

Designing estimation
models for Unisys India
Bachelor Research for the University of Twente
Public Version

Mats Nelissen
S0172820

7/13/2011

Designing estimation models for Unisys India 2011

1 | P a g e

Preface
This bachelor assignment has been created as part of an internship with Unisys Global Services in

Bangalore, India. During this internship I worked on a project with the aim to provide improved cost

estimation models for Unisys, a multinational IT company. During a period of twelve weeks I have

worked in Bangalore, to collect all necessary information and knowledge.

During the work on these estimation models another opportunity came by. The scope of the research

extended to integrating the new estimation models with existing HR models, enhancing Unisys

forecasting abilities.

Before continuing the research I would like to thank some people for their help and support. Without

them, this research would not have reached its current state. First of all, Peter Schuur, my primary

university contact person. Without his support and critical questions I couldn’t have successfully

completed this research. I would like to thank Naik Nilesh Premanand and Badri Garla Prasad for their

close support during my daily operations at Unisys. Hans Heerkens, my secondary contact at the

University of Twente, thanks for taking the time to support me as well. Last but not least, I would like to

thank Fred Bosch, the person without whom I would not have worked at Unisys in the first place.

Mats Nelissen

Designing estimation models for Unisys India 2011

2 | P a g e

Glossary
In this document several industry standard terms will be used. If at any time a word seems unclear, refer

to this Glossary section for further explanation. They are ordered alphabetically.

Agile
development

Collective noun for many SLCs following the agile development manifesto, one
common characteristic is short, frequent iterations without extensive planning.
Unisys applies Scrum Methodology

Automated
Tests

The opposite of manual tests. This form of testing requires the user to press a button,
which will initiate the testing effort. The computer automatically executes all selected
TCDs, and prints the result to the user’s screen. No manual intervention is required.

Complexity Used to indicate the complexity of both creating and executing tests on a four point
scale: Not Applicable, Simple, Average and Complex. Based on Complexity TCPs will
be awarded.

CWF Abbreviation for Composite Weight Factor. The CWF is used to weigh the differences
between testing projects, so the effort for a new project can be calculated based on a
historic, somewhat similar project.

Domain Vaguely indicates the software’s application. Two domains used in this research are
client-server applications, and Mainframe applications. Mainframe applications are
also known as system applications. System domain should not be confused with the
System test level.

Environments Short for software environments. Examples of environments include: Windows XP,
Windows 2000, Windows 7, Linux, Mac OS X.

Estimation
procedures

Several procedures are considered during this research. They include Delphi
Technique, Analogy Based estimation, Software Size Based Estimation, Test Case
Enumeration Based Estimation, Task (Activity) based Estimation and Testing Size
Based Estimation. Refer to section 5 for more information.

Function Points Common standard set by the IFPUG organization to quantify the size of a software
development project.

Functional
Tests

Tests that have the objective to verify whether a specific functionality works.

Integration
tests

Test level used to determine whether different modules (or units/components) work
together when integrated.

Manual tests This form of testing requires the user to perform all steps in the TCD by itself.
Generally this is more time consuming than automated testing.

Module tests Also known as Unit and Component tests. This is the lowest test level, where
standalone functionality is tested. Usually performed during development.

Non Functional
Tests

Tests that have the objective to verify the quality of the software, for example the
software is targeted by an increasing number of connections, until it crashes. Several
testing possibilities are connections per minute, total connections, data entries, et
cetera.

Designing estimation models for Unisys India 2011

3 | P a g e

PMP Abbreviation for Project Management Plan. This plan is created when a project is first
started. It contains all available information regarding that particular project. During
the projects lifetime the PMP will grow.

Regression
Tests

Common name for repeating software tests over time, resulting in less effort
required.

Scrum An Agile software developing technique.

SDF Abbreviation for Solutions and delivery framework. It includes all Unisys’ guidelines
regarding their core businesses. SDF Testing refers to the testing section in the SDF.

SLC Abbreviation for Software Life Cycle. A SLC describes the phases and stages any
software development and testing project can be in, much like product life cycles.
Refer to section 3.2 for more information.

Static tests Static tests are performed without executing the code, i.e. by reading it. The opposite
is dynamic testing, where the software is (partially) executed.

System tests Test level to determine whether an entire system will pass the required criteria
mentioned by the customer. This usually means combining chunks of software that
have been verified by integration testing.

TCD Abbreviation for Test Case Description. A TCD is a digital document which contains all
relevant information about how to run a test, and when it is passed. Because of the
detail required in a TCD, it can only apply to one project.

TCE Abbreviation for Test Case Execution. TCEs are digital documents which describe the
results of a particular test execution. It includes a reference to which TCD was being
executed, and the results. Results can be PASS and FAIL. In case of failure more
information regarding the failure is included.

TCP Abbreviation for Test Case Points, a term used to quantify the size of a testing
project.

TCIS Abbreviation for Technology, Consulting and Integration Solutions. One of three
major branches in Unisys worldwide. This research is performed for the TCIS branch
in the Purva location in Bangalore.

Test box Used to indicate how much access there is to the software code that needs to be
tested. Testing boxes include white box (full access), black box (no access), and grey
box (partial access).

Test level Used to indicate the size of the software test. Test levels include Module tests,
Integration Tests and System Tests.

Test Scenario Client requirements are broken down into test scenarios. If all scenarios are passed,
the client requirements are met. Scenarios again exist of potentially many TCDs. All
TCDs need to be passed to pass a scenario.

UGSI Abbreviation for Unisys Global Services India. All Unisys locations in India belong to
the UGSI grouping.

Designing estimation models for Unisys India 2011

4 | P a g e

(U) RUP Abbreviation for (Unisys) rational Unified Process. Unisys’ own implementation of the
RUP SLC. This SLC combines iterative processes with detailed planning.

User
Acceptance
Tests

The final phase of software testing. In this phase the software is tested by its end
users. Common examples are Alpha, and the more known Beta tests.

VBA script Programming language which is used in this research where excel’s functionality did
not suffice.

Waterfall
model

SLC without any iterative processes.

Designing estimation models for Unisys India 2011

5 | P a g e

Summary
Software testing is one of Unisys’ core services. For both internal and external clients, Unisys often

resorts to one of its locations in India: the Purva location in Bangalore. The expertise, combined with the

low cost of labor in India together result in a very competitive service offered.

One of the issues that is important when considering outsourcing to India is the total cost. Currently,

cost estimations are done manually, by people who have been leading testing teams for multiple years.

They resort to their years of knowledge to give a first indication of the required resources: both time

and money. Should more accurate estimates be necessary, they break down the project in smaller

pieces, and again use their expertise to make an estimation.

Although these estimates can be very accurate (less than 5% deviation), depending on the time available

they do require up to two weeks to be made. That means that people in the sales team do not have

quick access to such estimates. Also, small changes in requirements may require reviews by the team

leaders, resulting in another few days lost.

This research is focused on tackling this issue, by providing estimation metrics in excel form, which

anyone at Unisys can use to make a correct effort estimation. Because the model will lack personal

interaction and expertise, it is likely the model will not realize the same error margin. UGSI management

has set the acceptable error margin at 20%, the value they normally use for budgetary estimations. The

central research question follows:

How can a model describe the costs and time the testing function in Unisys’ Purva location, Bangalore

requires to complete any testing project within 20 percent of the actual costs?

During the research we identified many different characteristics of software tests, that all have been

considered when the model was built. We started by making a version of the model which allows for

very specific data entry, namely per test case specific information. This level of detail is usually only

available once the managers have made a detailed project management plan.

The model translates input into Test Case Points (TCPS), before translating TCPs into effort and US

dollars. One TCP is defined to require 1.875 minutes of work, but this may differ slightly from person to

person. Because all projects can be translated into TCPs, Unisys now has a tool which allows cross

project comparison of their employees. Earlier it may have been hard to find hard evidence of someone

performing far below the acceptable line. Now, with these newly introduced TCPs it will be very simple.

Once this detailed version of the model was operational, work started on establishing a baseline. This is

a very important step, required to ensure the model is as accurate as possible. Although the results

cannot be guaranteed, at times they are known to be within 3.5% range, which is nearly as good as the

manual estimations.

The next step was to make tailored versions of the model, which require far less input. This will of

course sacrifice some accuracy, but this will enable the sales team to respond to client requests very

quickly. Two versions have been made: Scenario based input when some detail is available, and

Designing estimation models for Unisys India 2011

6 | P a g e

Requirements based input, when there is practically no knowledge of the project at all. Depending on

the situation, either one can be used by the sales team.

To ensure that the models can be used by people who may have less knowledge about software testing,

such as the sales team, a detailed manual has been created to go with the model. In this manual every

aspect of the model is explained, ensuring the easy usability that is vital for the successful

implementation. To further increase the chances of this research being installed in Unisys future daily

operations, a small training session has been given to all the team leaders that will use it. They will share

this knowledge with all people who may need to resort to it in the future.

At the start of this research, the only focus was creating estimation models. However, over time more

ideas were generated that could be of great value to Unisys India. One of those ideas was to integrate

these newly created models with other currently existing reports. This will not only enhance Unisys

ability to reply quickly to customer requests, it will also give Unisys better insight in its own available

resources. We have added a secondary research question to address this idea.

How can the newly created models, together with existing forecasting reports, be combined into a

dashboard overview which provides forecasting figures related to manpower?

This additional model is now known as the Supply Dashboard, and is dependant of mulitple weekly and

montly reports and forecasts. It combines these files into a clear dashboard overview in which

management can quickly see the size of Unisys’ task force for the next six months. Moreover, it also

displays the estimated people required per month, a bench percentage, and gap figures between

availability and requirements. Based on this Supply Dashboard Unisys may decide to approve or reject

projects, and whether the current taskforce size at any point in time needs to be influenced.

