
“QoS-aware model-driven
SOA using SoaML”

Niels Schot

A thesis submitted for the degree of
MSc Computer Science

University of Twente
EEMCS - TRESE: Software Engineering Group

Examination committee:
Luís Ferreira Pires
Marten van Sinderen

December 2012 version 1.00

http://www.utwente.nl/en/education/eemcs/
http://www.utwente.nl/ewi/trese/

Abstract

This project considers the application of Model-Driven Engineering (MDE) techniques, like
metamodeling and model transformations, to Service-Oriented Architecture (SOA). SOA model-
ing languages should support the specification of quality aspects, so that conditions, constraints
and requirements on these aspects can be specified in service models. Examples of quality as-
pects are reliability, performance, availability, security, cost and integrity. A concrete quality
requirement could be that the service response time must not exceed two seconds.

The term quality of service (QoS) is often used to refer to the collection of quality require-
ments on a service execution. A policy is associated with the point of view of each individual
participant in service interactions. For instance, the policy of a service provider defines the qual-
ity aspects of its provided service, and should be taken into consideration in the service contract
between this service provider and a service consumer, in case a service consumer agrees with
the policy.

During the development of a SOA application, several activities are performed by various
stakeholders. For instance, a service provider needs to describe the offers of the provided ser-
vice. An example of an activity for the service provider is to express the QoS offers with, for
instance, a policy. Another example is the specification of service contracts which describe the
agreement on QoS requirements. A lot of these activities can be optimized by the application of
MDE in terms of productivity, understandability and consistency.

The main goal of this project is to investigate how to include, define and use QoS definitions
in model-driven SOA, which requires the definition of quality requirements in both platform-
independent (PIM) and platform-specific (PSM) models. The SOA Modeling Language (SoaML)
is a standard to model SOA applications at PIM-level, which has been recently released and
looks promising. SoaML is chosen in this project to model the PIM-level models. These SoaML
models have to be transformed to PSM-level models in order to realize and benefit from MDE.
For instance, the QoS-aware SoaML models are mapped to WS-Policy to realize a model transfor-
mation which can be used to automatically generate policy documents. A second transformation
is made to generate pre-filled WS-Agreement templates based on service contract specifications
in these SoaML models.

i

Preface

During the last months of my master, I have worked extensively on this thesis to finish my study
at the University of Twente. Now I have completed my thesis, I would like to thank some people
who helped during this period.

First, I would like to thank my supervisors Luís and Marten for their useful reviews and
discussions about this project. The project offered a lot of directions and possibilities, and they
helped me to choose the right approach to perform this research. The numerous meetings really
helped me to distinguish the main points from the side issues of this project.

Last but not least, I would like my girlfriend Annerie, family and friends for their support
and the patience they showed for me while I was working on this thesis behind my computer.

December 7, 2012
Niels Schot

ii

Contents

Abstract i

Preface ii

List of Figures 4

List of Tables 5

Glossary 6

1 Introduction 7
1.1 Motivation . 7
1.2 Problem statement . 8
1.3 Objectives . 9
1.4 Research questions . 9
1.5 Approach . 10
1.6 Scope of the research . 11
1.7 Structure of report . 11

2 Service models 13
2.1 Service life-cycle . 13
2.2 Stakeholders . 15
2.3 Service developer . 15
2.4 Service provider . 17
2.5 Service consumer . 19
2.6 Application provider . 20
2.7 Service broker . 20
2.8 Composition designer . 21
2.9 Quality aspects . 23
2.10 Optimizable activities . 25

3 SOA modeling 28
3.1 Relevant MDE principles for SOA . 28
3.2 PIM-level language selection . 29
3.3 SoaML concepts . 35
3.4 SoaML tooling . 37

3.4.1 Selection . 38

4 QoS specifications in SoaML 40
4.1 Case study . 40
4.2 The scope of SoaML . 41
4.3 Available QoS modeling approaches . 41

1

CONTENTS

4.3.1 SoaML UML constraints . 42
4.3.2 QoS languages . 46
4.3.3 SoaML metamodel refinements . 50

4.4 Selection QoS modeling approach . 51
4.5 Implementing SoaML models . 52

4.5.1 Quality requirements . 53
4.5.2 Modeling policies . 53
4.5.3 Modeling QoS in service contracts . 55

5 PSM-level QoS modeling 57
5.1 Search scope . 57
5.2 Available policy languages . 57

5.2.1 WS-Policy . 58
5.2.2 UDDI . 59
5.2.3 Web Services Policy Language (WSPL) . 60
5.2.4 Other techniques . 61

5.3 Selection of policy language . 61
5.4 Available service contract languages . 62

5.4.1 WS-Agreement . 62
5.4.2 Web Service Level Agreement (WSLA) . 64
5.4.3 SLA* . 65
5.4.4 SLAng . 66
5.4.5 Other techniques . 66

