a model based on world supply and -demand and a correlation with the oil price. 
From the findings presented in the European Commission study Roadmap to 2050, it follows 
that the expected annual drift for electricity (measured as percentage of the prevailing electric-
ity price) until 2030 is 1.72% (European Commission, 2011). This drift is estimated based on a 
scenario where current electricity policies are continued, new policies stimulating electricity 
generation from renewable energy could drive the drift up to 2.35%.   

Annual drift Real option Decision tree 

Drift gas price 2.43% 2.80% 
Drift electricity price 1.25% 1.72% 

Table 24: Risk-neutral and real price drifts for natural gas and electricity. 

8.3.3. Growth rate of costs 

We estimate the real growth rate of costs based on cost indexes of the industry. The Upstream 
Capital Cost Index (UCCI) is an index which tracks the development in capital costs associated 
with oil and gas projects (IHS Indexes, 2012). The portfolio includes 28 diversified projects 
around the world, and measures costs stemming from labour, facilities, material and equipment. 
The European Power Capital Cost Index (EPCCI) is a similar index on the costs of constructing 
power-generating facilities. Finally, the Upstream Operating Cost Index (UOCI) provides an es-
timate for the operating costs in the oil- and gas industry. A comparable index for the power 
industry is not available, but the UOCI may well reflect the operating expenses involved with 
Gas-to-Wire, since both involve the processing of gas. Annual index figures are available since 
2000, estimating the trend of these series yields effective annual growth rates of 5.49% 4UCCI5, 
7.27% 4EPCCI5 and 5.59% 4UOCI5. The indexes have shown a sharper increase in costs during 
the last years. A possible explanation for this is that costs in the energy industry tend to be cor-
related to oil prices, which have also grown strongly during the last years. 
To obtain the cost drifts for the real option, we assess the correlation between the cost drift 
4which is considered to be private risk5 and the market. We fill in the CAPM described in Equa-
tion 43.85. To estimate the beta, we calculate the correlation between the cost index returns and 
the market returns.19 We take the Dutch AEX as a proxy for the market; we obtain annual values 
for this index from 1Stock1.com (2012). We calculate the correlation between the annual loga-
rithmic returns for the AEX and those of the UCCI, EPCCI and UOCI. This yields beta estimates of 
-0.01, -0.02 and 0.00 respectively, indicating that costs are almost uncorrelated to the market. 
The average market return for the AEX is difficult to forecast, particularly considering the turbu-
lent crisis years. The long-term historical return might be the best estimate for a long-term fore-
cast, as it is hard to predict global developments over the course of 20 years. The average effec-
tive AEX return since the founding of the index in 1983 was 9%, we take this rate as the market 
return (Jansen, 2012). In a risk-neutral framework, the drifts for the costs of gas and electricity 
production are then given by filling in Equation (3.12), see Table 25 for the results. 
We emphasise that this approach is merely an approximation showing how a drift for a corre-
lated private risk process can be obtained, spurred by a lack of real cost data. When performed 
on an actual project, it would be better to estimate a project-specific development of costs and 
measure the correlation between this structure and the market return relevant for the project 
(for example the index on which the company’s shares are traded). The estimation performed in 
                                                                 
19 IHS Indexes does not specify a currency unit for their indexes. For theoretically consistent risk-neutral valua-tion costs should be correlated to an index in the same currency as the project pays off, otherwise introducing currency risk. 
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this section suffices to provide a rough estimate of cost development and illustrate the adjust-
ment of correlated private risk, and should be viewed only as such. 

Growth rate Real option Decision tree 

Growth rate gas costs 5.57% 5.49% 
Growth rate electricity costs 7.41% 7.27% 
Growth rate operating costs 5.59% 5.59% 

Table 25: Annual cost drifts for decision tree and real option. 

8.3.4. Investment costs 

During the lifetime of the option, we can make several large investments. It is important to dis-
tinguish these costs from the operational costs; investment costs are deductible from the profit-
able tax over multiple years 4with the exception of abandonment5, thereby influencing the free 
cash flows of the project. We consider the following investments. 

� Compressor: A compressor is required for gas production when the pressure at the 
wellhead falls below a certain level. We do not include a function of wellhead pressure in 
the simulation model. Instead, we make the investment decision for a compressor based 
on the production rate. 

� Gas-to-Wire investment: When we make the decision to start generating electricity, a 
generator should be placed on the field. Also the generator should be connected to the 
transport grid, this requires wiring to be laid. Together we consider these investments 
to be the strike price of the option.  

� Abandonment: When the field is no longer commercially exploited, an investment must 
be made to abandon the field. This investment differs from the other investments in that 
it has no economic life time. As a consequence, abandonment costs cannot be depreci-
ated. Carry back can be applied to deduct the expenses from the profit of the previous 
year. The costs for abandonment are strongly dependent on the properties of the field 
and should be determined field-specific. 

We show our estimates for the investment costs in Table 26. Due to the lack of historical cost 
information of Gas-to-Wire and project-specific characteristics there is still large uncertainty in 
the required investments. Of the investments made, we assume that only the generator and 
compressor have salvage value. We assume that their values decrease linearly with time, and 
have no salvage value left once the technological lifetime of the investment has been reached. 
Note that these capital costs increase over time with the rates specified in the previous section. 

Investment Cost 

Wiring 4per kilometre5 € 160,000 
Generator € 8,000,000 
Compressor € 5,000,000 
Abandonment € 1,250,000 

Table 26: Cost parameter of project investments in 2012.  

8.3.5. Operating cost 

For the Groningen gas field, production costs are about € 0.01 per cubic metre produced (En-
ergy Charter Secretariat, 2007). The Groningen field is relatively easily to exploit, for the gas 
fields eligible for Gas-to-Wire costs are likely to be higher. For onshore production we assume a 
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standard cost of € 0.015 per cubic metre, including factors such as processing and transporta-
tion. 
When natural gas needs to be compressed, this requires more energy, making production more 
expensive. The acquisition of a compressor serves as the trigger to change to the higher cost 
estimate. Though lower pressure requires more energy to bring the gas up to the required pres-
sure, operating costs are assumed to remain constant for all levels of compression. Taking a set 
of constant physical properties, the amount of energy required to compress 50,000 m3 from 10 
bar to 65 bar is about 4.385 MWh 4N. González Díez, personal communication, 29-08-2012). We 
take the average 2011 electricity price as fixed price,20 this results in an estimate of €0.005 per 
m3 for compression costs.  
For Gas-to-Wire production, we estimate the costs for maintenance of the generator at 15% of 
the purchase cost annually. Operating costs are estimated at 1% of the generator costs under the 
assumption of continuous production at full capacity. In our model these costs, under current 
prices, are divided by 365 and the production capacity to obtain a daily cost price per cubic me-
ter of gas exploited. All described costs are 2012 values, and increase with the operating cost 
rate specified in Section 8.3.3. 

Operation Cost 

Gas production without compression € 0.015/m3 
Gas production with compression € 0.020/m3 
Gas-to-Wire € 0.004/m3 
Maintenance generator € 1,200,000/year 
Generator revision € 3,000,000 (end lifetime) 

Table 27: Estimates for operating costs (based on 2012 capital costs). 

8.3.6. Price cap on electricity prices 

As stated in Section 2.8, electricity prices are subject to a maximum price set by the APX. This 
price is based on the prevailing tariffs in the balancing market; as such they are changing over 
time and not publicly available.  In Section 6.8 we point out that occasional extreme outcomes 
are inherent to the GARCH model. For this reason, we need to enforce a price cap in the simula-
tion model (He, 2007). This price cap should be high enough to allow for extreme behaviour of 
the series (which is observed in historical series as well), but at the same time should consider 
the regulatory influence. Keeping in mind that the largest price observed in the historical data is 
€660, we set the price cap for the following 20 years at €1000.  

8.3.7. Field, production and abandonment properties 

We assume that the amount of GIP is 0.25bcm, which is an average size for a field eligible for 
Gas-to-Wire. We set the lower and upper bounds for the GIP at 0.2 and 0.3 bcm respectively. The 
production function for this field has an initial production rate of 53,000 m3/day and an annual 
decline rate of 5.48%.  We set the threshold for abandonment for gas production at a production 
rate of 40,000 m3 per day. For electricity generation this threshold is 25,000 m3 per day, as this 
is the minimum capacity of the generator. Most small fields in the Netherlands contain high-
caloric gas. We therefore take the average energetic value of Dutch high-caloric gas; 69 m3 of 
natural gas contains 1 MWh of energy (GasTerra, 2012d). 
 
                                                                 
20 The compression costs could be linked to the simulated electricity prices as well, but we expect this to have a 
limited effect on annual cash flows. 
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Parameter Value 

Field size 0.25 bcm 
Initial production rate 53,000 m3/day 
Annual decline rate 5.48% 
Energetic value natural gas 0.014444 MWh/m3 
Abandonment rate gas production 40,000 m3/day 

Table 28: Parameter settings for field properties. 

8.4. Valuation methods for real options 

The real option we present in this study can be exercised at a finite number of specified dates 
before maturity (the first day of each year), and as such is considered a Bermuda-type option. 
More specifically the real option can be viewed as a nonstandard Bermudan swap option, allow-
ing to trade one stream of variable cash flows for another stream of variable cash flows by mak-
ing a fixed payment.  It is difficult to value an American or Bermudan option analytically (Joy et 
al., 1996; Broadie & Glasserman, 1997; Gamba, 2002; Minqiang Li, 2009). This is because we 
need to find the optimal exercise policy to determine the option value. Further our real option 
contains some nonstandard components, such as multiple stochastic processes, mean-reversion 
and random jumps, increasing the difficulties of analytical valuation even more (Miller & Park, 
2002; Law, 2007). But also most numerical methods, such as binomial trees, require complex 
modifications to deal with such properties.  
An important feature of our real option is that its payoffs are path-dependent. Most valuing 
techniques have great difficulty valuing such options. Often analytical solutions are not available 
at all. The problem is that we need to solve for the asset value(s) and the optimal exercise policy 
simultaneously; the asset value itself depends on the exercise decision made. Monte Carlo simu-
lation is well able to deal with path-dependency, making it the most natural choice for the pre-
sented problem (Barraquand & Pudet, 1996; Glasserman et al., 1999; Cortazar, 2000). Also 
simulation is a flexible and insightful method, allowing for easy modifications and extensions. 
For these reasons we choose Monte Carlo simulation as valuation method for the real option.  
Monte Carlo simulation is not without disadvantages. A problem with simulation is that many 
runs are required to approximate the value of the option, potentially requiring long simulation 
times. When an insufficient number of runs is made, the calculated value can also significantly 
deviate from the theoretical value. A lower- and upper bound must be calculated to quantify the 
approximation error. Further Monte Carlo simulation is a forward process, rather than a back-
wards calculation such as the binomial tree (Choudhury et al., 2008). A disadvantage of this fea-
ture is that the value obtained is strongly influenced by the exercise policy chosen for the Ber-
mudan option. In contrast, backwards valuation allows determining the optimal policy recur-
sively. Section 8.5 shows how to deal with this issue by applying a stopping algorithm. 