Designing estimation models for Unisys India 2011

7 | P a g e

Table of Contents
Preface .. 1

Glossary ... 2

Summary ... 5

1 Introduction .. 1

1.1 Unisys around the world ... 1

1.2 Unisys in India ... 2

2 Problem definition .. 3

2.1 Central research questions ... 4

2.1.1 Problem cluster ... 5

2.2 Approach ... 6

2.2.1 Public version .. 7

3 Testing Theory ... 8

3.1 Testing characteristics... 8

3.1.1 Test objective .. 8

3.1.2 Functional and non Functional tests ... 9

3.1.3 Testing levels ... 10

3.1.4 Testing boxes .. 10

3.1.5 Static and Dynamic testing .. 11

3.2 Software Lifecycle Models .. 12

3.2.1 Waterfall model .. 12

3.2.2 The Rational Unified Process .. 13

3.2.3 Agile Software development... 13

3.3 Summary on Testing Theory ... 15

4 Estimation procedures .. 16

4.1 The Delphi Technique ... 17

4.2 Analogy Based estimation ... 17

4.3 Software Size Based Estimation .. 18

4.4 Test Case Enumeration Based Estimation .. 19

4.5 Task based Estimation... 19

4.6 Testing Size Based Estimation. .. 20

4.7 Conclusion on estimation procedures .. 20

Designing estimation models for Unisys India 2011

8 | P a g e

5 Conclusions and recommendations .. 22

5.1 Conclusions ... 22

5.2 Recommendations .. 23

6 References .. 25

6.1 Literature .. 25

6.2 Interviews .. 25

1 Appendix A: Testing techniques .. 26

1.1 Static Tests .. 26

1.1.1 Reviewing and inspecting code. .. 26

1.1.2 Walkthroughs .. 27

1.2 Dynamic Tests ... 27

1.2.1 White box dynamic tests ... 27

1.2.2 Other dynamic tests .. 28

2 Appendix B: More lifecycle models... 31

2.1 The V shaped Model ... 31

2.2 Prototyping ... 31

2.3 Incremental model .. 31

2.4 The Spiral Model ... 32

3 Appendix C: RUP Development lifecycle ... 33

4 Appendix D: Scrum planning and methodology ... 36

Designing estimation models for Unisys India 2011

1 | P a g e

1 Introduction
During this research I have worked on a project with the aim to provide improved cost estimation

models for Unisys’ software testing function. Before continuing to the problem definition and research

approach, I will first introduce Unisys. We will have a look at Unisys’ global business structure first, and

then at the structure in India, where this research is performed.

1.1 Unisys around the world
Unisys is a large multinational operating in the IT industry. It has been founded in 1873 as a typewriting

machine fabricator. Over time transformed into a full systems integrator and outsourcer delivering a

focused set of IT services and products. Today, Unisys serves clients in over 100 countries. Unisys

employs around 23000 globally.

Until 1994 most revenue resulted out of IT Products and connected services, such as mainframes and

open systems. From 1994, services and solutions became the company’s single largest business. Starting

2001, Unisys entered into the first long term outsourcing contracts with well known companies like

Lloyds TSB, Air Canada, BMW Bank and GE Capital Bank.

Nowadays Unisys presents itself as a company which designs, builds, and manages mission-critical

environments without any room for error. To be able to deliver these services, Unisys employs experts

on consulting, systems integration, outsourcing, infrastructure and server technology. Combined

expertise leads to the four areas in which Unisys excels:

 Security: helping clients secure their operations — people, places, assets and data to create more

reliability and less risk.

 Data Center Transformation and Outsourcing: increasing the efficiency and utilization of data

centers.

 End User Outsourcing and Support Services: enhancing support to customer’s end users and

constituents through their devices and desktops.

 Application Modernization and Outsourcing: modernizing their mission-critical business

applications.

Business Structure

On a global scale Unisys only employs three business units (BU). These are Federal Systems, GOIS and

TCIS. This research is performed for the TCIS business unit in India.

Federal Systems

Federal systems is a very secure branch within Unisys, which delivers a broad range of services and

solutions to U.S. government clients, including consulting, systems integration, managed services and

outsourcing.

Designing estimation models for Unisys India 2011

2 | P a g e

Global Outsourcing and Infrastructure services (GOIS)

The main function of this business unit is concerned with IT infrastructure, outsourcing and other service

management services.

The main focus of this BU is on winning and managing outsourcing contracts. This can range from large

desktop and end user support contracts, managing the security of clients’ networks and providing

tailored infrastructure (cloud/hosted) solutions.

This BU also contains a field operation organization that provides onsite infrastructure services.

Technology, Consulting, and Integration Solutions (TCIS)

This business unit is provides systems integration, consulting and technology products and services to

clients worldwide.

1.2 Unisys in India
One of the countries Unisys operates in is India. Within India, there are four different locations: one in

Mumbai (Corporate Office), two in Bangalore and one in Hyderabad. The GOIS and TCIS business units

are both represented in India.

The location where this research is conducted is the “Purva” location in Bangalore, part of Unisys Global

Services India, or UGSI. Currently, roughly 1000 people work at this location. It serves mostly as an

outsourcing hub for services that other departments around the world require.

In this location there are two areas of interest for this research. Both are part of the TCIS business unit,

for which I will work. The first one is TCIS Services. This department offers software development and

testing capabilities to other Unisys locations. For example if Unisys Europe wants to (partially) outsource

a software development project, TCIS services would pick it up. This can be done for several reasons,

including capabilities, competencies, quality, efficiency and cost offered by UGSI.

The second area of interest is located in ESC, which is part of TCIS. All ESC’s subdivisions have a testing

component, since all software Unisys develops needs to be tested. This means that across all five

functions in ESC testing needs to be done.

Designing estimation models for Unisys India 2011

3 | P a g e

2 Problem definition
The redesign of the test function has led to managers rethinking ways things work at the facility.

Currently the process is as follows:

- A potential client has a software program that requires testing. This client can be external, but

often is an internal client. Internal clients are located around the globe, and require their

programs to be tested at relatively low cost.

- The client submits all he knows about the software and to which extent the software requires

testing. More thorough testing scopes and techniques generally cost more recourses: both time

and money.

- The request is reviewed by a team leader at the Purva location in Bangalore. All non technical

work is done by presales, but for cost estimation the request is forwarded to the test

department. There, a reviewer creates an estimate of the required time and money to complete

the testing. This is done based on expertise and some models/metrics where available.

- If the client approves of the estimate the process is taken to the next step where details and

contracting are discussed. If not approved, the client can either cancel the request or change the

submitted information. Should he resubmit, the process is repeated.

- When the project is formally approved the following processes are initiated.

Usually creating the estimates is not a very time consuming task. If it is done effectively it can be done

within one or two days. However, because workloads tend to be high the requests are usually not

reviewed immediately. Also, there are only few team leaders skilled adequately for this task. Due to

these facts average times range from 2 to 5 working days for each request. In extreme situations it is

known to take up to two weeks and more.

Estimates are by their nature not required to be 100% accurate. Besides that, a large part of all testing

work is very similar to other testing projects. This means that estimating the costs is a rather standard

procedure. Therefore, managers now believe that a model can be made which outputs the estimated

costs. Because a model can never fully replace the expertise a tester uses when reviewing each request,

the model thought of is supposed to make very rough estimates. These rough estimates are better

known as budget estimates, and have an error margin of up to 20%. These budget estimates can be very

useful for a client to get a first idea of the costs, and can even be sufficient for smaller projects. When

more accurate estimates are required clients will still have to submit their requirements to UGSI.

A major advantage of such a model would be the possibility for clients to create estimates on the fly,

allowing them to see how minor changes in their requirements would influence total costs. How the

model will be used in the end is unknown at this point in time, but it could for instance be implemented

online. This would enable any potential client to get a fair approximation of the required recourses for

his project instantly.

Another advantage is that the total number of requests for estimation the test team has to process will

be reduced. This is because some clients will stick to the budget estimates and other clients may refrain

from a request because the budget estimate shows it is far above their budget. Then finally potential

Designing estimation models for Unisys India 2011

4 | P a g e

clients won’t have to resubmit their requests as often as currently since they already inputted several

different requests into the model and know which options will be most likely to fit their needs/budget.

Finally, it can contribute by making the choice to outsource a (partial) project easier. Currently it is not

easy to determine whether cost/benefit wise it is attractive to move any project from its current

location to India. A model will give more (direct) insight in the costs, and therefore simplify the matter.

2.1 Central research questions
UGSI has asked me to build such a model/metrics. The central research question for this research will

therefore be:

1. How can a model describe the costs and time the testing function in Unisys’ Purva location,

Bangalore requires to complete any testing project within 20 percent of the actual costs?

To answer this question the processes the testing function uses to go through the testing process must

be known. Therefore the following sub question must be answered first:

1.1. What are different testing techniques performed by the testing practice, and how can they be

categorized based on approach and required resources?

To answer this question I will first look into all testing techniques used industry wide, and later look into

how Unisys uses these techniques in its own test function. The next step will be to categorize these

techniques based on the mentioned criteria.

Then to build the model, it will be necessary to identify all relevant input parameters, and to identify

their respective inputs on the cost. The resulting question is the following:

1.2. What factors have an influence on the required effort and cost of the testing function, and what

is their respective impact?

To answer this question I will look into the current estimation processes, see whether there are other

processes used across the industry, and meet with project managers to discuss their views on estimation.

