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INTRODUCTION

Introduction

High-harmonic generation (HHG) is a non-linear optical process that can convert laser

light with standard wavelengths, such as infrared light, into coherent radiation at much

shorter wavelengths in the XUV (extreme ultraviolet) or soft X-ray regime. As opposed

to low-order nonlinear frequency conversion processes, such as second-harmonic genera-

tion, where moderate laser intensities are sufficient, high-order harmonics result from the

highly nonlinear interaction of high-intensity laser pulses with typically a gaseous medium

[1]. Ultrashort laser pulses of femtosecond duration are used for the generation of high-

harmonics, focused to very high intensities (≥ 1014 W/cm2) at a gaseous target. In the

strong field present at the laser focus, electrons are ionized from the gas atoms. These

electrons gain additional energy in the laser field and, upon recombination with the parent

ion, emit harmonic XUV radiation. As the process of ionization and recombination takes

place every half-cycle of the laser pulse, a spectrum of odd harmonics of the fundamental

laser frequency is generated.

If sources based on HHG hold unique promises for a lot of applications (imaging, mi-

croscopy), it could be interesting to have the possibility to tune or enhance the produced

discrete high-harmonics. This might allow an extension of the applications, like for in-

stance the seeding of free-electron lasers (FEL), offering potentially a major improvement

in the output performance. Main works on tuning or enhancement of high-harmonics are

made by shaping of the drive lasers pulses, changing the spectral amplitude or phase.

In previous work performed by the Laser Physics & Nonlinear Optics (LPNO) group

at the University of Twente, an experimental set-up for HHG was built and implemented,

and high-harmonics were successfully produced and recorded [2, 3]. An acousto-optic

programmable dispersive filter (AOPDF), which can shape an optical pulse by coupling it

to an acoustic wave propagating inside a birefringent crystal, is placed immediately after

the stretcher in the amplifier used for the generation of the high-intensity laser pulses. It

allows to manipulate femtosecond pulses both in amplitude and phase at the same time.

This thesis is organized as follows. First, the theory of high harmonic generation is

discussed in Chapter 1. It describes the two main aspects: the response of a single atom

to the drive laser field and the coherent superposition of the harmonic radiations.

Next, the experimental set-up that is used to generate and characterize the high har-

monics is described in Chapter 2. The process for the generation of high-harmonic is also

explained here.

Chapter 3 describes the theory and use of the acousto-optic programmable dispersive

filter (AOPDF), a device use for shaping of ultrashort pulses. A Matlab model of the

AOPDF functions is also presented. Then the first attempts of tuning and enhancement

of the high-harmonics using the AOPDF are discussed.

Finally, the conclusions of this work and an outlook for future research will be presented

in the Summary.
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CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

Chapter 1

Theory of high-harmonic

generation

In considering the generation of high harmonic radiation with high intensities, two main

aspects can be distinguished. The response of a single atom to the drive laser field,

the microscopic aspect, is described semi-classically in Section 1.1. The phase-matching

conditions between the harmonic radiations from all atoms in the interaction volume, the

macroscopic aspect, are described in Section 1.2.

1.1 Three-step model

The generation of high-harmonic radiations can be describe with a semi-classical model of

a single-atom response, called the three-step model developed by Corkum [4] and depicted

in Figure 1.1. A more complete, quantum mechanical model is necessary to also predict the

phase and intensity of the radiation produced by a single atom. Such a model incorporates

a solution to the three-dimensional Schrödinger equation describing the wave function of

a single electron in the potential created by both its parent ion and the drive laser field

[5]. This will, however, not be discussed in this report.

Figure 1.1: Illustration of the three-step model for high-harmonic generation:
tunnel ionization of the electron (1), followed by acceleration in the laser electric
field (2) and finally recombination and emission of a high-energy photon (3).

A single atom of the gaseous medium is considered. Exposed to the strong field of

ultrashort high-intensity laser pulses, the shape of its Coulomb potential is modified.

Typically, electric fields of at least 1011 V/m are applied. The outer-bound electron of

this atom has then the possibility to escape the binding potential, by tunneling through

or escaping over the lowered barrier. Now considered as a free and classical particle, it

is accelerated away from its parent ion by the same electric field and follows a classical

electron trajectory in a laser field. Finally, as soon as the oscillating electric field changes
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CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

direction, the electron is first decelerated and eventually reaches a point of zero velocity.

From there it is accelerated back towards its parent ion. On its way back, the electron

acquires again a large amount of kinetic energy due to the strong acceleration by the laser

electric field.

The electron can recombine with its parent ion with a certain probability and emits a

photon with a photon energy composed of the ionization energy of the atom Ip and the

kinetic energy Wkin of the electron gained by its interaction with the laser field:

h̄ω = Ip +Wkin(ϕ) (1.1)

Only photons with a photon energy of integer multiples of the fundamental photon energy

are generated. Due to interference effects the even numbered harmonics are erased, only

odd numbered harmonics survive.

The kinetic energy Wkin depends on the phase ϕ of the electric field at the instant of

ionization. Electrons emitted at different phases ϕ experience different trajectories and can

return to the core with different kinetic energies as shown in Figure 1.2. If the ionization

occurs too early during an optical cycle, the electron is accelerated away and decelerated,

but never return to its parent ion (trajectory e, ϕ = −45◦). An electon ionizing at the

peak value of the electric field, where most ionizations occur, returns to its parent ion

but with zero kinetic energy (trajectory d, ϕ = 0◦). The trajectories a (ϕ = 45◦) and c

(ϕ = 3◦) correspond to the short and long trajectory, respectively, leading to the same

final energy. The highest kinetic energy is obtained when ionization occurs when the drive

laser field has a phase ϕ ≈ 17◦ (cut-off trajectory b).

Figure 1.2: Different classes of electron trajectories during the propagation phase
of high-harmonic generation, plotted in the position-velocity plane. The trajec-
tories start at the atom located at (0, 0).

The maximum kinetic energy of the electron upon its return to the core can be calcu-

lated using classical [4] or quantum mechanics [5] and is given by

Wmax
kin = 3.17

e2E2
0

4meω2
0

= 3.17Up (1.2)

The kinetic energy is expressed in terms of the so-called ponderomotive energy Up of

the electron. It corresponds to the average quiver energy of an electron, having a mass

4 Coherent Control of High-Harmonic Generation



CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

me and a charge e, in an oscillating laser field of amplitude E0 and frequency ω0. The

ponderomotive energy is directly proportional to the intensity I0 of the driving laser and

the square of the fundamental wavelength λ0:

Up =
e2E2

0

4meω2
0

∝ I0λ2
0 (1.3)

The maximum photon energy (cut-off energy) that can be achieved in this process is

then given by

Ecut−off = h̄ωmax = Ip + 3.17Up, (1.4)

This broad distribution of possible trajectories and kinetic energies lead to a character-

istic spectrum for high-harmonic, as shown in Figure 1.3. As can be seen, the intensity of

the orders drops quickly with increasing order, then stays approximately constant within

the so-called high-harmonic plateau, and then rapidly falls off beyond the cut-off frequency.

Figure 1.3: Typical high-harmonic spectrum.

According to Equations 1.2, 1.3 and 1.4, two options are available to increase the

cut-off energy, that is, to obtain shorter wavelength radiation. Either a medium with

a higher ionization potential Ip can be chosen, or the quiver energy can be increased.

The latter is achieved by increasing either the drive laser intensity I0 or the drive laser

wavelength λ0. Using a longer wavelength, greatly enlarges the cut-off energy through

the contribution from the quiver energy, that scales with λ2
0. However, the single atom

response in the plateau region was found to decrease dramatically with a factor of λ6.5
0

[6]. Therefore, using an increased drive laser intensity might be a more attractive option.

The enhancement of the cut-off energy by either of these options is not investigated in

this report.

1.2 Coherent superposition of harmonic radiations

The three-step model, which considers the individual response of single atoms, does not

completely describe the high-harmonic generation process in a medium. For any nonlin-

ear optical process to be efficient, the emission from a large number of atoms that are

driven nonlinearly must radiate coherently. As the driving laser beam passes through the

medium, a coherent harmonic signal builds-up that co-propagates with it. However, to

build-up coherently over an extended propagation distance, the fundamental and harmonic

beams must travel with the same phase velocity: the process must be phase matched. In

a phase-matched frequency-conversion process, the nonlinear response from the medium

August 27, 2012 5



CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

continues to add constructively to the signal beam, leading to a bright harmonic signal.

1.2.1 Phase-matching in a hollow waveguide

If the discrete nature of a typical high-harmonic spectrum, as shown in Figure 1.3, results

from the periodicity of the laser electric field, the final height and shape of the spectrum

are determined by phase matching. The phase matching condition is dependent on the

shape of the interaction volume and on the spatio-temporal distribution of the drive laser

field. As part of this work, we will focus on high-harmonic generation in a capillary. The

use of a capillary presents two advantages: firstly the capillary can be considered as a

hollow waveguide and secondly, it allows for phase matching by tuning the pressure of the

gaseous medium.

The requirement for phase matching to increase the conversion efficiency is based on

the following arguments. To get a considerable amount of output, the radiation emitted

in the forward direction by each atom has to be in phase with the radiation emitted by

the rest of the atoms. This is achieved when the phase velocity of the drive laser is equal

to the phase velocity of the generated radiation. If this is not the case, for example for

free propagation in a dispersive medium, the drive laser field slips out of phase with the

generated radiation. In this case, after some characteristic propagation distance called

the coherence length, the phase shift is π radians, and the newly generated radiation

interferes destructively with the earlier generated radiation. This limits the generated

radiation output to that from the coherence length, which is usually much less than the

intended interaction length.

In order to see how phase matching can be established in a hollow waveguide consider

the following. The wavevector of the fundamental drive laser light propagating through

a hollow waveguide filled with a noble gas, which is possibly ionized to some degree, is

given by [7, 8]:

kf ≈
2π

λ︸︷︷︸
vacuum term

+
2πNan(λ)

λ︸ ︷︷ ︸
neutral gas

− Nereλ︸ ︷︷ ︸
plasma dispersion

− u2
nmλ

4πa2︸ ︷︷ ︸
waveguide dispersion

(1.5)

where the first and the fourth term define together the wave vector for propagation in

an empty hollow waveguide. The first term corresponds to simple vacuum propagation

and the last term describes the correction to the vacuum propagation due to the presence

of an empty waveguide, where a is the inner radius of the hollow waveguide and unm

is the mth root of the Bessel function Jn−1(z) for the waveguide (for the lowest order,

u11 = 2.405), corresponding to the propagation mode in the capillary. The second and

third term are corrections due to dispersion of the gas and of the plasma, respectively.

Note that the contribution from the free electrons in the plasma is negative. Here, Na is

the instantaneous density of neutral atoms in the medium, n(λ) is the linear refractive

index per unit neutral atom density at the wavelength λ, Ne is the density of free electrons,

and re is the classical electron radius.

In that same waveguide, according to Equation 1.5 and using λq = λ/q, the propaga-

tion vector of the qth harmonic beam is:

kq = q

(
2π

λ
+

2πNan(λq)

λ
− Nereλ

q2

)
(1.6)

In this expression we neglected the waveguide term, because the high harmonic radiation

6 Coherent Control of High-Harmonic Generation



CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

is usually emitted in a beam with low divergence, that is much smaller in diameter than

the waveguide and hence does not interact with it.

