

MASTER THESIS

WORKFLOW MANAGEMENT

SOLUTION FOR A

SECURITY MANAGEMENT

APPLICATION

Zhen Chen

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER
SCIENCE
SOFTWARE ENGINEERING

EXAMINATION COMMITTEE

dr. Luís Ferreira Pires
dr. ir. M. J. van Sinderen
mr. W.Lindenhof

DOCUMENT NUMBER

 EWI/SE - 2012-004

NOVEMBER
2012

1

Abstract

Security management applications play important roles in the modern

society due to the increasing demand for better security. Today’s

advanced security management systems tend to be bigger and more

intelligent. The business processes involving these systems are far

more than simple and passive monitoring done by human operators.

Highly automated business processes are required. Moreover, these

processes could be rather unstable due to the rapid changing customer’s

requirements and high flexibility of systems.

Workflow management (WFM) promises a promising solution to

modeling, executing and managing business processes. WFM pushes

the business process perspective out of the domain of software

applications, which provides software sufficient flexibility to adapt to

rapid changing business processes. It is very beneficial to adopt WFM

in the domain of the security management applications.

This thesis proposes the WFM solutions for a concrete security

management application, namely the FlinQ security management

platform. The FlinQ platform selects Petri nets as workflow modelling

language and contains a Petri nets-based workflow engine. Our work

proposes the extensions for traditional Petri nets in order to improve the

capabilities of representing and manipulating data. The extensions take

full advantages of XML and XML data processing technology (i.e.

XQuery). In addition, our workflow definitions can be represented in a

XML format with a uniform syntax that is specified by XML Schema.

Moreover, we propose the design of the entire WFM framework for the

FlinQ platform. Based on our Petri nets-based language with the data

extensions, we integrate an XQuery processor and a native XML

database into the existing workflow engine. Moreover, we created a

workflow definition loader for loading the XML-based workflow

definitions into our workflow engine.

2

Preface

This thesis describes the results of my master final project, carried out

from February 2012 to September 2012 at FlexPosure, Netherlands.

With this thesis I complete my Master program in Telematics at the

University of Twente.

I would like to express my gratitude to all those who gave me the

possibility to complete this thesis. First of all, I would specially like to

thank my supervisors, Mr. Wouter Lindenhof, Dr. Luís Ferreira Pires

and Dr.Marten van Sinderen, who all provided me with guidance and

feedback during my research. I would also like to convey thanks to Mr.

Alef Schippers and Mr. Gaby Uljee who initiated my master project in

FlexPosure and found a position for me.

My sincere appreciation goes to FlexPosure for providing a very

pleasant work environment and all the great colleagues I have had the

opportunity to meet and who where more than willing to help me, in

particular Wouter, John, Gert-Jan, and Dieter.

I would like to acknowledge the support of Mr. Jan Schut who

convinced me to come to UT and helped me finding a scholarship

opportunity. Every time I had problems during the stay of two years,

your door was always open to me.

Finally, I would like to express my gratitude to my parents who made it

possible for me to study in the Netherlands and always stood behind

me and my decisions.

Utrecht, 19
th

 November, 2012

Zhen Chen

3

Table of Contents

1. Introduction .. 6

1.1 Motivation ... 6

1.2 Objectives .. 8

1.3 Approach ... 8

1.4 Structure ... 9

2. Security Management Applications ... 11

2.1 Introduction .. 11

2.2 Today’s Advanced Security Management Systems .. 11

2.3 FlinQ Security Management Platform .. 14

3. WFM Overview ... 17

3.1 Background ... 17

3.2 WFMS Concepts and Architecture .. 18

3.3 WFM Phases ... 20

3.4 Workflow Modelling Languages .. 21

3.4.1 Petri nets ..22

3.4.2 WS-BPEL ...25

3.4.3 Yet Another Workflow Language (YAWL) ...29

3.5 Data Perspective in Workflow Modelling Languages 32

3.5.1 Coloured Petri Nets..32

3.5.2 WS-BPEL ...33

3.5.3 YAWL ..36

3.6 Conclusion ... 38

4. Petri nets-based Workflow Modelling Language 40

4.1 Petri nets Elements Extensions ... 40

4.2 Data Representation and Manipulation .. 43

4

4.3 XML-based Workflow Definitions .. 48

5. Design of the WFM Framework .. 51

5.1 Requirements .. 51

5.2 Framework Overview .. 54

5.2.1 Workflow editor ..54

5.2.2 Workflow repository ..55

5.2.3 Workflow engine...56

5.3 Workflow Engine Core ... 57

5.4 XQuery Processor and Native XML Database ... 61

5.4.1 Sedna native XML database ..61

5.4.2 XML data processing languages ...61

5.4.3 XML database design ...66

5.4.4 Integration with engine core ...67

5.5 Workflow Definition Loader .. 70

6. Case Study .. 73

6.2 Data Initialization in XML database .. 73

6.3 Preconnection and Login of the Clients Applications 73

6.3.1 Proconnection workflow ...74

6.3.2 Login workflow ...76

6.4 Interaction with the Intercom Devices ... 80

6.5 Conclusion ... 85

7 Conclusion .. 86

7.3 General Conclusions .. 86

7.4 Answers to the Research Questions .. 87

7.5 Future Work .. 88

References ... 90

5

Appendix A. XML Schema for the XML-based workflow definitions 94

6

1. Introduction

This chapter is further structured as follows: Section 1.1 briefly presents the

motivation of this work, Section 1.2 states the objectives of this thesis,

Section 1.3 presents the approach adopted in the development of this thesis

and Section 1.4 outlines the structure of this thesis by presenting an overview

of the chapters.

1.1 Motivation

The increasing demand for security by society leads to a growing need for

surveillance activities in various environments. Based on this need, security

management applications have emerged.

The evolution of security management applications started with video-based

surveillance systems using analogue technology, namely Closed Circuit

Television (CCTV). These systems, which are referred to as first generation

surveillance systems, consist of a number of cameras located in multiple

remote locations and connected to a set of monitors, usually placed in a single

control room, via switches (a video matrix) [1]. Later on, most of the video

cameras started to use a digital Charge Coupled Device (CCD) to capture

images, and analogue techniques only to distribute and store data. With the

increased performance of fully digital systems powered by computers,

additional features could be realized, e.g. real time events detection and

license plate recognition [2]. These technological improvements have led to

the development of semi-automatic and more intelligent systems, known as

second generation video-based surveillance systems.

Today’s security management applications, also referred to as third

generation surveillance systems, are designed to deal with a large number of

cameras and sensors, a geographical spread of resources, many monitoring

points, and to mirror the hierarchical and distributed nature of the human

process of surveillance [1]. As a result, an automated system with high

intelligence and scalability is required. Moreover, today’s security

management systems are required to offer an integrated solution that

encompasses heterogeneous sensors and multiple separated traditional

surveillance applications, including access control, intercom and barrier gates

control, other than a single video-based surveillance system.

The business processes in today’s security management systems are far more

than simple and passive monitoring done by human operators. Automated and

long running business processes that need to be predefined with a minimum

of human interaction involved are highly required. In addition, due to the high

Introduction

7

flexibility of security management systems, rapid changing customer’s

requirements and market conditions, business processes involving security

management applications are also subject to frequent changes. Consequently,

many applications have to be modified at implementation level in order to

satisfy these changes, which is undesirable. Therefore, security management

applications need to provide sufficient agility to unstable and changing

business processes.

Workflow Management (WFM) promises a new solution to an old problem:

modelling, executing, monitoring and optimizing business processes. The

concept of WFM emerged in 1980’s and enjoyed large popularity in the past

three decades [3]. By identifying, modelling and managing business processes,

companies get insight in what they are doing, which parts of the process can

be automated or can be optimized. Moreover, WFM pushes the business

process perspective out of the domain of software applications, instead of

hard-coding business processes in the applications. This provides software

sufficient flexibility to adapt to rapid changing business processes.

In the current IT industry, many WFM products are offered by various

vendors. These products are used and integrated into different kinds of

application domains. However, the adoption of WFM in the domain of the

security management applications is rarely discussed in the literature. WFM

provides a promising solution to handle increasingly complex business

process issues for today’s security management applications.

Process modelling is a dominant factor in WFM. Workflow modelling

languages offer uniform syntax and structures for modelling and analyzing

business processes. Popular workflow modelling languages include Petri nets,

Web Service Business Process Execution Language (WS-BPEL) and Yet

Another Workflow Language (YAWL). Some of these languages provide

formal semantics and graphical notations. Some of them are also executable,

which means that the processes defined with these languages can be deployed

and directly executed by workflow engines.

Many workflow modelling languages are more concerned about the control

flow perspective. However, the data perspective also plays a vital role in

workflow modelling although it is usually ignored. Currently, many security

management applications tend to be data-centric. The desired workflow

modelling language should be capable of representing and manipulating data.

In this work, we select Petri nets as our workflow modelling language.

However, classic Petri nets is limited concerning data. Some new languages,

like WS-BPEL and YAWL, wrap the data in XML format and completely

rely on XML-based standards for data processing. XML offers high flexibility,

high extendibility and strong data types support in terms of data

representation. Moreover, the XML data processing standards, like XPath

and XQuery are able to support high-level data manipulation. Considering

Introduction

8

these benefits of using XML and XML data processing standards, it is worth

investigating how Petri nets and XML technologies can be combined.

1.2 Objectives

The main goal of this thesis is to investigate and propose WFM solutions in

the domain of the security management applications, including support for

data representation and manipulation. By introducing WFM, security

management systems are capable of modelling, automating and analyzing

complicated business processes. Moreover, WFM pushes the business process

perspective out of the domain of software applications. The software system

is expected to enjoy more flexibility, and the cost of application development

and maintenance should also be reduced.

The work has been inspired by an existing WFM framework that has been

developed for a concrete security management platform (i.e. FlinQ) and

contains a Petri nets-based workflow engine. However, this workflow engine

has limited functionality, especially lacking of the capability of data handling.

Our research thus mainly works towards the improvement on the ability of

handling data in this WFM framework.

During the development and improvement of the WFM framework in the

FlinQ security management platform, the following research questions are

considered:

(1) Which extensions of Petri nets are available for improving the capability

of data representation and manipulation?

(2) Which technology and standards can be used for improving the

capabilities for data representation and manipulation in Petri nets?

(3) How to integrate data processing and management services in a Petri

nets-based workflow execution environment?

1.3 Approach

The following steps have been taken in order to pursue the defined goals and

answer the research questions listed above:

 We performed a literature study on WFM and workflow modelling

languages. We studied three popular languages: Petri net, WS-BPEL and

YAWL. In particular, we focused on the data perspective of workflow

modelling languages. In our study, we investigated how the data behind

Introduction

9

and related to WFM can be represented and manipulated in these

languages.

 We investigated security management applications. We produced an

overview of security management applications including their evolution,

the main characteristics and challenges. This part of work has been

conducted by means of literature study and also a case study of a

concrete application (i.e. the FlinQ security management platform).

 We identified and determined the requirements of our WFM solutions for

the FlinQ security management platform.

 We proposed an appropriate Petri nets variant as workflow modelling

language to improve the capability of data handling by using XML

technology.

 Based on this language, we designed our WFM framework for the FlinQ

platform. In particular, we integrated the XQuery processor and a native

XML database with the workflow engine core.

 We investigated possible tool environment and software components that

could be used in the development of our WFM framework, and

developed the proposed WFM framework by implementing some

selected components.

 We performed a case study to test and evaluate our proposed WFM

solutions.

1.4 Structure

The structure of this thesis reflects the steps of the approach taken in this

work. This thesis is further structured as follows:

Chapter 2 gives an overview of security management applications and

discusses the FlinQ products as an example application.

Chapter 3 gives an overview of workflow management. Firstly it explains the

basic concepts of WFM and WFMS by means of a generic WFMS

architecture, WFMS components and WFM phases. Secondly, it introduces

three popular workflow modelling languages namely Petri net, WS-BPEL and

YAWL. Thirdly, this chapter investigates the data perspective in workflow

modelling languages. We investigate the capabilities of data representation

and manipulation in these three languages.

Introduction

10

Chapter 4 proposes and elaborates our Petri nets-based workflow modelling

language with the extensions for data handling. In addition, it discusses our

XML-based workflow definitions.

Chapter 5 presented the design of the entire WFM framework. We

particularly discuss the integration of the XML data with an XQuery

processor into the workflow engine.

Chapter 6 gives some examples in which business processes are modeled and

executed in security management applications based on our WFM framework,

in order to perform a case study in the FlinQ platform.

Chapter 7 presents the conclusions and future work of this research.

11

2. Security Management

Applications

This Chapter gives an overview of security management applications and

discusses the FlinQ security management platform as an example.

This chapter is structured as follows: Section 2.1 introduces the evolution of

security management applications. Section 2.2 identifies and discusses the

main characteristics of today’s advanced security management systems.

Section 2.3 gives an overview of the FlinQ security management platform and

particularly identifies the issues in the domain of WFM.

2.1 Introduction

Nowadays, security management has been an inseparable part of our daily

lives due to the demand for better security. Security management applications

take the advantages of the modern ICT technology to perform the monitor and

surveillance tasks.

The first security management solutions were based on an analogue

technology called Closed-Circuit television (CCTV). In the most trivial case

these were cameras connected with TV sets located in one room [2]. And the

majority of these CCTV surveillance systems use analogue techniques for

image distribution and storage.

Currently most of the video cameras use a digital Charge Coupled Device

(CCD) to capture images. With high performance of fully digital systems

powered by computers additional features can be expected, e.g. real time

events detection and license plate recognition [2]. These technological

improvements have led to the development of semi-automatic and more

intelligent systems, known as second generation video-based surveillance

systems [1].

The increasing demand for security by society leads to a growing need for

surveillance activities in more various environments. Therefore, security

management systems are getting bigger and more complicated. Today’s

security management systems are required to offer an integrated solution that

encompasses heterogeneous sensors and multiple separated traditional

surveillance applications, including access control, intercom and barrier gates

control, other than a single video-based surveillance solution. In Chapter 2.2,

we highlight and explain three key characteristics of today’s advanced

security management systems.

2.2 Today’s Advanced Security Management Systems

Security Management Applications

12

• Intelligent system

Traditional video-based surveillance systems mainly focus on passive

monitoring and video storage with human operators facing a large number of

monitors, over a long period of time and trying to detect suspicious situations.

In practice, this method is ineffective due to the decreasing level of attention

of human beings after a short time. Additionally, in large security

management systems the number of monitors is too large for an accurate

observation. Today’s security management systems are required to be more

automated and intelligent.

A lot of work has been done to enable security applications to be more

intelligent in both in commercial and academic environments. Some of

research aims at improving image processing by generating more accurate

and robust algorithms in object detection and recognition, tracking, human

activity recognition, database and tracking performance evaluation tools [1].

Moreover, some intelligent security management systems tend to use specific-

purpose hardware and digital intelligent cameras to perform intelligent tasks

like intrusion and motion detection [1] and detection of packages.

• Flexible framework for the large scale system

Today’s security management systems tend to have large scale and

encompass heterogeneous software components, sensors and actuators. A

flexible framework is thus required. Such a framework is supposed to provide

decentralized architecture with high expandability and upgradability.

Nowadays the Service-Oriented approach is usually chosen to build flexible

and extendable software architecture. According to the Service-Oriented

Architecture (SOA) paradigm, software should be delivered as loosely

coupled and cooperating services which should be described, published and

easily discovered. SOA is mature in the business world and has been adopted

in the domains of security management like video conferencing [35] or the

public security sector [36].

• Handle with complex and changing business processes

The more complicated system results in more complex business processes.

The business processes in today’s security management systems are far more

than simple and passive monitoring done by human operators, which requires

more automated business processes. In addition, high flexibility of system,

rapid changing customer’s requirements and market conditions lead to

changing and unstable business processes. This needs sufficient flexibility

and agility in the system. Workflow Management (WFM) provides a

promising approach to assist security management applications in handling

with complex and changing business processes. Network Enabled

Surveillance and Tracking [34] is one of examples that WFM has been used

Security Management Applications

13

in security management applications. However, the implementation of WFMS

in security management systems is rarely discussed in the literature and

research.

Network Enabled Surveillance and Tracking (N.E.S.T.) [34] is an example of

today’s advanced security management solutions. N.E.S.T. is designed to

manage and control a large number of objects (e. g. humans or sensors), tasks

and events. It adopts a decentralized and SOA-based architecture that

provides high expandability and upgradability. Furthermore, based on its

SOA environment, N.E.S.T. consists of multiple intelligent services for data

processing (e. g. motion detection and tracking in multi-sensor video,

abandoned luggage detection) and information analysis (e.g. semantic

description of complex situations).

In particular, N.E.S.T. uses a workflow modelling language, namely WS-

BPEL, to handle and automate complex business processes. The surveillance

processes in N.E.S.T are modelled in WS-BPEL that orchestrates the required

intelligent services. The execution environment is a WS-BPEL engine which

connects to the services through the so called Service-Bus.

The second bus (Result-Bus) is built for very frequent data with a singular

semantic e.g. alarm events. A third infrastructure for streaming data is called

Streaming-Bus. Static and dynamic data are stored in the World Model

through the Model Access Service.

Figure 2.1 shows the overview of N.E.S.T system.

