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Abstract

Interlocking systems control all wayside elements in a railway yard. These sys-
tems are responsible for safe train operations and must prevent collisions and
derailments from happening. It is absolutely essential that interlocking systems
operate flawlessly, and as a result a lot of effort is put in their verification.

ProRail (the Dutch railway infrastructure manager) is developing a new
type of interlocking system based on off-the-shelf PLC hardware, the PLC-
Interlocking.

This report introduces a conformance testing methodology for PLC-Interlocking
systems that is based around the JTorX test tool. The test method has been
applied to the first instance of a PLC-Interlocking system, which is installed at
the Santpoort Noord station.

To get an SUT that can be tested, the interlocking logic is integrated in
a program that adds interfacing code and is then recompiled for a regular PC
system. As a result, testing does not require access to the PLC hardware.

A number of test purpose models have been created to direct test case gen-
eration. These test purpose models were implemented in Java, using a custom
framework that creates an LTS representation of inputs and outputs and handles
communication with JTorX.

A partial specification model has been implemented in mCRL2. Because of
the complexity of the requirements and the limited available time, it was not
possible to create a complete model. In fact, the complexity of the requirements
has led to faults in the partial model that was implemented.

The created test setup allows automated testing of the interlocking logic of
PLC-Interlocking systems. The entire test setup can be run on a regular PC
system, but is not very memory efficient. Of 73 automated test runs that were
conducted, 36 ended with the observation of a failure. Four of these failures
must be further investigated, but it seems likely that all failures were caused by
faults in the model.

The quality of the model is poor, as shown by the many failures that resulted
from faults in the model. As a result, the quality of the whole test setup is not
at a level where it can be used in the regular validation process of interlocking
systems.
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Chapter 1
Introduction

Prorail is the Dutch railway infrastructure manager. As such, Prorail is tasked
with maintaining, improving and expanding the railway network and transfer
capacity (railway stations). The Dutch railway network consists of 7000 km of
railway tracks on which trains travel almost 150 million kilometres annually.
ProRail does not operate any train services on the network; it controls the
railway traffic and distributes the available railway and transfer capacity among
train operating companies.

An important part of ProRail’s responsibilities is guaranteeing safe train
movements. The Treinbeveiliging department (English: Signalling department)
is specially tasked with maintaining and improving the safety of train move-
ments. This department maintains knowledge about train safety related sys-
tems, creates and maintains specifications for these safety systems and monitors
trends among deployed safety systems. Furthermore this department is involved
in developing new safety systems.

I carried out the research described in this report while working as an intern
at ProRail’s Treinbeveiliging department.

An important link in the railway infrastructure with regard to safety is formed
by interlocking systems. Interlocking systems control all wayside elements and
are responsible for disallowing all train movements that might lead to collisions
or derailments.

There are a number of different interlocking types in use. Because of econom-
ical and strategic reasons, ProRail was not satisfied with the previously available
alternatives. Therefore ProRail commissioned the development of a new type
of interlocking system based on commercial off-the-shelf PLC hardware. This
PLC-Interlocking system is being developed by a project team consisting of
people from Movares (an external engineering firm) and people from ProRail.
The project has not yet been completed entirely, but the first PLC-Interlocking
instance is already in use. It is installed at the Santpoort Noord railway station
and has been in operation since June 2012.

The newly developed PLC-Interlocking (and specifically the installation at
Santpoort Noord) was the target of the research that is described in this report.

1



The main research question, as formulated beforehand:

‘How can the safety of the PLC-Interlocking logic best be tested using JTorX
based testing methods.’

1.1 Motivation

Interlocking systems have an important safety responsibility in the railway in-
frastructure. Therefore it is absolutely essential that these systems will not fail
in an unsafe manner.

As a result, a lot of effort is put in the verification and validation of in-
terlocking systems. An important part of the overall verification effort is the
verification of the interlocking logic with regard to safety requirements. Most
of the interlocking logic in the PLC-Interlocking is derived from legacy systems
that have been verified in the past. However, some new functionality of the
interlocking logic has never been implemented before. This prompted the re-
search described in this report; ProRail is interested in new methods to verify
the correctness of (new) interlocking logic, specifically for the PLC-Interlocking
with regard to safety.

In the past there has been a considerable amount of research aimed at ver-
ifying interlocking systems and general PLC systems. Preliminary literature
research [1] has made it clear that, with current technology, it is not possible
to prove the correctness of PLC-Interlocking systems using exhaustive verifi-
cation techniques such as model checking. The internal state space of PLC-
Interlockings is simply too big. Another problem is the complexity of the safety
requirements. It is not clear how a set of safety requirements that is provable
complete can be defined for a PLC-interlocking system.

Since using exhaustive techniques was not possible, the research has focused
on using a model based testing technique. Testing is not affected by the problems
with state space explosions that make exhaustive techniques impossible to use.
On the other hand, testing is inherently incomplete and cannot give a proof
of correctness. It can however increase the confidence in the correctness of a
system.

The literature does not report on any past attempts to use model based test-
ing in the verification of interlocking systems. As such it is novel research, and
an interesting test case to see whether model based testing can be successfully
applied to interlocking systems.

The ultimate goal of the research has been to increase confidence in the cor-
rectness of the PLC-Interlocking installation at Santpoort Noord and of PLC-
Interlocking systems in general through the use of model based testing. However,
just finding out whether model based testing can be applied to an interlocking
system constitutes an interesting goal on its own.

2



1.2 Summary of Research and Results

The following sections give a brief introduction to model based testing, followed
by an overview of the conducted research, and the main results and conclusions.

1.2.1 Model Based Testing

The method presented in this report tests PLC-Interlocking systems using a
model based testing approach. More specifically, the approach is based on the
input-output conformance (ioco) theory. Timmer et al. [2] comprehensively sur-
veyed this testing theory and its formal underpinning. The allowed behaviour
of the system under test is expressed in a specification model based on a La-
belled Transition System (LTS), where the transitions express input and output
actions. This model is also used to derive (on the fly) test cases.

The theoretical basis of the ioco theory is formed by the ioco conformance
relation, which defines under what conditions an implementation conforms to a
specification. An implementation ioco-conforms to a specification, if at all times
it can handle at least all inputs from the specification, and produces at most all
outputs from the specification. With the exception that the implementation is
not allowed not to provide any output when the specification requires one.

Practical application of this theory requires tooling. JTorX [3] is a test tool
that can test whether an implementation ioco-conforms to a given specification
model. Given a specification model and an SUT, JTorX can execute test runs
fully automated. If JTorX observes a failure during a test run it will report a
fail verdict; if no failures are observed a pass verdict will be given after a test
run has finished. JTorX allows the use of a test-purpose model, which is put in
parallel with the specification model, to steer test case generation.

Figure 1.1 gives a schematic view of a typical JTorX test setup.

JTorX

public boolean[] update(boolean[] inputs, boolean[] outputs) {
boolean[] retOut= new boolean[outputs.length];

//Trains:
boolean[] sections = new boolean[12];
for (int i = 0; i < sections.length; i++){

sections[i]=true;
}
for (Train train: trains){

boolean [] tOuts = train.update(inputs, outputs);
for (int i = 0; i < sections.length; i++){

sections[i] = sections[i] && tOuts[i];
}

}

//EBP:
for (int i = 0; i < requested.length; i++){

if (random.nextInt(EBP_RANDOM_SIZE) == 0){
requested[i] = !requested[i];

}
}

//Start filling the output array
System.arraycopy(sections, 0, retOut, 0, sections.length);
System.arraycopy(requested, 0, retOut, 12, requested.length);

//Synchronise the speed steps correctly with the outer sections.
//Speed step 507XSS1, 507XSS2, 507XSS3
retOut[O_507XSS1] = retOut[O_516ETR];
retOut[O_507XSS2] = retOut[O_516ETR];
retOut[O_507XSS3] = retOut[O_516ETR];
//Speed steps 528XSS1, 528XSS2
retOut[O_528XSS1] = retOut[O_530BTR];
retOut[O_528XSS2] = retOut[O_530BTR];
return retOut;

}

Test 
Purpose

SUT 
Executableoutput transitions

input transitions

proc input_main(inputs:InputMap, state: State) =
ei_507GZ(true) . input_main( setBoolListItem(inputs, ei507GZ,

true ) , state)
+ ei_507GZ(false) . input_main( setBoolListItem(inputs, ei507GZ,
false) , state)
+ ei_516GZ(true) . input_main( setBoolListItem(inputs, ei516GZ,
true ) , state)
+ ei_516GZ(false) . input_main( setBoolListItem(inputs, ei516GZ,
false) , state)
+ ei_521GZ(true) . input_main( setBoolListItem(inputs, ei521GZ,
true ) , state)
+ ei_521GZ(false) . input_main( setBoolListItem(inputs, ei521GZ,
false) , state)
+ ei_528GZ(true) . input_main( setBoolListItem(inputs, ei528GZ,
true ) , state)
+ ei_528GZ(false) . input_main( setBoolListItem(inputs, ei528GZ,
false) , state)
+ i_516ETR(true) . input_main( setBoolListItem(inputs, i516ETR,
true ) , state)
+ i_516ETR(false) . input_main( setBoolListItem(inputs, i516ETR,
false) , state)
+ i_516DTR(true) . input_main( setBoolListItem(inputs, i516DTR,
true ) , state)
+ i_516DTR(false) . input_main( setBoolListItem(inputs, i516DTR,
false) , state)
+ i_516CTR(true) . input_main( setBoolListItem(inputs, i516CTR,
true ) , state)
+ i_516CTR(false) . input_main( setBoolListItem(inputs, i516CTR,
false) , state)
+ i_516BTR(true) . input_main( setBoolListItem(inputs, i516BTR,
true ) , state)

+ cycle_pre .IXL_start( inputs
, state);

Model

Verdict: pass / fail

Figure 1.1: JTorX test setup

1.2.2 The Created Test Setup

The conducted research has focused on the interlocking logic of the PLC-Interlocking
installation that is installed at the Santpoort Noord railway station. Besides
JTorX which was a given, the setup consists of three main parts that have been
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developed as part of the conducted research: the SUT, a specification model
and a test purpose model.

Using a PLC-Interlocking as the SUT is problematic because such a system
is very expensive and hard to interface with. Therefore an executable has been
created that can be run on a regular PC, which embeds the interlocking logic of
a PLC-Interlocking, and adds an interface for JTorX to interact with this logic.
The interlocking logic is written in the non-parsable graphical Function Block
Diagram (FBD) format, but a C++ representation of the logic is generated during
the regular compile process for PLC executables. This C++ representation of
the interlocking logic forms the heart of the created executable SUT.

JTorX works with LTS based models, as a result all inputs and outputs
are communicated using transitions. A PLC-Interlocking continuously executes
an input-computation-output cycle, in which the computation part is taken
care of by the interlocking logic. This cycle is simulated in the models by
having transitions to set input variables, a transition to indicate the start of the
computation phase, and transitions to output computed values. However, the
interlocking logic is not aware of these transitions. The executable in which the
interlocking logic is embedded has to translate all transitions to function calls
that set variables, execute the interlocking logic and output computed values.

A specification model has been created in mCRL2, that (partially) specifies
what constitutes correct behaviour for the PLC-Interlocking.

The generic behaviour of this model is based on the generic specifications of
the PLC-Interlocking in the Subsystem/System Specification (SSS) [4] and OVS
Application Engineering document [5] as well as expert consultations [6, 7]. The
Santpoort Noord specific behaviour is based on the OBE-blad [8], OS-blad [9]
and DO document [10] for Santpoort Noord.

The developed model is an initial research model that serves as a proof of
concept, and does not capture all functionality of a PLC-Interlocking. The
behaviour of PLC-Interlocking systems is so complex that it was not possible
to create a complete model in the allotted time. In fact, the complexity of the
requirements led to faults in the partial model.

Random test case generation leads merely to extremely unlikely and inconsis-
tent test cases, which is not useful for testing. Therefore, test purpose models
have been developed that steer test case generation. Four different test pur-
pose models have been implemented: Two create fixed scenarios, one generates
test scenarios randomly with some constraints (the CRSG test purpose model),
and one generates scenarios based on simulated train movements (the STM test
purpose model).

These models have been implemented in Java, rather than in mCRL2, be-
cause Java was deemed to be the superior language for the task. Since Java
cannot be translated to an LTS or generate an LTS representation natively
(which JTorX requires), a custom Java framework was created, which handles
communicating inputs and outputs with JTorX using transitions.
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1.2.3 Results and Conclusions

The conducted research has led to a working test setup, that with some effort
could be used to test the interlocking logic of any PLC-Interlocking system.

In total 73 test runs have been done with the CRSG and STM test purpose
models.

The performance of the test setup depends heavily on the used test purpose
model. The execution time for a test run with 100.000 transitions varies from
about 3:20 minutes (STM test purpose) to over 21 minutes (CRSG test purpose).
The memory consumption of the total test setup can be heavy. In the longest
conducted test runs (650.000 transitions), both JTorX and the used test purpose
model used well over 20 GiB of memory. The specification model (about 2.5
GiB) and the SUT (only about 1 MiB) contribute relatively little to the overall
memory consumption of the test setup.

Of the 73 test runs performed with the CRSG and STM test purpose models,
36 ended with the observation of a failure. Four of the found failures must be
further examined, but as it stands now it seems to be that all failures are caused
by faults in the model.

The STM test purpose model was more successful in generating test cases
that found failures (33 failures in 50 test runs) than the CRSG test purpose
model (3 failures in 23 test runs). But it is not possible to draw conclusions as
to which test purpose model is most useful for finding faults in the SUT, since
the found faults were in the model.

Considering that the model only models a part of the SUT’s behaviour, yet
generates so many false positives, it must be concluded that the quality of the
test setup is not at (or close to) a level where it can be used in the regular
validation process of interlocking systems.

1.3 Related Work

In the past, there has been some considerable research into verifying interlocking
systems, as well as some limited research into verifying PLC systems in general.

1.3.1 Verification of Interlocking Systems

Most research into verification of interlocking systems has focused on using ex-
haustive techniques: SAT-solving, symbolic model checking and explicit state
model checking. Typically, case studies focus on a specific interlocking instal-
lation and try to prove that the interlocking installation will never allow train
movements that might lead to collisions or derailments.

An approach used in multiple case studies [11, 12, 13, 14, 15] and benchmarks
[16] is to translate the interlocking logic to a model (for model checking) or a
Boolean equation (for SAT-solving). Properties are defined as formulae, repre-
senting requirements over the inputs and outputs of the system (e.g. If input X
is true, then output Y must be false). These properties can mostly be derived

5



directly from the track layout. Model checkers[17, 18] or SAT-solvers [19] are
then used to prove that the desired properties hold for the models or equations.

Researchers were able to prove many properties of interlocking systems using
this methodology. However, it is very hard to prove that the used properties are
complete (i.e. that they are sufficient to prove that the system will disallow all
dangerous train movements). One author also mentioned [13] that some safety
requirements could simply not be expressed in the used formalism (Boolean
equations in that case).

Other papers [20, 21, 22, 23] describe research in which models were created
from control tables. Control tables are stateless abstractions of interlocking
systems that define simple rules that an interlocking should implement. These
models were coupled with an environmental model with simulated trains and
the basic requirements: no collisions and no derailments. These requirements
were verified to hold in the models using model checkers.

The used requirements are easier to define than those of the earlier mentioned
approach. However verifying an interlocking system using this approach is still
far from trivial. The models abstract a lot of real world details away (e.g.
they have a fixed number of trains), which makes their behaviour incomplete.
Furthermore, the cited works only verify control tables that define high level
behaviour, but not actual program code that implements those control tables.

A few research papers [11, 12, 13, 15] (describing the first approach) are of ex-
ceptional interest because they report on attempts to verify interlocking systems
in the Netherlands during the 1990s. These Vital Processor Interlocking (VPI)
systems are used in the same context as PLC-Interlocking systems (namely the
Dutch railways), must fulfil the same safety requirements and even have many
architectural similarities with PLC-Interlocking systems.

None of the approaches in the literature are likely to be usable for verification
of PLC-Interlocking systems.

Even the VPI research is not applicable to PLC-Interlockings, despite the
similarities in the systems. A practical reason for this is that the PLC-Interlocking
code is in a graphical format that cannot easily be transformed to a model. A
more fundamental reason is that a model of a PLC-Interlocking system will be
much more complex than those of the systems verified in the literature. The
main cause of this is the fact that the PLC-Interlocking is much faster than
other interlocking systems, which will result in much more states during certain
fixed time intervals that are relevant to the requirements.

1.3.2 Verification of PLC Systems

There is also some limited research on the verification of software for Pro-
grammable Logic Controller (PLC) systems. Both Gourcuff et al. [24] and
Pavlovic and Ehrich [25] used the NuSMV [17] symbolic model checker to verify
PLC applications. Their methods used automated translations of PLC programs
(from different source formats) to NuSMV models. The authors report success-
fully applying their methods in different case studies. Pavlovic and Ehrich even
verified a component of an interlocking system in their case study. However,
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the systems in the case studies were significantly less complex than a complete
PLC-Interlocking system.

1.3.3 Model Based Testing

JTorX is not the only tool in its class. The following lists some other tools that
are used for automated model based conformance testing.

Firstly, JTorX is the successor of an earlier tool, TorX [26]. TorX is similar
in functionality to JTorX, but implements an older version of the ioco theory,
and is harder to deploy according to Belinfante [3].

TGV [27] is a tool that has many similarities with JTorX in the kind of
models that it can handle, and how it generates test cases. Contrary to JTorX,
TGV can only generate test cases and requires external tools to execute those
test cases.

The AGEDIS testing toolset [28] includes tools for automated test case gen-
eration and execution. The AGEDIS tools perform conformance testing simi-
larly to what JTorX does, but use custom data formats for the models (whereas
JTorX and TGV support any language that can be translated to an LTS).

Spec-Explorer [29] is an integrated tool for automated conformance testing,
that has been developed by Microsoft. It can natively test non-distributed .NET
programs, without needing any adapter ‘glue’ code, but can also be used to test
other types of components. Specification models can be written in one of two
custom languages, one of which is an extension of the common C# language.

JTorX has been used in at least one published case study [30] as well as a
recently presented one [31]. The other tools listed above have also all been used
in case studies. But there are no known cases in which conformance testing
tools have been used to test interlocking systems.

1.3.4 Testing Interlocking Systems

Although there are no known cases of model based conformance testing being
applied to interlocking systems, there are some other test approaches that have
been published.

Mutlu et al. [32] reported on a method that they developed for testing com-
plete interlocking systems, where they simulate all wayside elements using a
PLC. This method can test a complete interlocking system instead of just the
software, because the simulation PLC is connected to the interlocking system
directly. The simulated inputs are generated by simulated train movements,
similar to the control table verification work covered in section 1.3.1. The simu-
lation system does simple consistency checks on the interlocking’s outputs, and
also verifies the absence of collisions and derailments in the simulated scenarios.

The work of Calame et al. [33] has probably the most in common with the
work described in this report. They ran test cases defined in the TTCN-3
language against the interlocking logic of VPI interlocking systems. The inter-
locking logic was translated to a modelling language which could be executed in
a simulator on a regular PC. The test cases were derived manually from a set of
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given test scenarios, with the aid of a model that modelled part of the behaviour
of the interlocking system [34]. However, information on what exactly was mod-
elled, what the model was used for, and how that model was implemented is
not available.

An important part of an ioco testing setup is the specification model of the
SUT. Past research also used models of interlocking logic, but these models were
generally generated from the interlocking code itself (see section 1.3.1). This is
not an option for model based testing, since this would copy any implementation
flaws to the specification model. The literature offers no clear examples of com-
plete interlocking logic models that are constructed purely from a specification.

1.4 Report Structure

The first part of this report provides general background information on railway
safety in the Netherlands and the PLC-Interlocking system that is being tested.
The second part of this report covers the actual research.

Chapter 2 gives an introduction to the techniques and procedures used to
guarantee safety on the Dutch railways. The functions and responsibilities of
interlocking systems and how they relate to the overall safety on the railways
are explained.

Chapter 3 describes the PLC-Interlocking system. It describes the hardware
and general architecture of the system, how it interacts with its environment,
and how it is programmed.

The second part of the report starts at chapter 4, which gives a short intro-
duction to ioco testing and describes the used test setup. Furthermore, this
chapter also gives an introduction to the mCRL2 language which has been used
for the implementation of the specification model.

Chapter 5 describes the behaviour of the PLC-Interlocking model that has
been created. Firstly, it covers the specification from which the model has been
implemented. After that the transitions that the model uses to communicate
with JTorX are covered, as well as a description of the model’s functionality.
How that behaviour is implemented using the mCRL2 language is detailed in
chapter 6, which discusses the structure of the model, its execution flow, and
the used data structures.

Chapter 7 discusses the executable that serves as the SUT. First, the C++

code that is generated during the compilation of the interlocking logic is dis-
cussed. This is followed by an explanation of how that code is used in the
executable, and what additional code has been written. The implementation of
the interfaces to the interlocking logic is also explained.

Chapter 8 describes why random test generation does not lead to useful test
cases, and describes the test purpose models used to steer test case genera-
tion. These test purpose models are implemented in Java using a custom built
framework. This framework is the subject of chapter 9.

The created test setup has been tested in over 70 test runs. Chapter 10
discusses the execution of these test runs, and the data gathered during these
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test runs. Both the performance of the test setup and its ability to find faults
are discussed in detail.

Finally, chapter 11 gives conclusions and recommendations for future re-
search.

This report contains a lot of terminology that is not commonly used but is
specific to the railway industry, or even specific to the Dutch railway industry.
Furthermore, some model based testing terminology is used as well as some
other terms which are otherwise not used commonly. The glossary at the end
of this report gives an overview of the used terms and their meaning. Possibly
interesting to readers that are not familiar with English railway terminology at
all is the glossary with translations created by the INESS projetct [35].

1.5 Sources

Chapters 2 and 3, and parts of the chapters 1 and 4 are based on texts from an
earlier report [1], which was written for the course research topics and details
the preliminary research.

This report presents a lot of information on the workings of the Dutch rail-
way infrastructure. All this information, unless credited otherwise, comes from
Dutch signalling course manuals [36, 37], books on signalling [38] and on the
Dutch railway infrastructure [39] and from papers [11, 12, 13], but mostly
from personal communications with railway signalling experts from ProRail and
Movares [40, 6, 7].

All information regarding the PLC-Interlocking, unless credited otherwise,
has been gathered from the PLC system’s manuals [41, 42], PLC-Interlocking
design documents [5, 43] and personal communications with railway signalling
experts and system engineers from ProRail and Movares [40, 6, 7, 44, 45].
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Chapter 2
Train Safety on the Dutch
Railways

The Dutch railway infrastructure should at all times guarantee safe train move-
ments. There are two concrete safety goals that have to be met:

1. No collisions

2. No derailments

Besides collisions among trains, this also includes collisions with other vehicles
(at level crossings) and fixed objects (at the end of a track). Furthermore
collisions with maintenance personnel or vehicles must be prevented at all times.
Derailments can be caused by an interruption of the railway (e.g. a point in the
wrong position) or by riding at an excessive speed.

A number of systems play an important part in ensuring that the safety
requirements are met. These systems and their interactions are considered in
the next three sections. The final section of this chapter details how railway
engineers construct safe systems.

2.1 Train Control Architecture

The train control architecture consists of multiple systems that are spread over
different layers. Figure 2.1 gives a schematic view of the different layers of the
train control architecture, the systems in them, and the interactions between
these systems.

On the lowest level (the physical layer) are all wayside elements such as sig-
nals, points, level crossings and movable bridges, but also train detection devices
along the track. These elements control the movement of trains and relay in-
formation from and to trains and their drivers. The devices in the physical
layer are controlled by and give feedback to a nearby interlocking system, which
controls all elements in a certain area.

Each interlocking system is connected to a system in the logistics layer, from
which it receives requests and to which it relays information. This logistics
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Figure 2.1: Train control architecture

system directs train movements over a bigger area and is controlled by human
operators (called signallers) or computer systems executing set train schedules.

All wayside elements are connected with an interlocking system through one
or more dedicated electrical wires. A wire either controls one function of the
wayside element or gives a single bit of feedback information to the interlocking
system. Each wire is linked (possibly through an external relay) with a single
one-bit input or output port of an interlocking system.

The requests from a logistics system to an interlocking system are on the level
of individual wayside elements (e.g. ‘set point X in the left position’). Feedback
from the interlocking system is also on the level of individual wayside elements
(e.g. ‘point X is positioned left’). The requests and feedback are communicated
between the systems using a custom protocol over a long distance serial line.

2.1.1 Safety Responsibility

Systems in the logistics layer are not safety critical, neither is the communi-
cation between logistics systems and interlocking systems. The responsibility
for train safety lies with the interlocking system that controls a certain area.
This implies that interlocking systems need to detect and ignore potentially
dangerous requests from the logistics layer.

Maintaining safety is of the utmost importance. Therefore interlocking sys-
tems and the devices they control are designed around the fail-safe philosophy.
Concretely this means that if a system would fail that this might impact func-
tionality, but should not impact safety, i.e. a failure might mean that trains
cannot reach their destination, but should never lead to an accident.

14



Of course safety can only be guaranteed within the parameters that the sys-
tems were designed for. If people do not follow signalling or regulations (e.g.
parking a car on a railroad crossing), accidents cannot always be prevented.

2.2 Devices in the Physical Layer

2.2.1 Signals

Interlocking systems communicate with train drivers through signals. There
are different kinds of signals, the most common of which consists of three lamps
(red, yellow, green) and possibly a number display which can show a number to
indicate a speed (speed = number × 10 km/h). With these a signal can show
certain signalling aspects, which convey instructions to the drivers of passing
trains as shown in table 2.1.

The signalling protocol has a partly fail safe design. In case the signal fails
altogether, trains will have to stop, which -although inconvenient- will be safe.

Table 2.1: Signalling aspects
Aspect Indication
Nothing (failure) Stop before the signal.
Red Stop before the signal.
Yellow blinking Signal can be passed; speed: < 40 km/h. Expect other trains on

the track.
Yellow Slow down, signal can be passed; speed: 40 km/h. Expect a red

aspect at the next signal.
Yellow with number Slow down, signal can be passed; speed: as indicated.
Green blinking Signal can be passed; speed: 40 km/h.
Green with number Signal can be passed; speed: as indicated.
Green Signal can be passed; speed: the locally allowed speed.

There are restrictions on the sequences of signalling aspects that a train may
encounter on a certain route. These restrictions are needed to allow train drivers
to anticipate and slow down enough before a next signal. A general restriction is
that a signal showing a green aspect cannot be followed by a signal showing a red
aspect without a signal showing a yellow aspect first. The allowed sequences
of aspects are determined per route and are noted on the so-called OS-blad
drawings (OS-blad: Overzicht Seinbeelden blad (Dutch)).

Even when signals show the correct aspect, train drivers are fallible. There-
fore all trains are equipped with the ATB system (ATB: Automatische Trein
Bëınvloeding (Dutch)). There are two versions of this system. The older ver-
sion transfers the allowed speed for a certain section via electric pulses that run
through the tracks in that section. The newer version gives an allowed speed
profile for an upcoming section through radio beacons at certain way points.
The ATB systems will automatically enforce the signalled speed if the driver
ignores it. However for practical reasons, ATB is not enforced everywhere at all
speeds.
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The European Train Control System (ETCS) (which is a part of the Euro-
pean Rail Traffic Management System (ERTMS)) is a more advanced European
standard that has been designed to one day replace all national safety systems
(such as ATB) in the European Union. The ETCS standard defines a number of
implementation levels (0-3) that build up one another, with each successive level
being more advanced. A select number of railway lines in the Netherlands have
been equipped with ETCS level 2 safety systems. ETCS level 2 has significant
safety advantages over ATB and makes physical signals obsolete altogether (all
communication with train drivers is done through radio signals). However as
said, it has only been installed on a select number of railway lines in the Nether-
lands; the great majority of railway lines in the Netherlands are still equipped
with regular signals and will be for many years to come.

2.2.2 Points

Points (or in American English: railroad switches) are the only means to alter
the direction of a train, and are as such essential for railway operations. There
are different kinds of points, but the most common model has two positions: a
straight track (normal) and a curved track (reverse).

Points also pose a potential danger. A train might derail if it drives over a
point that is not set fixed in the correct position. A number of problems (e.g. ice
chunks) can cause a point not to be in the correct position, despite a command
from the interlocking. Therefore an interlocking can only allow train travel over
a point if the point explicitly signals that it is in a correct position.

Left
Reverse

Right
Normal

Right
Reverse

Left
Normal

Figure 2.2: Point positions

In the Dutch railway world the terms ‘left’ and ‘right’ (which can be either
normal or reverse depending on the point, see figure 2.2) are used to indicate the
direction in which a train can travel. International literature often uses normal
and reverse to indicate the position of a point, or even left and right with the
opposite meaning.

Note that this report uses the term ‘point’ for the singular case, however it
is also not uncommon to use ‘points’ or ‘set of points’ as singular.

2.2.3 Train Detection

For interlocking systems to guide trains, they must know where trains are. There
are different kinds of train detection systems for this goal. One system relies on
the train shorting an electric circuit, while another system counts the magnetic
disturbances caused by train wheels passing detectors. With all systems the
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railway track is divided in sections. Per section there is a signal indicating
whether the section is free or occupied.