8.5. Longstaff-Schwartz algorithm 

According to Carriere (1996), the optimal value of a Bermudan call option can be expressed as  
 XGoo ¢ �Gp *0, �c ¿  c, … , �Y ¿  Y+ (8.1) 

This value is obtained by adopting an optimal exercise policy, which cannot be determined with 
a forward Monte Carlo simulation. A solution to determine a suboptimal exercise policy of an 
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American or Bermudan option on a simulated price path is to run a stopping algorithm on it, 
providing a low-biased estimate for the option value. In this study we use the algorithm of Long-
staff & Schwartz (2001). A stopping algorithm works backwards on the simulated price path 
from the maturity date. At each time step, we compare the exercise value and continuation value 
to see whether it is optimal to exercise the option or to wait. We perform regression analysis on 
future cash flows to obtain the expected values (Tilley, 1993). We do this because using the ac-
tual simulated cash flows would indicate perfect foresight (Broadie & Glasserman, 1997). The 
mathematical rationale behind using regression is that a function which can be differentiated 
twice can be approximated by a linearly independent set of basic functions (Pedersen, 1999). 
Longstaff & Schwartz (2001) regress future cash flows on state variables representing known 
information at point �. They only use in-the-money paths (paths for which the option is profit-
able to exercise), stating that this increases the efficiency of the algorithm and allows for better 
estimation of cash flows relevant for exercise decisions. The regression formula is provided by a 
set of basic functions. For example, we can use a polynomial function:  

 jY
m¸NQYÌc¹ ¢ Xh�c�Y h �_�Y_ h é h �§�Y§ (8.2) 

Many other regression functions can be used as well, for example including cross products of 
several state variables. According to Longstaff & Schwartz (2001), in general, relatively simple 
regression functions provide good results when including a small number of state variables. For 
multiple state variables, the regression function chosen may have a much greater impact (Grau, 
2008; Beveridge & Joshi, 2009). In this study we take the function in Equation (8.2) with � ¢ 3. 
After obtaining the coefficients of the regression functions, a second simulation should be per-
formed (Thom, 2009; Ware, 2011). The calculated exercise boundary may then be applied on 
the simulated state variables in a forward fashion, which is computationally more efficient. As 
the regression parameters are determined on the first simulation, the algorithm might be biased 
high due to the benefit of foresight (Andersen, 1999). Using a second simulation set ensures that 
the estimate is low-biased. 
The Longstaff-Schwartz algorithm provides no measure on how close the lower-bound estimate 
is to the upper bound (Piterbarg, 2003; Joshi, 2006). Using regressed values results in a sub-
optimal exercise policy, how close optimality is approximated depends on the quality of the re-
gression. Algorithms for calculating the upper bound are also available in literature, but are 
more complex and computationally intensive (Broadie & Cao, 2008). We need to adopt the per-
spective of the option seller for this. The seller hedges against all possible exercise strategies by 
the buyer, and can profit when the buyer does not exercise optimally. Under optimal exercise 
the buyer- and seller prices converge to a single option price. Generally, lower bound algorithms 
are used to value derivatives, calculating the upper bound only once to gain insight in the devia-
tion from the actual value. In this study we do not calculate the upper bound, but one should be 
aware that the Longstaff-Schwartz algorithm is used to obtain the lower bound only.  
The real option model differs from a standard financial option in that future cash flows remain 
uncertain after exercise, while both the stock and strike price are known for a standard financial 
option when exercised. Hence, for the real option both the continuation- and exercise value 
should be estimates of the actual simulated cash flows, implying perfect foresight otherwise. In 
the case of uncertain exercise values, Piterbarg (2003) proposes to perform regression on the 
exercise values as well. As the continuation value is based on future exercise values, we should 
obtain estimates for exercise values first. We then perform backwards induction for the con-
tinuation values. 
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We apply the Longstaff-Schwartz algorithm on the decision tree model as well. Though we did 
not find such an approach in literature, we believe it to be most consistent with the real option 
model. Basically the algorithm provides a set of triggers used to optimise exercise decisions un-
der uncertainty. We considered some other possibilities as well. A static decision tree would be 
obtained by placing all simulated cash flow paths in a single tree with equal probabilities as-
signed to each path. This approach essentially reduces the simulation results to a single tree 
containing the average cash flows; the chosen exercise date of the option is then based on the 
average. Compared to the real option model, a static decision tree undervalues flexibility. Alter-
natively, we could construct and solve a decision tree independently for each simulation, opti-
mising the exercise decision with the benefit of perfect foresight. This method would overesti-
mate flexibility value compared to the option model. We therefore believe that the backwards 
regression approach offers the best comparison. 

Step Description 

Step 1 Generate J price paths of length �. 
Step 2 For the simulated prices at point �, subtract strike price to obtain cash flow NQ§. 
Step 3 Remove all calculated cash flows and corresponding asset values smaller than 0 

before performing the regression analysis. 
Step 4 From � ¿ 1 to 0, regress �§ on NQ§Ìc to obtain the expected exercise value 

j(NQ§) at point n.  
Step 5 Regress �§Àc on discounted NQ§Ìc to obtain the expected continuation value at 

point �.  
Step 6 Set the cash flow at time � ¿ 1 at the actual exercise value when the expected 

exercise value is higher than the expected continuation value, and 0 otherwise. 
Step 7 When the option is exercised at point � ¿ 1, set the later positive cash flows for 

that price path equal to 0. 
Step 8 Repeat steps 5 to 7 for � ¿ 2 to 0. 
Step 9 At time 0, divide the sum of the expected continuation values by J to obtain the 

option value. 
Table 29: Stepwise description of modified Longstaff-Schwartz algorithm. 

Summary of the Longstaff-Schwartz algorithm 

� The Longstaff-Schwartz algorithm is a backwards regression on simulated price paths 
to determine the lower-bound option value based on expected continuation values. 

� At each exercise point, a regression is performed on all in-the-money price paths to 
estimate the cash flow at the next point. Regression is used because investors do not 
have perfect foresight on price development. 

� The algorithm replaces the estimated exercise value with the estimated continuation 
value if it is higher, eventually obtaining a cash flow matrix from which the lower-
bound average option value at time 0 can be derived.  
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8.6. Spark spread as state variable and production threshold 

For peak-load power plants, a common production decision rule is based on the so-called spark 
spread (He, 2007). This is the difference between the price of the commodity serving as input 
and the electricity price reduced with the percentage of the energetic value lost during the gen-
eration process. More formally, the spark spread is described as 

 ��Y ¢ (��,Y/iaaJXJi�X¤) ¿ ��,Y (8.3) 
where the prices of electricity (��,Y) and gas (��,Y) are both expressed in €/MWh 
We define the ‘asset value’ in the model as the difference between the discounted sum of cash 
flows from gas production and from electricity production, excluding the strike price. The asset 
value can be considered as the added value Gas-to-Wire has, which may also be a negative value. 
The stochastic part of the cash flows is determined almost completely by the spark spread. For 
this reason, we use the average annual spark spread as the state variable on which the regres-
sion of future cash flows is based. 
The spark spread also serves as a production threshold. Though the operator of a gas field is not 
required to buy gas as production input from the spot market, it still makes sense to base the 
production decision on the spark spread. This is because the market value of the firm is in-
creased when transforming a commodity into a more valuable one (Fleten & Näsäkkälä, 2003). 
Thus, producing when the spark spread is positive means that value is created. Note that the 
value of unprocessed gas is lower than that of processed gas, meaning that a spark spread below 
0 could still be economically attractive. An example of a randomly generated spark spread as-
suming a 45% generator efficiency is shown in Figure 35.  Preliminary testing showed that set-
ting the spark spread too rigid tends to lower the NPV, meaning that the effect of discounting 
outweighs the benefit of selling at higher prices. We set the spark spread threshold at -40, which 
eliminates production at the more extreme price levels (very low electricity price and very high 
gas price). 

 
Figure 35: Randomly generated spark spread with 45% generator efficiency. 

8.7. Key assumptions 

In this section, we provide an overview of the key assumptions for our model. 
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Decision maker perspective 

� Decision makers are rational and strive for profit maximisation based on the informa-
tion available. 

� We adopt the perspective of a well-diversified shareholder with regard to private risk, 
meaning that no additional risk premium is required.  

� The capital market is complete with respect to market risk; private risk can be estimated 
subjectively. Investors agree with these subjective estimates. 

� All investment decisions are made once a year. 
� Decisions made are not affected by competition. 

Gas production 

� Gas production takes place on a continuous basis. 
� Produced gas cannot be stored; gas is sold immediately after production. 
� Each quarter, the producer makes a rational choice between a 3-0-3 and 6-0-3 contract, 

whichever yields the higher price. 
� Produced gas can always be sold immediately (no demand constraints), with contract 

prices based on spot price averages.  
� No gas is lost during transportation. 

Electricity production 

� The producer knows the day-ahead electricity price, and is able to respond to this in-
formation with daily production decisions. 