Figure 2.1 N.E.S.T system overview [34]

Security Management Applications

14

2.3 FlinQ Security Management Platform

FlinQ is an advanced security management application which is developed by

FlexPosure B.V. It is designed as a platform that provides high flexibility to

easily integrate with different traditional surveillance applications and

heterogeneous sensors. Depending on different customers’ requirements,

these separate surveillance applications can be CCTV system, access control

system, barrier gates control system and intercom system.

Figure 2.2 shows overview of FlinQ system. The entire platform is built on a

Client/Server-based architecture. Client side applications are available for

multiple platforms, including Windows, Android and iOS.

In particular, Connectors are built as additional layer between FlinQ server

and external applications. A connector is basically designed as an adapter that

enables server to be able to interact with heterogeneous software components,

including cameras, actuators and sensors in the subsystems.

Figure 2.2 FlinQ security management platform overview

As an advanced security management application, the FlinQ platform takes

full advantages of its integrated applications for achieving more intelligent

and automated security management solutions. For instance, DIVA, a smart

video-based surveillance system is one of applications which have been

integrated into the FlinQ platform. It is able to perform several intelligent

Security Management Applications

15

tasks, like facial recognition, object recognition, license plate recognition and

scene change detection.

Due to the centralized architecture, the majority of business processes are

implemented and controlled at the server side. Server performs these business

processes by interacting with both client applications and connectors. The

interaction is quite event-based and conducted by sending the XML messages.

Connectors and client applications send the event messages to the server when

the events occur. While server sends the command messages to connectors

and clients for performing tasks. Figure 2.3 depicts the interaction between

server, connectors and clients by the XML messages.

Figure 2.3 The interaction between server, connectors and clients

For example, when sensors detect smoke in the certain room, it will send an

event message with relevant information to notify the server via connectors.

Then the server has to decide which actions should be taken to handle this

smoke event, which is actually the business process need to be handled.

Server might firstly notify all active client applications this smoke event by

enabling alarm and showing live video of relevant locations, which is done by

sending the command messages. Then server stores the information related to

this smoke event in database. In addition, based on the different event types

(in this case it is a smoke event) and priorities, the client application might

have different reactions, like only blinking button or enabling alarm or even

automatically take actions without waiting for users’ response. All of these

things involve the business processes in the FlinQ platform.

Like most of advanced security management applications, FlinQ requires

highly automated business processes with a minimum of human interaction

involved. Moreover, the highly flexible architecture of the FlinQ platform

Security Management Applications

16

results in rapidly changing and unstable business processes. Therefore, there

is a high demand for the WFM support in the FlinQ platform.

Currently, a WFM framework in the FlinQ platform is being developed. This

framework selected a Petri nets variant as workflow modelling language and

built a Petri nets-based workflow engine for workflow execution. However,

the used modelling language and the corresponding workflow engine do not

have the capabilities of representing and manipulating data. This becomes a

fatal drawback for the FlinQ platform where the business processes tend to be

quite data-centric. In addition to this, the entire WFM framework is still rather

uncompleted as a typical workflow management system.

17

3. WFM Overview

This chapter reports on the conducted literature study, giving an overview of

WFM. In Section 3.1, the emergence of WFM is discussed from a historical

perspective. Section 3.2 investigates WFMS concepts and architecture based

on the Workflow Reference Model. Section 3.3 distinguishes between BPM

and WFM by considering the BPM lifecycles. In Section 3.4, we discuss three

popular workflow modelling languages. Section 3.5 investigates the data

perspective in these workflow modelling languages. Finally, Section 3.6

draws conclusion.

3.1 Background

Software systems in the past were designed to support the execution of

individual tasks. However, due to the changing customer requirements and

market conditions, today’s software systems need to support more complex

business processes. There is a high demand for controlling, monitoring and

support the business processes and workflows. Based on this need the term

workflow management has emerged [4].

However, there were no generic tools to support workflow management in the

earlier periods. As a result, parts of the business process were hard-coded in

the applications. For example, an application to support task A triggers

another application to support task B. This implicitly means that one

application knows about the existence of this other application. However, this

is undesirable, because every time the underlying business process is changed,

applications need to be modified. In addition, it is very common that similar

workflows need to be implemented in the different applications and it is not

possible to monitor and control the entire workflow. For the purpose of

solving these issues, workflow management systems thus have been first

introduced by several software vendors in 1980’s.

Figure 3.1 Historical evolution of software application architecture [6]

WFM Overview

18

A workflow management system (WFMS) is a generic software tool which

allows for the definition, execution, registration and control of workflows [5].

The impact of workflow management systems on the IT industry has been

already widely acknowledged. Currently many vendors are offering a

workflow management system. The benefits of a WFMS are comparable to

the benefits of a user interface management systems (UIMS) or a database

management systems (DBMS). Flexibility, integration of applications and a

reduction in development costs are the incentives for using a WFMS. Just like

DBMSs that push the data out of the applications, and UIMSs that push the

user interaction out of the applications, the emergence of workflow

management systems enables software developers to push the business

processes out of the applications. Figure 3.1depicts the historical evolution of

application architecture.

3.2 WFMS Concepts and Architecture

This section identifies WFMS concepts and architecture which are

standardized by Workflow Management Coalition (WFMC) that was founded

in 1993. WFMC is an international organization whose mission is to promote

workflow and establish standards for WFMS [6].

The Workflow Management Coalition defines workflow as:

“The automation of a business process, in whole or part, during which

documents, information or tasks are passed from one participant to another

for action, according to a set of procedural rules.” [7]

In a typical WFMS, the workflows are case-based. An executing instance of a

workflow model is called a workflow case or workflow instance. Examples

of workflow cases are an order, a request for information or an alarm event

which needs to be handled in a surveillance system. Workflow cases are often

generated by an external customer, devices or sensors.

A workflow is designed to handle similar cases. Cases are handled by

executing tasks in a specific order described in a workflow definition. Since

multiple cases can be handled simultaneously by following the same

workflow definition, the same task can be executed for many cases.

WMFC also published the Workflow Reference Model that reveals the

generic architecture of Workflow Management System, including relevant

components and interfaces.

Figure 3.2 shows the main components and interfaces of WFMS.

WFM Overview

19

Figure 3.2 Workflow Reference Model [7]

The main components and interfaces of Figure 3.2 are discussed below:

Workflow Engine is a software service that provides the runtime execution

environment for a workflow instance.

Workflow Enactment Service consists of one or more workflow engines and is

responsible for creating, managing and executing workflow instances. The

workflow engines that belong to a workflow enactment service may be

deployed in a centralized or distributed manner.

Process Definition Tools are able to analyze, model, describe and document a

business process. These tools may support various workflow modelling

languages, like Petri nets and BPEL. The final output of the process definition

tools is a process definition which can be interpreted at runtime by the

workflow engine(s) within the enactment service.

Workflow Client Applications (also referred as worklist handlers) are software

entities which interact with the end-user in those activities which require

involve human resources.

Invoked Applications are any applications, programs or services which should

be called and invoked in the workflows. The invoked application may be local

to the workflow engine, co-resident on the same platform or located on a

separate, network accessible platform. For instance, the web services that are

involved in the WS-BPEL process are invoked applications.

Administration & Monitoring tools are created for management and control

beyond the workflow engines. These tools are used to register the progress of

workflow cases and to detect bottlenecks.

WFM Overview

20

Interface 1 is responsible for the exchange of workflow definitions between

process definition tools and workflow engines. A universal interchange

format for the process definition is required.

Interface 2 was developed to facilitate Workflow Client Application

integration with different workflow engines.

Interface 3 copes with the interaction between invoked applications and

workflow engines. It is implemented according to the access mechanisms of

the invoked applications.

Interface 4 supports workflow interoperability models and the corresponding

standards for interworking between multiple workflow enactment services.

3.3 WFM Phases

Recently, Business Process Management (BPM) has been widely considered

as the next step in the evolution of WFM. The WFMS, according to the

definition given by the Workflow Management Coalition, emphasizes the

focus on the process enactment, i.e., the use of software to support the

execution of operational processes. However, it has been realized that the

traditional focus on enactment is too restrictive [8].

The concept of BPM extends the traditional WFM. The differences between

BPM and WFM can be identified by considering the BPM lifecycle.

The BPM lifecycle contains four phases: process design, system configuration,

process enactment and diagnosis [9]. These four phases are overlapping and

the whole lifecycle is iterative. Each phase is discussed as below:

1. Process design

This phase consists of identifying existing processes and capturing the

business processes in process models.

2. System configuration

This phase is also referred to as Implementation phase. In the system

configuration phase, designed processes are implemented by configuring a

process-aware information system (e.g., a WFMS). Currently it is common

that the configuration is done by deploying executable business process

definitions in the BPMS.

3. Process enactment

WFM Overview

21

The process enactment phase is the runtime phase of the lifecycle. In this

phase, business processes are executed and monitored by a BPMS.

4. Diagnosis

This phase is also referred to as the Evaluation phase. In this phase, the

executed processes are analyzed to identify problems and to find areas for

improvement. The conclusions drawn in the diagnosis phase are input for the

next iteration of the lifecycle.

Figure 3.3 The BPM lifecycle to compare WFM and BPM [9]

Figure 3.3 depicts the relationship between workflow management and

business process management using the BPM lifecycle. The focus of

traditional workflow management (systems) is on the lower half of the BPM

lifecycle. Specifically, there is little support in WFMS for the diagnosis phase,

since only a few workflow management systems support simulation,

verification, and validation of process designs. Moreover, the support offered

by WFMS in design phase is also limited to the availability of an editor in

most cases; however, analysis and real design support are often missing.

To sum up, BPM extends the capabilities of WFM by offering more

sophisticated build-time and runtime diagnostic capabilities and more

sophisticated capabilities in the process design phase.

3.4 Workflow Modelling Languages

Workflow modelling languages play important role in WFM. They offer a

uniform form for abstracting, modelling and analyzing business processes.

Moreover, some of them can also be executed after deployment in their

corresponding workflow engines.

In this section, we discuss three popular workflow modelling languages,

namely Petri net, Web Services Business Process Execution Language (WS-

BPEL) and Yet Another Workflow Language (YAWL). For each language,

we elaborate its languages syntax and constructs by giving some practical

WFM Overview

22

examples. The benefits and drawbacks of each language are also summarized

in this part.

3.4.1 Petri nets

Petri net is a mathematical modelling language which is widely used in

workflow management systems. It is able to describe complex processes

which are characterized as being concurrent, asynchronous, parallel and

nondeterministic with both formal notion and graphical representation. The

classical Petri net was invented by Carl Adam Petri in the 1960s [4].

Language constructs and rules

In brief, a Petri net is a directed, connected, and bipartite graph in which each

node is either a place or a transition. Places and transitions are connected by

directed arcs. Tokens occupy places. The elements and the rules of Petri nets

are described as follows:

 Place

Places are graphically represented as circles. A place may have zero or more

tokens. Places are passive components and model the system states.

 Transition

Transitions are graphically represented as squares. Transitions are active

components modelling activities, processes or events.

 Arc

Arcs are graphically represented as arrows. Arcs link a place to a transition or

vice versa, never places or transitions.

 Token

Tokens are graphically represented as black dots and occupy places. The

distribution of tokens in the Petri nets is changed by the occurrence of

transitions.

 Marking

Any distribution of tokens over the places that represents a configuration of

the net is called a marking. A marking represents the current status of the

Petri net.

 Enabled Transition

A transition is enabled if each of its input places contains at least one token.

WFM Overview

23

 Firing

An enabled transition can fire (i.e., it occurs). When it fires it consumes a

token from each input place and produces a token for each output place.

It is worth noting that the execution of Petri nets is nondeterministic. This

means if a transition is enabled, it may fire, but it does not have to. Since

firing is nondeterministic, and multiple tokens may be present anywhere in

the net (even in the same place), Petri nets are well suited for modelling the

concurrent behavior of distributed systems.

Mapping workflow management concepts onto Petri nets is rather

straightforward: tasks are modelled by transitions, conditions are modelled by

places, and cases are modelled by tokens.

Example

A simple example of using Petri net to model workflow in practice is

discussed below. Figure 3.4 shows the Petri net diagram of the example.

The example shows the real business process of insurance claim for car

damage. Four tasks check insurance, contact garage, pay damage and send

letter are modelled directly by transitions in Petri net. Moreover, there are two

additional transitions (fork and join) and five places (p1, p2, p3, p4 and p5)

which are used to route a workflow case through the procedure in a proper

manner. Finally, the place i and the place o represent the starting point and

ending point of the entire workflow respectively.

When a token occupies the place i and the workflow start, the transition fork

fires. Due to the additional transition fork, the tasks check insurance and

contact garage are executed in parallel. Only if these two tasks are both

finished, the transition join can be enabled. Place p5 has a condition that

determines which tasks (pay damage or send letter) is executed. The decision

is based on the validity of this insurance claim, which is known from the

result of check insurance and contact garage. Then the token finally enters

place o and the insurance claim process completes.

In particular, workflow cases (tokens) are processed independently, i.e. a task

executed for some case cannot influence a task executed for another case.

However, during the processing of a case there may be several tokens

referring to the same case. For instance, if transition fork fires, then there are

two tokens, one in p1 and one in p2, referring to the same claim.

WFM Overview

24

Figure 3.4 An insurance claim process modeled using Petri net

Extensions

In the last two decades the classic Petri net has been extended with colour,

time and hierarchy [6]. These extensions enable the modelling of more

complex processes especially where data and time are important factors.

 Coloured Petri Nets (CPNs)

Each token has attached a data value called the token colour. The token

colours can be investigated and modified by the occurring transitions. With

CPNs, it is possible to use data types and represent complex data

manipulation.

 Timed Petri Net (TPNs)

A firing time to each transition is introduced. The firing rule is modified by

considering transition’s firing time. TPNs are normally used for performance

evaluation.

 Hierarchical Petri Net

A subnet concept is added to handle the graphical and logical complexity of

large workflow process definitions by modularization. The Petri net notation

is simply extended by another special transition symbol that represents a

particular subnet.

 Workflow Nets (WF-Net)

WFM Overview

25

A WF-Net [4] is supposed to have a very regular structure: It must contain

exactly one place with no incoming arcs and exactly one place with no

outgoing arcs. Moreover, the net graph must be strongly connected, i.e. from

each node there exists a directed path to any other node. The most important

property of WF-Nets is soundness, which means that every maximal

execution of the net which starts from the initial marking eventually leads to

the final marking.

Table 3.1Advantages and Disadvantages of using Petri nets in WFM

Advantages Disadvantages

Formal semantics High complexity

Graphical representations Not executable

High expressiveness

Straightforward mapping onto
WFM concepts

Abundance of analysis techniques

To sum up, Table 3.1 lists the main advantages and disadvantages of using

Petri nets in the domain of WFM. As formalism, Petri nets provide formal

notion but also graphical representation, which enables intuitive process

design and abundance of analysis techniques. Petri nets also offer high

expressiveness supporting all the primitives needed to model a workflow,

including sequential, parallel, conditional and iterative structures. In addition,

mapping Petri nets model onto WFM concepts is rather straightforward. The

drawbacks of using Petri nets are also obvious. In the real world, Petri nets-

based workflow definitions tend to become too large for design and analysis

even for a modest-size system. Moreover, Petri nets are initially regarded as

formalism rather than execution language. Due to the lack of available

execution engines, it is hard to directly deploy and execute Petri net-based

workflows.

3.4.2 WS-BPEL

In brief, the Web Services Business Process Execution Language (WS-BPEL)

is a XML-based language for describing the behavior of business processes

based on Web services. The first version, BPEL4WS 1.0, was originally

submitted to OASIS WSBPEL Technical Committee by Microsoft and IBM

in July 2002, which combined concepts from Microsoft’s WSFL and IBM’s

XLANG. The latest version that was renamed as WS-BPEL 2.0 has been

approved as an OASIS standard in 2007 [10].

The language gives its users the freedom to describe business processes in

two ways: executable or abstract. An abstract process is a business protocol,

specifying the message exchange behavior between different parties without

WFM Overview

26

revealing the internal behavior for any one of them, while an executable

process specifies the full implementation logic of the business process and is

meant to be executed by an execution engine.

The WS-BPEL is also regarded as an Orchestration language other than a

Choreography language. An Orchestration describes how services can interact

with each other at the message level, including the business logic and

execution order of the interactions from the perspective and under control of

single endpoint, while choreography is typically associated with the public

message exchanges, rules of interaction, and agreements that occur between

multiple business process endpoints, rather than a specific business process

that is executed by a single party. The choreographies can be described using

the Web Services Choreography Description Language (WS-CDL).

Language structure

WS-BPEL language is based on XML format. The core elements of a WS-

BPEL document are greatly influenced by web service concepts, and mainly

include:

 roles of the process participants;

 port types required from the participants;

 orchestration, which is the actual process flow;

 correlation information, the definition of how messages can be routed to

their corresponding instances.

The language constructs of BPEL are contained within a <process> construct

that has a unique name and represents an executable process. The most

important elements available in the language are:

1. Linking Partners

 <partnerLinks>

A BPEL process use <partnerLinks> to model conversational relationships

with its partners. The relationship is established by specifying the roles of

each party and the interfaces that each provides.