All systems have their drawbacks which on rare occasions can lead them
to detect trains that are not there or not detect a train that is in fact there.
Obviously this is a threat to train safety. If this is not a structural problem, but
merely caused by temporary bad conductivity, then this can be handled by the
interlocking logic. An interlocking will not accept that a track section is cleared
by a train, unless it is detected in one of the next sections. Incorrect detection
can also lead to problems that have to be solved outside of the system. For
example by signallers ordering trains to drive through red signals slowly.

2.3 Interlocking Systems

The area covered by an interlocking system consists typically of a single railway
yard or railway station with the surrounding area, but can also contain longer
stretches of rail. Literature often refers to the controlled area as ‘railway yard’,
regardless whether it actually is a railway yard, a station, or a stretch of a
railway line. This report follows that convention: The term railway yard will
be used to identify the area controlled by a single interlocking system.

The number of input and output ports that an interlocking system needs to
handle, depends on the complexity of the railway yard that it is installed on.
A yard might contain less than a dozen points and signals, but there are also
yards with several hundred points and signals. An interlocking also needs to
consider signals it might receive from neighbouring interlocking systems about
trains near exits and entrances to the controlled railway yard.

Because of their safety function, interlocking systems must be absolutely fail-
safe. The overall design of systems and their communication enables this: When
an interlocking system gives no outputs, then all signals will turn red. However
that in itself secures not much. For an adequate level of safety the hardware
and software quality of an interlocking are crucial. The European standards
organisation CENELEC has set standards for the development of hardware and
software for interlocking systems, which ProRail adheres to. One aspect of this
is that the hardware platform of the PLC-Interlocking in combination with its
tooling had to have the highest possible Safety Integrity Level rating: SIL-4. A
system with a SIL-4 rating is extremely unlikely to have an unsafe failure.

2.3.1 Logic

To guarantee the safety on the railways, interlocking systems implement (simple)
rules.

On long stretches of rail the so called line block system is used. The railway
is divided in blocks, with the start of each block secured by a signal. The
exact rules depend on the kind of railway stretch, but the next scenario (shown
in figure 2.3) is common for single track railways: After the signaller has set
a direction of travel on a railway stretch, all signals in the opposite direction
(not shown in the diagram) will be set to red. The signals in the direction of
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travel will be set to green, but only if the next block can be safely entered by a
train (i.e. no collisions possible). After a train passes a signal, the current block
obviously does not fulfil that requirement anymore, so the signal turns red, one
signal back turns yellow, while yet another signal back can be turned to green
again.

Figure 2.3: Line block system on a single track

Interlocking systems must implement more rules for railway yards than for
straight stretches of railway, since there are more possibilities for collisions and
derailments. On railway yards, the logistics system has to explicitly request
the interlocking system to create routes for trains; all signals are set to red by
default. In the context of railway yards and interlocking systems, a single route
runs from one signal to the next. Only if a route is safe will it be implemented
by the interlocking system (i.e. its entry signal will be set to a non-red aspect).
All elements of a route are blocked to other trains by signals and points, and
cannot be used in other routes until the train has passed completely. A common
exception is when trains couple, for which they obviously have to be on the same
track.

The above two paragraphs are merely to illustrate the main points, and omit
a lot of details, possible problems and exceptions, which actual interlocking
systems do take into consideration.

An important idea, which cannot go unmentioned, is the prevention of ac-
cidents that might result from failures of other systems (e.g. the train driver
or the train detection system). An example of this is flank protection: An in-
terlocking will often change the position of points without an explicit request
from the logistics system to do so. This is done to make sure that no collisions
can occur, even if a train were to overrun a red signal. Because of a number
of reasons, each year more than a hundred trains run through a red signal. So
although the obedience to signals is one of the foundations of train safety, in-
terlocking systems do not just rely on that. At the same time, driver errors
and other failures that violate rail protocol can cause unsafe situations that an
interlocking cannot always prevent.

2.3.2 Interlocking System Types

There are several types of interlocking systems in use in the Netherlands.

The most common technique in use at the moment is based on relays. In such
a system all interlocking logic is expressed by the relays and their interconnec-
tions. Even though this is a very simple technology, it certainly is possible to
build big interlocking systems with it. The interlocking systems at the two bus-
iest (in terms of daily passengers) railway station in the Netherlands (Utrecht
Centraal station and Amsterdam Centraal station) are built entirely from relays.

18



More modern interlocking system types are based on microprocessors. One of
the most used types, which has been in use since the early 1990s, is the already
in section 1.3.1 mentioned Vital Processor Interlocking (VPI). A VPI works in a
one second cycle in which it reads all inputs, evaluates a set of Boolean formulae
and writes to the output ports. A lot of the programming for PLC-Interlocking
systems is based on the programming of these VPI systems. The programming
of the VPI systems in turn was based on the design of relay based interlocking
systems.

There are also some other computer based interlocking systems, but they are
only used in a few locations. The design of their programming is generally not as
much inspired by earlier interlocking systems, but rather based on proprietary
techniques developed by the manufacturers.

Although there are significant difference in the way that interlocking systems
are implemented, all currently used systems fulfil the same functions. When
observed as black boxes, the behaviour of most interlocking types will be the
same in most situations (modulo timing differences).

2.4 Railway Design and Verification Process

The programming of safe interlocking logic is part of a bigger process. This
starts with the design of the track and signal layout. After that follows a
detailed design of the signalling installation and the interlocking programming.
This is then again followed by a design step in which the layout and wiring of
all technical installations is specified.

Throughout the design process, the designers have to implement the stan-
dards that are set in design instruction documents, the OVS documents (OVS:
OntwerpVoorSchrift (Dutch)). For the PLC-Interlocking for example, the OVS
Application Engineering [5] prescribes exactly what logical functions to use, how
to use them and in which situations to use them.

After each step, the created designs are verified by a team of independent
experts that work according to a set protocol. During verification the experts
check whether the OVS’s standards have been followed precisely. For the in-
terlocking logic this means that two persons verify that the interlocking design
implements the logic exactly as can be expected from the track layout design.

Verification does not stop when the design process is completed. After the
design is finalised and the interlocking system built, testing starts. During the
so called Logic Safety Test, tests are done in a laboratory environment using
the interlocking hardware in its final configuration. A test plan is executed to
verify that the interlocking system was built correctly.

Note that in this process it is assumed that the OVS documents are correct.
For interlocking systems specifically, it is assumed that individual pieces of logic
are correct and that their (correct) composition gives a safe system. Mostly
this has not been formally proven. There is an extensive process to verify the
correctness of new interlocking logic. However, in the end this process boils
down to expert judgments based on reasoning about the logic; true proofs are
usually not constructed. This is not without reason. As the preliminary research
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[1] showed, it is often incredibly hard to prove a property for interlocking logic.
Nonetheless, confidence in the correctness of the interlocking logic does not seem
misplaced; so far there has never been an accident that could be attributed to
a fault in the logic of an electronic interlocking system.
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Chapter 3
PLC-Interlocking Systems

The PLC-Interlocking is the result of a development project that is still running.
This project has so far yielded two main products that are of interest for the
research on model based testing:

• A set of OVS documents that prescribe in detail how to build a PLC-
Interlocking system for a given railway yard.

• A first instance of a PLC-Interlocking system.

In this report, the term ‘PLC-Interlocking’ is often used to refer to the
PLC-Interlocking system architecture in general, i.e. the specifications laid out
by the OVS documents. However, the term is also used to refer to a specific
PLC-Interlocking system (this will be apparent from the context when this is
the case).

This chapter describes the architecture of the PLC-Interlocking and the work-
ing of its main components with special attention to the interlocking logic. Fur-
thermore the first PLC-Interlocking instance, which is the subject of the testing
research described in this report, is shortly covered.

3.1 Programmable Logic Controllers

The core of any interlocking system is the interlocking logic. In a PLC-Interlocking
system this logic runs on a Programmable Logic Controller (PLC), hence the
name PLC-Interlocking.

PLCs are computer systems that are often used to control industrial processes.
They can be acquired as commercial off-the-shelf hardware, and are then tailored
to specific situations through configuration and programming. PLCs constantly
execute the same program, which can receive input from and give output to a
great number (hundreds) of external devices. This makes them a good match
for railway situations where a lot of wayside elements need to be controlled.
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The PLC-Interlocking is built around the HIMA HIMax1 PLC platform.
HIMax PLCs are built from CPU, input, output and communication modules
that are mounted on one or more base plates, possibly spread over multiple
physical locations, and connected through redundant system buses. The HIMax
PLCs used for PLC-Interlockings are equipped with redundant processor and
input modules to increase reliability, availability and safety. Synchronisation
between the different modules is completely transparent to the software (i.e. the
interlocking logic) that runs on the systems. The resulting platform (including
its tooling) is SIL-4 certified.

The main function of a PLC system is executed single-threaded and consists
of a constant loop, the so called scan cycle. During each scan cycle a PLC does
the following (in order):

1. Read values from the input ports.

2. Execute the loaded program.

3. Write the computed values to the output ports.

In step 1 the system takes a snapshot of the values at all input ports simul-
taneously. Each physical input port is coupled with an input variable. These
input variables are set in accordance with the read inputs and do not change
value for the remainder of the scan cycle.

The program in step 2 must be defined by the system’s programmer. This
program takes the input variables as well as internal variables as arguments.
Using those it computes new values for the output variables and the internal
variables. In the PLC-Interlocking this program is responsible for handling the
interlocking logic (more on that in section 3.3).

After the program from step 2 has finished executing, the PLC updates all
output ports simultaneously in step 3. Each output variable is coupled with a
physical output port that (after the update) outputs the variable’s value. After
the output ports are set, the next scan cycle starts.

In general, the length of a scan cycle depends on the used hardware, the
program that is running, and the number of inputs and outputs.

For PLC-Interlockings the average cycle will take between 20 and 200 mil-
liseconds, depending on the size of the installation. The cycle length for any
PLC-Interlocking installation is variable, but the deviation between cycles should
be small (in the order of a few per cent). Only in exceptional circumstance (e.g.
when hot-swapping one of the CPU modules) can the length of a cycle deviate
a lot from the average. In all cases there is an upper-limit on the cycle length,
which is set to about one second. If that limit is exceeded, the system will
automatically be turned-off (and thus be in a safe state).

3.2 PLC-Interlocking Architecture

As has been noted already, the core of a PLC-Interlocking system is formed by
the interlocking logic, that runs on the PLC hardware. However a complete

1http://www.hima.com/Products/HIMax_default.php
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PLC-Interlocking system consists of more components than just the PLC hard-
ware. There are external systems that are responsible for the power supply, data
logging, diagnostics, maintenance, communication and the connections with the
wayside elements. Figure 3.1 shows a schematic view of a PLC-Interlocking and
its high-level components. The complete installation is housed in one or more
relay-houses and relay-boxes.

PLC-Interlocking

PLC System

EBP-interface

Interlocking 
Logic

Relays

Ethernet

Electrical wires

Double serial line

Logistics System

Wayside Elements

Electrical wires

Technical 
Personnel

MDS PC

Power 
Supply

Datalogger 
PC

Ethernet

Power 
Supply

Power 
Supply

Power 
Supply

Figure 3.1: The components of a PLC-Interlocking system

Two regular PC systems, the Datalogger and the Maintenance and Diagnos-
tics Subsystem (MDS), are responsible for data logging, and maintenance and
diagnostics. These systems are connected to the PLC via Ethernet interfaces
and run software that communicates with the PLC using the standardised OPC
protocol. During laboratory testing, such an OPC connection is also used to
manipulate the input variables and read out the output variables. Manipulating
variables is of course not possible during normal operations.

The PLC hardware is not directly connected with the wayside elements. All
inputs and outputs of the PLC system are connected to relays. These relays
either switch the input signal for the PLC based on the external signal, or switch
the external signal based on the output of the PLC. Using the relays allows the
PLC-Interlocking to switch different voltages and more powerful currents than
the PLC system can handle.

The PLC system handles the interlocking function and is of course the main
component of the PLC-Interlocking.
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However the PLC hardware not only hosts the interlocking logic, it also hosts
another piece of software: the EBP-interface (EBP: Elektronische BedienPost
(Dutch)). The EBP-interface handles communication with the higher-level lo-
gistics system that requests routes for trains (see also figure 2.1). The correct
working of this component is very important to the well-functioning of railway
traffic, but in general not critical to safety.

The interlocking logic on its own should at all times guarantee safety; faults
in the EBP-interface should in no way affect this. This is secured on the hard-
ware side by the fact that the EBP-interface runs on a separate communication
module that has its own processor which runs independent from the main com-
putation cycle. Communication between the EBP-interface and the interlocking
logic is done asynchronously through shared variables that are latched at the
beginning of a logic cycle.

Together, the different components of the PLC-Interlocking run a significant
amount of software. A lot of that software (e.g. everything running on the
Datalogger) is not safety critical. Some of it is safety critical but can be assumed
to be safe (e.g. the firmware handling hot swapping of CPU modules) because
of the PLC system’s certifications.

Only the interlocking logic is both specifically designed for the PLC-Interlocking
and truly safety critical. Furthermore it implements the core functionality of the
entire PLC-Interlocking. Because of that, the research detailed in this report
was focused on the interlocking logic.

3.3 Interlocking Logic

The interlocking code is executed every scan cycle. On every execution it eval-
uates the inputs received from the environment and computes new outputs to
enable safe train movements.

The code is focused on the interlocking task and has to handle almost no
other concerns. For example, there is no code needed for using multiple CPU
modules. The PLC firmware automatically executes the code in parallel on
all available CPUs, as well as handle CPU failures. Comparable, all input
and output happens through global variables. The code is not aware of which
physical i/o modules and ports belong to which variables; that is dealt with in
the configuration.

There are a few exceptions to this though. There is a function that checks
the integrity of the system and its operating conditions (e.g. check the tem-
perature sensors and the self-check values of the system’s modules). Another
function verifies that the software’s checksum matches a supplied value. How-
ever these are exceptions, the great majority of the code is used to implement
the interlocking task.

3.3.1 Function Block Diagram Programming

The interlocking code is written using the Function Block Diagram (FBD) lan-
guage. This is a language that was standardised by the IEC standards organi-
sation in part 3 of their standard for PLC architectures [46].
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A program in FBD notation is built up from function blocks that take one or
more inputs and give one or more outputs. These function blocks can be con-
nected such that (part of) the output of one block serves as (part of) the input
for a next block. There are standard blocks defined for common operators, but
also for more complex functions such as timers. Furthermore, the programmer
can define his/her own function blocks by combining and connecting existing
function blocks. Inputs and outputs of function blocks can be connected so that
the values are read from or written to variables. This way it is possible to read
or save state, but also to manipulate the inputs and outputs of the PLC, which
are mapped to global variables. The composed FBDs are executed left-to-right
top-to-bottom.

Programming in the FBD language is normally not done by using a textual
representation, but rather by creating and manipulating a graphical representa-
tion of the function blocks and their connections. For HIMA PLCs this is done
on a regular PC using the SILworX2 development environment.

Figure 3.2: A snippet of FBD program code

Figure 3.2 gives an example of (part of) an FBD program. The sample shows
a function block that has three inputs (CGZ-CI, GZ-CI and TP), one output (AGZ)
and three local variables (CGZ, GZ and CGZZ). All the variables in this example
happen to be Booleans. The function block connects the variables using a
number of standard function blocks: AND (‘&’), OR (‘>=1’), XOR (‘2k+1’),
F TRIG and R TRIG, as well as the NOT operator (the small circle at some
function block inputs). More information regarding the semantics of the used
function blocks can be found in table 3.1.

3.3.2 Used Functions and Types

The FBD language supports numerous value types and comes with an extensive
collection of standard function blocks. However, only a restricted subset of the
available standard FBD functions and value types is used in the interlocking
implementation.

2http://www.hima.com/Products/SILworX_default.php
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All inputs and outputs from the wayside elements and the EBP-interface are
Booleans. Only in the code that checks the system’s integrity are some integer
inputs (e.g. the temperature sensor returns an integer). These non-Boolean
values all originate from within the PLC system; either from internal sensors or
from internal variables.

Table 3.1: Used standard function blocks
Function Inputs Description

AND 2 to 16 Logical AND.
OR 2 to 16 Logical OR.
XOR 2 to 16 Logical XOR: True iff an odd number of inputs is true.
NOT 1 Logical NOT.
TON 1 + 1 Time On delay: True iff the input Boolean has been true uninter-

rupted for at least the specified time.
TOF 1 + 1 Time Off delay: False iff the input Boolean has been false uninter-

rupted for at least the specified time.
R TRIG 1 Rising Trigger: True iff the input is true this cycle and was false last

cycle.
F TRIG 1 Falling Trigger: True iff the input is false this cycle and was true last

cycle.
SR 2 SR flip-flop: output = input1 ∨ (¬input2 ∧ output)
EQ 2 to 16 Equal: True iff all inputs have the same value.
NE 2 to 16 Not Equal: True iff none of the inputs have the same value.
LE 2 Less or Equal: True iff input1 ≤ input2.
GE 2 Greater or Equal: True iff input1 ≥ input2.
MOVE 1 + 1 Move: If input Boolean = true: input, else: datatype’s default value.
SEL 2 + 1 Select: If input Boolean = true: input1, else: input2.

Table 3.1 shows the subset of standard function blocks that is used in PLC-
Interlocking code. The functions are divided in three groups.

All functionality that is directly interlocking related is implemented using
only function blocks from the first two groups. The functions in the bottom
group are only used in functions that verify the system’s integrity.

The first group contains the standard Boolean operators, while the second
group consists of more complicated functions which keep an internal state be-
tween invocations. These functions are only used with Boolean inputs, with
the exception of the TON and TOF functions which take a Boolean and a real
value. In both these cases the real value is always a compile time constant and
expresses the length of a time interval. The functions from the third group are
only used with integer values as input, with the exception of MOVE and SEL
which, besides their integer input(s), also require a single Boolean input.

3.3.3 Interfaces

The interlocking logic communicates with external systems solely through global
(Boolean) variables. These variables are either mapped to physical input or
output ports, or are mapped to variables in the EBP-interface component.
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Figure 3.3: Interfaces of the interlocking logic

Interactions between the interlocking logic and external systems (including
the EBP-interface) will never influence the duration of a scan cycle. All input
variables are latched at the beginning of a scan cycle and all output variables
are written at the end. During both input and output, the logic does not wait
on external systems.

A naming scheme has been instituted for the variables to keep some order
among them. All variables that are used in communication with other mod-
ules/systems have fixed suffixes. Figure 3.3 shows the communication of the
interlocking logic with other systems through variables and their suffixes.

Communication with the EBP-interface is done through variables suffixed
with -CI and -CO. The input from wayside elements (which runs through re-
lays) is received redundantly (via -1DI and -2DI). A function block compares
the two values to detect possible problems. If both values are true, then the
corresponding variable with the suffix -DI is set to true.

Internally, the interlocking logic uses variables suffixed -DII for input data
from the wayside elements. These variables are set every cycle by function
blocks. During laboratory testing, the values of these variables are copied from
test variables with the suffix -DIT. The value of these test variables can be set
from a system connected over Ethernet using the OPC protocol. Normally how-
ever, the -DII variables are set to the value of the corresponding -DI variables.

Also shown in the diagram is that external PCs connected with the OPC
protocol (during normal operations: the Datalogger and MDS PCs, see section
3.2) can read all variables of the interlocking logic.

The physical interfaces between wayside elements and the PLC-Interlocking
are documented in Interface Requirements Specifications. The OVS Application
Engineering [5] describes exactly how those inputs and outputs are mapped to
variables. Depending on the specific track-layout there are multiple variables
per wayside element to keep track of the status of said wayside element. The
name of such variables depends on the purposes of that variable (e.g. it might
indicate whether a section is free) and which specific element of that kind it
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is. All such variables refer to wayside elements by an identifying number that
matches the number on the track layout maps.

The EBP-interface serializes and deserialises communication between the
interlocking logic and a remote logistics system. Typically EBP requests are to
set a point or a signal. Typical feedback information is the position of points,
occupancy of sections and the aspect of signals. The variables to communicate
this information between the EBP-interface and the interlocking logic depend
on the track layout; the naming scheme for this is also documented in the OVS
Application Engineering [5].

3.3.4 Programming Specific Instances

The OVS Application Engineering prescribes exactly how the interlocking logic
needs to be constructed for a specific installation. There are 30 types of functions
and function templates that need to be wired together such that they form
correct interlocking logic.

Typically a function has a generic template, which is then applied by the
engineers to fit in the program of a specific track layout. Generic functions are
defined as function blocks that can be applied by merely connecting them with
the correct variables. The exact variables names are prescribed for (virtually)
all possible track layouts and situations.

However, the exact layout of a railway yard is (almost) always unique, and
the generic function blocks only cover the common cases. As a result the com-
plete logic also always contains ‘free-wired-logic’, i.e. customly connected func-
tion blocks. How this custom logic should be constructed is also outlined in the
OVS Application Engineering.

The generic function block diagram in figure 3.2 is a good example of logic
that is very generic. This function block is used as part of the overall logic that
determines which aspect a signal should show. Typically this generic function
block is used for every signal in a yard and each time wired to different variables.
Two of the block’s input variables are wired to input signals from the EBP-
interface, the other input variable is wired to a global variable indicating the
occupations of the section directly behind the signal. The output variable is
wired to a global variable that is read by other function blocks that decide
which aspect the signal should show.

Other parts of the logic that determine the signalling aspects need more
customisation depending on the track layout. The OVS Application Engineering
prescribes how to do this, for example it prescribes: which variables names to
use for which aspect, how to check the track occupation in the different routes
that are possible from a signal, how to handle interlocking boundaries behind a
signal and many more details.

The used process (see section 2.4) should ensure that the engineering team
applies the guidelines from the OVS document correctly and completely. This
is essential in order to get a correctly functioning and safe interlocking system.
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Figure 3.4: Schematic view of the Santpoort Noord station area

3.4 First Instance: Santpoort Noord

The first and currently only instance of a PLC-Interlocking is deployed at the
small railway station Santpoort Noord. A second PLC-Interlocking is planned
at the nearby Beverwijk railway station, which is bigger. However, during the
research period the interlocking logic for that installation had not yet been devel-
oped. Thus the Santpoort Noord installation was the only available case study,
and all testing efforts were applied to the interlocking logic of that installation.

Santpoort Noord is a small railway station with three parallel tracks. Train
traffic is directed over 6 points by 10 signals, train detection is done with 25
track sections and there are 2 level crossings. A schematic view of the track
layout can be seen in figure 3.4.

The PLC-Interlocking for Santpoort Noord is already quite complicated. The
physical system has 70 (×2) redundant input ports and 110 output ports con-
nected with wayside elements. The interlocking code contains over a 1000
Boolean variables (input variables, output variables and variables keeping state
between cycles) and almost 400 timings blocks.
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Part II

Testing a PLC-Interlocking

31





Chapter 4
Model Based Testing

In general, testing is used to assess (and improve) the quality of the System
Under Test (SUT) by interacting with it and observing its behaviour. Model
based testing (partly) automates this process by using models for the generation
of test cases and as oracle to verify observed outputs.

The main goal of the conducted research has been to develop and use a model
based test setup for the PLC-Interlocking. This chapter describes the used test
methodology (section 4.1) and a high level overview of the created test setup
(section 4.2).

Later chapters cover the different parts of the test setup in more detail.
Some background information needed for those chapters is also covered in this
chapter: Section 4.3 gives an introduction to the modelling language used for
the specification model.

4.1 Input-Output Conformance Testing

The method used in testing the PLC-Interlocking is based on the input-output
conformance (ioco) theory.

The ioco testing theory and related theories have been extensively covered in
the literature. Timmer et al. [2] comprehensively surveyed this testing theory
and its formal underpinning. The allowed behaviour of the SUT is expressed in
a specification model based on a Labelled Transition System (LTS), where the
transitions express input and output actions. This model is also used to derive
(on the fly) test cases.

The theoretical basis of the ioco theory is formed by the ioco conformance
relation, which defines under what conditions an implementation conforms to a
specification. An implementation ioco-conforms to a specification, if at all times
it can handle at least all inputs from the specification, and produces at most all
outputs from the specification. With the exception that the implementation is
not allowed not to provide any output when the specification requires one.
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JTorX

public boolean[] update(boolean[] inputs, boolean[] outputs) {
boolean[] retOut= new boolean[outputs.length];

//Trains:
boolean[] sections = new boolean[12];
for (int i = 0; i < sections.length; i++){

sections[i]=true;
}
for (Train train: trains){

boolean [] tOuts = train.update(inputs, outputs);
for (int i = 0; i < sections.length; i++){

sections[i] = sections[i] && tOuts[i];
}

}

//EBP:
for (int i = 0; i < requested.length; i++){

if (random.nextInt(EBP_RANDOM_SIZE) == 0){
requested[i] = !requested[i];

}
}

//Start filling the output array
System.arraycopy(sections, 0, retOut, 0, sections.length);
System.arraycopy(requested, 0, retOut, 12, requested.length);

//Synchronise the speed steps correctly with the outer sections.
//Speed step 507XSS1, 507XSS2, 507XSS3
retOut[O_507XSS1] = retOut[O_516ETR];
retOut[O_507XSS2] = retOut[O_516ETR];
retOut[O_507XSS3] = retOut[O_516ETR];
//Speed steps 528XSS1, 528XSS2
retOut[O_528XSS1] = retOut[O_530BTR];
retOut[O_528XSS2] = retOut[O_530BTR];
return retOut;

}

Test 
Purpose

SUT 
Executableoutput transitions

input transitions

proc input_main(inputs:InputMap, state: State) =
ei_507GZ(true) . input_main( setBoolListItem(inputs, ei507GZ,

true ) , state)
+ ei_507GZ(false) . input_main( setBoolListItem(inputs, ei507GZ,
false) , state)
+ ei_516GZ(true) . input_main( setBoolListItem(inputs, ei516GZ,
true ) , state)
+ ei_516GZ(false) . input_main( setBoolListItem(inputs, ei516GZ,
false) , state)
+ ei_521GZ(true) . input_main( setBoolListItem(inputs, ei521GZ,
true ) , state)
+ ei_521GZ(false) . input_main( setBoolListItem(inputs, ei521GZ,
false) , state)
+ ei_528GZ(true) . input_main( setBoolListItem(inputs, ei528GZ,
true ) , state)
+ ei_528GZ(false) . input_main( setBoolListItem(inputs, ei528GZ,
false) , state)
+ i_516ETR(true) . input_main( setBoolListItem(inputs, i516ETR,
true ) , state)
+ i_516ETR(false) . input_main( setBoolListItem(inputs, i516ETR,
false) , state)
+ i_516DTR(true) . input_main( setBoolListItem(inputs, i516DTR,
true ) , state)
+ i_516DTR(false) . input_main( setBoolListItem(inputs, i516DTR,
false) , state)
+ i_516CTR(true) . input_main( setBoolListItem(inputs, i516CTR,
true ) , state)
+ i_516CTR(false) . input_main( setBoolListItem(inputs, i516CTR,
false) , state)
+ i_516BTR(true) . input_main( setBoolListItem(inputs, i516BTR,
true ) , state)

+ cycle_pre .IXL_start( inputs
, state);

Model

Verdict: pass / fail

Figure 4.1: JTorX test setup

Practical application of this theory requires tooling. JTorX [3] is an auto-
mated test tool that can test whether an implementation ioco-conforms to a
specification. It automatically derives test cases from a specification model and
then executes those on the SUT. If JTorX observes a failure during the execu-
tion of a test case it will halt execution and report a fail verdict. Otherwise, if
no failures are observed during the execution of a test case a pass verdict will
be given after execution has finished.

Interaction with the SUT can be done through custom programmed adapters,
allowing integration with all sorts of systems. JTorX also allows the use of a
test purpose (also called model guide). This is an extra model that is put in
parallel (on the fly) with the specification model. This is useful for limiting the
generated test cases, without having to modify the specification model.

Figure 4.1 (a repeat of figure 1.1) gives a schematic view of a typical JTorX
test setup.

Although its roots are in academics, JTorX has also seen usage in the in-
dustry. Sijtema et al. [30] used JTorX to test a new protocol implementation,
and reported finding some very subtle bugs in the implementation that might
have gone undetected otherwise. Meijer reported finding faults during a case
study in which an X-ray detector was tested using JTorX [31]. Earlier, JTorX’s
predecessor TorX had been used in several case studies already (all summarised
in [26]).

Ioco based testing techniques are also used commercially (although seldom),
which generally remains unpublished. In fact, a part of the PLC-Interlocking
was tested by an external party that specializes in model based testing. They
used a model based testing approach to test the EBP-interface component,
specifically its communication with the logistics system. These tests highlighted
some imprecisions in the specification, which led to differences between the
intended behaviour and the initially implemented behaviour.