To build the model first time right would be nearly impossible, since accurate data on cost parameters

are mostly unknown. Therefore it is necessary that the model allows for easy manipulations of these

parameters, to allow for continuous improvement of the accuracy of the model. To realize this, during

the “building” of the model, we will constantly consider the following issue:

1.3. How can easy tweaking of the model be realized, so it won’t lose its value in the coming years?

Apart from the main research question, Unisys has asked me to do one more thing: integrate these new

models and existing models into an overview dashboard that will provide forecasting figures for

manpower related issues. The final question that we will look into during this research is as follows:

2. How can the newly created models, together with existing forecasting reports, be combined into a

dashboard overview which provides forecasting figures related to manpower?

Designing estimation models for Unisys India 2011

5 | P a g e

2.1.1 Problem cluster

This research will focus mostly on the primary research question. During the work on this issue we found

that the problem we were solving was actually the root of another major problem too, which led to

research question number 2. The problem tangle in Figure 2.1 graphically illustrates how providing

models will resolve both central research questions.

Figure 2.1 Problem cluster

Es ma on	effort	
takes	too	long

Responsible	people	
lack	 me

Number	of	people	
qualified	is	low

People	have	other	
responsibili es

All	work	is	done	
manually

Metrics	or	
automa on	tools	do	

not	exist

Future	HR	
requirements	are	

uncertain

Monthly	reports	are	
not	integrated

Nobody	is	responsible	
for	integra ng	reports

Management	lacks	
me	to	integrate	

reports	themselves

Designing estimation models for Unisys India 2011

6 | P a g e

2.2 Approach
As became clear in the introduction section, Unisys India has many different departments. Also in all

these departments, different project managers run different projects. Currently, all these people use

different techniques to make their estimations. That means that the result of an estimation depends on

the person who makes it. The main goal of this project is to eliminate those differences, by providing

UGSI with an estimation model which everyone across the facility will use.

To do so, I will follow the following steps during the three month period I am in India.

 First I will get an understanding of all different testing efforts that are performed at the Purva

location. The goal of the first period is to get a good understanding of what UGSI does, so the

model can be adapted to that.

To do this I will go through Unisys’ internal documentation, external information sources, and

have meetings with different people at the UGSI organization.

 The next step is to consider different techniques and metrics for estimation, and to select the

one that will form the fundament for the model. I will do this in close collaboration with

management.

 The next step will be to identify all relevant input parameters, and to translate them into a

model which will output the effort in person hours and dollars.

 The final step will be the optimization of the model, I will do this by inputting as much historic

data as possible, to confirm the values for the parameters used in the model.

We have agreed that the model should be build in excel. This is for several reasons: excel allows for easy

future tweaking, should the model’s results no longer be accurate. Also, it is easy to understand for the

users, since excel is commonly used across the UGSI facility. The third reason is that I feel comfortable

building such a model in excel, whereas other programming languages are not part of my training and

may prove to be too difficult.

During the research I found the basic excel functionality not to be sufficient. Excel is has good calculation

options, but also has its limitations on other areas. An example is the functionality to automatically add

similar rows, or to solve linear equations without user interference. To resolve these and other issues I

have resorted to Visual Basic for Applications, a more complex programming language which can be

interpreted by Excel. Although my personal skill for this particular programming language is limited, I

was able to use it where Excel’s functionality did not suffice.

This means that the final deliverable will be an excel model, which can be used for any testing project,

by anyone in the UGSI facility, at any time and phase during the testing effort, and will give accurate

results considering the phase.

Once this is all done, I will look into the secondary research question: combining the model with existing

reports. Depending on the timeframe I will discuss with Nayak Prashant, my manager for this secondary

objective, on how to implement this idea.

Designing estimation models for Unisys India 2011

7 | P a g e

2.2.1 Public version

This document is the public version of this research. In this version there will be no information that can

not be found on public websites as well. Therefore, several sections have been removed from the

original file. The sections that are listed in this document conatin public available information regarding

Unisys, as well as the information used as theoretic framework. Also, it contains a altered version of the

conclusions and recommendations section.

Designing estimation models for Unisys India 2011

8 | P a g e

3 Testing Theory
To continue the research the first step is to understand all different testing efforts that are performed at

the Purva location. During this phase we will answer the first sub question which will give the first

indication of different input parameters that influence the estimation. The first question is the following:

What are different testing techniques performed by the testing practice, and how can they be

categorized based on approach and required resources?

Immediately upon starting to investigate this, I found there should be an extra split here. On one hand

there are the different techniques that are used, but also there are different approaches to plan the

testing effort. Planning differently can impact the total cost, and this parameter may therefore be

relevant for the model. The different approaches are known as software lifecycle models, and will too

be explained in this section.

First, this section will describe all software testing procedures as they are known today. There are many

different procedures and techniques, all with different characteristics which can be used to categorize

them. For estimating it is not relevant which techniques are used, instead it is more interesting to

understand what kind of technique is used. Therefore in this section all different categories will be

mentioned, and more detailed information will be moved to the appendix.

Different Lifecycle models will be described in section 3.2.

3.1 Testing characteristics
The goal of any testing practice is not to guarantee that the software works, it is to find conditions in

which the software does not work. This can never fully guarantee that the software will never fail. This is

an important principle in testing that always holds for more advanced software. This is because it is

virtually impossible to test every possible form of input.

A good definition of software testing is the following:

Testing is a process of planning, preparing, executing and analyzing, aimed at establishing the

characteristics of an information system, and demonstrating the difference between the actual status

and the required status. (Jari Andersin, 2004)

3.1.1 Test objective

Different testing efforts have different causes and different objectives. The most common are the

testing efforts performed during development, regular testing efforts. Two other efforts are regression

testing and user acceptance testing.

3.1.1.1 Regression testing

This form of testing means using previously run test suites to confirm the program is still working. This

can be very useful to test whether a code change (update) has broken previously working sections of the

Designing estimation models for Unisys India 2011

9 | P a g e

program. Proper regression testing is both efficient and automated because all tests have been run

before, to verify earlier versions of the program. Not running regression tests can cause dramatic

failures, as happened in the US several years ago when a mobile provider lost all connectivity for several

days after a very small update. Regression testing would have shown that the change broke the

software and should therefore not be installed (yet).

Any test that is run for the second time is by definition a regression test. Running tests multiple times

also means there are going to be time benefits: the team will learn, and the test case needs to be

created only once and can be used many times. For this reason it is an important test characteristic, and

the model should be able to distinguish between regression tests and regular, first time tests.

3.1.1.2 User acceptance testing

There are three forms of user acceptance testing (UAT): smoke tests, alpha tests and beta tests.

Smoke tests are small tests to verify that the program works in the first place. Before continuing to

debugging and more thorough testing the program needs to be able to start in the first place. These

tests are always run to verify the programs stability before starting the scheduled testing efforts.

Alpha tests are run when a program is nearing completion. It is distributed amongst multiple people in

the company, to have more end user feedback on the functionality.

When alpha tests have passed the program continues to beta testing, where it is distributed to the

public. The objective is the same as in alpha testing: get more end user feedback to find the last bugs

before the final release. Once the program passes beta testing and all feedback has been processed it is

ready for final release.

UAT is the final stage of testing and is not considered part of the core testing function. The time it

requires is often derived from the total core testing time, using some factor. For different projects the

factor may be different, and in the model it should be properly incorporated.

3.1.2 Functional and non Functional tests

Functional tests are all those tests that will check a section of code or an entire program for functionality.

The outcome of a functional test is the answer to the question: does this area of code work? The more

different inputs used, the more certain one can be that the answer is not false positive.

The opposite is non functional testing. Non functional tests test the programs capability to handle

certain circumstances, and register the programs performance in those circumstances. A typical non

functional test would be to test the program’s performance under 100 connections per minute, and

1,000, 10,000. Etc.

Functional tests are typically run during development, whereas non functional tests are mostly run to

test the performance of an operational system. This is usually at a later stage in development.

All software tests can be qualified as either functional or non functional.

Designing estimation models for Unisys India 2011

10 | P a g e

3.1.3 Testing levels

According to SWEBOK, the international Software Engineering Body of Knowledge, there are four levels

in which a test can be run. They are described here, in order of size and complexity.

3.1.3.1 Unit testing (component testing, module testing)

This is the lowest level of testing. Its purpose is to test a specific section of the code, usually a specific

function. Often these tests are done by the programmers themselves during the development, to ensure

what they have just created is working properly. It will take significantly more time for someone else

than the coder himself to create appropriate Unit tests.

3.1.3.2 Integration testing

The purpose of this level of testing is to verify whether software components will work together. It is

usual to start small, integrating two components. Then, should this work a third and fourth will be added.

Later chunks of components that are known to work can be added as well. Connecting all components

at once is known as the big bang, and is not usual unless there is reason to believe that everything will

work flawlessly right from the start. If it doesn’t, it is not easy to trace the error location since it is

unknown which sections work and which don’t.

3.1.3.3 System testing

The purpose of this test is to verify whether an entire system is working as it is supposed to. This can be

both functional and non functional tests. It can be tough to test this thoroughly, since systems can be

large, and allow for infinite different input combinations. Only one needs to be bugged to be able to

crash the system.

3.1.3.4 System integration testing

The point of this test is to verify whether a fully working system will also work in or with another third

party system or environment. This too can be a very tricky area to test, since one will assume that many

things work, because they are known to work in another situation. This can easily lead to insufficient

testing.

3.1.4 Testing boxes

There are three boxes known in software testing: white box, grey box and black box.

White box testing refers to all testing that is done while having access to the source code of the program.

This allows for very thorough testing such as code review, literally checking every line of code one by

one.

Black box testing on the other hand is the opposite: the code is not available to the tester. The tester

will have to input lots of data to make sure all desired scenarios are tested. Still, there are very

structured approaches to handle these situations.