� There are no demand constraints on the sale of electricity. 
� Production decisions are based on a constant spark spread threshold. 
� The building time to switch from gas to electricity production is zero. 
� No electricity is lost during transportation. 
� The energy lost during conversion from gas to electricity has no value. 

Capital 

� There are no capital restrictions: the operator has sufficient capital available to make all 
required investments at all times.  

� The generator and the compressor have a salvage value that decreases linearly with 
their technological lifetime; all other investments have no salvage value. 
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Generator properties 

� Maintenance activities do not interrupt production. 
� Breakdowns do not occur. 
� The generator can instantly reach maximum production capacity, as well as shut down 

instantly. 
� The number of start-stops of the generator is unlimited.  
� The properties of the generator remain constant over time. 
� A revision of the generator is required at the end of its technological lifetime.  

Tax 

� We do not consider the effects of value added tax. 
� Tax regulation remains constant over time. We treat other tax scenarios separately. 
� Losses carried forward are equated with profits as soon as possible. 
� Carry back has priority over carry forward. 

Field properties 

� The gas field exploited has perfect connectivity, meaning that the reserve can be fully 
exploited with a single production well. 

� All gas present in the field is of the same mixture. 
� Once the field is abandoned, it cannot be reopened for Gas-to-Wire production at a later 

stage. 
� Abandonment takes place in the same year production of gas or electricity halts due to 

falling below the threshold value. 
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Chapter 9 
 

9. Simulation study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We perform a simulation study using the model established in the previous chap-
ters. We explain the setup of the simulation study, describing the workflow 
which we follow to calculate the option value. We adopt a 95% confidence bound 
for the calculation of the lower bound option value, calculating the number of 
simulation runs required based on the variance of a sample simulation.  Further, 
we provide a brief recap of the differences between the decision tree model and 
the real option model, showing how the used drifts and discount rate compare. 
Aside from the base case worked out in Chapter 8, we describe eight alternative 
scenarios for the purpose of scenario analysis. The final section of the chapter is 
dedicated to presenting and discussing the results of the simulation study. 
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9.1. Setup of simulation study 

We perform a simulation study using the models we constructed in the previous chapters. We 
perform ROA and DTA parallel, calculating the cash flows for both methods in the same run. We 
use the same random numbers streams and the same daily production for both methods, so that 
cash flows can be compared. We use the simulation settings as described in Chapter 8, following 
the workflow specified in Table 30. We discount the net present values of the cash flows back to 
each possible year of exercise. This allows for comparison between exercise and continuation. 
After completion of the Longstaff-Schwartz algorithm, all cash flows are discounted back to time 
0. In Appendix III we describe the more complex source coding used in the simulation model. 
The model itself also contains comments to clarify the structure of the functions used.  

Step Description 

Step 1 Set simulation properties 
Step 2 Generate random price paths for gas and electricity 
Step 3 Calculate daily unconditional gas production 
Step 4 Calculate daily conditional electricity production for each year 
Step 5 Calculate daily revenue and operating costs 
Step 6 Calculate annual earnings 
Step 7 Make annual investment decisions 
Step 8 Determine depreciation 
Step 9 Determine carry back 
Step 10 Determine carry forward 
Step 11 Calculate free cash flows 
Step 12 Store net present values of gas production and each option at exercise date 
Step 13 Back to step 1, repeat workflow for next iteration 

Table 30: Workflow of simulation run. 

9.2. Approximation of true option value 

An important choice in a simulation study is the number of iterations that we should perform. 
The more iterations, the closer the average option value approximates the ‘true’ option value 
(i.e., the theoretical value, would the set of partial differentials be solved). The same effect is 
obtained by reducing the variance of the simulated option values, but this is not always possible. 
Computation time increases linearly with the number of iterations. Projects for which the cash 
flows have a low variance require less runs than projects with high variance, as the true average 
value will be approached quicker (Plat, 2002). The mean-reversion property of the price series 
is a factor which we expect to limit the variance of the option value. To estimate the number of 
iterations required, we first do a sample simulation of 5,000 iterations to estimate the variance 
of the option value. Following Law (2007), we use Equation (9.1) to estimate the required num-
ber of runs based on a specified significance level and a relative error:  
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With 

`a  as the required number of runs/degrees of freedom 

�  as the number of runs in the sample simulation 

Z(\,]^)  as the critical value of the student distribution at b with `a degrees of freedom 

�D_ as the estimated variance of the option value in the sample simulation 

b  as the significance level 

EF as the adjusted relative error  

�/ as the estimate of the option value 

The adjusted error is described by EF¢E/(1hE), where E is the specified relative error. We set 
both the significance level and the relative error of the value at 5%. The required number of 
runs is then 5,000, which is the smallest possible number given the size of the sample run. We 
presume this number is valid for all scenarios. We make a total of 10,000 runs for each scenario: 
5,000 for calibration of the Longstaff-Schwartz algorithm and 5,000 for option valuation. A full 
simulation of 10,000 iterations takes four hours to complete with a 2.4GHz Intel Core i3 CPU. 

9.3. Comparison between real option and decision tree analysis 

To make a fair comparison between real option analysis and decision tree analysis, both make 
use of the same random number streams. Also daily production (i.e., the amounts of 
gas/electricity produced) is the same for both analyses. This way, valuation differences can be 
solely assigned to the probability distributions and the discounting approach. Table 31 shows in 
which aspects the real option analysis and decision tree analysis differ. Figure 36 shows how the 
discount rates and drifts compare for both methods. We can make some observations by looking 
at these rates. These effects are not necessarily applicable on ROA in general. Most obvious is the 
difference in discount rate, DTA values future both incoming and outgoing cash flows much less 
than ROA. The real option model discounts costs conservatively compared to the decision tree.  

Rate Real option analysis Decision tree analysis 

Drift price series            (Market risk) Risk-neutral, based on drift of fu-tures prices. Real, based on energy market outlooks. 
Drift costs                      (Private risk) Partially risk-neutral, based on correlation of public cost indexes with the market. 

Real, estimated based on pub-lic cost indexes. 

Discount rate Risk-free rate, based on the return on a 20-year Dutch government bond. 
WACC, based on an average WACC applied by E&P-operators. 

Table 31: Differences between the real option and the decision tree. Note that the properties of the real 

option ensure that cash flows are implicitly adjusted for risk. 
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Figure 36: Comparison between drifts and discount rates of real option and decision tree. The real- and 

risk-neutral drifts are close to each other, but the discount rate for DTA is much higher than the risk-free 

rate. Therefore DTA places much less value on future cash flows. 

9.4. Scenario analysis 

The parameter estimates for the base case scenario are based on averages and current knowl-
edge. Changing these parameters may have a strong effect on the value of the option. To account 
for the uncertainty of the estimates we perform scenario analysis, indicating what effect chang-
ing one parameter or a small number of parameters corresponding with some other scenario 
has on the option value. Next to the base scenario, we run eight other scenarios. We include the 
change of parameters that we consider least certain and may have a significant impact on valua-
tion. Table 32 describes the scenarios that we test in this study. Note these scenarios are not 
necessarily consistent with their theoretical foundation. For example the risk-free rate should 
not be changed without re-evaluating the risk-neutral asset drifts as well. We ignore such con-
siderations in the scenario analysis. We briefly explain why we test the chosen scenarios. 
A prominent source of uncertainty is the reserve amount; each field has its own uncertainty 
distribution. Compared to the base scenario, we assume a relatively small and a relatively large 
reserve (with regard to Gas-to-Wire) to test the influence of field size on the added value of 
flexibility. The large reserve has an average of 0.5 bcm, with boundaries of 0.4 and 0.6. The small 
reserve has an average size of 0.1 bcm, with boundaries of 0.05 and 0.15. The production func-
tions are modified to coincide with the adjusted size of the field. We take initial production rates 
of 70,000 (large reserve) and 45,000 (small reserve) with annual decline rates of 9.13% and 
2.74% respectively. 
The current corporate tax rate is quite low in a historical perspective. In case fiscal measures are 
taken to stimulate the exploitation of small fields, we can imagine that the effective tax rate for 
operators becomes even lower. In this low-tax scenario we assume that no royalties are paid, 
keeping income tax rates the same. On the other hand we think of a scenario with a high tax rate 
of 40%, which is on the high end of historical rates. Often higher rates are also paired with more 
depreciation opportunities. Carry back- and carry forward regulation remain unchanged in this 
scenario.  
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As can be noted from Figure 36, the corporate WACC is out of line with the risk profile of the 
project. In one scenario, we adopt a project-specific WACC to test how such a decision tree com-
pares to ROA. We set this discount rate at 2.67%, which provides nearly the same NPV’s as the 
real option model for the project without flexibility (i.e., only gas production).  
The currently prevailing risk-free rate is historically low. In a time frame of twenty years, this 
rate is likely to fluctuate around some average rate higher than current rates; historically peri-
ods with extreme interest rates tend not to last for decades (Eichholtz & Koedijk, 1996). Since 
our model does not allow for stochastic interest rates, we must therefore assume a representa-
tive average rate. For this, we test a scenario with a constant risk-free rate of 5%. 
Considering developments such as the growing world population, increasing living standards, 
increasing energy demand, sharply increasing oil prices and depletion of natural resources, we 
might expect a higher drift of market prices than our futures prices and outlooks suggest. We 
incorporate a scenario assuming a much stronger growth rate for gas- and electricity prices. We 
take an annual drift of 7% for both price series, for both DTA and ROA. Finally, we consider a 
scenario in which we increase the efficiency of the generator to 55%, anticipating on possible 
technological developments in Gas-to-Wire production. 

Scenario Change from base scenario Purpose 

Low tax Royalty of 0% Test for fiscal measures in 
favour of the exploitation 
of minor gas fields. 

High tax Flat corporate tax rate of 40% Test for negative impact of tax regulation. 
Moderate risk-free rate Risk-free rate of 5% Test for risk-free rate closer to average. 
Project-specific discount rate WACC of 2.67% Test for performance of 

DTA with adjusted WACC. 
High energy price Risk-neutral drift of gas 7% 

Risk-neutral drift of electricity 7% 
Real drift of gas 7% 
Real drift of electricity 7% 
 

Test for strong increase in 
energy prices. 

