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Abstract

Formal accounts of contextual reasoning are of great importance for the
development of sophisticated Artificial Intelligence theory and applications.
This thesis’ contribution to the theory of contextual reasoning is twofold.
First, it delineates the computational complexity of contextual reasoning.
A first insight is obtained by translating contextual reasoning into a rather
simple form of reasoning in bounded modal logic. A more direct and general
understanding, as well as more refined complexity results, are established by
achieving the so-called bounded model property for contextual satisfiability.
Second, the thesis describes two conceptually orthogonal approaches to
automatically deciding satisfiability in a contextual setting. Firstly, the
bounded model property is exploited so as to encode contextual satisfiability
into propositional satisfiability. This approach provides for the implemen-
tation of contextual reasoners based on existing propositional SAT solvers.
Subsequently, a distributed decision procedure is proposed, which maximally
exploits the potential amenity of localizing reasoning and restricting it to
relevant contexts only. The latter approach is shown to be computationally
superior to the former translation based procedure, and can be implemented

using off-the-shelf efficient reasoning procedures.
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Chapter 1
Introduction

The goal of this thesis is to advance the understanding of the computational
complexity of contextual reasoning, and to contribute to the development of
computer programs which materialize contextual reasoning processes. The
methodology we adhere to may best be qualified as logic-based Artificial

Intelligence. In this chapter we briefly situate and motivate our investigation.

1.1 Logic-Based Artificial Intelligence

The field called Artificial Intelligence (AI) incorporates various aspirations.
Some researchers want machines to do things that people call intelligent
(making plans, communicating and cooperating with other computers and
people, making and understanding jokes, directing movies, playing drums).
Others seek to understand what enables people to do such things.

Marvin Minsky, one of the field’s very first pioneers, classifies the various
attempts that have been pursued to do so into two main categories [52].
The first is called connectionism [28]. Its core idea is to embody knowledge
by configurations of the connections in a network of interconnected nodes.

Networks of this kind are often called neural networks, as they are intended
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to simulate (highly idealized) anatomical structures of the human brain.
The alternative paradigm, the one we adopt here, is referred to as logic-
based Al In his 1959 paper Programs with Common Sense [47], John Mec-
Carthy provided a first, albeit rather vague proposal towards a computer
program that represent its knowledge and goals in terms of logical formulas,
and that automatically deduces from its knowledge ways to achieve its goals.
Roughly speaking, all subsequent work in the field of logic-based Al can be

seen as an attempt to refine and implement this proposal.

1.2 Problem of Generality

The logic-based approach has received wide attention in the AI community.
Two important virtues of logic that account for its popularity are its clarity,
and the pre-existence of many technical mathematical results about logic.
But there are some major obstacles to overcome.

The most significant problem, notoriously acknowledged and articulated
by McCarthy himself [49], is that of generality. Every piece of knowledge
seems to hold only within a particular domain. A rule which appears perfectly
general in one situation, is very often — if not always — violated in others. Any
statement is true only in a certain context. With a little effort, a more general
context can usually be depicted in which the precise form of the statement
does not hold anymore. Initial efforts in logic-based Al were directed to
formalizing well-defined specific domains. Although this resulted in some
successful applications, the underlying systems were too inflexible to function
well outside the domains for which they were designed.

To overcome this lack of generality, two solutions have been proposed
and are currently under diligent development. One is the formalization of
default or non-monotonic reasoning [15]. These are forms of reasoning,

which allow for the revision of so-called default assumptions on the base of



1.3 Principle of Locality

newly acquired knowledge. The standard example is that of Tweety being a
bird (Bird(Tweety)), and the rule that birds are able to fly (Vz.Bird(z) D
CanFly(x)). From this we may conclude that Tweety can fly. Now if we are
told that Tweety is a penguin, and thus forms an exception to our rule, we
naturally retract our conclusion. This form of reasoning is non-monotonic in
the sense that new information reduces the knowledge we obtained so far (in
the classical logic-based approach new information always extends already
established knowledge). Various frameworks for describing non-monotonic

forms of reasoning have been investigated [41, 48, 57].

The other proposed solution, the one we are concerned with here, is the
formalization of contertual reasoning. McCarthy [49] conjectured that the
combination of non-monotonic and contextual reasoning mechanisms will

constitute an adequate solution to the problem of generality.

1.3 Principle of Locality

Another significant argument for the formalization of contextual reasoning
can be found in the work of Fausto Giunchiglia [33]. He emphasized what
is called the principle of locality: reasoning based on large (common sense)
knowledge bases can only be effectively pursued if confined to a manageable
subset (context) of that knowledge base. Indeed, to reason about a given goal,
people never consider all they know, but rather a very restricted subset of
their complete knowledge. It may well be that this mechanism of restricting
their attention to a specific context, a particular part of their knowledge,

largely accounts for the efficiency with which people are able to reason.
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1.4 Characterization of Contexts

What is a context exactly? What are the dimensions along which represen-
tations of contextual knowledge may vary?

In a recent publication entitled Conteztual Reasoning Distilled [6], the
many available answers to this question are unified into three fundamental

properties.

Partiality A context is partial — it describes only a subset of a more com-
prehensive state of affairs. This idea is illustrated in figure 1.1. The lower
circle represents a state of affairs: “the world”, or the whole of expressible
knowledge. The circles above depict partial representations of this state of
affairs. As figure 1.1 suggests, there may be various kinds of relationships

between different partial representations (such as overlap or inclusion).

Representation

Representation 3

Representation 2

Representation 1

World World

Figure 1.1: Partiality. Figure 1.2: Approximation.
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World

Figure 1.3: Perspective.

Approximation A context is approximate — it is, to a variable extent, an
abstraction of the world it describes. This intuition is depicted in figure 1.2.
The upper circles correspond to possible representations of the world, at

different levels of approximation.

Perspective A context is perspectival — it reflects a mental point of view.
A given state of affairs can in general be thought of from several independent

perspectives, as illustrated in figure 1.3.

1.5 Formalizations of Contexts

Contextual knowledge representation has been formalized in several ways.
Akman and Surav [1] provide a comprehensive overview of the early work on
formalizing context, from which two main paradigms have ensued: the propo-
sitional logic of context (PLC) developed by McCarthy, Buva¢ and Mason
[17, 50], and the multi-context systems (MCS) devised by Giunchiglia and
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Serafini [35], which later became associated with the local model semantics
(LMS) introduced by Giunchiglia and Ghidini [30]. MCS has been argued
to be most adequate with respect to the properties mentioned above [6], and
moreover, has been shown to be technically more general than PLC [61].
Therefore, the lion’s share of our analysis will regard MCS-based reasoning,
the formal preliminaries of which are extensively revisited in chapter 2. Our

main results, however, will be shown to be equally well applicable to PLC.

1.6 Contexts in Practice

Contextual reasoning mechanisms play a significant role in the development
of next generation Artificial Intelligence applications. Its importance was first
recognized by Lenat and Guha [37, 44], who explicitly designed their notori-
ous CYC common sense knowledge base as a collection of interrelated partial
“microtheories”.  While in CYC, however, the notion of local microtheo-
ries was a choice, in contemporary settings the notion of local, distributed
knowledge has become a definite must. Maybe the most representative, and
surely the currently most widely discussed example of such settings is that
of the semantic web [3]. Originally envisioned by Tim Berners-Lee (the “fa-
ther” of the internet), James Hendler, and Ora Lassila [8], the semantic web
is an effort to go beyond a purely syntactical annotation of world wide web
content (as is presently achieved with HTML). Its objective is to provide for
the semantic annotation of online documents, in such a way that comput-
ers can really understand their contents, and are able to provide much more
sophisticated services than they are at present. Such semantic annotation
would make reference to online ontologies, formal descriptions of particular
domains, which would be publishable and editable by anyone willing to do
so. As a result, these ontologies will be highly scattered and heterogeneous.