Designing estimation models for Unisys India 2011

11 | P a g e

In between these two areas is grey box testing: here the actual code is unknown, but the tester does

know how modules within the software interact with each other. Moreover he can also have these

modules print logs of their actions. This allows the tester to know what actually happened in between

the first input and the final output (unlike in black box testing), but he doesn’t know exactly why it

happened (which is the case in white box testing).

3.1.5 Static and Dynamic testing

Static testing includes all tests in which the code is not executed. Static testing includes reviews,

walkthroughs and inspections. Because of the nature of static testing, all are white box tests (it is not

possible to check the code without executing it, while not being able to actually see it).

The opposite is testing the code by executing it with test input parameters. This is known as dynamic

testing. Both procedures can produce valuable results, but many firms leave out static testing as they

believe its efforts can be covered by dynamic tests as well.

Designing estimation models for Unisys India 2011

12 | P a g e

3.2 Software Lifecycle Models
Software Lifecycle (SLC) models represent the timeline any software program passes. These models will

go through the following phases: requirements phase, design phase, implementation, integration,

testing, operations and maintenance.

It is very important to be aware of the software lifecycle before development starts and to pick the

model which is most appropriate for the project at hand. Not considering the SLC or choosing the wrong

model can result in higher development costs and even project failure. There are several different

models, which will be described in this section. Depending on the amount of relevant information

known and the volatility of that information the proper model needs to be selected.

These models can be categorized in three different groups: traditional models, Agile models, and the

Rational Unified Process. Depending on the project, Unisys uses one of three different models: the

waterfall model, which is a traditional model, SCRUM, which is an Agile model, and URUP, Unisys’ own

version of RUP. These will be described in this section. For a more clear understanding of other lifecycle

models and how they differ from these three, see appendix B.

Using different approaches (models) will result in a different project planning and will therefore

influence costs. It is important the model is able to distinguish between these different lifecycles.

3.2.1 Waterfall model

This is the oldest and least flexible model around. Using this model, there will be no iterative processes

and proceeding to the next step in the development stage will only be done upon full completion of the

previous step. This model should only be used if all requirements are known at project start, and it

should be very unlikely for these requirements to change in the future. These tend to be projects that

can easily be outsourced overseas. The development steps of the waterfall model are as follows:

 Document system concept

 Identify system requirements and analyze them

 Break the system into pieces (Architectural Design)

 Design each piece (Detailed Design)

 Code the system components and test them individually (Coding, Debugging, and Unit Testing)

 Integrate the pieces and test the system (Integration and System Testing)

 Deploy the system and operate It

The general criticism to this model follows:

 Problems are not discovered until system testing. (late in the total SLC)
 Requirements must be fixed before the system is designed - requirements evolution makes the

development method unstable.
 Design and code work often turn up requirements inconsistencies, missing system components,

and unexpected development needs.
 System performance cannot be tested until the system is almost coded; under capacity may be

difficult to correct.

Designing estimation models for Unisys India 2011

13 | P a g e

3.2.2 The Rational Unified Process

Traditionally, in many software development projects testing is seen as a burden that has to been done

at the end of development. It adds a lot to the total cost of a project and doesn’t contribute a lot.

Furthermore, when development does not meet deadlines, testing is often delayed. In many cases the

final delivery deadline is not delayed, so the total time for time for testing suffers. Testing is done by the

end users, which is not desirable as this can increase testing costs by a factor 100-1000.

To overcome this issue a more modern approach has been development in the recent years. The main

idea is to integrate the testing more throughout development, and it’s called the Rational Unified

Process (RUP). Like many other models (Appendix B) RUP is an iterative process. RUP has several tools to

realize better integration of testing:

 Making testing a distinct discipline
 Using an iterative development approach
 Scheduling implementation based on risk
 Continuously verifying quality
 Letting use cases drive development
 Managing change strategically
 Using the right-sized process

For this research it is important to understand how using RUP influences the planning and thus the costs

of a project, compared to the waterfall model and SCRUM. This information will be obtained by

interviewing and meeting with people who are familiar with this approach. For a more clear description

of the tools mentioned above, refer to appendix C.

3.2.3 Agile Software development

The final large branch in software development is Agile developing. Agile is a group of techniques all

following the agile development manifesto, a document created in 2001. The main difference compared

to traditional and RUP approaches, is its tendency to focus on reacting to change rather than planning

ahead. A team which follows an agile approach might not be able to say what tasks are planned for next

week. Instead, they might only have a vague planning of what features are planned to be developed

during the next month. Also, the iterations tend to be very short, preferably 1-4 weeks, compared to at

least 6 weeks in RUP. Because of the short duration they are usually referred to as sprints. One other big

conceptual difference that one member of the team is actually one of the clients employees. Involving

the client in the development structure ensures the team will be very responsive to the clients changing

requirements and expectations.

Agile can be implemented in three different ways: only at the actual development level, only at the

project management level, or both. Focus on both is better known as full coverage of the development

lifecycle. The best results are booked in relatively small project where no more than 10 people work on

a project. However, there are reports of successful implementation in larger (40 people) projects.

Designing estimation models for Unisys India 2011

14 | P a g e

For this research it suffices to mention the key elements that characterize Agile development instead of

explaining it in detail. This is because Unisys only uses one Agile programming technique: SCRUM. The

key elements are the following:

 Customer satisfaction by rapid delivery of useful software

 Welcome changing requirements, even late in development

 Working software is delivered frequently (weeks rather than months)

 Working software is the principal measure of progress

 Sustainable development, able to maintain a constant pace

 Close, daily co-operation between business people and developers

 Face-to-face conversation is the best form of communication (co-location)

 Projects are built around motivated individuals, who should be trusted

 Continuous attention to technical excellence and good design

 Simplicity

 Self-organizing teams

 Regular adaptation to changing circumstances

There are many different implementations of Agile development used across the industry, Unisys chose

to go with Scrum. All Agile characteristics are also seen in Scrumming. Again for this research it is not

relevant to know the exact steps during Scrum development, rather it is important to realize that it has a

different impact on costs, and therefore should be an input parameter for the model. For a detailed

explanation on Scrum, refer to Appendix D.

 Waterfall RUP Agile

Iterations None Long Short

Planning Rigid/long term Flexible/Long term Flexible/Short term

Volatility in
requirements

Not acceptable Possible Usual

Project size Huge/Large Large/Normal Small

Testing integration Afterwards Fully integrated Fully integrated

Documenting Average High Very low

Typically used in/by Complex, mission
critical projects without
tolerance

NASA/ Military

Government/educational
institutes

Partial off shoring,
packaged releases.

Single small projects,
fast market response

British Telecom

Downsides Slow, expensive,
project maybe obsolete
on completion

Not as quick as Agile

No competitive time to
market results

High personal
interaction project
must be on one place.
Low documenting
Unclear forecasts.
Requires experienced
team.

Table 3.1 Software lifecycle overview

Designing estimation models for Unisys India 2011

15 | P a g e

3.3 Summary on Testing Theory
This concludes the section on testing theory. All differences that characterize the tests have been

discussed, as well as different software lifecycle models. More information on specific testing

techniques can be found in appendix A. They include some examples of different functional and non

functional tests, many of which can be used in all three boxes, and at different testing levels. Some of

these procedures are more common than others in Unisys’ daily operations. Also, more information on

other SLCs can be found in the mentioned appendices.

It should be clear that most software tests can be used in different ways. There are characteristics for

each test in a given project but most tests will have multiple possibilities (i.e. fuzz testing can be used for

integration testing as well as system testing).

The first sub question can now be answered.

1.1. What are different testing techniques performed by the testing practice, and how can they be

categorized based on approach and required resources?

During the search for different techniques we haven’t found any evidence to state that approaches can

be categorized based on resources. However, it is possible to identify different approaches to software

testing by considering several characteristics. The characteristics we found follow in table 4.4.2.

Additionally the planning aspect is also relevant: it doesn’t characterize the test itself, rather it shapes

the planning of the entire planning effort. It is however an important parameter and should therefore be

mentioned here.

Planning
Approach

Objective Testing Level Static /
Dynamic

Testing
Box

Functionality

Waterfall Regular Unit Static White box Non
Functional

URUP Regression Integration Dynamic Grey box Functional

Scrum User Acceptance
test

System Black Box

 System
Integration

Table 3.2 Overview of test characteristics

Designing estimation models for Unisys India 2011

16 | P a g e

4 Estimation procedures
In this section we will look into several common estimation procedures. We will mostly discuss

procedures that are specific to the testing industry, but for instance the Delphi technique is used in

other industries as well. This section will provide basic knowledge about different approaches to cost

estimation, which can be used when we start building the model in section 6.

Recall from section 4 that Unisys starts each testing effort by creating the Project Management Plan

(PMP). In this plan the first estimation is included, and the client has to agree with it before the testing

can actually start. At this point in time it is very hard to outline exactly what tests need to be done. In

this PMP the entire test effort is planned, but on high level scale. The client usually only specifies what

software functionality he wants to have tested.

The next planning that will be made is for the first iteration. This planning will have specific information

about who will test what functionality, using what tool. Once this planning has been created the PMP is

updated as well with this more in depth information. Because this planning is far more specific it allows

for far more detailed cost estimation and allocation. However, that is still only information for the next 6

weeks, thus the complete estimation is still mostly rough.

Once the first iteration is over the actual results are also logged into the iteration plan. The finished first

iteration plan is added to the PMP. This allows for comparing the estimated data to the actual data. As

time passes more and more information is available: the initial request from the customer, planned

efforts for every iteration, and historic data on previous iterations. All this data can be of significant

value in effort estimation. Therefore, it should all be used in the model.