5.5 Selection of service contract language . 67
5.6 Implementing PSM models . 68

6 Model transformations 72
6.1 Transformation environment . 72

6.1.1 Implementing the extended SoaML metamodel 72
6.1.2 Rebuilding the SoaML profile models . 73

6.2 Mappings . 74
6.2.1 Policies . 74
6.2.2 Service contracts . 77

6.3 Transformation results . 80
6.3.1 Policies . 80
6.3.2 Service contracts . 81

7 Final remarks 83
7.1 Related work . 83
7.2 Research results . 84
7.3 Future work . 84

References 92

A ATL transformations 93
A.1 SoaML2WSPolicy . 93
A.2 SoaML2WSAgreement . 97

2

List of Figures

1.1 Overview SOA application modeling process . 8
1.2 Research approach . 10

2.1 Terminology SOA application and service composition 13
2.2 General view service of the life-cycle . 14
2.3 Service life-cycle service developer . 16
2.4 General service negotiation view . 17
2.5 Service life-cycle service provider . 18
2.6 Service life-cycle service consumer . 19
2.7 Service life-cycle activities application provider . 20
2.8 Service life-cycle service broker . 21
2.9 Service life-cycle service broker . 22
2.10 Service life-cycle service broker . 22
2.11 Service contract instantiation with policies . 24
2.12 QoS specification with policies . 26
2.13 Contract definition . 26

3.1 Example of a service interface defined in SoaML 36

4.1 High-level view of the example . 40
4.2 Policy specification as UML constraint . 43
4.3 Policy specification as UML OCL constraint . 44
4.4 Part of the QoS&FT profile implementation in RSA 46
4.5 Definition of availability characteristic . 47
4.6 Defining a QoS constraint with UML constraints 47
4.7 Defining a QoS constraint with UML dependency and QoS value objects 48
4.8 Evaluation QoS modeling techniques for SoaML . 51
4.9 The involved participants . 52
4.10 Availability and performance characteristics . 53
4.11 Linking QoS requirements to participant . 54
4.12 Nested QoS specifications . 55
4.13 Expressing QoS offers . 55
4.14 QoS specification in service contract . 56

5.1 Evaluation PSM-level policy languages . 61
5.2 Evaluation PSM-level contract languages . 67
5.3 Partial WS-Policy Ecore implementation . 68
5.4 Simple WS-Policy assertion grammar (l) and example model (r) 69
5.5 Partial WS-Agreement Ecore implementation . 70
5.6 Structure WS-Agreement model [1] (l) and example model (r) 70

6.1 Partial SoaML Ecore implementation . 72

3

LIST OF FIGURES

6.2 Partial QoS&FT Ecore implementation . 73
6.3 Profile-based to metamodel-based models . 74
6.4 Properties of QoSDimension . 74
6.5 Participant policy package to WS-Policy document 75
6.6 Dependency to alternatives . 75
6.7 Separate policy subjects and nested policy . 76
6.8 QoS values to quality aspects . 76
6.9 QoS value data to quality attributes . 77
6.10 Contract specification to WS-Agreement document 77
6.11 Service contract to context . 78
6.12 Dependency to alternatives . 78
6.13 Nested QoS specifications . 79
6.14 QoS value to properties and guarantee terms . 80
6.15 Transforming the SoaML models to WS-Policy . 81
6.16 Transforming the SoaML models to WS-Agreement 82

4

List of Tables

3.1 SOA modeling approaches . 30
3.2 SoaML tool support . 37

4.1 Natural language UML constraints approach observations 43
4.2 OCL UML constraints approach observations . 45
4.3 QoS&FT approach observations . 48
4.4 UML-Q approach observations . 49
4.5 Metamodel-based approach observations . 50

5.1 WS-Policy observations . 59
5.2 UDDI QoS extension observations . 60
5.3 WSPL observations . 61
5.4 WS-Agreement observations . 64
5.5 WSLA observations . 65
5.6 SLA* observations . 66
5.7 SLAng observations . 66

5

Glossary

ATL ATLAS Transformation Language

BPEL Business Process Execution Language

CIM Computation-independent model

EMF Eclipse Modeling Framework

MDA Model-Driven Architecture

MDE Model-Driven Engineering

OMG Object Management Group

PIM Platform-independent model

PSM Platform-specific model

QoS Quality of Service

QoS&FT OMG’s UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms Specification

RSA IBM’s Rational Software Architect

SOA Service-oriented architecture

SoaML OMG’s Service-oriented architecture Modeling Language

UML Unified Modeling Language

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

6

Chapter 1

Introduction

This chapter gives an introduction to the purpose of this document. It
explains the motivation, the objective of the research along with the
research questions, the used approach and the structure of the report.