So applying (ioco) model based testing to a real product is certainly not
unprecedented. However using it to test the interlocking logic of an interlock-
ing system seems unprecedented; at least there is no literature describing such
research. As such the research in this report is novel.
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public boolean[] update(boolean[] inputs, boolean[] outputs) {
boolean[] retOut= new boolean[outputs.length];

//Trains:
boolean[] sections = new boolean[12];
for (int i = 0; i < sections.length; i++){

sections[i]=true;
}
for (Train train: trains){

boolean [] tOuts = train.update(inputs, outputs);
for (int i = 0; i < sections.length; i++){

sections[i] = sections[i] && tOuts[i];
}

}

//EBP:
for (int i = 0; i < requested.length; i++){

if (random.nextInt(EBP_RANDOM_SIZE) == 0){
requested[i] = !requested[i];

}
}

//Start filling the output array
System.arraycopy(sections, 0, retOut, 0, sections.length);
System.arraycopy(requested, 0, retOut, 12, requested.length);

//Synchronise the speed steps correctly with the outer sections.
//Speed step 507XSS1, 507XSS2, 507XSS3
retOut[O_507XSS1] = retOut[O_516ETR];
retOut[O_507XSS2] = retOut[O_516ETR];
retOut[O_507XSS3] = retOut[O_516ETR];
//Speed steps 528XSS1, 528XSS2
retOut[O_528XSS1] = retOut[O_530BTR];
retOut[O_528XSS2] = retOut[O_530BTR];
return retOut;

}

Test 
Purpose

proc input_main(inputs:InputMap, state: State) =
ei_507GZ(true) . input_main( setBoolListItem(inputs, ei507GZ,

true ) , state)
+ ei_507GZ(false) . input_main( setBoolListItem(inputs, ei507GZ,
false) , state)
+ ei_516GZ(true) . input_main( setBoolListItem(inputs, ei516GZ,
true ) , state)
+ ei_516GZ(false) . input_main( setBoolListItem(inputs, ei516GZ,
false) , state)
+ ei_521GZ(true) . input_main( setBoolListItem(inputs, ei521GZ,
true ) , state)
+ ei_521GZ(false) . input_main( setBoolListItem(inputs, ei521GZ,
false) , state)
+ ei_528GZ(true) . input_main( setBoolListItem(inputs, ei528GZ,
true ) , state)
+ ei_528GZ(false) . input_main( setBoolListItem(inputs, ei528GZ,
false) , state)
+ i_516ETR(true) . input_main( setBoolListItem(inputs, i516ETR,
true ) , state)
+ i_516ETR(false) . input_main( setBoolListItem(inputs, i516ETR,
false) , state)
+ i_516DTR(true) . input_main( setBoolListItem(inputs, i516DTR,
true ) , state)
+ i_516DTR(false) . input_main( setBoolListItem(inputs, i516DTR,
false) , state)
+ i_516CTR(true) . input_main( setBoolListItem(inputs, i516CTR,
true ) , state)
+ i_516CTR(false) . input_main( setBoolListItem(inputs, i516CTR,
false) , state)
+ i_516BTR(true) . input_main( setBoolListItem(inputs, i516BTR,
true ) , state)

+ cycle_pre .IXL_start( inputs
, state);

Model

Verdict: pass / fail

Figure 4.2: JTorX and the SUT in the test setup

4.2 Test Setup

As figure 4.1 already showed, an ioco model based testing setup with JTorX
consists of the following ingredients:

• A specification model.

• An SUT.

• A test purpose model (optional).

• The JTorX test tool.

All four ingredients are used in the PLC-Interlocking test setup. The JTorX
tool is a given, but the other three parts of the test setup either had to be
developed or modified.

4.2.1 SUT and Models

The used SUT is a stand-alone executable that runs on a regular PC and does
not require actual PLC hardware. This executable is based on the code of the
regular PLC executable, with an added interface for communication between
JTorX and the interlocking logic.

During a test run, the inputs given to the SUT will match exactly with the
inputs given to the specification model, and each output of the SUT must also
match with an output of the specification model. JTorX works only with LTS
based models where all inputs and outputs are modelled by transitions, so all
inputs and outputs to the SUT will have to be transitions also.

A PLC-Interlocking works in a cycle with an input phase, a computation
phase and an output phase. The created model also models this cycle, and
uses transitions for the inputs and outputs, and to signal transition between the
different phases. Chapter 5, section 5.3 covers in detail the transitions used and
how they represent the PLC’s normal cycle and input/output behaviour.

The interfacing code of the SUT communicates with JTorX via the standard
input and output streams. This code is responsible for decoding input transi-
tions into inputs to the interlocking logic, and transforming all outputs from
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the interlocking logic in output transitions. Figure 4.2, which is a refinement
of figure 4.1, shows the interaction between JTorX and the interlocking logic
which is wrapped in the SUT. More information on the SUT can be found in
Chapter 7.

The specification model has been implemented in mCRL2 [47]. mCRL2 is a
formal specification language that has a lot of useful abstractions, but can still
be used to present an LTS to JTorX. Section 4.3 gives a short introduction to
the mCRL2 language. For more information on the specification model consult
chapters 5 and 6.

Multiple test purpose models have been created in order to generate different
kinds of test scenarios. These test purpose models were not implemented in
mCRL2 like the specification model, but in Java. Java was chosen because it is
(arguable) a more powerful language and it seemed a better choice than mCRL2
given the feature sets of both Java and mCRL2 (for more in-depth reasoning see
section 8.2.1). A Java program does not translate to an LTS naturally, like an
mCRL2 model does. This was solved by creating a small framework that can
wrap an actual test purpose model and create an LTS representation from its
inputs and outputs. The usage and implementation of the test purpose models
is discussed in detail in chapters 8 and 9.

4.2.2 Test Run Execution and Configuration

A test run is always initiated by JTorX, which is responsible for starting the
other parts of the test setup. During a test run, JTorX will randomly explore
the specification model, and give inputs to the SUT for any input transitions
encountered and match outputs from the SUT to output transitions in the
model.

JTorX needs to be made aware of which actions are input actions and which
are output actions, because the model actually does not differentiate between
input transitions and output transitions. Thus for JTorX to know when to apply
stimuli and when to observe, it needs to know which transitions represent inputs
and which represent outputs.

The main configuration details for the test setup, such as the classification
of the transitions and the paths to the models and SUT, are stored in a file that
JTorX reads at start-up.

Configuration of the SUT is done with a script that is executed by the SUT.
This script sets all variables that are not part of the model but are nonetheless
important to the interlocking logic. Such variables include input variables from
points (which are not used in the model) and internal variables that indicate
the status of PLC hardware parts such as cooling fans and input modules.

4.2.3 On the Fly Model Exploration

Figure 4.1 is actually a severe simplification in that JTorX cannot directly in-
terpret a model written in Java or mCRL2, but requires an LTS representation
of that model. JTorX can either take a complete LTS as input, or explore an
LTS on-the-fly with the aid of an external program.
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The mCRL2 toolset1 can easily convert simple mCRL2 models to LTSs. How-
ever, for a lot of models (e.g. the specification model used here) such an LTS
representation will be too big to generate. This is not a problem because of
JTorX’s ability to use on-the-fly exploration: JTorX does not need to know
the structure of the whole LTS that underlies a model; only relevant states
and transitions have to be explored, and only when they are needed. With
on-the-fly exploration, an intermediate program, a torx-explorer, is responsible
for interpreting the model. This torx-explorer communicates with JTorX via
a set protocol over the standard input and output streams. JTorX drives the
model exploration by request the torx-explorer to explore certain transitions,
the torx-explorer will reply to such requests with information on the transitions
that are possible in the state following the explored transition.

Run time
Compile time

JTorX

proc input_main(inputs:InputMap, state: State) =
ei_507GZ(true) . input_main( setBoolListItem(inputs, ei507GZ,

true ) , state)
+ ei_507GZ(false) . input_main( setBoolListItem(inputs, ei507GZ,
false) , state)
+ ei_516GZ(true) . input_main( setBoolListItem(inputs, ei516GZ,
true ) , state)
+ ei_516GZ(false) . input_main( setBoolListItem(inputs, ei516GZ,
false) , state)
+ ei_521GZ(true) . input_main( setBoolListItem(inputs, ei521GZ,
true ) , state)
+ ei_521GZ(false) . input_main( setBoolListItem(inputs, ei521GZ,
false) , state)
+ ei_528GZ(true) . input_main( setBoolListItem(inputs, ei528GZ,
true ) , state)
+ ei_528GZ(false) . input_main( setBoolListItem(inputs, ei528GZ,
false) , state)
+ i_516ETR(true) . input_main( setBoolListItem(inputs, i516ETR,
true ) , state)
+ i_516ETR(false) . input_main( setBoolListItem(inputs, i516ETR,
false) , state)
+ i_516DTR(true) . input_main( setBoolListItem(inputs, i516DTR,
true ) , state)
+ i_516DTR(false) . input_main( setBoolListItem(inputs, i516DTR,
false) , state)
+ i_516CTR(true) . input_main( setBoolListItem(inputs, i516CTR,
true ) , state)
+ i_516CTR(false) . input_main( setBoolListItem(inputs, i516CTR,
false) , state)
+ i_516BTR(true) . input_main( setBoolListItem(inputs, i516BTR,
true ) , state)

+ cycle_pre .IXL_start( inputs
, state);

Model
.mCRL2

Lineariser

LinProcSpec(DataSpec(SortSpec([SortRef("AspectId",SortId("Nat")),
SortRef("State",SortStruct([StructCons("state",[StructProj("activ
eRoutes",SortCons(SortList,SortId("ActiveRoute"))),StructProj("si
gnals",SortCons(SortList,SortId("Signal"))),StructProj("physicalS
ections",SortId("InputMap")),StructProj("symbolicSections",SortId
("InputMap")),StructProj("timers",SortCons(SortList,SortId("Timer
")))],Nil)])),SortRef("ActiveRoute",SortStruct([StructCons("activ
eRoute",[StructProj("routeId",SortId("RouteId")),StructProj("requ
ested",SortId("Bool")),StructProj("preconditions",SortId("Bool"))
,StructProj("active",SortId("Bool")),StructProj("started",SortId(
"Bool")),StructProj("activePart",SortId("InputMap")),StructProj("
wasOccupied",SortId("InputMap")),StructProj("nextWasOccupied",Sor
tId("InputMap")),StructProj("sections",SortCons(SortList,SortId("
Nat")))],Nil)])),SortRef("Signal",SortStruct([StructCons("signal"
,[StructProj("signalId",SortId("Nat")),StructProj("yellowOrBetter
",SortId("Bool")),StructProj("realYellowOrBetter",SortId("Bool"))
,StructProj("aspect",SortId("Nat"))],Nil)])),SortRef("Timer",Sort
Struct([StructCons("timer",[StructProj("input",SortId("Bool")),St
ructProj("timeOut",SortId("Nat")),StructProj("output",SortId("Boo
l"))],Nil)])),SortRef("InputId",SortId("Nat")),SortRef("SectionId
",SortId("Nat")),SortRef("RouteId",SortStruct([StructCons("r507_5
21",[],Nil),StructCons("r521_nA",[],Nil),StructCons("r516_sA",[],
Nil),StructCons("r528_516",[],Nil)])),SortRef("SignalId",SortId("
Nat")),SortRef("TimerId",SortId("Nat")),SortRef("InputMap",SortCo
ns(SortList,SortId("Bool"))),SortRef("Enum3",SortStruct([StructCo
ns("e2_3",[],Nil),StructCons("e1_3",[],Nil),StructCons("e0_3",[],
Nil)])),SortRef("Enum6",SortStruct([StructCons("e5_6",[],Nil),Str
uctCons("e4_6",[],Nil),StructCons("e3_6",[],Nil),StructCons("e2_6
",[],Nil),StructCons("e1_6",[],Nil),StructCons("e0_6",[],Nil)])),
SortRef("Enum15",SortStruct([StructCons("e14_15",[],Nil),StructCo
ns("e13_15",[],Nil),StructCons("e12_15",[],Nil),StructCons("e11_1
5",[],Nil),StructCons("e10_15",[],Nil),StructCons("e9_15",[],Nil)
,StructCons("e8_15",[],Nil),StructCons("e7_15",[],Nil),StructCons
("e6_15",[],Nil),

Model
.lps

lps2torx

public boolean[] update(boolean[] inputs, boolean[] outputs) {
boolean[] retOut= new boolean[outputs.length];
boolean[] sections = new boolean[12];
for (int i = 0; i < sections.length; i++){

sections[i]=true;
}
for (Train train: trains){

boolean [] tOuts = train.update(inputs, outputs);
for (int i = 0; i < sections.length; i++){

sections[i] = sections[i] && tOuts[i];
}

}
for (int i = 0; i < requested.length; i++){

if (random.nextInt(EBP_RANDOM_SIZE) == 0){
requested[i] = !requested[i];

}
}
//Start filling the output array
System.arraycopy(sections, 0, retOut, 0, sections.length);
System.arraycopy(requested, 0, retOut, 12, requested.length);
//Synchronise the speed steps correctly with the outer sections.
retOut[O_507XSS1] = retOut[O_516ETR];
retOut[O_507XSS2] = retOut[O_516ETR];
retOut[O_507XSS3] = retOut[O_516ETR];
retOut[O_528XSS1] = retOut[O_530BTR];
retOut[O_528XSS2] = retOut[O_530BTR];
return retOut;

}

Test 
Purpose
.java

Test Purpose 
Model

Compiler

SUT 
Executableoutput transitions

input transitions

Verdict: pass / fail

Legend
Red Writing file.
Blue Reading file.
Unlabelled Black Torx-explorer protocol over standard input/output streams.

Figure 4.3: Compilation of models and JTorX’s interaction with the models

For mCRL2 models there is an established method of using them with JTorX’s
on-the-fly exploration mode. An mCRL2 model is first linearised and converted
to the Linear Process Specification (LPS) format, which is saved as a .lps file.
The lps2torx tool is then used to interpret that .lps file on the fly and act as a
torx-explorer.

Such a standard practice does not exist for Java based models. Therefore
a framework was developed in Java that implements the torx-explorer protocol
and creates a simple interface for the actual model code to interact with. The
complete test purpose model (including the framework) is compiled to form

1http://www.mcrl2.org/
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a Java program that acts toward JTorX as a torx-explorer. More details on
the implementation of the test purpose model can be found in chapter 8, the
torx-explorer protocol and the developed framework are discussed in chapter 9.

Figure 4.3, another refinement of figure 4.1, shows JTorX’s interaction with
the models’ torx-explorers, and the relation between the torx-explorers and the
original model code.

4.3 The mCRL2 Modelling Language

Chapter 6, which covers the specification model’s implementation, assumes some
basic knowledge about the mCRL2 language from the reader. However, mCRL2
is not a language that is commonly used, so some readers might not be familiar
with the language. For those, this section provides a short, and very much in-
complete, introduction to mCRL2 that covers all concepts needed to understand
the code samples from chapter 6.

All information in this section is based on information found in the mCRL2
user manual [48] which is much more complete than this section.

4.3.1 Processes

The core of any mCRL2 model is formed by one or more processes. The prim-
itive operation of processes is the action, which can represent any event. Each
mCRL2 action corresponds to a transition in the LTS that the model expresses.

Listing 4.1 shows a very simple process P that does a single action read. Line
1 declares the existence of the read action, line 2 then defines the behaviour of
the process P, and finally line 3 sets the process P to be the initial process of
the model. When translated to a LTS this process has a single read transition
from its initial state.

1 act read;

2 proc P = read;

3 init P;

Listing 4.1: Simple example model

Actions can be combined using the sequential composition operator (notation:
‘.’) and the alternative composition operator (notation: ‘+’). The sequential
composition operator puts actions in sequence, whereas the alternative compo-
sition operator creates a choice. Process identifier can also be used on the right
hand side of a process definition to create recursion.

Listing 4.2 shows a model with a process P that can start with either a read

or write action because of the + operator. A read is always followed by a second
read because of the use of the . operator, just as a write is always followed by a
second write. After either two actions, the process P is called again recursively.
Strictly speaking this process is not ‘called’, because P is not a function that
returns but a process; the execution simply continues with process P. However,
this report does use the term ‘called’ by lack of a better term.
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1 act read, write;

2 proc P = ((read . read) + (write . write)) . P;

3 init P;

Listing 4.2: Example model with sequential and alternative composition, and
recursion

mCRL2 has a lot of facilities for modelling multiple parallel processes that
can communicate using actions. This is very useful for things such as modelling
distributed systems, but is not used in the created specification model and is
thus not covered here.

4.3.2 Data

Data types in mCRL2 are called sorts.
Processes can have such data types as parameters, whose values are set by

calling processes. And actions can have concrete data values as arguments.

A number of basic data types have been predefined in mCRL2, two of those
are used in the model:

• Bool: Boolean.

• Nat: Natural number, i.e. an integer >= 0.

Listing 4.3 shows an example model that has two actions that take a Bool as
a parameter (line 1), and one process with a Bool data parameter (line 4). Line
2 shows a read transition with the value true as argument, after the action the
process W is called with true as parameter value. The behaviour of the model
is very simple: It either starts with a read(true) action which is followed by
a write(true) action, or with a read(false) action which is followed by a
write(false) action. After two actions the model is back in the initial state.

1 act read, write: Bool;

2 proc R = (read(true) . W(true)) +

3 (read(false) . W(false));

4 proc W(b: Bool) = write(b) . R ;

5 init R;

Listing 4.3: Example model with data parameters

The ‘sum <variable>:<type> .’ construction can be used as a shorthand
notation when there are alternative paths for each value of a data type which
are the same modulo the data values. For example in listing 4.3, the same
actions are taken for both values of a Bool. The code in listing 4.4 uses the sum

keyword and has exactly the same behaviour as the code in listing 4.3.

1 act read, write: Bool;

2 proc R = sum bParam:Bool . (read(bParam) . W(bParam));

3 proc W(b: Bool) = write(b) . R ;
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4 init R;

Listing 4.4: Example model with a summation

Process can behave differently based on the value of a data object by use of
the ‘c -> p1 <> p2’ construct, which translates to ‘if c then p1 else p2’.

Listing 4.5 shows a model that uses such a conditional construct. Based on
the value of the parameter b to the process W on line 4, either (write(1) . R)

happens if b is true or (write(0) . R) if b is false.

1 act read: Bool;

2 write: Nat;

3 proc R = sum bParam:Bool . (read(bParam) . W(bParam));

4 proc W(b: Bool) = b -> (write(1) . R)

5 <> (write(0) . R);

6 init R;

Listing 4.5: Example model with conditional behaviour

When mCRL2 models are translated to LTSs the actions become transi-
tions. However, the transition labels are not the same as the action notation
in mCRL2. For example, the action read(true) will become a transition with
label read!true when used with JTorX.

4.3.3 Mappings

Mappings are functions that take zero or more data objects as argument. A
map definition consists of three parts:

• A map statement declaring the name and type (or sort in mCRL2 termi-
nology) of a mapping.

• var statements declaring the type and name of the parameter variables
used in the equations that define the function of a mapping. No var

statements are needed for mappings that have zero arguments or only
have concrete values in the equations and no variables.

• eqn statements which are the equations that define how inputs map to
outputs.

Listing 4.6 shows a model with two very simple mappings. The mapping
five takes no arguments and simply returns a Nat (line 1); the returned value
is 5 (line 2). The mapping addTimesFive takes two Nats as arguments and
returns a Nat (line 4). The returned Nat is the sum of the first two arguments
multiplied by the the return value of five, i.e. a+ b× 5 (line 6).

The behaviour of the model from listing 4.6 is very straightforward: It
performs the action write(5) (since (0 + 1) ∗ 5 = 5), followed by the action
write(15) (since (1 + 2) ∗ 5 = 15), after which the model terminates.

1 map five: Nat;

2 eqn five = 5;

3
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4 map addTimesFive: Nat # Nat -> Nat;

5 var a,b:Nat;

6 eqn addTimesFive(a,b)= (a+b) * five;

7

8 act write:Nat;

9 proc P = write(addTimesFive(0,1)) . write(addTimesFive(1,2));

10 init P;

Listing 4.6: Example model with a simple mapping

mCRL2 has a lot of predefined mappings that implement standard functions.
Some of these mappings can also be used as infix operators (e.g. the plus operator
already used in listing 4.6).

Examples of predefined mappings are the standard arithmetic operators (+,
-, * and /) for Nats, the logical operators (!, &&, || and => (implication))
for Bools, and comparison operators (==, !=, < and >) which are defined for
all sorts. Other commonly used mappings are the if(a,b,c) mapping which
returns b if a is true and c otherwise, and conversion mappings that map data
types to more restrictive data types (e.g. Int2Nat to convert an Int into a Nat).

Mappings can also be defined recursively, an example of which is shown in
listing 4.7. The recursive mapping power takes two arguments (base and expo)
and returns the value of the power function baseexpo. If the second argument to
the mapping (expo) is 0 (line 3), then the function returns 1 (line 4). Otherwise
the function returns the value of the recursive call power(base, expo-1) times
base (line 5). Note that the return sort of expo-1 is Int (which can be negative
also), but can be converted to Nat because the condiction to the if mapping
guarantees that expo-1 is at least 0.

The resulting behaviour of the model from listing 4.7 is as follows: It per-
forms the action write(1) (since 20 = 1), followed by the action write(2)

(21 = 2), followed by write(4), followed by write(8) and write(16), after
which the model terminates.

1 map power: Nat # Nat -> Nat;

2 var base,expo:Nat;

3 eqn power(base,expo) = if(expo == 0

4 , 1

5 , power(base, Int2Nat(expo-1)) * base

6 );

7

8 act write:Nat;

9 proc P = write(power(2,0)) . write(power(2,1)) .

10 write(power(2,2)) . write(power(2,3)) . write(power(2,4));

11 init P;

Listing 4.7: Example model with a recursive mapping

With the current mCRL2 toolchain, which compiles .mCRL2 files to .lps files
that are then interpreted, all mappings are implemented using rewriting of the
data structures on which they operate. All data is implemented as expressions,
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and the equations (eqn) of mappings are used as rewrite rules. This ‘func-
tional’ paradigm is fundamental to how the mCRL2 tools work and the used
file formats.

However, the performance of this approach can be very poor. Some of the
early versions of the specification model had some serious performance prob-
lems, which were (in all likeliness) caused by rewrite expressions that got too
complicated. In any case, the performance characteristics of languages that use
term rewrite systems like mCRL2, are less predictable than those of imperative
languages.

4.3.4 Constructed Data Types

mCRL2 has a built in data type List that provides a list implementation.
Lists are built using the empty list constructor (‘[]’) and the ‘cons’ constructor
(‘|>’). For example the expression 3 |> 2 |> 1 |> 0 |> [] defines a list of
type List(Nat) containing the numbers 3 to 0. A short hand notation for the
same list is [3, 2, 1, 0].

A number of standard mappings on lists are predefined (the types of the
mappings are given in parentheses):

• a in l: True iff a occurs in l. (S # List(S) -> Bool)

• l.n: Gives the n-th item in the list l. (List(S) # Nat -> S)

• head(l): Gives the first item in the list l. (List(S) -> S)

• tail(l): Gives list l without its first item. (List(S) -> List(S))

Listing 4.8 shows a model with a process (P) that takes a List(Nat) as
argument. The process P verifies that the size of the list is greater than zero
(line 3). If the list is non-empty, the process does an action write with as
argument the first item in the list, after which it calls itself with the remainder
of the list (line 4). If the list is empty, process R is called (line 5).

The resulting behaviour of the model is such after a read action, five write(Nat)
actions follow with the numbers 1 to 5 as arguments. After the write(5) action
the model returns to the initial state again.

1 act write: Nat;

2 read;

3 proc P(numbers: List(Nat)) = (#numbers > 0)

4 -> write(head(numbers)) . P(tail(numbers))

5 <> R;

6 R = read . P([1,2,3,4,5]);

7 init R;

Listing 4.8: Example model with a list

mCRL2 also allows the creation of custom data structures, using the following
construction: sort <type> = struct <constructor>{<fields>}. The name
of the sort will be <type>, and <constructor> is used to create an object of that
sort. The <fields> can be any number of fields of any type that are identified
by a unique name. Individual fields of a struct can be accessed by using the field
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name as a mapping on the structure. For example to access the field ‘field1’ of
a struct called ‘s’, the following code is used: field1(s).

Listing 4.9 shows a model with a custom sort struct of type Sample (lines
1-4). An object of sort Sample is created by process R using the constructor
sample (line 11). The created object is passed as argument to the process P. In
process P execution branches depending on the value of the field do_print (line
8). If that field is true, then a write(Nat) action is done with as argument the
length of the list in the field numbers (line 9). In either case is process R called
again by process P.

The behaviour of the model is as follows: It start by either performing
a read(true) action or a read(false) action. After a read(false) action
the model is in the initial state again. A read(true) action is followed by a
write(5) action (since the list has a size of 5), after which the model is also in
the initial state.

1 sort Sample = struct sample(

2 do_print: Bool,

3 numbers: List(Nat)

4 );

5 act write: Nat;

6 read: Bool;

7

8 proc P(s: Sample) = do_print(s)

9 -> write(#numbers(s)) . R

10 <> R;

11 R = sum bParam:Bool .read(bParam) .P( sample(bParam, [1,2,3,4,5]) );

12 init R;

Listing 4.9: Example model with a custom sort struct

The last example concludes this introduction to mCRL2. This introduction is
very much incomplete, and focusses exclusively on the features used in the spec-
ification model, which is described in the next two chapters. The mCRL2 user
manual [48] is a much more complete reference work for the mCRL2 language.
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Chapter 5
Behaviour of the PLC-Interlocking
Model

The specification model is one of the main products of the conducted research
and an important part of the test setup. Because of its complexity, the de-
scription of the model is spread over two chapters. This chapter describes the
externally observable behaviour of the model, while chapter 6 describes how
that behaviour is implemented.

The specification model that has been developed models (part of) the be-
haviour of the Santpoort Noord PLC-Interlocking installation. Although the
developed model is tailored to the Santpoort Noord installation, the design is
such that it can also be adapted to model other PLC-Interlocking installations.
Unless the text explicitly mentions something is Santpoort Noord specific, any-
thing discussed in this chapter or the next applies to the general design of the
model and not merely to the Santpoort Noord model.

This chapter is organised as follows: Section 5.1 covers the specifications that
have been used in the construction of the model. The model only covers a
part of the functionality of the PLC-Interlocking, section 5.2 clarifies this. The
actual description of the model’s observable behaviour starts with section 5.3,
which describes the transitions that the model uses to communicate inputs and
outputs with its environment. This is followed by section 5.4 which explains the
functionality implemented by the model.

5.1 Specifications

In order to get a model that correctly expresses the desired behaviour of the
SUT, a number of sources have been consulted. These sources can be divided
in two groups:

1. Generic sources: Sources specifying the behaviour of PLC-Interlocking
systems in general.
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2. Location specific sources: Sources specifying the local situation at Sant-
poort Noord and the (implied) requirements on the Santpoort Noord PLC-
Interlocking installation.

5.1.1 Generic Sources

There are three main sources for the generic behaviour of the PLC-Interlocking:

1. The Subsystem/System Specification (SSS) [4].

2. The OVS Application Engineering [5].

3. Expert consultations from members of the PLC-Interlocking development
team [6, 7].

The SSS was the main specification used for the construction of the model.
This document contains a non-formal textual specification of the intended be-
haviour of the PLC-Interlocking system. It (should have) served as input for
the engineers constructing the PLC-Interlocking and accompanying OVS docu-
ments. In reality however, a lot of this document was written in tandem with
the PLC-Interlocking code and documentation. The SSS contains high-level
requirements and is not detailed enough to serve as a complete specification.

The OVS Application Engineering was used to get the details (such as the
names of input and output variables) that were not specified in the SSS.

Both the SSS and OVS document assume certain domain knowledge which
goes deeper than the basic understanding of railway safety as expressed in chap-
ter 2. Because of that assumption, the documents on their own did not always
form a sufficient specification. In such cases the signalling experts and system
engineers from the PLC-Interlocking development team were consulted.

5.1.2 Location Specific Sources

The OVS document specifies how a PLC-Interlocking must be programmed for a
given railway yard. The main inputs for the programming process are the prop-
erties of the railway yard for which the PLC-Interlocking is being programmed.
Those properties are also needed for the installation specific part of a PLC-
Interlocking model. The needed railway yard specific information was distilled
from the following documents:

1. Track layout map: OBE-blad [8].

2. Signalling layout map: OS-blad [9].

3. Final Design: DO document [10].

The OBE-blad (OBE-blad: Overzicht Baan en Emplacement blad (Dutch))
specifies the track layout and physical relations between the different wayside
elements (e.g. which sections lie between which signals). Furthermore this doc-
ument specifies the names of all wayside elements (from which the names of the
input and output variables can be deduced).

The OS-blad provides information regarding the aspects that the different
signals can show and the allowed relations between aspects of different signals.
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The interlocking has to allow the beams of the level crossings to close before
some signals can change their aspects. The amount of time to wait is specified
in the DO document (DO: Definitief Ontwerp (Dutch)).

5.1.3 Imperfect Specifications

Ideally, the system would be treated as a black box, and the model would be
merely based on a specification. Unfortunately, there is not one definitive speci-
fication of what constitutes correct behaviour of a PLC-Interlocking. The main
specification, the SSS, is not written totally independent from the developed
product. The main problem though, is that it is informal and not very detailed.
As a result a lot of the specification details have been extracted from the OVS
Application Engineering.

The OVS Application Engineering is a manual (or one could say a spec-
ification) on how to construct the logic for a PLC-Interlocking. However, at
the same time that OVS is also a result of the PLC-Interlocking development
project and thus a part of the PLC-Interlocking product. As such it should be
subject to tests, and not part of the test specification. The expert consultations
are also troublesome: some of the specific knowledge of these people comes from
the fact that they worked on the interlocking system.