2. Process variables and data flow

 <variables>

It defines the data variables used by the process, providing their definitions in

terms of WSDL message types, XML Schema types (simple or complex), or

XML Schema elements. Variables allow processes to maintain state between

message exchanges. In addition, using <assign> and <copy> message data

WFM Overview

27

can be copied and manipulated between variables, which is discussed in

Chapter 4.4.

3. Correlation

 <correlationSets>

Since there might be multiple business-process instances active at the same

time in the BPEL Engine, all messages sent to the business process have to be

transmitted to their corresponding business process instances. Correlation sets

are used for this purpose.

4. Event, fault, and compensation handling

 < eventHandlers >

It specifies what to do when certain events happen within scope.

 <faultHandlers>

It provides fault handling functionality in WS-BPEL. It enables alternate

execution path to be invoked for dealing with faulty conditions.

 < compensationHandler >

A business process often contains several nested transactions. The overall

business transaction can fail or be cancelled after many enclosed transactions

have already been processed. Then it may be necessary to reverse the effect

obtained during process execution. WS-BPEL provides the capability to

define compensation actions by defining compensation handlers.

5. Process main body

The process definition contains the process main body, which specifies

activities and their relations. The process main body can contain multiple

kinds of BPEL activities, like <receive>, <reply>, <invoke>, <assign>, <

sequence >, < scope >, < flow >, etc.

Figure 3.5 shows the syntax structure of a WS-BPEL process.

<process name="NCName" targetNamespace="anyURI"
queryLanguage="anyURI"?
expressionLanguage ="anyURI"?
suppressJoinFailure="yes|no"?
exitOnStandardFault="yes|no"?
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

<extensions>?
<extension namespace="anyURI" mustUnderstand="yes|no" />+

</extensions>

WFM Overview

28

<import namespace="anyURI"?

location="anyURI"?
importType="anyURI" />*

<partnerLinks>?
<partnerLink name="NCName"

partnerLinkType="QName"
myRole="NCName"?
partnerRole="NCName"?
initializePartnerRole="yes|no"?>+

</partnerLink>
</partnerLinks>

<messageExchanges>?

<messageExchange name="NCName" />+
</messageExchanges>

<variables>?

<variable name="BPELVariableName"
messageType="QName"?
type="QName"?
element="QName"?>+
from-spec?

</variable>
</variables>

<correlationSets>?

<correlationSet name="NCName" properties="QName-list" />+
</correlationSets>

<faultHandlers>?
<!-- faulthandler elements -->

</faultHandlers>

<eventHandlers>?

<!--Eventhandler elements -->
</eventHandlers>
Activity

</process>
Figure 3.5 Syntax structure of a WS-BPEL process [10]

Table 3.2 summarizes the main advantages and disadvantages of WS-BPEL.

WS-BPEL is the de-facto standard for implementing business processes based

on web services and Service-Oriented Architecture (SOA). It properly

supports both process modelling and execution. Many existing WFM

products supporting WS-BPEL are ready to use. WS-BPEL’s workflow-based

structure is quite intuitively appealing for process designers. However, WS-

BPEL is too tightly coupled with web services and the SOA environment. In

addition, WS-BPEL has no formal notions and graphical representations.

WFM Overview

29

Table 3.2Advantages and Disadvantages of using WS-BPEL

Advantages Disadvantages

Easy deployment and execution No graphical representation

Take advantages of Web Services
and SOA

No formal notion

Block-structured Tightly coupled with Web Services

3.4.3 Yet Another Workflow Language (YAWL)

Yet Another Workflow Language (YAWL) is a workflow modelling language

based on so called Workflow Patterns. The language and its supporting

system are developed and maintained by researchers at Eindhoven University

of Technology and Queensland University of Technology [11].

The original goals of YAWL were to define a workflow language that would

support all (or most) of the Workflow Patterns in [12] and that would have a

formal semantics. The Workflow Patterns initiative [13] aims at establishing a

more structured approach to the issue of the specification of control flow

dependencies in workflow languages. Based on an analysis of existing

workflow management systems and applications, this initiative identified a

collection of patterns corresponding to typical control flow dependencies

encountered in workflow specifications, and documented ways of capturing

these dependencies in existing workflow languages. These patterns can be

used as the benchmark to compare and evaluate various workflow languages.

Figure 3.6 lists the main Workflow Patterns (control flow perspective)

discussed in [12].

Figure 3.6 Overview of the 20 Workflow Patterns described in [12]

WFM Overview

30

The related research revealed that Petri net support most of the Workflow

Patterns [13]. Hence, YAWL language was initially developed using high-

level Petri net as its starting point. Here the term high-level Petri nets refers to

Petri nets extended with colour (i.e., data), time, and hierarchy. However,

YAWL extends high-level Petri nets to overcome the limitation of its

expressiveness in terms of control flow.

Just like Petri nets, YAWL has a formal foundation and also a graphical

representation. Moreover, the designed YAWL workflow specifications can

also be represented in XML format. YAWL has XML syntax and is specified

in terms of an XML schema.

Last but not least, YAWL is not developed as a standalone language. It is

supported by the YAWL system which provides the full implementation of a

typical WFMS. Multiple components are contained in the YAWL architecture.

The main components include a YAWL designer, a YAWL engine and a

YAWL repository.

Language

YAWL is based on Petri nets. However, to overcome the limitations of Petri

nets, YAWL has been extended with features to facilitate patterns involving

multiple instances, advanced synchronization patterns, and cancellation

patterns. Moreover, YAWL allows for hierarchical decomposition and

handles arbitrarily complex data. The YAWL elements are shown in Figure

3.7.

Figure 3.7 Symbols used in YAWL [13]

In brief, each YAWL process definition consists of tasks and conditions

which can be interpreted as transitions and places in Petri nets, respectively.

WFM Overview

31

Tasks are either atomic tasks or composite tasks. A composite task refers to a

process definition at a lower level in the hierarchy, while an atomic task

forms the leaves of the graph-like structure. This actually corresponds to the

hierarchy extension to Petri nets.

Each process definition has one unique input condition and one unique output

condition as the starting and end point, respectively.

Tasks and conditions are connected by directed arcs. However, unlike Petri

nets, it is possible to connect ‘transition-like objects’ like composite and

atomic tasks directly to each other without using a ‘place-like object’ (i.e.,

conditions) in-between. Compared to Petri nets, this can avoid unnecessary

‘place-like objects’ and decrease the size of the process definition.

Four special transition types are defined to express branching situations in a

more compact way: AND-split, AND-join, XOR-split and XOR-join, each of

them being associated with a graphical symbol. The former two types are

used for modelling parallel behaviours (Pattern 2 and Pattern 3) while the

latter two are used for modelling exclusive routing (Pattern 4 and Pattern 5).

However, these special transitions are actually nothing more than shortcuts

(“syntactic sugar”) for an underlying equivalent in standard Petri nets.

OR-split and OR-join are introduced to be able to model Pattern 6 (Multi

choice) and Pattern 7 (Synchronizing merge). In YAWL, both composite

tasks and atomic tasks can have multiple instances (Patterns 12-15). In the

case of multiple instances, it is possible to specify upper and lower bounds for

the number of instances. And it is also possible to specify a threshold for

completion that is lower than the actual number of instances. Finally, the

symbol “remove tokens” shown in Figure 3.7 enables YAWL to effectively

handle with cancellation patterns (Patterns 19 and 20).

Table 3.3Advantages and Disadvantages of YAWL

Advantages Disadvantages

Inheriting the advantages of Petri
nets

High learning curve for users

Highest expressiveness Interaction with limited software
components

Easy Deployment and Execution

YAWL system behind

Data manipulation support

Table 3.3 reveals the main advantages and disadvantages of YAWL. YAWL

extends high-level Petri nets and offers comprehensive support for the

control-flow Workflow Patterns. It inherits the advantages of Petri net. In

contrast with high-level Petri net, it is developed as an execution language

WFM Overview

32

with support of the YAWL engine. Particularly, YAWL offers full support for

the data perspective by using XML-based standards, i.e. XPath and XQuery.

However, YAWL has limited capability to interact with heterogeneous

software components.

3.5 Data Perspective in Workflow Modelling

Languages

This section investigates the data perspective in workflow modelling

languages. We explain how the data is represented and manipulated in

different workflow modelling languages.

Most of the workflow modelling languages were initially designed focusing

on the control flow perspective. However, the data perspective (data

modelling and handling) of workflow modelling language is usually ignored.

Current security management applications are data-centric and data plays a

vital role in these applications. Therefore, workflow modelling language is

required to provide capabilities of handling data. In the remainder of this

chapter, we study and investigate how data is modeled, represented and

manipulated in three different workflow modelling languages, namely

Coloured Petri Net, WS-BPEL and YAWL.

3.5.1 Coloured Petri Nets

Classic Petri nets are limited concerning data, since tokens are

indistinguishable. In other words, only one kind of token exists in Petri nets

and it is not possible to attach any data values and data types into the tokens.

Data manipulation in a Petri net-based WFMS is thus impossible. In order to

solve this issue, Coloured Petri Nets (CPN) [14] have been introduced as an

extension of classic Petri nets.

Compared with classic Petri nets, the most significant difference in CPN is

that tokens are distinguishable. In other words, each token in a CPN has a

data value called the token colour attached to it. These token colours can be

inspected and modified by the occurring transitions. In addition to this, tokens

are classified into different types according to their attached data, and each

place has an associated type determining the kind of data that the place may

contain.

Moreover, CPN also adds a collection of extensions to the arc element in Petri

nets in order to take advantage of typed tokens attached data values. Firstly,

the arcs going out of a transition can have expressions specifying how to

compute the values of tokens being produced by the transition. When a

WFM Overview

33

transition is successfully fired, the expressions on its outgoing edges are

evaluated to produce new tokens to feed into the place at the end of the edge.

Secondly, incoming arcs of a transition can have conditions. The transition is

only enabled when some set of tokens from the source places satisfy the full

set of conditions for its incoming arcs.

Figure 3.8 depicts a simple example of a CPN. This CPN contains 3 places,

two of them have the pair type <Int,String>, and one has type <Int>. The

transition takes one token of the pair type, and one of the integer type, and it

produces one token of the pair type. The arcs coming into the transition

declare names for the elements of the token values ((V,S) and (W)), and the

arc leaving the transition describes the function that generates the values for

outgoing tokens ((V*W,S)). This small net starts with two tokens, (4,”Foo”),

and (2). After transition firing, a token is produced that contains a value

corresponding to the pair (8, “Foo”) in the bottom place.

Figure 3.8 A simple example of Coloured Petri Net

In particular, CPN introduces a high-level programming language, namely

Standard ML, to provide the primitives for the definition of data types and the

manipulations of data values [14]. Standard ML is a functional programming

language that supports multiple atomic data types (integers, reals, strings,

booleans and enumerations) and structured data types (products, records,

unions, lists and subsets). Arbitrary complex functions and operations can

also be defined by using Standard ML. The computational power of Standard

ML expressions is equivalent to lambda calculus (and hence to Turing

machines) [15].

3.5.2 WS-BPEL

Due to the fact that WS-BPEL is completely XML-based, every piece of data

in a WS-BPEL process is in XML forms. This includes the messages passed

to and from the BPEL process, the messages exchanged with external services,

and local variables used by the process.

WFM Overview

34

WS-BPEL enables users to define variables. Variables provide the means for

holding application data or messages that represent the state of a BPEL

process. Variables are also used to hold the data that are needed to maintain

the stateful behaviour or the process. A variable is associated with either an

element defined in a schema, a simple XML Schemas type, or a message

defined in a WSDL document. The syntax of the <variables> declaration is

shown in Figure 3.9.

Data flow in WS-BPEL is not explicitly specified but can be realized using

(globally) shared variables. In brief, <assign> activities are used to copy

(parts of) variables to other variables or calculate the value of an expression

and store it in a variable using XML data processing techniques, namely

XPath and XSLT. Figure 3.9 shows the syntax of the <assign> declaration in

WS-BPEL.

<assign standard-attributes>
standard-elements

 <copy>+
 from-spec
 to-spec
 </copy>

</assign>
Figure 3.9 Syntax of the <assign> activity [10]

In general, the <assign> activity copies a type-compatible value from the

source ("from-spec") to the destination ("to-spec"), using the <copy> element.

By using XML query and expression languages (XPath and XSLT), it is also

possible to construct and insert new data to the destination variables. Figure

3.10 shows a simple example. This <assign> activity copies part of the value

of the variable “AutoLoanRequest” to update part of the value of the variable

“InterstateCarLoanRequest”. In particular, the expressions

“/creditRating/text()” and “/credit/text()” defined in the query attributes are

XPath statements. These XPath expressions can select and retrieve the

specific nodes in XML documents. For instance, the expression

“/creditRating/text()” selects the text content from the root node

“creditRating”.

<assign>
<copy>

 <from variable="AutoLoanRequest"
 part="creditRating"
 query="/creditRating/text()"/>
 <to variable="InterstateCarLoanRequest"
 part="credit"
 query="/credit/text()"/>

</copy>
</assign>

Figure 3.10 Example of <assign> activity using XPath expressions

WFM Overview

35

However, XPath is not only limited to offer the syntax for accessing parts of

an XML document. With multiple defined operators, XPath enables users to

implement basic mathematical and logical operations. Moreover, XPath

provides users with a library of standard functions, including node set

functions, string functions, boolean functions and number functions. These

functions enables more complex data manipulations. WS-BPEL 2.0 supports

XPath 1.0

XSLT can also be used for data manipulation in WS-BPEL. XSLT

(Extensible Stylesheet Language Transformations) is a declarative, XML-

based language used for the transformation of XML documents [16]. It is

usually used to convert XML data into other data format, like HTML and

XHTML. In addition to this, XSLT can also translate XML messages between

different XML schemas, or make changes to documents within the scope of a

single schema, for example, by removing the parts of a message that are not

needed. Figure 3.11 shows how XSLT can be used in WS-BPEL.

<variables>
 <variable name="A" element="foo:AElement" />
 <variable name="B" element="bar:BElement" />
</variables>
...
<sequence>
 <invoke ... inputVariable="..." outputVariable="A" />
 <assign>
 <copy>
 <from>
 bpel:doXslTransform("urn:stylesheets:A2B.xsl", $A)
 </from>
 <to variable="B" />
 </copy>
 </assign>
 <invoke ... inputVariable="B" ... />
</sequence>
Figure 3.11 Complex document transformation in WS-BPEL using XSLT [10]

A common usage of XSLT in WS-BPEL processes involves receiving an

XML document from one service, converting it to a different schema to form

a new request message, and sending the new request to another service.

Document conversion can be accomplished via the bpel:doXslTransform

function. In the example of Figure 3.11, a service is invoked, and the result

(foo:AElement) copied to variable A. The <assign> activity is used to

transform the contents of variable A to bar:BElement, and copy the result of

that transformation to variable B. Variable B is used to invoke another service.

The style sheet A2B.xsl contains the XSL rules for converting documents of

Schema foo:AElement to Schema bar:BElement.

WFM Overview

36

3.5.3 YAWL

Although YAWL was initially designed with focus on the control flow, it has

been extended to offer full support for the data perspective [13]. Compared to

most of the existing workflow management systems which use a propriety

language for dealing with data, YAWL completely relies on XML-based

standards like XPath and XQuery. This is similar with data handling in WS-

BPEL. XQuery is a query and functional programming language that is

designed to query collections of XML data. It provides the means to extract,

construct and manipulate XML data. In particular, XQuery uses the XPath

expression syntax to address specific parts of an XML document. It

supplements this with a SQL-like FLWOR expression. A FLWOR expression

is constructed from the five clauses after which it is named: FOR, LET,

WHERE, ORDER BY, RETURN. Figure 3.12 shows an example of XQuery

expression.

for $x in doc("books.xml")/bookstore/book
where $x/price>30
order by $x/title
return $x/title

Figure 3.12 XQuery expression

Like WS-BPEL, data are also represented as XML documents in YAWL.

Two kinds of variables can be defined in YAWL, namely net variables and

task variables. The former is used for storing data that need to be accessed

and/or updated by tasks in a net, while the latter is used for storing data that

needs to be accessed and/or updated only within the context of individual

execution instances of a task. YAWL applies strong data typing. Data types

are defined using XML Schema. Users can also write their own XML

Schemas to define more complex data types. In YAWL, data usage is also

part of variable definition. There are input and output variables, input only or

output only variables, and local variables. In general, data are written to input

variables and read from output variables. Local data usage is applicable to net

variables only. The local (net) variables are used to store data that can be

manipulated only internally within the scope of the corresponding net [17].

The example shown in Figure 3.13 defines the variable for storing the name

of the customer. The type of this variable is string and an initial value is

defined as “Tom”.

<rootNet id="make_trip">
<localVariable

name="customer">
<type>xs:string</type>
<initialValue>

Tom

WFM Overview

37

</initialValue>
</localVariable>

………

Figure 3.13 Variable definitions in YAWL

YAWL supports data passing between variables, which can be considered

internal data transfer, and data interaction between a process and its operating

environment (i.e. workflow engine users and web services), which can be

considered external data transfer.