Recent work has indeed been focused on the development of languages which
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allow for the expression of contertualized ontologies [11, 13]. A central rea-
soning system, though, will not be able to deal with such ontologies. This
engenders a high demand for distributed, contextual reasoning procedures.

Another research endeavour that has recently received ample attention,
and which explicitly seeks to fulfill this demand for distributed reasoning
systems is that of grid computing [26]. This paradigm has fostered the de-
velopment of various reasoning systems [18, 27|, which demonstrate that
implementing logical reasoners as cooperative systems of autonomous local
reasoners can indeed improve performance.

Contexts have also been successfully applied to various other fields of Al,
including but not limited to meta-reasoning [35], reasoning with viewpoints
[4], common sense reasoning [12], reasoning about beliefs [5, 25, 29, 32, 36],
multi-agent systems [7, 20], and modeling dialog, argumentation and infor-

mation integration in electronic commerce [56].

1.7 Outline

The rest of this thesis is organized as follows. First, in chapter 2 we review
MCS and explicate the formal notion of contextual reasoning. Then, in chap-
ter 3, we seek to characterize the inherent difficulty of contextual reasoning.
Our central results are an equivalence theorem with bounded model logic
(section 3.1), and the so-called bounded model property for multi-context
systems (section 3.2). In section 3.3 these results are applied to obtain new
complexity results for McCarthy’s propositional logic of context.

In chapter 4, we propose and analyse two conceptually orthogonal ways to
automate contextual reasoning. First, in section 4.1, we exploit the bounded
model property so as to encode contextual reasoning into purely propositional
reasoning. This encoding paves the way for the implementation of contex-

tual reasoners based on — and benefiting from the efficiency of — already
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existing propositional reasoners. Complementarily to this translation-based
approach, in section 4.2, we propose a distributed algorithm, which maxi-
mally exploits the potential amenity of localizing reasoning and restricting it
to relevant contexts only. We show how this algorithm could be implemented
by directly reusing off-the-shelf efficient reasoning procedures. Moreover, we
argue that the latter approach is, in general, computationally superior to the
procedure based on translation into propositional logic.

All this is succeeded by a discussion of some related work in chapter 5.
We conclude in chapter 6 with a concise recapitulation of our achievements,

and some pointers to future research avenues.



Chapter 2
Multi-Context Systems

In this chapter we shortly revise the multi-context system (MCS) formalism,
as first introduced by Giunchiglia [33], and further developed by Giunchiglia
and Serafini [35] and Ghidini and Giunchiglia [30].

2.1 Intuition

A simple illustration of the intuitions underlying MCS is provided by the

ﬁ% \Mr.2

so-called “magic box” example:

Figure 2.1: A magic box.

Example 1 Mr.1 and Mr.2 look at a box, which is called “magic” because
neither of the observers can make out its depth. Both Mr.1 and Mr.2 main-
tain a representation of what they belief to be true about the boxr. Mr.1’s

beliefs may regard concepts that are completely meaningless for Mr.2, and

9
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vice versa. For example, Mr.2 could belief the central section of the box to
contain a ball. From Mr.1’s viewpoint however, the box doesn’t have a central
section, so any statement about whether it contains a ball or not is mean-
ingless for him. Mr.1 and Mr.2 may also have concepts in common, but in
any case their respective interpretations of those concepts are independent.
For example, “the right section of the box contains a ball” is a meaningful
statement for both Mr.1 and Mr.2. But it is perfectly conceivably that Mr.1
believes the right section of the box to be empty, while Mr.2 believes it to
contain a ball, and vice versa. The bottom line is that both observers have
their own local language in which they express their beliefs.

Another important notion is that the observers may have (partial) access
to each other’s beliefs about the box. For example, Mr.1 may have access to
the fact that Mr.2 believes the box to contain a ball. Mr.1 may interpret this
fact in terms of his own language, and adapt his beliefs accordingly. We think

of this mechanism as an information flow among different observers.

In the following we show how collections of local representations and the

information flow between them can be captured formally.

2.2 Syntax

Our point of departure is a set of indices I. Each index ¢ € I denotes
a contexrt, which is associated with a formal language L;. Here, for the
sake of simplicity, we take each L; to be a propositional language, but in
principle we are not restricted to doing so (the use of first-order languages
and description logic has been investigated in [31] and [11], respectively). To
state that a propositional formula ¢ in the language L; holds in context i we
utilize so-called labeled formulas of the form i : ¢ (when no ambiguity arises

we simply refer to labeled formulas as formulas). To model information flow
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from one or more contexts to another we employ so-called bridge rules, which

are expressions of the form:

1101 e aylp i Oy — 110 (2.1)
~~ 4 ~—~~
premises consequence

Intuitively, bridge rule (2.1) states that the beliefs ¢y, ..., ¢,, holding in
contexts 71, ..., 1,, respectively, are accessible from - and impose a new belief
@ on context ¢. In this light, the arrow symbol “—” does not denote material
implication here (we will use “2” for this purpose), but rather a form of

“epistemic implication”: the propagation of beliefs rather than that of facts.

We call ¢ : ¢ the consequence and 4y : ¢q,...,1, : ¢, the premises of
bridge rule (2.1). We write cons(br) and prem(br) for the consequence and

the set of all premises of a bridge rule br, respectively.

Definition 1 (Propositional Multi-Context System) A propositional
multi-context system ({L;}icr, BR) over a set of indices I consists of a set of

propositional languages {L;}ic; and a set of bridge rules BR.

In this thesis, we assume [ to be (at most) countable and BR to be finite.
The latter assumption does not apply to MCS with schematic bridge rules,
such as provability systems and unbounded multi-agent belief systems [35].
The question whether our results may be generalized to capture these cases
as well is subject to further investigation.

Also note that the language of a multi-context system does not include
expressions like =(i : ¢) and (i : ¢ A j : ), which, in some cases, could

impose a considerable restriction on the expressiveness of the formalism.

Example 2 The situation described in example 1 may be formalized by a

multi-context system with two contexts 1 and 2, described by the propositional
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languages L1 = L({l,7}) and Ly = L({l,c,7}), respectively*. Intuitively, the
atomic propositions l, ¢, and r correspond to the existence of a ball in the
left, center, and right section of the box, respectively, as depicted in figure 2.2.
Note that, although Ly and Ly share the atomic propositions | and r, they are

ole| o |
| r I ¢ r
O O
Mr.1 Mr.2

Figure 2.2: Views of Mr.1 and Mr.2.

intended as strictly local and semantically disjunct languages. Interpretations
of I and r in context 1 and 2 are in principle entirely independent.
The information flow described in example 1 (if Mr.2 believes the box to

contain a ball, then Mr.1 adopts this belief), is captured by the bridge rule:

2:lVeVr—1:1lvr (2.2)

2.3 Semantics

Let M; be the class of classical interpretations of L;. Each interpretation
m € M, is called a local model of L;. In the propositional case, a local model
may be denoted by the set of propositional atoms that the model satisfies.
Interpretations of entire MCSs are called chains. They are constructed from

sets of local models.