Although no detailed information is available at project start, it is still very important to have a proper

estimation. Because of the differences in available input, the best option is to make the model in such a

way that it allows for multiple different forms of input. This way it can be used by both the field team,

and the actual test team. The field team will use an input form which will result in rough estimates from

client requirements, whereas the actual test team will input far more detailed input, such as the historic

data mentioned earlier.

There are several known ways for cost estimation in software development, all with different

characteristics. Here 6 different techniques will be discussed and compared. Together with management

and the test team we will then decide which techniques can properly describe the test function at

Unisys.

 Delphi Technique

 Analogy Based estimation

 Software Size Based Estimation

 Test Case Enumeration Based Estimation

 Task (Activity) based Estimation

 Testing Size Based Estimation

Designing estimation models for Unisys India 2011

17 | P a g e

One difference between these techniques is whether they are top down or bottom up approaches. Top

down techniques derive the estimation from the size of the project. Measuring size can be done several

ways, depending which technique is followed. Opposite to this approach is bottom up, where the

project is broken down into tasks which are then all estimated and summed. Bottom up techniques

generally require more entries and therefore more effort to complete. On the other hand for top down

approaches the translation from size to effort is more difficult to properly model. Currently Unisys uses

different bottom up approaches, mostly Test Case Enumeration Based Estimation and Task based

Estimation.

4.1 The Delphi Technique
This is a well known forecasting technique that is used for forecasting in many different fields. The

technique relies on several different experts, who all give their opinions and answers to a question, not

knowing what the others think at that time. After all experts have given an answer, they will all see the

answers the others gave as well. They are then allowed to revise their answers based on the new

information and points of view. This is repeated until some stop criterion is met, for instance time or

number of iterations. The idea is that over time their answers will converge, and finally find a consensus.

That answer is then used for forecasting.

This technique can for obvious reasons not be used in a model. However, it can be used as a checking

method to confirm the data a model has created. This technique is used mostly when people are

uncertain about the forecasts they have at some point, and thus require more verification.

4.2 Analogy Based estimation
This technique uses historic data from similar projects as a basis for estimation. It requires an extensive

database of historic projects, so that each new project has close similarities with at least one other

project. This is a top down approach: an estimation is made without breaking the project down into

smaller pieces.

The first step is to select criteria on which the projects are going to be compared. The selection step

should not be automated because it can easily influence the results of the estimate. Doing so would

render the entire estimation useless, and therefore some human interaction is required here. Criteria

that can be used are for instance: type of the project, application domain, client organization size,

modules and many more. (Chem Cons).

Once a matching project has been identified the differences that still remain must be accounted for. If a

difference is considered not relevant it can be discarded. (I.e. it won’t have an impact on the testing

effort). All other differences need to be weighted. Weight between 0 and 1 will result in the new project

having less effort; more than one will assign more effort. Once all differences are weighed the

composite weight factor (CWF) is calculated. This is done by summing all weights, and dividing that sum

by the number of weights. Then, the final step is to multiply the effort of the matching project by the

CWF. This will result in the estimate for the new project.

Designing estimation models for Unisys India 2011

18 | P a g e

This technique can be very reliable, since it uses historic data created by the organization itself. Practice

proves that is very easy to learn, and that anyone who understands the process can come up with good

estimates.

For many companies this technique is not very useful because they lack the historic data. That can be

either because they are a startup, or because they haven’t kept detailed job histories. Unisys does have

a large database of previous jobs. The detail of the data is unknown at this time, but before choosing

this technique to make a model it should be verified that the detail is sufficient for the model to make

budget estimates.

One issue that needs to be considered is that no matter what size the database, there may always be a

project that has no good matching historic record. Usually this occurs when a company is entering a new

field of expertise. This can happen at Unisys too, since they are relatively new to Scrum methodology. If

historic data is lacking other estimation techniques should be used, otherwise there is a risk the

estimate is too far off.

4.3 Software Size Based Estimation
This technique too is a top down approach. Instead of comparing the project to another one, its size is

determined. A common tool for quantifying software size is function point allocation. The norms for one

function point are set by the IFPUG organization. For instance, the number of different screens, buttons,

and inter-program connections all increase the number of function points allocated to a particular

functionality. The more function points allocated, the larger the project. For this research further

understanding function points is not required. Based on the number of function points, the estimate can

be derived.

Unisys already is familiar with function points, since they are also used for other purposes, mostly in

development. Using function points ensures some degree of standardization which is very attractive for

Unisys, because it enables management to compare projects. Currently different project managers use

different models and different procedures to quantify the size of their projects.

To use this technique the function points should be multiplied by a productivity figure, which represents

the number of function points one employee can work through per hour. The outcome would be the

effort estimate.

The simplicity of this technique is both an advantage and a disadvantage. The positive side is that it

allows for very fast calculations and it is easy to learn and comprehend. The problem however lies in the

fact that not all software of the same size requires the same effort. There are major differences between

web programs, standalone programs, client-server programs and 3 or even 4 tier programs. To solve this,

different productivity figures must be used, and these figures must be accurate as well. The result is that

this technique requires a very detailed and large historic database. The data must be occasionally

checked by professionals to ensure the productivity figures are correct. If this is done properly, the

technique can result in very accurate results, considering its simplicity.

Designing estimation models for Unisys India 2011

19 | P a g e

4.4 Test Case Enumeration Based Estimation
This is a more detailed estimation technique. It will require more knowledge about the actual testing

program and how much time each test will probably take. It is a bottom up approach, which some

project managers at Unisys are currently using.

First, all test cases that need to be run are identified and listed. This requires a lot of knowledge about

the to-be-tested program, and will take some time. The next step is to set the expected test time for

each specific case. Also, best case and worst case scenarios are added for each case. Then, using a beta

distribution, the estimated number of person hours can be derived. Summing these expected numbers

will lead to the estimated effort.

The obvious disadvantage is that this will take far more time than other techniques. However, Unisys

could use default hours for test cases to save time. They could set worst, normal and best cases for a

number of different test cases based on difficulty. This will reduce the required input time. Still, because

of the required detail, this technique is not useful for the model the field team requires.

The major advantages are the technique’s accuracy, and the fact that it includes a worst-best range in

which the project is likely to be completed.

4.5 Task based Estimation
This technique too is a bottom up approach and is very similar to test case enumeration. It adds more

detailed estimation for noncore efforts that needs to be done. Instead of using the number of tests, the

number of activities is used. Because a testing project consists of far more than the actual testing it can

be beneficial to include these steps in the estimation. In previous techniques this can be done using

factoring, for instance allocate 70% of the time to testing, then estimate testing and calculate the

remaining 30%. However, actually estimating such tasks is often more accurate (and time consuming).

Each company has a different approach to testing, and so does Unisys. Unisys approach has been

described earlier, in the SDF testing framework. The phases and corresponding iterative activities are

mentioned there, however tasks were let out. There are many tasks in SDF testing, and for task based

estimation to be accurate all tasks would need to be estimated in the model. For each task a worst,

normal and best scenario needs to be defined, and again using a beta distribution the estimates can be

calculated.

This technique is generally considered the most accurate. However, executing it thoroughly is a very

time consuming task. Therefore, it is more common to sacrifice some accuracy for the sake of usability.

For this technique to be useful at Unisys a lot of the tasks would have to be standard values, since there

are far too many tasks to manually estimate in each time a project starts. There can of course be

multiple standards, for different kinds of projects. Also, the standards need to allow manual

manipulation if there is reason to believe the project will require different values.

Similar to the previous technique Task based estimation cannot be used for the model that will be used

by the field team. It simply requires too much detail and effort to be useful at that point in time.

Designing estimation models for Unisys India 2011

20 | P a g e

4.6 Testing Size Based Estimation.
The final technique that is interesting for the model Unisys requires is Testing Size Based Estimation.

This technique uses so called Test Points, which are derived from the size of the software. To determine

the size function points are a common tool.

The point of this technique is to normalize each project, so it can be compared to any other project as

well. This is a great added value compared to other estimations, as it enables performance

measurement. Such measurements are often lacking in the testing practice.

To normalize a project the size is converted into Unadjusted Testing Points (UTP). This is simply done by

using a factor; this factor should be the same for all projects. The next step is to normalize the UTPs. The

first factor is for the type of software: standalone, clients-server, or other options. The next step is to

compute a composite weight factor, similar to the analogy based estimation technique. This time it is

however done slightly different:

The combined weight of integration testing, system testing and user acceptance testing is defined to be

1. Then, if more tests need to be done, their weight derived from these weights. If for instance IT, ST and

UAT are all thought to take the same time, their weights would all be 0.33. Now if the projects also

required unit testing, which is thought to last twice as long as system testing, its weight would be 0,66.

Similarly more weight can be added if more tests need to be done. The sum of all weights is the CWF.

Using this procedure to calculate the CWF, and using a standard procedure to derive function points

ensures that all projects can be compared to each other. That makes this technique very useful to

determine a tester’s productivity.

4.7 Conclusion on estimation procedures
For additional clarity the following table provides an overview of the differences between the six

techniques.

 Delphi
technique

Anology bE Softw. Size bE Test Case
Enume. bE

Task bE Test Size bE

Manual
req.

Difficult ++ Difficult Easy Difficult Difficult Easy

Automation No - + No No +
Approach Both Top down Top down Bottom up Bottom up Top down
Database
req.