Internal data transfer is always conducted between nets and their tasks using

XQuery. YAWL does not support direct data passing between tasks. Assume

task A and task B in net N. To pass data from task A (e.g. variable Va) to task

B (e.g. variable Vb), an appropriate net variable of N (e.g. Vn) must be

available to convey data from Va to Vb. In YAWL, each task can be assigned

an input parameter and/or an output parameter, which define internal data

transfer associated with that task. Input Parameters use an XQuery to extract

the required information from a net variable, and pass this information to the

corresponding task variable, while output parameters define data passing in

the opposite direction.

External data transfer does not apply to any local variable or any variable of a

composite task. In YAWL, when data are required from the external

environment at runtime, either a web form is generated requesting the data

from the user or a web service is invoked that can provide the required data

[17].

By using XQuery and XPath, YAWL supports data-based conditional routing.

When tasks in YAWL have XOR or OR splits, the branch to choose is

determined by conditions associated with branches. These conditions are

boolean expressions that involve data within the process. The data may

determine the evaluation results of the conditions and therefore influence the

operation of the process.

In YAWL, the branching conditions are specified as XPath Boolean

expressions in the flow detail for tasks with XOR or OR splits. The branches

(flows) whose conditions (predicates) evaluate to true are executed by the

YAWL engine. Figure 3.14 shows an example of data-based conditional

routing in YAWL using XPath.

WFM Overview

38

Figure 3.14 Example of data-based conditional routing [17]

As an example, Figure 3.14 shows the XPath expression

“/PerformBooking/requireCar/text() = ‘true’”, which is specified at task

“Decide”, for choosing the branch of “Book Car” in the “PerformBooking”

process. The corresponding branch is executed if the value of this XPath

expression returns true.

3.6 Conclusion

In this chapter, we investigated the existing WFM theories and techniques.

WFMS architecture was studied by identifying WFMS components and

interfaces defined in the Workflow Reference Model. We also identified the

basic WFM concepts. In addition, we distinguished between BPM and WFM

by considering the BPM lifecycle.

Three popular workflow modelling languages (i.e. Petri net, WS-BPEL and

YAWL) were discussed and evaluated. In particular, we investigated the data

perspective in these languages.

Petri nets is widely used in the domain of WFM and it is also selected as our

workflow modelling language in the FlinQ platform. Classic Petri net is

limited concerning data. CPN extends classic Petri nets by attaching data

values to the tokens and introducing a high-level programming language,

namely Standard ML, to support data definition and manipulation. On the

other hand, WS-BPEL and YAWL takes full advantage of XML techniques to

represent and manipulate data. XML offers high flexibility, high extendibility

and strong data types support in terms of data representation. Moreover, the

XML data processing standards, like XPath and XQuery are able to support

high-level data manipulation. Therefore, adopting XML technologies

WFM Overview

39

provides a promising approach to improve the capabilities of data handling in

Petri nets.

40

4. Petri nets-based Workflow

Modelling Language

Petri nets has been selected as the workflow modelling language in the FlinQ

platform. And a corresponding workflow engine that is based on a variant of

classic Petri nets has also been built. However, as we discussed in Chapter 3,

classic Petri nets is not capable of representing and manipulate data. In this

chapter, we proposed our Petri nets-based workflow modelling language with

the extensions for data handling. The language takes full advantage of XML

techniques to represent and manipulate data.

This chapter is structured as follows: Section 4.1 presents the variant of Petri

nets that is supported by the workflow engine in the FlinQ. Section 4.2

elaborates the proposed extensions for the data representation and

manipulation. Finally, Section 4.3 defines and explains our XML-based

workflow definitions.

4.1 Petri nets Elements Extensions

Before discussing our extensions for the data handling, we first briefly

introduce the variant of traditional Petri nets that is supported by the existing

workflow engine in the FlinQ platform. Our extensions for the data

perspective of Petri nets are also based on this variant.

Figure 4.1 The basic elements of our Petri nets-based language

Petri nets-based Workflow Modelling Language

41

This variant reuses all the elements of Petri nets, including transitions, places,

arcs and tokens. Moreover, this variant adds a collection of extensions to the

elements in classic Petri nets, which is mainly inspired by WF-Nets [4] and

YAWL [11]. These extensions focus on the improvement of Petri nets in the

control-flow perspective. In the remainder of Section 4.1.1, we briefly

discuss these extensions. Figure 4.1 shows the graphical representation of the

elements in our modelling language.

(1) Transitions and Actions (Hierarchy structure support)

Transitions represent the tasks or activities that should be performed.

Transitions must have zero or more Actions, which are atomic tasks (the

smallest unit of work). This allows users to combine several smaller tasks as

one transition to execute a more complex task. The benefit of using this

hierarchical structure is that the size of Petri nets can be limited. Actions

included in the same transition are executed sequentially. Figure 4.2 shows a

simple example that illustrates the relationship between Transitions and

Actions.

Figure 4.2 Relationships between Transitions and Actions

(2) Emitter and Collector transitions

Inspired by WF-Nets, we introduce the concepts of Emitter and Collector.

The concepts of Emitter and Collector transitions are totally same with the

input place and output place in WF-Nets, which explicitly indicates the start

and end of the workflows.

An Emitter transition is the start of a workflow. It can be regarded as the

source of tokens. When a workflow begins, its Emitter transition generates

the tokens that represent workflow cases. Emitter transitions can not have

input places.

Petri nets-based Workflow Modelling Language

42

A Collector transition is the end of a workflow. It is the sink for tokens and it

consumes tokens like normal transitions. Collector transitions can not have

output places.

(3) XOR transitions

XOR transitions are used to support conditional choices for branch structures.

An XOR transition consumes a token from each input place, but generates a

token for only one of its output places. Each XOR transition has two output

places which are connected with one Positive arc and one Negative arc. XOR

transitions can contains a condition, which explicitly defines an evaluation

condition for choosing one of the workflow branches. In our language, these

evaluation conditions are defined by XQuery statements that return boolean

values. Figure 4.3 depicts a Petri net that contains an XOR transition.

Figure 4.3 An example of XOR transition

(4) Criteria

This element is our extension for classic Petri nets. Each Petri net has Criteria

to define the evaluation conditions to determinate if the token should be

accepted and performed by this Petri nets. Like XOR transition, the

evaluation conditions in Criteria are also specified by XQuery statements

which return boolean values.

In practice, multiple Petri nets could be deployed and running in the workflow

engine, representing different workflows. When a new token (i.e. workflow

case) is generated, only some of workflows are responsible for handling it. By

introducing the concept of Criteria, we ensure that each Petri net (workflow)

only accept and handle the tokens (workflow cases) that it is responsible for.

(5) Reset and Block Arcs

These two existing extensions for Petri nets are also adopted in our language.

Reset arcs enable Petri net to model cancellation. When the transition at the

Petri nets-based Workflow Modelling Language

43

end of a Reset arc fires, all tokens that occupy the place at the start of this

Reset arc are removed. Reset arcs are represented by arrows with dashed lines.

Block arcs are also referred to as inhibitor arcs in some literature [24]. A

Block arc only connects a place to a transition. The transition that is

connected with a Block arc only fire when the place is empty. This actually

specifies a constraint on transitions’ execution. Block arcs are represented by

a bold point at the transition with a solid line to the place.

Like classic Petri nets, mapping WFM concepts onto our workflow modelling

language is rather straightforward. Tasks are modelled by transitions or

actions. Places explicitly model the workflows’ states. Workflow cases

(instances) are modelled by tokens.

4.2 Data Representation and Manipulation

Our extensions for Petri nets mainly focus on improving the capabilities of

data representation and manipulation. The extensions are inspired by some

ideas of Coloured Petri Nets (CPN) [14]. However, our language conducts

data manipulation by totally relying on XML-based data processing standard

instead of Standard ML, namely XQuery (and XPath). The extensions include:

(1) XML data representation

CPN allows tokens to contain different data (colours). In our extensions, these

data are represented in XML forms. These XML data are attached to the

corresponding workflow cases (tokens) in their entire life cycle (from Emitter

to Collector).

(2) Explicit specifications for token data manipulation by XQuery

In CPN, the arcs going out of a transition can have expressions specifying

how to compute the values of tokens being produced by the transition.

Our language also allows users to explicitly specify the actions for

manipulating data within workflow definitions. Specifically, actions can

contain XQuery statements that manipulate the XML data attached to tokens.

In these defined XQuery statements, the symbol $TOKEN is used to represent

the current XML data values of the tokens. When these actions fire, the data

values of the tokens are changed. The results of defined XQuery statements

are assigned to the tokens as the new data values.

Moreover, the data manipulations defined in actions are not limited to the

token data. They can also involve other XML data in a known data source

(e.g. an XML database). For example, the following XQuery statements can

be defined in an action of our Petri nets. It retrieves the <device> elements of

Petri nets-based Workflow Modelling Language

44

which the type attribute equals the device_type defined in the attribute of the

token ($TOKEN/@ device_type). Then we reconstruct the new token: add the

<newtoken> as the root node and put the retrieved <device> elements inside.

The resulting XML data of the entire XQuery expression are assigned to the

token as its new data values.

<newtoken>
{doc("devices.xml")// device[@type= $TOKEN/@device_type]}
</newtoken>

Figure 4.4 XQuery statements for token data manipulation

(3) Branching conditions defined by XQuery

The evaluation conditions for the criterias and XOR transitions are also

defined by XQuery statements. These XQuery statements are boolean

expressions that return true or false. Again, consider the example shown in

Figure 4.3. The XOR transition specifies the XQuery statements

$TOKEN/@form_id=’1’ for its condition. This condition checks if the value

of the token attribute form_id is 1 or not.

(4) Update and management of the persistent XML data

The data manipulations in our language are not limited to modifying the data

values of the tokens. It is allowed to define the actions that are responsible for

updating and managing the XML data in persistent data stores.

However, the XQuery standard [26] does not offer the facilities of creating

and updating the persistent XML data. Some XQuery update extensions are

thus established, including XQuery Update Facility 1.0 [33] and the XQuery

update language proposed by [32]. These update extensions can be used in

our language to define the actions for managing the persistent XML data.

Figure 4.5 shows an example of the XQuery update language [32] statements

defined within the Petri nets’ action. The statement inserts a new <state>

node into the selected elements of the SiteData XML document. And it does

not modify the token data.

UPDATE INSERT
<state name="{string($TOKEN/@event_type)}" />

INTO doc('SiteData')//Device[@id=string($TOKEN/@internal_id)]
Figure 4.5 XQuery update statements for updating persistent data

(5) XML Schema definitions and validation in places and criteria (optional)

In CPN, each place specifies colour set (the data type of tokens) which is

allowed to reside on this place. In our language, each place can also specify

the allowed XML data structures and types by XML Schema [25]. Places

cannot accept the XML data that do not meet the defined XML Schemas. In

the case that the XML data is not valid for the place, the corresponding

Petri nets-based Workflow Modelling Language

45

workflow cases are terminated. Figure 4.6 shows a simple example where

each place (P1 and P2) specify its XML Schema. In this workflow, Transition

T1 adds one more element <time> that stores the current time to the token.

The schema in the place P2 also adds the corresponding element to ensure

that the new token produced by T1 is valid. Similarly, the criterias in our

Petri nets can also use XML Schemas for the XML data validation.

Figure 4.6 XML Schema specifications at places

The data validation at each place ensures the validity of the token data.

Moreover, by specifying the XML data structure and types at each place,

users can clearly aware how the XML data look like at each step of the

workflows. Also, it is more convenient for the workflow designers to define

the data manipulation actions based on these predefined XML Schemas.

However, for the cases where the XML data are in a uniform structure or the

flexibility of data structures and types is required, the data validation at each

place is not necessary. Therefore, our language proposes this feature as an

optional extension. By default, places can accept any XML data.

In addition, our extensions also take advantages of XML Schema for strong

data types support. The XQuery standard [26] already includes the primitive

data types (e.g. string, integer, date) defined in XML Schema [25]. Moreover,

the XQuery standard allows users to import the external XML Schema

definitions for supporting the user-defined data types.

Figure 4.7 depicts an example of how data is represented and manipulated in

our Petri nets. This example shows a simplified workflow for the login in the

FlinQ platform.

Petri nets-based Workflow Modelling Language

46

When users log in FlinQ platform with their username and password, the

client application will send a message to the server. In practice, this actually

generates a new workflow case (i.e. token). And the data sent to the server

will be wrapped in XML forms and attached to this workflow case. We

assume the user logs in with the username “admin” and the password “admin”.

Therefore, the following XML data will be attached to this workflow case.

And the entire XML data of the input token is shown in Figure 4.8.

Figure 4.7 Data representation and manipulation in Petri nets

First of all, the criteria evaluates the input token data based the evaluation

condition: $TOKEN/@form_id = 'LoginState.Login' . The XQuery expression

checks if the value of the attribute form_id in XML data’s root element is

LoginState.Login or not. The evaluation condition returns true. Therefore, this

new token is accepted by this Petri net, which means the corresponding

workflow case is handled by this Petri net. Otherwise, this token will be

ignored by this Petri net.

<FormEvent action_id="Login" form_id="LoginState.Login" remote_id="2">
 <FormData>
 <json>
 <String name="Action">Login</String>
 <String name="Form">LoginState.Login</String>
 <Object name="Properties">
 <Object name="Password">
 <String name="Name">Password</String>
 <String name="Type">Text</String>
 <String name="Value">admin</String>
 </Object>
 <Object name="Username">
 <String name="Name">Username</String>
 <String name="Type">Text</String>

Petri nets-based Workflow Modelling Language

47

 <String name="Value">admin</String>
 </Object>
 </Object>
 </json>
 </FormData>
</FormEvent>

Figure 4.8 The input token data for login

This token is then emitted by the Emitter transition and occupies the place p1.

The XOR transition XOR 1 is thus enabled. XOR 1 contains an evaluation

condition that is defined as Figure 4.9. The XQuery statements check the

values of username and password. Only if the username is “admin” and the

password is “admin”, the condition returns true. Again, the evaluation

condition is true for this token. The positive branch is selected and Transition

1 will be performed.

string($TOKEN//Object[@name='Username']/String[@name='Value']) = 'admin'
and
string($TOKEN//Object[@name='Password']/String[@name='Value']) = 'admin'

Figure 4.9 XQuery statements in XOR 1

At this moment, the XML data in this token has not been modified yet. Data

modifications are conducted by the actions that defined by XQuery

statements. In the example, Transition 1 consists of four actions. Action 1 and

Action 3 contain XQuery statements. When these two actions fires, their

defined XQuery statements are also be executed to manipulate XML data in

token. However, other actions with no XQuery statements do nothing with the

XML data of the tokens. Figure 4.10 and 4.11 shows the XQuery statements

defined in Action 1 and Action 3, respectively.

let $token := $TOKEN
return
<ClientCommand type='CloseForm' form_id='LoginState.Login'>
 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>

Figure 4.10 XQuery statements in Action 1

let $token := $TOKEN
return
<ClientCommand type='EnterSite'>
 <Client id="{string($token/OriginalToken/FormEvent/@remote_id)}"/>
 <OriginalToken>{$token/OriginalToken/*}</OriginalToken>
</ClientCommand>

Figure 4.11 XQuery statements in Action 3

Action 1 actually reconstructs the XML data of this token for sending

ClientCommand: CloseForm. Action 2 then uses this reconstructed XML

snippets to send the CloseForm command to the client application. However,

Petri nets-based Workflow Modelling Language

48

Action 2 does not change the XML data of the token. Next, Action 3

reconstructs XML data again for sending ClientCommand: EnterSite. Action

4 then uses this reconstructed XML snippets to send the EnterSite command

to the client application. Again, Action 4 does not change the token data.

When the login request fails (i.e. the negative path is selected), Transition 2 is

performed. This transition contains only one action that specifies the

operation for updating the persistent XML document (doc('LoginFailsLogs')).

The action is defined by XQuery update language (Figure 4.12) and it simply

stores the current token data into the log file for the failed login request.

Notice that this action does not modify the token data values.

UPDATE INSERT $TOKEN into doc('LoginFailsLogs')/logs
Figure 4.12 XQuery update statements in Transition 2

Finally, the Collector transition consumes this token and the entire workflow

is completed.

4.3 XML-based Workflow Definitions

The workflows modeled by our language can also be represented and saved in

XML format. Firstly, like many executable language (e.g. WS-BPEL and

YAWL), these XML-based workflow definitions with the uniform XML

syntax can be easily deployed and executed by the workflow engine.

Moreover, XML-based workflow definitions can be used as interchange

documentations among the software developers, service officers and our

customers.

Our XML-based workflow definitions have a uniform syntax that is specified

in terms of an XML Schema. Appendix 1 shows this XML Schema definition.

Our XML-based workflow definitions include the structure of Petri nets,

namely the control flow perspective of workflows. Moreover, they also

contain the information about data definition and manipulation, namely

XQuery statements.

Figure 4.13 depicts an example of XML-based workflow definitions that is

the login workflow we discussed in Section 4.2. For each Petri net workflow,

there is a root element <PetriNet> to start with. The elements <Criteria>,

<Transtion>, <Place>, <Arc> can be defined as child elements with the

scope of <PetriNet>.

The element <Criteria> with an attribute type is used to define the criteria of

Petri nets. Its text contains XQuery statements.