The programming of a PLC-Interlocking installation is done based on the OVS
Application Engineering. As a result, if there are any faults in the produced
interlocking system, then these faults fall in one of two categories:

1. Programming faults that are introduced by incorrectly applying the (cor-
rect) instructions of the OVS Application Engineering to the situation at
a specific railway yard.

2. Programming faults that result from faults in the OVS Application Engi-
neering document.

There are no particular reasons to assume that faults from the first category
would be in the model also, even considering the fact that the OVS Application
Engineering was used as one of the specifications for the model.

However, faults from the second category might be duplicated in the model,
after all the model is also partly based on the OVS Application Engineering.

The problem of faults from the OVS being duplicated in the model is partly
(but only partly) mitigated by the fact that both the SSS and the OVS Applica-
tion Engineering documents have been extensively reviewed by industry experts.
Furthermore the model is written in mCRL2, which is based on a completely
different programming paradigm as the FBD language. This in itself guarantees
that the model is not an exact copy of the OVS, but rather an interpretation of
the specification that was aided by the information in the OVS.

But still there is no true guarantee that the model does not contain the same
faults as the OVS Application Engineering.
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Figure 5.1: The modelled part of the Santpoort Noord railway yard

5.2 Scope of the Model

The model that has been developed during the research period is an initial
research model that serves as a proof of concept, and does not capture all
functionality of a PLC-Interlocking.

As mentioned above, the SSS [4] was the main specification used. The SSS
contains a total of 103 identified functional requirements, with some of those
requirements containing additional sub-clauses. A number of these requirements
do not apply to the Santpoort Noord PLC-Interlocking because they concern
functionality that is not needed at Santpoort Noord (e.g. there are no movable
bridges at Santpoort Noord). However, even of the requirements that do apply,
only a fraction is implemented in the model.

The reason that not all requirements are implemented is because of time
constraints. From the start it was clear that creating a model that implements
all requirements is not a trivial matter and would require a lot of effort and
knowledge about railway signalling. It was obvious that creating a complete
model would take much more time than was available. Thus, the decision was
taken to focus on a subset of the requirements.

One of the main limitations in the model is that not all wayside elements
are supported. Only inputs from and outputs to signals and track sections
are implemented in the model. Most notably, points are not supported by the
current model, but some other wayside elements are also not modelled (for
Santpoort Noord these are the level crossings and the ATB systems).

Furthermore, not all behaviour of the PLC-Interlocking is modelled. For
example, the yellow blinking aspect is not supported, but also the system’s
behaviour with respect to (possibly inconsistent) redundant inputs is not mod-
elled. Also crucially, the model is less detailed and contains less safety checks
than the SUT should implement.

There are a lot of small omissions and abstractions that have been made in
the model. The next sections in this chapter detail exactly what functionality
is implemented and which inputs and outputs are supported; any functionality
not mentioned in this chapter is not implemented.

The model for the Santpoort Noord railway yard is limited to a single straight
stretch of rail. Figure 5.1 shows the modelled area marked grey. Even with the
above mentioned general limitations on the current version of the model, a
bigger area of the Santpoort Noord area could have been modelled (e.g. both
straight rail stretches). However, for the sake of simplicity and because of time
constraints this has not been done for the research model.
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5.3 Input and Output Transitions

5.3.1 Variables

The model has the same basic phases as the SUT: input, computation and out-
put. All relevant input and output of the SUT runs through Boolean variables
that are set during the input and output phases. The model must handle those
same variables in its input and output phases.

Table 5.1: Input variables of the model
For Each Variable Name Description
Signal <signal-id>GZ-CI Request from the EBP-interface to set the

signal to yellow or better (true), or to red
(false).

Track section <section-id>-TR-DII Output from a train detection device; indi-
cates whether a section is free (true) or occu-
pied (false).

Railway yard
border

<signal-id>-XSS1R-DII,
<signal-id>-XSS2R-DII,
<signal-id>-XSS3R-DII

Speed step variables: Indicate at which speed
(if at all) a train may enter the area of a
neighbouring interlocking system. (Signal-id
refers to the nearest signal).

Table 5.1 shows the input variables that the model uses.

The ‘yellow or better’ inputs from the EBP-interface are used to request the
interlocking to set a signal to a yellow aspect or an aspect better than yellow.
All aspects except for red, and yellow blinking (which is not included in the
model) are considered yellow or better. If this input is not set, then the signal
will show a red aspect. Whether yellow or better is actually yellow, green, green
with a number or one of the other possibilities is decided by the interlocking
system.

The ‘speed step variables’ are used by neighbouring interlocking systems to
communicate whether a train can safely enter their area. If these variables are
all false, then a train cannot cross the border to the area of the neighbouring
interlocking system; if the first Boolean is true it can cross the border at a slow
speed; if the first two are true it can cross the border at a higher speed; if all
three are true it can cross the border at the highest speed. The exact speeds
are railway yard dependent and are specified on the OS-blad.

Table 5.1 is not completely accurate in all cases: There are exceptions to the
naming scheme depending on how inputs are wired electrically, and the number
of speed step variables can vary as a result of differences in the allowed speeds.

All SUT output variables that the model uses are listed in table 5.2.

The Booleans that determine the signal aspects each control a part of the
signal aspect (e.g. <signal-id>-DR-DO controls the non-flashing green light).
However there is no specific variable to set a signal to red; signals show a red
aspect if all variables are false. Since false is communicated by the absence of a
signal, this means that signals will always default to a red aspect if there is no
active signal from their interlocking system.
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Table 5.2: Output variables of the model
For Each Variable Name Description
Signal <signal-id>H-CO Feedback to the EBP-interface regarding

whether the signal is set to yellow or better
(true), or to red (false).

Signal <signal-id>-GR-DO,
<signal-id>-HR-DO,
<signal-id>-DFR-DO,
<signal-id>-DR-DO,
<signal-id>-4R-DO,
<signal-id>-6R-DO,
<signal-id>-8R-DO

A collection of Boolean outputs that together
determine the aspect that a signal shows.

Table 5.2 is also not entirely accurate in all cases. Not all signals can show
all aspects, so for some signals there are less outputs. Furthermore there are
signals that are controlled through additional output variables (although not at
Santpoort Noord).

Figure 5.2 (a variant on figure 3.3) shows the communication of the model
with systems external to the logic. The ‘Variables’ columns show the names of
the variables that are communicated between the different systems. The figure
also shows the transitions that are used to communicate those variables, more
on that in the next section.

EBP-interface

Model

Relays

<signal-id>-GR-DO,
<signal-id>-HR-DO,
<signal-id>-DFR-DO,
<signal-id>-DR-DO,
<signal-id>-4R-DO,
<signal-id>-6R-DO,
<signal-id>-8R-DO

<section-id>-TR-DII

<signal-id>-XSS1R-DII,
<signal-id>-XSS2R-DII,
<signal-id>-XSS3R-DII

<signal-id>GZ-CI <signal-id>H-COei_<signal-id>GZ

aspectOutput

output

i_<section-id>TR

i_<signal-id>XSS1R,
i_<signal-id>XSS2R,
i_<signal-id>XSS3R

Transitions TransitionsVariables Variables

Figure 5.2: Inputs and outputs of the model

5.3.2 Transitions

Input and output of the model is done through transitions.

Each input transition has one Boolean parameter and is used to represent
setting a single Boolean variable. During the input phase all input transitions
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are always enabled. Variables that are not set during the input phase keep the
same value as they had during the previous cycle. Before the first cycle all input
variables are initialised to false.

The names of the input transitions are based on the names of the variables
that they represent. However the variable names cannot be used verbatim as
names for the transitions, because mCRL2 does not allow transitions to start
with a number. Therefore the transitions names follow one of two patterns:
ei_<variable name> for EBP inputs or i_<variable name> for the other in-
puts. Suffixes (e.g. -CI) and non-alphanumeric characters are left out of the
transition names. An example: setting the variable 7B-TR-DII to true is repre-
sented by the transition i_7BTR!true.

The output transitions have fixed names that do not depend on the names of
the output variables. The transitions that output the variables that indicate to
the EBP-interface whether a signal is set to yellow or better are simply called
output and have a single Boolean parameter. They are always all outputted,
and always in the same order such that is clear which transition represents the
variable for which signal.

The seven variables that determine which aspect is shown can only be com-
bined in certain ways. As a result there are in total only ten possible aspects.
The outputted aspect is represented by a transition labelled aspectOutput,
with a single integer parameter. The integer (1 to 10) represents the outputted
aspect. Again these transitions are always all outputted, and in the same order
such that is clear which transition represents the aspect of which signal. The
aspectOutput transitions directly follow the output transitions, and conclude
the output phase.

A simplified diagram of the complete transition flow is shown in figure 5.3.
Note that the diagram shows the situation for a model with two signals, whereas
the developed Santpoort Noord model has four signals. The computation phase
of the model is started by the cycle transition, that transition also serves to
indicate the end of the input phase. During the computation phase there is
no input/output and thus no visible transitions; the output phase starts after
internal (τ) transitions that follow the cycle transition. The output phase does
not have a special end transition, because the fixed number of transitions make
it clear when that phase ends.

Figure 5.3 only shows the input transitions, and the different input and output
phases of the model. The model has more internal states than shown in the
figure; the values of the transition parameters determine the state of the model.

5.3.3 Timer Transitions

As said, figure 5.3 is a simplified representation of the input/output behaviour
of the model; it actually omits certain timing related transitions. These timing
related transitions do not represent real inputs and outputs of the SUT, but
rather are an aid to the model itself.
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Figure 5.3: Simplified view of the model’s input and output transitions
for a railway yard with two signals

The model checks a lot of preconditions before executing a request from the
EBP-interface. Mostly these checks merely require the available input Booleans
as input. However, one check involves time also: Per signal a condition must
hold for a certain amount of time before the signal can be set to yellow or better
(for more details on this see section 5.4).

This presents a problem, because the model has no knowledge of either the
absolute time or the amount of time that passes between cycles. Even if the
model was time aware, that would not be useful because the used SUT relies on
a virtual time (see chapter 7) rather than the real time.

The chosen solution to the timing problem relies on an adapter at the
SUT side of the test setup to keep track of all timers. The model uses the
timerInput!Nat!Bool transition to communicate to the adapter whether the
precondition for a timer holds, and the duration for which that precondition
should hold.

After all timerInput transitions are done, the SUT adapter returns Boolean
values using timerOutput!Bool transitions. These transitions are in the same
order as the transitions from the model, i.e. the n-th timerOutput transition
is a reply to the n-th timerInput transition. The Boolean parameter of a
timerOutput transition is true if and only if the precondition has been true
uninterrupted for at least the specified duration (equivalent to the way that the
output of an FBD TON function is computed, see section 3.3.2).

Figure 5.4 shows the interaction between the model and the SUT adapter.
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Figure 5.4: Timing interaction between model and SUT adapter

These transitions take place in the computation phase of the model. That
is, after the input phase but before the output phase. This ‘timing phase’
starts with the cycle_pre transition, which ends the input phase (instead of
the cycle transition shown earlier). The cycle transition then indicates that
all timerInput transitions have been outputted and the SUT adapter should
start replying with the same number of timerOutput transitions, after which
the normal output transitions follow.

There are also alternative solutions to this problem, but they were judged to
be less suitable.

One alternative solution would be to exploit the fact that all scan cycles
in the test setup last equally long, which makes that there is a fixed relation
between the amount of cycles done and the amount of time passed. This makes
it possible to count the number of cycles and deduce the passed time from that.

Another possible solution is to keep a virtual time in the model, and com-
municate time increases to the SUT adapter.

Both alternative solutions put the actual timer logic in the model. Given
that the constructed model only has one kind of time dependent check, it was
judged that the chosen solution was easiest and complicated the model the least.

5.4 Implemented Functionality

5.4.1 Signals: Yellow or Better

The main implemented functionality of the model is the ability to set signals
to yellow or better when requested to do so by the EBP-interface. Each cycle
the interlocking logic gives feedback information to the EBP-interface indicating
per signal whether that signal is actually set to yellow or better.

The constructed model implements three checks that must be passed before
a signal is set to yellow or better. Additionally there is a fourth condition that
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only applies to signals that lie before a level crossing (for the Santpoort Noord
model this is the case for signals 507 and 516).

1. There must be a request from the EBP-interface.

2. There must be no conflicting requests from the EBP-interface.

3. All sections of the route behind the signal must be free and must remain
free.

4. The first three conditions must hold during the signal delay time; and that
delay must have passed.

The first condition is very straightforward, the model checks whether the
variable <signal-id>GZ-CI is set.

The second condition is also a simple check. Each signal is the start of a
route, which runs from that signal to the next. Two routes conflict when they
cannot both be used at the same time. Usually this is because they have track
sections in common, but different tracks sections might also be too close to one
another for simultaneous use. Since the model does not have points, each signal
only has a single route associated with it and all possible conflicts stem from the
fact that two signals give access to overlapping routes from opposite sides. So
the model can simply verify for each route that none of the (known) conflicting
signals is requested.

The third condition is more complicated, because all sections must not just
be reported to be empty, they must also be ‘logically’ empty.

As explained in section 2.2.3, a train detection device can sometimes incor-
rectly determine a section to be free when there is in fact a train there. Therefore
the PLC-Interlocking and the model have some additional checks. A track sec-
tion that is occupied, will be considered to be occupied until that section is
reported to be unoccupied and a train is detected in the next section of the
route. If the section is merely reported to be unoccupied by the train detection
system, but the train is not detected in the next section, the PLC-Interlocking
will consider the section to still be occupied logically.

Furthermore, the PLC-Interlocking and model keep track of which sections
are part of an active route and have yet to be travelled by the train on that
route. Once a train starts a route (by passing a yellow or better signal), all
sections in the route will be considered to be logically occupied, until the train
has passed those sections.

The fourth condition verifies that the beams of a level crossing have had
enough time to close. Only after the first three conditions have held for a set
time (which is given for each signal), can a signal be set to yellow or better. The
timer for this check is actually implemented in the SUT, as previously described
in section 5.3.3.
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Imperfections in the Model

The model does not completely model the PLC-Interlocking. As a result the
model will more often declare a signal to be yellow or better than the real PLC-
Interlocking. For example, the PLC-Interlocking contains a check for every route
that verifies that no train has passed a red signal recently that might affect that
route, the model does not contain that check.

If the SUT and the model report different outputs, then JTorX will conclude
that a failure has been observed. Incompleteness in the model should not lead to
such differences being observed. Therefore the model allows non-determinism in
the yellow or better EBP output, if the model determines a signal to be yellow
or better.

Concretely if the model determines that the output for a certain signal
should not be yellow or better, then only one output transition is enabled:
output!false. If however the model determines the output to be yellow or
better, then both the output!true as well as the output!false transitions are
enabled. This allows the SUT to be more strict than the model, but not the
other way around.

5.4.2 Signals: Determining Aspects

Above, only the outputs to the EBP-interface that indicate whether a signal is
yellow or better, or red were considered. However, the model also determines
the exact aspects that are outputted to the actual signals.

The logic that computes the aspects for all signals is completely deterministic
given the following inputs:

• The yellow or better Booleans for all signals in the railway yard.

• The speed step variables for the railway yard borders.

The speed step variables are known to the model since they are read as
inputs.

The yellow or better Booleans are determined by the model, but these
are not guaranteed to be correct (since the model is imperfect). Therefore
the output transitions, which indicate yellow or better, are outputted (non-
deterministically) before the aspects are determined. The model tracks which
output transitions were taken by the SUT, and as such knows the actual val-
ues for all yellow or better variables and not just the values that the model
determined.

If a signal is set to yellow or better, then the OS-blad document states its
aspects given the aspect of the next signal, or given the enabled speed step
variables (in case its the last signal on the yard). As such the model simply
works backwards, starting at the railway yard borders and determining the
signals in reverse order according to the OS-blad data.
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Chapter 6
Implementation of the
PLC-Interlocking Model

This chapter gives an overview of how the functionality that was discussed in
chapter 5 is implemented in an mCRL2 model.

The structure of this chapter is as follows: Section 6.1 covers the overall con-
trol flow of the model, how inputs and outputs are handled and at what points
which outputs are determined. Section 6.2 discusses the data structures in which
the model keeps its state. Section 6.3 looks at all the mappings that are defined,
and how they are used for performing computations on the data structures, but
also for storing configuration data. After that section 6.4 looks at the file struc-
ture of the model, and the usage of a pre-processor in the compilation process.
Finally section 6.5 discusses briefly how the model can be adapted to different
PLC-Interlocking installations.

6.1 Model Execution Flow

The model consists of two dozen processes that each handles a specific task. The
model’s execution is straight forward: All processes are executed consecutively
and in a fixed order; there is no parallel composition. The first process represents
the start of a PLC scan cycle which concludes with the execution of the last
process, after which the first process is executed again.

Each process calls the next process with two arguments: the values of the
current inputs and a struct holding the system’s state. The current inputs are
passed as a list of Bool variables, where each position in the list corresponds
to a certain input variable. The system’s state is modelled by a custom struct
type State, which is described in detail in section 6.2.

The model’s processes can be divided in five global task categories (which are
executed in the following order):

57



1. Input

2. Computation: yellow or better

3. Output: EBP output yellow or better

4. Computation: signal aspects

5. Output: aspects

Generally input and output is handled by processes, whereas a lot of the
logic is encoded in data-mappings that are called by processes. Furthermore
processes are used to define the execution flow within the model, because they
can pass control to a next process without returning, whereas mappings always
have to return a value to their caller. In the following subsections the most
important processes of the model are discussed using snippets of code from the
model. The mappings that these processes rely on cannot all be covered in this
report, however section 6.3 gives a short overview of them.

Note: the code snippets sometimes contain τ transitions (in mCRL2: tau),
which are internal transitions that are not visible to the SUT. They are needed
for performance reasons: Without these transitions the linearisation process will
not terminate (or at least not within an acceptable time frame), and run time
performance would also suffer.

6.1.1 Input

The input_main process is responsible for handling all regular input transitions,
a part of it can be seen in listing 6.1. After taking an input transition, it calls
itself with the inputs list updated (using the function setBoolListItem). The
process contains code for all possible input transitions, the majority of this code
has been left out of the code listing because it is repetitive and the pattern is
clear. The cycle pre transition stops the input phase by calling the IXL_start
process, which is the starting point of the processes that determine which signals
should be set to yellow or better.

1 proc input_main(inputs:InputMap, state: State) =

2 ei_507GZ(true) .input_main(setBoolListItem(inputs, ei507GZ, true ), state)

3 + ei_507GZ(false).input_main(setBoolListItem(inputs, ei507GZ, false), state)

4 + ei_516GZ(true) .input_main(setBoolListItem(inputs, ei516GZ, true ), state)

5 + ei_516GZ(false).input_main(setBoolListItem(inputs, ei516GZ, false), state)

6 ...

7 + cycle_pre . IXL_start(inputs , state);

Listing 6.1: Handling input transitions

6.1.2 Computation: Yellow or Better

A major part of the model is devoted to determining for each signal whether it
should be set to yellow or better, or to red. In total 15 processes are involved
in this, which are executed in order and can be divided in three sub-phases. In
these phases the model does the following:
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1. Determining for each signal whether the first three conditions hold.

2. Determining for each signal whether the fourth condition holds.

3. General processing of received data.

Determining for each signal whether the first three conditions hold

In the first phase the model determines whether the first three preconditions, as
mentioned in the previous chapter (section 5.4), are met. This is done through
a number of processes that update the data in the State structure that each
process passes on. These updates are based on the inputs and the current state,
and are handled by data mappings.

Determining for each signal whether the fourth condition holds

If the model has established that the first three conditions have been met for
a certain signal, it must still verify that the fourth condition also holds: the
first three conditions must have been met sufficiently long. The SUT adapter is
actually responsible for verifying this, because as discussed previously in section
5.3.3, this seemed the solution that was easiest to implement. The implemen-
tation of this can be seen in code listing 6.2.

First the model communicates to the SUT for each signal whether the first
three conditions currently hold using the process timer_input (lines 4-7).

Then it receives per signal a transition back indicating whether the fourth
condition holds. If the outgoing transition indicated that the first three con-
ditions held for a signal, then the model can either read back (line 12) a
timerOutput!true transition indicating that the fourth condition also holds,
or an timerOutput!false transitions indicating that the fourth condition does
not hold.

After receiving each of these transitions the process invokes itself again (lines
13 - 22), with the State object properly updated to reflect the value reported
by the SUT through the timerOutput transition.

Note that some lines of code were skipped at line 23; this was done so as not
to clutter the code snippet with less interesting code. If no more transitions are
expected the code calls on the next process IXL_start_again, with which this
sub-phase of the model concludes.

1 proc timer_input_start(inputs:InputMap, state: State) =

2 timer_input(timers(state), inputs, state);

3

4 proc timer_input(timers:List(Timer), inputs:InputMap, state: State) =

5 (#timers > 0)

6 -> timerInput(timeOut(head(timers)), input(head(timers))) .

timer_input(tail(timers), inputs, state)

7 <> cycle . timer_get_outputs(0, inputs, state);

8

9 proc timer_get_outputs(timerCounter: Nat, inputs: InputMap, state: State) =

10 (timerCounter < #timers(state))

11 -> input(timers(state).timerCounter)

12 -> ( sum b:Bool . timerOutput(b) .
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13 timer_get_outputs(

14 timerCounter+1,

15 inputs,

16 stateSetTimersItem(

17 state,

18 timerCounter,

19 timerSetOutput(timers(state).timerCounter, b)

20 )

21 )

22 )

23 ...

24 <> IXL_start_again(inputs, state);

Listing 6.2: Processes handling timer transitions

General processing of received data

In the final sub-phase of this task, the model uses the information received
through the timer transitions to update the State structure. Specifically the
substructures that hold information on signals (a list of Signal objects) and on
the active routes (a list of ActiveRoute objects) are updated. This is done using
some mappings that use information already present in the State structure
(such as the values received through the timer transitions).

After this the structure contains all information to continue to the next main
phase of the model: outputting whether a signal is set to yellow or better, or to
red.

6.1.3 Output: EBP Output Yellow or Better

The output_EBP_signals process handles outputting the computed values of
the yellow or better bits for each signal; its implementation is shown in listing
6.3.

The process takes, besides the usual two arguments, a third argument: a
list of Signal objects. This list is taken from the state object by the calling
process and each object represents one of the signals in the railway yard. The
process outputs the value of the first Signal object in the list and then calls
itself again with the remainder of the list, or if the list is empty proceeds with
the next process: IXL_aspect_start.

As explained in section 5.4.1, if the model has determined a signal to be red
(i.e. not yellow or better) it will output a false transition (line 18). However,
if the model determines the signal to be yellow or better, it can output either a
true or a false transition (line 4). The model then stores which of those two
is taken in the state object (lines 7-14).

1 proc output_EBP_signals(inputs: InputMap, state: State, signals: List(Signal)) =

2 tau . (#signals > 0)

3 -> yellowOrBetter(head(signals))

4 -> ( sum b: Bool . output(b) .

5 output_EBP_signals(

6 inputs,

7 stateSetSignals(
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8 state,

9 updateSignalListRealYellowOrBetter(

10 signals(state),

11 signalId(head(signals)),

12 b

13 )

14 ),

15 tail(signals)

16 )

17 )

18 <> output(false) . output_EBP_signals(inputs, state, tail(signals))

19 <> tau . IXL_aspects_start(inputs, state);

Listing 6.3: Outputting the yellow or better EBP outputs

6.1.4 Computation: Signal Aspects

Two processes play an important role in determining the aspects of signals:
IXL_aspects_translate_speed_steps and IXL_aspects_determine_aspects.
Both are shown in listing 6.4.

As explained in section 5.4.2, to determine the aspects of signals, the yellow
or better bits of all signals must be known as well as the speed step variables.
The speed step variables influence the aspect of the signal before them in the
same way as a signal influences the aspect of another signal before it. As such
the speed step variables are treated in the code as sort of virtual signals. The
virtual aspects of these virtual signals are given by the speed step variables.
The process IXL_aspects_translate_speed_steps translates the values of the
speed step variables to a natural number (identifying a virtual aspect).

After the aspects of these virtual signals are known, the aspects of the
signals before them can be determined, followed by the signals before those.
This is done by the IXL_aspects_determine_aspects process which calls the
determineAspects mapping to that end.

1 proc IXL_aspects_translate_speed_steps(inputs: InputMap, state: State) =

2 tau . IXL_aspects_determine_aspects(

3 inputs

4 , stateSetSignals(

5 state,

6 setSignalAspect(

7 setSignalAspect(

8 signals(state)

9 , SIG_SA, speedStepBoolsToAspects(true, inputs.i507XSS1,

inputs.i507XSS2, inputs.i507XSS3))

10 , SIG_NA, speedStepBoolsToAspects(true, inputs.i528XSS1,

inputs.i528XSS2, false))

11 )

12 );

13

14 proc IXL_aspects_determine_aspects(inputs: InputMap, state: State) =

15 output_aspects(

16 inputs

17 , stateSetSignals(

18 state,
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19 determineAspects(signalAspectDeterminationOrder, signals(state))

20 )

21 );

Listing 6.4: Determining the signal aspects

6.1.5 Ouput: aspects

Outputting the computed signal aspects is very straight forward, as shown in
listing 6.5.

The process output_aspects_signals takes a list of Signal objects as third
argument, just like the function output_EBP_signals described in section 6.1.3.
The process simply outputs the aspect of the first element in the list, and then
calls itself with the remainder of the list.

If the whole list has been processed, then the scan cycle is complete and
the input_start process is called. This process brings the model in the input
phase again and will in turn call the input_main process which will process the
new input transitions as described in section 6.1.1.

1 proc output_aspects_signals(inputs: InputMap, state: State, signals:

List(Signal)) =

2 (#signals > 0)

3 -> aspectOutput(aspect(head(signals))) . output_aspects_signals(inputs,

state, tail(signals))

4 <> input_start(inputs, state);

Listing 6.5: Outputting the signal aspects

6.2 The State Data Structure

As already explained above, each process takes a variable of type State as
argument. State is a custom struct that holds all information needed (with the
exception of the input variables, which are held in a separate list) to determine
the outputs of the system.

The State struct requires further explanation, because it is the main data
structure used in the model and is an integral part of its overall structure. This
section provides that explanation.

The State struct contains five fields:

• activeRoutes: a list of ActiveRoute structs.

• signals: a list of Signal structs.

• physicalSections: a list of Bool variables.

• symbolicSections: a list of Bool variables.

• timers: a list of Timer structs.

For each signal that is part of the modelled area there is a Signal object, an
ActiveRoute object (for the route behind the signal) and a Timer object. The
physicalSections and symbolicSections lists each contain a Bool variable
for every section that is part of the modelled area.
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In the following, the functions of the different data fields in a State struct
are discussed in more detail.

6.2.1 ActiveRoute

The ActiveRoute structs are used to keep track of which routes are requested,
which routes are used, and on which part of the active routes trains have trav-
elled already. The information about trains on active routes is used to deter-
mine the logical occupation of sections. Ultimately, the information kept in this
struct is used (among other information) to determine whether the first three
conditions, as defined in section 5.4, hold.

An ActiveRoute struct consists of the following fields:

• routeId: Unique identifier of this route.

• requested: A Bool indicating whether or not this route has been re-
quested by the EBP.

• preconditions: A Bool indicating whether or not the first three precon-
ditions have been met for this route.

• active: A Bool, when true indicating that the signal guarding the route
is set to yellow or better, or that a train is riding on the route.

• started: A Bool, when true indicating that a train is riding on the route.

• activePart: List of Bool variables with one entry for each section. Each
variable indicates whether a train still has to pass that section if the route
is active.

• wasOccupied: List of Bool variables with one entry for each section. Each
variable indicates whether a train has been on that section (since the route
became active).

• nextWasOccupied: List of Bool variables with one entry for each section.
Each variable indicates for a section whether the next section in the route
has been occupied (since the route became active).

• sections: An ordered list containing the sectionIds of the sections that
make up this route.

The fields routeId and sections are constants, i.e. if two activeRoute

objects have the same routeId, then they will also have the same sections.
These fields are not really part of the system’s state (they are constants after
all), but storing this information in the ActiveRoute struct simplifies some of
the mapping code.

6.2.2 Signal

A Signal object stores information about a signal in the railway yard. It has
the following fields:

• signalId: Unique identifier of this signal.
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• yellowOrBetter: A Bool indicating whether this signal is set to or should
be set to yellow or better (on true) or to red (on false) according to the
model’s computation.

• realYellowOrBetter: A Bool indicating whether the signal has actually
been set to yellow or better, or to red by the SUT.

• aspect: Holds an AspectId which indicates the exact aspect of this signal.

Signal objects are not only used to model real signals, but are also used for
‘virtual signals’ to represent the speed step variables. To that end a number of
extra AspectIds have been defined that represent the different combinations of
speed step variables.

This is done to simplify the aspect determination code: An aspect always
depends on the next aspect on a route or on speed step variables. Representing
speed step variables as aspects means that the aspect determination code only
has to look at the next signal, regardless of whether there is actually a next
signal or whether it should look at the speed step variables.

6.2.3 physicalSections and symbolicSections

Both physicalSections and symbolicSections are lists of Bool variables. In
both lists, each position corresponds to a section on the railway yard.

Each cycle, the physicalSections list is set to match the section occupa-
tions as reported through the input transitions.

The symbolicSections list contain logical occupations. A section in the
symbolicSections list is occupied if at least one of the following holds:

• The section is occupied according to the physicalSections list.