The phase mismatch is then given by:

∆kq = qkf − kq (1.7)

or, by substituting with Equations 1.5 and 1.6 and assuming
(
1− 1/q2

)
≈ 1 (q � 1):

∆kq = q

(
P (1− η)∆nq

2π

λ
− PηN0reλ−

u2
nmλ

4πa2

)
(1.8)

Here the particle densities have been substituted by the corresponding pressure, where η

is the ionization fraction of the gas, P is the pressure in bar, N0 is the particle density

at 1 bar and ∆nq ≡ n(λ) − n(λq) is the difference in refractive index of the gas at 1 bar

between the fundamental wavelength λ and the high-order harmonic wavelength λq.

To obtain phase matching, and thus the highest harmonic conversion efficiency, the

phase mismatch ∆kq has to be brought to zero. According to Equation 1.8, the first two

terms are proportional to the pressure and for sufficiently small ionization fraction have a

net positive contribution. Therefore, by tuning the pressure it can be made to compensate

the negative contribution from the waveguide dispersion.

The second term, the dispersion of plasma, is determined by the plasma density, and

thus by the degree of ionization of the gas. In particular, if this ionization is too large,

the sum of the first two terms will be negative and the (negative) waveguide term can

not be compensated. This means that there is a critical (maximum) ionization degree

above which phase matching in a hollow waveguide is no longer possible by adjusting the

pressure.

An estimate of the order of magnitude of the maximum ionization degree can be

obtain by inserting typical parameters in Equation 1.8: it is typically of a few percent.

For example, for Xenon, the critical ionization degree is 9 %, while for helium it is 0.6 %,

assuming that the 41st harmonic of 800 nm radiation is to be generated in a waveguide

of 150 µm diameter [2, 3].

Thus the current limits in high-harmonic generation, to reach short wavelengths in

the nanometers regime, is given by ionization induced loss of phase matching when trying

to increase the ponderomotive energy Up (Equation 1.4) by increasing the drive laser

intensity. Additionally, ionization lowers the density of the remaining neutral atoms and

thus depletes the nonlinear response of the medium, which decreases the high-harmonic

output as well.

1.2.2 Quasi-phase-matching

When phase matching by pressure tuning is not possible, because the ionization becomes

too high, another approach, so-called quasi-phase matching, is of increased interest. The

concept of this technique is also to only generate radiation that interferes constructively

with the radiation already generated.

After a certain coherence length Lc = π/∆k, the second-harmonic field that is just

being generated is out of phase by π with respect to the second-harmonic field generated

first, leading to destructive interference between the two fields. The idea of quasi-phase

matching is to invert the phase or diminish the amplitude of the generated high-harmonics

at the sections where the drive beam is out of phase, until the drive beam is in phase with

August 27, 2012 7



CHAPTER 1. THEORY OF HIGH-HARMONIC GENERATION

Figure 1.4: Scheme for quasi-phase matching. The nonlinear process takes place
in the regions labeled generate while there is no nonlinear interaction in the
wait regions (or of course generation of a ”negative” signal). Signal generation
always takes place along one coherence length Lc, so by introducing the wait
regions we avoid destructive interference between the new and the old signal.
The modulations periods for QPM with different orders (m) are denoted by Λ.

the harmonic wave again. The quasi-phase matching scheme is summarized in Figure 1.4.

The signal is generated over the first coherence length. Instead of generating a signal of

opposite sign in the second coherence length, we just wait, suspending signal generation.

This process can be repeated periodically, leading to a stepwise build-up over the whole

interaction region.

When using a non-centro-symmetric nonlinear crystal for example, the orientation of

the crystal lattice can be changed periodically with the coherence length Lc, to achieve

such phase inversion.

But in a gas, which is centro-symmetric, changing the orientation is not possible.

Here, a periodic modulation of the amplitude of the harmonic generation is the approach

of choice. This can for example be achieved by rapid axial intensity modulations caused by

beating between the fundamental and higher-order modes in a waveguiding capillary, so

that the intensity of the drive laser is lower in the out-of-phase sections. Another method

could be to create a spatial modulation, at least transiently in a dynamic process, of the

gas density along the waveguide.

In general, to obtain quasi-phase matching, we can introduce some modulation

Λ =
2πm

∆k
= 2mLc (1.9)

where m is the order of quasi-phase matching. If a modulation with a period of two

coherence lengths is not possible, a modulation with an elongated period of L = 2mLc

(where m is an odd integer) is also possible. For instance, as shown in Figure 1.4, with

an order of quasi-phase matching m = 3, the signal is generated twice and destroyed once

during the distance labeled generate, leaving a net gain.

8 Coherent Control of High-Harmonic Generation
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Chapter 2

Experimental setup

There are several different configurations for the generation of high-harmonics. The main

ones are the following: gas jet, gas cell, semi-infinite gas cell (SIGC) and hollow waveguide.

These different configurations are represented in Figure 2.1.

In a gas jet setup, the drive laser is focussed into a gas jet with a width of typically a

few millimeters. Typical conversion efficiencies obtain with these devices is 10-6.

For the gas cell and the semi-infinite gas cell, the focusing is made into a glass cell of

parallelepipedic shape filled with gas, enclosed by two windows for the gas cell and a single

one for the semi-infinite gas cell. Windows are placed far away from the focus to limit

nonlinear effects inside the window due to a high local field intensity. Typical interaction

length and conversion efficiency are 13 mm and 5.10-5, respectively, for the gas cell and

500 mm and 1.10-4, respectively, for the semi-infinite gas cell.

Finally, the last configuration considered here is the hollow waveguide, and this is the

configuration we use in our experiments. This configuration provides a typical conversion

efficiency of 10-5 and an interaction length of a few centimeters.

Figure 2.1: Main configurations for high-harmonic generation.
Illustrations adapted from [9].

Our experimental setup (see Figure 2.2) for the generation of high-harmonic radiation

can be subdivided into three parts, corresponding to the first three sections of this chapter.

First, generation of the strong laser field by a Ti:Sapphire oscillator coupled to an

amplifier will be presented. The amplified ultrashort pulses have been characterized at

the output of the amplifier using two methods: with an intensity autocorrelator and a

GRENOUILLE. Furthermore, a DazzlerTM is mounted inside the amplifier. This device

allows for pulse shaping and will be presented in Section 3.1.
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The second part consists of the high-harmonic generation setup, which contains the

capillary in which the strong laser field is focused and high-harmonics are generated.

The third part is the diagnostics section, which consists mainly of a XUV spectrometer

used to characterize the generated radiation and composed of a thin aluminium filter to

block the drive laser radiation, a grating and a XUV camera to image the generated

radiation.

Finally, the last section of this chapter outlines the standard procedure for generation

of high-harmonics.

2.1 Strong laser field source

The IR beam is provided by a mode-locked Ti:Sapphire laser oscillator (Coherent MantisTM),

which produces broad-bandwidth pulses centered around 800 nm. The Ti:Sapphire crystal

is pumped by a Coherent OPSTM (Optically Pumped Semiconductor) pump laser. The

oscillator itself employs Kerr-lens mode-locking in combination with negative dispersion

mirrors to generate broad-bandwidth ultrafast pulses [10].

High-harmonic generation requires a very strong electric field, hence the IR pulses from

the Ti:Sapphire oscillator have to be amplified. A Coherent Legend EliteTM Duo USP

amplifier is seeded by the Coherent MantisTM oscillator. According to the specifications

provided in the manual, this setup allows amplification of pulses up to 8 mJ with a

repetition rate of 1 kHz and a full-width at half-maximum of 40 fs [11].

Figure 2.2: Simple sketch of our setup for HHG using a gas-filled hollow wave-
guide.

The pulse width at the output of the amplifier has been measured, using a high-

resolution autocorrelator (Femtochrome FR-103XL) coupled with an oscilloscope. A

complete profile, in time and frequency domain, of the ultrashort pulses was obtained

using GRENOUILLE (grating-eliminated no-nonsense observation of ultrafast incident

laser light e-fields), an enhancement of the FROG (frequency-resolved optical gating).

This method is a spectrally resolved autocorrelation of ultrashort pulses, which allows

the use of a phase-retrieval algorithm to retrieve the precise pulse intensity and phase as

a function of time. It can measure both very simple and very complex ultrashort laser

pulses, without the use of a reference pulse.

Only the most important results are presented here, more detailed informations about
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the measurement processes for the autocorrelation and the GRENOUILLE can be found

in the Appendix A. The width of the ultrashort pulses from the amplifier measured using

the intensity autocorrelator is τac ≈ 46 fs. Using the GRENOUILLE, the pulse width

measured is τGR ≈ 50 fs and the bandwidth ∆νosc ≈ 9 THz. These results are in a good

agreement.

2.2 Hollow waveguide configuration

The capillary has a diameter of 150 µm and a length of a few cm. It can be filled with

argon or xenon and the pressure is adjustable from 0 to 100 mbar. A translation stage

positioned after the capillary allows to place either a scintillator or a mirror in the beam

path of the generated EUV light. The mirror reflects the light directly to a CCD camera

(Pixelink PL-A741 ). The beam profile of the drive laser field can be visualized with the

CCD camera, in order to check for the proper matching to the hollow waveguide. The

scintillator is used to check by eyes for the generation of high-harmonic. Indeed, when it

is excited by XUV radiations, it emits a randomly directed blue fluorescence signal.

The capillary is mounted in vacuum, along with the scintillator, the mirror and the

XUV spectrometer (introduced in the next section). This is to prevent defocusing of

the focused infrared beam on the incouple side of the capillary and absorption of the

generated high harmonics behind the capillary. A turbomolecular pump (coupled to a

roughing pump to initialize the vacuum) is used and provides a high vacuum (∼ 10−5

mbar).

The drive infrared beam is matched with the capillary using a lens with a focal length

of 750 mm. A half-wave plate and two polarizing beam splitters are placed into the

beam path and allow to adjust the power sent to the capillary. Before each experiment,

the alignment of the capillary is checked using a He-Ne laser and the CCD camera placed

after the capillary. Once the capillary is properly set, the drive laser beam can be injected.

The matching of the drive laser beam to the capillary can also be verified using the CCD

camera. The observed drive laser beam profile must be symmetric and intense and the

plasma production in the capillary must be as low as possible. This is done by tweaking the

focus lens, whose alignment might drift with the temperature in the laboratory, affecting

the matching of the drive laser beam. Ideally the temperature should be constant to

within 0.5 K.

2.3 XUV spectrometer

The spectrum of the generated high harmonics is measured with a simple spectrometer

put at the end of the beam line. A thin aluminum filter (thickness ≈ 200 nm) is used

to block the remaining IR drive laser radiation, leaving only the high-harmonics beam.

Then a transmission grating disperses the spectral components, which are recorded by a

XUV camera (AndorTM DO420 ).

The grating is made of 10.000 lines/mm (grating period of 100 nm with a slid width of

50 nm). It was fabricated at DIMES (Delft University of Technology, The Netherlands).