No Yes ++ Yes No Yes Yes

Time
consuming

Yes Yes No Yes + Yes ++ No

Skill req. Very high High Low High High Low
Detail req. Not req. Not req. Some High High Some
Pros Always

usable
Easy to
comprehend

Standardized,
allows
comparing

Accuracy,
confidence
range

Most
detailed,
confidence
range

Standardized,
allows
comparing

Designing estimation models for Unisys India 2011

21 | P a g e

Cons Not
automatable

Risk of no
match in
database

Size doesn’t
say it all

Very time consuming,
high manual
requirements

Hard to
comprehend

Table 4.1 Comparison between estimation procedures

Together with management we have decided to create a new model, using different characteristics of

the above mentioned techniques. We have agreed on the following points of interest, based on which

the model will be developed. During the meeting we also discussed other points of interest, such as

added functionality that would be desirable to implement.

 The possibility to compare projects because of some standardized parameter is very attractive.

We will use Test Case Points as independent parameter to quantify the size of a project. To do

this successfully, computing the estimate will happen in two steps.

o First, all parameters that define the size of the project will be translated in the number

of test points.

o Then, depending on relevant variables the test points will be translated into person

hours and costs. These are variables that depend on who will do the work. Expertise is

an example of such a factor.

 Depending on the phase and availability of information, the model must be able to handle both

bottom up and top down approaches.

o In the initial phase, the model must be able to compute an estimate based on test

scenario information.

o Later, when test case specific information is available, this too must be a possible form

of input.

o One extra level of detail would be test specific information.

 Task based enumeration will not be necessary since SDF testing is too large for that and it will

never be accurate enough, due to ongoing changes and differences between project approaches.

 Using different factors for performance and wages the model may derive the cost savings for:

o Outsourcing to India, compared to testing in any other country.

o Automating a testing effort, compared to manual testing.

Designing estimation models for Unisys India 2011

22 | P a g e

5 Conclusions and recommendations

5.1 Conclusions
The aim of this research was to provide Unisys India with a model that can accurately describe the costs

related to their testing function. The main research question was:

1. How can a model describe the costs and time the testing function in Unisys’ Purva location,

Bangalore requires to complete any testing project within 20 percent of the actual costs?

After looking into the existing testing practices, we found that the model needed to consider different

characteristics to describe these costs. Later, we found that some factors were redundant, while others

needed to be added. In the end, we used the following characteristics to categorize software tests:

 Complexity for creating and executing (based on sub characteristics)

 New or existing

 Manual or automated

 Number of iterations

 Type; either functional, non functional, GUI, or UAT.

 Stage; module, integration or system testing.

 Domain; client server or mainframe.

 Number of environments.

Based on these inputs the model now calculates the number of test case points, and translates those

into person hours and US dollars. It uses four different productivity rates, depending on the team skill

and adds 35% for rework requirements. Also, the model includes a more detailed cost calculation

function, which calculates required cost and effort based on a team with multiple skill levels, using linear

equations.

Unisys makes cost estimations at different stages in the testing process, some very early while others

are made later. Because of this, the level of detail in the available information differs significantly. To

make sure the model is able to provide estimates in all situations we came up with three different input

forms: test case based input, scenario based input and requirements based input. We have seen that

that the results can be within 3.5% range using TCD based input, but more tests need to be run before

we can guarantee that accuracy. It does however seem very unlikely that it will be above the 20% range

mentioned in the first research question. Scenario and requirements based input have less accuracy and

have not been excessively tested, so we cannot indicate a range for these inputs yet.

Later, a secondary objective was added, with the aim to create a new supply dashboard Unisys can use

to make HR related forecasts. The related research question is:

2. How can the newly created models, together with existing forecasting reports, be combined into a

dashboard overview which provides forecasting figures related to manpower?

Designing estimation models for Unisys India 2011

23 | P a g e

We used existing headcount report, hire report, attrition report, demand report and bench report files

to realize this. Currently the new estimation models are not integrated; they could in the future be

connected to the demand report for increased atomization. At this time there is still some manual

interaction required, but the dashboard does provide a very clear overview of the required and actual

available human resources for a 6 month forecast.

5.2 Recommendations
In this section some points will be discussed by which Unisys can improve the model we created during

this research.

TCD based input

This version of the model has been the biggest focus of the research. It is fully finalized and operational.

However, if Unisys wants to be able to rely solely on this model, its results need to be verified more.

Two options exist:

 Have someone input historic data in the model, and verify the models outputs.

 Use the model parallel to existing procedures until team leaders are confident of the results.

The first option will lead to faster confirmation of the models output, but does require a lot of effort.

During this research this has not been done because historic data is not listed using the model’s input

characteristics. Therefore, if this is to be done, someone with enough expertise should be assigned. This

is the only way to ensure that historic data is translated into the proper input forms, which is required

for validation. The difficulty here is that this research was started because the team leaders that make

these estimations have very little time. Adding such a big task to someone’s responsibilities may not be

a good move.

The second option requires far less extra work, but it will take longer before old methods can be fully

abandoned. I do however recommend this approach, since only then managers will see the added value

of the model first hand, and thus feel confident enough to make the switch.

During this process team leaders should also document the difference (percentage) between the

model’s estimates, the current estimates, and the actual data. Hopefully the results will be as good as

the results we have seen when using Basha’s data, 3.5%.

There may still be errors in the model that we haven’t found during this research, using it in parallel may

identify such problems. Should they be found, the model can easily be tweaked using the “table”

sections. If someone does this he should verify the new results with other team leaders as well.

Scenario based input

This version of the model is a generalization of the TCD based input. It leaves out very little data, and

should therefore get nearly the same results as TCD based input. Of course only if information is

available. One important recommendation regarding the use of this input form is to fill in as many

Designing estimation models for Unisys India 2011

24 | P a g e

scenarios as possible, so that each bit of known information is used. This is preferred to grouping of

TCDs in one scenario.

Requirements based input

This input form has been created, but the scenarios we identified are in a very early stage. Before this

form can be used Unisys should have some more brainstorming sessions where people give the

requirements we identified more accurate scenarios. Once that has been done this should be used in

parallel to current estimation procedures to see whether the requirements result in correct scenarios.

This should be done before this form is used by the field team to make estimations. At this time the

results are very uncertain, so the field team should not yet rely on it.

Training

I have given a small presentation using a PowerPoint document and the model’s manual that have been

created. If in the future more people will use this model they should have similar presentations, to make

sure that everyone interprets the characteristics used in the same, correct way.

Supply Dashboard

The supply dashboard is fully working, and correct. It uses existing reports and simple mathematic

calculations, so as long as the reports are correct, the figures in the dashboard will be correct too.

In the near future it may be interesting to make the dashboard fully automated instead of partially.

Currently, the user needs to fetch the reports himself, put them in a folder, rename them and then press

a button. Although this is very little effort, it is valuable if it can be fully automated. This requires several

things:

 The report files must always use exactly the same interface:

o There can be no extra lines or columns added if full automation is desired.

o Filenames must be standard, instead of the current _June and _revised parameters.

 Someone with enough VBA programming skills must write macros that will automatically download

the files from the Unet server.

o This requires the files to always be stored in the same location.

After using the dashboard for a few months Unisys should consider whether these requirements are

worth the extra added value of a fully automated dashboard. During this research it has not been done

because of time restraints and because we chose not to interfere with the existing reporting structure at

this time.

Designing estimation models for Unisys India 2011

25 | P a g e

6 References

6.1 Literature
Patel, Nirav and others, for Cognizant Technology Solutions (2001). Test Case Point Analysis. Verion 1.0

Andirsin, Jari (2004). TPI – a model for Test Process Improvement. Received on 24-5-2011.

Boehm, Barry (1988). A Spiral Model of Software Development and Enhancement.

Schwaber, Ken (2004). Agile Project Management with SCRUM.

UNet - Unisys’ Intranet. Employee accesible databases with information regarding a.o. Unisys’

operations.

6.2 Interviews

Many interviews with different people at UGSI have taken place. The names of these people will remain

confidential.

Designing estimation models for Unisys India 2011

26 | P a g e

1 Appendix A: Testing techniques
Appendix A contains more information regarding testing techniques. Several different techniques will be

discussed. These techniques can all be categorized based on the characteristics discussed in the main

research.

1.1 Static Tests

1.1.1 Reviewing and inspecting code.

Reviewing code can be done either formal or informal, and both public as private. It means having other

people check your code for errors. Usually the aim of this test is to find and remove common

vulnerabilities such as format string exploits, race conditions, memory leaks and buffer overflows. The

latent error discovery rate is 60-65% for formal reviews and 50% for informal testing. Dynamic testing

practices usually have a 30% rate.

The most common form of formal testing is the Fagan code review. Here a person or a group of people

review code line by line, often using print outs. This procedure is very effective, but time consuming.

The steps in the Fagan approach are as follows:

 Planning: The inspection is planned by a moderator.
 Overview meeting: The author describes the background of the work product.
 Preparation: Each inspector examines the work product to identify possible defects.
 Inspection meeting: During this meeting the reader reads through the work product, part by

part and the inspectors point out the defects for every part.
 Rework: The author makes changes to the work product according to the action plans from the

inspection meeting.
 Follow-up: The changes by the author are checked to make sure everything is correct.

Common informal testing practices are the following: (can have equal results to Fagan review if

performed properly)

 Over-the-shoulder – One developer looks over the author's shoulder as the latter walks through
the code.

 Email pass-around – Source code management system emails code to reviewers automatically
after checking is made.

 Pair Programming – Two authors develop code together at the same workstation; this is
common in Extreme Programming.

 Tool-assisted code review – Authors and reviewers use specialized tools designed for peer code
review.

The common criticism to the code review approach is that it costs a lot of time/ money, while the
detected errors could also be discovered by the dynamic testing procedures (if executed properly).