Petri nets-based Workflow Modelling Language

49

The element <Transition> has an attribute type to declare the type of this

transition that could be EMITTER, XOR, DEFAULT and COLLECTOR. The

element <Transition> can contain child elements <Action>. In particular,

The XOR <Transition> elements can contain child element <Condition>.

The text of <Condition> elements is used to specify XQuery statements for

the evolution condition.

The element <Action> has an attribute type. Only the <Action> elements

with “SednaQueryAction” type can contain XQuery statements which are

responsible for XML data manipulation. Other <Action> types, like

“SendCommandToClientAction” and “SendCommandToConnectorAction”,

play no role for data manipulation and should not contain any XQuery

statements.

The elements <Transition> and <Place> has an attribute id. Each Transition

or Place should have a unique id number in the certain Petri net.

Finally, the <Arc> elements specify its source nodes and destination nodes.

Its attribute type is used to declare the type of this arc that could be either

POSITIVE or NEGATIVE.

<?xml version="1.0" encoding="utf-8"?>
<PetriNet xsi:noNamespaceSchemaLocation="Petrinets.xsd" xmlns=""
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Criteria type="SednaCriteria">

$TOKEN/@form_id = 'LoginState.Login'
</Criteria>

 <Transition id="1" type="EMITTER" />
 <Transition id="2" type="XOR">
 <Condition type="SednaCondition">
 <![CDATA[
 string($TOKEN//Object[@name='Username']/String[@name='Value'])='admin'

and
string($TOKEN//Object[@name='Password']/String[@name='Value'])='admin'
]]>

 </Condition>
 </Transition>
 <Transition id="3" type="DEFAULT">
 <Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN

return
<ClientCommand type='CloseForm' form_id='LoginState.Login'>

 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>

]]>
</Action>

 <Action type="SendCommandToClientAction" />

Petri nets-based Workflow Modelling Language

50

 <Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN

return
<ClientCommand type='EnterSite'>

 <Client id="{string($token/OriginalToken/FormEvent/@remote_id)}"/>
 <OriginalToken>{$token/OriginalToken/*}</OriginalToken>

</ClientCommand>
]]>
 </Action>
 <Action type="SendCommandToClientAction" />
 </Transition>
 <Transition id="4" type="DEFAULT">

<Action type="SednaQueryAction">
<![CDATA[

UPDATE INSERT $TOKEN into doc('LoginFailsLogs')/logs
]]>

</Action>
 </Transition>
 <Transition id="5" type="COLLECTOR" />

 <Place id="6" />
 <Place id="7"/>
 <Place id="8"/>
 <Place id="9"/>
 <Arc fromId="1" toId="6" type="POSITIVE"/>
 <Arc fromId="6" toId="2" type=" POSITIVE "/>
 <Arc fromId="2" toId="7" type=" POSITIVE "/>
 <Arc fromId="2" toId="8" type="NEGATIVE"/>
 <Arc fromId="7" toId="3" type=" POSITIVE "/>
 <Arc fromId="8" toId="4" type=" POSITIVE "/>
 <Arc fromId="3" toId="9" type=" POSITIVE "/>
 <Arc fromId="4" toId="9" type=" POSITIVE "/>
 <Arc fromId="9" toId="5" type=" POSITIVE "/>
</PetriNet>

Figure 4.13 Example of XML-based workflow definition

51

5. Design of the WFM

Framework

This chapter reports on the design of the WFM framework in the FlinQ

security management platform. Section 5.1 presents the requirements of our

WFM framework. Section 5.2 proposes the overview of the WFM framework

design. Section 5.3, 5.4 and 5.5 elaborate the design of three main

components in the workflow engine.

5.1 Requirements

Our WFM framework should provide generic capabilities to address the

issues and challenges of WFM in a concrete security management application,

the FlinQ platform. The goal of this section is to identify and clarify the

essential requirements for the WFM framework design to cover these WFM

capabilities.

 Workflow Modelling

Workflow modelling is a dominant factor in WFM and also one of the most

important functionalities our WFM solution should provide. Workflow

modelling is usually supported by workflow modelling languages and

conducted during the process design phase. Particularly, our workflow

modelling language is required to be able to model both control and data

flows.

In our WFM solution, workflow modelling is supported by a Petri nets-based

language that is discussed in Chapter 4. Inheriting the high expressiveness of

Petri nets, our language is capable of modelling most of the control flow

patterns, including sequential, parallel, conditional and iterative structures. By

using XML and XML data processing technology, our language is also able to

model and manipulate data.

In addition to a modelling language, a process design tool (i.e. workflow

editor) is required to provide users with an intuitive graphical design

environment. This editor should support the Petri nets-based language we

proposed. Moreover, the workflows defined by the workflow editor should be

exported and saved as XML-based workflow definitions we discussed in

Section 4.3.

 Workflow Enactment

Design of the WFM Framework

52

This is the key functionality that our WFM framework should support. Based

on the Workflow Reference Model, the core of any workflow system is the

workflow enactment service. A workflow enactment service provides the run-

time environment that takes care of the control and execution of the case-

based workflows. With a workflow enactment service and the defined

workflows, highly automated business processes can be deployed with a

minimum of human interaction involved.

In our solution, the workflow enactment service should be supported by a

Petri nets-based workflow engine. First of all, this workflow engine should be

capable of executing the workflows defined in our Petri nets-based modelling

language. In general, this workflow engine should have two basic capabilities:

workflow definitions interpretation and workflow execution.

The desired workflow engine should be able to interpret and validate our

XML-based workflow definitions. When these workflow definitions are

deployed, the engine is expected to check the validity of workflows. If the

workflows are valid, engine is supposed to parse these workflow definitions,

which are represented in XML format, according to their corresponding XML

Schema.

The core function of workflow enactment service is workflow execution. The

desired workflow engine has to be capable of executing our workflow

definitions in a case-based way. Specifically, it is responsible for initializing

and managing the execution of those workflow cases.

 Invoke applications of the FlinQ server

Some tasks defined in workflows need to invoke external applications to

accomplish business processes. According to the Workflow Reference Model,

a workflow engine should provide sufficient logic to understand how to

invoke potential external applications which might exist in a heterogeneous

environment.

However, in the FlinQ platform, the desired workflow engine only needs to

deal with restrictive range of applications. Workflow tasks are mainly used to

interact with connectors and client applications from the FlinQ server side.

FlinQ server interacts with connectors and client applications by sending

XML-based command messages. Therefore, our workflow engine is required

to invoke the FlinQ server applications that send command messages to

connectors and client applications.

 XQuery support

Our Petri nets-based language is capable of manipulating XML data. This

totally relies on a XML data processing standard, namely XQuery. Our WFM

Design of the WFM Framework

53

framework should address the problem of integrating XML data processing

technology in a workflow execution environment.

Specifically, our workflow engine needs an XQuery processor to perform the

XQuery statements defined in our modelling language. The desired XQuery

processor should support XQuery 1.0 [26]. Since XQuery 1.0 is an extension

of XPath 2.0 [27], the XQuery processor should also support XPath 2.0.

In addition, standard XQuery does not provide any update facilities to change,

add and delete the XML data stored in the persistent database. Our XQuery

processor should be extended with update facilities.

XQuery (both XQuery 1.0 and XQuery 3.0) was developed by the XML

Query working group of the W3C as a standardized language. Different tools

support the implementation of XQuery. Some examples include Zorba

XQuery processor [44] and XQilla [45].

 XML Database support

Database systems facilitate the realization of WFM in several ways. They can

provide the necessary functionality to keep the workflow relevant data, as

well as application data [28]. Our WFM framework is required to have

databases support.

One potential purpose of the database in our WFM framework is to store and

manage the workflow case data. Case data is referred to as the data elements

that are specific to a process instance or case of a workflow [22]. In our Petri

nets-based language, case data is attached to tokens in XML form. These case

data could be stored in the database.

Besides the workflow case data, some information related to the workflow

execution can be stored in the database as well. Again, consider the workflow

for login that we discuss in Section 4.2. In the example showed in Figure 4.4,

only the user who logs in with the username admin and the password admin

can successfully log into the system. However, in practice there should be

multiple valid registered users and this workflow is expected to check if there

is one user information record that has the same username and password with

the input ones. The database can be used to store information about the

registered users.

Since the data handled in our WFM framework is mainly wrapped in XML

format, the desired database should to allow data to be stored in XML format.

A possible approach is to store XML documents as BLOBS (Binary Large

Objects) in a classic relational database, and to use the management and query

tools of that database. Another approach is to use native XML databases. The

internal model of native XML databases totally depends on XML and uses

Design of the WFM Framework

54

XML documents as the fundamental unit of storage. Native XML databases

are expected to maintain and manage XML data more efficiently.

5.2 Framework Overview

Based on the requirements discussed in Section 5.1, we identify the necessary

components of our WFM framework and the interactions between these

components.

Figure 5.1 depicts a high level overview of the WFM framework in the FlinQ

security management platform. Each component is discussed below.

Figure 5.1 Overview of the WFM framework in FlinQ

5.2.1 Workflow editor

The workflow editor is the process definition tool in our WFM framework. It

provides a graphical design environment for users to model workflows based

on our Petri nets-based modelling language. The design includes both the

structure of Petri nets (the control flow perspective) and XQuery statements

(the data perspective).

In addition to workflow design, the editor provides basic workflow

verification and simulation functionalities. The verification functionality is

used to check the correctness of the workflows. This includes the validity of

the Petri nets and the XQuery statements. The simulation functionality allows

users to play the so called token game. Users can assign any XML data value

to a token. The simulation executes these tokens based on defined Petri nets

and manipulates XML data based on defined XQuery statements. The user

can check the XML data value of future tokens in an each step.

Design of the WFM Framework

55

An XQuery processor and native XML database in the editor are used for

verification and simulation, which includes manipulating and managing XML

data.

Currently, the workflow editor has not been implemented.

Figure 5.2 Workflow Editor

When a workflow definition is ready and verified, the workflow could be

output to a workflow definition file, which is an XML representation

conforming to a predefined XML Schema (shown in Appendix A). These

XML-based workflow definitions can be deployed and executed by the

workflow engine.

5.2.2 Workflow repository

XML-based workflow definitions need to be deployed in the workflow engine

to be executed. This is done by storing them in our workflow repository.

When FlinQ server starts up, the workflow engine loads all the workflow

definitions stored in the workflow repository.

In addition, some configuration XML files are also stored in this repository.

These files are mainly responsible for the initialization of the XML database,

including creating XML documents and collections, and storing and loading

the XQuery modules.

Design of the WFM Framework

56

Figure 5.3 Workflow Repository

5.2.3 Workflow engine

This is the core component in our WFM framework. Our Workflow engine is

tightly embedded into the FlinQ server. In general, a workflow engine

consists of four components: workflow engine core, workflow definition

loader, XQuery processor and native XML database. Figure 5.4 depicts an

overview of workflow engine. Each component is discussed below.

Figure 5.4 workflow enigine overview

(1) Workflow engine core

Workflow engine core provides typical workflow enactment service. It is

responsible for executing workflows that are defined in our Petri nets-based

modelling language.

After the XML-based workflow definitions are successfully loaded into the

engine, the workflow engine core instantiates these definitions. Afterwards,

Design of the WFM Framework

57

the workflow engine core manages the execution of the workflow cases. It

initializes workflow cases, chooses the workflows (Petri nets) which is

responsible for a certain cases according to Petri nets’ criteria, executes each

case according to its current state and control flow description (Petri nets’

structure), and performs tasks defined in the workflow definitions.

(2) Workflow definitions loader

The workflow definitions loader plays the role of the Interface 1defined in

the Workflow Reference Model shown in Figure 3.2. It parses XML-based

workflow definitions stored in the workflow repository and instantiates

workflows in the engine core.

(3) XQuery processor

An XQuery processor is embedded into our workflow engine to execute

XQuery statements. It provides the capability of XML data processing within

the workflow execution environment.

(4) Native XML database

A native XML database plays a role as a persistent XML data store in our

WFM framework. Stored XML data could be workflow relevant data, like

workflow case data and workflow execution logs. However, this database can

also be used to store some application data for the FlinQ platform, like

registered client users’ information, connectors’ information and event

records.

In addition, our native XML database uses XQuery and its update extension

as query language. The XML database works in cooperation with the XQuery

processor to provide XML data management services for our WFM

framework.

(5) FlinQ server applications

Our workflow engine provides the mechanisms to access applications of

FlinQ server which should be involved during workflow execution. This

works as the Interface 3 defined in the Workflow Reference Model in Figure

3.2.

In the remainder of this chapter, we elaborate on the design of the

components of our workflow engine.

5.3 Workflow Engine Core

Design of the WFM Framework

58

As mentioned in Section 2.3, the FlinQ server interacts with all client

applications and connectors by sending them command messages. When any

events happen in the client applications (e.g. user clicks the button for login)

or the connectors (e.g. sensors detect somebody enters the room), they send

an event message to the FlinQ server.

In our WFM design, each received event message is regarded as a workflow

case. The FlinQ server wraps these event messages as token objects and puts

them in a so called token queue. The content of an event message is directly

assigned to a token as its attached XML data. The workflow engine core takes

the tokens from this token queue and determinates which Petri nets

(workflows) are responsible for executing these tokens according to the

defined criteria of the corresponding Petri net. Tokens can be accepted by

zero or more Petri nets. Figure 5.5 shows the process of workflow cases

initialization.

Figure 5.5 The creation of workflow cases

The workflow engine core has been designed totally based on our extended

Petri nets model. Figure 5.6 shows simplified class diagram with a high level

description of the workflow engine core. The class diagram reveals the high

level overview of the workflow engine core design. Below we briefly explain

each class in Figure 5.6.

Design of the WFM Framework

59

Figure 5.6 Simplified class diagram for the workflow engine core

 ServerCore

ServerCore is actually also part of the FlinQ server. By introducing this class,

our workflow engine core is tightly integrated with the FlinQ server. At the

top of the class hierarchy, ServerCore manages all deployed Petri nets and the

tokens to be executed. Therefore, it has the attributes like deployedPetrinets

and tokensQueue. And it also has operations to add and remove the deployed

Petri nets and the tokens to the token queue.

 Network

Network represents to the concept of Petri net in our workflow modelling

language. It consists of one Criteria, a set of nodes (transition and places) and

arcs. Network can accept the tokens which meet its Criteria. The accepted

tokens are consumed by invoking Network’s operation, which implements

the core algorithm of Petri nets and conducts the workflow execution.

 Token

Token corresponds to the workflow cases. Each Token object is firstly

generated and stored in ServerCore’s tokensQueue. A token can be accepted

by zero to multiple Networks for execution. Token has a data attribute to

store its attached data.

 Criteria

 class diagram

Token

Arc

Place

Transition

« interface»

Action

« interface»

Criteria

« interface»

Node

Network

« interface»

Condition

ServerCore
0..1

0..*

0..*

0..*

0..*

1

0..*

0..*

Design of the WFM Framework

60

Each Network object can have exactly one object of class Criteria. Criteria

has a member function appliesTo(Token * token) which returns boolean

values. Criteria is declared as an interface.

 Node

Node is defined as an interface and it can be implemented as Transition or

Place. A Node object has a nodeID attribute. Each node in a Petri net has a

unique nodeID.

 Arc

An Arc object has references to its source and destination Node objects,

represented by the attributes fromNode and toNode. Moreover, an Arc object

specifies its type (Forward, Negative, Reset and Block) by the attribute

arcType.

 Transition

A Transition object implements the Node interface. A Transition object

specifies its type (Default, Emitter, Collector and XOR) through the

transitionType attribute. A Transition object consists of zero or more Action

objects, which are represented by the actions attribute. If the transitionType of

Transition object is XOR, this Transition object should also have a Condition

object.

 Place

A Place object implements the Node interface. A Place object has an attribute

occupiedTokens to reference the tokens are currently in this place. It also

provides the operations for adding or removing tokens.

 Condition

A Condition object is defined only for the XOR Transition. Similarly with the

Criteria object, a Condition object has an operation appliesTo(Token *) which

returns boolean values. Condition is declared here as an interface.

 Action

An Action object represents the actual tasks performed in the workflows, and

is declared as an interface. An object that implements the Action interface has

an operation act(). The implementation of this operation determines how the

concrete task performed within an Action object. For example, it is possible

to implement act() with the code for calling a certain application of the FlinQ

server or invoking the XQuery processor to perform XQuery statements. This

provides the mechanisms to invoke external applications within the workflow

execution environment. In the FlinQ platform, the examples of the classes

Design of the WFM Framework

61

defined to implements the Action interface include SednaQueryAction,

SendCommandToClientAction and SendCommandToConnectorAction.

5.4 XQuery Processor and Native XML Database

The XQuery processor works in cooperation with a native XML database as

one component in our workflow engine, which provides the capabilities of

XML data processing and management. In practice, we select the Sedna

native XML database [29] [30] for XML data processing and management.

5.4.1 Sedna native XML database

Sedna is a native XML database developed by the MODIS team at the

Institute for System Programming of the Russian Academy of Sciences. It

provides a full range of traditional core database services like persistent

storage, ACID transactions, concurrency control, data query and update

facilities, security, indices, hot backup [29]. In particular, the Sedna database

takes the XQuery 1.0 and its data model [30] as a basis for the XML data

query facility. In addition, it extends XQuery with update facility and

establishes its own Data Definition Language (DDL) as a supplement for the

XQuery 1.0 standard.