The grating structure is etched in a 300 nm-thick silicon nitride (Si3N4) membrane which

is deposited on a silicon wafer. After creating the transmission grating in the silicon

nitride film over an area of 1 by 4 mm, the silicon at the backside of the film is remove

using a wet etching method. This leaves a free-standing transmission grating. To improve
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the resolution of the transmission grating, a 200 µm wide slide is placed in front of the

grating.

A translation stage allows to position a simple hole instead of the grating, in order to

directly measure the XUV beam profile with the XUV camera..

2.4 Recording of high-harmonic radiations

For the 150 µm diameter capillary filled with xenon gas, the typical drive laser pulse

energy at the entrance of the capillary is typically around 0.6 mJ. The drive laser pulses

energy is set by using the half-wave plate and the two polarizing beam splitters. Using

these optics might induce an additional dispersion on the ultrashort pulse, effect which is

investigate in Section 3.3. A shutter is also added in the beam path and remote-controlled

by the software used to record the spectra. It allows to modify the exposure time and

thereby to avoid saturation of the XUV camera.

Figure 2.3: High-harmonic spectrum produces using xenon at a pressure of 35
mbar and an exposure time of 2 s. The brightest column to the right is the zeroth
diffraction order, the others are the odd harmonic orders from 13 to 19.

The capillary is filled with xenon and high-harmonic can be generated. First the

scintillator is used to check out if high-order harmonics are generated. Then, either the

beam profile is measured by the XUV camera directly or the spectrum is measured by

inserting the transmission grating in the XUV path.

To investigate pressure tuned phase matching in the capillary (see Section 1.2.1), we

have varied the gas pressure and measured the relative intensity of the various harmonics.

To improve measurement accuracy, the exposure time of the XUV camera was adjusted

to maximum illumination of the CCD. A typical example of the measured spectrum is

shown in Figure 2.3 for a pressure of 35 mbar and an exposure time of 2 s. The relative

intensity of each order present in this spectrum is shown in the Figure 2.4. From these

measurements the average maximum relative intensity per shot has been determined for

each order as a function of pressure and is plotted in Figure 2.5. For our experimental

conditions and for this harmonic, optimum phase-matching is reached for a pressure of

approximately 33 mbar.
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Figure 2.4: Relative energies of the harmonics produced in xenon at a pressure
of 35 mbar and an exposure time of 2 s.

Figure 2.5: Relative energy of the 15th harmonic produced in xenon as a function
of the pressure into the capillary.
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Chapter 3

Tuning and selective

enhancement

The ability to tune or selectively enhance a particular order of the high-harmonic spectrum

can have significant advantages for applications. Indeed, high-harmonic generation only

produces odd harmonics of the fundamental frequency. For instance, for the seeding of a

free electron lasers, it could be necessary to tune these harmonics in order to fit one of

them with the spectral gain area of the free electron laser. The enhancement is required

to improve the seed power in the spectral gain area of the FEL, and thereby the quality

of the seed.

Both selective enhancement and tuning of the harmonics can be obtained by shaping

of the drive laser pulse. As mentioned in Chapter 1, the phase and spectrum produced

by a single ionization-recombination event depends on the local drive laser field that first

ionizes an atom and subsequently provides the kinetic energy available at recombination.

Thus by shaping the drive laser pulse, we modify the local field within the drive laser pulse

and can influence the phase and spectrum of the emission at recombination. Because of

these changes, a particular harmonic can be enhanced and shifted in wavelength. The

shaping of the drive laser pulse is done using a so-called acousto-optic programmable

dispersive filter (AOPDF). The operating principle will be described in the first section

of this chapter.

To understand how an AOPDF affects the drive laser pulse, a model of this device

is created in MatlabTM and this model can be used to predict the pulse shape. This is

important, as certain shaping may result in pulses that can damage the regenerative am-

plification stage in the CoherentTM amplifier. This model is described in the second section

of this chapter. Finally, the last section reports about first experiments done with the

AOPDF, where group delay dispersion was introduced and verified using GRENOUILLE.

3.1 Acousto-optic programmable dispersive filter

An acousto-optic programmable dispersive filter (AOPDF) is a device allowing for ultra-

short pulse shaping in Chirp Pulse Amplification (CPA) and Optical Parametric Ampli-

fication (OPA) laser chains. Composed by a birefringent uniaxial crystal coupled to an

piezoelectric transducer and a RF generator, it can be made from a number of crystals,

such as LiNbO3, PbMoO4 or TeO2 (the one used in the DazzlerTM device), and can be

operated in a bulk wave design or in a surface wave design. It performs a convolution
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between an input optical signal and a signal S(t/α) where S(t) is the acoustic signal

proportional to the electrical signal applied to the piezoelectric transducer of the device

and α a scaling factor related to the ratio between the speed of sound and the speed of

light in the material. The result of the convolution, the output signal, is contained in the

diffracted output beam of the crystal.

Figure 3.1: Collinear AOPDF device configuration.

AOPDF are commonly used for two kind of applications. The first kind of applications

using the AOPDF concerns the corrections of group-delay dispersion introduced by the

CPA laser chains, both in phase for the compensation of high-order phase distortions

and in amplitude for the compensation of gain narrowing. These compensations are

obtained simultaneously [12]. The second kind of applications of the AOPDF concerns the

amplitude and phase shaping for coherent control of electronic or vibrational transitions

in atomic, molecular and condensed matter physics [13].

3.1.1 Compensation of group delay time dispersion

Pierre Tournois was the first to demonstrate that using an acousto-optic interaction in an

anisotropic birefringent medium it is possible to produce a chirped optical signal repro-

ducing an original acoustic signal [12]. This acoustic signal can then be used to generate

a pre-distorted optical signal at the input of a laser chain to compensate for group-delay

dispersion within the chain.

This device makes use of the collinear and directional coupling between the ordinary

and the extraordinary optical waves via an acoustic wave. The acoustic wave carries

the programmable error signal that is transferred from the incident optical wave to the

diffracted optical wave to compensate for the group delay time dispersion. The usual

configuration of an AOPDF is shown in Figure 3.1 and the coupling between the optical

waves and the acoustic wave is schematically shown in Figure 3.2.

The convolution process made by the AOPDF can be mathematically described as

follows. Considering a collinear acousto-optic interaction in an anisotropic photoelas-

tic medium, an incident optical wave S1(ω1, β1) is coupled to a diffracted optical wave

S2(ω2, β2) through interaction with an acoustic wave Sac(Ω,K). The nonlinear acousto-

electric interaction results in a coupling between the waves:

S1(ω1)ei(ω1t−β1x) × Sac(Ω)ei(Ωt−Kx) = S2(ω2)ei(ω2t−β2x) (3.1)

where S1(ω1), Sac(Ω) and S2(ω2) stand respectively for the complex spectral amplitudes

of the incident optical signal, the acoustic signal and the diffracted optical signal.

16 Coherent Control of High-Harmonic Generation



CHAPTER 3. TUNING AND SELECTIVE ENHANCEMENT

In the vicinity of the phase-matching conditions, ω2 = ω1 + Ω and β2 = β1 + K, the

incident optical energy is transferred to the diffracted optical wave:

S2(ω2) = S1(ω1)× Sac(Ω) (3.2)

or, by taking the inverse Fourier transform to obtain the complex field amplitudes in the

time domain,

s2

(
t− n2x

c

)
= s1

(
t− n1x

c

)
⊗ sac

(
t− x

v

)
(3.3)

where s1(t), sac(t) and s2(t) are respectively the complex amplitudes of the incident

optical signal, the acoustic signal and the diffracted signal. n1 and n2 are the optical

indexes of the photoelastic material for the incident and diffracted wave, v is the velocity

of the acoustic wave and c is the velocity of light in vacuum. As a consequence, when the

higher order terms of the nonlinear interaction are negligible in comparison to Equation

3.1, the diffracted optical signal is the convolution of the incident optical signal with the

acoustic signal. s2(t) can then be considered as the result of the filtering of s1(t) by a

programmable filter with impulse response sac(t).

Figure 3.2: Schematic of the coupling of the optical
waves by the acoustic wave in an AOPDF.

When the incident optical signal is a very short pulse and the acoustic signal is a long

pulse with duration Tac chirped inside a bandwidth Bac, the diffracted optical signal is a

long pulse with duration Topt chirped inside a bandwidth Bopt and is the optical temporal

image of the acoustic pulse. This regime can be named an acousto-optic programmable

dispersive filter. Because of the conservation of information between acoustic and optical

signals, Bac
Ω =

Bopt
ω1

and BacTac = BoptTopt. Furthermore, taking the phase-matching

conditions into account as:

n2
ω2

c
= n2

ω1 + Ω

c
= n1

ω1

c
+

Ω

v
(3.4)

the optical and acoustic frequencies, bandwidths and pulse durations of an AO-PDF are

given by:
Ω

ω1
=

Bac
Bopt

=
Topt
Tac

=
|n2 − n1|v
c
(
1− n2v

c

) ≈ |n2 − n1|
v

c
(3.5)

3.1.2 Amplitude and phase control of ultrashort pulses

An AOPDF device utilizing a perfectly collinear interaction for the optical and acoustic

wave vectors allows for a larger group delay time dispersion compensation in CPA laser

chains. First, the filter permits precompensation for gain narrowing, through amplitude

shaping before amplification. Second, it allows phase errors that arise from imperfect

matching of the dispersions of the pulse-lengthening elements and the compressor to be
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corrected. A theoretical analysis of using amplitude and phase shaping of ultrashort pulses

shows that a longitudinal AOPDF can manipulate both in amplitude and phase at the

same time, femtosecond light pulses in the range of hundreds of THz by means of electrical

signals in the range of a few tens of MHz [14, 13], in agreement with Equation 3.5. Some

experiments using closed-loop amplification systems with the feedback of a FROG or a

SPIDER have demonstrated optimization of the the output of a laser amplifier in a CPA

setup [15]. However, the spectral amplitude pulse shaping may remain tricky because of

the saturation and the damage threshold of the amplifier.

Figure 3.3: Spectral amplitude shaping in front of an amplifier.
A hole was introduced at 790nm to avoid saturation of the
amplifier. Adapted from [15].

The AOPDF is really a versatile device which allows for some freedom for shaping the

pulses in the time and frequency domains. For instance, the incoming pulse can be split

into several pulses that are separated in both the spectral and the temporal domains. The

separation in time is achieved by application of different group delays to different spectral

components, and the spectral separation is obtained by amplitude shaping [14].

Figure 3.4: FROG measurement of the generation of two pulses
separated by a programmable delay. Adapted from [14].

Pierre Tournois, with his society FastLite, developed the DazzlerTM, a device based on

an AOPDF especially designed for pulse shaping purposes in CPA setup. The Section 3.2

treats of the building of a numerical model of the pulse shaping by the DazzlerTM with

Matlab.
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3.2 Modeling of the DazzlerTM with MatlabTM

The DazzlerTM is an AOPDF aimed for the pulse shaping of ultrashort light pulses in

CPA chains of after an optical parametric amplification (OPA). This device consists of an

AOPDF using a TeO2 crystal, coupled to a RF generator driven by a computer provided

with a software. The model used in our setup is the DazzlerTM HR-800/T1. The RF

generator is the source of the analog high power RF signal but it also deals with the

triggering process and other functions that can not be treated by the computer. The

computer controls the settings and programming of the waveform, as well as storing or

loading it from the hard disk. The time required to load a waveform (computing and

transfer time to hardware memory) takes approximately 850ms. Therefore, the waveform

can be updated with a repetition rate of maximum 1 Hz.