Designing estimation models for Unisys India 2011

27 | P a g e

1.1.2 Walkthroughs

Another common static test is a walkthrough. The author of the code reads through the code with a

group of experts listening and asking questions on the software and choices he has made.

Compared to the Fagan approach the checking is done during the author’s explanation; whereas in the

Fagan approach the reviewer sits down to check for errors after he has had an explanation. The Fagan

approach is more thorough, and more time consuming.

1.2 Dynamic Tests
Opposite to static testing, dynamic testing implies executing the code (or a section if it) with some test

input. The procedure is to test the software with some input, and see whether the output is equal to the

expected output. There are some dynamic tests that can only be performed white box style, whereas

others can be operated in any box condition. The white box only tests will be described first.

1.2.1 White box dynamic tests

These include (amongst others) Code Coverage, Fault Injection and Mutation Testing.

1.2.1.1 Code Coverage

Code coverage is a test where a specified percentage of all code will be executed. If the program tester

doesn’t find any bugs and the required percentage has been covered the test is passed. Full code

coverage (100%) is hard to realize in larger programs, but would prove the software to be fully

functional.

 A tester can create a test that will run each line of code at least once. There are several levels in code

coverage:

 Functional coverage: each function in the code has been executed at least once.

 Statement coverage: each decision point in the program has been covered at least once.

 Decision coverage: each decision point in the program has been true and false at least once.

 Condition coverage: each Boolean sub expression has been both true and false at least once.

 Condition/ Decision coverage: both at the same time are covered. Very thorough test.

Examples of these coverage levels:

Function X outputs true if A && B, and false otherwise.

 Functional coverage: function X is called at least once.

 Statement coverage: Condition A && B has been called at least once.

 Decision coverage: Condition A && B has been true and false, for instance 1,1 and 0,1 have been

used as input.

 Condition coverage: A has been 1 and 0 and B has been 1 and 0.

Designing estimation models for Unisys India 2011

28 | P a g e

Condition/ Decision coverage is the most complete coverage, and can take a lot of time to realize 100%.

Note that condition coverage alone doesn’t guarantee decision coverage: here it can be achieved by

testing 1,0 and 0,1. Both A and B have been 0 and 1, but the statement has never reached true state.

1.2.1.2 Fault Injection

Fault injection is a technique that uses on purpose error making to reach sections of the code that would

otherwise rarely be triggered (for example error message sections). The code is reviewed, and a faulty

input is carefully put together by the tester to make the program enter a specific code area. This

technique is used to increase the level of code coverage.

1.2.1.3 Mutation Testing

Mutation testing is a tool to help the tester develop a proper test suite. The source code of the program

is altered slightly but significantly, to where it is no longer supposed to pass the test. If the test suite

identifies the error it passes the mutation test. If it does not, the test suite is apparently not able to pick

identify all errors and should therefore be altered.

A simple example of mutation testing is as follows:

Function X adds input parameters A and B. The result will be outputted. One way to do a mutation test

would be to change the + symbol to a – symbol. The function will no longer produce the desired output,

and should therefore not pass the test. However, if the mutated function is tested and it still passes, it is

clear that the test is not able to properly test the program (false positives). It should therefore be

altered.

1.2.2 Other dynamic tests

The following dynamic tests can be performed in any box: equivalence partitioning, Boundary value

analysis, All-pairs testing, Fuzz testing, Model-based testing, Exploratory testing and Specification based

testing.

1.2.2.1 Equivalence partitioning

This is a technique used to reduce to total number of tests cases that need to be developed. If a

particular section of software is supposed to accept a range of input to be valid, and all other ranges to

be invalid, it may suffice to check if from each range one case gives the desired result. These ranges are

called the partition, and this theory says that only one case from each partition needs to be tested to

evaluate the entire partition.

Example: inputs 1-5 are accepted all others should throw errors.

The partitions are as follows: < 1; > 5; and 1,2,3,4,5

Now if the test suite uses -3, 4 and 7 as test inputs. If the program returns errors for -3 and 7, and the

desired return for 4, the test is passed.

Designing estimation models for Unisys India 2011

29 | P a g e

This technique is not a full guarantee that the software will work, since not all input is tested. But at

least input from every partition is tested, which gives some information on the programs functionality.

100% testing is often impossible.

1.2.2.2 Boundary value analysis

This technique is similar to equivalence partitioning, but more thorough. Instead of testing only one

value in each partition, all boundary values are checked for validity. Boundaries are common locations

for bugs, and therefore require thorough testing. Usually the boundary itself and both sides near it are

tested. In the previous example boundaries are 1 and 5, so 0,1,2 and 4,5,6 would be used as inputs.

1.2.2.3 All-pairs testing

This technique tests all possible combination for each set of input parameters. This can easily be

automated, and is very useful because most bugs are caused by a simple faulty parameter or a

combination of two specific values of two parameters. All pairs testing catches both these faults. All-

pairs testing is considered a reasonable cost benefit compromise to very exhaustive, expensive methods,

and on the other hand less thorough methods.

1.2.2.4 Fuzz testing

Fuzzing throws randomized, invalid inputs at the system, to see how the system reacts to these inputs.

Should the system crash, the input parameters that caused it will be saved so the programmer can fix

the error. Fuzzing can easily be automated, and because it generates many different situations that can

cause an error it has a high cost benefit ratio. Fuzzing is not a thorough way of testing, because it can’t

guarantee to reach each line of code. Compare this to fault injection, where the tester can generate

faulty inputs that do reach each line of code. For this reason fuzzing should not be used as a bug finding

tool. Rather, it should be used as a tool for overall quality assurance.

1.2.2.5 Model-based testing

Using this technique the final test suite will be derived from several other elements. One of these

elements is a model which describes all elements of the testing data, mainly the test cases and the text

execution environment. This model is usually derived from another model which is a representation of

functional aspects of the software that needs to be tested.

Once the test model is completed, it needs to be transformed into an executable form. It is possible that

the test model itself already offers enough information to be transformed to an executable form, but

often it does not. In case it does not it is up to the tester to decide what procedures he will use to

transform the model. Because testing is mostly experimental and based on heuristics there is no best

practice to do this.

Once this is done there are three different ways to proceed:

Designing estimation models for Unisys India 2011

30 | P a g e

 Online testing: the modelled test suite creates input to test the system, and automatically feeds

this into the system. (dynamic testing)

 Offline automated testing: the modelled test suite creates input to test the system, saves it, and

feeds it into the system at a later point in time

 Offline manual testing: the modelled test suite creates input to test the system, which can be

interpreted by humans, and then humans feed it into the system that’s being tested

1.2.2.6 Exploratory testing

This is more an approach to testing than an actual procedure. The opposite of exploratory testing is

scripted testing, where the inputs and corresponding desired outputs are known at start. The tester

then sees if the software generates all desired output to each input. In exploratory testing the desired

output is not necessarily known. The tester tries to understand the software, and inputs both difficult

and easy cases, and sees how they are processed. He will then critically investigate the result.

An advantage over scripted testing is that less preparation is needed and mayor bugs are easily found.

Also deductive reasoning can be applied, which scripts cannot do. A disadvantage is that it is often

unclear which tests have exactly been run and which sections have been tested thoroughly and which

haven’t.

1.2.2.7 Specification based testing.

Here a test suite is built based on a specification. Usually the test suite is built based on a criterion that

must be satisfied, for instance a specific percentage must be met using code coverage.

This is similar to model based testing, although it can be more specific. This is because models are

usually built as a basis for test suites, whereas specification based testing can use specific criterions

which only apply to the software at hand. Model based testing is therefore more general than

specification based testing.

Designing estimation models for Unisys India 2011

31 | P a g e

2 Appendix B: More lifecycle models
In this appendix you will find more common lifecycle models. Unisys does not use these models, they

are only mentioned here for a more complete understanding of the lifecycle principle.

2.1 The V shaped Model
This model is similar to the waterfall model, except testing is considered a separate process, and testing

development will run parallel to software development.

While the system concept is being documented, a testing plan is setup too. During the identification of
system requirements, the requirements for system testing are setup as well. When the project moves to
Architectural design, integration tests will be built in parallel. And once the detailed design phase starts,
work will also begin on building Unit Tests. This procedure allows for testing to be done parallel to the
design process instead of doing it afterwards.

Like the waterfall model this model too is pretty straight forward and will move to implementation
phase fairly quick. The downside is that like in the waterfall model here too there is no room for
volatility in requirements.

2.2 Prototyping
When prototyping, the developing team first makes a working prototype of what they believe suits the

customer’s needs. This is then shown to the customer, who will have the opportunity to give feedback.

This allows for easier change, because the software has not reached its final state when the feedback is

received.

Another advantage is that not all project resources are needed at the beginning of the project, because
it takes longer to get to the implementation phase than waterfall/V models.

Finally, this model also allows for more volatility in requirements, because of the feedback moment
where users can clarify their needs more precise.

One downside of this approach is that total development will take longer, as prototypes may be thrown
away or drastically changed. If the requirements are too volatile, there may be a lot of useless
programming which can increase the costs of the project significantly.

This approach requires the programmer to have a good understanding of the area the software is built
for, as many aspects will not have been defined by the user at project start. To build a working
prototype the programmer may have to fill in some of these aspects himself.

2.3 Incremental model
In incremental development, the system is developed in different small stages, with each stage

consisting of requirements, design, development, and test phases. In each stage, new functionality is

added. This type of development allows the user to see a functional product very quickly and allows the

user to impact what changes are included in subsequent releases.

Designing estimation models for Unisys India 2011

32 | P a g e

Here too, not all resources are needed at project start because of the longer timeframe. This approach
should be used in complex projects where there is little understanding of the requirements at project
start.