Definition 2 (Chain) A chain ¢ = {c¢;}ics over a set of indices I is a
collection of sets of local models (¢; € M; for alli € I). A chain component

¢; 1s inconsistent if |¢;| = 0, point-wise if |¢;| = 1, and set-wise if |¢;| > 2.

'For a set of atomic propositions P, L(P) is the propositional language defined over P.
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A chain can be thought of as a set of “epistemic states”, each corresponding
to a certain context (or agent). The fact that ¢; contains more than one local
model amounts to L; being interpretable in more than one unique way. Thus,
set-wise chain components correspond to partial beliefs (several interpreta-
tions are considered possible), whereas point-wise chain components indicate

complete beliefs (only one interpretation is conceivable).

Example 3 Consider the situation depicted in Figure 2.1. Both agents have

complete beliefs, corresponding to the following point-wise chain components:

{ {{1,r}}, }
{{lv —C, —|T’}}

We can imagine a scenario however, in which Mr.1 and Mr.2’s views are

restricted to the right half and the left-most section of the box, respectively:

Mr.1 %% — Mr.2

/
Figure 2.3: The partially hidden magic box

Now, both Mr.1 and Mr.2 have only partial beliefs; their observations may be

interpreted in several ways. This is reflected by set-wise chain components:

{ {t=r} =L =)}, }

{1, —e,—r} Al —e,r}  {le,—r}  {l,e,r}}

Intuitively, a chain ¢ satisfies a formula i : ¢ if ¢ holds in all interpretations
of context i that ¢ considers possible. If ¢ satisfies all the premises of a bridge
rule br, then, to comply with the information flow specified by br, ¢ should

also satisfy br’s consequence. More formally we define the following.

Definition 3 (Satisfiability and Compliance) Let MS = ({L;},c1, BR)
be a propositional multi-context system over a set of indices I, and let ® be

a set of labeled formulas whose labels constitute a subset J of I.
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1. A chain c satisfies a labeled formula i : ¢ (denoted c |= i : ) if each
local model m € ¢; classically satisfies ¢ (denoted m |= ).

2. A chain c satisfies ® (denoted c = @) if it satisfies every i : p € ®.

3. A chain ¢ complies with a bridge rule br, if, whenever it satisfies all of
br’s premises, it also satisfies br’s consequence (that is, ¢ either satisfies

br’s consequence or does not satisfy at least one of br’s premises).
4. A chain ¢ complies with BR if it complies with every br € BR.
5. A chain c is j-consistent if c; is nonempty.
6. A chain c is J-consistent if it is j-consistent for all j € J.

7. We say that ® is consistently satisfiable in M S if there is a J-consistent
chain, which satisfies ® and complies with BR.

The contextual satisfiability problem is to determine whether or not a set of
labeled formulas ® is consistently satisfiable in a multi-context system MS.
Many contextual reasoning tasks can be expressed in terms of the contextual
satisfiability problem. Therefore, as is rather usual in the study of automated
reasoning, we will focus our further inquiry on this specific problem.
Intuitively, to solve a contextual satisfiability problem is to construct a
chain (by adding and removing local models) that satisfies ® and complies
with BR, but in doing so remains J-consistent. In chapter 4 we will specify
a sound and complete algorithm that implements this intuition. For now, we

confine ourselves to illustrating it by means of the following example.

Example 4 Consider example 3, in which both Mr.1 and Mr.2 have only
partial views of the magic box, and information flow is modeled by bridge
rule 2.2. A contextual satisfiability problem would be to determine whether

the set of formulas ® = {1:—r,2:1} were consistently satisfiable, that is,
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whether there exists a chain, whose components are both non-empty, which
satisfies ® and complies with bridge rule 2.2.

In order to do so, we may begin with a chain c that contains all possible
local models: this indicates that both observers consider all potential inter-
pretations of the situation possible. Then, we gradually restrict the chain so
as to meet the given requirements. To satisfy 1 : —r (Mr.1 believes the right
sector of the box to be empty), we should remove all those local models from
c1 that satisfy r. This leaves us with ¢; = {{l,—~r},{=l,—r}}. Similarly, to
satisfy 2 : 1 (Mr.2 believes that there is a ball in the leftmost sector of the box),
we should remove from co all those local models that falsify |, which yields
{1, —e,—r} Al e, v} {l,e,—r}  {l,e,r}}. But now ¢ satisfies the premise
of bridge rule 2.2 (2:1V cV r). In order to make it comply with this bridge
rule, we should further restrict ¢y, by removing from it those local models that
do not satisfy the consequence of bridge rule 2.2 (1 : 1V r). We obtain the

chain:

{ {L,-r}}, }

{l,—c,—r} Al —e,r}  {l e, =} {l,e,r}}

which is {1, 2}-consistent, satisfies @, and complies with bridge rule 2.2. No-
tice that, as an effect of the information flow modeled by the system, the
ultimate chain conveys that Mr.1 believes that the left sector of the box con-

tains a ball, even if this is not directly entailed by his own observations.



Chapter 3
Complexity Analysis

In this chapter, we seek to characterize the inherent difficulty of settling
a contextual satisfiability problem. The difficulty of solving computational
problems is usually expressed by the amount of time and/or memory space
that is required to do so, as a function of the input problem size. A range
of so-called complexity classes has been identified and intensively studied.
Each complexity class comprises problems that are essentially just as hard
to solve. One class that plays a central role in our analysis, and in theoretical
computer science in general, is called NP. It contains those problems that can
be settled by non-deterministic computations (computations which are not
fixed from beginning to end, but which - at various stages - may involve
a random choice between a finite number of alternative proceedings) in a
number of timesteps that is bounded by some polynomial function of the
size of the input problem.

In addition to complexity class membership, a problem can be further
characterized as being hard and/or complete with respect to a complexity
class. A problem P is hard with respect to some complexity class C' (e.g.,
NP-hard) if every problem in C' can be efficiently reduced to P. That is, an

algorithm for solving any problem P* in C' can be easily obtained from an

16
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algorithm for settling P. A problem is complete with respect to a complexity
class C'if it is both contained by C' and C-hard.

An important result due to Cook [21], which we will use in our discussion,
establishes that propositional satisfiability (hereafter SAT) is NP-complete.
This means that any problem in NP is reducible to SAT, and that any problem
in NP to which SAT can be effectively reduced is NP-complete. For a more
comprehensive review of computational complexity, we refer to [39].

In the following we will consistently refer to the set of bridge rules of MS

as BR, and to the set of contexts involved by formulas in ® as J.

3.1 Encoding Into Modal Satisfiability

A first insight regarding the complexity of contextual satisfiability may be
obtained by investigating its encoding into modal satisfiability. After briefly
reviewing the basic multi-modal logic K,,, we will show that any contextual
satisfiability problem may be reduced to that of satisfying some formula in

K,,, whose depth is equal to one. This problem is known to be in NP [43, 38|.

K, typically describes a state of affairs in terms of a nonempty finite set ®
of propositional atoms, as seen through the eyes of n individual agents, named
1,...,n. Its language is defined to be the least set of formulas containing ®,
closed under negation, conjunction, and the modal operators O, ..., O,. A
modal operator O; is often intuitively read as: “agent ¢ believes that ...”, or
“for agent i it is necessarily true that ...”. The depth of a modal formula ¢
is the maximum number of nested modal operators in ¢.