Its numerical modeling by MatlabTM is firstly motivated by the protection of the am-

plifier. Indeed, because of the saturation and the damage threshold of the amplifier, it is

necessary to check for the creation by the DazzlerTM of unexpected shapes. For instance,

it is necessary to avoid creation of isolated high power peaks in the amplitude spectrum,

or spectral narrowing which makes the pulse much shorter and the energy added to the

pulse by the regenerative amplifier is then in pulse of shorter duration. Hence, the power

increases and can become larger than the damage threshold of the regenerative amplifier.

The second reason which motivates the numerical modeling is because it is a simple and

effective way to get an idea of the pulse shaping capabilities of the DazzlerTM.

Figure 3.5: Logical schema summarizing the main steps of the algorithm.

The process of this model, summarized in Figure 3.5, is the following: first, from the

given parameters, the software generates an unchirped Gaussian or Sech2 pulse in the

form of a matrix. The matrix is used to store both the temporal coordinate (first row)

and the normalized electric field (second row). The generation of this input pulse is based

on the following formulas:

EGaussian(t) = e
2 ln 2

(
t
τp

)2

× ejω0t (3.6)

ESech2(t) = sech

(
t

τ

)
× ejω0t (3.7)
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where ω0 = 2πν0 and τ ≈ 1.76× τp, with ν0 the central frequency of the pulse and τp the

pulse width defined in the usual FWHM fashion [16].

The spectral amplitude and spectral phase of the input pulse are then ”extracted” from

the matrix using the Fast Fourier Transform (FFT) algorithm of MatlabTM. The input

spectral amplitude Ain(ω) is defined as the absolute value (abs) of the FFT of the input

electric field Ein(t). The input spectral phase φin(ω) is defined as the phase angle (angle)

of the FFT of the input electric field Ein(t). Both are stored into respective matrices.

Now that the input pulse is defined, we have to implement the action of the Dazzler.

As this device can both shape the amplitude and phase of the optical pulse, the action of

the Dazzler is applied to the signal in the frequency domain via two transfer functions,

one for the phase (additive) and one for the amplitude (multiplicative), as is shown in

figure 3.5. The amplitude transfer function can be quite general, and we illustrate here

a particular example that results in the creation a hole in the spectrum at a particular

wavelength. This hole is define by its position λ1 (nm), its width δλ1 (nm) and its depth

k (0 ≤ k ≤ 1). The phase transfer function allows to add a delay, a broadening or/and

a chirping in the input spectral phase. The parameters used for it are the first order a1

(linear phase), the second order a2 (second order polynomial phase), the third order a3

(third order polynomial phase) and the fourth order a4 (fourth order polynomial phase).

They correspond to the first four orders in the power series expansion of the phase transfer

function and can each be used independently of the others

The amplitude and phase shaping functions of the Dazzler, also stored in the form of

matrices, are calculated from the provided parameters using:

ADazzler(ω) = 1− k.e−
(
ω−ω1
δω1

)2

(3.8)

φDazzler(ω) = −(a1(ω − ω0) +
a2

2
(ω − ω0)2 +

a3

6
(ω − ω0)3 +

a4

24
(ω − ω0)4) (3.9)

with ω1 = 2πc
λ1

, χ1 = δλ1

2λ1
and δω1 = ω1.

(χ1−χ3
1)

2 [17].

The output spectral amplitude Aout(ω) is then obtained by multiplying the input

spectral amplitude with the amplitude transfer function of the Dazzler, and the output

spectral phase φout(ω) by adding the input spectral phase with the phase transfer function

of the Dazzler:

Aout(ω) = Ain(ω)×ADazzler(ω) (3.10)

φout(ω) = φin(ω) + φDazzler(ω) (3.11)

With the output amplitude and phase spectra, it is now possible to retrieve the shape

of the output pulse. The electric field of the output pulse in time domain is provide by

the Inverse Fast Fourier Transform (IFFT) of its expression in the frequency domain,

obtained with this formula:

Eout(ω) = Aout(ω).e−i.φout(ω) (3.12)

Stored into an other and last matrix, this output pulse can finally be plotted and

compared to the input pulse.

A user manual for this model can be found in Appendix B, whereas the source code

is available in Appendix C.

A future enhancement for this model could be to have the possibility to load all kind of

pulse shapes from miscellaneous sources, the current version being limited to the creation
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of perfect unchirped Gaussian or Sech2 pulses.

3.3 Zero-dispersion settings

When a light pulse propagates through a transparent medium, it experiences group delay

dispersion [18]. The crystal of the Dazzler, as well as the optics such as half-wave plate

and the vacuum window, don’t make exceptions. The original pulse width at the output

of the amplifier is then broadened all along the setup before it reaches the capillary.

The Dazzler software possesses a self-compensation function, which allows for loading

a waveform that compensates the dispersion induced by the crystal. When used, the

second, third and fourth orders controls are set to the opposite of the corresponding

values for the dispersion of the crystal in ordinary polarization mode. Hence, with this

setting, the Dazzler device is dispersion free. For the Dazzler used in our experiment, the

self-compensation waveform is set with the following phase settings:

a2 = −12845 fs2, a3 = −7396 fs3 and a4 = −2611 fs4. (3.13)

Note, first order phase only affects the delay through the crystal and is therefore not

important for self-compensation. The maximum delay that can be applied is however

limited by the length of the crystal. However, even with the compensation of the dispersion

induced by the crystal of the Dazzler, it is still necessary to compensate for the dispersion

induced by the other transparent optics used in our setup, in order to set the pulse width

in the capillary as short as possible. As seen in Section 3.1.1, the Dazzler can be used in

that purpose, by modifying the phase parameters of the loaded waveform.

Figure 3.6: Simple sketch of our setup for for GRENOUILLE measurements.

The pulse width is measured with the GRENOUILLE at a distance after the amplifier

corresponding to the position of the capillary. The ultrashort pulse experiences the same

beam path as for the generation of high-harmonics, except for the focus lens which can

not be used with the GRENOUILLE, because of the presence of other lenses in the

GRENOUILLE setup. A folding mirror is positioned in front of the focus lens and send

the beam through an other window, which is the same as the vacuum window, and into

the GRENOUILLE. The results are compiled into a graphic shown in Figure 3.7.

A first observation is that the shortest possible pulse width is not obtained with the

zero-dispersion setting of the DazzlerTM for the second order, -12845 fs2, but for the
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Figure 3.7: GRENOUILLE measurements of the pulse width as a function of the
second order phase setting of the DazzlerTM. The other phase settings are fixed.

value -13250 fs2. This makes sense because of the dispersion induced by the optics (half-

wave plate, vacuum window), the difference in the second order setting being the needed

correction to compensate this dispersion.

Second observation, taking into account the limited resolution of the GRENOUILLE

(≈ 1fs, with some fluctuations on the lower decimals), the initial pulse width measured

just at the output of the amplifier (τGR ≈ 50, see Section 2.1) could not be reached again

by playing only with the second order setting of the DazzlerTM. The GRENOUILLE setup

contains lenses, a prism and a nonlinear crystal, that is transmission optics. Hence the

measurement device induces group-delay dispersion as well, that will result in a broadening

of the pulse. This may explain the 1 fs difference. However, the same study of the evolution

of the pulse width by modifying the third or the fourth order in the neighborhood of the

zero-dispersion setting of the DazzlerTM did not reveal any relevant or measurable effect

with our setup.

From these results, we can assume that the shortest pulse width that is possible to get

in the capillary is obtained for the following phase configuration of the waveform loaded

by the DazzlerTM:

a2 = −13250 fs2, a3 = −7396 fs3 and a4 = −2611 fs4. (3.14)

However, this assumption is made while the focus lens is not include in these measurements

and taking into account the group-delay dispersion of the GRENOUILLE, which is not

present in the actual beam path to the capillary.

3.4 Qualitative studies of the effect of pulse shaping

on the high-harmonic spectrum

The previous study gave an overview of how the pulse width is affected by the phase

settings of the DazzlerTM. The next step focuses on the main interest of this work, the
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behavior of the high-harmonic generation while modifying the waveform of the drive laser

pulses. Each phase order setting is used separately and independently of the other. The

high-harmonic spectrum is recorded for several values of the second order phase setting,

then for several values of the third order. The energy of the 13th, 15th, 17th and 19th

harmonics are extracted from each of these spectra.

3.4.1 Second order

The high-harmonic spectrum is recorded for values of the second order phase setting from

−15000 fs2 to −10500 fs2, with a step of 100 fs2, while third order phase is set to −7396

fs3 and fourth order phase is set to −2611 fs4. A graphic shown in Figure 3.8 shows the

evolution of the energy of each harmonic as a function of the second order phase setting.

Figure 3.8: Relative energy of the harmonics as a function of the second order
phase setting of the DazzlerTM.

First observation, the maximum energy for each of the harmonics is not obtained for

the zero-dispersion setting established in the previous Section (−13250 fs2), but for the

second order phase setting value −12500 fs2. Further we observe that all the harmonic

reach local maxima and minima at the same value for the second order phase. Moreover,

the zero-dispersion setting provides a minimum of energy in the harmonics. As the value

of the second order phase of −12500 fs2 is even smaller that the value of −12850 fs2 used

for self-compensation of the Dazzler, we conclude that the high harmonics generation is

maximum when the pulse in the capillary has not the shortest duration. In comparison

with the zero-setting configuration of the Dazzler, we have here about a 50 % increase in

yield. Referring to Figure 3.7 we conclude that a pulse width close to 55 fs leads to the

highest yield of high harmonics.

Second observation, there is a secondary energy peak, whose the energy ratio to the

main energy peak is not the same for each harmonic order. The ratio between the maxi-

mum of the secondary peak and the maximum of the main peak, ESecond/EMain, for each

harmonics is shown in the Table 3.1.

However, for the 13th order, the secondary energy peak is lightly higher than the main
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Table 3.1: Ratio between the secondary energy peak and
the main energy peak for each harmonics.

Harmonic Orders 13th 15th 17th 19th

Energy Peaks Ratio 105.7% 66.2% 59.8% 40.8%

energy peak. This last result is nevertheless to be considered with precaution, because of

the weak signal registered for the 13th order.

From the spectra, it is also possible to analyze the spectral width and the wavelength

of the harmonics. For the spectral widths, no significant change for any of the harmonic

order is observed. For the wavelengths, a shift can be observed for all the harmonics,

as shown in Figure 3.9. However, the shift is associated with a drop in energy of the

harmonic. It is also noticeable that the shift occurs in the same direction, no matter if

the second order phase setting is increased or decreased.

Figure 3.9: High-harmonic spectrum (xenon, pressure of 35 mbar, exposure time
of 2 s) recorded for three different values of the second order phase setting of the
DazzlerTM: (a) -10500 fs2, (b) -12500 fs2 and (c) -14000 fs2.

3.4.2 Third order

The high-harmonic spectrum is recorded for values of the third order phase setting from

-35000 fs3 to -5000 fs3, with a step of 1000 fs3 while second order phase is set to −13250

fs2 and fourth order phase is set to −2611 fs4. A graphic shown in Figure 3.10 shows the

evolution of the energy of each harmonic as a function of the third order phase setting.