Large reserve Average reserve of 0.5 bcm Lower bound of 0.4 bcm Upper bound of 0.6 bcm 
Initial production rate of 70,000 
Annual decline rate of 9.13% 
 

Test for added value of 
flexibility for relatively 
large field. 

Small reserve Average reserve of 0.1 bcm Lower bound of 0.05 bcm Upper bound of 0.15 bcm Initial production rate of 45,000 Annual decline rate of 2.74%  

Test for added value of flexibility for relatively small field. 

Enhanced Gas-to-Wire Generator efficiency of 55% Test for technological de-velopment in Gas-to-Wire. 
Table 32: Overview of alternative simulation scenarios. 
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9.5. Simulation results 

In this section we discuss the results of the simulation study performed. First, we describe our 
application of the Longstaff-Schwartz algorithm. We applied the exercise policies determined 
with this algorithm on a second simulation, and briefly discuss the results and implications of 
the tested scenarios. Section 10.3 goes into more detail about the practical implications of the 
simulation study, in this section we focus more on the performance of the model and the ob-
served differences between ROA and DTA. 
The regression functions of the algorithm do not provide very accurate approximations of future 
cash flows. This is not an unexpected result; the current spark spread is a poor explanatory vari-
able for the future spark spread due to its high volatility. This effect is strengthened by the long 
time horizon of the option. For most scenarios, the point of exercise provided by the algorithm is 

a date earlier than the optimal decision under perfect foresight.  We provide an example of a 
regression function for a particular year in Figure 37. In this graph, the option is exercised if the 
line representing the expected continuation value falls below the line representing the expected 
exercise value. A unique set of these functions exists for each year. 

 

Figure 37: Functions of expected continuation value (red) and exercise value (blue) at year t. In this 

specific case it is almost always optimal to defer exercising the option.    
Running the base scenario results in a real option value of € 727,203 for the opportunity to 
switch to Gas-to-Wire production. In 71% of the runs, the option is in-the-money at some point 

in time. The average NPV of gas production (i.e., the project without flexibility) is € 37,901,923, 
so that the swap option provides an additional value of 1.92%. In comparison, the decision tree 
gives us a much lower option value of € 35,343, which is 0.14% of the project value without 
flexibility. Both in an absolute and in a relative sense, DTA values the flexibility embedded in the 
project much lower. This can be explained by the fact that investments in DTA are more expen-
sive relative to the discounted incoming cash flows following later. 
We provide a summary of the main results for all scenarios in Table 33. Most notable is the sce-
nario with the adjusted discount rate. With a relative value of 4.26% this option is clearly more 
valuable than its ROA counterpart, indicating that the risk profile of Gas-to-Wire production 
deviates significantly from that of gas production. The high energy price and the high efficiency 
scenarios strongly increase the option value. The latter is the only ROA scenario for which im-
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mediate exercise is optimal. For the large reserve Gas-to-Wire becomes attractive only in a late 
production phase, after depleting most of the field. Consequently, added value from Gas-to-Wire 
becomes relatively smaller and is subject to more years of discounting. For these reasons the 
algorithm may have more difficulties finding the optimal exercise date. 21 Note that DTA pro-
vides higher values than ROA; because few paths are in-the-money in this scenario, the policy 
estimated for DTA happens to activate some more profitable paths.  
Generally, the options are exercised after two to five years of gas production.  Provided that the 
spark spread at the time of exercise is sufficiently high, the investment required for Gas-to-Wire 
production can be earned back within a relatively short time. The fact that the generator usually 
has salvage value after abandonment plays a significant role in this; the surplus benefits of Gas-
to-Wire only need to cover for depreciation. Because the options are generally exercised at a 
future date, the ROA approach yields a higher value of flexibility; the high discount rate applied 
by DTA places much less value on the cash flows stemming from Gas-to-Wire compared to the 
preceding cash flows from gas production.  

Scenario Real option value 

(% of project value) 

Decision tree value 

(% of project value) 

Base € 727,203 
(1.92%) 

€ 35,343 
(0.14%) 
 

Low tax € 3,015,089 
(6.89%) 

€ 141,387 
(0.47%) 

High tax € 609,345 
(1.42%) 
 

€ 25,617 
(0.09%) 

Moderate risk-free rate € 189,620 
(0.55%) 

n/a22 
 

Project-adjusted WACC n/a22 € 1,616,308 
(4.26%) 
 

High energy price € 35,654,340 
(79.76%) 

€ 6,398,067 
421.47%) 

Large reserve € 1,671 
(0.00%) 

€ 38,230 
 40,08%5 
 

Small reserve € 292,783 
41.43%) 

€ 28,439 
40.19%) 

Enhanced Gas-to-Wire € 12,722,615 
(33.54%) 

€ 2,614,0338 (9.85%) 
Table 33: Simulated option values for all scenarios, both absolute and relative to the project value with-

out flexibility. 

 
                                                                 21 With a small number of in-the-money paths, regression takes place on only a few paths. These paths therefore have a strong influence on the policy that is determined.  22 The scenario is only modified for one valuation method, hence should be compared to the base scenario.  
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Chapter 10 
 

10. Conclusions 

 
 
 
 
 
 
 
 
 
With this study we attempted to increase insight in both the theoretical and 
practical application of real option analysis, particularly in comparison to deci-sion tree analysis. We illustrated the application of ROA with the construction of 
a simulation model on Gas-to-Wire production. 
From a theoretical perspective, the real option approach has some notable mer-
its compared to other valuation techniques. The main point in which ROA distin-
guishes itself is the adjustment of the discount rate to the risk profile of each 
project phase, which is most naturally done by applying risk-neutral valuation. 
This risk-adjustment solves a theoretical inconsistency present in DTA, therefore 
we prefer ROA from an academic point of view.  
The limited application of real options in corporate practice may have several 
reasons. Risk-neutral valuation and risk-adjustment are concepts not easy to 
grasp for decision makers without a financial background. Also ROA is no deci-
sion tool generally applicable, working best for specific types of investment 
problems. Still, the stronger theoretical foundations, the objective approach of 
risk-neutral valuation and the adjustment to different risk profiles make real 
options able to provide better project valuations than DTA. 
Our application of a real option model on the Gas-to-Wire investment scenario shows how adopting a corporate WACC in DTA may cause serious mispricing 
when valuing a project with a different risk-profile. Also adopting a project-
specific discount rate provides deviating results from those of ROA due to chang-
ing risk which is not accounted for.   
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10.1. Theoretical evaluation of real option analysis 

After more than thirty years of research on real options, academics still have not reached an 
agreement about what ROA stands for precisely. Definitions of ROA vary between a strict appli-
cation of Black-Scholes modelling to basically any decision tool incorporating flexibility, making 
use of different rationales and techniques. The strict definition is consistent with option pricing 
theory, while looser definitions are fitted better to the properties of real projects. For this sec-
tion, we use the integrated approach as adopted in this study as definition for ROA.  
In comparison to traditional decision tools, real option analysis has some clear advantages. Most 
importantly, it values flexibility, allowing to respond to new information dynamically. In many 
studies, real options are compared with traditional tools.  However, more advanced decision 
tools are able to deal with stochastic processes and decision optimisation as well as real options 
do. It would therefore be incorrect to state that real options bring a decisive advantage with 
respect to embedding flexibility in general. From an academic point of view, we prefer ROA over 
DTA; the latter is theoretically flawed due its application of a constant discount rate on projects 
with varying risk profiles. The beta in the CAPM is based on the covariance of the project returns 
with those of the market. As the covariance differs for each decision path, it is theoretically in-
consistent to apply a single discount rate. In fact, the only fundamental aspect in which ROA 
differs from dynamic DTA is the risk-adjustment towards the different risk-profiles, which is 
done by applying risk-neutral valuation. ROA is therefore more consistent with pricing theory.     
An assumption often made in financial option literature is that the risk-free rate, market return 
and beta are constant over time. This assumption is rationalised by stating that the investment 
opportunity of a single asset remains constant even when the risk-free rate and market return 
vary over time. Also when we consider a relatively short time span these parameters are more 
likely to be approximately constant. When considering multiple assets and/or a long time hori-
zon the assumption of parameters being constant is difficult to uphold; treating the parameters 
as stochastic variables would results in a better fit with pricing theory. 
 The risk-neutral approach used for market risks in ROA has some favourable elements. It allows 
estimating the risk-neutral asset drift based on futures contracts, while the discount rate can be 
based on government bond yields. This objective approach incorporating all market information 
is theoretically superior over subjective estimation of real drifts and discount rates, which can 
be strongly influenced by personal beliefs and preferences.    

Summary of theoretical evaluation ROA 

� Definitions of ROA vary between strict and loose applications of option pricing, so that 
no general evaluation of its theoretical properties is possible. 

� Real options are able to deal with flexibilities embedded in a project, but as a decision 
tool it is not unique in this respect. 

� Unlike DTA, ROA treats the different market risk profiles of decision paths in a manner 
consistent with pricing theory. 

� The integrated approach of ROA allows for a theoretically consistent valuation of both 
market and private risks.  