Standard semantics for modal logic is called possible world semantics [42].
Interpretations in this framework are called kripke models. These are tuples
M = (W,m,Rq,...,Ry), in which W is a set of states or possible worlds,

7 is a truth value assignment to the atomic propositions in ® for each state



18

Complexity Analysis

w € W, and every R; is a binary accessibility relation on W. Intuitively,

(w1, wy) € R; if in world w; of W, agent ¢ considers wy a possible world.
Satisfaction of a formula ¢ in a world w of a kripke model M, denoted as

M, w |= ¢, is defined as in standard propositional logic, with the addition of

just one extra clause for modal operators:
M, w = O;p iff (M,v) | ¢ for all v such that (w,v) € R;

The intuition behind this clause is that agent ¢ “believes” ¢ in world w
exactly if ¢ holds in every world v that ¢ considers possible from w. In general,
checking satisfiability of a formula ¢ in K, is a rather difficult computational
task (PSPACE-complete [38]). However, if one imposes the depth of ¢ to be
bounded, the task becomes significantly more straightforward - it has in fact
been proven to fall down right into the class of NP-complete problems [43, 38].

This outline of modal syntax and semantics serves our current purposes.
However, modal logics have been extensively discussed in the literature, and
the insight they provide into the workings of multi-context systems goes
beyond our present discussion. Excellent points of departure are [10, 24].

In order to reduce contextual satisfiability to satisfiability in K,,, we first
rename all atomic propositions that are shared by two or more local languages
(we could, for example, label them with the context that they are associated
with), so as to impose syntactic disjunctness on those languages. Then, we

define the following translation (.)* of labeled formulas into modal formulas:
(i:9)" =0

For bridge rules we have:

* =

(il:gol,...,inisf?nﬁiiw)
(i1: @) A Ain s 00)* D (i )"

And a j-consistency constraint is captured by:

(j-cons)" = -0, L
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We may now state the following equivalence result:

Theorem 1 There ezists a kripke model M = (W, m, Ry, ..., R,) such that
M, wqy |= 1) for some wy € W and:

= /\ (i:9)" A /\ (br)* A /\(j—cons)*
1:ped breBR jeJ
iff there is a J-consistent chain c¢™ that satisfies ® and complies with BR.

Please notice that, in any case, the depth of 1 is equal to (bounded by) one.

Proof. (=) We demonstrate how to construct ¢ from M. Let m,, be the

interpretation of | J, ., L; associated to a world w € W; for any i € I, let m,,|i

iel
be the restriction of m,, to L; and let ¢M = {m,|i | woR;w}.

As M, wy = O;¢, we have that w = ¢ for any w with wyR;w. Moreover,
as ¢ € L;, we have that m,|i = ¢. This implies that ¢™ =i : ¢. Bridge rule
compliance and J-consistency are established likewise.

(<) (From ¢ we may obtain a suitable kripke model M. Let W consist
of a world wy plus one world w,,, for each local model m; of every component
cM of M. Let every w,,, € W\ {wp} evaluate L; according to m;, and assign
True to the rest of (J,.; L;. Let wy evaluate every atomic proposition to

True. For all i € I, let:
R; = {{wo, Wp,) | Wy, corresponds to m; € ¢}

The resulting model is schematically depicted in Figure 3.1. One can easily
verify that M, wy = 1. O

Contextual satisfiability subsumes SAT and is therefore NP-hard [21].
Theorem 1, plus the fact that satisfiability for bounded K, is in NP [38],
imply that contextual satisfiability is also in NP, and therefore NP-complete.
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Figure 3.1: A schematic kripke model for ).

Moreover, the syntax of the formula that results from our translation is
highly constrained: it is a conjunction of disjunctions of (negated) boxed
formulas. Each disjunction comprises at most one boxed formula that is not
negated, and furthermore, each boxed formula is purely propositional. This
form strongly alludes to the existence of relatively efficient ways to solve the
contextual satisfiability problem. Therefore, in pursuit of a more nuanced
understanding of its complexity, we proceed with a firsthand analysis of its

semantical properties.

3.2 Bounded Model Property

In this section we establish the bounded model property for propositional
multi-context systems. This property implies that, to consistently satisfy a
set of formulas ® in a multi-context system MS, it should suffice to con-
struct a chain, which consists of at most |.J| + |BR| local models. This result
significantly restrains the amount of time required for non-deterministically
settling contextual satisfiability. Namely, in order to do so, it is sufficient to
“guess” a chain with only |J|+ [BR| local models, and then to check whether
this chain consistently satisfies ® in MS.

Let us first introduce some notation and terminology. The size of a labeled
formula i : ¢ is denoted by |i : ¢|. Let P(i : ¢) and P(®) be the set of

propositional atoms appearing in a formula ¢ : ¢ or a set of formulas ®. Let
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G, be the number of local models contained by the i** component of a chain,
and let GG be the total number of local models comprising that chain. Let
E(br) and Z(BR) consist of the premises and the consequence(s) of a bridge
rule br or a set of bridge rules BR. Finally, let N be the total size of the
formulas in ® and Z(BR):

N=Ylisd+ X lid
iped i:6€Z(BR)
Theorem 2 (Bounded Model Property) A set of formulas ® is consis-
tently satisfiable in a multi-context system MS if and only if there exists a
J-consistent chain that contains at most |J| + |BR| local models and satisfies

® in compliance with BR.

Proof. Take any J-consistent chain ¢ that satisfies ® in compliance with
BR. Let BR* C BR be the set of bridge rules whose consequences are not
satisfied by ¢. Every br € BR* must have a premise which is not satisfied
by some local model my, in ¢. On the other hand, for every j € J, there
must be at least one local model m; € ¢; that satisfies all those formulas in

® that apply to context j. The chain ¢* obtained from ¢ by eliminating all

Uij U My,

jed breBR*

local models except for:

is J-consistent, satisfies ® in compliance with BR, and moreover contains at
most |J| 4+ |[BR*| < |[J]| + |BR| local models. O

We use this result to prove contextual satisfiability to be NP-complete
and to establish a refined upper bound for the amount of time it requires. In

order to do so we need the following lemma:

Lemma 1 Model checking, that is, the problem of determining whether a

given chain ¢ consistently satisfies a set of formulas ® in a multi-context
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system MS, can be performed deterministically in time:

o Y Gixlel

i:pe DUZ(BR)
Proof. Model checking can be split into three sub-tasks:

1. Checking whether c satisfies P;
2. Checking whether ¢ complies with BR;

3. Checking whether c is J-consistent.

First consider sub-task 1. Checking whether a particular formula ¢z : p € ®
is satisfied by ¢ can be done as follows. Let ¢1, ..., ¢, be an ordering of the
subformulas of ¢, such that ¢, = ¢ and if ¢; is a subformula of ¢;, then ¢ < j.
Since ¢ has at most |¢| subformulas, we have k < |¢|. By induction on &’ we
can label each local model m in ¢; with either ¢; or —;, for j =1,... K,
depending on whether or not m = ¢;, in time O(G; x k’). As a result,
Gi X |l).