The response of the HHG process to the third order phase variation is less pronounced

than that to the second order phase. The yield seems to remain constant within 15 %

over a broad range of values before it starts to decrease for settings below -20000 fs3.

From the spectra, it is also possible to analyze the spectral width and the wavelength

of the harmonics. However, no significant change is observed, neither for the spectral
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Figure 3.10: Relative energy of the harmonics as a function of the third order
phase setting of the DazzlerTM

widths, nor for the wavelengths.
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Summary

This work allowed first to confirm and validate the previous experiments by producing

successfully high-harmonic radiations with xenon. The spectrum of the generated har-

monic radiation was successfully measured and, so far, we were able to generate radiation

with a cut-off wavelength of 42 nm (30 eV), corresponding to the 19th harmonic of the

800 nm wavelength of the drive laser. The tuning of the phase-matching conditions by

the gas pressure has also been demonstrated again experimentally. It is planned to use a

different capillary with a larger diameter, in order to increase the interaction volume and

maybe to improve the high-harmonic output.

A first numerical model of the DazzlerTM was made and used to get a first global idea

of which kind of shaping is possible with this device. The model could yet be improved, for

instance by adding the possibily to use as input any kind of pulses, calculated or recorded

by an other device.

We also presented the first experiments of high-harmonic generation done with pulse

shaping of the drive laser field by using of the DazzlerTM. The results obtained from these

experiments are really encouraging since they show an influence of the pulse shaping by

the Dazzler on the high-harmonic output. More specifically, one of the desired effect, the

tuning, was demonstrated using the second order phase setting, although the yield was

reduced.

Still the results are promising. So far only one parameter has been varied at the

time and to tune and selectively enhance a particular harmonic requires optimization in a

multi-dimensional parameter space. Such kind of optimization is ideally the playground of

evolutionary algorithms. Such a control algorithm will be implemented in the near future

and these initial measurement, together with other planned measurements, will help us

to understand the individual effect of each of the parameters used in the optimization

process.
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Appendix A

Ultrashort pulse measurements

A.1 Interferometric autocorrelation

Intensity autocorrelation is a method of measurement for ultrashort pulses, using the cross-

correlation of a pulse with itself. This method was developed because it was realized that

no shorter event existed with which to measure an ultrashort pulse.

In an intensity autocorrelator as shown in Figure A.1, a beam splitter splits an in-

coming pulse into two pulses, which are then focused and sent into a nonlinear-optical

medium, such as a second-harmonic-generation (SHG) crystal. The arm length difference

and thus the relative timing of the pulses can be mechanically adjusted via the variable

delay line. If the arm length difference is made small, so that the pulses meet in the

nonlinear crystal, the process of sum frequency generation occurs, leading to an output

with a shorter wavelength. If the relative time delay is increased, so that the overlap of

the two pulses in the crystal is reduced, the mixing product becomes weaker.

Figure A.1: Experimental layout for an intensity autocorrelator
using second-harmonic generation.

For measuring the pulse duration, the power of the mixing product is recorded as a

function of the arm length difference. The dependence of the autocorrelation signal on

the temporal delay is given by

A(τ) =

∫ +∞

−∞
|E(t)E(t− τ)|2 dt =

∫ +∞

−∞
I(t)I(t− τ)dt (A.1)

with I(t) = |E(t)|2. A(τ) is called the intensity autocorrelation.
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For our experiments, a Femtochrome FR-103XL, a high-resolution autocorrelator, is

used. This instrument is aimed for continuous monitoring and display of femtosecond and

picosecond laser pulses from modelocked lasers with high peak power. The Figure A.2

shows the autocorrelator trace, with a width T = 3.75 µs, obtained from the ultrashort

pulses at the output of the amplifier. This measurement needs to be calibrated in order

to get the proper FWHM autocorrelation trace.

Figure A.2: Autocorrelator trace of the ultrashort
pulses at the output of the amplifier.

The calibration factor can be determined by translation of the micrometer driven

retroreflector stage in the stationnary arm of the autocorrelator. For a given translation

x, the corresponding shift s in the position of the trace peak on the oscilloscope yields the

calibration factor using the conversion formula:

t

T
=

2x

0.3s
(fs/µs) (A.2)

where x is in mm and s is in ms. For our experiment, for a translation x = 0.1 mm, the

trace peak is shifted by s = 0.035 ms, providing a calibration factor t/T = 19.05 fs/µs. It

is then possible to calculate the FWHM autocorrelation trace t:

t = 19.05× T = 19.05× 3.75 = 71.44 fs (A.3)

The conversion from the FWHM autocorrelation trace width T to the FWHM pulse

width τ is a function of the assumed pulse shape. For a sech2 pulse shape, like in our

experiment, the conversion factor is 0.648 (for comparison, it is of 0.707 for a gaussian

pulse). Therefore, the pulse width τ measured with the autocorrelator is:

τ = t× 0.648 = 71.44× 0.648 = 46.29 fs (A.4)

A.2 Grating-eliminated no-nonsense observation of ul-

trafast incident laser light e-fields (GRENOUILLE)

GRENOUILLE is an ultrashort pulse measurement technique based on FROG (frequency-

resolved optical gating).

FROG is a technique for measuring ultrashort laser pulses, replacing autocorrelation,

which only gave a rough estimate for the pulse length. FROG is simply a spectrally

resolved autocorrelation, sharing the idea of combining a pulse with itself in a nonlinear

medium. But where autocorrelators only measure the intensity of the nonlinear signal
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and retrieve a pulse length from it, FROG also measures the spectrum of the signal at

each delay. This measurement creates a spectrogram of the pulse, which allows the use of

a phase-retrieval algorithm to retrieve the precise pulse intensity and phase vs. time. It

can measure both very simple and very complex ultrashort laser pulses.

Figure A.3: Configuration of a GRENOUILLE. The light beams prop-
agate from the left to the right.

Because most FROG techniques have an autocorrelator, they also have the sensitive

alignment issues that come with it. In addition, most FROGs use a thin second harmonic

generation (SHG) crystal and a spectrometer, adding signal strength requirements as well

as additional alignment issues. GRENOUILLE is a simple device based on the SHG

FROG. It replaces the beam splitter, delay line and beam recombination components of

the autocorrelator with a prism while the spectrometer and thin SHG crystal combination

is replaced by a thick SHG crystal (see Figure A.3). The effect of these replacements is to

eliminate all sensitive alignment parameters while at the same time increasing the signal

strength. These changes also reduce the complexity and cost of this type of system. Like

the previous FROG systems however, GRENOUILLE still determines the full phase and

intensity data of a pulse. GRENOUILLE produces traces identical in form to those from

SHG FROG.

For our experiments, a homemade GRENOUILLE is used. A picture of it and its

specifications are shown in the Figure A.4. The Fresnel biprism, which has a top angle

α = 128◦, is placed in the focus of the first cylindrical lens. The BBO crystal, from the

fabricant EKSPLA, is of type 1, with θ = 29.2◦ and φ = 90◦. Furthermore, it has an

anti-reflection coating at 800nm and 400nm [19].

The FROG signal is read and analyzed by a software program called Video FROG,

created by MesaPhotonics. This program is able to retrieve the complete pulse profile,

with both the pulse duration and the spectral bandwidth. An example of measurement

made with this software of the ultrashort pulses from the amplifier is shown in the Figure

A.5.
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Description Details
Cylindrical Lens f = 208mm
Fresnel Biprism α = 128◦

BBO Crystal 5 × 5 × 5
Lens f = 208mm
Lens f = 104mm
CCD Camera PixeLINK

Figure A.4: Picture and specifications of our homemade GRENOUILLE.

Figure A.5: GRENOUILLE measurement of the ultrashort pulses from the am-
plifier made with the Video FROG software. The beam profile is shown on the
main window, with the time on the X-axis and the wavelength on the Y-axis.
The two little windows depict a cut along the time axis and the wavelength axis,
respectively. Intensity and phase are both represented. Finally, the last window
provides results such as the pulse width, the bandwidth or the spatial chirp.
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Appendix B

DazzlerTM modeling with

MatlabTM - Manual

The software is composed of two MatlabTM files: MainPanel.m, which built the user’s

interface, and PulseCalculation.m, which implements the mathematical calculations. In

order to run the software, use the file MainPanel.m. The user interface is divided into

several areas, each identified by a different color, and associated with the main modeling

blocks to simulate Dazzler performance. In the green area, the user supplies the input

parameters and the input pulse is displayed both in the temporal and frequency domain.

In the orange area, the users sets the action of the Dazzler by specifying parameters for

the various orders of the phase and for amplitude transfer function that creates a hole in

the spectrum. The gold area displays the shaped pulse, again in both the temporal and

frequency domain. These areas will be discussed in more detail in the following sections.

Figure B.1: Global view of the graphic interface.

B.1 Input Pulse

This green area allows you to set input parameters for the input pulse in time domain

and its amplitude and phase (i.e. complex spectrum) in the frequency (Fourier) domain.

The current version only allows to implement unchirped Gaussian or Sech2 pulses.
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Figure B.2: Input Pulse area.

B.1.1 Pulse Parameters

This panel allows you to provide the parameters used to calculate the input pulse as a

function of time:

� Wavelength λ0 - The central wavelength of the input pulse (in nm)

� Frequency ν0 - The central frequency of the input pulse (in THz)

It is calculated from the central wavelength λ0: ν0 = c
λ0

, where c = 299792458 m.s-1

is the velocity of light in vacuum.

� Pulse Width τp - The width of the input pulse (in fs)

The pulse width is measured as full-width at half maximum (FWHM). Note that

this is the FWHM pulse width for the intensity and not for the field [16].

� Pulse Shape - The shape of the input pulse

Currently implemented choices are Gaussian and Sech2 pulses.

See Section B.1.3 for the formulas used to calculate the electric field of the input pulse

as a function of time E(t) from these parameters.

B.1.2 Plot Parameters

This panel allows you to adjust the plotting parameters:

� Time Window tmax - The size of the time domain window (in fs)

The input and output pulses are plotted from −tmax
2 to tmax

2 . Artifacts could occur

if the time window is not broad enough, due to the superimposition of data. Make

always sure that the temporal pulse fits entirely in the time windows.

� Time Resolution tres - The plotting resolution of the time domain (in fs)

It defines the number of points used to make the plots of the input and output pulses

in time domain. The time vector is generated from −tmax
2 to tmax

2 with a point every

tres.
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� Frequency Window νmax - The size of the frequency domain window (in THz)

The spectral amplitude and spectral phase for the input and output pulses are

plotted from 0 to νmax = 2ν0, where ν0 is the central frequency of the input pulse.

Note that this is a truncation of the real frequency window used by the calculations,

which is set by the time resolution: ν′max = 1
tres

.

� Frequency Resolution νres - The plotting resolution of the frequency domain (in

THz)

It is calculated from the time window: νres = 1
tmax

; and defines the number of

points used to make the plots of the spectral amplitude and spectral phase for the

input and output pulses. The frequency vector is generated from 0 to νmax = 2ν0

with a point every νres.