The mayor downside is that if requirements change, parts of the software that are confirmed working
(i.e. fully programmed, and thoroughly tested) have to be changed. This can be very expensive. Because
of this, the incremental model should be used when requirements are not volatile, but on the other
hand not easy to fully grasp at project start.

2.4 The Spiral Model
The spiral model too is an iterative approach to software development. Here iterations are referred to

as spirals, but have no different meaning. The model has many similarities when compared to the

incremental model, however there is one major difference: the steps in the development process are

based on risk.

Risk in software development refers to the degree of difficulty to develop an area of code or a function.

Every following iteration addresses the next functions that seem to be the most challenging and hard to

code properly. Each spiral consists of: determining objectives, alternatives, and constraints, identifying

and resolving risks, evaluating alternatives, developing deliverables, planning the next iteration and

committing to an approach to the next iteration. Barry Boehm (1988).

The pros of this model are that it allows for a very complex project with incomplete understanding of
requirements, because development is done in small phases. Also it allows for high volatility in
requirements.

Designing estimation models for Unisys India 2011

33 | P a g e

3 Appendix C: RUP Development lifecycle
In the main document the following tools were mentioned. RUP uses these tools to realize better

integration of testing throughout the software development lifecycle. The tools will be explained briefly

in this appendix.

 Making testing a distinct discipline
 Using an iterative development approach
 Scheduling implementation based on risk
 Continuously verifying quality
 Letting use cases drive development
 Managing change strategically
 Using the right-sized process

The first step is making testing a distinct discipline. The RUP creates small groups in which activities are

sorted. One of these groups will be testing. For each group their contribution to the project is clearly

defined, as well as its interaction with other groups. This ensures that at project start its clear what each

group uses as input, and what output each group is supposed to deliver.

Every group will have a workflow schedule that it will follow during each iteration. The workflow

schedule for the testing group is shown in figure 3.1.

 Figure 3.1 Test group workflow schedule

Designing estimation models for Unisys India 2011

34 | P a g e

Furthermore, within each group clear roles are defined which all need to be filled. One person can take

on multiple roles if the project is small. The testing group has four roles, shown in the figure 3.2.

Figure 3.2 test roles in RUP

The second and third tools are using an iterative development approach and scheduling implementation
based on risk.
At project start a planning horizon is created. It includes the number of cycles and the length of each
cycle. The length can differ, based on resources available, size and difficulty of the project. Typically it
ranges from 4-6 weeks. The most risky and hard to develop parts of the projects are done at project
start, while more easy areas are done later in process. This might seem obvious, but using other models
easy development is mostly done at start because this allows for quick and large steps, which make it
easy to show progress to investors. Implementing risky parts later may however become impossible and
require costly changes.
If figure 3.3 the RUP development cycle is compared to that of the waterfall model.

Figure 3.3 RUP and Waterfall compared

Designing estimation models for Unisys India 2011

35 | P a g e

The next tool is continuously verifying quality. The RUP has created the small groups with clear task

descriptions for each role a person can have. The next step is creating quality check points for all

artifacts, activities and other deliverables throughout the project. This ensures that everyone on the

project has a feeling for the desired quality and excludes people who are merely creating documents

because it is their task. It is very irritating for project members to see someone delivering poor work and

getting away with it because there are no quality targets.

Letting use cases drive development is a tool through which RUP clearly differs from other models. At

project start a use case diagram is developed, which focuses on end user perceived value. Use cases

don’t show how internal systems work, as this is not relevant to the end user. At the end of each cycle

the work is compared to the use case. This ensures that unlike in traditional models, work is checked for

end user value, instead of working internal components.

Managing change strategically is a tool created to prevent big code changes near the end of

development. Using traditional models there is often a gap between the testing and development teams.

This gap results in development believing software has been approved by testing up till a certain level,

whereas testing may believe there are still areas of code being worked on because they haven’t passed

the tests yet. Often this results in mayor setbacks close to the final deadline, because only then it is

signaled that some vital areas are not fully working. Figure 3 illustrates how these setbacks can occur

using the waterfall model. These setbacks can however be far more destructive to the code, delaying

the project.

RUP solves this issue by adapting a change management strategy which allows testers to communicate

with the development team directly, and change the priorities in the development process to ensure

important bugs are filtered out when they are found.

The final tool is understanding how to implement RUP. RUP allows for very clear guidance throughout

the project, by creating many artifacts, groups, targets and such. However, for smaller projects this may

seem like a lot of extra work without any added value. RUP is scalable to any project: smaller projects

may not need a formal structure and a lot of controlling processes, whereas larger projects may need

more tools and all the processes available to allow for open communication between testing and

development.

Designing estimation models for Unisys India 2011

36 | P a g e

4 Appendix D: Scrum planning and methodology
In SCRUM methodology three different roles are defined:

 Scrum Master, also known as project manager

 Product owner, who represents the client

 Team member, member of a cross functional group of usually 7 people who do the actual work

(developing, testing etc).

The team works through ‘sprints’ which are periods of 2-4 weeks. Each sprint starts with a sprint

planning meeting, in which the team agrees on the highest priority tasks. The product owner also states

what he wants to have done after the next sprint. Each sprint should end with a working version of the

product, which can be presented to the client. If targets are not met during the sprint they are returned

to requirements for the next sprint.

A key principle in Scrum (and any other agile method) is that it realizes that during a project the client

can change its mind about what he wants and needs and that unpredicted challenges cannot be easily

addressed using traditional predicting or planning techniques. Therefore, Scrum uses an empirical

approach, and accepts that the problem cannot be fully understood and defined at project start. Instead

it focuses on maximizing the ability to deliver quickly and comply with changing requirements.

During a project the following schedule is used, created by Ken Schwaber (2004):

Daily Scrum

Each day during the sprint, a project status meeting occurs. This is called a daily scrum, or the daily

standup. This meeting has specific guidelines:

 The meeting starts precisely on time.

 All are welcome, but normally only the core roles speak

 The meeting is timeboxed to 15 minutes

 The meeting should happen at the same location and same time every day

 During the meeting, each team member answers three questions:[9]

 What have you done since yesterday?

 What are you planning to do today?

 Do you have any problems that would prevent you from accomplishing your goal? (It is the role

of the Scrum Master to facilitate resolution of these impediments, although the resolution

should occur outside the Daily Scrum itself to keep it under 15 minutes.)

Sprint Planning Meeting

At the beginning of the sprint cycle (every 7–30 days), a Sprint Planning Meeting is held. Work for the

following sprint is selected.

 Prepare the Sprint Backlog that details the time it will take to do that work, with the entire team

http://en.wikipedia.org/wiki/Scrum_(development)#cite_note-schwaberp135-8

Designing estimation models for Unisys India 2011

37 | P a g e

 Identify and communicate how much of the work is likely to be done during the current sprint

 Eight hour time limit

o (1st four hours) Product Owner + Team: dialog for prioritizing the Product Backlog

o (2nd four hours) Team only: hashing out a plan for the Sprint, resulting in the Sprint

Backlog

At the end of a sprint cycle, two meetings are held: the Sprint Review Meeting and the Sprint

Retrospective.

Sprint Review Meeting

 Review the work that was completed and not completed

 Present the completed work to the stakeholders (a.k.a. “the demo”)

 Incomplete work cannot be demonstrated

 Four hour time limit

Sprint Retrospective

 All team members reflect on the past sprint

 Make continuous process improvements

 Two main questions are asked in the sprint retrospective: What went well during the sprint?

What could be improved in the next sprint?

 Three hour time limit

First, the reviewer identifies the main tasks that need to be achieved during the process, and multiplies

them by a difficulty factor. The output is the number of person hours required for the project. To that a

risk factor is added, resulting in the initially estimated hours that will be billed to the client.

The difficulty factor is a factor on the scale C1 to C4. For each project the reviewer can determine the

number of person hours associated to each factor. This means that a significant portion of estimating is

done on gut feeling and expertise: the number of tasks need to be identified, the difficulty of these tasks,

as well as the number of hours each difficulty requires.

There are however more points further down the line where more planning is done. At these points in

time there is far more insight in the actual required efforts and types of tests that need to be run. At the

beginning of each testing iteration the evaluation mission is generated. Part of that task is to determine

what tests need to be run the coming period. During the initialization of the iteration new estimates can

be made, to check the earlier estimate for correctness, and to have more insight in the allocation of the

costs.

Even further down the line there is also historic data available on the previous iterations. That means

that the difficulty factors (C1-C4) can be reviewed and if necessary revised.

The difference in input means the model should be able to cope with more detailed input as the project

continues. For the initial estimation it is desirable to break the work down in large chunks, multiplied

Designing estimation models for Unisys India 2011

38 | P a g e

with the difficulty factor. Later the actual number of tests and type of tests can be input to allow for

more detail. Of course, it should also be possible to input detailed information at project start, but this is

most unusual.

Another way of estimating the work to be done is by standard fractions. This procedure is mostly used

when the estimation also includes the costs for development, not only testing. The procedure is as

follows:

The reviewer only considers core tasks, known as Coding and Unit Testing tasks, or CUT. From the

request the reviewer identifies all the core tasks, and assigns required hours to them. Then, to compute

the total required effort the reviewer multiplies the CUT by standard fractions. As a rule of thumb the

following fractions are used:

 Requirements Specification 15%

 Design 20%

 Coding and Unit Testing 30%

 Integration testing 20%

 User acceptance testing 15%

One other technique that could be used is function points based estimation. Unisys has a standard

procedure to award function points to a program. The points are based on several different parameters,

such as lines of code, number of functions, operating system(s), etc. It should be possible to translate

these points to a cost/effort estimation that can be used by the testing team.