Sub-task 2 takes time O (3, cczr) Gi X [£]), as in the worst case it involves

checking whether c satisfies ® can be carried out in time O()_,. pcd
checking whether all the consequences and premises of every bridge rule in
BR are satisfied or not. Sub-task 3 merely consists in checking whether ¢;
is nonempty, for j € J. This can be done in O(|J|) timesteps. The result
follows directly. O

Theorem 3 Contextual satisfiability is NP-complete and can be settled in

non-deterministic time:
O(([J] + IBR]) x N)
Proof. We have already observed that contextual satisfiability is NP-hard.

To determine satisfiability we first non-deterministically appoint a set C'ons

of bridge rule consequences, and a set Prem of bridge rule premises, such
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that for every br € BR, either br’s consequence is in C'ons, or one of br’s
premises is in Prem. Let J, Icons, and Ip,., be the set of contexts involved
by ®, Cons, and Prem, respectively. Furthermore, let ®;, Cons;, and Prem;
be the set of i-formulas contained by ®, Cons, and Prem, respectively. Now

we construct a chain ¢, such that:
e For all i € Ipyenm, ¢; contains |Prem;| local models;
e For all i € J/Ipsem, ¢; contains exactly one local model;
e For all i ¢ JU Ipyenm, ¢; is empty;

e For all i € I, each m € ¢; evaluates the propositional atoms not ap-

pearing in ®; U Cons; U Prem; to True.

The only “guessing” involved in constructing ¢, apart from the choice of
Cons and Prem, are the truth values to which each local model in ¢; should
evaluate the propositional atoms in P(®; U Cons; U Prem;). Notice that ¢
contains at most |J|+|Prem| < |J|+|BR| local models, which are distributed
over those components ¢; of ¢ with ¢ € JU Ip,qn; all the other components of
c are empty. Consider a local model m contained in ¢; for some i € JU Ipep,.
The number of atomic propositions |P(®; U Cons; U Prem;)| that m should
“explicitly” evaluate is clearly bounded by N. We must appoint at most
|J| + |BR| such explicit valuations (one for each local model in ¢), so ¢ can
be constructed in non-deterministic time O((|J| + |BR]|) x N).

It remains to be checked whether ¢ consistently satisfies . By lemma 1
this requires deterministic time O((|J|+|BR|) x N). Theorem 2 assures that,
if ® is consistently satisfiable in M.S, then guessing a chain as described above
is bound to result in a suitable one. Thus, consistent satisfiability of ® in
M S can be computed in non-deterministic time O((|J| + [BR|) x N). O
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3.3 Application to PLC

The results presented above may be applied to improve current complexity
bounds for the propositional logic of context (PLC) as described in [17, 50].
Before doing so we briefly review the most important notions of this formal-
ism. In PLC, contexts are represented by sequences of labels. Intuitively,
a label sequence k1Ko denotes a context ko as seen from the viewpoint of
context k1. If K is a set of labels and K* the set of finite sequences over K,
then the language of PLC is defined as a multi-modal language over a set of
atomic propositions P, with modal operators ist(R, ) for each label sequence
K = K1...k, € K*. The intuitive meaning of a formula ist(ks, @), when
stated in context k1, is that ¢ holds in ko, from the standpoint of x;.

A model 9 for PLC associates to each context % a set of partial truth
value assignments (7). Associating a set of assignments to every context
is motivated by intuitions similar to those which underlie possible worlds
and local model semantics. A formula ¢ holds (“is believed to be true”) in
context & if it is satisfied by all the assignments associated to &.

Partial assignments provide for the simulation of local languages — in
each context, only a fragment of the global language is actually meaningful.
Formally, a formula ¢ is meaningful in context & if every assignment in 9(rR)
fully determines the truth of ¢. So 9 defines a function Vocab(9), which
associates to every context % a set Vocab(91)(%) of meaningful formulas.

Now for a model 91, a context %, an assignment v € 9(R), and a formula

¢ € Vocab(M)(r), satisfaction is defined as follows:
1. M, v =% p iff v(p) = true
2. M v = —p iff not M, v =% ¢
3. M v EreD¢iff not Mv =5 por M v 1

4. M v =5 ist(k, ) iff for all v/ € M(RK), M,V Frw ¢
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5. M b= ¢ iff for all v € M(R), M, v 5 ¢

If the precondition ¢ € Vocab(91)(%) does not hold, then neither M, v =5 ¢
nor M, v =% —¢. A formula ¢ is satisfiable in a context & if there is a model
M such that M =% ¢.

The best complexity result so far for determining satisfiability in PLC is
due to by Massacci [46]. He proposed a tableaux-based decision procedure,
which settles satisfiability of a formula ¢ in non-deterministic time O(|¢|?).

Our approach is to translate a PLC formula ¢ into a labeled formula
€ : ¢ and a multi-context system MCS(yp), so that ¢ is satisfiable in PLC if
and only if € : ¢ is consistently satisfiable in MCS(y). Subsequently, we will
demonstrate that determining whether or not € : ¢ is consistently satisfiable
in MCS(¢) takes non-deterministic time O(|¢|?).

The translation works as follows.Let MCS(¢) contain a context labeled
with the sequence kj ... k,, for each nesting pattern ist(ky,...ist(k,,v)...)
in . Let the language of context k; ...k, contain all the atomic propositions
in 7, plus a new atomic proposition for each formula of the form ist(k, x)

occurring in 9. Finally, equip MCS(p) with the following bridge rules':

kk v — k:ist(k, )

k:ist(k, ) — kk @4
k. —ist(k, ist(h, 1)) — kk : —ist(h,v)
k : —ist(k, —ist(h,)) — kk : ist(h, 1)

Example 5 Consider the following PLC formula:

© =pVist(k,q D (ist(h,r N\ s) D ist(j,q)))

IThe first two bridge rules correspond to McCarthy’s notions of entering and exiting
contexts [50], while the last two bridge rules correspond to the A axiom introduced by
Buva¢ and Mason [17]. The specified bridge rules are schematic: the first one, for example,
is instantiated for every subformula v of any formula 6, which occurs in a nesting pattern
ist(kq, ... ist(kn, ... ist(k,0)...)...) in ¢.
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MCS(p) consists of four contexts which are labeled € (the empty sequence),
k, kh, and k7, respectively. The language L. of context € contains two atomic
propositions, p and ist(k,q D (ist(h,r V' s) D ist(j,q))). Li contains q and
ist(h,r N\ s); Lgy comprises v and s, and finally, Ly; is constructed over gq.
The bridge rules of MCS(p) are as stated above.

Theorem 4 ([61]) A formula ¢ is satisfiable in PLC if and only if € : ¢ is
consistently satisfiable in MCS(p).

Theorem 5 Satisfiability of a formula ¢ in PLC can be computed in non-

deterministic polynomial time O(|p|?).

Proof. By theorem 4 any satisfiability problem in PLC can be transformed
into an equivalent satisfiability problem in MCS. This transformation can be
established in linear time.

Every bridge rule in MCS(¢) involves at least one proposition of the
form ist(k,v). Every such proposition occurs in at most four bridge rules.
Every subformula of ¢ of the form ist(k, 1) (and nothing else) results in a
proposition of the form ist(k,1)) in the language of exactly one context in
MCS(¢). The number of subformulas of ¢ of the form ist(k, ) is bounded
by |¢|. From these observations, we may conclude that the number of bridge
rules | BR| in MCS(¢p) is bounded by 4 x |¢|. Moreover, by construction, the
sum of the lengths of the formulas involved in any bridge rule of MCS(yp) is
at most four.