Moreover, the Sedna database has an XQuery processor that supports all the

languages mentioned above.

The Sedna database is implemented by C++ and Scheme and its supported

platform includes Windows and Linux [31]. The Sedna database provides

APIs for multiple languages including C, Java and Scheme, which allows

programmatic access to Sedna from client applications developed in these

languages.

5.4.2 XML data processing languages

The XML data processing languages that are supported by the Sedna database

are XQuery 1.0 (including XPath 2.0) [26], XQuery update language [] and

Sedna DDL [31].

(1) XQuery 1.0 and XPath 2.0 support

The XQuery processor in Sedna supports XQuery 1.0 (including XPath 2.0)

except a few features [30]. The features that are not supported include

importing the external XML Schemas.

Design of the WFM Framework

62

Moreover, the XQuery processor also has full support for two optional

XQuery features:

 Full Axis. The following optional axes are supported: ancestor,

ancestor-or-self, following, following-sibling, preceding, and preceding-

sibling.

 XQuery Modules. This allows the XQuery prolog to import a module

and allows library modules to be created.

(2) XQuery update language

The XQuery standard does not provide an update facility. The XQuery update

language is used to update the persistent XML data stored in the XML

database.

Table 5.1 Update statements

 Update

statement

Purpose Syntax

 INSERT Inserts zero or more
nodes into a designated
position with respect to
a target nodes

UPDATE
insert SourceExpr
(into|preceding|following)
TargetExpr

 DELETE Removes target nodes
from the database with
their descendants

UPDATE
delete Expr

 DELETE_UNDEEP Removes target nodes
from the database
preserving their content

UPDATE
delete_undeep Expr

 REPLACE Replaces target nodes
with a new sequence of
zero or more node

UPDATE
replace $var [as type] in
SourceExpr
with TargetExpr($var)

 RENAME Changes the name of
the target nodes

UPDATE
rename TargetExpr on QName

Table 5.1 lists the update statements of the XQuery update language. All

update statements start with the keyword UPDATE. The result of each update

statement should not break the well-formedness and validity of XML entities,

stored in the database, otherwise, an error is raised.

 Insert

The insert statement inserts the result of the given expression in the position

identified by the into, preceding or following clauses. For example, the

following update statement inserts new event element into the events elements

which have the type attribute equals intercom.

UPDATE

Design of the WFM Framework

63

insert <event>intercom request</event>
into doc("EventsRecords")/events[@type=”intercom”]

Figure 5.7 Example of insert statement

 Delete

The delete statement removes persistent nodes from the database. It contains a

subexpression, which returns the nodes to be deleted. The following example

deletes all event nodes in which the status attribute equles ignored:

UPDATE
delete doc("EventsRecord")//event[@status=”ignored”]

Figure 5.8 Example of delete statement

 Delete_undeep

The delete_undeep statement removes nodes identified by Expr, but in

contrast to the delete statement it leaves the descendants of the nodes in the

database. The following example removes B nodes and also makes C and D

nodes children of the A element.

Figure 5.9 Example of delete_undeep statement

 Replace

The replace statement is used to replace nodes in an XML document. The

following example replaces all the intercomEvent elements with <event

type=”intercom”/>.

UPDATE
replace $x in doc("EventsRecord")//intercomEvent
with<event type=”intercom”/>

Figure 5.10 Example of replace statement

 Rename

The rename statement changes the name property of the all nodes returned by

the TargetExpr expression with a new QName. The following expression

changes the name of all the job elements with a new name profession.

UPDATE

Design of the WFM Framework

64

rename doc("users.xml")//job on profession
Figure 5.11 Example of rename statement

Finally, it is worth noting that this update extension cannot be used for

updating temporary XML data constructed within the XQuery statements.

(3) Sedna Data Definition Language

The Sedna DDL plays the same role as the DDL of SQL (support the

CREATE, ALTER, RENAME, DROP and TRUNCATE statements) for

rational databases. Most of parameters of the Sedna DDL are computable

and specified as XQuery expressions. The tasks that can be conducted by the

Sedna DDL include managing standalone XML documents, managing

collections, managing XQuery modules and retrieving metadata of database.

 Managing standalone XML documents and collections

Table 5.2 lists all Sedna DDL statements for managing standalone XML

documents and collections. In the Sedna database, a document can be either a

standalone document (when it does not belong to any collection) or belong to

some collection. Compared to standalone documents, all documents within a

given collection have a common descriptive schema. The common descriptive

schema allows addressing XQuery and update queries to all members of a

collection.

These statements can be used to create, drop and rename standalone XML

documents or collections in the XML database.

Table 5.2 DDL for managing standalone documents and collections

 Sedna DDL

statements

Purpose Syntax

 CREATE DOCUMENT Creates a new standalone
document with a name

CREATE DOCUMENT
doc-name-expr

 DROP DOCUMENT Drops the standalone
document

DROP DOCUMENT
doc-name-expr

 CREATE COLLECTION Creates a new collection
with a name

CREATE COLLECTION
coll-name-expr

 DROP COLLECTION Drops the collection
document

DROP COLLECTION
coll-name-expr

 RENAME COLLECTION Renames collection with a
new name

RENAME COLLECTION
old-name-expr INTO
new-name-expr

 CREATE DOCUMENT
IN COLLECTION

Creates a new document in
a certain collection

CREATE DOCUMENT
doc-name-expr
IN COLLECTION
coll-name-expr

 DROP DOCUMENT IN
COLLECTION

Drops the document in a
certain collection

DROP DOCUMENT
 doc-name-expr
IN COLLECTION
coll-name-expr

Design of the WFM Framework

65

 Managing XQuery modules

XQuery allows one to put functions in XQuery library modules, so that they

can be shared and imported by any XQuery statements. This is beneficial for

improving reusability of XQuery statements that are defined for similar

purposes. An XQuery library module contains a module declaration followed

by variable and/or function declarations. The module declaration specifies its

target namespace URI which is used to identify the module in the database.

The defined modules are stored in .xqlib files. Before an XQuery library

module could be imported from the Xquery statements, it is to be loaded into

the database. Table 5.3 lists all Sedna DDL statements for managing XQuery

modules in the database.

Table 5.3 DDL for managing standalone modules

 Sedna DDL

statements

Purpose Syntax

 LOAD MODULE Loads the XQuery library
modules

LOAD MODULE "path_to_file",
...,
 "path_to_file"

 LOAD OR
REPLACE
MODULE

Replaces an already
loaded module with new
one

LOAD OR REPLACE MODULE
"path_to_file",
...,
"path_to_file"

 DROP MODULE Remove an XQuery
library module from the
database

DROP MODULE
"target_namespace_URI"

One can obtain information about modules loaded into the database by

querying the system collection named $modules as follows collection

("$modules"). This is actually the DDL statements for retrieving metadata that

we discuss in the sequel.

 Retrieving metadata

The Sedna database stores various metadata about database objects , such as

documents, collections, indexes, etc, in multiple system documents and

collections. These metadata can be retrieved by querying these documents and

collections. Names of the system documents and collections start with

$ symbol. Users can query these documents or collections by using regular

XQuery statements) but cannot update them.

Some important system documents and collections are:

 $documents document lists of all stand-alone documents, collections and

in-collection documents (except system meta-documents and collection,

like $documents document itself).

Design of the WFM Framework

66

 $collections document lists of all collections.

 $modules document contains list of loaded modules with their names.

5.4.3 XML database design

In principle, the XML database can store any XML data that could be used in

the FlinQ platform. However, it is still desirable to generally indentify and

define what XML data should be persistently stored in this XML database.

 Case data (optional)

By default, the runtime case data (i.e. the XML data attached to the tokens

during the execution) are not stored in the XML database. This can improve

efficiency. If the runtime case data is stored in the database, the workflow

engine core has to constantly interact with the XML database to retrieve the

case data. However, by storing the runtime case data, the workflow engine

can have a recovery mechanism in case of execution failures, which improves

robustness.

 Logs data

One of important requirements of our WFM design is that the execution of

workflows can be traced. In practice, this can be achieved by recording the

XML data of each token at each step into the logs. These log data are stored

in the XML database as well.

Our design provides a flexible way to record the log data during the execution

of workflows. Specifically, actions can be defined in the workflows to write

the data of the tokens to the log files.

Again, consider the example workflow for user login that is discussed in

Section 4.2.2. In Transition 1 (labeled with id “3” in the XML definition),

there are four actions defined. For the purpose of writing the data of the

tokens to the logs, we added one action (shown in bold font) before each

original action. The added actions specify the XQuery update statements to

write the runtime data value of the token into the logs document stored in our

XML database. In case it is not necessary to record the token data into logs,

the users just do not specify such an action.

 <Transition id="3" type="DEFAULT">
<Action type="SednaQueryAction">
<![CDATA[UPDATE INSERT $TOKEN into doc('logs')/logs]]>
</Action>

 <Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN

Design of the WFM Framework

67

return
<ClientCommand type='CloseForm' form_id='LoginState.Login'>

 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>

]]>
</Action>
<Action type="SednaQueryAction">
<![CDATA[UPDATE INSERT $TOKEN into doc('logs')/logs]]>
</Action>
<Action type="SendCommandToClientAction" />
<Action type="SednaQueryAction">
<![CDATA[UPDATE INSERT $TOKEN into doc('logs')/logs]]>
</Action>

 <Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN

return
<ClientCommand type='EnterSite'>

 <Client id="{string($token/OriginalToken/FormEvent/@remote_id)}"/>
 <OriginalToken>{$token/OriginalToken/*}</OriginalToken>

</ClientCommand>
]]>

</Action>
<Action type="SednaQueryAction">
<![CDATA[UPDATE INSERT $TOKEN into doc('logs')/logs]]>
</Action>

 <Action type="SendCommandToClientAction" />
 </Transition>

Figure 5.12 Example of updating logs data within workflows

 Application data

The XML database is designed to also be responsible for the storage of

application data. However, this kind of data is closely related to the concrete

applications and thus can be hardly predefined.

5.4.4 Integration with engine core

Based on our modelling language, the XQuery statements can be either

defined in the Petri net actions that manipulate the XML data attached to the

tokens, or in the criteria and XOR transitions for the evaluation conditions. In

addition to these two cases, the XQuery update and Sedna DDL statements

can be also defined in the Petri net actions that are responsible for updating

and managing the XML data stored in the database.

Table 5.4 lists the cases in which XQuery, XQuery update extensions and

DDL statements can be defined within our workflows. The XQuery processor

executes these statements in different languages and returns information that

Design of the WFM Framework

68

indicates whether the execution has been successful. In the case of XQuery

statements, the resulting XML data are also returned.

Table 5.4 Use cases of XML data processing languages within our workflows

 Use cases Language type Expected result

 Actions for token data
manipulations

XQuery 1.0 and
XPath 2.0

 success information
with the resulting XML
data OR error
information when query
fails

 Actions for updating
and managing the
data in the XML
database

XQuery update
extension and Data
Definition
Language

 success information OR
error information

 XOR transitions for
conditional choices for
branch structures

XQuery statements
that returns
Boolean values

 success information
with a Boolean value OR
error information

 Criteria in each Petri
net for the evaluation
conditions

XQuery statements
that returns
Boolean values

 success information
with a Boolean value OR
error information

Figure 5.13 shows an example of a Petri nets-based workflow that includes all

the use cases listed above. In this Petri net, Transition 1contains two actions.

We assume that Action 1 specifies the XQuery statements for the token data

manipulation and that Action 2 specifies the XQuery update statements for

modifying the data stored in database. First, the XQuery statements defined in

the criteria and the XOR transitions are executed by the XQuery processor.

Action 1 also invokes the XQuery processor to manipulate token data.

However, Action 2 interacts with the XML database and takes no action for

the token.

Figure 5.13 Interaction with the XQuery processor and XML database

Figure 5.14 depicts the simplified class diagram of the workflow engine core

with the Sedna XML database.

Design of the WFM Framework

69

Figure 5.14 Simplified class diagram with the integration of XML database

and XQuery processor

The main classes in Figure 5.14 are briefly discussed below:

 Database

A Database object references the XML database (with its XQuery processor)

that the workflow engine core connects with. A ServerCore can contain a

Database object. Examples of the Database object’ operations are:

bool connectTo(DatabaseSetting & settings);

bool closeConnection();

QueryResult execute(string statements);

Each Database has a settings attribute (which is a DatabaseSetting object) to

specify the basic settings for connecting to the database, like the URI of

database server, the name of accessed database, username and password. The

connectTo() operation is used to connect the database system according to the

settings. The execute() operation invokes the XQuery processor to execute the

XQuery statements, XQuery updates or DDL.

 DatabaseSetting

A DatabaseSetting object maintains the basic settings for database connection.

Examples of the DatabaseSetting’s attributes include:

 class diagram

Token

Arc

Place

Transition

« interface»

Action

« interface»

Criteria

« interface»

Node

Network

« interface»

Condition

ServerCore

Database

SednaCondition

SednaCriteira

SednaQueryAction

DatabaseSetting QueryResult

0..*

0..*

0..*

1

0..*

0..1

0..*

0..*

1

Design of the WFM Framework

70

string serverURI;

string databaseName;

string username;

string password;

 QueryResult

A QueryResult object contains the result of the execution of XQuery, XQuery

update or DDL statements. It has a boolean attribute to indicate if the

execution has been successful and a String attribute with the result of the

XQuery statements.

 Token

The Token object is extended to have the attribute xmldata to refer to the

attached XML data.

 SednaCriteria

SednaCriteria implements the Criteria interface. Its appliesTo(Token * token)

operation invokes the operation execute() of the Database to perform the

XQuery statements and returns a boolean value.

 SednaCondition

SednaCondition implements the Condition interface. Its appliesTo(Token *

token) operation invokes the operation execute() of the Database to perform

the XQuery statements and returns a boolean value.

 SednaQueryAction

SednaQueryAction implements the Action interface. Its act(Token* token)

operation invokes the operation execute() of the Database to perform the

XQuery, XQuery update and DDL statements. In particular, this act()

operation replaces the $TOKEN symbols in the XQuery statements with the

real data values of the tokens. In case the XML data of a token is manipulated

(i.e., by executing regular XQuery statements), the result of these XQuery

statements is assigned to the Token’s xmldata attribute as the new data value.

In case update and DDL statements are performed, the result only indicates

whether the update or DDL statements have been successful, and the xmldata

attribute of the Token object is not changed.

5.5 Workflow Definition Loader

Design of the WFM Framework

71

The Workflow Definition Loader (referred to as loader) is responsible for

interpreting the XML-based workflow definitions and instantiating the

corresponding objects in the engine core. The loader parses the workflow

definitions based on the XML Schema defined in Appendix A.

Figure 5.16 shows the simplified class diagram of the workflow engine with

the loader. Three objects are created, namely Loader, ActionSerializer and

ConditionSerializer.

Figure 5.15 Simplified class diagram with the integration of the loader

 Loader

This is the main class for loading the XML-based workflow definitions. The

class Loader class has an attribute xmlPetri that stores an XML workflow

definition that is to be loaded. Four operations are defined for parsing the four

basic elements (i.e. <Criteria>, <Transition>, <Place> and <Arc>)

respectively:

bool parseCriteria(Network *network, TiXmlElement* networkElement);

 class diagram

« interface»

Condition

Arc

Place

Transition

« interface»

Action

« interface»

Criteria

Token

Network

ServerCore

« interface»

Node

QueryResult

Database

SednaCondition

SednaCriteira

SednaQueryAction

DatabaseSetting

Loader

« interface»

ActionSerializer

« interface»

ConditionSerializer

SednaConditionSerializer SednaQueryActionSerializer

SendCommandToClientSerializer

SendCommandToConnectorSerializer

SendCommandToClientAction

SendCommandToConnectorAction

0..*

0..*
0..*

0..*

0..*

0..*

0..1

1

1

Design of the WFM Framework

72

bool parseTransition(Network *network, TiXmlElement* networkElement);

bool parsePlace(Network *network, TiXmlElement* networkElement);

bool parseArc(Network *network, TiXmlElement* networkElement);

The operation createNetwork() invokes all these four operations and finally

instantiates the Network object.

In our XML-based workflow definitions, the <Condition> and <Action>

elements are nested within the <Transition> elements. Moreover, these two

elements can have different types and these types may be extended in future.

Different types require different (de)serialization processes. For example,

<Action> can be SednaQueryAction, SendCommandToClientAction or

SendCommandToConnectorAction. The deserialization process for

SednaQueryAction instantiates the SednaQueryAction objects, while the

deserialization process for SendCommandToClientAction instantiates the

SendCommandToClientAction objects. Therefore, we particularly create two

interfaces for the (de)serialization of actions and conditions respectively.

 ActionSerializer

An ActionSerializer has two operations: serialize() and deserialize(). The

latter one is used for the loader. deserialize() converts the XML elements into

the corresponding objects. The concrete action types need to implement this

interface by creating new classes (e.g. SednaQueryActionSerializer and

SendCommandToClientActionSerializer).

 ConditionSerializer

Similarly, a ConditionSerializer also defines two operations: Serialize() and

Deserialize(). The concrete condition types need to implement this interface

by creating new classes (e.g. SednaConditionSerializer).