� The assumption of a constant risk-free rate, beta and market return is not applicable 
well for ROA. We can address this issue by treating them as variables.  
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10.2. Practical evaluation of real option analysis 

As stated in Section 10.1, dynamic decision trees are able to model decisions and uncertainties 
just as well as real options. In this respect the added value of real options is often overstated in 
literature, ignoring the more advanced decision tools that are used in practice nowadays. What 
remains regarding flexibility is the benefit of real option thinking; structuring a real option 
forces analysts to be more explicit about the nature of the flexibility and the assumptions made 
than other decision tools. The application of ROA should lead to investment decisions which are 
more in line with the expectations of investors, and consequently to decisions which help to 
maximise the value of the company. Nevertheless, how much the outcomes of ROA differ from 
those of DTA depends largely on the differences in risk profiles of the investment opportunities. 
If the risk profiles of the option paths are similar to each other, risk adjustment has a limited 
effect. A practitioner could then apply DTA with a project-specific discount rate to obtain similar 
results as with ROA. 
We stress that real options are most useful when a series of conditions is met. Option value in-
creases with volatility, provided that downside risk can be hedged. Therefore high uncertainty 
makes ROA more useful as a tool. A significant part of uncertainty should be market risk; other-
wise the valuation method reduces to plain decision analysis without risk adjustment. ROA is 
useful when the expected value of the project without flexibility is close to zero. In that case 
decisions have a significant impact on its value. It is important that the decision maker actually 
has the opportunity to respond to new information becoming available in a flexible way. If this is 
not possible, an approach such as DCF may be more suitable. 
A disadvantage of ROA is that the concept of risk-neutral valuation is not very intuitive, and 
therefore it may be hard to explain to decision makers without a financial background. Also 
quite strong assumptions are made for risk-neutral valuation. Their frequent violation makes it 
difficult to defend the application of real option valuation in practical settings. Though the calcu-
lation of the WACC required for traditional methods is partially based on the same principles, 
they become more prominent when applying risk-neutral valuation. These issues may to some 
extent explain why real option valuation has not been adopted on a large scale in practice so far.    

Summary of practical evaluation ROA 

� With regard to modelling flexibility, the main benefit of ROA may be that it requires a 
clear structure and explicit assumptions. 

� The actual difference in option valuation with ROA and DTA depends on how much the 
risk profiles differ.  

� Real options are most suitable for situations with large market uncertainty or an ex-
pected value close to zero, and the flexibility to respond to new information. 

� The explicit adoption of risk-neutral valuation and the strong assumptions required 
for this method may be reasons why ROA has not obtained a prominent position in 
corporate practice. 

10.3. Application of real option model to Gas-to-Wire production 

Because of the inaccuracy of the cost estimates and our simplified approach towards the produc-
tion curve, we are unable to draw strong conclusions about the actual economic attractivity of 
Gas-to-Wire. We therefore restrict ourselves to the results of the simulation study, while keep-
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ing in mind the investment problem we defined is partly theoretical. Under these reservations, 
Gas-to-Wire is moderately attractive for tail-end fields, provided that the generator has salvage 
value after abandonment. If this is the case, generally it is favourable to extend the lifetime of the 
field if the spark spread at the time is sufficiently large. The scenario with increased generator 
efficiency shows that Gas-to-Wire becomes much more attractive if generators could be im-
proved.  
In the proposed investment problem, private risk is limited. Many high-risk activities performed 
by E&P-operators such as exploration and well-drilling are not included in the scenario. As the 
corporate WACC is partially based on such activities, it makes sense that the absence of such 
activities should result in a lower project-specific discount rate. As a result, applying DTA with 
the corporate WACC understates the value of the option. When adopting a discount rate tailored 
to the project without flexibility, DTA overstates the value. This may be because the riskiness of 
Gas-to-Wire is higher than that of gas production (as electricity prices are more volatile); the 
adjusted discount rate fails to incorporate this characteristic. We would need a separate dis-
count rate for Gas-to-Wire as well to solve this issue. In a more complex setting, we would also 
have to change these discount rates over time. When relying on subjective estimates, it is very 
hard to do this in such a way it coincides with market beliefs. From the scenario with the pro-
ject-specific discount rate, it becomes clear how ROA can provide more accurate estimates due 
to risk-adjustment. The ROA approach should therefore be able to provide a valuation closer to 
the perception of a shareholder.  
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Chapter 11 
 
 

11. Discussion and further research 

 
 
 
 
 
 
 
 
 
 
 
 
 
The purpose of this final chapter is twofold. In one part we focus on the applica-tion of real option analysis in general, and how it compares to other valuation 
techniques. In the other part we focus specifically on the Gas-to-Wire model pre-
sented in this study, and in which ways we could improve it.  
The first point we assess is the validity of the assumptions applied on real op-
tions. We briefly recapitulate on what points they tend to fall short, how some of 
them can be improved and what consequences these assumptions may have on 
the practical application of real options. We pay special attention to dealing with 
non-diversifiable private risk. For complex projects including multiple optionali-
ties, we consider how co-dependencies between multiple real options could be 
assessed in a simulation study.  
We propose some extensions and improvements for the option model, particu-
larly regarding improvement of the electricity price model. Further we recom-
mend calculating an upper bound for the option value to increase insight in the 
accuracy and convergence rate of the model.  Finally, we mention some tech-
niques to reduce the computational burden of Monte Carlo simulation.  
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11.1. Validity of option theory assumptions 

As we pointed out in this study, the assumptions made in financial option theory are generally 
less applicable to real projects. Two main reasons exist for this. Uncertainties that cannot be 
hedged with liquidly traded market instruments cannot be valued in a risk-neutral way. Also 
such uncertainties are often not solved simply by waiting, and management may not be able to 
respond to them. As a result, classic ROA often has a poor fit with real investment problems. 
The corporate world is different from the financial world in some respects, which has an effect 
on the validity of option theory. Risk-neutral valuation requires the ability to short-sell assets, 
lend and borrow at the risk-free rate, continuously hedge the portfolio held, etc. Financial insti-
tutes approximate these assumptions much better than most companies. A perfect match with 
theoretical markets never exists, but we do not know to what degree mismatches affect ROA. 
From a theoretical perspective, the assumption of a constant risk-free rate, beta and market 
return is flawed when applying ROA, both due to the generally long time horizon and the chang-
ing risk profile. Further research could indicate how to model these parameters as stochastic 
and co-dependent processes, and what impact this would have on the option value. The ap-
proach to consider private risk as uncorrelated with the market and therefore risk-free is con-
sistent with the CAPM, as long as the private risk can be diversified away. When an investor allo-
cates a significant portion of his budget to a project, he may be unable to do so. In this case he 
would require a risk-premium for private risk. A subjective discount rate based on the utility 
function of the investor should then be used. We briefly describe this approach in Section 11.2. 
We should stress that the shortcomings of assumptions are not exclusive to real option valua-
tions; the CAPM or comparable models are used in DCF and DTA as well. The adoption of the 
risk-neutral valuation in option valuation makes these assumptions much more explicit though, 
both in the valuation method and in visibility. This could be a reason for the limited application 
of ROA in practice, failing to sufficiently defend or explain the assumptions to management. 

11.2. Treatment of non-diversifiable private risk 

One of the core difficulties of ROA is how to treat private risk. In this study we adopted a risk-
neutral approach towards private risk. This view is consistent with a shareholders perspective, 
and should maximise value for this group. However, the company itself may be exposed to sig-
nificant risks that cannot be diversified away, or the company may not even be publicly owned. 
The CAPM theory assumes that the decision maker acts as an agent for rational, well-diversified 
shareholders who only care about systemic risk. In reality, investment decisions are usually 
made by multiple decision makers with their own subjective beliefs and risk preferences. The 
decision maker may be an investor who needs to make a significant investment to participate, 
making him unable to diversify away private risk. In that case the risk-free discount rate no 
longer applies to non-systemic risk. Smith & Nau (1995) and Luenberger (1998) propose to 
perform so-called ‘buying price analysis’ in this case, making use of an personal exponential 
utility function to obtain the unique certainty equivalent of cash flows. This certainty equivalent 
is subsequently discounted at the risk-free rate. We can generalise this approach to deal with 
utility functions from multiple decision makers. Performing a comparative test between this 
approach and the risk-neutral approach would add precious insight to the role of ROA in this 
kind of investment problems. 

11.3. Co-dependency between multiple optionalities 

The model we constructed in this study contains a single optionality, namely to switch from gas 
to electricity production. In reality, often multiple flexibilities are embedded in a project. In the 
case of Gas-to-Wire production, such options could be to abandon the field before depletion, to 
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delay production, to expand production capacity, etc. The individual assessment of such options 
is possible. As stated before, the values of individual options are generally not additive due to co-
dependency effects. Combining a small number of options in a single framework might be com-
putationally feasible, but every optionality added will greatly increase the computational effort 
required. What is of interest for future research is how to interpret the values of individual op-
tions, so that the actual value of the project can be estimated more closely.  
Gamba (2002) provides some structure for dealing with complex capital budgeting problems, 
mapping them as a sequence of simple real options, mutually exclusive options and independent 
options. This approach allows decomposing a complex option into a set of simple ones that can 
be solved independently. For options not falling in either of these categories, research on the co-
dependency structure between individual options could increase insight in the matter. A possi-
ble procedure for such a study could be to simulate the values for a small number of individual 
options (using the same set of random numbers for all options) and estimate their joint distribu-
tions with techniques such as copulas or covariance matrices. We could then compare these 
results to a simulation model which allows combining multiple flexibilities.  

11.4. Upper bound of option value 

In this study we did not calculate the upper bound of the option value. For testing the conver-
gence rate of the Longstaff-Schwartz algorithm and measure the deviation from the true value, it 
is useful to calculate the upper bound as well. Joshi (2006) provides a detailed description of an 
upper-bound algorithm, which may be applicable on the option presented in this study. An issue 
that needs further research is whether the algorithm is applicable on partially complete mar-
kets. As private risks cannot be hedged, upper-bound procedures based on hedging strategies 
may not fit our investment problem. We did not encounter a paper which addresses this issue. 
Based on the convergence rate between the upper- and lower bound, we could see how well the 
regression formula specified in the Longstaff-Schwartz algorithm succeeds in approaching the 
true option value. 

11.5. Improvement of the electricity price forecasting model  

The electricity price forecasting model still has room for significant improvement in capturing 
the behaviour of the actual price series. In particular, the model has difficulties dealing with 
large changes which on the other hand were not large enough to be marked as price jumps. A 
regime-switching model (see Appendix I) could bring an improvement over the mean-reverting 
model with jump diffusion. The distinction between the regular price process and jumps is 
rather arbitrary. In contrast, with a regime-switching model we can split the price processes in 
subsets which are more alike statistically. We optimise the decomposition of the series so that 
we can better estimate their properties. Also we expect regime-switching models to capture the 
observed volatility clustering better, so that we may no longer need a GARCH model. In a re-
gime-switching model, the mean-reverting process with time effects that we constructed in this 
study could describe the normal regime.  
Compared to the historical price series, our model consistently either over- or underestimates 
volatility. This is because we did not assume a volatility trend in our model, while the series in 
fact does show a clear decreasing trend. If we could obtain more insight in the future trend of 
volatility, we would be better able to model this parameter. Additional research on the devel-
opments in the electricity market is required to increase insight in these developments. 