By theorem 3, contextual satisfiability of € : ¢ in MCS(¢p) can be settled

in non-deterministic time:
O((12] + IBR)) x (Y izl + > Y li:¢])
i:peP breBR i:¢e=(br)

In the light of the above observations, and keeping in mind that ® merely

consists of € : p, we may rewrite this in terms of ¢ as O(|¢|?). O



Chapter 4
Decision Procedures

We now turn to decision procedures. We describe and compare two funda-
mentally different approaches to automatically deciding contextual satisfia-
bility. The first, described in section 4.1, is based on the observation that
contextual satisfiability must be tractably reducible to purely propositional
SAT (by NP-membership of the former and NP-completeness of the latter).
In providing such a reduction, we may loose the particular structure of a
given problem. However, in doing so we do lay the groundwork for the im-
plementation of purely SAT-based contextual reasoners, which could benefit

from the well-advanced techniques developed by the SAT community.

The second approach, discussed in section 4.2, seeks not only to maintain,
but moreover to exploit the structure of contextual satisfiability problems.
This approach leads to the specification of the CONTEXTSAT algorithm,
in which reasoning is strictly local and restricted to relevant contexts only.
Section 4.2.2 proposes a sufficient condition for the algorithm to be com-
plete, and compares its efficiency to that of the previously mentioned trans-
lation based procedure. At last, in section 4.2.3, the use of several efficient
propositional reasoning platforms for the implementation of CONTEXTSAT

is discussed.

27
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4.1 Encoding Into Propositional SAT

In this section we encode contextual satisfiability problems into propositional
logic, and discuss the complexity of the resulting problem in terms of the

dimension of the underlying multi-context system.

4.1.1 Encoding

We first remark that our encoding cannot simply consist in labeling local
propositions with the index of the context that they are associated with.

This is illustrated by the following example:

Example 6 Consider an MCS with two contexts 1 and 2, which are described

by L({p}) and L({q}), respectively, and subject to the following bridge rules:

l:p — 2:q (4.1)
l:=p — 2:gq (4.2)

The formula 2 : —q is consistently satisfied in this system by the chain:

{ {{n}. {-p}}, }
{{-q}}

Notice that a simple “indexing” encoding of this system into propositional

logic would be inconsistent.

To overcome this problem we exploit the understanding obtained in sec-
tion 3.2 while establishing the bounded model property. More specifically, if
we assume |BR| > 1, theorem 2 can be slightly weakened to the statement
that ® is consistently satisfiable iff it is consistently satisfied by a chain ¢* all
of whose components are either empty or contain exactly |BR| local models.
Our approach is to construct a propositional formula 1, which is satisfiable

if and only if such a chain ¢* exists.
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We express this formula in a language which contains a propositional
atom p¥ for every p € L;, and for every k = 1,...,|[BR|. Intuitively, the
truth value assigned to p¥ by a propositional valuation of v corresponds to
the truth value assigned to p by the k' local model in ¢;. The language also
contains an atomic proposition e; for each index ¢ € I. Intuitively, e; being
assigned T'rue corresponds to ¢ being empty.

We write K = {1,...,|BR|}. For any formula ¢, every i € I and k € K,
let ¢¥ denote the formula that results from substituting every propositional
atom p in ¢ with p¥. Furthermore, let ¢ = A, _x ¢¥. Then, the translation

of a labeled formula reads:
(irg) =e Vi
For bridge rules we have:
(11001, ylp sy — 01 Q) =
(i1 2 @) Ao A (i s @n)" D (02 @)

And a j-consistency constraint is captured by:
(j-cons)* = —e;

Theorem 6 There exists a truth value assignment V' to the propositional
atoms {pF i€l andk=1,...,|BR|} U{e; | i € I}, which satisfies:

P = /\ (i:9)" A /\(j-cons)* A /\ (br)*

ipED jed breBR

iff there is a J-consistent chain ¢ that satisfies ® in compliance with BR.

V

Proof. (=) From V we construct a chain ¢", such that each component

¢/ is empty if V(e;) = True and consists of exactly |BR| local models oth-

erwise. In the latter case, the k' local model of ¢ is made to evaluate each
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propositional atom p € L; to True iff V(p¥) = True. It’s easy to see that ¢V
is J-consistent and satisfies ® in compliance with BR.

(<) The above observations imply that, if ® is consistently satisfiable,
there exists a J-consistent chain ¢* each of whose components is either empty
or contains exactly |BR| local models, and which satisfies ® in compliance
with BR. ;From ¢* we may obtain a truth value assignment V' by proceeding
as follows. To a propositional atom e;, let V' assign True iff ¢; = (). To a
propositional atom p¥, let V assign True if the k™ local model of ¢} satisfies
p, False if the k' local model of ¢} satisfies =p, and any truth value if ¢! is
empty. It should be straightforward to see that V' satisfies 1. O

4.1.2 Complexity

The deterministic time complexity of the propositional satisfiability problem
resulting from our encoding is O(2/P1), where P is the set of propositional
variables involved. If P; denotes the set of propositions that is used to de-
scribe context 4, then |P| amounts to:
1]+ |BR| x Y|P
iel

Using this translation, contextual satisfiability problems may be solved
by means of existing specialized SAT solvers. As an alternative to this ap-
proach, the following section describes an algorithm which tackles contextual

satisfiability in an entirely distributed fashion.

4.2 A Distributed Algorithm

In this section we describe an algorithm for contextual satisfiability, in which
reasoning is always executed locally, and restricted to contexts which are ac-
tually relevant for the problem under consideration. This algorithm is shown

to be more efficient than the translation based method presented above.
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4.2.1 Algorithm

Our approach is the following. Starting with some initial chain c°, we attempt

to construct a sequence ¢, ¢!, ... such that for all m € {1,2,...}:

e ™ satisfies .

m

e ™ extends ¢™, that is, for every i € I, ¢ C " 1.

e ¢t complies with the bridge rules that ¢™ does not comply with.

Always extending a chain, that is, restricting the sets of local models that
constitute its components, has two important implications. First, our initial
chain ¢” should be most “general”: its components ¢ must contain the entire
set of local models M;. As such ® doesn’t satisfy any formula. Particularly,
c® does not satisfy any bridge rule premise, and thus complies with BR.
The second implication of always extending a chain, is that once a formula
is satisfied by some intermediate chain ¢, then it is also satisfied by ¢", for
any n > m. This means that (1) if ® is satisfied by ¢!, then it is also
satisfied by ¢*, for any n € {2,3,...}. Moreover, (2) if some intermediate
chain ¢™ does not comply with a bridge rule br € BR - that is, ¢ satisfies
br’s premises, but does not satisfy its consequence - then any extension of
c™ that were to comply with br should satisfy br’s consequence (it can by no
means be made to not-satisfy one of br’s premises). So obtaining ¢™*! from

Cm

consists in extending ¢™ so as to satisfy the consequences of the bridge
rules that ¢™ does not comply with. Finally, (3) once an intermediate chain
satisfies the consequence of some bridge rule br (and hence complies with br),

any of its extensions also satisfies br’s consequence and thus comply with br.