• The section is part of an active route in which a train still has to pass over
the section.

6.2.4 Timer

The Timer objects keep some state information that is input to the processes
that are tasked with handling the timer transitions. The return value from the
SUT adapter is also written in the Timer object by these processes, and used
by later processes.

A Timer objects has three fields:

• input: A Bool variable that is the input to the SUT adapter (so actually
output of the model).

• timeOut: A Nat (Natural number; integer) variable that holds the timer
timeout. This is actually a constant (that differs from one Timer to the
next), and not truly a state variable.

• output: A Bool variable that holds the reply from the SUT adapter, i.e.
this variable indicates whether input was true for timeOut milliseconds.
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6.3 Data Mappings

The majority of the model’s code base consists of data mappings. These map-
pings are used for a number of things: configuration data, updating data struc-
tures and the implementation of business logic.

Configuration data is defined as static mappings, i.e. mappings for which the
result is defined explicitly for every input. Other mappings are more ‘dynamic’:
The result is expressed in a functional programming style.

The following discusses the different kinds of mapping in more detail and
give some examples. However, as said the majority of the code base consists of
mapping, as a result only the main themes can be covered here. For different
kind of mappings an example is discussed, followed by a discussion of the usage
of that kind of mapping in the model.

Note that mCRL2 has a functional programming style for data mappings that
is implemented using a rewrite system. As a result variables cannot be assigned,
so for example when the text reads ‘update a field in a struct’ this should be
interpreted as ‘create a structure with the fields set to be the same as the fields
from an existing structure, except for the field that is being updated which is
set to a new value’.

6.3.1 Static Mappings

Static mappings are used extensively for configuration purposes, i.e. to customise
the generic model for a specific system such as the Santpoort Noord installation.
A lot of other mappings rely on static mappings to supply certain information
regarding the configuration, such as the railway yard topology. Furthermore,
static mappings are used for some data initialisation at the start of a model’s
execution.

An Example

Section 6.2.2 describes how the model uses virtual signals to codify informa-
tion from the speed step variables. However, some processes and mappings
require a list that only contains the non-virtual Signal objects. The map-
ping isVirtualSignal provides a mapping from SignalId to Bool that can
be used to distinguish Signal objects that represent real signals from Signal

objects that represent virtual signals. Listing 6.6 shows the implementation of
isVirtualSignal.

1 map

2 isVirtualSignal: SignalId -> Bool;

3 eqn

4 isVirtualSignal(SIG_507) = false;

5 isVirtualSignal(SIG_516) = false;

6 isVirtualSignal(SIG_521) = false;

7 isVirtualSignal(SIG_528) = false;

8 isVirtualSignal(SIG_SA) = true;

9 isVirtualSignal(SIG_NA) = true;

Listing 6.6: The isVirtualSignal mapping
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More Static Mappings

All information that changes from one railway yard to the next is encoded with
static mappings. Below is a list of most other important static mappings:

• map initialActiveRoutes: List(ActiveRoute);

Gives a list of ActiveRoute objects with the correct initial values set.

• map initialSignals: List(Signal);

Gives a list of Signal objects with the correct initial value set.

• map initialTimers: List(Timer);

Gives a list of Timer objects with the correct initial values set.

• map routeToSectionList: RouteId -> List(SectionId);

Gives a list containing all SectionIds (in order) for a route.

• map sectionAfterRoute: RouteId -> SectionId;

Gives the SectionId of the section directly after the last section of a route.

• map routeConflictSet: RouteId -> Set(RouteId);

Given a RouteId, gives a set containing the RouteIds of all conflicting
routes.

• map aspectRelation: SignalId # AspectId # SignalId -> AspectId;

Gives the AspectId for a signal (if it is yellow or better), when given the
next signal in the route and its aspect.

• map routeToStartSignal: RouteId -> SignalId;

Gives the SignalId of the signal at the start of a certain route.

• map startSignalToEndSignal: SignalId -> SignalId;

Gives the SignalId of the signal at the end of a certain route, given the
signal at the start of the route.

• map routeToDelayTimerId: RouteId -> TimerId;

Gives the TimerId (which is just a Nat that indicates the Timer’s position
in a list) that belongs to the Timer associated with a certain route..

Mappings for List Indexes

Another usage of mappings out of convenience is in creating constants which
map to Nats that are used as indexes in lists.

For an example of this, see listing 6.7 (Note that lines have been skipped
from the snippet, indicated by ‘. . . ’). The sample code defines two constants
(ei507GZ and ei516GZ), that are then assigned a value (0 and 1). All input
variables are stored in a list; the constants are the indexes at which the variables
507GZ-CI and 516GZ-CI are stored. The earlier shown code listing 6.1 shows
how the constants declared in listing 6.7 are used to refer to positions in the
inputs list in a call to the mapping setBoolListItem.

1 sort InputId = Nat;

2 map

3 ei507GZ : InputId;

4 ei516GZ : InputId;
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5 ...

6 eqn

7 ei507GZ = 0;

8 ei516GZ = 1;

9 ...

Listing 6.7: InputId mappings

Constants that represent indexes in lists are used for numerous kinds of lists.
However, because of the way that mCRL2’s term rewrite system works, such
constants cannot be used as arguments in equations that define other mappings.
As a result not all constants could be defined using mappings; in such cases an
alternative solutions was used that relies on a pre-processor, see section 6.4 for
more on that.

6.3.2 Convenience Mappings

mCRL2 lacks mappings and/or syntactic sugar for a lot of common tasks such
as replacing an entry in a list or updating a field in a structure.

For example updating a field in a struct requires recreating the struct with
the original fields and the changed field. Doing this whenever a field is updated
complicates the model’s code, but the approach also lacks a desirable form of
encapsulation: if a field is added to the struct, then all code updating some part
of that struct must be changed.

To make the model’s code simpler and better maintainable a lot of basic
mappings have been added for updating fields in the main data structures. Now
a change to one of the data structures only leads to changes to the mappings
that work directly on that data structure.

An Example

The previously shown listing 6.4 shows examples of calls to such a mapping on
lines 4 and 17 where it calls stateSetSignals. This mapping, takes two argu-
ments: a State object and one of type List(Signal), and returns a new State

object with the signals field changed. Listing 6.8 shows the implementation
of stateSetSignals.

1 map stateSetSignals: State # List(Signal) -> State;

2 var

3 s: State;

4 update: List(Signal);

5 eqn stateSetSignals(s, update) =

6 state(

7 activeRoutes(s),

8 update,

9 physicalSections(s),

10 symbolicSections(s),

11 timers(s)

12 );

Listing 6.8: The stateSetSignals mapping
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Implemented Mappings

Mappings such as in the above example have been implemented for all fields of
the State struct, but also for (some fields of) other structs. The other types of
structs for which such mappings have been defined are: ActiveRoute, Signal
and Timer.

Furthermore comparable mappings have been defined to update items in lists
of various kinds. For example the mapping map setBoolListItem: List(Bool)

# Nat # Bool -> List(Bool); updates an item in a list of Bool variables.
Similar mapping functions have been defined for lists that contain ActiveRoute,
Signal or Timer variables.

Finally, some mapping functions have been defined that combine the above.
These mappings update a single item in one of the lists of a State object. The
mapping stateSetSignalsItem is an example of this: map stateSetSignalsItem:

State # Nat # Signal -> State. Instead of updating the whole signals

field like the code in listing 6.8, this mapping merely changes one of the items in
the list that is the signals field. Besides for the signals fields, such mappings
have also been implemented for all other fields of the State object that are lists.

6.3.3 Computation Mappings

Most of the computations in the model are performed by mapping functions.
The processes handle input and output, and determine the execution order, but
for most of the actual computations they rely on mappings.

Most of these computation mappings revolve around updating the State

data structure based on inputs, and on values already in that data structure.
Some additional mappings are focused on extracting specific data from either
the State data structure or from the inputs. Each mapping has a specific task,
and does only part of the total needed computation. The model’s processes call
these mappings in a specific order and with specific arguments, which ensures
that the State data structure becomes in a state that is consistent with the
processed input transitions. from the input transitions. The processes can then
extract the data from the State data structure that is needed for the output
transitions.

An Example

Listing 6.9 shows the mapping determineAspects and its supporting mapper
function determineAspectSignal.

The mapping determineAspectSignal actually does the real work: It de-
termines the aspect of a signal. It sets the aspect to red (defined as A_R) if
the signal does not show a yellow or better aspect (lines 35-39). If, on the
other hand, the signal is set to a yellow or better aspect, it determines the as-
pect based on the aspect of the next signal (lines 23-34). For this it relies on
the static aspectRelation mapping that defines the relations between signal’s
aspects (lines 28 - 32).

The determineAspects mapping merely makes sure that
determineAspectSignal determines the aspects in the right order. For
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this, the first argument to the determineAspects mapping has to hold the
SignalIds in the right order. Earlier, listing 6.4 showed the code were the
determineAspects mapping is called, the order of signals is set there by the
static mapping signalAspectDeterminationOrder (line 19 of listing 6.4).

1 map

2 determineAspects: List(SignalId) # List(Signal) -> List(Signal);

3 var

4 signal_id: SignalId;

5 signal_ids: List(SignalId);

6 signals: List(Signal);

7 eqn

8 determineAspects([], signals) = signals;

9 determineAspects(signal_id |> signal_ids, signals) =

10 determineAspects(

11 signal_ids,

12 determineAspectSignal(signal_id, signals)

13 );

14

15 map

16 determineAspectSignal: SignalId # List(Signal) -> List(Signal);

17 var

18 signal_id: SignalId;

19 signals: List(Signal);

20 eqn

21 determineAspectSignal(signal_id, signals) =

22 if(realYellowOrBetter(signals.signal_id)

23 , setSignalListItem(

24 signals,

25 signal_id,

26 signalSetAspect(

27 (signals.signal_id),

28 aspectRelation(

29 startSignalToEndSignal(signal_id),

30 aspect(signals.startSignalToEndSignal(signal_id)),

31 signal_id

32 )

33 )

34 )

35 , setSignalListItem(

36 signals,

37 signal_id,

38 signalSetAspect((signals.signal_id), A_R)

39 )

40 );

Listing 6.9: The determineAspects mapping

Implemented Mappings

In total 14 mappings, such as the above determineAspects, are called directly
from the model’s processes. Often these mappings themselves rely on other
computation mappings (such as determineAspectSignal in the above exam-
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ple), convenience mappings (such as signalSetAspect) and/or static mappings
(such as aspectRelation).

These mappings cannot all be discussed as detailed as determineAspects was
discussed above. Below is a list of declarations of all computation mappings that
are called directly by processes with a short description per mapping. Unfortu-
nately it is not possible to fully explain all details without at least replicating
the whole model here.

• map updateTrainProgressInAllRoutes: List(ActiveRoute) # List(Bool)

-> List(ActiveRoute);

Updates the nextWasOccupied and activePart lists for all ActiveRoutes
in the list that have started.

• map recallRoutes: List(ActiveRoute) -> List(ActiveRoute);

Sets routes’ active field to false, if they are active, but not started and
there is no EBP-request for a ’go’ aspect anymore.

• map startRoutes: List(ActiveRoute) # List(Bool) -> List(ActiveRoute);

Sets routes’ started field to true, if they are active, but not yet started,
and the first section of the route is occupied.

• map stopRoutes: List(ActiveRoute) -> List(ActiveRoute);

Sets routes’ active and started fields to false if the train travelling on
the route has completed the whole route.

• map isNotActivePartOfRoute : SectionId # List(ActiveRoute) ->

Bool;

Returns true if the section is not part of the active part of an active route
(i.e. a train still has to pass over it).

• map updateRoutePreconditions: List(ActiveRoute) # List(Bool)

# List(ActiveRoute) -> List(ActiveRoute);

Given a list of Bools indicating symbolic section occupations, updates the
preconditions field of ActiveRoute objects indicating whether the first
3 conditions hold.

• map updateRouteDelayTimerInputs: List(ActiveRoute) # List(Timer)

-> List(Timer);

Given a list of ActiveRoutes, updates the inputs for the Timers belonging
to the routes.

• map routeTimerFinished: RouteId # List(Timer) -> Bool;

Returns true if the timer for the route with routeId returned the value
true.

• map activateRoutes: List(ActiveRoute) # List(Signal) -> List(ActiveRoute);

Sets routes’ active fields if they were not active, and the signal at the
start of the route does not show a stop aspect.

• map updateSignalListRealYellowOrBetter: List(Signal) # SignalId

# Bool -> List(Signal);

Sets the realYellowOrBetter field of a single Signal in a Signal list.
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• map setSignalAspect: List(Signal) # SignalId # AspectId -> List(Signal);

Sets the AspectId of a specific Signal in a list of Signals.

• map speedStepBoolsToAspects: Bool # Bool # Bool # Bool -> AspectId;

Translates the speed-step Booleans from a neighbouring interlocking sys-
tem to an AspectId.

• map determineAspects: List(SignalId) # List(Signal) -> List(Signal);

Updates the aspects of all signals in the provided list of Signal objects.

• map filterVirtualSignals: List(Signal) -> List(Signal);

Returns the given list of signals with the virtual signals filtered out.

6.4 Pre-Processor Usage and File Structure

The created model does not consists of a single file that can simply be linearised,
but rather it consists of multiple files that have to be pre-processed to create a
single, valid, mCRL2 file that can then be linearised. As will be explained, this
approach offers some advantages.

6.4.1 Pre-Processor

A pre-processor is used to overcome two shortcomings in the normal mCRL2
toolchain:

1. mCRL2 has no way of defining constants that can replace literals univer-
sally.

2. mCRL2 has no mechanism for modularisation.

The next paragraphs explain these problems in a bit more detail. Further-
more they detail how these problems are solved using a regular C pre-processor.

Section 6.3.1 showed how mappings can be used to define constants in mCRL2.
However, the constants defined with these mappings cannot be used universally:
They cannot always replace the literals that they represent. For example, listing
6.6 shows the definition of the isVirtualSignal mapping, which takes one
parameter. In the equations that define that mapping, constants are used for
the parameter to help readability and make the code understandable. These
constants are however not defined using mappings, but using the pre-processor.
The mCRL2 term rewrite system used in the data mappings would otherwise not
be able to properly rewrite rules that use isVirtualSignal with an argument
of type Nat (SignalId is really just a Nat).

The #define directive of the C pre-processor can be used to define constants
universally. With the pre-processor, magic numbers are kept out of the code,
yet the mCRL2 tools only have to deal with the literal values that the constants
represent.
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In total the model consists of almost 2000 lines of mCRL2 code (including
comments and empty lines). The mCRL2 tools expect a single file that contains
a complete model without any options for modularisation.

The pre-processor makes it possible to divide the code over multiple files,
and include those (using the #include directive) from one main file. This makes
it possible to group code in units smaller than a whole model, which has been
used to group similar code together and to split generic code from installation
(Santpoort Noord) specific code.

6.4.2 File Structure

The model has been divided over four files:

• SPTN-model.mcrl2-pre: Main file from which other files are included.
This file contains all processes (as described in section 6.1) and initialisa-
tion code to start the first process.

• SPTN-model-generic-sorts.mcrl2-pre: Defines all generic data struc-
tures (as described in section 6.2) and the convenience mappings defined
to update these (as described in section 6.3.2).

• SPTN-model-generic-mappings.mcrl2-pre: Contains all generic map-
pings that are used by the processes for computations on the data struc-
tures; These are the mappings described in section 6.3.3 .

• SPTN-model-specific-mappings.mcrl2-pre: File that contains all static
mappings (as described in section 6.3.1).

6.5 Adaptability

One of the research goals was to make the model’s design such that it can also
be used to model other PLC-Interlocking installations.

Most of the code in the model is generic and models general PLC-Interlocking
behaviour that is not installation specific. However some code is Sant-
poort Noord specific, and would have to be changed to be part of a model
of another PLC-Interlocking installation. Code that needs to be modified
is restricted to two files: SPTN-model-specific-mappings.mcrl2-pre and
SPTN-model.mcrl2-pre.

The static mappings in SPTN-model-specific-mappings.mcrl2-pre are
purely used for installation specific configuration. Modifying this file should
not be hard; the mappings are merely declarations of the track and signalling
topology, which can be easily deduced from documents such as the OBE-blad,
OS-blad and DO.

Some of the processes in SPTN-model.mcrl2-pre that are concerned with
input and output will also have to be changed when adapting the model to
another installation. This concerns only a subset of the processes defined in the
file, but doing so requires a bit more understanding of the model’s architecture
than the changes to the configuration mappings.
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Of course making changes to a model is unavoidable when using it to model
another installation; every railway yard is different, as are the inputs and outputs
of every PLC-Interlocking installation.
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Chapter 7
The System Under Test

Clearly the goal is to test PLC-Interlocking systems. However, using a PLC-
Interlocking as the SUT in a model based testing approach presents some prob-
lems. Firstly, a PLC-Interlocking consists of expensive hardware; as a result
using a PLC-Interlocking for testing purposes is expensive also. Secondly, in-
terfacing a tool like JTorX with a real PLC system is a complicated matter.

Instead of using a real PLC-Interlocking as SUT, an alternative method
was used. The program code that would normally run on a PLC-Interlocking
has been recompiled into an executable that can run on a regular PC. This
executable can communicate with JTorX using the standard input and output
streams.

7.1 Compilation Process

As explained in chapter 3, a PLC-Interlocking is programmed using the graph-
ical FBD language. Unfortunately no standard compiler is available that can
compile a program in FBD form to a PC executable.

The used development environment (SILworX) cannot export FBD programs
in any (documented) form that lends itself to automatic processing or compi-
lation. However, the way that SILworX creates binaries out of the graphical
FBD notation creates an opportunity to obtain a C++ representation of those
programs.

To the SILworX user, the whole compilation process is an atomic operation
started by the push of a button. However, in the background SILworX executes
a number of separate tasks:

1. All FBDs are translated to C++ code.

2. The generated C++ code is compiled with a regular C++ compiler.

3. The temporary C++ files are deleted.

The files that are generated in the first step can be copied to another location
during the time that the compiler needs to compile them. These files contain
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Figure 7.1: Compilation chain for the SUT

all the code that is specific to the PLC program that is being created. A pre-
compiled library and its header files, contain the standard FBD function blocks
that are defined by the IEC FBD standard [46] (see table 3.1 for the used subset).
From now on this library will be referred to as the ‘IEC standard library’

The compiler translates all C++ files and links everything together to create
a complete PLC binary. The processors used in HIMax PLCs are based on the
Power instruction set1. The GNU C++ compiler is used as a cross compiler to
generate native code for this instruction set.

The two left most columns of figure 7.1 depict the high-level steps that
happen in the background when compiling with SILworX.

To recompile the code of a PLC program for execution on a regular PC, some
additional steps have to be taken. The right hand side of Figure 7.1 gives a high
level overview of those steps.

The normal IEC standard library cannot be used on the x86 architecture,
since it is pre-compiled for the Power architecture. Thus, an alternative library
needs to be linked for the PC version of PLC programs.

Furthermore the generated C++ code only contains the program logic speci-
fied in the FBDs, and expects some tasks to be done by its environment. Specif-

1http://en.wikipedia.org/wiki/Power_Architecture
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ically, interfacing with the environment, calling the functions in the generated
code and allocating the input and output variables are tasks that are not han-
dled by the generated code. Therefore extra code has to be added (mainly
generic, i.e. the same for any PLC-Interlocking) plus some specific changes to
the generated code need to be done. Currently these code modifications are
done manually and take about half an hour, but this process could be auto-
mated. After the manual code modifications, the rest of the compile process is
fully automated through the use of a Makefile.

The next three sections give more detailed information about the structure
of the C++ code, and the steps to get a working program out of the generated
C++ code.

7.2 Program Structure

7.2.1 C++ Code Structure

There are two directories with C++ source code for any FBD program created in
SILworX. One directory contains generic header files that are used with every
FBD program. The other directory contains code that is generated based on
the specific FBDs of that program.

Note that there is no official documentation for the C++ code that SILworX
creates. As a result, most information in this section about the structure of that
code is based on observations.

Generic Code

The generic code is subdivided in ‘base’ headers and platform specific headers
for different ‘targets’ (HIMA produces multiple PLC types).

The target specific code only consists of two or three header files that con-
tain define statements (partly using non-standard C++) that have to do with the
memory and register layout of specific targets. These files are not very interest-
ing, because there are no special memory layout requirements when compiling
for a normal PC.

More interesting are the nine header files in the base directory. These header
files specify the data types that are needed to interface with the generated code
as well as functions that the generated code depends on. There are four header
files that are of special interest because their content is used by PLC-Interlocking
programs; table 7.1 gives an overview of their contents. The other five header
files are not used at all or only sparsely, mostly because they specify function
blocks that PLC-Interlocking programs do not use.

Both iec std types.h and iec std lib.h specify functions that they don’t
implement. These functions have to be implemented in the IEC standard library.

Generated Code

The generated code is also subdivided into two directories: the ‘common’ and
the ‘source’ directory.
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Table 7.1: Main header files
Header file Contents
iec std base.h Contains macros that control which version of a variable is read out.

This allows overwriting variable values during regular tests, but this
functionality is not needed in the SUT.

iec std lib.h Declares classes that implement the functionality of the standard func-
tion blocks.
Furthermore declares a struct that holds general system information,
such as the time and the number of scan cycles executed.

iec std types.h Declares and (partly) implements wrapper classes for all data types.
These classes are used for all variables, function arguments and return
values in the generated code and other headers.

iec types.h Contains type definitions for the basic types that are wrapped by the
classes of iec std types.h.

The common directory contains the code for every (generic) function that
is defined in the FBD program. For each (generic) function there is a class
that has two functions, one for initialisation (InitVarTemp) and one to execute
the logic of that function (CallFunctionContent). The input, output and
internal variables of each function are members of the matching class. The
implementation of each class is spread over three files: a header and a source
file for each function.

The main function of the FBD program (i.e. the function that (indirectly)
calls all other functions) is defined in three files in the source directory. This
function is encoded in C++ as a class in the same way as the other functions
are encoded in classes in the common directory. The CallFunctionContent

function of this main class executes the whole program logic for a single cycle
of a PLC; that is, the CallFunctionContent function is the second step in the
execution of a PLC as described in section 3.1

The source directory also contains a file, SRCgVProgram.h, that instantiates
the main function block and initialises all member variables of all classes that the
main function is composed of. Furthermore there is a file, Himamain KEVars.h,
that declares all global variables (including all input and output variables).

All variable names, class names, function names and file names are directly
derived from the names of the corresponding objects in the FBD notation of
the program. In all names, special characters are replaced by certain sequences
of two characters. Table 7.2 shows how this conversion is done.

Table 7.2: Conversion of special characters in the generated code
Special Character Replacement

(space) _w

- (dash) _k

_ (underscore) _u

( (left parenthesis) _f

) (right parenthesis) _g
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Depending on the type of object, and its function there are certain prefixes
or suffixes added. For example, a class modelling a generic function block will
get the prefix USRGF, and the file declaring this class will get the additional
string SRC prefixed to its name.

7.2.2 Code Structure for the SUT Executable

There is no official documentation on how to compile the obtained C++ code into
a regular x86 binary. The obtained code lacks certain features and functions
needed for a complete program. Therefore a method has been devised to create
a fully working program from the available C++ sources.

The main part of a PLC program, the program logic, is present in the gen-
erated code. Furthermore there is code to initialise all the logic classes, and all
global variables are declared (but not defined).

What is still missing to form a complete program is the code for the other
parts of a PLC cycle, i.e. the input and output code that allows setting and
reading variables. Furthermore the code that defines all global variables is also
missing. To remedy this, a directory ‘program’ with multiple source files is
created. The main part of the source code in these files is generic and can be
used for any PLC-Interlocking program. Two files have to be adapted for every
PLC-Interlocking program; one defines all global variables, the other maps the
names of the global variables (strings) to pointers to the actual variables. A
specific interface for JTorX also has to be created, this is program and model
specific, more on this in section 7.4.2.

Another important piece that is missing is an x86 implementation of the
IEC standard library. More on this can be found in the section 7.3.

Table 7.3: Main items in the SUT’s source tree
File or directory Source Description
gen/ Available The generated source code.

target_base/ Available The header files that the generated code uses.

own_iec_lib/ Created Implementation of the IEC standard library.
program/ Created

|->main.cpp Created Main file that initialises everything.

|->plc_interface.cpp Created An API to the generated program logic.

|->cli_shell.cpp Created A command line interface to plc interface.

|->variable_definitions.h Custom Defines all global variables.
|->mapping.cpp Custom Mapping from variable names to pointers.

\->jtorx_shell.cpp Custom An interface for a certain JTorX model.

Table 7.3 gives an overview of the most important files and directories in the
resulting source tree. The second column indicates whether the file (or direc-
tory) was part of the C++ files that SILworX created (‘Available’), whether it
was a file that was created to work with any PLC-Interlocking instance (‘Cre-
ated’) or whether it was a file that was created and adapted for a specific
PLC-Interlocking instance (‘Custom’).
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7.3 Reimplementing the IEC Standard Library

Table 3.1 shows the standard function blocks that a PLC-Interlocking program
might use. Most of these function blocks are directly translated to C++ code by
SILworX (e.g. an ‘AND’-block becomes &&). The functions that keep an internal
state between invocations (the second group in the table) form the exception to
this: They are not translated to C++ code, but are merely replaced by function
calls to instantiated class objects. The generated code does not implement these
classes, but assumes them to be provided by the IEC standard library.

Unfortunately there was no usable x86 version of the IEC standard library
available. Therefore a new implementation was created that implemented classes
for the limited subset of used functions. In total five function blocks needed to
be implemented in the library: TON, TOF, F TRIG, R TRIG and SR. It turned
out that the implementation of these classes also had to use the binary + and -

operators on one of the data types defined in iec std types.h. These operators
were also implemented.

Of course it is of critical importance that the created SUT executable has
the same behaviour as the original PLC-Interlocking. Since the IEC standard
library is part of that executable, its behaviour should be 100% compatible with
that of the version linked with the original PLC executable.

Ensuring compatibility starts by having a correct and complete specification.
The description of the function blocks in the SILworX help files [42] was used
as a specification. Although these descriptions are not formal, they are aimed
at PLC programmers for whom understanding the semantics of the blocks is
critically important. As a result the specifications are clear and can be trusted
to be correct.

Additionally, the help files also contain example graphs. These graphs show,
using example scenarios, how inputs to function blocks influence the outputs of
those blocks over time. Figure 7.2 shows such a graph for a TOF function block
(‘IN’ is input, ‘Q’ is output and ‘PT’ is time delay). Note that the ‘ET’ output
in the graph is not used by the PLC-Interlocking code; the library code however
does calculate that output.

Systematic unit testing was employed to make sure that the library imple-
mented the specifications correctly. The scenario’s in the graphs from the help
files were recreated by the unit tests. For example the unit test for the TOF
function block, recreates the graph in figure 7.2 with 68 data points on the time
axis. That is, 68 times the inputs are given, is the time virtually increased and
are the output values checked.

Note that the real use scenarios are a lot simpler than the scenarios of the
unit tests. For example, the TOF scenario also tests whether the function block
behaves correctly when the time delay is changed; in PLC-Interlocking code this
delay is always constant.

The unit tests were not used until after some ad-hoc manual testing was
done. The unit tests then found one fault, which was easily fixed.

Considering the minimal length of the code (only 75 lines), simple usage
scenarios and extensive testing, it is unlikely that there are faults in the library
code that affect the behaviour of the SUT executable.
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Figure 7.2: Graph showing an example of correct behaviour for a TOF function
block, source: [42]

7.4 Interfaces

The main part that is missing from the code that SILworX generates, is the code
that handles the first and third phase of every PLC cycle: input and output.

A normal PLC acts autonomously, i.e. it initiates every phase of its cycle on
its own. The created program however acts as a slave: it only acts on commands
that it receives. Through the external interface the inputs can be set, time can
be increased and the program logic can be executed; afterwards variables can
be read out again.

7.4.1 Interface to PLC Code

An abstraction layer was created that offers an API to the program logic for
the external interfacing code: the plc-interface. This abstraction layer is simple
and offers four main functions:

1. Set a global variable.

2. Read a global variable.

3. Increase the virtual time.

4. Execute the program logic.

All global variables (including all input and output variables) from the FBD
logic are just that in the C++ code: global variables. A map data structure
maps the names of all global variables (as they occur in the FBD logic) to a
pointer to the actual variable.
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The virtual time is a global variable that holds a number denoting the relative
time in milliseconds since an epoch. This variable is part of the ‘system variables
struct’ which also holds some other, unused, fields. The functions in the IEC
standard library that are time aware all use the time field from the system
variables struct. As a result, the time can be easily manipulated by changing
the value of this time field.

Executing the program logic involves nothing more than executing the
CallFunctionContent function of the class that models the main function of
the FBD program.

Library

PLC-Interface

Program Logic

Variable 
Mapping

External 
Interfaces

SILworX Generated Code
Global 

Variables

System 
Variables 

Struct

Generic Created Code

Custom Created Code

Generic Created Code

Generic/Custom Created Code

Legend
Red Reading or writing a variable (arrow indicates the direction of the data flow).
Blue Function call, with information being returned.
Black Execute the program logic (call CallFunctionContent).