  123 

11.6. Co-dependency between price series 

We did not find a convincing relationship between gas- and electricity prices. No cointegration 
relationship can exist due to the stationarity of the electricity price series we found. Our fore-
casting models do not sufficiently detrend the historical series to estimate a meaningful cross-
correlation. Still, the graphs of the price series and the physical relationship between both com-
modities suggest that there is some form of (positive) co-dependency between the series. We 
could estimate cross-correlation better after removing the remaining autocorrelation. Still, lin-
ear dependency remains a limited concept. Joint distributions that allow for varying and non-
linear relationships offer a more complete representation of co-dependency. If we find a positive 
relationship between the series, this would mean that the spark spread is smaller on average, 
resulting in a lower expected value added from Gas-to-Wire production. 

11.7. Option model improvements 

Our option model is influenced by two underlying stochastic processes, namely the GIP and the 
spark spread. Obviously we could treat many more factors as stochastic variables. We provide 
some suggestions, along with their implications for the model. Increasing the number of stochas-
tic processes requires regression on multiple state variables for the Longstaff-Schwartz algo-
rithm. The choice of the regression function then becomes increasingly important to determine 
the exercise policy. Often the regression must be tailored towards a specific problem. The ad-
vantage of a model which deals with multiple uncertainties results is that it provides a more 
generally applicable exercise policy. The alternative is to test for different scenarios and calcu-
late their exercise policies independently.  
We make use of a simplified production function requiring only the amount of GIP and the har-
monic production parameters. A consequence of this approach is that we must fit the production 
function to each field, not able to derive a direct relationship between the two. Incorporating a 
model describing the physical flow of the reservoir would add a great deal of flexibility. We 
could then allow a much broader distribution of the GIP, instead of using different scenarios. 
Finally, the model is restricted to the currently prevailing regulation for carry back and carries 
forward. As corporate tax rates are generally related to the deduction possibilities, including this 
future would allow simulating a stochastic taxation approach. A possible manner for this would 
be to use several regulative scenarios which are triggered when the stochastic tax rate hits a 
certain bound. 

11.8. Volatility reduction 

Though the model presented in this study does not have an unusual high computation burden, 
Monte Carlo valuation in general is known for its long computation time and slow error reduc-
tion. For more complex problems the number of runs may become unfeasible large. A manner to 
reduce the required number of runs is to decrease variance.  Boyle et al. (2001), Grau (2008) 
and Cerrato (2009) propose some variance-reducing techniques applicable in the Longstaff-
Schwartz framework. An important technique is using so-called ‘control variates’. By introduc-
ing a stream of variables (the variate) positively correlated to the cash flow stream, we can 
make a linear combination of the two which has a smaller variance than the cash flows them-
selves. This new series requires less runs to obtain the same level of accuracy. Another well-
known technique is quasi-Monte Carlo simulation, which replaces random numbers with 
streams of quasi-random numbers, which are actually deterministic values picked to minimise 
the discrepancy of the sequence. Finally, we could use a bootstrapping procedure, which resam-
ples simulated distributions so that we can estimate standard errors of simulated parameters 
(Efron, 1980). This information helps to determine when we can stop the simulation. 
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Appendices 

Appendix I: Other modelling techniques 

This Appendix contains a short description of several modelling techniques, which we did not 
apply in this study, but may serve as background information or for possible application in fur-
ther research. 
Moving-average model 

A moving-average (MA) model uses an average of past error terms qYÀI and an estimated cur-
rent error term qY to provide a forecast for the next observation (Alexander, 2001). A general 
moving-average model containing a constant X and � lags is described by 

 pY = X h Ê �HqYÀI h qY
�

IËc
 (I. 1) 

A simple moving-average model assigns equal weights (denoted by �H) to the past observations 
included. Sophisticated models often place more weight on recent events, particularly when 
larger time windows are used. A special case of a moving-average model is the exponentially 
weighted version of the model (EWMA). This model applies exponentially decreasing weight 
factors, thereby including all past observations in the forecast. Moving-average models allow for 
quick response to disturbances, providing relatively fickle outputs. 
Autoregressive model 

An autoregressive (AR) model uses weighted past observations pYÀH as forecasting input, adding 
a random term qY to the past observations. A general autoregressive model containing a constant 
X and b lags is described by 

 pY ¢ X h Ê �HpYÀH h qY
\

HËc
 (I. 2) 

As observations are a sum of error terms q up until time Z, they incorporate all past error terms 
(Alexander, 2001). This in fact makes an autoregressive model an MA model with an infinite 
number of lags. Autoregressive models are suitable to model slowly declining effects; they pro-
vide relatively smooth results which are not strongly affected by short-term disturbances. 
Autoregressive (integrated) moving average model 

The concepts of moving averages and autoregressive terms can be combined in a single model. 
Such a model is called an ARMA model, containing b autoregressive terms and � moving-average 
terms. A generic ARMA model is shown in Equation (I.3). 

 pY ¢ X h qY h Ê �HpYÀH h
\

HËc
Ê �IqYÀI
�

IËc
 (I. 3) 

An ARMA model can be further expanded by including lags of the differenced series to the equa-tion. Such a model is called an ARIMA model; it is particularly applicable when modelling a non-stationary series; the integrated part of the model can then remove this nonstationarity. 
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Exogenous model 

An exogenous model bases forecasts on influencing variables, which have a certain effect on the 
output. When we attempt to forecast energy prices, such factors could be temperature, supply 
capacity, etc. The exogenous model allows for a qualitative forecast, where the influence of ex-
ogenous factors is made explicit (Harvey, 1989). Such variables are implicitly captured in the prices themselves, but may ignore future developments. For example, the development of a large new power plant increases the total supply of energy in the future, but the effect of such an event is not observable from currently available electricity prices.  
A difficulty when using an exogenous model to forecast prices over the long term is that we must forecast the exogenous variables as well (Pindyck, 1999). For example, when we would include temperature as an exogenous variable, we require a temperature forecasting model to provide the necessary input. Exogenous models are often applied on historical data in order to explore or confirm causal relationships between factors. They are also applied particularly in short-term forecasting, as factors in the nearby future such as temperature can often be estimated with reasonable accuracy. 
Multiple-factor model A multiple-factor model can be used to incorporate the features of a price series in multiple equations (Alexander, 2008). As such risk is effectively decomposed in multiple factors. Multi-ple-factor models allow more than one variables to follow a stochastic pattern, usually two or three. The inclusion of such factors could bring significant improvements over one-factor mod-els, provided that the risk factors to model are properly selected. An example of a two-factor model applied in this study is the jump-diffusion model.   
A disadvantage of multiple-factor models is that they often include parameters which are not directly observable from the historical data. Estimation of the parameters can then become complex, generally requiring the use of algorithms such as the Kalman filter to obtain the pa-rameter values (Harvey, 1989). In some cases, historical spot price data is not sufficient to esti-
mate parameters. For example, we may require a set of historical future price data of futures 
with several maturities to estimate the stochastic behaviour of the convenience yield.  
A well-known multiple-factor model for commodity prices is the three-factor model proposed by 
Gibson & Schwartz (1990). In this model, the price, the convenience yield and the risk-free in-
terest rate are modelled as stochastic variables. The latter is modelled with the mean-reverting 
process as proposed by Vašíček in 1977 (Schwartz, 1997). The convenience yield is also as-
sumed to follow a mean-reverting stochastic pattern; this process can be estimated based on the 
term structure of futures contracts. 
Schwarz & Smith (2000) propose another model for the forecasting of commodity prices, which 
distinguishes between long-term movements and short-term deviations. The long-term move-
ments reflect the path of the equilibrium price level, with the drift including the effects of infla-
tion, decreasing supply, improving efficiency, etc. The short-term movements reflect deviations 
from the equilibrium price, for example as a consequence of the weather or supply disruptions. 
When market participants have the ability to store the commodity, they can correct these effects 
by adjusting the inventory levels. Short-term effects are expected to have a mean of zero, and are 
modelled by the Ornstein-Uhlenbeck process. 
A way to estimate the drift in long-term equilibrium prices is by comparing future contracts with 
long maturities to spot prices. Such a relationship could be determined with the Kalman filter; 
we can apply this algorithm to estimate unobservable parameters (Harvey, 1989; Escobar et al., 
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2003). In the absence of future prices it is more difficult to estimate parameters, as spot prices 
provide less information. 
Regime-switching model 

A regime-switching model distinguishes two or more regimes, with each regime modelling a 
distinct price behaviour reflecting a certain market state. For example, a regime-switching 
model allows to explicitly split jumps from mean-reversion. In a regime-switching model, the 
occurrence of events depends on the state the market is in.  For us, this property would be useful 
particularly when modelling the frequent spikes in electricity prices. In this case, one regular 
regime and one spike regime would exist, both with their own mean and volatility. Most regime-
switching models assume that each regime has a constant variance, as the decomposition of the 
series tends to (partially) remove volatility clustering (Mount et al., 2006). The probability that 
the regime changes is described by a discrete Markov chain (meaning that any transition prob-
ability from one state to another only depends on the current regime), characterised by a matrix containing exogenous transition probabilities (Schindlmayr, 2005; He, 2007). A transition prob-ability matrix for an n-regime model is provided in Equation (I.4). 