This approach is implemented by the CONTEXTSAT procedure specified
in algorithm 1. It takes as its input a set of labeled formulas ® (for sim-
plicity of the algorithm, we assume that & contains at most one formula

per context), a set of bridge rules BR, a set of contexts (indices) I, a subset
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J C I of contexts whose consistency is required, and finally, a chain c¢. At
first, CONTEXTSAT is called with ¢ being a chain over I, whose components
all comprise the complete set of local models M;. It yields a J-consistent
extension of ¢ that satisfies ® in compliance with BR, or False if it fails to

construct such an extension.

Algorithm 1 A distributed algorithm for contextual satisfiability.
CONTEXTSAT(®,BR, I, J, ¢)
begin
Io :={iel]|i:p; €d};
for all i € Iy do

cf = EXTEND(¢;, ;);
end for
for all i € I/I* do

C =
end for
for all j € J do

if ¢j = () then

return Flalse;

end if
end for
BR* :={br e BR | c¢* =i :nforalli:n e prem(br)}
if BR* = () then

return c*;
end if
U* := {cons(br) | br € BR*};
@*::{i:gﬂgp: N €, ie]};

iEew*

return CONTEXTSAT(®*, BR/BR*, I, J, ¢*);

end
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Extensions are always constructed locally. That is, CONTEXTSAT first
determines the set I of contexts involved by formulas in ®, and then, for
every i € I*, calls a sub-procedure EXTEND that extends ¢; so as to satisfy
1 : . If the resulting chain is J-inconsistent, any of its further extensions will
be J-inconsistent as well. Thus, if such is the case CONTEXTSAT recognizes
a failure, and returns False. If not, it determines the set BR* of bridge rules
all of whose premises are satisfied by c. If BR* is empty, ¢ is a solution.
Otherwise, making ¢ comply with BR* yields a new satisfiability problem,
namely that of extending c so as to satisfy the consequence of every br € BR™.
Bridge rule consequences that concern the same context are taken together
in order to obtain a set ®* consisting of at most one formula i : ¢ for every
context i € I. A new instance of CONTEXTSAT is addressed to extend ¢ so
as to satisfy ®*. Recursively proceeding like this, a chain is constructed that
satisfies ® at any stage, and at some point either becomes J-inconsistent, or

compliant with BR.

4.2.2 Completeness and Locality

The set of bridge rule consequences that is satisfied by c is strictly expanded
by every recursive call to CONTEXTSAT. Since the number of bridge rules is
finite, CONTEXTSAT is bound to terminate. Soundness is evident; in order
to assure completeness we should enforce EXTEND(¢;, ) to remove from ¢;
exactly those local models that do not satisfy ¢. We say that EXTEND(¢;, ¢)
should yield a complete extension of ¢; w.r.t. ¢. Notice that this constraint
implies that extensions of ¢ never unnecessarily satisfy a bridge rule premise.
In this way the chance of having to re-establish bridge rule compliance is
minimized, and therefore further reasoning in other contexts is required only
if strictly necessary. This pursuit of locality constitutes an important amenity

of our contextual approach w.r.t. centralized procedures.
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4.2.3 Towards Efficient Implementations

Several efficient off-the-shelf reasoning platforms can be used to implement
CONTEXTSAT, such that EXTEND indeed yields complete extensions. We

sketch two particular ways to go.

BDD-based implementation

Reduced Ordered Binary Decision Diagrams [16] (or simply BDDs) constitute
a canonical representation of propositional formulas. Boolean transformation
(e.g. conjunction, disjunction, negation) and quantification take at most
quadratic time in the size of the BDDs involved. Efficient software libraries for
the manipulation of BDDs, called BDD packages, are available. BDDs are being
used in several application domains, ranging from formal verification [51] to
planning [19], safety analysis [14], and diagnosis [63].

We use BDDs to represent sets of local models. The chain ¢ we are con-
structing is implemented as an array, whose i*" element points to a BDD B;,
representing the set of local models comprised by c;.

Initially, each B; is equal to the BDD True. Extending ¢; with a formula
@ corresponds to replacing B; by the conjunction of B; and the BDD repre-
sentation of ¢. Checking for i-consistency requires an equality check between
B; and the BDD Flalse. Determining whether B; entails a bridge rule premise
v can be done by comparing the BDD B; D 1 to the BDD Flalse. Dedicated
routines to establish entailment are provided by most BDD packages.

As reasoning is always performed locally, each context can be represented
by a completely independent BDD, each local proposition can be associated
with a univocal “local” BDD variable, and each context can impose its own
variable ordering. The potential bottleneck of using BDDs is an explosion in
space. In general practice, however, suitable variable orderings assure very

compact representations of high-dimensional boolean functions.
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SAT-based implementation

Propositional SAT solvers make up another very effective way to manipu-
late propositional formulas. The typical approach is a depth-first search
for satisfying truth value assignments, “splitting” on boolean variables [22].
During the last decade enormous progress has been achieved in this field:
state-of-the-art SAT solvers are able to process problems with tens of thou-
sands variables and a million clauses [53], and are applied in several industrial
settings ranging from formal verification [9] to planning [40] and automatic
test pattern generation [45].

In a SAT-based implementation the i** component of the chain we are
constructing is simply represented by a conjunction 1; of formulas that are
forced to hold in context ¢. Initially, each v; is empty. Extending c¢; with
a formula ¢ consists in conjuncting ; with ¢. Checking i-consistency now
becomes a full-fledged call to the SAT solver, with v; as input. Determining
whether a bridge rule premise ¢ is entailed by ¢; amounts to checking whether
¢ holds in all the models of ;. This can be considered as a SAT problem,
reasoning by refutation: ¢ is entailed by ¢; iff ¥; A —¢ is unsatisfiable.

The sequence of problems presented to the SAT solver is incremental.
A consistency / entailment check carried out during the j iteration of
CONTEXTSAT is often an extension of a similar problem solved during some
previous iteration of the algorithm. In this light, it is recommendable to
exploit recent developments in incremental SAT technology [23]. Significant
computational advances can be achieved by retaining learned conflict clauses

when adding new clauses to an already processed formula.

Simulation

Let us describe a simple simulation of a SAT-based implementation of the

CONTEXTSAT algorithm.
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Example 7 Reconsider example 3. Suppose that the information flow of the
system is modeled by bridge rule 2.2:

2:lVeVr—1:1lVr

We let CONTEXTSAT determine whether ® = {1 : =r,2 : I} is consistently
satisfiable or not. It proceeds as follows. During the first iteration @, and @9
are assigned 1 : —=r and 2 : 1, respectively. The consistency check succeeds and
BR* is determined to consist of bridge rule 2.2. During the second iteration
@1 is updated to 1 . —r N\ (IV r). Consistency is again established and BR*
15 mow empty, so that the algorithm terminates. The chain corresponding to

the final state of ¢1 and s is:

{ {t,-r}}, }
{1, —c,—r} {l,—c,r} {l,c,—r}  {l,e,7}}

It indeed conveys that Mr.1 believes the left section of the box to contain a

ball (as established earlier in example 4).

4.2.4 Complexity

Of course, it is important to have an idea of how efficient CONTEXTSAT is.
We therefore analyse its worst-case complexity and compare it to that of
the translation-based procedure described in section 4.1. The results of our
analysis hold for both SAT-based and BDD-based implementations.