Figure 7.3: Runtime structure and internal interfaces of the SUT executable

Figure 7.3 shows how the plc-interface communicates with the program
logic through variables, and how it executes the program logic by calling the
CallFunctionContent function. Furthermore it shows how the program logic
depends on function calls to the library, that gets information from the global
system variables struct. It is important to notice that the most important part
of the code, the program logic, is totally unchanged and compiled from exactly
the same source code that is used for the binary of a real PLC-Interlocking.

7.4.2 External Interfaces

The SUT executable can switch between two external interfaces that both use
the standard input and output streams: A generic command line interface and
a specialised interface for communication with JTorX.
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Command Line Interface

The command line interface is a shell around the plc-interface. It allows the user
to list, read and manipulate all global variables, as well as progress the time
and execute the program logic. Furthermore it is also possible to check whether
a variable has a certain value, or print an error otherwise. This interface is
practical for debugging and (scripted) testing purposes.

The SUT executable has an option to load initialisation scripts. This is
useful because a lot of variables are normally set to certain values either by the
PLC itself or its environment. To correctly simulate the PLC’s behaviour, these
variable need to be set to their regular values. The initialisation scripts are
interpreted by the command line interface. To enable modularity the interface
also has a command to load additional scripts.

JTorX Interface

The JTorX interface translates input transitions from JTorX to function calls
to the plc-interface, and creates output transitions from the SUT’s outputs.

The exact input and output transitions differ between models. As a re-
sult, the JTorX interface has to be tailored to the specific model and PLC-
Interlocking instance that are being tested. The JTorX interface that was cre-
ated is aimed specifically at the model described in the chapters 5 and 6 (where
this interface is also referenced as ‘SUT adapter’). It implements all transitions
of that model:

• The cycle transition executes the program logic and increases time by
some constant factor.

• The timing related transitions (timerInput, timerOutput and cycle_pre,
see section 5.3.3) are implemented by using TON objects from the IEC
standard library.

• The parameter values of the output!Bool transitions are automatically
determined by generic code, based on a custom list with the names of the
output variables.

• The argument for each aspectOutput!Nat transition is computed by a
function that takes all output Booleans related to a single signal as pa-
rameters. The calls to this function are customly coded for the model.

• Each input transitions sets a single input variable. A map data struc-
ture maps the transition labels to variable names. Given this map, the
interface’s generic code then automatically processes all input transitions.

More complicated models or models for different PLC-Interlockings will re-
quire a renewed (limited) effort to create an interface on the SUT side of the
test setup.

7.5 Problems and Alternatives

Testing the PLC logic on a PC instead of a PLC using the method described in
this chapter has one major drawback: There is no absolute guarantee that the
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SUT executable on a PC behaves exactly the same as the real PLC-Interlocking
system.

Any fault, either in the IEC standard library or the modifications of the C++

code, might introduce very subtle behaviour differences between the created PC
version and the original PLC version of the software. Even if the code for the
PC version is perfect, the use of a different compiler might also create differences
in behaviour.

SILworX can be used to create software for SIL-4 systems. However in
order to produce such software, strict procedures must be followed. Copying
the source code of the program during the compilation is obviously not part of
the prescribed procedure. As a result there are no official guarantees about the
resulting products. So even the obtained C++ code cannot be guaranteed to be
correct.

On the other hand, the chance that a fault in the process of creating the
executable SUT hides a fault in the real implementation seems small. It seems
more likely that introduced faults would give false positives during testing, than
that an introduced fault accidently fixes behaviour that was originally wrong.
However this is based on intuition; the exact chances for either scenario cannot
be determined.

Ideally the manufacturer would offer tooling to make it possible to create
stand-alone SUT executables with a similar text based interface. The manufac-
turer would be able to better guarantee the correctness of the created executa-
bles than is possible with the current approach.

As it stands, the used method was the only viable method for the conducted
research. It has great advantages over using a real PLC-Interlocking:

• Access to the PLC hardware is not required. Otherwise, this would have
severely limited the testing possibilities.

• Tests are not limited to real time, but can run as fast as the test system
allows.

• Multiple tests can run in parallel on one or more test systems.

• Inputs and outputs can directly be manipulated and observed. Testing
directly on PLC hardware requires the use of an intermediate system,
which complicates the setup and possibly influences timing aspects.
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Chapter 8
Test Case Generation

When given a specification model with non-deterministic inputs, JTorX will
randomly choose input transitions. Unfortunately this strategy of randomly
picking input transitions seldom leads to useful test cases when used with the
PLC-Interlocking model described in chapters 5 and 6.

As already mentioned in chapter 4, a test purpose model can be used to guide
the model exploration and thus test case generation. The test setup relies on
test purpose models implemented in Java to steer test case generation. Creating
such models in Java is nontrivial; therefore a framework was created that does
most of the heavy lifting, such that the test purpose models only have to deal
with one concern.

Section 8.1 explains in detail why randomly generated test cases are not very
useful for testing PLC-Interlocking systems, and why using a test purpose model
can improve test case generation. Section 8.2 briefly discusses how test purpose
models influence test case generation in the test setup. Furthermore it discusses
the responsibilities of the Java test purpose models within the created frame-
work. The actual framework is not discussed in this chapter, but in chapter 9.
Section 8.3 discusses the different test purpose models, the kind of test cases
they generate, and how they are implemented.

Note: Parts of this chapter and the next assume the reader to have basic
knowledge about the Java language.

8.1 Random Test Generation Problems

The interlocking model has in total 21 inputs (4 for signals, 12 for track sections
and 5 for speed step variables, see table 5.1 and figure 5.1).

8.1.1 Generating Useful Scenarios

The majority of test cases that are randomly generated using the interlocking
model are incredibly unlikely to happen and are not very useful.
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Because of the non-determinism in the input phase every input variable has a
1
3 chance of being toggled from true to false or from false to true on every cycle.

After all there is one transition (cycle pre) that fixes all input variables for
the current cycle, and for every variable there is one transition to change the
variable’s value and one transition to set the variable to the value that it already
has (this is actually a source of inefficiency, see section 8.1.3). From this it can
be easily shown that the chance of a variable changing is 1

3 .

Note that the above assumes that JTorX makes an uniformly distributed
random choice out of the possible transitions. The author has confirmed that
it behaves this way (in this case) [49].

The 1
3 chance of an input value flipping will generally cause the generated

scenarios to be unrealistic. This is best illustrated by an example: On the
Santpoort Noord railway yard (see figure 3.4), the route from signal 507 to
signal 521 has a signal delay of 20 seconds. This means that signal 507 is not
set to yellow or better until the preconditions for that signal have been met
for 20 seconds (in the meantime the beams of level crossing 5.2 will be closed).
Assuming a cycle time of one second (actual test value, see chapter 10) this
means that there are 21 cycles during which the preconditions have to be met
for signal 507 to be set to yellow or better.

One of the preconditions for signal 507 being set to yellow or better is that
the input variable 507GZ-CI should be true. The chance of 507GZ-CI being true
at some point during the model execution is almost 50 %. (Already after four
cycles the chance for either false or true is more than 49%, regardless of the
initial value (which is false).) Then from that point on every cycle there is a 1

3
chance of the variable being set to false. So the chance of the 507GZ-CI part of
the precondition being true in a random cycle (given that it is not one of the

first 25 cycles) is: 1
2 ×

(
2
3

)20 ≈ 0.00015.

However, the variable 507GZ-CI is only a part of the preconditions for the
signal. The seven input variables for each of the track sections behind the signal
are part of the preconditions in a similar manner. So the chance of signal 507
being yellow or better during a random cycle is no bigger than (0.00015)

8 ≈
2.6 × 10−31. There are even some more complicated sub conditions, for which
the chances of them being met are hard to quantify, that make the chance of the
precondition being met even smaller (e.g. conditions related to possible incorrect
train detection, see section 5.4.1).

The result is simply that it is extremely unlikely that signal 507 will ever
show a yellow or better aspect during a test run where the input variables are
randomly determined once per second.

Real world usage scenarios of interlocking systems follow certain patterns:
Generally routes are requested through the EBP-interface until a train has en-
tered the route, and trains move in one direction and abide by the shown sig-
nalling aspects. Randomly generated test scenarios show completely different
behaviour: trains will randomly appear and disappear at track sections, and
route requests will be made and cancelled again at random. As a result in
generated test scenarios the interlocking system will not do much, because the
preconditions for setting a signal to yellow or better are unlikely to be met.
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Of course there are exceptions to the patterns of normal usage. Testing such
edge cases is one of the goals of model based testing, however merely testing
scenarios which are incredibly unlikely to happen is not useful.

A test purpose model can be used to steer the test case generation to include
realistic scenarios. However, care must be taken when using a test purpose
model, because using it might also exclude test cases that would have resulted
in the observation of failures.

8.1.2 Generating Consistent Scenarios

The SUT makes some (allowed) assumptions about relations between input
variables. It assumes that the first speed step variable at a railway border
is true if and only if the input variable indicating occupation of the section
closest to that border is true also. For example on the Santpoort Noord yard,
507-XSS1R-DII is true if and only if 516E-TR-DII is true. Furthermore the
SUT assumes that the speed step variables themselves are consistent, i.e. speed
step 3 can only be true if speed step 2 is true which can only be true if speed
step 1 is true. These are valid assumptions, because they are guaranteed by
the neighbouring interlocking systems. The SUT does not need to double check
these assumptions because the neighbouring systems are also fail safe systems.
The developed model makes similar assumptions as the SUT.

Test scenarios where the above mentioned assumptions don’t hold give un-
planned behaviour and can lead to the observation of failures which are not
really failures since they fall outside of the specification. Thus the generated
test cases must abide by the assumptions; a test purpose model can be used to
make sure that they do.

8.1.3 Eliminating Redundant Transitions

There are 42 input transitions enabled in the input phase: For each variable
there is one transition to set the variable to true and one transition to set the
variable to false. Additional there is the cycle pre transition to end the input
phase. During the input phase, JTorX might take any of the 42 input transitions
one or multiple times in any order.

This is a cause of inefficiency, because transitions might cancel out earlier
transitions or be taken multiple times without effect. For example the transition
sequence i 7BTR!true i 7BTR!true i 7BTR!false i 7BTR!true pre cycle will
have the exact same effect as the transition sequence i 7BTR!true pre cycle,
namely: setting the input variable 7BTR to true and ending the input phase. If
7BTR is already true, then the whole sequence might even be replaced by just
pre cycle.

During initial testing it became clear that even taking simple input transi-
tions can take a significant amount of time, thus ideally in the input phase only
transitions should be taken that ultimately have an effect on the state in that
cycle. A test purpose can force JTorX to only take transitions that change an
input variable and only take one transition per input variable per cycle, and
thus increase efficiency.
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8.2 Test Purpose Models

All of the problems mentioned in section 8.1 could (at least partially) be solved
by changing the model of the SUT. However that would severely complicate
that model with code that serves a purpose other than the model’s main pur-
pose (modelling the SUT’s behaviour). A test purpose model offers a much
cleaner solution to the mentioned problems, and makes it possible to switch
test generation strategy without having to change the specification model.

Given a test purpose model, JTorX puts it in parallel with the model of
the SUT. That is, JTorX only considers a transition when it is both in the
SUT’s model and in the test purpose model. For example, if in some state the
system’s model has two transitions (e.g. i 7BTR!true and i 7BTR!false), but
the test purpose model has only one of those transitions in the parallel state
(e.g. i 7BTR!true) then in the combined model only that transition exists in
the combined state.

All output transitions of the specification model (output, aspectOutput and
timerOutput) are determined by the SUT. For these transitions, a test purpose
model should contain all the possible transitions and let the SUT decide which
one to take. The input transitions of the SUT’s model are the transitions that
should be limited by a test purpose model. Without a test purpose model these
transitions will be randomly picked, which leads to the problems described in
section 8.1.

So the input transitions of the SUT’s model have to be the output transi-
tions of the test purpose model. That is, the test purpose model should model
the environment of a PLC-Interlocking and the inputs that that environment
provides to the PLC-Interlocking. The output transitions of the SUT and the
SUT’s model can be considered by the test purpose model as inputs.

In the remainder of this chapter as well as in the next chapter, the term
‘inputs’ refers to the inputs of the test purpose model (i.e. the outputs of the
SUT’s model). Similarly ‘outputs’ refers to the test purpose model’s outputs
which are the inputs to the SUT’s model.

8.2.1 Java as Modelling Language

The used test purpose models have not been implemented in mCRL2, like the
SUT’s model, but rather in Java. After some initial experiments with mCRL2
test purpose models, Java seemed a better choice. The main reasons for this
is that Java is (arguably) a more powerful language than mCRL2, which has
many limitations.

mCRL2 is a process based language with a data language that supports func-
tions (mappings) that are written in a functional programming style. However,
mCRL2’s data language lacks the concept of higher order functions which sev-
erly hinders the language in comparison to regular functional languages (e.g. any
loop construct needs to be implemented recursively). Furthermore, mCRL2 of-
ten requires a lot of code for simple tasks, such as changing a field in a data
structure, or changing a value in a list.
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Part of the limitations of mCRL2 can be explained by the LPS representation
that is used by much of the mCRL2 toolset and to which mCRL2 files are
compiled. This representation has nice properties which make it very useful for
model checking, but model checking is not a concern for test purpose models.
Some of mCRL2’s other limitations are caused by a lack of ‘syntactic sugar’ in
the mCRL2 language itself (e.g. there is no standard construct to change the
n-th item in a list).

The linearisation process of mCRL2 models can also lead to performance
problems, both at compile time and at run time, which can be hard to predict
beforehand. Multiple development versions of the SUT’s model have had such
problems, that made it either impossible to compile them or impractical to use
them. The performance impact of a statement or construction is much easier
to predict with an imperative language than with mCRL2.

The mCRL2 language is designed for modelling distributed systems [47].
However a test purpose model is clearly not a distributed system, so some
of mCRL2’s strong points (e.g. easily modelling communicating processes) are
useless for the purpose of creating test purpose models.

Java on the other hand is a powerful general purpose language. Often, its
syntax allows a much compacter notation than needed in mCRL2 to achieve the
same result.

Java also has good mechanisms for modularisation and abstraction, which
make it possible to isolate the essence of a test purpose model from supporting
code. As a result the code of the implemented test purpose models (discussed in
section 8.3) is merely concerned with the input values that are provided to the
SUT. How that happens (through transitions) and what happens around that
(timer transitions etc.) is not a concern solved in the test purpose models, but
in a supporting framework. Such a clear separation of concerns is not possible
in mCRL2.

Furthermore, some things that are not possible at all in mCRL2 are trivial in
Java. For example, creating certain random behaviour in mCRL2 is very hard:
Non-determinism with two possible scenarios always defaults to a 50% chance
for either scenario when testing with JTorX. With Java on the other hand, it
is trivial to create random numbers in any range (this was actually the most
important reason not to use mCRL2).

Finally, the availability of development tools (IDEs, debuggers, compilers)
for Java is excellent.

Java also has a severe drawback: Its programming paradigm does not match
with the LTS based models that JTorX expects (whereas mCRL2’s paradigm
based on processes with transitions is a perfect match). However, as already
mentioned in chapter 4 and depicted in figure 4.3: JTorX does not really need a
complete LTS as a model. With on-the-fly model exploration an external pro-
gram (called a torx-explorer) describes, on request from JTorX, specific parts of
the LTS structure that underlies the model. Such a torx-explorer communicates
with JTorX over the standard input and output streams using the torx-explorer
protocol. This same protocol is also used by the Java test purpose models for
their communication with JTorX.
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8.2.2 Framework for Java Test Purpose Models

Creating test purpose models that communicate with JTorX using the torx-
explorer protocol is not trivial. To simplify the test purpose models, a small
framework has been built that abstracts away all communication and model ex-
ploration tasks. Test purpose models are implemented by extending an abstract
class in this framework. Coupling the thus created test purpose class with the
framework’s classes gives a complete Java program that implements the test
purpose model logic and can communicate directly with JTorX.

The implementation of the actual framework is described in chapter 9. The
test purpose models themselves are described in section 8.3. The remainder of
this section describes the interface that the framework provides to test purpose
models.

A test purpose model is created by extending the abstract class Simulator

(named so because it simulates the PLC-Interlocking’s environment). The
Simulator class has one abstract function that must be implemented: update.

A test purpose model can manipulate the inputs to the PLC-Interlocking
model (and the SUT) by changing the values returned by its update function.
The update function returns an array of boolean variables and takes two pa-
rameters:

• boolean[] inputs: The inputs to the test purpose model.

• boolean[] outputs: The outputs of the test purpose model in the pre-
vious scan cycle.

The boolean variables in the returned array each correspond with an input
of the interlocking model/SUT. For example for the Santpoort Noord model,
the update function should return an array containing 21 boolean variables,
matching the 21 input variables of the PLC-Interlocking model. The matching
from array indexes to input variables is fixed and governed by the order of
the transitions generated by the framework (e.g. the item with index 0 in the
returned array corresponds to the 516E-TR-DII variable in the Santpoort Noord
SUT). Constants can be used in the test purpose model’s code to identify specific
variables. For example the constant O_516ETR has value 0 and is used as index
for the variable 516E-TR-DII.

Likewise the items in the inputs array correspond to outputs of the PLC-
Interlocking model. For the Santpoort Noord model, the inputs array will
contain four items, each of which will contain the value of one of the EBP
yellow or better outputs (e.g. index 0 corresponds to variable 507H-CO). The
outputs parameter contains the values returned by the update function in the
previous scan cycle; passing this as parameter prevents this state information
from having to be stored twice.

Implementing the update function is the main responsibility of a test purpose
model class. However, it must also make sure to implement the clone function
according to the regular Java conventions, because the framework will clone the
Simulator subclasses for every state that it encounters.

With those two functions implemented, the created framework can take care
of all communication with JTorX and anything needed to support that. The
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framework will call update for every scan cycle and generate output transitions
based on the returned values.

The test purpose model has one responsibility with regard to the values
returned by update: The values must together form a consistent scenario (as
discussed in section 8.1.2). That is, the output variables that correspond to the
speed step variables must be consistent with the values of the variables that
indicate occupation of the border sections. This is very straight forward to
implement as the code samples in the next section will show (e.g. lines 10 to 14
in listing 8.1 show code that takes care of this).

8.3 Test Scenarios

Four different test purpose models have been implemented. One generates test
scenarios randomly with some constraints, two create fixed scenarios and one
generates scenarios with ‘realistically’ simulated train movements.

8.3.1 Constrained Random Scenario Generator

The Constrained Random Scenario Generator (from here on abbreviated to
CRSG) is a simple test purpose model that generates test scenarios. These
scenarios are mostly generated randomly, by setting the values of all section
occupations and EBP requests to random values on each cycle.

However, there is a difference between using this test purpose model and
having JTorX do a purely random run without a test purpose model: In the
scenarios generated by this test purpose model, the speed step variables have
values that are consistent with the values of other variables (see section 8.1.2).
This is done by setting the speed step variables to the same value as the variables
that indicate occupation of the related border sections. As a result all related
speed step variables have the same value in the generated test cases. So (valid)
scenarios in which the speed step variables 2 or 3 have value different than speed
step variable 1 are not generated; this was a small oversight.

Using this test purpose model instead of using no test purpose model also
leads to some changes in how transitions are generated that do not affect the
set of possibly generated test scenarios (When considering the combined effect
of all transitions in a scan cycle instead of looking at individual transitions).

Firstly, with this test purpose model, the Boolean input variables of the
SUT are set with an independent 50% chance for either value (disregarding
predictability in the randomness source). Without a test purpose model, the
chances for the variable values are dependent on the values in the previous cycle
(see section 8.1.1).

A more noteable difference in the generated transitions is caused by the
used framework for test purpose models: The framework only generates non-
redundant transitions. This is further discussed in the next chapter, particularly
in section 9.2.
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Implementation

This scenario is implemented in the SptnSimulatorRandom class. Listing 8.1
shows the update function of that class.

Lines 6 to 8 show the elements of the retOut array being set to random
values. This array is returned at the end of the function, but not before the
speed step variables are set to consistent values (lines 10 to 14) using constants
for the indexes of the variables in the array.

1 public boolean[] update(boolean[] inputs, boolean[] outputs)

2 {

3 /* retOut will contain the new output values */

4 boolean[] retOut = new boolean[outputs.length];

5 /* Set all output variables to a random value. */

6 for (int i = 0; i < retOut.length; i++){

7 retOut[i] = random.nextBoolean();

8 }

9 /* Set the speed step variables to values consistent with the variables

516E-TR and 530B-TR. */

10 retOut[O_507XSS1] = retOut[O_516ETR];

11 retOut[O_507XSS2] = retOut[O_516ETR];

12 retOut[O_507XSS3] = retOut[O_516ETR];

13 retOut[O_528XSS1] = retOut[O_530BTR];

14 retOut[O_528XSS2] = retOut[O_530BTR];

15 return retOut;

16 }

Listing 8.1: The update function of the Constrained Random Scenario
Generator test purpose model

8.3.2 Fixed Scenarios

Two fixed scenarios have been defined that are known to trigger faults in the
model of the PLC-Interlocking. These faults were discovered during some initial
manual testing with the model. Both of the scenarios are only two cycles long.

The first scenario reveals a bug in the model with regard to the preconditions
for signal 516. The model assumes that section 528D needs to be empty for signal
516 to be set to yellow or better. However that is actually not the case, because
of some special circumstances surrounding that section (which are unrelated to
the interlocking system). When determining whether signal 516 can be set to
yellow or better, the SUT regards section 528D to lie before signal 516. This is
a situation specific exception to the normal interlocking rules, and as such the
model’s general design is correct. However, the model has not been adapted for
this particular situation and as such is wrong.

The scenario sets all sections to unoccupied and all EBP request to false in
the first cycle. In the second cycle section 528D is set to occupied and the EBP
request for yellow or better of signal 516 is set to true. This will make the SUT
set signal 516 to yellow or better, while the model finds that the signal should
be red.
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The second scenario also involves signal 516, but reveals another fault in
the model. The first scenario actually also triggers this fault, but the second
scenario makes it clear that it is an unrelated fault. The scenario is basically the
same as the previous scenario, with the exception that section 528D is not set
to occupied. The SUT will set signal 516 to yellow or better when this scenario
is executed, but the model still expects the signal to stay red in that situation.

This scenario actually shows a fundamental flaw in the model. The model
assumes that the pre-conditions for signal 516 must hold for 25 seconds before
the signal can be set to yellow or better (such that the beams of level crossing
5.7 have time to close). However, this turned out to be a misinterpretation of
the specifications: If all sections before signal 516 are also empty, then signal
516 can be set to yellow or better immediately and there is no need to wait for
25 seconds.

Implementation

The above described scenarios are implemented in the classes
SptnSimulatorScenario1 and SptnSimulatorScenario2. Both imple-
mentations are similar and very straightforward: There is a cycle counter
variable which indicates at which point in the scenario the test purpose model
is, and based on its value the SUT’s input variables are set.

Listing 8.2 shows the update function of the SptnSimulatorScenario1 class.
Lines 4 to 21 show how all variables are set in the first cycle of the scenario.
Lines 23 to 25 show how in the second cycle the EBP request for signal 516 is
set to true (retOut[O_516GZ] = true) and section 528D is set to be occupied
(retOut[O_528DTR] = false;). All other SUT input variables are assigned the
same values in the second cycle as in the first cycle; these assignments are thus
not shown in the code listing.

The implementation of SptnSimulatorScenario2 is nearly identical to the
code shown in listing 8.2. The only difference is in line 24 of the code listing:
In the SptnSimulatorScenario2 class this line sets the variable to true.

1 public boolean[] update(boolean[] inputs, boolean[] outputs)

2 {

3 boolean[] retOut = new boolean[outputs.length];

4 if (stage == 0){

5 retOut[O_507GZ] = false;

6 retOut[O_516GZ] = false;

7 retOut[O_521GZ] = false;

8 retOut[O_528GZ] = false;

9 retOut[O_516ETR] = true;

10 retOut[O_516DTR] = true;

11 retOut[O_516CTR] = true;

12 retOut[O_516BTR] = true;

13 retOut[O_7BTR] = true;

14 retOut[O_516ATR] = true;

15 retOut[O_528DTR] = true;

16 retOut[O_528CTR] = true;

17 retOut[O_19TR] = true;

18 retOut[O_528BTR] = true;

19 retOut[O_528ATR] = true;
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20 retOut[O_530BTR] = true;

21 stage = 1;

22 } else {

23 retOut[O_516GZ] = true;

24 retOut[O_528DTR] = false;

25 ...

26 }

27 /* Set the speed step variables to consistent values. */

28 ...

29 return retOut;

30 }

Listing 8.2: The update function of the SptnSimulatorScenario1 test purpose
model

8.3.3 Simulated Train Movements

The Simulated Train Movements (from here on abbreviated to STM) test pur-
pose model tries to generate ‘good’ scenarios, that is: scenarios which are not
completely unlikely, but also not predictable, and might lead to the observation
of failures. The algorithm used to generate these scenarios implements heuris-
tics that are based on intuition and some experimentation, not on any formal
research into what constitutes good scenarios.

The basic idea behind the test purpose model is that it simulates the inter-
locking’s environment. Two kinds of entities are simulated in this environment:
The logistics system that makes EBP-requests and trains that cause section oc-
cupations. The simulation of these entities is simple and does not even follow the
usual protocol (e.g. trains completely ignore the signals). The simulation uses
random numbers for decision making, such that every sufficiently long generated
scenario is unique.

The simulation of the logistics system is very simple: Every cycle, each EBP
request is set individually. In principle an EBP request remains the same as the
previous cycle, unless a random variable has a certain value (a chance of 1

150 ).

Two trains are simulated to ride on the tracks of the railway yard. The
simulated trains randomly enter the railway yard on a side and ride to the other
side with a variable speed, where they exit the yard again.

Each train is modelled by an object with three variables: a position, travel
direction and speed. Each cycle a new position is calculated based on the
previous position, direction of travel and speed.

The above results in trains driving randomly over the railway track. To
make the generated scenarios more interesting, an extra element of randomness
is added: Once in a while the variables of a train are set randomly. This should
lead to the generation of scenarios that are unlikely but possible, for example
scenarios with trains that reverse, or scenarios with trains that are not detected
until they appear in a certain sector.
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The simulation of the logistics system is markedly different from real world
scenarios were EBP requests will almost never conflict and EBP requests are
mostly recalled as soon as a train has passed a signal.

Similarly, trains are normally more predictable: They abide by the signalling,
have certain speeds at certain points, and take a certain amount of time to
cross sections, etcetera. The simulated trains are a lot more erratic: they ignore
signalling completely, the time they need to cross a section is randomised and
bears no direct relation to the physical length of that section, and they might
even reverse.

However the goal was not to create scenarios in which all entities behave
perfectly according to protocol and normal constraints, but to create scenarios
that are ‘good’ or ‘interesting’ as test cases for the SUT. As said before, the
created implementation is based on intuition and some experimentation; It is
very probable that ‘better’ test purpose models (i.e. models that find faults more
consistently) can be constructed.

Implementation

The Simulated Train Movements test purpose model is implemented in the
SptnSimulator3 class (there where some experimental iterations, hence the 3
in the name). The simulation of train movements is implemented in a separate
Train class.

Listing 8.3 shows the main parts of the update function of the SptnSimulator3
class.

The section occupations are determined on the lines 4 to 11. First a section
array is created with 12 fields (one for each section on the modelled part of
Santpoort Noord), then the fields in this array are set depending on the trains’
positions. This relies on the update function of Train objects, that each return
an array with section occupations for that train (line 7). The implementation
of the Train class is further discussed below.

The EBP requests for yellow or better are determined on the lines 13 to 17,
based on the values of these variables in the previous cycle. After which both
the section occupations and the ebp requests are copied to the output array in
lines 19 and 20.

1 public boolean[] update(boolean[] inputs, boolean[] outputs) {

2 boolean[] retOut = new boolean[outputs.length];

3 /* Trains: */

4 boolean[] sections = new boolean[12];

5 ...

6 for (Train train: trains){

7 boolean [] tOuts = train.update(inputs, outputs);

8 for (int i = 0; i < sections.length; i++){

9 sections[i] = sections[i] && tOuts[i];

10 }

11 }

12 /* Logistic System: */

13 for (int i = 0; i < requested.length; i++){

14 if (random.nextInt(EBP_RANDOM_SIZE) == 0){

15 requested[i] = !requested[i];

16 }
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17 }

18 /* Start filling the output array: */

19 System.arraycopy(sections, 0, retOut, 0, sections.length);

20 System.arraycopy(requested, 0, retOut, 12, requested.length);

21 /* Set the speed step variables to consistent values. */

22 ...

23 return retOut;

24 }

Listing 8.3: The update function of the SptnSimulator3 test purpose model

Listing 8.4 shows the update function of the Train class. The code starts
by either determining a new speed randomly (lines 12 to 18), or if the train is
currently not on the railway yard it starts by determining whether it should
enter the railway yard and then decide a speed (lines 4 to 11).

After this a new position is calculated on line 20. The position is expressed
as an integer, that ranges from 0 (inclusive) to 120 (exclusive) to indicate a
position on the Santpoort Noord railway yard. Each of the 12 track sections is
represented by 10 integer values. Values below 0, and 120 and above indicate
that the train is either at the north or south side of the railway yard waiting to
enter the yard.

The lines 21 to 26 occasionally set the the Train’s variables to random
values. After which the positions are converted to section occupations on line
29, that are then returned to the calling function (see listing 8.3, line 7).