B.1.3 Time Domain (fs)

This panel provides a graphic view of the electric field of the input pulse in the time

domain. It is calculated from the input pulse parameters using one of the following

formulas:

EGaussian(t) = e
2 ln 2

(
t
τp

)2

× ejω0t (B.1)

ESech2(t) = sech

(
t

τ

)
× ejω0t (B.2)

with ω0 = 2πν0 and τ ≈ 1.76× τp [16].

For the rest of this document, the input electric field will be referenced as Ein(t).

B.1.4 Frequency Domain (THz)

This panel provides a graphic view of the spectral amplitude and spectral phase for the

input pulse. These are obtained by using the Fast Fourier Transform (FFT) algorithm

of MatlabTM, and the abs and angle functions. The input spectral amplitude Ain(ω) is

defined as the absolute value (abs) of the FFT of the input electric field Ein(t). The input

spectral phase φin(ω) is defined as the phase angle (angle) of the FFT of the input electric

field Ein(t).

B.2 Message Window

This gray area provides messages indicating if the plotting processes are done and/or if er-

rors occurred. The colors of the error messages are linked with the concerning area/panel.

General messages are in cyan.

Figure B.3: Message Window area.
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B.3 Dazzler Control

This orange area offers the same controls as offered by the control panel of the Dazzler

user interface. The purpose of this model is to simulate the action of the Dazzler and

calculated the shaped output pulse. To this end, the complex input spectrum is modified

according to the settings in this control panel and via an inverse Fourier transform, the

shaped output pulse is calculated in the time domain. By default, all the values are zero,

and the input and output spectra are the same.

Figure B.4: Dazzler Control area.

B.3.1 Amplitude Control

The amplitude control allows to create a hole in the input spectral amplitude. Three

parameters are necessary to completely specify the hole characteristics:

� Hole Position λ1 - The position of the hole in the spectrum (in nm)

� Hole Width δλ1 - The width of the hole (in nm)

� Hole Depth k - The depth of the hole

It must be a value between 0 and 1 (0 ≤ k ≤ 1), the value 0 meaning no hole and

the value 1 meaning a complete extinction of the specified wavelength.

These parameters must be all non-zero in order to create a hole. If at least one of

these is zero, the amplitude shaping is ignored.

The amplitude transfer function of the Dazzler is modeled by the following formula:

ADazzler(ω) = 1− k.e−
(
ω−ω1
δω1

)2

(B.3)

with ω1 = 2πc
λ1

, χ1 = δλ1

2λ1
and δω1 = ω1.

(χ1−χ3
1)

2 [17].

The output amplitude Aout(ω) is then obtained by multiplying the Dazzler induced

amplitude with the amplitude of the input pulse:

Aout(ω) = Ain(ω)×ADazzler(ω) (B.4)

B.3.2 Phase Control

The phase control allows to add a delay, a broadening and/or a chirping in the input

spectral phase. The four parameters correspond to the first four orders in the power

series expansion of the phase transfer function and can each be used independently of the

others:
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� Delay a1 - First order in the power series expansion (in fs)

Create a linear phase, resulting in a delay of the pulse in the time domain.

� Second Order a2 - Second order in the power series expansion (in fs2)

Create a second order polynomial phase, resulting in a broadening of the pulse in

the time domain.

� Third Order a3 - Third order in the power series expansion (in fs3)

Create a third order polynomial phase, resulting in a chirping of the pulse in the

time domain.

� Fourth Order a4 - Fourth order in the power series expansion (in fs4)

Create a fourth order polynomial phase.

The phase transfer function of the Dazzler is modeled by the following formula [17]:

φDazzler(ω) = −(a1(ω − ω0) +
a2

2
(ω − ω0)2 +

a3

6
(ω − ω0)3 +

a4

24
(ω − ω0)4) (B.5)

The output phase φout(ω) is then obtained by adding the Dazzler induced phase to

the phase of the input pulse:

φout(ω) = φin(ω) + φDazzler(ω) (B.6)

B.4 Output Pulse

This gold area shows the output pulse in time domain and its spectral amplitude and

spectral phase.

Figure B.5: Output Pulse area.

B.4.1 Time Domain (fs)

This panel provides a graphic view of the electric field of the output pulse in the time

domain Eout(t). It is calculated from the output spectral amplitude Aout(ω) and output

spectral phase φout(ω).
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By default, Aout(ω) = Ain(ω) and φout(ω) = φin(ω), hence Eout(t) = Ein(t).

If the Dazzler Control is used, then the spectral amplitude and/or spectral phase are

shaped. See Sections B.3.1 and B.3.2 for the corresponding output spectral amplitude

and output spectral phase.

The electric field of the output pulse in time domain is then provide by the Inverse

Fast Fourier Transform (IFFT) of this expression:

Eout(ω) = Aout(ω).e−i.φout(ω) (B.7)

B.4.2 Frequency Domain (THz)

This panel provides a graphic view of the spectral amplitude and spectral phase for the

output pulse. By default, Aout(ω) = Ain(ω) and φout(ω) = φin(ω). If the Dazzler Control

is used, then the spectral amplitude and/or spectral phase are shaped.
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Appendix C

DazzlerTM modeling with

MatlabTM - Source code

C.1 Program MainPanel.m

1 %% Evolution of a Pulse through a Dazzler

2 % Jonathan Barreaux

3 % v1.0 / last modified 23/05/2012

4

5 clc

6 clear all

7

8 global tmax tres vmax vres fwhm lambda0 v0 panel3 panel4 panel5 panel6 panel7...

9 a1 a2 a3 a4 holpos holwid holdep

10

11 tmax = 0;

12 tres = 0;

13 vmax = 0;

14 vres = 0;

15 fwhm = 0;

16 lambda0 = 0;

17 v0 = 0;

18 holpos = 0;

19 holwid = 0;

20 holdep = 0;

21 a1 = 0;

22 a2 = 0;

23 a3 = 0;

24 a4 = 0;

25

26 f1 = figure(1);

27 set(f1,'Units','normalized','Position',[0 0 1 1],'Toolbar','none',...

28 'Name','Modeling of Pulse Shaping by a Dazzler v1.0',...

29 'NumberTitle','off','Color',[0.5,0.5,1])

30

31 uicontrol('Parent',f1,'Units','normalized',...

32 'Position',[0.843 0.982 0.2 0.018],'BackgroundColor',[0.5,0.5,1],...

33 'Style','text','String','v1.0 Jonathan L.P. Barreaux, 2012');

34

35

36
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37 %%%%%%%%%%%%%%%

38 % INPUT PULSE %

39 %%%%%%%%%%%%%%%

40

41 %% Plotting Windows

42 uicontrol('Parent',f1,'Units','normalized',...

43 'Position',[0.03 0.94 0.335 0.022],'String','INPUT PULSE',...

44 'FontWeight','bold','FontSize',12,'BackgroundColor',[0.5,0.8,0]);

45

46 panel1 = uipanel('Parent',f1,'Units','normalized',...

47 'Position',[0.03 0.515 0.08 0.415],'BackgroundColor',[0.5,0.8,0],...

48 'Title','Pulse Parameters','TitlePosition','centertop',...

49 'FontWeight','bold','FontSize',10);

50 panel2 = uipanel('Parent',f1,'Units','normalized',...

51 'Position',[0.03 0.02 0.08 0.415],'BackgroundColor',[0.5,0.8,0],...

52 'Title','Plot Parameters','TitlePosition','centertop',...

53 'FontWeight','bold','FontSize',10);

54 panel3 = uipanel('Parent',f1,'Units','normalized',...

55 'Position',[0.12 0.63 0.245 0.30],'BackgroundColor',[0.5,0.8,0],...

56 'Title','Time Domain (fs)','TitlePosition','centertop',...

57 'FontWeight','bold','FontSize',10);

58 panel4 = uipanel('Parent',f1,'Units','normalized',...

59 'Position',[0.12 0.02 0.245 0.60],'BackgroundColor',[0.5,0.8,0],...

60 'Title','Frequency Domain (THz)','TitlePosition','centertop',...

61 'FontWeight','bold','FontSize',10);

62

63 subplot(1,1,1,'Parent',panel3)

64 ylabel('Amplitude')

65

66 subplot(2,1,1,'Parent',panel4)

67 ylabel('Magnitude')

68

69 subplot(2,1,2,'Parent',panel4)

70 ylabel('Phase')

71

72

73 %% Pulse Parameters

74 LAMBDA0 = uipanel('Parent',panel1,'Units','normalized',...

75 'Position',[0.02 0.77 0.96 0.15],'Title','Wavelength (nm)',...

76 'TitlePosition','centertop','FontWeight','bold',...

77 'backgroundcolor',[0.7 0.7 0.7]);

78 Valeur lambda0 = uicontrol('Parent',LAMBDA0,'Units','normalized',...

79 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

80 'String',num2str(lambda0*1e9));

81

82 V0 = uipanel('Parent',panel1,'Units','normalized',...

83 'Position',[0.02 0.54 0.96 0.15],'Title','Frequency (THz)',...

84 'TitlePosition','centertop','FontWeight','bold',...

85 'backgroundcolor',[0.7 0.7 0.7]);

86 Valeur v0 = uicontrol('Parent',V0,'Units','normalized',...

87 'Position',[0.25 0.25 0.5 0.5],'Style','text','FontWeight','bold',...

88 'String',num2str(v0*1e-12),'backgroundcolor',[0.7 0.7 0.7]);

89

90 FWHM = uipanel('Parent',panel1,'Units','normalized',...

91 'Position',[0.02 0.31 0.96 0.15],'Title','Pulse Width (fs)',...

92 'TitlePosition','centertop','FontWeight','bold',...

93 'backgroundcolor',[0.7 0.7 0.7]);

94 Valeur fwhm = uicontrol('Parent',FWHM,'Units','normalized',...

95 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

96 'String',num2str(fwhm*1e15));
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97

98 PULSHA = uipanel('Parent',panel1,'Units','normalized',...

99 'Position',[0.02 0.08 0.96 0.15],'Title','Pulse Shape',...

100 'TitlePosition','centertop','FontWeight','bold',...

101 'backgroundcolor',[0.7 0.7 0.7]);

102 Valeur PulSha = uicontrol('Parent',PULSHA,'Units','normalized',...

103 'Position',[0.05 0.2 0.9 0.6],'Style','popupmenu',...

104 'String',{'Gaussian Pulse','Sech Pulse'});
105

106

107 %% Plot Parameters

108 TMAX = uipanel('Parent',panel2,'Units','normalized',...

109 'Position',[0.02 0.77 0.96 0.15],'Title','Time Window (fs)',...

110 'TitlePosition','centertop','FontWeight','bold',...

111 'backgroundcolor',[0.7 0.7 0.7]);

112 Valeur tmax = uicontrol('Parent',TMAX,'Units','normalized',...

113 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

114 'String',num2str(tmax*1e15));

115

116 TRES = uipanel('Parent',panel2,'Units','normalized',...

117 'Position',[0.02 0.54 0.96 0.15],'Title','Time Resolution (fs)',...

118 'TitlePosition','centertop','FontWeight','bold',...

119 'backgroundcolor',[0.7 0.7 0.7]);

120 Valeur tres = uicontrol('Parent',TRES,'Units','normalized',...

121 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

122 'String',num2str(tres*1e15));

123

124 VMAX = uipanel('Parent',panel2,'Units','normalized',...

125 'Position',[0.02 0.31 0.96 0.15],'Title','Freq. Window (THz)',...