In general, the greater part of CONTEXTSAT’s computation time will be
involved with checking which bridge rule premises are entailed by the current
chain. The worst-case scenario consists of two contexts and an even number
of bridge rules going back and forth between them. If during each iteration
of CONTEXTSAT only one “new” bridge rule premise is found to be satisfied

by the last modification of the chain under construction, the total number of
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premise-checks is:

(|BR| + 2) x |BR|

2% (BR| 4 ...+ 1) = :

Each check requires up to time O(2/%!). Assuming that Q = |P,| = |P,|, we
obtain the following overall upper complexity bound for CONTEXTSAT:

<(|IB%R| +2) x |BR|

1 + \IBSR\) x 0(29) = O(|BR|* x 29)

In this case the translation based method outlined in section 4.1 requires time
O(2%*[BRIXQ)  Tn general, this upper bound is (to a great extend) inferior to
the upper bound for CONTEXTSAT. Take |BR| = 10 and @) = 5, for instance.
CONTEXTSAT then takes time in the order of 3200, while the translation

based approach may require a number of timesteps in the order of 103°.



Chapter 5

Related Work

Work by Giunchiglia and Sebastiani [34] can be seen as a first step towards
general decision procedures for contextual satisfiability. The objective of
this work is to define SAT-based decision procedures for modal logics. Its
motivation is highly associated with the possibility of defining a particular
class of multi-context systems called hierarchical meta contexts, whose in-
stances are equivalent to various modal logics [35]. Resulting procedures
have been proven orders of magnitude faster than previous tableau-based de-
cision procedures. In this thesis, we applied a similar approach to the class

of multi-context systems, whose structure is not necessarily hierarchical.

In section 3.1 contextual reasoning with finite sets of bridge rules was
shown to be reducible to a simple form of reasoning in bounded modal logic.
In particular, it was observed that expressing contextual satisfiability prob-
lems in K, yields formulas whose modal depth is, in any case, equal to one.

Fixpoint decision procedures for modal logic have recently been proposed
by Pan, Sattler and Vardi [55], and could, in the light of the above obser-
vation, in principle be applied to contextual satisfiability as well. In this
approach satisfiability of a modal formula ¢ is computed by constructing a

kripke structure, whose set of possible worlds is constituted by proposition-
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ally consistent sets of (possibly negated) sub-formulas of . Such sets are
called types. A type/world a is accessible from a type/world b, if O¢p € b
implies ¢ € a.

The top-down algorithm proposed in [55] takes as its initial set of worlds
all possible types. Then, it iteratively discards those worlds/types which
contain a formula ~0O% but do not have access to any world /type containing
—). A type corresponding to a formula ¢ is represented by an array of binary
variables each of which conveys whether the type contains either a certain
sub-formula of ¢, or its negation. This representation seems redundant as far
as capturing the propositional structure of formulas is concerned. It turns out
to be very effective, however, in treating the modal aspects of a problem [54].
It is especially useful when processing formulas which exhibit deep nestings
of modal operators. The encoding of contextual satisfiability problems into
modal logic generates formulas, which do not exhibit any nesting at all.
Therefore, directly applying this approach to our contextual setting does not

seem to be a fruitful endeavor.

Amir and Mcllraith [2] define a propagation algorithm called MP, which
computes satisfiability of a theory 7" that is partitioned into sub-theories (or
partitions) Ty, ..., T,. Two partitions are related by the overlap between the
signatures of their respective languages, which is called the communication
language between these partitions. Roughly speaking, to check satisfiability
of a partitioned theory T;<,, MP determines a partial order < over T;<,,
and subsequently - iterating over T;<,, according to <, and propagating log-
ical consequences of one partition to the next through the communication

language between those two partitions - identifies models of 7.

At a first glance, there is a strict analogy between multi-context systems
and partitioned theories. Partitions could be seen as contexts, and overlap
between two partitions could be simulated using bridge rules of the form

t:p— j:pandi: -p — j: -p, for each atomic proposition p in the



40

Related Work

communication language between 7; and T;. However, the analogy breaks at
the semantical level. The semantics of a partitioned theory can be seen as
the projection of a global semantics for T onto each local language T;. Or,
the other way around, a model for T is the combination of one model for
each T;. Conversely, a chain associates to every context a set of local models.
Therefore, it cannot be considered as a set of chunks of a global model. In
other words, in Amir and Mcllraith’s approach each T; represents a partial
theory of the world, while in ours each context represents an epistemic/belief
state about the world. However, the analogy can be made to work, by only
considering chains all of whose components contain exactly one local model.
The two approaches should be compared subject to this hypothesis.
CONTEXTSAT, then, exhibits two improvements with respect to MP.
First, bridge rules express more complex relationships between contexts (par-
titions) than communication languages do. For instance, we can relate three
(or more) contexts via a bridge rule i : ¢,j : ¥ — k : x, whereas MP is
limited to considering the overlap between pairs of partitions. Furthermore,
bridge rules are directional, i.e. i : p — j : p does not imply 7 : p — ¢ : p.
Communication languages describe symmetric relations between partitions.
At last, while MP requires a partial order between contexts, CONTEXTSAT

naturally deals with any kind of relational structure between them.



Chapter 6
Conclusion

The achievement of a solid paradigm for contextual knowledge representation
and contextual reasoning is of paramount importance for the development of
sophisticated theory and applications in Artificial Intelligence. Substantial
theoretical arguments to support this claim can be found in the work of
McCarthy, who pleaded for a formalization of context as a possible solution
to the problem of generality, and in the work of Giunchiglia, who emphasized
the principle of locality. Moreover, recent practical research endeavours,
most notably those related to the Semantic Web and the Grid, render the
need for contextual reasoners even more urgent. Our contribution to fulfilling

this need has been twofold.

First, we have investigated the computational complexity of contextual
reasoning based on propositional multi-context systems with finite sets of
bridge rules. Our main results in this regard are an equivalence theorem with
bounded multi-modal K,,, which is well-known to be NP-complete, and the
so-called bounded model property for multi-context systems, which provides
considerable insight into the complexity of contextual reasoning in general,
and has important implications for the complexity of multi-context systems in

particular. Our results have also been applied to improve complexity results
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for the satisfiability problem in McCarthy’s propositional logic of context,
by showing that the latter problem can be considered a special case of the
contextual satisfiability problem in multi-context systems.

Our second contribution is the proposal and analysis of two orthogonal
approaches to automatically deciding satisfiability in multi-context systems.
By providing a tractable encoding of contextual satisfiability problems into
purely propositional ones, a solid groundwork has been laid for SAT-based
implementations of contextual reasoning systems. On the other hand, we
have also proposed a distributed algorithm, called CONTEXTSAT, which seeks
to exploit the potential benefit of localizing reasoning and restricting it to
relevant contexts only. CONTEXTSAT has been shown to be more efficient, in
general, than our translation based procedure, and to be implementable using
off-the-shelf efficient reasoning platforms, such as BDDs and propositional
SAT solvers. Moreover, CONTEXTSAT has been designed to suit a possible
distributed peer-to-peer implementation. It is modular, i.e. global reasoning
is made up of local reasoning procedures, and it is backtrack-free, i.e. solutions
are build - or rather confined - incrementally, imposing a minimal restriction
at each step. These features support a natural implementation in a peer-
to-peer architecture, in which peers perform local reasoning and propagate
their conclusions to neighbor peers via bridge rules. Modularity supports
local reasoning, while backtrack-freeness avoids infinite loops.

Future work will encompass experimentation with both native peer-to-
peer and translation based contextual reasoning platforms. Also, we are
interested in the extent to which our results may be generalized so as to

apply to multi-context systems with schematic bridge rules as well.
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