1 boolean[] update(boolean[] inputs, boolean[] outputs){

2 boolean[] retOut = new boolean[outputs.length];

3 Random r = SptnSimulator3.random;

4 /* Determine new speed, and/or whether to enter the railway yard: */

5 if (position < 0 || position >= 120){

6 if (r.nextInt(ENTRY_CHANCE) == 0){

7 speed = r.nextInt(MAX_SPEED);

8 } else {

9 speed = 0;

10 }

11 direction = (position < 0);

12 } else {

13 int nSpeed = (r.nextBoolean() ?

14 speed+r.nextInt(MAX_SPEED_CHANGE) :

15 speed-r.nextInt(MAX_SPEED_CHANGE)

16 );

17 speed = Math.max(0, Math.min(MAX_SPEED, nSpeed));

18 }

19 /* Update position: */

20 position = position + (direction ? speed : (-1 * speed) );

21 /* Random mutations: */

22 if (r.nextInt(RANDOM_MUTATION_RATE) == 0){

23 position = r.nextInt(120);

24 speed = r.nextInt(MAX_SPEED);

25 direction = r.nextBoolean();

26 }

27 /* Calculate the outputs based on the position: */

28 for (int i = 0; i <= O_530BTR; i++){
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29 retOut[i] = (((position + 10) / 10) - 1) != i;

30 }

31 ...

32 return retOut;

33 }

Listing 8.4: Simulation of train movements by the Train class of the STM test
purpose model
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Chapter 9
Java Framework for Test Purpose
Models

The test purpose models described in the previous chapter rely on a frame-
work for generating an LTS representation out of their output. The previous
chapter covered the interface that the framework requires from the test purpose
models (section 8.2.2). This chapter describes how the framework has been im-
plemented, and how it communicates the outputs of a test purpose model to
JTorX.

As already said in the previous chapter, Java has no native way of generating
an LTS like mCRL2 has, and doing so is non-trivial. Furthermore, there is
no known precedent for using Java for the test purpose model in a test setup
with JTorX. As such the framework that is described in this chapter had to be
developed specially for the PLC-Interlocking test setup.

Before describing the framework itself, section 9.1 explains the protocol used
to communicate with JTorX. Section 9.2 then describes how the outputs of a
test purpose model relate to the transitions communicated to JTorX by the
framework. After that starts a description, spread over three sections, of how
the framework has been implemented. Section 9.3 gives a short overview of the
classes that make up the framework, their responsibilities and their interrela-
tions. Section 9.4 describes the main loop of the program. Section 9.5 describes
an important function that the main loop relies on: The function that deter-
mines the outgoing transitions from a state, and the successor states that follow
these transitions. Finally section 9.6 discusses the generality of the created
solution, and some of its limitations.

9.1 The Torx-Explorer Protocol

The protocol between JTorX and a torx-explorer is very simple and well docu-
mented in the manual pages of the original TorX tool [50].
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After an initial reset command (‘r’), the torx-explorer gives the identifier of
the transition that leads to the initial state. JTorX can then continually use the
expand command (‘e <id>’) to instruct the torx-explorer to expand a certain
transition. The torx-explorer replies to the expand command with the list of
the (uniquely numbered) transitions that are enabled in the successor state.

The transition list is preceded by a line containing just the string ‘EB’ and
succeeded by a line containing ‘EE’. Each line containing a transitions starts
with a prefix (‘Ee’) followed by multiple tab separated data fields: the first field
is the unique transition identifier and the fourth field is the transition label; the
other fields are for extensions to the basic protocol and need not be used.

The protocol allows expanding any communicated transition at any time, such
that JTorX can explorer multiple paths through the state space. As a result
of this, the torx-explorer has to keep all past states in memory. However, in
practice this is not really needed, because JTorX follows a single path through
the state space with some limited branching around the main path.

The protocol contains a command for JTorX to indicate to the torx-explorer
that a list of states will not be expanded further and can be discarded (‘d
<ids>’). However, this command is not implemented by lps2torx, nor used by
JTorX.

1 -> r

2 <- R 0 1

3 -> e 0

4 <- EB

5 <- Ee 1 1 1 i_516ETR!true

6 <- EE

7 -> e 1

8 <- EB

9 <- Ee 2 1 1 i_516DTR!true

10 <- EE

11 -> q

12 <- Q

Listing 9.1: Example communication between JTorX and a torx-explorer

Listing 9.1 shows an example communication scenario between JTorX (mes-
sages prefixed with ‘->’) and a torx-explorer (messages prefixed with ‘<-’). Line
1 shows the initial reset command, with the torx-explorer’s reply on line 2. The
initial transition is then expanded on the next line. The reply to this (lines 4 -
6) contains one transition (i 516ETR!true) with identifier 1. This transition is
then further expanded in the lines 7 to 10. The successor state again has one
outgoing transition (labelled i 516DTR!true with identifier 2). Further model
exploration is then stopped.

9.2 Framework: Bridge between JTorX and Test
Purpose Models

As already said in the previous chapter, the framework is responsible for the
interface between JTorX and the update function. Transitions are automatically
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generated by the framework to respond to expand commands from JTorX. To
do this the framework tracks in which stage of the scan cycle the system is, and
which transition should be generated next.

In the communication with JTorX, the generated transitions can be divided
in two main groups: the output transitions and non-output transitions (which
can be further divided in input and other transitions).

If, at the current stage of the scan cycle, a non-output transition is generated,
then all (at that point) possible transitions are generated. This guarantees that
the choice of available transitions for the SUT and PLC-Interlocking model is
not restricted by the test purpose model at all.

The output transitions are a different case. The test purpose model’s out-
put transitions are the transitions that set the input variables of the PLC-
Interlocking model and the SUT. The framework calls the update function to
determine the values communicated with these transitions before the first out-
put transition of a scan cycle is outputted. Transitions are only generated for
variables whose values have changed, and these variables are outputted in fixed
order. This prevents redundant transitions (as discussed in section 8.1.3).

9.2.1 Example Scenario

1 -> e 76

2 <- EB

3 <- Ee 92 1 1 aspectOutput!0

4 <- Ee 93 1 1 aspectOutput!1

5 <- Ee 94 1 1 aspectOutput!2

6 <- ...

7 <- Ee 107 1 1 aspectOutput!15

8 <- EE

9 -> e 92

10 <- EB

11 <- Ee 108 1 1 i_528DTR!false

12 <- EE

13 -> e 108

14 <- EB

15 <- Ee 109 1 1 ei_516GZ!true

16 <- EE

17 -> e 109

18 <- EB

19 <- Ee 110 1 1 cycle_pre

20 <- EE

21 -> e 110

22 <- EB

23 <- Ee 111 1 1 timerInput!20000!true

24 <- Ee 112 1 1 timerInput!20000!false

25 <- EE

Listing 9.2: Example communication with a test purpose model

Listing 9.2 shows a snippet from a sample communication with a test purpose
model.
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The first lines (3 - 7) show how the last input transitions of a scan cycle are
generated. Since these are input transition, all possible transitions are generated
(notice that multiple lines have been skipped from the listing at line 6). One
of these transitions is then expanded with the command on line 9, which starts
the next scan cycle.

The start of a new scan cycle prompts the test purpose framework to call
on the update function, which in this case gives new values for two output
variables. This results in two output transitions that are generated one at a
time (lines 11 and 15). After having communicated all changes, the test purpose
model signals the end of its output phase (i.e. the SUT’s input phase) with the
cycle pre transition.

The final lines show again that all possible transitions are generated during
the input phase (lines 23-24).

9.3 Model Structure

The framework consists of a number of generic classes (ModelGuide, State,
Transition and Simulator) and one class that specialises State with static
data for the Santpoort Noord model (SptnState). Furthermore multiple test
purpose models have been implemented (in classes named SptnSimulatorXYZ,
with XYZ variable). Table 9.1 contains an overview of all classes of the test
purpose models.

Table 9.1: Overview of classes in the Java test purpose model
Class Description
ModelGuide Is responsible for all input and output, and state space exploration

in accordance with the received inputs. Contains the main program
loop (described in detail in section 9.4).

State Models a single state of the model. Furthermore has the responsi-
bility of determining the outgoing transitions and successor states
(described in detail in section 9.5).

Transition Simple data container that models a transition to a State.
Simulator Abstract class that is contained in each State. Subclasses of this

class must implement the test purpose logic.
SptnState Subclass of State that contains static data regarding the transitions

that exist in the Santpoort Noord Model.
SptnSimulatorXYZ A number of these classes exist, each of which extends Simulator.

These classes are not part of the generic framework; each imple-
ments a different test purpose model.

All classes combined form a complete program. The whole program’s execu-
tion is, except for some initialisation, spent in the program’s main loop imple-
mented in ModelGuide.explorer. The initialisation code calls the explorer

function with as argument an initial State object. This initial State object
is simply a SptnState object with all fields initialised to some default values.
This State object also contains an initial Simulator object, which is set by the
initialisation code. The initialisation code can determine the test case genera-

102



tion strategy used in the main loop, by setting particular subtypes of Simulator
(which implement the test purpose models) in the initial state.

9.4 Main Loop

The ModelGuide class contains the explorer function which, given an initial
state, explores the state space in accordance with the received inputs. Further-
more this class also contains all input and output related functions on which
the explorer function relies.

The explorer function runs in a loop in which it reads torx-explorer com-
mands from the standard input, acts on them, and prints replies to the standard
output. It can reset to the initial state, explorer a specific state, discard previ-
ously explored states or quit the program. All states (modelled by the State

class) that have already been explored are kept in a data structure that maps
transition identifiers to the states to which they lead.

Listing 9.3 shows a simplified version of the main loop. Most code that is
not essential to executing the reset and expand commands has been left out for
readability purposes (note: not all of these omissions are marked by . . . ).

1 public static void explore(State initialState){

2 long nextTransitionId = 0;

3 Map<Long, State> stateStore = new HashMap<Long, State>();

4 ReadInput pick = readTransition();

5 while (true){

6 if (pick.type == ReadInput.QUIT){

7 break;

8 } else if (pick.type == ReadInput.RESET){

9 /* Clear state space and reset to the initial state. */

10 nextTransitionId = 0;

11 stateStore = new HashMap<Long, State>();

12 stateStore.put(Long.valueOf(nextTransitionId),

initialState.clone());

13 nextTransitionId++;

14 stdOutPrintLine("R 0\t1");

15 } else if (pick.type == ReadInput.DELETE){

16 ...

17 } else if (pick.type == ReadInput.EXPAND){

18 /* Expand transition. */

19 if (stateStore.containsKey(Long.valueOf(pick.transitionId))){

20 State curState= stateStore.get(Long.valueOf(pick.transitionId));

21 if (curState.getTransitions() == null){

22 nextTransitionId =

curState.determineTransitions(nextTransitionId);

23 for (Transition transition: curState.getTransitions()){

24 stateStore.put(transition.transitionId,

transition.nextState);

25 }

26 }

27 writeTransitions(curState.getTransitions());

28 }

29 }
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30 pick = readTransition();

31 }

32 }

Listing 9.3: Main loop of the test purpose model framework

Input is read before the loop on line 4 in the above listing, using the function
readTransition and later again in the loop on line 30.

The processing of reset commands is shown on lines 8 to 14. First the
stateStore variable is initialized to an empty HashMap<Long, State>. Then
a clone of the initial state is added as the first state with identifier 0. The
nexTransitionId is set to the first unused transition identifier (1). After this,
a reply with the initial state’s identifier is communicated to JTorX.

The lines 17 to 28 show the processing of expand commands. First the
State object representing the state to which the expanded transition leads is
retrieved from the stateStore (line 20) If the transition has not been expanded
before (which is the typical scenario), then the outgoing transitions and succes-
sor states of the State have yet to be determined. In that case these will be
determined first (lines 21 - 26). The transitions and states are determined by
calling the determineTransitions method on the current State object, which
also computes a new value for nextTransitionId. (Note: How a State objects
determines its outgoing transitions is explained in section 9.5.) After determin-
ing the transitions, they are retrieved and the states to which they lead are
stored in the stateStore mapping. Finally, the outgoing transitions from the
current state are outputted to JTorX (line 27).

Note that for every transition expanded, all successor transitions and states
are stored (i.e. a State object is created and stored in the stateStore). This is
somewhat inefficient, because most of these states will not be expanded further
(e.g. the scenario in listing 9.2 starts with 16 aspectOutput transitions, of
which only one will be expanded in a normal use case). More efficient, with
regard to both run time and memory consumption, would be to only store all
successor transitions of expanded transitions and to determine the state only
for transitions that are actually expanded. However, the solution presented
here was significantly easier to implement and thus chosen. Furthermore, the
impact on the run time of the complete test setup seems not very significant
(considering all parts that contribute to this). The impact on memory usage on
the other hand turned out to be significant because of a combination with other
issues (see section 10.4.1), this was unforeseen.

Noteworthy is also that every newly explored State object is distinct from
any previously explored State. As such for each State in the mapping there is
only one transition identifier that maps to it.

This is in contrast to state space exploration strategies that consider states
with the same instance variables to be equal. Such strategies can save memory
and run time when reencountering previously explored states.

However, considering each state to be distinct also has an advantage. It
allows the test purpose model to decide the outgoing transitions (through the
update function) for otherwise similar states every time the states are visited.
This for example makes it possible to create random outputs, even if a state
with the same input variable values has already been visited.
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9.5 Determining Successor States

Each State object is responsible for determining its outgoing transitions and
successor states. To this end it offers the determineTransitions method. But
before discussing the implementation of that function, some more information
on the State class will be provided.

9.5.1 Fields of the State Class

A State object models the state of the model using a number of instance vari-
ables:

• boolean[] inputs: Each item in this array represent one of the Boolean
output variables of the SUT/specification model, which can be used as
inputs by the test purpose models.

• OutputBit[] outputBits: Each item in this array models one Boolean
output variable (i.e. an input variable to the SUT/specification model).
Each OutputBit not only holds the current value, but also the value of
that same variable in the previous scan cycle.

• int transitionStage: This integer indicates at which stage in the scan
cycle the model is in the current state. Before the very first output variable
is communicated this variable is set to 0, after the first is communicated to
1, and after the next to 2. The amount of possible consecutive transitions
in each scan cycle is fixed for each model. As a result transitionStage

can exactly pinpoint at which stage in the scan cycle the model is.

• Transition[] transitions: This array is either null, if the current
state has not been expanded yet, or contains the Transition objects that
model the outgoing transitions if a call to the determineTransitions

method has occurred. The Transition objects held in this array contain
multiple fields:

– transitionId: A long containing the unique transition identifier.

– label: A String containing the transition label.

– nextState: A State object modelling the state following the tran-
sition.

• Simulator simulator: The class implementing the actual test purpose
model. Each State has its own instance of this class so that the Simulator
classes can also hold local state that is related to the current State object.

Whenever a State is expanded, all its successor States are objects that are
created using the clone function of the original State, and with the relevant
fields updated. For that reason it is also important for Simulator classes using
the framework that hold local state to implement the clone function properly.
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9.5.2 Santpoort Noord Specific Subclass

The State class is very generic and has no knowledge of the actual transitions
that need to be generated during a scan cycle of a specific interlocking model.
Subclasses of State (which is an abstract class) provide this information by
implementing six abstract functions that return information regarding the tran-
sitions that need to be generated. For the Santpoort Noord model the class
SptnState has been defined as a subclass of State.

The functions implemented in SptnState are the following:

• boolean isOutputTransition(int transitionStage);

Indicates whether the transition in the given transition stage communi-
cates an output variable.

• boolean isInputTransition(int transitionStage);

Indicates whether the transition in the given transition stage sets an input
variable.

• int inputTransitionStageToInput(int transitionStage);

Given a transition stage in which an input variable is set (i.e. isInput-
Transition(transitionStage)), gives the index of that variable in the inputs
array.

• int getNumTransitionStages();

Gives the number of transition stages in the model (i.e. the max value for
transitionStage plus one).

• int getTransitionLabelSetSize(int transitionStage);

Gives the number of enabled transitions for the transitionStage (e.g. 1 for
an stage with an output transition, and 16 for an aspectOutput transition
stage ).

• String getTransitionLabel(int transitionStage, int transition;

Gives the label of a transition.

Besides implementing the above functions, subclasses of State are also re-
sponsible for initialising the inputs and outputBits arrays.

The implementation of SptnState is very straight forward. It has an array
that defines per transition stage the possible transition labels. Combined with a
few constants that define at which transition input and output transitions start
give enough information for very straight forward implementations of the above
mentioned functions.

Part of the definition of the array that is at the heart of SptnState can be
seen in listing 9.4. Each row in the array represents a transition stage, the array
thus reflects the order in which transitions need to be generated.

1 public static final String[][] TRANSITION_LABELS =

2 { {"i_516ETR!true" , "i_516ETR!false" }

3 , {"i_516DTR!true" , "i_516DTR!false" }

4 ...

5 , {"cycle_pre"}

6 , {"timerInput!20000!true", "timerInput!20000!false"}

7 ...
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8 , {"cycle"}

9 , {"timerOutput!true", "timerOutput!false"}

10 ...

11 , {"output!true", "output!false"}

12 ...

13 , {"aspectOutput!0", "aspectOutput!1", "aspectOutput!2", "aspectOutput!3",

"aspectOutput!4", "aspectOutput!5", "aspectOutput!6", "aspectOutput!7",

"aspectOutput!8", "aspectOutput!9", "aspectOutput!10", "aspectOutput!11",

"aspectOutput!12", "aspectOutput!13", "aspectOutput!14", "aspectOutput!15"}

14 ...

15 };

Listing 9.4: Definition of transition labels per transition stage in SptnState

9.5.3 The determineTransitions Method

Using the functions providing model specific information, and the information
held in the State’s instance variables, the determineTransitions method com-
putes the outgoing transitions for a State object.

The method takes one argument (long startId) that indicates the next
free transition identifier. The method also returns a long, which indicates the
next free transition identifier after the method has determined the outgoing
transitions. Listing 9.5 shows the determineTransitions method with some
selected parts left out for readability.

1 public long determineTransitions(long startId){

2 /* State cycle: First invoke the update function on the Simulator. */

3 if (transitionStage == getNumTransitionStages()){

4 this.performComputations();

5 transitionStage = 0;

6 } /* Skip output transitions if the output values haven’t changed: */

7 int virtualTransitionStage = transitionStage;

8 while (isOutputTransition(virtualTransitionStage))

9 {

10 if (outputBits[virtualTransitionStage].value !=

outputBits[virtualTransitionStage].lastValue) {

11 break;

12 } else {

13 virtualTransitionStage++;

14 }

15 } /* Determine transitions: */

16 Transition[] newTransitions;

17 if (isOutputTransition(virtualTransitionStage)){

18 /* Boolean output: Only show a transition with the determined output. */

19 newTransitions = new Transition[1];

20 State nextState = this.clone();

21 nextState.transitionStage = virtualTransitionStage + 1;

22 String label = getTransitionLabel(virtualTransitionStage,

(outputBits[virtualTransitionStage].value ? 0 : 1));

23 newTransitions[0] = new Transition(label, startId, nextState);

24 } else if (isInputTransition(virtualTransitionStage)){

25 /* Input: Create successor states for the true and false branches. */

26 ...
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27 } else { /* All other transitions. */

28 ...

29 }

30 this.transitions = newTransitions;

31 return startId + this.transitions.length;

32 }

Listing 9.5: The determineTransitions method

The performComputations function is called before the first transitions in a
scan cycle (lines 3 to 6). This function in turn will call the update function on
the State’s Simulator and update the outputBits array based on the returned
values.

Then lines 7 to 15 are concerned with skipping needless output transitions. If
the output transition that is associated with the transitionStage is redundant
(i.e. the value has not changed since last cycle), then the transition stage will
skip ahead until a non-redundant transition is found.

From line 16 onwards the code is concerned with creating the needed Transition

objects. There are three separate cases here:

• Output transitions (lines 17 to 23).

• Input transitions (mostly skipped from the code listing).

• Other transitions (mostly skipped from the code listing).

On line 20 the next state for an output transition is created by creating a clone
of the current state. On the next line, the transitionStage variable of the new
State object is changed so that it correctly represent the next state. Line 22
selects the label for the transition leading to the next state; the selected label
depends on the value of the output variable that is communicated with the
transition. Finally, the code on line 23 actual creates the Transition object.

The code for the ‘other’ transitions is similar to that of the output tran-
sitions. The main difference is that multiple Transition objects are created
instead of just one (one for each possible transition).

The code for creating input transitions always creates two Transition ob-
jects: one for the output!true transition and one for the output!false tran-
sition. The nextState objects of these Transitions have the input variable to
which the transitions correspond set, so that the states reflect the taken input
transition.

Finally, the return statement on line 31 returns the first transition identifier
that is still free.

9.6 Adaptability

The created framework can easily be adapted and used for creating test purpose
models for test setups of other PLC-Interlocking systems, or test setups of the
Santpoort Noord installation with more inputs and/or outputs. All that is
needed for that is adding a subclass of State that defines the model’s transitions
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similar to how SptnState does that for the model used in the current test setup.
Of course, the classes implementing the actual test purpose models would also
have to be rewritten or adapted.

The framework is not even necessarily limited to test purpose models for PLC-
Interlocking systems. It could in principle be used for any deterministic model
that can be modelled by a single function (update) that is executed cyclically.
As such it could be used to write the test purpose model for any test setup that
tests a PLC based product. Or it could even be used to write the model for any
PLC based SUT, as long as that model can be fully deterministic. For example,
the model of the PLC-Interlocking could also have been implemented in Java
using the framework presented here (with some slight adaptations).

However, the framework cannot be used for models that need to be non-
deterministic. Nor can it be used for models that have a different structure than
the here discussed PLC-based cyclic models, which can be characterised by a
single function that is executed every cycle. In fact, non-deterministic models
with a complicated structure might be hard to implement in Java in general.
For such models, a language built around (non-deterministic) transitions like
mCRL2 might be more appropriate. However, further research is needed before
statements about the usefulness of Java for (test purpose) models in general can
be made with certainty.
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Chapter 10
Testing and Results

Previous chapters have described the developed test setup. This test setup has
been used in a number of test runs to determine its effectiveness. This chapter
describes these test runs and their results.

The performed tests had two main goals:

1. Determining the test setup’s performance.

2. Determining how well the test setup performs its task of finding faults.

The structure of the rest of this chapter is as follows: Section 10.1 describes
the executed test runs, and the system on which they were conducted. Section
10.2 describes how the performance of these test runs has been measured. Sec-
tion 10.3 and 10.4 give an overview of the execution time of test runs and the
memory usage during those test runs.

Section 10.5 then discusses the qualitative behaviour of the used test setup
and lists the failures that have been observed. Finally, section 10.6 evaluates
the findings from section 10.5.

10.1 Executed Test Runs

More than 70 test runs have been executed that are documented here. The two
test runs with the fixed scenarios (see section 8.3.2) were known beforehand to
(practically) instantly yield a ‘fail’ verdict. More interesting are the test runs
conducted with the Simulated Train Movement (STM) test purpose model (see
section 8.3.3) and the Constrained Random Scenario Generator (CRSG) test
purpose model (see section 8.3.1). Therefore the rest of this chapter will mostly
focus on those. The purpose of these test runs was twofold: finding faults and
gathering performance measurements.

Beforehand it was clear that the CRSG test purpose model is very unlikely to
create test runs that lead to failures. This test purpose model has been used in a
series of 20 test runs of increasing length (from 100 to 650,000 transitions, with
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the test lengths increasing roughly exponentially). The main goals of these test
runs were to get a baseline to which to compare the other test purpose model,
and to get performance measures for a great variety of workloads. Therefore,
any runs in which a failure was observed and that did thus not run until the
end (three runs) were rerun to get measures for the full run.

The simulated train movements test purpose model has a good chance of
finding a fault during a test run. Most tests have therefore been performed with
this test purpose model. In total 50 test runs were executed with a goal length
of 100,000 transitions each. However a test run is stopped immediately once a
failure is observed; as a result a lot of test runs were much shorter.

There are remarkable differences in the results gathered with the different test
purpose models; not only with regard to the likelihood of observing a failure,
but also with regard to the performance.

10.1.1 Test Setup Details

All tests were performed on a system with dual Intel Xeon X5550 CPUs and
144 GiB of memory running under GNU/Linux. JTorX version 1.10.0-beta6
was used in console only mode (no GUI) with all outputs redirected to log files.
The specification model has been explored using the lps2torx implementation
from the mCRL2 toolkit, version: January 2012 (development).

The tested SUT was created from version 3 of the interlocking logic for
Santpoort Noord.

Scan Cycle Length

As mentioned in chapter 7 the cycle transition executes the program logic, but
also increases the virtual time by some constant. In the version of the SUT used
in the executed tests the cycle transition takes one second.

The actual PLC-Interlocking system at Santpoort Noord has a scan cy-
cle length of about 30 milliseconds (with a few milliseconds variation between
cycles). Nonetheless, a fixed one second cycle length for the model seems ap-
propriate, because it allows a test run to cover a longer simulated time interval,
yet seems unlikely to prevent potential failures from occurring.

The above is actually a bit simplified, internally the SUT executes two cycles
of half a second each when receiving a cycle transition. Before each of these
cycles some input variables (which are not part of the model) are flipped. Flip-
ping these variables indicates to the interlocking logic that an external system
is working correctly, without this the SUT will show alternative aspects. Divid-
ing one scan cycle of the model in two scan cycles for the SUT can potentially
cause differences in behaviour between the model and the SUT. However with
the currently used model, no such discrepancies are foreseen.

The internal behaviour of the SUT with regard to scan cycles is mostly
ignored in this report; unless noted otherwise, a mention of a scan cycle will
refer to a scan cycle according to the model.
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10.2 Performance Measurements

The goals of the conducted performance measurements were simple: Determin-
ing how well the test setup performs, and how well it scales to larger test runs.
A secondary goal is determining the performance of the individual components
of the system, such that relative performance and bottlenecks can be identi-
fied. Particularly, two performance characteristics are of interest and have been
measured:

• The execution time of a test run.

• The memory usage during a test run.

These performance characteristic have been measured during the test runs
for the complete system, as well as for the individual components (JTorX,
lps2torx, the test purpose model and the SUT) of the test setup.

10.2.1 Measurements

The execution time of a test run was measured with the standard Unix utility
time (using the GNU implementation). The used measurements are the values
that time reports as the ‘Elapsed (wall clock) time’.

The memory usage and run time of individual components was determined
using the standard Unix utility top. A shell script ran top once every 10 seconds
during the execution of each test run.

The values reported by top in the ‘TIME+’ column are used as the execution
time of the individual components. Notice that this is not the elapsed time (like
the measurements of the time utility), but the used CPU time. That is, if a
process runs for 1 second and fully utilises 4 CPU cores, this field will read 4
seconds. JTorX as well as the test purpose model have some (implicit) multi-
threading (e.g. garbage collections is done in a background thread). As a result,
for those programs the used CPU time reported by top is higher than the elapsed
time.

The values reported by top in the ‘RES’ column are taken as the amount of
memory used by the individual components (and together as the total memory
used). This column reports the ‘resident memory’, i.e. the amount of physical
memory used. This is often considerable less than the amount of virtual memory
(shown in the ‘VIRT’ column) that a process has reserved. However, the amount
of virtual memory reserved does not reflect the actual amount of memory needed
or used. For example, the Java Virtual Machine (JVM) on the test system
always reserves about 32 GiB of (virtual) memory. The test system had sufficient
physical memory available during all test runs; and it is thus unlikely that any
memory that was actually used got swapped out of memory. Therefore, the
‘RES’ column is very likely to show the actual total memory usage.

The measurements were taken as precise as practically possible, but some
variables could not be controlled during the tests. For example the execution of
other processes (the test system is multi-user) and how these are divided over
the CPU cores might influence runtimes. The processor’s clock rate can even
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vary (‘Intel Turbo Boost Technology’) based on variables such as the number of
used CPU cores and the CPU temperature.

Furthermore even with all other variables constant, there can be significant
difference in the amount of work needed for different test scenarios of equal
length. Repeating the tests will thus not lead to the exact same measurements.

However despite the uncertainties and imperfections in the tests, the general
trends in the collected data are very clear. When data from a single test run is
presented, care has been taken to select a representative example.

10.3 Performance: Execution Time

10.3.1 Complete Test Setup
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Figure 10.1: Execution time of the complete test setup

Figure 10.1 shows the execution times of the conducted test runs graphed
against the number of transitions in the test runs. The results with the STM
test purpose model and the CRSG test purpose model are differentiated by their
different markers and colours.

Most test runs with the STM test purpose did not run until the end because
a failure was observed, as anticipated. Three of the test runs with the CRSG
model initially also did not run until the end because a failure was observed
(not shown in the graph). These three runs were restarted in order to get data
for the full spectrum of input lengths as shown in the graph.

The graph shows that test runs with the STM test purpose model execute in
less time than test runs of the same length with the CRSG test purpose model.
The reason for this performance difference is further discussed in section 10.3.2,
where the performance of the individual components are regarded.

For both test purpose models, the execution times seem roughly linear with
the number of transitions (notice that both axes are logarithmic). The same
data is re-plotted in figure 10.2 as the average transition rate per second during
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a run against the number of transitions in that run (notice that the vertical axis
is non-logarithmic now).

This second plot shows that the test runs with the CRSG test purpose model
scale almost linearly. There is a very small decline in performance after 250,000
transitions, and a small start-up delay of about a second that affects the average
transition rates of the shortest test runs, but overall the graph shows a very clear
roughly linear trend.