73

6. Case Study

This chapter demonstrates the applicability of the proposed WFM solutions

discussed in the previous chapters, by performing a case study as a proof-of-

concept. We give some real-life examples of modellingand executing

business processes in FlinQ security management platform by using our

WFM framework.

Section 6.1 introduces the stored XML data in the database. In Section 6.2

and 6.3, we elaborate several workflows which are designed for handling the

business processes in the FlinQ platform. Section 6.4 draws the conclusion.

6.2 Data Initialization in XML database

Before discussing our designed workflows, we briefly introduce the XML

data stored in our XML database. As mentioned in Chapter 5, some

configuration files are stored in the workflow repository to initialize the XML

data in the database. Specifically, when the FlinQ server starts up, some XML

documents are created in the database based on the configuration files. Table

6.1lists some of created XML documents that are used in the workflows we

discuss later.

Table 6.1 Some created XML documents in the database

XML documents Purposes

preconnection_logs Records all the preconnection
requests from the client
applications

users Records all the registered users’
personal information, including
username, password, role and etc.

sessions Keeps the records of all login and
active users’ information and their
client applications’ id.

SiteData Maintains the information of all
devices that connect with the
FlinQ server. For example, it can
contain the information of the
intercom devices, including its
internal id, status, name and
device type.

6.3 Preconnection and Login of the Clients

Applications

Case Study

74

6.3.1 Proconnection workflow

In order to interact with the server side, the client applications should firstly

preconnect with the FlinQ server. When the client application is started up, a

preconnection form appears and users are required to specify the name, the IP

address and the port number of the FlinQ server that they intend to connect

with. This is done by sending an event message to the specified server. When

the server receives this message, it will perform several tasks including

closing the preconnection form and opening a new form for login. A

workflow called preconnection is thus designed for executing these tasks.

The XML event message for the preconnection is shown in Figure 6.1, which

is attached to a new token to be executed. In the FlinQ, only the event

messages for the preconnection have the attribute form_id that equals

“LoginState.ServerSelect”. Therefore, this form_id can be used to identify the

token for the preconnection workflow in the criteria. And Figure 6.2 shows

the criteria of the preconnection workflow.

In addition, the attribute remote_id reveals which client applications send this

message.

<FormEvent action_id="Connect" form_id="LoginState.ServerSelect"
remote_id="2">
 <FormData>
 ……
 </FormData>
</FormEvent>

Figure 6.1Example of input token data for preconnection workflow

<Criteria type="SednaCriteria">
$TOKEN/@form_id = 'LoginState.ServerSelect'

</Criteria>
Figure 6.2 The criteria of preconnection workflow

Figure 6.3 The pre-connection workflow

Case Study

75

Figure 6.3 depicts the control flow of the preconnection workflow. The

workflow mainly consists of three tasks (transitions).

 Update logs

This transition is created to update the workflow logs data and has only one

action. As mentioned before, the update of logs data can be explicitly

specified in our workflows. Figure 6.4 shows the definition of this transition.

It writes the current token data to the preconnection_logs file stored in the

XML database.

<Transition id="3" type="DEFAULT">
<Action type="SednaQueryAction">
<![CDATA[UPDATE INSERT $TOKEN into doc('preconnection_logs')/logs]]>
</Action>

</Transition>
Figure 6.4 The transition for updating logs data

 Close form

The Close form transition (Figure 6.5) contains two actions. The first action

reconstructs the token data for sending the CloseForm command to the client.

The second action invokes the application of the server to send the CloseForm

command by using the reconstructed token data. In our XML-based workflow

definition, the actions with the SendCommandToClientAction type send the

token data as the command message to the specified client applications (with

<Client id=”1”>).

<Transition id="4" type="DEFAULT">
<Action type="SednaQueryAction">
 <![CDATA[
 <ClientCommand type='CloseForm' form_id='LoginState.ServerSelect'>
 <Client id="{string($TOKEN/@remote_id)}" />
 <OriginalToken>$TOKEN</OriginalToken>
 </ClientCommand>
]]>
 </Action>

<Action type="SendCommandToClientAction" />
</Transition>

Figure 6.5 The CloseForm transition

 Open form

The Open form transition (Figure 6.6) contains three actions. The first action

retrieves the original data value of the token from the element <

OriginalToken >. Again, the second action reconstructs the token data for

sending the OpenForm command. Finally, the third action sends the

reconstructed token as the OpenForm command to the client. The entire

Case Study

76

workflow is thus completed and a new form for login is presented in the client

application.

<Transition id="5" type="DEFAULT">
 <Action type="SednaQueryAction">$TOKEN/OriginalToken/child::*</Action>
 <Action type="SednaQueryAction">
 <![CDATA[
 <ClientCommand type='OpenForm' filePath='server_login_form.json'>
 <Client id="{string($TOKEN/@remote_id)}" />
 <OriginalToken>$TOKEN</OriginalToken>
 </ClientCommand>
]]>
 </Action>
 <!--Send the command to the client-->
 <Action type="SendCommandToClientAction" />

</Transition>
Figure 6.6 The OpenForm transition

6.3.2 Login workflow

After the preconnection workflow is finished, users are able to log in with

their username and password. When users press the login button in the client

applications, an XML event message is thus sent to the server and then

attached to a new token for the login workflow. Figure 6.7 shows an example

of input token data for the login workflow. And Figure 6.8 shows the criteria

of the workflow.

<FormEvent action_id="Login" form_id="LoginState.Login" remote_id="2">
 <FormData>
 <json>
 <String name="Action">Login</String>
 <String name="Form">LoginState.Login</String>
 <Object name="Properties">
 <Object name="Password">
 <String name="Name">Password</String>
 <String name="Type">Text</String>
 <String name="Value">12345</String>
 </Object>
 <Object name="Username">
 <String name="Name">Username</String>
 <String name="Type">Text</String>
 <String name="Value">zchen</String>
 </Object>
 </Object>
 </json>
 </FormData>
</FormEvent>

Figure 6.7 Example of input token data for login workflow

<Criteria type="SednaCriteria">

Case Study

77

$TOKEN/@form_id = 'LoginState.Login'
</Criteria>

Figure 6.8 The criteria of login workflow

Figure 6.9 depicts the login workflow. The login workflow mainly includes

six transitions.

Figure 6.9 The login workflow

 Credentials check

The credentials check transition is an XOR transition that is responsible for

validating the entered username and password according to the valid

registered users’ information stored in the XML database (i.e. the users

documents). The following XQuery statements firstly retrieve the values of

username and password from the input token. Afterwards, it checks if there is

exactly one registered user whose username and password equal the entered

ones for login.

<Transition id="2" type="XOR">
 <Condition type="SednaCondition">
 <![CDATA[

let $token := $TOKEN
let $login :=
<login>

<username>
{string($token/FormData/json/Object[@name="Properties"]/Object[@
name="Username"]/String[@name="Value"])}

</username>
<password>

{string($token/FormData/json/Object[@name="Properties"]/Object[@
name="Password"]/String[@name="Value"])}

</password>
</login>
let $valid_accounts := for $user in doc('users')/users/user
where $user/@name = $login/username
and $user/@password = $login/password
return $user
return count($valid_accounts) = 1

]]>
 </Condition>

Case Study

78

 </Transition>
Figure 6.10 The transition for updating logs data

When the result of the check returns true, the following transitions are

performed sequentially. Otherwise, the entire workflow ends.

 Close login form

This transition includes two actions, which reconstructs the token and sends

the command to the client to close the login form.

<Transition id="3" type="DEFAULT">
<Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN
 return <ClientCommand type='CloseForm' form_id='LoginState.Login'>
 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>
]]>
 </Action>
 <Action type="SendCommandToClientAction" />

</Transition>
Figure 6.11 The close login form transition

 Enter site

This transition includes two actions, which reconstructs the token and sends

the command to the client for entering the site form.

<Transition id="4" type="DEFAULT">
<Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN/OriginalToken/*
 return <ClientCommand type='EnterSite'>
 <Client id="{string($token/@remote_id)}"/>
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>
]]>
 </Action>
 <Action type="SendCommandToClientAction" />

</Transition>
Figure 6.12 The enter site form transition

 Open event viewer

This transition includes two actions, which reconstructs the token and sends

the command to the client for opening the event viewer form.

<Transition id="5" type="DEFAULT">
<Action type="SednaQueryAction">

Case Study

79

 <![CDATA[
 let $token := $TOKEN/OriginalToken/*
 return <ClientCommand type='OpenForm' filePath='event_viewer_test.json'>
 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>
]]>
 </Action>
 <Action type="SendCommandToClientAction" />

</Transition>
Figure 6.13 The open event viewer transition

 Open floating panel

This transition includes two actions, which reconstructs the token and sends

the command to the client for opening the floating panel.

<Transition id="6" type="DEFAULT">
 <Action type="SednaQueryAction">
 <![CDATA[
 let $token := $TOKEN/OriginalToken/*
 return <ClientCommand type='OpenForm' filePath='floating_panel.json'>
 <Client id="{string($token/@remote_id)}" />
 <OriginalToken>{$token}</OriginalToken>
 </ClientCommand>
]]>
 </Action>
 <Action type="SendCommandToClientAction" />

</Transition>
Figure 6.14 The open floating panel transition

 Update sessions

This is last step of login. The action defined in this transition write the token

data into the sessions documents stored in the XML database. The sessions

documents is responsible to keep the records of the login users’ information

and their corresponding client applications’ ids.

<Transition id="7" type="DEFAULT">
<Action type="SednaQueryAction">
 <![CDATA[
 UPDATE INSERT $TOKEN/OriginalToken/* into doc('sessions')/sessions
]]>
</Action>

</Transition>
Figure 6.15 The update sessions transition

 Update logs for the failed login requests

When the login request fails (i.e. the evaluation condition of credentials check

transition returns false), the negative path is selected and Transition update

Case Study

80

logs is performed. It stores the current token data into the log file

(doc('LoginFailsLogs')) for recording the failed login requests.

<Transition id="7" type="DEFAULT">
<Action type="SednaQueryAction">
 <![CDATA[

 UPDATE INSERT $TOKEN into doc('LoginFailsLogs')/logs
]]>
</Action>

</Transition>
Figure 6.16 The update logs transition

6.4 Interaction with the Intercom Devices

The previous examples show the workflows where the FlinQ server only

interacts with the client applications. In this section, we presented more

examples of the workflows where the server interacts with both the

connectors (devices) and the client applications.

Figure 6.17 Intercom devices animation in the client applications

Case Study

81

The FlinQ platform integrates with an intercom subsystem by a so-called

Intercom connector. This connector is able to connect multiple intercom

devices. Users can request the calls, start the conversations and stop the

conversations on these devices. Therefore, the intercom devices have three

corresponding event types, namely CallRequest, ConversationStarted and

ConversationStopped. When these events occur on the intercom devices, the

connector sends the event messages to the server. The server records the latest

statuses (CallRequest, ConversationStarted and ConversationStopped) of the

intercom devices in the XML database. When a new event occurs, the server

will update the status of these intercom devices and animate the devices in the

client applications (e.g. blinking the devices) by the newest status. Figure 6.17

shows how the intercom devices are animated in the client applications when

different types of intercom events happened. For example, when a

CallRequest event happens on a certain intercom device, in the client

application, this device is blinked as orange. And a new form pops up with

the details of this CallRequest event and a StartConversation button.

Therefore, we created the IntercomEvents workflow to handle the business

processes mentioned above. Figure 6.18 shows an example of intercom event

message which is also the input token for the IntercomEvents workflow. The

attribute id of the root element is the unique id number of the connectors. The

text in the element <String name="EventType"> specifies the event type. In

particular, there are two numbers in the text of <String name="Message">.

The first number is the code of the intercom device (here it’s 1003) which

sends this event message. The second number specifies if this message is used

to cancel the event or not. For example, user can cancel the call request on

the device that has already been requested a call. When this number is 1, the

message is used for canceling the event. While when the number is 0 (like the

example in Figure), the message is for establishing the event.

<ConnectorData id="1">
 <json>
 <String name="Source">Commend_ICX_TCP</String>
 <Number name="Instance">0</Number>
 <String name="EventType"> CallRequest</String>
 <String name="Message">1003,0</String>
 <String name="Reason"></String>
 <String name="freetext"></String>
 </json>
</ConnectorData>
Figure 6.18 Example of input token data for the intercom events workflows

The criteria of IntercomEvents workflows is defined in Figure 6.19.

<Criteria type="SednaCriteria">
 <![CDATA[

Case Study

82

declare variable $token := $TOKEN;
(string(node-name($token)) ="ConnectorData" and substring-
after(string($token/json/String[@name="Message"]), ',')='0'
or
string(node-name($token)) ="ConnectorData" and substring-
after(string($token/json/String[@name="Message"]), ',')='1')
and
(data($token/json/String[@name="EventType"])="CallRequest" or

data($token/json/String[@name="EventType"])="ConversationStarted" or
data($token/json/String[@name="EventType"])="ConversationStopped")

]]>
 </Criteria>

Figure 6.19 The criteria of the IntercomEvents workflow

The IntercomEvents workflow is mainly responsible for two tasks: updating

the statuses of the intercom devices in the server and animate this device in

the client applications according to the event types. Figure 6.20 depicts the

intercomEvents workflow. At the start of the workflow, an XOR transition is

defined to check if the token is for cancelling the events or not. The entire

workflow is thus separated as two branches. The upper one handles the

regular intercom events and the lower on handles the cancel events. Figure

6.21 shows the definition of the event types check transition.

Figure 6.20 The IntercomEvents workflow

<Transition id="2" type="XOR">
 <Condition type="SednaCondition">
 <![CDATA[

string(node-name($token)) ="ConnectorData" and substring-
after(string($token/json/String[@name="Message"]), ',')='0'
]]>

 </Condition>
 </Transition>

Figure 6.21 The event types check transition

Case Study

83

When the evaluation condition of the XOR transition returns true (i.e. the

non-cancel events), the following transitions are performed.

 Format data

This transition contains one action that reconstructs the input XML event

message. It simply retrieves the needed data values (like rapi_id and

event_type) and formats a new token for the ease of use. As mentioned before,

the first number in the text of <String name="Message"> is the code of the

intercom device. However, this code corresponds to an internal device id in

the server (stored in the SiteData document). In this transition, we first

declare $ic_code to retrieve the intercom device code. Afterwards, we retrieve

the corresponding internal id and assign it to the $device_id. Finally, we put

this internal id into the new token (assign it to the attribute internal_id).

<Transition id="3" type="DEFAULT">
 <Action type="SednaQueryAction">
 <![CDATA[

declare variable $token := $TOKEN;
declare variable $ic_code := substring-

before(string(data($token/json/String[@name="Message"])), ',');
declare variable $device_id :=

doc('SiteData')//Device[Property[@Name="IC"]/@Value=lower-
case(string($ic_code))]/@id;

<token
 rapi_id="{ string($token/@id)}"

 event_type="{data($token/json/String[@name="EventType"])}"
 ic_code="{$ic_code}"
 internal_id='{string($device_id)}'
 is_on="{substring-

after(string(data($token/json/String[@name="Message"])), ',')}"
/>

]]>
</Action>

</Transition>
Figure 6.22 The format data transition

 Remove previous status

This transition contains one action. Based on the internal id, it removes all the

previous statuses of this intercom device in the SiteData document.

<Transition id="4" type="DEFAULT">
 <Action type="SednaQueryAction">
 declare variable $token := $TOKEN;
 UPDATE DELETE

doc('SiteData')//Device[@id=string($token/@internal_id)]/state
 </Action> </Transition>

Figure 6.23 The remove previous status transition

Case Study

84

 Update status

This transition contains one action. It updates the status of the intercom

device in the SiteData document.

<Transition id="5" type="DEFAULT">
 <Action type="SednaQueryAction">
 <![CDATA[
 declare variable $token := $TOKEN;
 UPDATE INSERT

<state name="{string($token/@event_type)}" />
INTO doc('SiteData')//Device[@id=string($token/@internal_id)]

]]>
</Action>

</Transition>
Figure 6.24 The update status transition

 Animate the device

The animate device transition has two actions. The first action formats the

token as an Animate command. In particular, according to the different event

types, the different animation_file (the json files) will be selected in the

<ClientCommand>. In the client application, these json files are used to show

the popped forms for the intercom devices (see Figure 6.17).

<Transition id="6" type="DEFAULT">
 <Action type="SednaQueryAction">
 <![CDATA[
 declare variable $token := $TOKEN;
 declare variable $Events :=
 <event json="CALLREQUEST.json" name="CallRequest" /> |
 <event json="CONVERSATIONSTARTED.json" name="ConversationStarted" /> |
 <event json="CONVERSATIONSTOPPED.json" name="ConversationStopped" />;
 declare variable $animation :=

string($Events[@name=$token/@event_type]/@json);
 <ClientCommand type="Animate" device_id="{string($token/@internal_id)}"

animation_file="{$animation}">
 <Client id="0" />
 </ClientCommand>
]]>
 </Action>

<Action type="SendCommandToClientAction" />
</Transition>

Figure 6.25 The animate device transition

The workflow involving the lower branch that is responsible for handling the

cancel events is actually very similar with the upper branch. The main

difference is that the lower one only removes the cancelled the devices’

statuses in the SiteData documents. And it does not update the statues.