 ;bcc … bc§<  <
b§c … b§§

= (I. 4) 

When we make the probability of entering a spike regime small and the probability of leaving 
the regime large, the natural behaviour of spikes should be reflected, without the modelling of 
spikes corrupting the usual price behaviour. As the regimes have their own independent distri-
bution, we cannot estimate parameters by using simple linear regression techniques. For each 
regime we should obtain a separate estimate that maximises the explanatory power for that 
specific state of the market, without being able to directly observe different regimes (Kobor et 
al., 2005). Hamilton (1989) provides an algorithm that can be used to estimate the parameters of a regime-shifting model. Adding more regimes increases the accuracy of the model, but at the cost of having to estimate more variables (Hardy, 2001). A regime-switching model should have a proper balance between accuracy and the number of regimes. 
Artificial neural network An artificial neural network is a set of computational nodes which are interconnected through a layer structure (Szkuta et al., 1999). We provide a generic example of a three-layer neural net-work in Figure 38.  

 
Figure 38: Generic example of a three-layer neural network (based on Szkuta et al., 1999). Input vari-

ables enter the network from the left, and are transformed twice to obtain the output variable. 
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We can use multiple variables as input for a price forecasting network. For electricity, such vari-
ables (denoted as �H) could be demand, the day of the week, temperature, previous prices, holi-
day periods, etc. These variables serve as a weighted input for the calculation units in the next 
layer, which then provides a new input for the next layer, eventually leading to an output vari-
able (e.g., the price forecast). The calculation node first sums up the weighted input variables (Smith, 1997). Consequently, a nonlinear mathematical function called a sigmoid transforms this sum to a value between 0 and 1. A standard sigmoid function is provided in (I.5); other 
transformations are possible as well (Feng Gao et al., 2000).  

 �x(�H) ¢ 1
1 h iÀå> (I. 5) 

A training set of data is fed to the network to calibrate the weights of the inputs (Pao, 2007). By 
repeatedly running the network on the training set and measuring the error compared to the 
actual output, we can iteratively improve the model. This allows estimating complex functional 
relationships, even so complex that there may be no qualitative explanations available for them. 
After calibrating the weights, we can use the remainder of the data set to test the performance of 
the model. 
A properly modelled neural network can provide good forecasting results. However, determin-
ing the number of input variables and calculating nodes must be done correctly. Also the train-
ing set we choose should be a correct representation of the whole data set. We can partly ad-
dress this issue by using several training sets and choose the best result. Another issue in cali-
brating the model is the danger of over-fitting the set to a specific training set, thereby decreas-
ing its forecasting accuracy (Feng Gao et al., 2000). We could include a separate validation set to 
evaluate the network’s performance during the training process. Finally, because the dynamics 
of the neural network are not easily understood due to its complex interrelated structure, it can 
be difficult to evaluate the constructed network (Smith, 1997). There are several programs available to construct neural networks, which have the ability to calculate the required number of nodes and the optimal weights. The performance of the network can be improved by adjust-ing settings to more accurately fit a specific problem. 
Wavelet transformation The wavelet transformation is a technique which decomposes a series in a set of different wave-let functions of the series (Graps, 1995). These wavelet functions have a more stable pattern than the series itself (Conejo et al., 2005). The technique considers patterns observed over dif-ferent time periods, allowing to include long-term and short-term patterns simultaneously (Kim et al., 2002). Patterns with low frequencies are observed over a long-time window, patterns with high frequencies over a short-time window. We can use wavelet transformation to model the behaviour of nonstationary time series (Nason & Silverman, 1995). By applying the transforma-tion to a price series, we can model patterns observed over several time intervals, such as sea-sonal-, weekly- and daily patterns. Decisions such as the number of wavelet functions to be de-rived and the formula used affect the accuracy of the forecast. Generally algorithms are used to perform the wavelet transformation. 
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Appendix II: Diagnostic testing of model residuals 

Diagnostic testing of gas price model  

To test whether the gas price model constructed in Section 7.2 is correctly specified, we perform 
some diagnostic tests on the residuals. We use the historical price at day Z ¿ 1 as input for the 
forecast, we obtain the residuals by subtracting the historical price for day Z from the forecast 
for day Z. We make use of the entire set of historical gas prices from 2006-2011.  
First we apply the augmented Dickey-Fuller test to see whether the residual series is stationary 
and other tests can be applied; with a test statistic of -42.72 the series indeed proves to be sta-
tionary at the 5% level. Applying the Ljung-Box test shows that autocorrelation of the residuals 
is insignificant for the first tree lags at the 5% level, but remains significant for the higher lags. 
Particularly the autocorrelation for the ninth lag is notably high. We find comparable results for 
the squared residuals, though autocorrelation is significant from the second lag onwards here. 
The observed ninth lag autocorrelation is difficult to explain as any kind of time effect. Adding an 
MA(9) term to the model effectively removes significant autocorrelation from the residuals, but 
without any causal explanation this term is not suitable for inclusion in the forecasting model. 
Instead, we remove the seven jumps observed in the sample to test whether these cause the 
observed autocorrelation, as the residuals corresponding to these prices are notably high. In-
deed, after this modification no significant autocorrelation is observed in the residuals. For the 
sample without autocorrelation, we can apply the regular Jarque-Bera test. Figure 39 shows that the hypothesis of normality is soundly rejected for the residuals. Most notably, some extreme residuals strongly affect the distribution of the residuals. This indicates that the gas price model is unable to capture some of the larger price deviations. Finally, we calculate f_ for the gas price model applied on the full historical data set, indicating the proportion of variability in the sam-ple explained by the model. We obtain f_ ¢ 0.96, meaning that the model explains a large part of the observed variability.  

 
Figure 39: Normality test on residuals of gas price model excluding jumps. The series is not normally 

distributed. 

Diagnostic testing of electricity price model  To test whether the electricity price model constructed in Section 7.3 is correctly specified, we perform some diagnostic tests on the residuals. The model uses the historical price at day Z ¿ 1 
as input for the forecast, the residuals are obtained by subtracting the actual price for day Z from 
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the forecast for day Z. We do this for the daily prices between 2004 and 2012 with the exclusion 
of jumps, the same prices which were used to estimate the parameters of the model. 
To see whether the residual series is stationary and other tests can be applied, we perform the 
augmented Dickey-Fuller test. With a test statistic of -3.15, this is the case at the 5% level. The 
Ljung-Box test shows that residual autocorrelation is removed for the first lag, but still signifi-
cant for higher lags. Though reduced, we still observe the weekly pattern in the residuals, de-
spite the inclusion of weekday effects in the model. The Ljung-Box test on squared residuals 
reveals significant autocorrelation for all 36 lags, indicating volatility clustering. This could indi-
cate that not only the price level depends on the weekday, but volatility as well. With the power 
system operating closer to full capacity on weekdays, the electricity price could be more sensi-
tive to short-term disturbances in supply and demand. An alternative explanation is that the 
measure of volatility simply increases with price, which tends to be lower on weekend days.  
In Section 7.3 we also estimated a GARCH model. As this is a model fit to the squared residuals, 
the residuals we test here are the residuals of this set after applying GARCH, not those of the 
actual price series. The Ljung-Box test indicates that except for the first lag autocorrelation is 
still significant, though the model strongly reduced the degree of autocorrelation. The GARCH 
model is apparently successful in removing the weekly pattern. Alexander (2001) suggests two 
tests to assess the performance of the GARCH model. In the first test we divide the historical 
returns by their corresponding GARCH volatilities. The resulting series should then be normally 
distributed. Figure 40 shows that the actual distribution of this series resembles a normal dis-
tribution, but likely due to the presence of fat tails the Jarque-Bera test rejects the hypothesis of 
normality. In the second test we take the squared returns, divide these by their corresponding 
GARCH variances and check whether the resulting series is not autocorrelated. Applying a 
Ljung-Box test on this series reveals significant autocorrelation for all 36 lags tested. Also a mild 
weekly pattern remains visible. 
Though the GARCH model improves the fit of volatility and largely removes the pattern in auto-
correlation, it does not satisfy the theoretical properties. Possibly the addition of integrated 
terms can remove the remaining autocorrelation, making it an IGARCH model. However, the 
model residuals indicate there are still unexplained factors in the model. We would therefore 
prefer improvement of the model over fitting a complex volatility model to the residuals.   

 
Figure 40: Normality test on electricity returns/GARCH volatility. The series is not normally distributed. 
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Appendix III: Source coding 

In this Appendix, we describe some of the more complex coding in the Excel file “Real Option 
Model Gas-to-Wire”. For some functions a textual explanation suffices, other functions (particu-
larly nested if-statements) are written out to illustrate their structure. We avoid the use of sym-
bols in order to explain the intuition behind the statements more clearly. 
Price simulation 

The price simulations are divided in several processes, all expressed in logarithms. We calculate 
the deterministic time effects separately, being functions of the day of the week, month and total 
number of days. We calculate the mean-reverting part based on the mean-reversion speed, the 
equilibrium price level and the stochastic price part of the previous day. Finally, we add expo-
nentials of the time effect and the stochastic part of the price to obtain the price. For electricity 
we calculate random jump probabilities. Whenever a jump occurs, we draw a price value from a 
separate distribution, replacing the other price processes. After a jump, the price is reset at the 
equilibrium level. We model the price generating process for natural gas as follows: 

Calculate time effect at t      
Calculate mean-reverting effect at t        
Simulate random error at t      
Calculate variance at t     
ln(Return t) ¢ Volatility h Mean-reversion  
ln(StochPrice t) ¢ ln(StochPrice t - 1) h ln(Return t)   
ln(Price t) ¢ ln(StochPrice t) h Time effect t    
Price t ¢ exp(ln(Price t))   

The price generating process for electricity is modelled as follows: 
iiiiffff Jump size at t ¢ 0    thenthenthenthen  

Calculate time effect at t      
Calculate mean-reverting effect at t        
Simulate random error at t      
Calculate GARCH variance at t     
ln(Return t) ¢ GARCH volatility h Mean-reversion   
ln(StochPrice t) ¢ ln(StochPrice t - 1) h ln(Return t)   
ln(Price t) ¢ ln(StochPrice t) h Time effect t    
Price t ¢ exp(ln(Price t))  elseelseelseelse 
ln(Price t) ¢ Jump size at t      
Price t ¢ exp(ln(Price t)) 

endendendend        
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Production function Gas-to-Wire 