The STM test purpose model is another story. Clearly test runs with the
STM test purpose model are much more efficient than with the CRSG test
purpose model. The rate of transitions per second also increases significantly
with longer test runs. But the data also shows a lot more variance; in some
cases a test run can take twice as long as another test run of the same length.
Furthermore, it is also not clear from the test data how the performance scales
for long test runs, whether the performance plateaus out or keeps increasing.
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Figure 10.2: Execution speed of the complete test setup

10.3.2 Individual Components

Figure 10.3 shows the used CPU time of the individual components during a
single test run with the CRSG test purpose model. The shown test run is of
the longest run with 650,000 transitions that took about 162 minutes.

Notice that the y axis shows the CPU time (which adds time of multiple
threads) whereas the x axis shows the actually elapsed time. Because of this,
the impact of both JTorX and the test purpose model (which have (implicit)
multi-threading) are overstated by the graph in comparison with lps2torx and
the SUT (which are both single threaded). The total CPU utilisation of the
whole test setup during the graphed test run was 123%, implying that JTorX
and the test purpose model added significantly less time to the total run time
than the graph suggests.

Very clear is that lps2torx dominates the execution time, and that the SUT
has used almost no CPU time. In fact at the end of the test run lps2torx has
taken up over 8500 seconds of CPU time, and the SUT only just over 9 seconds.
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Figure 10.3: Execution times of individual components using the CRSG test
purpose model
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Figure 10.4: Execution times of individual components using the STM test
purpose model

Figure 10.4 shows the used CPU time of the individual components during a
single test run with the STM test purpose model. The shown test run is of one
of the test runs that finished without observing a failure and took 3:29 minutes
(however because of the 10 second measurement interval the last data points in
the graph are at 3:20 minutes).

Lps2torx does not dominate the CPU time like it does with the CRSG test
purpose model; in fact, in the selected test run both JTorX and the test purpose
model use slightly more CPU time than lps2torx (although, they added less to
the overall run time, because part of this CPU time was consumed by parallel
threads).

The SUT uses the least CPU time again by far: just over 1 second in total.
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The great difference in CPU time usage of lps2torx between the CRSG and the
STM test purpose model mostly explains the differences in overall run times for
these test setups. The reason that lps2torx can interpret the PLC-Interlocking
model so much faster with the STM test purpose model is probably related to
the fact that the STM test purpose model restricts the possible state space.
With the STM test purpose model, inputs to the specification model will often
be the same as earlier communicated inputs (e.g. if the simulated trains do not
move and the EBP requests don’t change). This means that the model will often
be in a state that has already been visited (especially since timing is not part of
the state of the PLC-Interlocking model). With the CRSG test purpose model,
the chance of the model coming in a previously visited state is much smaller.
Lps2torx keeps all previously expanded states in memory, thus it will not have
to compute a state when that state has already been visited, thus saving time.

Revisiting past states also has a slight positive effect on the run time of JTorX
(probably also because of state caching). In the test run with the STM test
purpose model shown in the graph, JTorX used 1:39 minutes of CPU time. In
the 100,000 transition test run with the CRSG test purpose model, this was 2:37
minutes. Do notice that these measurements are not very precise (because of
the 10 second measurement interval); there is also quite some variance between
similar measurements. Nonetheless, JTorX consistently used less CPU time
with the STM test purpose.

In all test runs, the CPU time used by the SUT is only a fraction of the total
run time. In the test run graphed in figure 10.3 lps2torx uses over 900 times
as much CPU time as the SUT (8528 seconds versus 9.15 seconds). Lps2torx
has some overhead because it has to keep track of all expanded states, but the
model that it interprets only implements a part of the logic of the SUT, and
the SUT’s logic even gets executed twice for every cycle in the model. So, the
model and its interpretation by lps2torx are very inefficient compared to the
actual system that is modelled. In fact the overhead of the total test setup in
that run was over a factor 1000 (i.e. if the test setup used 0 additional time,
then a 1000 test runs could have been done in the same time span). With the
STM test purpose model this overhead is less, but still a factor 200.

The SUT executable is also much faster than an actual PLC-Interlocking in-
stallation. In the 650,000 transitions long test run with the CRSG test purpose
model, the SUT executed 45,666 cycles (note that these are SUT scan cycles, the
model did only half that amount). The SUT required 9.15 seconds to execute
these cycles, so its execution rate was almost 5000 cycles per second. In the test
run with the STM test purpose model graphed in figure 10.4, the execution rate
was even higher. Meanwhile, the real PLC-Interlocking installation at Santpoort
Noord only manages an average of 36 scan cycles per second. So the SUT exe-
cutable is two orders of magnitude faster than the real PLC-Interlocking. This
difference in execution speed can easily be explained by the additional integrity
checks, inter-module communication overhead and input/output overhead on
the PLC platform.
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Figure 10.5: Memory usage of individual components during a test run with the
CRSG test purpose model
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Figure 10.6: Memory usage of individual components during a test run with the
STM test purpose model

10.4 Performance: Memory Usage

Memory usage has only been measured for the individual components of the
test setup. Figure 10.5 shows the memory usage during the 650,000 transition
test run conducted with the CRSG test purpose model. Figure 10.6 shows the
memory usage of a 100,000 transition test run with the STM test purpose model
(the graphed run is the same as shown in figure 10.4).

Both JTorX and the test purpose model use significant amounts of memory
during test runs, regardless of the used test purpose model. For both processes
the graphs show stepwise increases and decreases in memory usage. This is most
likely caused by the use of standard Java data structures that are backed by
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arrays. These data structures increase their capacity in steps (often doubling)
by reallocating a new array, after which the garbage collector can reclaim the
previously used array. It should be noted that the reported memory usage
might be higher than the amount of memory that the Java processes really
need, because Java’s garbage collection does not free unused memory directly.

The memory usage of lps2torx is also significant (2.5 GiB after 650,000
transitions with the CRSG test purpose), but much less than the memory usage
of JTorX and the test purpose model.

The memory usage of the SUT is constant through all measurements at just
over 1 megabyte. This is of course as expected, the FBD language in which
the logic is expressed is extremely simple and does not need dynamic memory
allocation or recursive calls in its translated C++ form.

The memory usage of JTorX and the test purpose model are such that even
relatively short (in terms of time) test runs require more memory than present in
contemporary desktop systems. For example the 3:29 minute test run graphed
in figure 10.6 used over 20 GiB of memory, which is considerable more than
found in most desktop computer system (a state of affairs that will no doubt
change in the near future).

On the other hand, computation servers with hundreds of gigabytes in mem-
ory are already not that uncommon. Furthermore, the performance hit from
swapping on systems without enough memory might not be too severe, because
the test setup might predominantly access memory objects that are recently
created and have thus not been swapped out. However, no benchmarks have
been run on less equipped systems, so this remains speculation.

Even though the excessive memory usage does not pose a direct problem
because of access to a well-equipped test system, it seems unnecessary. Some
changes to the used tools might severely decrease the test setup’s memory con-
sumption.

10.4.1 Inefficiencies in the Test Setup

JTorX and the test purpose model together are responsible for the biggest part of
the memory consumption during a test run. It appears that JTorX accumulates
a lot of data during a test run which it then keeps in memory. Exactly what it
keeps in memory is unclear, but it is known that it keeps information on every
state along the explored path. For the test purpose model it is very clear what
it keeps in memory: Its memory consumption is caused virtually entirely by the
data structure that holds all states that have been discovered during a test run.

Most of the memory consumed by the test purpose model is not used for
anything useful. The main problem is that JTorX never instructs the torx-
explorers to discard old states (which is possible through the delete command
of the torx-explorer protocol). In principle, with the used setup, there is no
need for JTorX or the test purpose model to retain any state other than the very
last explored state. Discarding all states but the current state would completely
solve the memory usage problem, however this is not implemented in the current
version of JTorX. Note that an important consideration when implementing this,
is that the computational performance of lps2torx actually profits from storing
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previously visited states (the used version of lps2torx also does not support
the delete state command); the test purpose model however gains no speed
advantage from storing old states since it never revisits a state.

The problems caused by the fact that JTorX never discards old states are
compounded by two smaller problems with the test purpose models that by
themselves would not have a big impact on the test purpose’s performance:

1. JTorX pre-emptively expands states of the test purpose model that will
never be visited.

2. The test purpose framework computes and stores states when they are
first communicated instead of when they are expanded.

Analyses of log files showed that JTorX pre-emptively explores all output
transitions (i.e. the transitions that model outputs of the SUT), before the
SUT has decided which one of the possible transitions to take. There is a
rational behind this: JTorX tries to find a short path to an end state of the
test purpose model. However that rational does not apply in this particular
case for two reasons: The path to take at that point is decided by the SUT’s
outputs (JTorX has no choice), and the used test purpose model has no end
states. As a result the test purpose model visits a lot of states that the SUT
never visits. In the conducted test runs, the amount of expanded transitions of
the test purpose model was typically between 3 and 5 times as high as strictly
necessary. JTorX’s author has indicated that future JTorX versions will have
an option to disable this behaviour [49].

The second problem listed above is in the implementation of the test purpose
framework: It computes every successor state that is communicated to JTorX,
not just those that are expanded (which would save considerable memory). This
problem was already discussed in more detail in section 9.4.

Solving the two smaller problems would also result in a speed up of the test
setup. However, this speed up would not be very dramatic, since neither the
test purpose model nor JTorX dominates the execution time of the complete
test setup. Implementing functionality in JTorX to discard older states on the
other hand, could reduce the memory requirements of (at least) the test purpose
model to almost nil.

10.5 Ability to Find Faults

Of course the ultimate goal of doing tests is to find faults in the SUT; or to gain
confidence in the correctness of the SUT when no faults are found. Crucial for
this is the ability of the test setup to find faults.

Using test purpose models it is possible to run certain fixed scenarios and
use the model as an oracle that predicts the correct output. This does not offer
many advantages over classical manual testing approaches. More interesting is
using test purpose models to dynamically generate test scenarios. The question
is, are these generated test scenarios useful for finding faults?
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In total 36 failures were observed in 73 automated test runs. However, ob-
serving a failure does not necessarily indicate a fault in the SUT. The fault may
also lie in the model’s implementation, or even in the test setup itself (e.g. in
interfacing code). In fact most of the observed failures were easily linked to one
of a few defects in the model.

10.5.1 Types of Errors Found

All observed failures concern the yellow or better outputs, i.e. in all cases
the SUT outputted an output!true transition where the model expected an
output!false transition. There are no failures observed that concern the spe-
cific aspects outputted by the SUT (the aspectOutput transitions).

All observed failures have been analysed to determine whether the failure was
caused by a fault in the interlocking logic or by a fault in the model or other
parts of the test setup. Beforehand was known that the model contained some
flaws (see section 8.3.2). A number of the observed failures could directly be
attributed to these flaws. All other failures were analysed with the help of a
senior ProRail engineer.

All failures that have been observed can be classified in one of the following
categories:

• Type 1 failures: Failures that are caused by the first fault in the model
described in section 8.3.2.

• Type 2 failures: Failures that are caused by the second fault in the
model described in section 8.3.2.

• Type 3 failures: Failures that are caused by faults in the way that the
model tracks trains and how it decides when a route is free.

• Type 4 failures: Failures that do not represent a dangerous situation,
but cannot be traced to a fault in the model without further analyses.

• Unknown failures: Failures that must be further analysed to determine
whether there is a dangerous situation, and what causes the failure.

Unfortunately due to time constraints not all faults could be analysed thor-
oughly enough to pin point the exact cause of the failure. At the moment it is
not clear for failures in the categories ‘type 4’ and ‘unknown’ where the fault
lies, whether it is in the model, the rest of the SUT or the specification (or
possibly for ‘unknown’: in the SUT).

10.5.2 Constrained Random Scenario Generator

Of the initial 20 runs, three runs ended with the observation of a failure. These
runs were re-executed to get additional performance measures. No failures were
observed during these retries.

The originally scheduled batch of 20 runs, was supposed to have 1,733,160
transitions in total. With the interrupted test runs, in total 1,993,067 transi-
tions were executed. These transitions amounted to 69,929 simulated PLC scan
cycles.
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These 69,929 scan cycles contained 279,692 output!Bool transitions (some
test runs finished before completing the output phase of the scan cycle). Of those
output transitions only 28 were output!true, all other were output!false.
Three of those 28 true outputs were failures according to the model.

Table 10.1 shows the observed failures, in which run they occurred (target
number of transitions), at which transition, and what caused the failure obser-
vation. It should be noted that the type 1 failure listed, also constituted a type
2 failure. That is even if the model did not contain the type 1 fault, a failure
would still have been observed because of the type 2 failure.

Table 10.1: Observed failures with the CRSG test purpose
Test Run At Transition Type
160000 100,202 Type 2
250000 14,372 Type 1
650000 145,333 Type 4

10.5.3 Simulated Train Movements

The STM test purpose model was used for 50 test runs of each 100,000 tran-
sitions maximum. No faults were found in 17 of these test runs; the other 33
terminated early after the observation of a failure.

All test runs in which a failure was observed terminated quickly. The longest
test run in which a failure was observed was 5612 transitions long, the average
length of such runs was just over 2000 transitions. That is, in all test runs with
the STM test purpose model, either a fault was found quickly, or no fault was
found at all.

The conducted test runs contain 1,766,131 transitions total (of which 1,700,000
transitions in the 17 failure-less runs). Of these transitions, 386,256 are yellow
or better output transitions (i.e. output!Bool). Of these output transitions,
1850 are output!true transitions. These output!true are all within the first
15,000 transitions of each test run. That is, all signals are set to red in the last
85,000 transition of the 17 test runs that last 100,000 transitions. It seems that
in all test runs, after a number of transitions the system comes in a state in
which no signal can be set to yellow or better anymore.

Table 10.2 shows the failures that were observed during the test runs. The
first column contains the sequence number of the test run (0 to 49), the second
and third column again contain the transition at which the failure was observed
and the kind of failure.

10.6 Finding Faults: Evaluation

A lot of test runs ended with the observation of a failure concerning an output!true

transition. On the other hand, no failures related to aspectOutput!Nat transi-
tions were observed. This is not very surprising since the algorithm for comput-
ing a signal aspect is very simple (given whether the signal is yellow or better
and the aspect of the next signal) and well documented. Determining whether
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Table 10.2: Observed failures with the STM test purpose
Test Run At Transition Type
0 946 Type 2
3 409 Type 2
6 3630 Type 2
7 2489 Type 2
8 281 Unknown
10 3979 Type 2
11 84 Type 2
12 3707 Type 3
13 732 Type 2
14 5612 Type 3
19 2526 Type 4
20 4275 Type 3
22 398 Type 2
23 590 Type 3
24 2553 Type 2
26 821 Type 2
27 2759 Type 2
29 2301 Type 2
31 281 Unknown
32 518 Type 2
34 767 Type 3
35 1311 Type 2
36 230 Type 2
37 4309 Type 3
40 1273 Type 2
41 2440 Type 2
43 3484 Type 3
44 1761 Unknown
45 282 Type 2
46 1459 Type 3
47 5403 Type 2
48 48 Type 2
49 4473 Unknown

a signal should be yellow or better on the other hand is much harder, involves
a lot more requirements and requires a lot more code.

Given that yellow or better related failures can only be observed if the SUT
outputs output!true transitions, it is crucial that the test purpose models
generate test cases where such transitions occur. The test cases generated with
the CRSG test purpose model only contained 28 such transitions (in almost 2
million transitions total). Of the 23 performed test runs, 14 had not a single
output!true transition in them.

The STM test purpose model generated much more viable test cases: The
test cases generated with this test purpose model contained 1850 output!true

transitions. That being said, if no failure was observed in these test cases,
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then after a while this test purpose model brings the SUT in a state in which
output!true are no longer outputted. In three of the generated test cases,
the SUT even came in such a state before any output!true transitions were
outputted. As a result of this, most of the executed transitions were useless.
A possible solution, which has not been further investigated, is to introduce a
sequence of transitions in the test purpose model that resets the SUT’s state
after a while. Such a sequence of transitions is certainly possible, but might
require some inputs that are not available in the current model. Another solution
would be to simply limit test cases to, for example, 10,000 transitions.

Table 10.3: Observed failure types per test purpose model
Observed Failures

Test Purpose Total Runs Type 1 Type 2 Type 3 Type 4 Unknown
Fixed scenario 1 1 1 0 0 0 0
Fixed scenario 2 1 0 1 0 0 0
CRSG 23 1 1 0 1 0
STM 50 0 20 8 1 4

Table 10.3 summarises the data from tables 10.1 and 10.2, and the results
from the test runs with the fixed scenario test purpose models. Note that both
observations of a type 1 error were also observations of type 2 errors, but are
only counted as a type 1 error in the table.

Even though the STM test purpose model generates test cases with a lot of
‘interesting behaviour’, it failed to generate a test case that led to the observa-
tion of a type 1 failure. Of course the number of test runs could be expanded
to increase the chance of finding all types of faults. Furthermore a model with
less other faults might significantly increase the chances of finding a type 1 fault
for the STM test purpose model. Nevertheless, it is a pity that the fault is not
found consistently with the STM test purpose model, because it is easy to see
how such a fault could occur in a real interlocking system by accident: A section
is simply assumed to be on the wrong side of a signal.

Unlike the STM test purpose, the CRSG test purpose did generate a test
case that observed a type 1 failure. Of course the fixed scenario also found this
fault. So even though the STM test purpose models seems to have a better
chance of finding faults than the CRSG test purpose model, it might not find
all faults just as well as other test purpose models.

As said before, a lot of failures were observed in often relative short test runs.
Analysis showed that the faults causing these failures were in the model, not
the SUT (for as far as the failures could be classified).

It is important to note that classifying failures is a lot of work, even with
the help of a tool to visualise the behaviour in the generated log files. As such,
the current PLC-Interlocking specification model is not very useful for testing
PLC-Interlocking systems, because it yields a lot of false positives. Determining
that these false positives are indeed false positives involves a lot of work, and
ultimately does not increase the confidence in the correctness of the system, it
merely shows that the model contains a lot of faults.
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Chapter 11
Conclusions and Future Work

This chapter lists the conclusion of the research described in this report, followed
by an overview of possible directions for future research.

11.1 Conclusions

This report presents a model based testing methodology for testing the interlock-
ing logic of PLC-Interlocking systems. The presented method uses the JTorX
test tool, which incorporates the ioco testing theory. The PLC-Interlocking sys-
tem that is in operation at the Santpoort Noord railway station has been used
as a case study for the application of the method throughout this report.

The test setup consists, besides the test tool JTorX, of three components:

1. The SUT.

2. A model that specifies correct behaviour for the SUT.

3. A test purpose model.

Each of these items took considerable research effort. In the following the
items are reflected upon independently before the complete test setup is con-
sidered. Finally the main conclusions regarding the presented test methodology
are drawn in section 11.1.5.

11.1.1 The SUT

A method has been devised to create an executable from the interlocking logic
that can be run on a regular PC. First, the actual interlocking code has to
be captured in C++ form during the regular compilation process. The thus
acquired interlocking logic is then made part of an application that adds inter-
faces to interact with the logic, and library functions to make the acquired logic
functional.

The regular process of creating a binary (that can only run on a PLC) is
SIL-4 certified. The process used to get an executable SUT for the test setup is
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a custom process, and offers no such official ‘guarantee’ of correctness. However,
the solution is nonetheless very satisfying, given that there are no manufacturer
supported alternatives and the created SUT opens up the possibility of (au-
tomated) testing using just a regular PC. Furthermore, the resulting product
has very good performance: It runs two orders of magnitude faster on the test
system than a program with the same logic on an actual PLC system.

11.1.2 Model

A (partial) model of the interlocking logic has been created in mCRL2. The de-
veloped model is tailored to the Santpoort Noord PLC-Interlocking installation,
but could easily be adapted to another installation.

Constructing a model of the correct behaviour of an interlocking system
had not been attempted before (in the known literature). Past research efforts
verified interlocking systems based on simple properties to which the systems
must adhere or fixed test scenarios, but not using a model of the supposed
behaviour of the system.

The model is, besides its limited functionality, imperfect and contains many
flaws. This is not surprising, beforehand it was clear that creating a complete
and correct model would not be possible in the allotted time. The development
of the model was hindered by imprecise specifications and lack of railway sig-
nalling knowledge. Creating a complete and correct model would require a lot
of railway signalling knowledge and time.

11.1.3 Test Purpose Model

Multiple test purpose models have been implemented with different test case
generation strategies. The STM test purpose model simulates the movement of
trains in the interlocking’s environment and deduce inputs for the SUT from
that. The CRSG test purpose generates inputs randomly, with a restriction on
the generated values to be consistent.

The test purpose models have been implemented in Java. Using Java instead
of mCRL2 resulted in clearer and more concise code. Furthermore it aided the
development process because the Java development tools are superior to the
available mCRL2 tools.

Java is a more powerful language than mCRL2, but cannot be made to
generate an LTS as easy as mCRL2, and had never been used for such models
before. A custom framework was created that abstracts away all details involved
in communicating inputs to JTorX for the created test purpose models. The
created framework is not necessarily limited to PLC-Interlocking test purpose
models, but could be used for PLC models in general. With small adapta-
tions it can be used to construct any deterministic cyclic model with a single
computation phase per cycle.

11.1.4 The Complete Test Setup

The conducted research has led to a functioning test setup for (a part of) the
Santpoort Noord PLC-Interlocking installation.
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Two factors are important for the usefulness of the test setup in testing
the Santpoort Noord PLC-Interlocking: the performance of the test setup, and
the quality of the test setup. A third factor is important for testing PLC-
Interlocking installations in general: the effort needed to adapt the test setup
to another PLC-Interlocking system.

Adaptability

The test setup was created during a master thesis project that took 11 man-
months to complete. These 11 man-months do include a lot of prelimenary
research and a lot of time spent on writing this thesis, but nonetheless creating
the test setup took a considerable amount of time. The method would not be
practical if creating a test setup would take the same amount of time every time.

To create a test setup for another PLC-Interlocking installation each of the
three main components (SUT, specification model and test purpose model) need
to be adapted, and some minor configuration details for the overall test setup
must be changed. Each of these components has a very clear separation between
generic and installation specific code (see sections 6.5, 7.4 and 9.6). As a result
of this, the effort needed to adapt each component is very limited compared to
the initial effort.

As it stands the test setup cannot be used out-of-the-box by a railway sig-
nalling engineer. But with knowledge about the setup it is already possible
to quickly create a similar test setup for another PLC-Interlocking installation
(perhaps in less than a week, although that is speculation).

Performance

The performance of the test setup is adequate, in the sense that its performance
is absolutely no impediment to its use. The test setup does consume a lot
of memory; for the longer runs even considerable more than a typical PC has
available. However, even if one wants to do longer test runs this does not
have to be a problem: Computer systems with enough memory are not rare
nor prohibitively expensive. That being said, there are many improvements
possible to the performance of the test setup, especially with regard to memory
consumption.

Quality

The quality of the test setup is more of a concern than its performance. During
the conducted test runs, many failures have been observed. Four of these failures
must be analysed further, but as it stands now it seems that all failures are a
result of faults in the used model.

Failures classified as type 1 failures are of extra interest because the SUT’s
behaviour is an exception to regular behaviour (but allowed because of external
circumstances). Exceptions to regular behaviour normally are caused by faults
in the SUT, and as such should be found. All other classified faults, thus not
including the four unclassified faults, are clearly faults in the model, and not of
interest.
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The usefulness of the test purpose models for finding faults in the SUT (if
there are any) is hard to predict. The STM test purpose model has proven
to generate test cases that will often lead to the observation of a failure. And
with further research, the test purpose model could be improved to find faults
more consistently. However, the STM test purpose model has not produced a
test case that led to the observation of a type 1 fault, whereas the SQRM has
produced such a test case.

The biggest problem quality-wise with the test setup is the number of faults
in the model and the frequency with which these cause failures. Considering
that the model only models a part of the SUT’s behaviour, yet generates so
many false positives, it must be concluded that the quality of the whole test
setup is not at (or close to) a level where it can be used in the regular validation
process of interlocking systems.

11.1.5 Main Conclusions

The main conclusions regarding the presented test methodology:

• The quality of the whole test setup is not at (or close to) a level where it
can be used in the regular validation process of interlocking systems. The
main problem is the lack of a correct specification model.

• The application of a model based testing approach was considerably less
successful than in other case studies that employed model based testing
(e.g. [30, 31]). The main reason for this is the complexity of the rail-
way signalling domain, and the resulting problems in creating a correct
specification model.

11.2 Future Work

Whether the method on itself will be useful mainly depends on the quality of
the used model. Therefore, future research into ioco testing of PLC-Interlocking
systems (or any other type of electronic interlocking system) should focus on
the model.

Creating a complete and correct model is complicated and will require con-
siderable resources. It is a task that cannot be fulfilled by people that merely
have computer science backgrounds; deep knowledge of both railway signalling
in general and the PLC-Interlocking system in particular is required too.

Such research, if undertaken, should not necessarily extend the mCRL2
model described in this report. Other modelling languages (e.g. Java) or model
architectures must also be considered, because it is far from clear whether
mCRL2 is the ideal language for such a model, and alternative modelling lan-
guage and model structures have not been explored.

So, in order to improve the test setup, the focus should firstly be on the used
model. Only after that can the usefulness of the whole test setup (and its other
components) be determined.

That being said, there are also interesting research possibilities with regard
to the used tools that can be done independently from any research on the
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specification model. There are relatively small projects (1 and 2) as well as a
possibly complicated project (3):

1. Improving the performance of the test setup:

• Improve JTorX by only keeping recent states in memory, and in-
structing the test purpose model to delete older states.

• Improve the test purpose model by not computing states until they
are expanded by JTorX.

2. Developing analysis tools. Analysing error traces without good visual aids
and debugging tools can be very time consuming.

3. Developing a better mCRL2 tool chain: Look into the possibilities to com-
pile models to native code or a byte code format, instead of the now used
LPS format which is interpreted. This might bring great performance im-
provements (faster and more predictable), both at run time and execution
time.
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Glossary

Notation Description Page
List

ATB Automatic train protection (Dutch: Automatische Trein
Bëınvloeding)

15

CRSG Constrained Random Scenario Generator test purpose
model. One of the created test purpose models, further
described in section 8.3.1.

4, 91

DO document High level document containing general information about
the design and planned construction of a specific interlock-
ing installation. (Dutch: Definitief Ontwerp)

4, 46

EBP Protocol used between logistics systems and interlocking
systems (Dutch: Elektronische BedienPost)

24

ERTMS European Rail Traffic Management System 16
ETCS European Train Control System 16

FBD Function Block Diagram 4, 24

ioco input-output conformance 3, 33

JTorX An automated test tool that can test whether an imple-
mentation ioco-conforms to a specification. This tool is
presented in [3].

3, 34

JVM Java Virtual Machine 113

LPS Linear Process Specification 37
LTS Labelled Transition System 3, 33

MDS Maintenance and Diagnostics Subsystem 23

OBE-blad Technical map detailing the track layout and the positions
of the wayside elements in an area. (Dutch: Overzicht
Baan en Emplacement blad)

4, 46
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Notation Description Page
List

OPC Standardized protocol for communication with PLC sys-
tems (originally: OLE for Process Control)

23

OS-blad Technical map detailing the allowed aspects of signals,
as well as the relations between the aspects of different
signals. (Dutch: Overzicht Seinbeelden blad)

4, 15

OVS Design instructions (Dutch: OntwerpVoorSchrift) 19
OVS Application En-
gineering

OVS document prescribing how the PLC system that is
at the core of a PLC-Interlocking should be programmed
and configured. Document: [5]

19

PLC Programmable Logic Controller 6, 21
point Assembly of rails, blades and of auxiliaries, certain ones

being movable, which effect the tangential branching of
tracks and allows to run over either one track or another
(description from: [35]). See also section 2.2.2.

13

railway yard In general an area with multiple railway tracks. In this
report it is used to refer to the area of control of a single
interlocking system.

17

section A portion of track which the interlocking system can
recognise by means of a train detection system (descrip-
tion based on: [35]). See also section 2.2.3.

17

signal Apparatus by means of which a conventional visual in-
dication is given, generally concerning the movements of
railway vehicles (description based on: [35]). See also sec-
tion 2.2.1.

13

signaller The person responsible for the operation of the signalling
system in accordance with the requirements of the railway
operating rules and regulations (description from: [35]).

14

SIL-4 Safety Integrity Level 4 17
SILworX Application used to program and configure HIMA PLC

systems.
25

speed step variables A set of PLC-Interlocking input variables that are received
from a neighbouring interlocking system. The variables
indicate at what speed a train may cross the border to
the neighbouring area, if at all.

49

SSS Subsystem/System Specification 4, 46
STM Simple Train Movements test purpose model. One of the

created test purpose models, further described in section
8.3.3.

4, 94

SUT System Under Test 33

torx-explorer Either: 1) A program that communicates transitions with
JTorX via a set protocol over the standard input and out-
put streams. Or 2) The protocol used for the communi-
cation between such a program and JTorX.

37
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Notation Description Page
List

VPI Vital Processor Interlocking 6, 19

wayside element Used in this report to refer to objects in the physical layer
of the train control architecture (see figure 2.1). Exam-
ples: points, signals and train detection devices.

1, 13
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