126 'TitlePosition','centertop','FontWeight','bold',...

127 'backgroundcolor',[0.7 0.7 0.7]);

128 Valeur vmax = uicontrol('Parent',VMAX,'Units','normalized',...

129 'Position',[0.25 0.25 0.5 0.5],'Style','text','FontWeight','bold',...

130 'String',num2str(vmax*1e-12),'backgroundcolor',[0.7 0.7 0.7]);

131

132 VRES = uipanel('Parent',panel2,'Units','normalized',...

133 'Position',[0.02 0.08 0.96 0.15],'Title','Freq. Resolution (THz)',...

134 'TitlePosition','centertop','FontWeight','bold',...

135 'backgroundcolor',[0.7 0.7 0.7]);

136 Valeur vres = uicontrol('Parent',VRES,'Units','normalized',...

137 'Position',[0.25 0.25 0.5 0.5],'Style','text','FontWeight','bold',...

138 'String',num2str(vres*1e-12),'backgroundcolor',[0.7 0.7 0.7]);

139

140

141

142 %%%%%%%%%%%%%%%%%%

143 % MESSAGE WINDOW %

144 %%%%%%%%%%%%%%%%%%

145 uicontrol('Parent',f1,'Units','normalized',...

146 'Position',[0.4005 0.94 0.29 0.022],'String','MESSAGE WINDOW',...

147 'FontWeight','bold','FontSize',12,'BackgroundColor',[0.6,0.6,0.6]);

148

149 panel7 = uipanel('Parent',f1,'Units','normalized',...

150 'Position',[0.4 0.60 0.29 0.33],'BackgroundColor',[0.6,0.6,0.6]);

151

152 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 0.5 0.98 0.05],

...

153 'Style','text','FontWeight','bold','backgroundcolor',[0.4,0.9,1],...

154 'String','WELCOME IN THIS DAZZLER MODELING PROGRAMME');

155
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156

157

158 %%%%%%%%%%%%%%%%%%%

159 % DAZZLER CONTROL %

160 %%%%%%%%%%%%%%%%%%%

161

162 %% Plotting Windows

163 uicontrol('Parent',f1,'Units','normalized',...

164 'Position',[0.4 0.5575 0.29 0.022],'String','DAZZLER CONTROL',...

165 'FontWeight','bold','FontSize',12,'BackgroundColor',[1,0.4,0]);

166

167 panel8 = uipanel('Parent',f1,'Units','normalized',...

168 'Position',[0.4 0.3325 0.29 0.215],'BackgroundColor',[1,0.4,0],...

169 'Title','Amplitude Control','TitlePosition','centertop',...

170 'FontWeight','bold','FontSize',10);

171 panel9 = uipanel('Parent',f1,'Units','normalized',...

172 'Position',[0.4 0.0475 0.29 0.275],'BackgroundColor',[1,0.4,0],...

173 'Title','Phase Control','TitlePosition','centertop',...

174 'FontWeight','bold','FontSize',10);

175

176

177 %% Amplitude Control

178 HOLPOS = uipanel('Parent',panel8,'Units','normalized',...

179 'Position',[0.07 0.543 0.24 0.28],'Title','Hole Position (nm)',...

180 'TitlePosition','centertop','FontWeight','bold',...

181 'backgroundcolor',[0.7 0.7 0.7]);

182 Valeur holpos = uicontrol('Parent',HOLPOS,'Units','normalized',...

183 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

184 'String',num2str(holpos*1e9));

185

186 HOLWID = uipanel('Parent',panel8,'Units','normalized',...

187 'Position',[0.38 0.543 0.24 0.28],'Title','Hole Width (nm)',...

188 'TitlePosition','centertop','FontWeight','bold',...

189 'backgroundcolor',[0.7 0.7 0.7]);

190 Valeur holwid = uicontrol('Parent',HOLWID,'Units','normalized',...

191 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

192 'String',num2str(holwid*1e9));

193

194 HOLDEP = uipanel('Parent',panel8,'Units','normalized',...

195 'Position',[0.69 0.543 0.24 0.28],'Title','Hole Depth',...

196 'TitlePosition','centertop','FontWeight','bold',...

197 'backgroundcolor',[0.7 0.7 0.7]);

198 Valeur holdep = uicontrol('Parent',HOLDEP,'Units','normalized',...

199 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

200 'String',num2str(holdep));

201

202

203 %% Phase Control

204 A1 = uipanel('Parent',panel9,'Units','normalized',...

205 'Position',[0.15 0.7 0.3 0.2],'Title','Delay (fs)',...

206 'TitlePosition','centertop','FontWeight','bold',...

207 'backgroundcolor',[0.7 0.7 0.7]);

208 Valeur a1 = uicontrol('Parent',A1,'Units','normalized',...

209 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

210 'String',num2str(a1*1e15));

211

212 A2 = uipanel('Parent',panel9,'Units','normalized',...

213 'Position',[0.55 0.7 0.3 0.2],'Title','Second Order (fsˆ2)',...

214 'TitlePosition','centertop','FontWeight','bold',...

215 'backgroundcolor',[0.7 0.7 0.7]);
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216 Valeur a2 = uicontrol('Parent',A2,'Units','normalized',...

217 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

218 'String',num2str(a2*1e30));

219

220 A3 = uipanel('Parent',panel9,'Units','normalized',...

221 'Position',[0.15 0.4 0.3 0.2],'Title','Third Order (fsˆ3)',...

222 'TitlePosition','centertop','FontWeight','bold',...

223 'backgroundcolor',[0.7 0.7 0.7]);

224 Valeur a3 = uicontrol('Parent',A3,'Units','normalized',...

225 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

226 'String',num2str(a3*1e45));

227

228 A4 = uipanel('Parent',panel9,'Units','normalized',...

229 'Position',[0.55 0.4 0.3 0.2],'Title','Fourth Order (fsˆ4)',...

230 'TitlePosition','centertop','FontWeight','bold',...

231 'backgroundcolor',[0.7 0.7 0.7]);

232 Valeur a4 = uicontrol('Parent',A4,'Units','normalized',...

233 'Position',[0.25 0.25 0.5 0.5],'Style','edit',...

234 'String',num2str(a4*1e60));

235

236

237

238 %%%%%%%%%%%%%%%%

239 % OUTPUT PULSE %

240 %%%%%%%%%%%%%%%%

241

242 %% Plotting Windows

243 uicontrol('Parent',f1,'Units','normalized',...

244 'Position',[0.725 0.94 0.245 0.022],'String','OUTPUT PULSE',...

245 'FontWeight','bold','FontSize',12,'BackgroundColor',[0.8,0.6,0]);

246

247 panel5 = uipanel('Parent',f1,'Units','normalized',...

248 'Position',[0.725 0.63 0.245 0.30],'BackgroundColor',[0.8,0.6,0],...

249 'Title','Time Domain (fs)','TitlePosition','centertop',...

250 'FontWeight','bold','FontSize',10);

251 panel6 = uipanel('Parent',f1,'Units','normalized',...

252 'Position',[0.725 0.02 0.245 0.60],'BackgroundColor',[0.8,0.6,0],...

253 'Title','Frequency Domain (THz)','TitlePosition','centertop',...

254 'FontWeight','bold','FontSize',10);

255

256 subplot(1,1,1,'Parent',panel5)

257 ylabel('Amplitude')

258

259 subplot(2,1,1,'Parent',panel6)

260 ylabel('Magnitude')

261

262 subplot(2,1,2,'Parent',panel6)

263 ylabel('Phase')

264

265

266

267 %%%%%%%%%%%%%%%%%%%%%%%%%%

268 % VALIDATION PUSHBUTTONS %

269 %%%%%%%%%%%%%%%%%%%%%%%%%%

270

271 V = {@PulseCalculation,Valeur lambda0,Valeur v0,Valeur fwhm,Valeur PulSha,...

272 Valeur tmax,Valeur tres,Valeur vmax,Valeur vres,...

273 Valeur a1,Valeur a2,Valeur a3,Valeur a4,...

274 Valeur holpos,Valeur holwid,Valeur holdep};
275
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276 Valid input = uicontrol('Parent',f1,'Units','normalized',...

277 'Position',[0.03 0.455 0.08 0.04],'Style','pushbutton','String','OK',...

278 'Callback',V);

279

280 Valid ampli = uicontrol('Parent',panel8,'Units','normalized',...

281 'Position',[0.35 0.197 0.3 0.19],'Style','pushbutton','String','OK',...

282 'Callback',V);

283

284 Valid phase = uicontrol('Parent',panel9,'Units','normalized',...

285 'Position',[0.35 0.125 0.3 0.15],'Style','pushbutton','String','OK',...

286 'Callback',V);

C.2 Program PulseCalculation.m

1 function PulseCalculation(hobject,eventdata,Valeur lambda0,Valeur v0,Valeur fwhm

,...

2 Valeur PulSha,Valeur tmax,Valeur tres,Valeur vmax,Valeur vres,...

3 Valeur a1,Valeur a2,Valeur a3,Valeur a4,...

4 Valeur holpos,Valeur holwid,Valeur holdep)

5

6 global tmax tres vmax vres fwhm lambda0 v0 panel3 panel4 panel5 panel6

panel7...

7 a1 a2 a3 a4 holpos holwid holdep

8

9

10

11 %%%%%%%%%%%%%%%%%%

12 % MESSAGE WINDOW %

13 %%%%%%%%%%%%%%%%%%

14 delete(get(panel7,'Children')); %Clean Message Window

15 err = 0.9; %Set index for messages

16

17

18

19 %%%%%%%%%%%%%%%

20 % INPUT PULSE %

21 %%%%%%%%%%%%%%%

22

23 %% Pulse Parameters

24 lambda0 = sscanf(get(Valeur lambda0,'String'),'%f')*1e-9; %Wavelength

25 fwhm = sscanf(get(Valeur fwhm,'String'),'%f')*1e-15; %Pulse FWHM in intensity

26

27 if (¬isscalar(lambda0) | | lambda0≤0)

28 lambda0 = 0;

29 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

30 'Style','text','FontWeight','bold','backgroundcolor',[0.5,0.8,0],...

31 'String','ERROR in Pulse Parameters >>> Wavelength must be a nonzero

positive scalar!');

32 err = err-0.1;

33 end

34 if (¬isscalar(fwhm) | | fwhm≤0)

35 fwhm = 0;

36 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

37 'Style','text','FontWeight','bold','backgroundcolor',[0.5,0.8,0],...

38 'String','ERROR in Pulse Parameters >>> Pulse FWHM must be a nonzero

positive scalar!');
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39 err = err-0.1;

40 end

41

42 set(Valeur lambda0,'String',num2str(lambda0*1e9));

43 set(Valeur fwhm,'String',num2str(fwhm*1e15));

44

45 cl = 299792458; %Celerity of light in vacuum

46 v0 = cl/lambda0; %Light Frequency

47 set(Valeur v0,'String',num2str(v0*1e-12));

48

49 w0 = 2*pi*v0; %Angular Frequency

50 a = 2*log(2)/fwhmˆ2;

51 b = 0; %Chirp Coefficient

52 gamma = a-1i*b; %Complex Gaussian Parameter

53

54

55 %% Plot Parameters

56 tmax = sscanf(get(Valeur tmax,'String'),'%f')*1e-15; %Time Window

57 tres = sscanf(get(Valeur tres,'String'),'%f')*1e-15; %Time Resolution

58

59 if (¬isscalar(tmax) | | tmax≤0)

60 tmax = 0;

61 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

62 'Style','text','FontWeight','bold','backgroundcolor',[0.5,0.8,0],...