However, after removes the cancelled statuses, it still animates the intercom

Case Study

85

devices with the current statuses. Here, the details of workflow definitions for

the cancel event are not discussed any more.

6.5 Conclusion

This section presented several practical examples of the workflows designed

for the FlinQ platform by using our workflow modelling language. Moreover,

all these workflows have already been deployed in our workflow engine and

successfully executed.

The case study demonstrates that our proposed workflow modelling language

and WFM framework can successfully model and execute the data-centric

business processes in the FlinQ security management platform. In addition,

the workflow engine can successfully invoke the applications of the FlinQ

server to interact with the connectors and the client applications.

However, the case study also reveals that the XQuery statements defined in

the workflows could be very complicated and not so readable in some cases.

86

7 Conclusion

This chapter presents the main contributions of this thesis, draws some

conclusions and identifies points where further investigation is necessary.

This chapter is further structured as follows: Section 8.1 presents our general

conclusions and summarizes the main contributions of this thesis. Section 8.2

provides the answer of the research questions proposed in Chapter 1. Section

8.3 identifies some future work.

7.3 General Conclusions

In this work, we have proposed a WFM solution in the domain of security

management applications.

We first investigated security management applications and identified the

demand of adopting WFM technology in the security management domain.

We then performed a literature study on WFM and workflow modelling

languages. In particular, we focused on the data perspective of workflow

modelling languages.

In order to improve the capability of data handling in traditional Petri nets, we

proposed our Petri nets-based workflow modelling language with extensions

for data representation and manipulation. This language is a variant of classic

Petri nets inspired by Coloured Petri Nets [14]. In particular, we introduced

XQuery and its update extension in our language to explicitly specify the

tasks for data manipulations within the workflows. In addition, our workflow

definitions can be represented in a XML format with a uniform XML Schema

syntax. This results in the easy deployment and execution of the workflows in

our workflow engine.

We presented the design of the WFM framework in the FlinQ platform. Based

on the existing Petri nets workflow engine core, we integrated an XQuery

processor and a native XML database with this engine core. XQuery

statements (with the update extension [32] and Sedna Data Definition

Language [31]), defined in the workflow tasks for data processing and

management, are executed by this XQuery processor. The XML database can

be used for storing both workflow-relevant data and application data. In

addition to this integration, we created a workflow definition loader to parse

the XML-based workflow definitions and instantiate workflows for the engine

core, which plays the role of Interface 1 of the Workflow Reference Model

[7].

We selected the Sedna XML native database [31] for XML data processing

and management. The Sedna database has an XQuery processor to support

Conclusion

87

XQuery execution, the XQuery update language [32] and the Sedna DDL [31].

The implementation of the designed WFM framework mainly includes the

integration the Sedna database with the workflow engine core and the

workflow definition loader.

Finally, we tested our WFM solution by performing a case study in the FlinQ

platform. We modelled some typical workflows in the FlinQ platform by

using our modelling language and we deployed and executed these workflows

in our workflow engine. The case study shows that our WFM framework can

be successfully applied in real-life situations.

7.4 Answers to the Research Questions

(1) Which extensions of Petri nets are available for improving the capability

of data representation and manipulation?

In Chapter 3.5, we discuss the data perspective in workflow languages.

Coloured Petri Nets (CPN) [14] extends classic Petri nets by attaching data

values to the tokens and introducing a high-level programming language,

namely Standard ML [15] to support data definition and manipulation.

Standard ML expressions can be defined in the arcs going out of a transition,

to specify how to manipulate the data of tokens being produced by the

transition. CPN greatly improves the capability of data representation and

manipulation.

(2) Which technology and standards can be used for improving the capability

of data representation and manipulation in Petri nets?

By investigating the data perspective in multiple popular workflow languages,

our work identifies several technologies and standards that can improve the

data processing ability in Petri nets. CPN adopts Standard ML as its high-

level programming language. We also realize that more recent workflow

systems take full advantage of XML and XML-related standards, like XPath,

XQuery and XSLT. XML offers high flexibility, high extendibility and

strong data types support in terms of data representation. Furthermore, these

XML data processing standards are able to support high-level data

manipulation. It is thus beneficial to combine XML technologies and the Petri

nets model.

(3) How to integrate data processing and management services in a Petri

nets-based workflow execution environment?

In Chapter 5, we elaborate the design of our WFM framework which

integrates the data processing and management services with the Petri nets-

based workflow engine. First, all the data attached to the workflow cases are

Conclusion

88

wrapped in XML format within the workflow engine. Afterwards, an XQuery

processor and a native XML database are tightly integrated with the workflow

engine core. By using our Petri nets-based modelling language, the tasks that

perform the data processing and management can be explicitly specified in

our workflow definitions. The data processing and management services

within the workflow execution environment are thus realized.

7.5 Future Work

During the implementation of our work, we identified several research

opportunities for future work:

 XML Schema definitions and validation in places and criteria

This feature has been proposed as one of our extensions for traditional Petri

nets in Section 4.2. With this feature, XML Schemas are the typing system for

the XML data of the tokens, so that the validity of the XML data can be

ensured at each step of the workflows. However, this feature has not been

implemented and tested in our work, so it is worth implementing this feature

within our workflow engine.

 Importing the XML Schemas in the XQuery

Our extensions for traditional Petri nets take full advantage of XML Schemas

for strong data types support. The XQuery standard [26] already includes the

primitive data types (e.g. string, integer, date) defined in XML Schema [25].

Moreover, the XQuery standard allows users to import the external XML

Schema definitions for supporting the user-defined data types. However, this

feature is not supported by Sedna. This issue should be solved in the future.

 Workflow verification and analysis

The workflow definitions should be verified before the execution. The

workflow editor is responsible for the workflow verification. The verification

should not only include the workflow definitions but also include the XQuery

statements. Moreover, it is preferable that the workflow engine itself can have

the capability of checking the correctness of the deployed workflows.

One of the important benefits of using Petri nets is availability of many

analysis techniques. These techniques can be used to prove properties and to

calculate performance measures. These analysis techniques should be

exploited in future work.

 Improving the capability of invoking external applications

Conclusion

89

Currently the workflow engine only invokes the FlinQ server applications. An

appropriate workflow engine should be capable of interacting with

heterogeneous software components [43]. In future the workflow engine

capabilities of invoking external applications should be improved.

 Implementation of the workflow editor

A workflow editor that plays a role of a process definition tool has been

proposed in our WFM framework. However, this editor has not been

implemented during this Master project. Currently the workflow designers

directly create the XML-based workflow definitions in textual form, which is

not intuitive. Therefore, future work includes the implementation of the

workflow editor with a graphical design environment.

90

References

[1] M. Valera and S.A. Velastin. Intelligent distributed surveillance systems:

a review vision. In Image and Signal Processing, IEE Proceedings, volume

152, pages 192 – 204, April 2005.

[2] D. Mierzwinski, D. Walczak, M. Wolski, M. Wrzos, Surveillance System

in Service-Oriented Manner, synasc, pp.427-433, 12th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing,

2010.

[3] W.M.P. van der Aalst. Business Process Management Demystified: A

Tutorial on Models, Systems and Standards for Workflow Management. In J.

Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and

Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65.

Springer-Verlag, Berlin, 2004

[4] W.M.P. van der Aalst. The Application of Petri Nets to Workflow

Management. The Journal of Circuits, Systems and Computers, 8(1):21–66,

1998.

[5] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management

Coalition. John Wiley and Sons, New York, 1997.

[6] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based

Workflow Management System. In S. Navathe and T. Wakayama, editors,

Proceedings of the International Working Conference on Information and

Process Integration in Enterprises (IPIC’96), pages 179–201, Camebridge,

Massachusetts, Nov 1996.

[7] D. Hollingsworth. The Workflow Reference Model - Issue 1.1. Technical

Report Document Number TC00-1003, Workflow Management Coalition,

1995. Accessed from http://www.wfmc.org/standards/docs/tc003v11.pdf on

27 June 2012.

[8] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business

Process Management: A Survey. Accessed from

http://150.145.63.3/ruffolo/progetti/projects/23.Semantic%20BPM-

%20in%20OntoDLP/Business%20Process%20Management%20A%20Survey

--10.1.1.14.2433.pdf.

[9] Weske, M., van der Aalst, W., and Verbeek, H. Advances in Business

Process Management. Data & Knowledge Engineering 50,1 (2004).

http://www.wfmc.org/standards/docs/tc003v11.pdf%20on%2027%20June%202012
http://www.wfmc.org/standards/docs/tc003v11.pdf%20on%2027%20June%202012
http://150.145.63.3/ruffolo/progetti/projects/23.Semantic%20BPM-%20in%20OntoDLP/Business%20Process%20Management%20A%20Survey--10.1.1.14.2433.pdf
http://150.145.63.3/ruffolo/progetti/projects/23.Semantic%20BPM-%20in%20OntoDLP/Business%20Process%20Management%20A%20Survey--10.1.1.14.2433.pdf
http://150.145.63.3/ruffolo/progetti/projects/23.Semantic%20BPM-%20in%20OntoDLP/Business%20Process%20Management%20A%20Survey--10.1.1.14.2433.pdf

91

[10] Alves, A., A. Arkin, et al. (2007). Web Services Business Process

Execution Language Version 2.0, April 2007. Available from:

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, OASIS.

[11] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another

Workflow Language. QUT Technical report, FIT-TR-2002-06, Queensland

University of Technology, Brisbane, 2002.

[12] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.

Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51,

2003.

[13] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede.

Design and Implementation of the YAWL System. In A. Persson and J. Stirna,

editors, Advanced Information Systems Engineering, Proceedings of the 16th

International Conference on Advanced Information Systems Engineering,

volume 3084 of Lecture Notes in Computer Science, pages 142–159.

Springer-Verlag, Berlin, 2004.

[14] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri nets and CPN

tools for modelling and validation of concurrent systems. International

Journal on Software Tools for Technology Transfer, 2007.

[15] Standard ML of New Jersey. www.smlnj.org.

[16] Michael Kay, et al. XSL Transformations (XSLT) Version 2.0, January

2007. Available from: http://www.w3.org/TR/xslt20/.

[17] M. Adams et al. “YAWL User Manual”. Version 2.0. The YAWL

Foundation. September 2009.

[18] Weske, M., Vossen, G.: Workflow Languages. Bernus, Mertins, Schmidt

(Editors): Handbook on Architectures of Information Systems. (International

Handbooks on Information Systems), pp 359–379. Berlin: Springer 1998.

[19] Chun Ouyang. How to Manipulate Data in YAWL, Version 0.4. The

YAWL Foundation. November 2005. Available from:

http://yawlfoundation.org/yawldocs/YAWLDataManual-beta7.pdf

[20] K. Grigorova, Process Modelling Using Petri Nets, Int. Conf. on

Computer Systems and Technologies, CompSysTech’2003, Bulgarian

Computer Science Conference, Sofia, Bulgaria, Jun 2001.

[21] Breugel, F.v., Koshkina, M.: Models and Verification of BPEL.

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf (2006).

http://www.smlnj.org/
http://www.w3.org/TR/xslt20/
http://yawlfoundation.org/yawldocs/YAWLDataManual-beta7.pdf

92

[22] Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow

data patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of

Technology. (2004).

[23] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur

instrumentelle Mathematik, Bonn, 1962.

[24] K. Reinhardt, Reachability in Petri nets with inhibitor arcs, Technical

report WSI-96-30, Wilhelm Schickard Institut fur Informatik, Universitat T ̈

ubingen (1996).

[25] Shudi (Sandy) Gao, C. M. Sperberg-McQueen and Henry S. Thompson.

XML Schema Definition Language (XSD) 1.1 Part 1: Structures, 5 April 2012.

Available from: http://www.w3.org/TR/xmlschema11-1/

[26] Scott Boag, et al. XQuery 1.0: An XML Query Language (Second

Edition), 14 December 2010. Available from: http://www.w3.org/TR/xquery/

[27] Anders Berglund, et al. XML Path Language (XPath) 2.0 (Second

Edition), 14 December 2010. Available from:

http://www.w3.org/TR/xpath20/

[28] J. Eder, H. Groiss, and W. Liebhart: Workflow Management and

Databases. Proc. 2ème Forum Int. d Ínformatique Appliquée, Tunis, 1996.

[29] FOMICHEV, A., GRINEV, M., AND KUZNETSOV, S. 2006. Sedna: A

native XML DBMS. In 32nd Conference on Current Trends in Theory and

Practice of Computer Science, SOFSEM 2006.

[30] Ilya Taranov et al. Sedna: native XML database management system

(internals overview). SIGMOD Conference, pages 1037-1046, 2010.

[31] Sedna Native XML Database system. http://www.sedna.org/

[32] Patrick Lehti, “Design and Implementation of a Data Manipulation

Processor for an XML Query Processor,” Technical University of Darmstadt,

Darmstadt,Germany, Diplomarbeit, August 2001.

[33] Jonathan Robie, et al. XQuery Update Facility 1.0, 17 March 2011.

Available from: http://www.w3.org/TR/xquery-update-10

[34] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J. Mosgraber,

F. Reinert, N.E.S.T. - Network Enabled Surveillance and Tracking, Future

security: 3rd Security Research Conference Karlsruhe; 10th-11th September

2008.

[35] J. Alcober, G. Cabrera, X. Calvo, E. Eliasson, K. Groth, P. Pawalowski,

High Definition Videoconferencing: The Future of Collaboration in

http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/
http://www.sedna.org/
http://www.w3.org/TR/xquery-update-10

93

Healthcare and Education, eChallenges e-2009 Conference, October 21-23

2009, Istanbul, Turkey.

[36] C. Mazurek, M. Stroi˜nski, D. Walczak, M. Wolski, Supporting high-

tech crime investigation through dynamic service integration, Fifth

International Conference on Networking and Services, 2009.

[37] H. Che, Y. Li, A. Oberweis and W. Stucky, Web Service Composition

Based on XML Nets: Proceedings of the 42nd Hawaii International

Conference on System Sciences, 2009.

[38] Lenz, K.; Oberweis, A.: Interorganizational Business Process

Management with XML Nets, In H. Ehrig, W. Reisig, G. Rozenberg, H.

Weber, Petri Net Technology for Commu-nication-Based Systems, Advances

in Petri Nets vol. 2472 of LNCS, pp. 243-263. Springer-Verlag, 2003.

[39] P. Reimann, H. Schwarz and B. Mitschang: Design, Implementation, and

Evaluation of a Tight Integration of Database and Workflow Engines. In:

Journal of Information and Data Management. Vol. 2(3), SBC - Brazilian

Computer Society, 2011.

[40] W.M.P. van der Aalst, Barros, A.P, Ter Hofstede, A.H.M., &

Kiepuszewski, B.,. 2000. Advanced Workflow Patterns. In Proceedings of the

7th International Conference on Cooperative Information Systems (CooplS

'02). Springer, London, UK, 18-29.

[41] W.M.P. van der Aalst. XML-Based Schema Definition for Support of

Interorganizational Workflow, Information Systems Research (14:1), March

2003, pp. 23-46.

[42] S. Kepser. A simple proof of the Turing-completeness of XSLT and

XQuery. In T. Usdin, editor, Extreme Markup Languages 2004. IDEAlliance,

2004. Available at

http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/EM

L2%004Kepser01.html

[43] Rossi, D., Turrini, E.: What your next workflow language should look

like. 2nd International Workshop on Coordination and Organization (2006).

[44] Zorba: The XQuery Processor. http://www.zorba-xquery.com

[45] XQilla. http://xqilla.sourceforge.net.

http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/EML2%004Kepser01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/EML2%004Kepser01.html
http://www.zorba-xquery.com/

94

Appendix A. XML Schema for the XML-

based workflow definitions

This appendix depicts the XML Schema representing the syntax of our XML

workflow definitions.

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="PetriNet">
 <xs:complexType>
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="Criteria" />
 <xs:element ref="Transition" />
 <xs:element ref="Place" />
 <xs:element ref="Arc" />
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="UniqueID">
 <xs:selector xpath="./*" />
 <xs:field xpath="@id" />
 </xs:unique>
 </xs:element>
 <xs:element name="Condition">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Criteria">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Place">
 <xs:complexType>
 <xs:attribute name="id" type="xs:unsignedByte" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="Arc">
 <xs:complexType>

95

 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="POSITIVE" />
 <xs:enumeration value="RESET" />
 <xs:enumeration value="BLOCK" />
 <xs:enumeration value="NEGATIVE" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="fromId" type="xs:unsignedByte" use="required" />
 <xs:attribute name="toId" type="xs:unsignedByte" use="required" />
 </xs:complexType>
 <xs:keyref name="fromKeyRef" refer="UniqueID">
 <xs:selector xpath="." />
 <xs:field xpath="@fromId" />
 </xs:keyref>
 <xs:keyref name="toKeyRef" refer="UniqueID">
 <xs:selector xpath="." />
 <xs:field xpath="@toId" />
 </xs:keyref>
 </xs:element>
 <xs:element name="Action">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Transition">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="Condition" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="Action" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:unsignedByte" use="required" />
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="DEFAULT" />
 <xs:enumeration value="EMITTER" />
 <xs:enumeration value="COLLECTOR" />
 <xs:enumeration value="XOR" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