The production function of electricity is conditional on the preceding gas production. Therefore, 
for each exercise year we calculate a separate production function. We calculate the production 
rate if at time Z a number of conditions is met, namely: 1) the option must have been exercised, 
2) the spark spread must exceed the threshold, 3) the reserve should exceed the minimum ca-
pacity of the generator, 4) Production rate should exceed the minimum capacity of the genera-
tor, and 5) Gas is still being produced at the time of option exercise (i.e., the field is not aban-
doned). Note that the coding distinguishes between day Z (the actual day) and day � (the pro-
duction day). See Equation (4.2) for the harmonic decline function. 
iiiif f f f     Year day t � exercise date option     andandandand    

Spark Spread ÷ Threshold Spark Spread    andandandand 
Reserve day t - 1 ÷ Minimum capacity of generator   andandandand 
Production rate day n ÷ Minimum capacity of generator  andandandand 
Gas production rate at option exercise date ÷ 0   tttthenhenhenhen 
mmmminininin  Generator capacity  

Production rate at day n    
eeeelselselselse    
0 
endendendend 

The production rate at day � is given by  
 Production rate at � = Initial production rate1 h Decline rate at Z

  (II. 1) 
with 

Decline rate at Z ¢
Initial decline rateInitial production rate L Production rate at � ¿ 1 (II. 2) 

We calculate the production days Z by counting the number of days where production exceeds 0. In case gas production takes place before exercise, we multiply the number of years in between by 365 and add them to Z. 
Storing last production rate This function stores the last production rate larger than 0, being used as input for calculating the harmonic decline rate parameter dfY. We take the latest gas production value as input at the moment the option is exercised. The formula checks one day ahead to store the gas production value at the end of the previous year, serving as input for the first day of electricity production. 
iiiiffff  Year day t < Exercise date option   andandandand         

Year day t h 1 ¢ Exercise date option  thenthenthenthen    
Gas production rate at day t - 1  elseelseelseelse 
iiiiffff  Gas production rate at day t >0   thenthenthenthen 
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Gas production rate at day t   elseelseelseelse 
Previous last production rate 

    endendendend    
endendendend    
Applying carry back 

The cash flow column Carry back contains the amount of tax returned by offsetting tax payments 
of the previous year. The application of carry back requires that a fiscal loss (before applying 
carry back) is made in the current year, and a fiscal profit was made in the previous year (after 
applying carry forward). 
iiiiffff  Fiscal earnings year t - 1 - carry forward t - 1 ÷ 0  andandandand    

Fiscal earnings year t < 0     thenthenthenthen 
minminminmin        

Corporate tax year t - 1 
Corporate tax over abs(Fiscal earnings year t) 

    elseelseelseelse    
 0 
endendendend    

Storing carry forward amount 

We calculate the carry forward amount for each year by taking the amount at the previous year, 
adding the fiscal loss (after carry back) and subtracting the carry forward amount offset against 
fiscal profits. Also, we subtract losses carried forward 9 years ago from the amount if they were 
not offset with profits in the meantime. The carry forward amount cannot fall below 0.    
ifififif  Fiscal earnings year t < 0  thenthenthenthen 
 ifififif  Fiscal earnings year t-1 ÷ 0  thenthenthenthen    
  ifififif  abs(Fiscal earnings year t) > Fiscal earnings year t-1  thenthenthenthen 
   Fiscal earnings year t-1 h Fiscal earnings year t  elseelseelseelse    
            0 
  endendendend    
  elseelseelseelse                

Fiscal earnings year t  
 eeeendndndnd    
    elseelseelseelse    
 0 
endendendend    
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Applying carry forward 

Carry forward can be applied when an amount of cumulative losses is carried forward, and a 
fiscal profit is made in the present year. We then reduce the fiscal profit with the amount of cu-
mulative losses up to a fiscal result of 0.  
mmmmaxaxaxax  

minminminmin    
Fiscal profit year t 
Carry forward amount year t-1 

0 

Salvage value  

If the field is no longer producing or if the final year of the option is reached, we can sell the gen-
erator or compressor. We assume linear depreciation, the machinery must be acquired less 
years ago than its technological lifetime to have a salvage value larger than 0. The logic for sell-
ing a compressor after exercising the option is slightly different, as we sell it immediately after 
the option is exercised. 
Salvage value for compressor (gas production) and generator (electricity production): 
ifififif  Revenue year t ¢ 0     orororor 

Year t = 2031      andandandand 
Year t - year investment   Techological lifetime  andandandand 
No salvage value before year t   thenthenthenthen 
(Technological lifetime – (Year t - year investment))/Technological lifetime * Investment value  
elseelseelseelse 
0 

eeeendndndnd    

Salvage value for compressor (after exercising the option): 
ifififif  Year exercise      andandandand 
 Compressor bought before year t    andandandand 

Year t - year investment   Techological lifetime   andandandand 
No salvage value before year t    thenthenthenthen 
(Technological lifetime - Year t - year investment)/Technological lifetime * Investment value  
elseelseelseelse 
0 

endendendend    
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Truncated lognormal reserve distribution 

We model the reserve amount (GIP) with a truncated lognormal distribution, which is a log-
normal distribution with a lower limit and an upper limit. We scale the probability distribution 
up to provide a full distribution between the two boundaries. The inverse lognormal function we 
use in the model is described as follows: 
Inverse lognormal distribution Inverse lognormal distribution Inverse lognormal distribution Inverse lognormal distribution (Random truncated probability; Mean, Standard deviation)    

Random truncated pRandom truncated pRandom truncated pRandom truncated probability:robability:robability:robability:    
Cumulative lognormal distribution (Lower limit; Mean; Standard deviation)  h 
Random number *  
((((Cumulative lognormal distribution (Upper limit; Mean; Standard deviation) - 
Cumulative lognormal distribution (Lower limit; Mean; Standard deviation))))) 
MeanMeanMeanMean::::    
Mean value of lognormal distribution 
StandaStandaStandaStandardrdrdrd    deviationdeviationdeviationdeviation    ::::    
Standard deviation of lognormal distribution 

Monte Carlo simulation 

We use Excel Visual Basics to code the Monte Carlo simulation. We provide the coding below. 
When pressing the ‘Run Simulation’ button on the worksheet ‘Simulation Settings’, the simula-
tion runs for the specified number of iterations, storing the option NPV’s and corresponding 
cash flows on the sheet ‘Simulation Results’. When starting a new simulation, all old results are 
automatically cleared. The simulation runs in Manual calculation mode to prevent intermediate 
worksheet recalculation (Albright, 2011). 
 
Function Simulation()Function Simulation()Function Simulation()Function Simulation()     'Set calculation method to manual Application.Calculation = xlManual  'Clears simulation results before every new simulation Dim r As Range Dim LastRow As Long LastRow = Worksheets("Simulation results").Cells(Rows.Count, 1).End(xlUp).Row Set r = Worksheets("Simulation results").Range("StoredSim").Resize(LastRow, 61) r.ClearContents  'Performs number of iterations as specified on the worksheet "Simulation Settings" Iterations = Range("Iterations") For i = 1 To Iterations Application.Calculate Range("StoredSim").Resize(1, 61).Offset(i - 1) = Range("CalcSim").Resize(1, 61).Value2 Range("Counter") = i Next i  'Set calculation method to automatic Application.Calculation = xlAutomatic  'Shows an on-screen message when simulation is completed MsgBox ("Simulation Complete") End Function 



  155 

Longstaff-Schwartz algorithm We coded the Longstaff-Schwartz algorithm in Excel Visual Basics. The macro can be run from 
the sheet “Simulation Settings” by pressing the button “Update exercise policy”, requiring at 
least the results of 1000 simulations to be stored. The algorithm performs regression on the last 
option year’s cash flows, calculating and storing the expected cash flows and regression parame-
ters. The algorithm works back until the first year of exercise. For every scenario the exercise 
policy should be updated, requiring a trial run for the new policy and a second run for valuation. 
 Sub Algorithm_exercise_poSub Algorithm_exercise_poSub Algorithm_exercise_poSub Algorithm_exercise_policy()licy()licy()licy()     Dim LastRow As Long LastRow = Worksheets("Simulation results").Cells(Rows.Count, 1).End(xlUp).Row  If (LastRow - 10 < 1000) Then MsgBox ("Regression requires at least 1000 price paths") Else  'Set calculation method to automatic Application.Calculation = xlAutomatic  'Clears stored calculated values before starting the algorithm Range("StoreExer").Resize(5000, 40).ClearContents  'Update algorithm with simulated input Range("Input_LS").Resize(5000, 40) = Range("StoredSim").Resize(5000, 40).Value2  For j = 1 To 20 'Sorts nonzero cashflows for each year     ActiveWorkbook.Worksheets("Exercise policy").AutoFilter.Sort.SortFields. _         Clear     ActiveWorkbook.Worksheets("Exercise policy").AutoFilter.Sort.SortFields.Add _         Key:=Range("Year").Offset(0, 20 - j), SortOn:=xlSortOnValues, Order:=xlDescending, _         DataOption:=xlSortNormal     With ActiveWorkbook.Worksheets("Exercise policy").AutoFilter.Sort         .Header = xlYes         .MatchCase = False         .Orientation = xlTopToBottom         .SortMethod = xlPinYin         .Apply     End With          'Stores regression coefficients and regressed formulas for each year     Range("StoreRegress").Resize(1, 11).Offset(j - 1) = Range("CalcRegress").Resize(1, 11).Offset(j - 1).Value2     Range("StoreExer").Resize(5000, 1).Offset(0, 20 - j) = Range("CalcExer").Resize(5000, 1).Offset(0, 20 -             j).Value2     Range("StoreCont").Resize(5000, 1).Offset(0, 20 - j) = Range("CalcCont").Resize(5000, 1).Offset(0, 20 –       j).Value2   Next j      'Shows an onscreen message when exercise policy is determined   MsgBox ("The exercise policy has been updated") End If End Sub 