63 'String','ERROR in Plot Parameters >>> Time Window must be a nonzero

positive scalar!');

64 err = err-0.1;

65 end

66 if (¬isscalar(tres) | | tres≤0)

67 tres = 0;

68 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

69 'Style','text','FontWeight','bold','backgroundcolor',[0.5,0.8,0],...

70 'String','ERROR in Plot Parameters >>> Time Resolution must be a nonzero

positive scalar!');

71 err = err-0.1;

72 end

73

74 set(Valeur tmax,'String',num2str(tmax*1e15));

75 set(Valeur tres,'String',num2str(tres*1e15));

76

77 vmax = 2*v0;

78 set(Valeur vmax,'String',num2str(vmax*1e-12));

79 vres = 1/tmax;

80 set(Valeur vres,'String',num2str(vres*1e-12));

81

82 t = -tmax/2:tres:tmax/2; %Temporal Scale

83 N = length(t); %Number of points for the plot

84 v = (1/tres)*linspace(0,1,N); %Frequency Scale

85

86

87 %% Input Electric Field in Temporal Domain

88 if (tmax6=0 && tres6=0 && fwhm6=0 && lambda06=0)

89 PulSha = get(Valeur PulSha,'Value'); %Pulse Shape

90

91 for m = 1:N

92 if PulSha == 1

93 Et1 plot(m) = exp(-gamma*t(m)ˆ2+1i*w0*t(m)); %Gaussian Pulse

94 else
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95 Et1 plot(m) = sech(t(m)*1.76/fwhm)*exp(1i*(w0*t(m)+b*t(m)ˆ2)); %Sech

Pulse

96 end

97 end

98

99 Et1 = [Et1 plot((N+1)/2:N) Et1 plot(1:(N-1)/2)];

100

101 subplot(1,1,1,'Parent',panel3)

102 plot(t*1e15,real(Et1 plot))

103 ylabel('Amplitude')

104 axis([-tmax*1e15/2 tmax*1e15/2 -1 1])

105 end

106

107

108 %% FFT: Input Amplitude and Phase in Frequency Domain

109 if (tmax6=0 && tres6=0 && fwhm6=0 && lambda06=0)

110 Ev1 = fft(Et1); %FFT of the Input Electric Field

111 AmpEv1 = abs(Ev1); %Amplitude of the Input Electric Field in Frequency

Domain

112 PhaEv1 = unwrap(angle(Ev1)); %Phase of the Input Electric Field in

Frequency Domain

113

114 subplot(2,1,1,'Parent',panel4)

115 plot(v/1e12,AmpEv1/max(AmpEv1),'Color','red')

116 ylabel('Amplitude')

117 axis([0 2*v0/1e12 0 1])

118

119 subplot(2,1,2,'Parent',panel4)

120 plot(v/1e12,PhaEv1,'Color','red')

121 ylabel('Phase')

122 xlim([0 2*v0/1e12])

123 end

124

125

126 if (err6=0.9 | | tmax==0 | | tres==0 | | fwhm==0 | | lambda0==0)

127 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

128 'Style','text','FontWeight','bold','backgroundcolor',[0.4,0.9,1],...

129 'String','ERROR(S) in Input Pulse >>> Plotting cancelled!');

130 err = err-0.1;

131 else

132 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

133 'Style','text','FontWeight','bold','backgroundcolor',[0.4,0.9,1],...

134 'String','Input Pulse >>> Plotting done!');

135 err = err-0.1;

136 end

137

138

139

140 %%%%%%%%%%%%%%%%%%%

141 % DAZZLER CONTROL %

142 %%%%%%%%%%%%%%%%%%%

143

144 %% Amplitude Parameters Gathering

145 holpos = sscanf(get(Valeur holpos,'String'),'%f')*1e-9; %Hole Position

146 holwid = sscanf(get(Valeur holwid,'String'),'%f')*1e-9; %Hole Width

147 holdep = sscanf(get(Valeur holdep,'String'),'%f'); %Hole Depth

148

149 if (¬isscalar(holpos) | | holpos<0)
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150 holpos = 0;

151 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

152 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

153 'String','ERROR in Amplitude Control >>> Hole Position must be a

positive scalar!');

154 err = err-0.1;

155 end

156 if (¬isscalar(holwid) | | holwid<0)

157 holwid = 0;

158 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

159 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

160 'String','ERROR in Amplitude Control >>> Hole Width must be a positive

scalar!');

161 err = err-0.1;

162 end

163 if (¬isscalar(holdep) | | holdep<0 | | holdep>1)

164 holdep = 0;

165 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

166 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

167 'String','ERROR in Amplitude Control >>> Hole Depth must be a scalar

between 0 and 1!');

168 err = err-0.1;

169 end

170

171 set(Valeur holpos,'String',num2str(holpos*1e9));

172 set(Valeur holwid,'String',num2str(holwid*1e9));

173 set(Valeur holdep,'String',num2str(holdep));

174

175

176 %% Useful Parameters

177 if (holpos6=0 && holwid6=0 && holdep6=0)

178 w1 = 2*pi*cl/holpos;

179 khi1 = holwid/(2*holpos);

180 dw1 = w1*(khi1-(khi1ˆ3))/2;

181 end

182

183

184 %% Phase Parameters Gathering

185 a1 = sscanf(get(Valeur a1,'String'),'%f')*1e-15; %Delay

186 a2 = sscanf(get(Valeur a2,'String'),'%f')*1e-30; %Second Order

187 a3 = sscanf(get(Valeur a3,'String'),'%f')*1e-45; %Third Order

188 a4 = sscanf(get(Valeur a4,'String'),'%f')*1e-60; %Fourth Order

189

190 if (¬isscalar(a1))
191 a1 = 0;

192 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

193 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

194 'String','ERROR in Phase Control >>> Delay is not a scalar!');

195 err = err-0.1;

196 end

197 if (¬isscalar(a2))
198 a2 = 0;

199 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

200 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

201 'String','ERROR in Phase Control >>> Second Order is not a scalar!');

August 27, 2012 47



APPENDIX C. DAZZLERTM MODELING WITH MATLABTM - SOURCE CODE

202 err = err-0.1;

203 end

204 if (¬isscalar(a3))
205 a3 = 0;

206 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

207 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

208 'String','ERROR in Phase Control >>> Third Order is not a scalar!');

209 err = err-0.1;

210 end

211 if (¬isscalar(a4))
212 a4 = 0;

213 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

214 'Style','text','FontWeight','bold','backgroundcolor',[1,0.4,0],...

215 'String','ERROR in Phase Control >>> Fourth Order is not a scalar!');

216 err = err-0.1;

217 end

218

219 set(Valeur a1,'String',num2str(a1*1e15));

220 set(Valeur a2,'String',num2str(a2*1e30));

221 set(Valeur a3,'String',num2str(a3*1e45));

222 set(Valeur a4,'String',num2str(a4*1e60));

223

224

225

226 %%%%%%%%%%%%%%%%

227 % OUTPUT PULSE %

228 %%%%%%%%%%%%%%%%

229

230 %% Modificated Output Amplitude and Phase in Frequency Domain

231 if (tmax6=0 && tres6=0 && fwhm6=0 && lambda06=0)

232 if (holpos6=0 && holwid6=0 && holdep6=0)

233 for m = 1:N

234 gamp(m) = 1 - holdep*exp(-((2*pi*v(m)-w1)/dw1)ˆ2);

235 AmpEv2(m) = AmpEv1(m)*gamp(m);

236 end

237 else

238 AmpEv2 = AmpEv1;

239 end

240

241 for m = 1:N

242 PhaEv2(m) = -(a1*(2*pi*v(m)-w0)+(a2/2)*(2*pi*v(m)-w0)ˆ2 +...

243 (a3/6)*(2*pi*v(m)-w0)ˆ3+(a4/24)*(2*pi*v(m)-w0)ˆ4) + PhaEv1(m);

244 end

245

246 subplot(2,1,1,'Parent',panel6)

247 plot(v/1e12,AmpEv2/max(AmpEv1),'Color','red')

248 ylabel('Amplitude')

249 axis([0 2*v0/1e12 0 1])

250

251 subplot(2,1,2,'Parent',panel6)

252 plot(v/1e12,PhaEv2,'Color','red')

253 ylabel('Phase')

254 xlim([0 2*v0/1e12])

255 end

256

257

258 %% IFFT: Output Electric Field in Temporal Domain

259 if (tmax6=0 && tres6=0 && fwhm6=0 && lambda06=0)
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260 for m = 1:N

261 Ev2(m) = AmpEv2(m)*exp(-1i*PhaEv2(m));

262 end

263

264 Et2 = ifft(Ev2);

265

266 Et2 plot = [Et2((N+1)/2:N) Et2(1:(N-1)/2)];

267

268

269 subplot(1,1,1,'Parent',panel5)

270 plot(t*1e15,real(Et2 plot))

271 ylabel('Amplitude')

272 axis([-tmax/2*1e15 tmax/2*1e15 -1 1])

273 end

274

275 if (err6=0.8 | | tmax==0 | | tres==0 | | fwhm==0 | | lambda0==0)

276 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

277 'Style','text','FontWeight','bold','backgroundcolor',[0.4,0.9,1],...

278 'String','ERROR(S) in Output Pulse >>> Plotting cancelled!');

279 err = err-0.1;

280 else

281 uicontrol('Parent',panel7,'Units','normalized','Position',[0.01 err 0.98 0

.05],...

282 'Style','text','FontWeight','bold','backgroundcolor',[0.4,0.9,1],...

283 'String','Output Pulse >>> Plotting done!');

284 err = err-0.1;

285 end

286

287

288 end
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Abstract

High-harmonic generation (HHG) is an extreme nonlinear optical process

that allows the conversion of infrared laser light into coherent radiation

with shorter wavelengths, in the extreme ultraviolet or soft X-ray regime

(1-100 nm).

Sources based on high-harmonic generation hold unique promises for

application in diffractive imaging of single molecules and the seeding of

free electron lasers (FEL), exploiting specifically the coherent nature and

the short wavelength of the harmonic radiation.

The tuning and the enhancement of the high-harmonic generation will

be of great use. Indeed high-harmonic generation only produces odd har-

monics of the fundamental frequency. For instance, for the seeding of a

free electron lasers, it could necessary to tune these harmonics in order to

fit one of them with the spectral gain area of the free electron lasers. The

enhancement could then be used to increase the power of the harmonic fit-

ting with the spectral gain area, to the detriment of the other harmonics.

These are made by inducing modifications on the spectrum of the drive

electric field used to produce high-harmonic generation.

This report describes trials of tuning and enhancement of high-harmonic

generation produced in a gas-filled hollow waveguide, using a device called

Dazzler, brand name of the acousto-optic programmable dispersive filter

(AO-PDF) developed by Pierre Tournois.