1.1 Motivation

The software engineering domain is gradually becoming more mature but is still evolving.
For instance, the relatively recent software engineering paradigms model-driven engineering
(MDE) and service-oriented architectures (SOAs) have proved to be beneficial in this domain
[2, 3]. Both SOA and MDE help manage and improve complex software projects in several as-
pects [4].

Model-driven engineering (MDE) is a development approach based on the use of models
in the software construction. These models are then leading for the development process, i.e.
they can be used to understand, estimate, communicate and produce code [2]. MDE focuses on
domain models, which can be used in various model transformations to produce other useful
models such as code. Productivity can be improved with automated transformations.

The Model Driven Architecture (MDA) is a well-known initiative proposed by the Object
Management Group (OMG) for implementing a model-driven approach by providing a set of
tools that manage models [5]. It proposes a separation of the development process in three dif-
ferent abstraction levels at which computation-independent models (CIMs), platform-independent
models (PIMs) and platform-specific models (PSMs) are defined. For instance, a PIM abstracts
from platform-specific details, which are considered in PSMs.

MDE is more comprehensive than MDA because it considers multiple modeling dimensions
in addition to the platform-independent/platform-specific dimensions, such as models for dif-
ferent purposes and stakeholders and organizational issues [2]. MDE is used to preserve anal-
ysis, conception and development efforts, improve productivity and facilitate the migration of
applications from one platform to another [2].

Service-oriented architecture (SOA) is an architectural style which allows designers to de-
sign and develop software as interoperable services. It facilitates the development of services
that are modular and can be easily integrated and reused. This is beneficial because in software
development the focus changes from developing applications from scratch, to developing ser-
vices as the reusable building blocks to build applications. Consumers can access SOA services
in a standardized way and without needing to understand how the service is implemented [6].

7

CHAPTER 1. INTRODUCTION

Because SOAs can consist of several artefacts such as services, contracts, participants, re-
lations and quality constraints, SOAs could become complex. A good way to understand them
would be to somehow model these service-oriented architectures. SOA models help explain, for-
malize and understand these architectures. There are several initiatives to model SOAs [7, 8, 5].

Research work and papers shows that applying MDE to the development of SOAs is benefi-
cial [9, 3, 10, 11]. A potential benefit is that the SOA application is modeled at different abstrac-
tion levels, making the SOA application more understandable for all SOA stakeholders. MDE
can be used to fulfill the separation of technological from technology-independent models [12].
This can be used to increase the speed of development of SOAs, thus reducing software costs.
The migration to other (possibly newer) technologies should cost less effort when following the
MDE approach [2].

1.2 Problem statement

A complete service life-cycle covers all the activities SOA stakeholders have to deal with, and
therefore covers all essential phases, starting from service design to service management. In
order to improve the development of SOA applications with MDE, we have to apply MDE to
activities of the service life-cycle.

Platform-independent level (PIM)

Platform-specific level (PSM)

Computation-independent level (CIM)

SOA model

Services interfaces Participants Service contracts

Choreography Compositions
Functional

Non-
functional?

Specification of quality
requirements in policies and

contracts

WSDL BPEL

WS-CDL

WS-*?

BPMN BMM Etc.

Service implementation (Java)

Figure 1.1: Overview SOA application modeling process

The specification of quality requirements in, for instance, policies and contracts, is one cri-
terion for SOA modeling languages that we identified from the service-lifecycle analysis [13].
There are many quality requirements possible with respect to SOAs [14]. A SOA modeling lan-

8

CHAPTER 1. INTRODUCTION

guage should allow designers to model quality aspects (also known as quality attributes), so
that requirements on these aspects can be specified in the models [15]. Examples of quality as-
pects are reliability, performance, availability, security, cost and integrity [14]. The term quality
of service (QoS) is often used to refer to the collection of quality requirements for a service.
A policy is associated with the point of view of an individual participant [16]. For instance, a
service provider’s policy that defines the quality aspects which are important for this provider,
may be the basis for a service provider/consumer’s contract when a service consumer agrees to
the provider’s policy.

Figure 1.1 illustrates the transformation process starting from CIM to PSM models for SOA.
Section 1.6 explains that this research mainly considers the PIM and PSM-level. A SOA model-
ing language is needed to model the SOA applications and services at PIM-level. Specifying
quality requirements at PIM-level (i.e., they can be incorporated in the corresponding SOA
models) seems to improve the understandability and completeness of SOA models and could
further improve development speed [17]. In this case these quality specifications can be used
in the MDE process, and, for instance, (automatically) be transformed and included in PSM
models. In order to realize this, we need to sort out how to properly represent these quality
constraints in SOA models.

1.3 Objectives

The objective of this research is stated as follows:

“Investigate how quality requirements of service models should be specified at both PIM and
PSM level and how these PIM models should be transformed to PSM models, so that
productivity for the activities of stakeholders in the service life-cycle is improved.”

1.4 Research questions

To attain the research objective the following main research question is defined:

“How to apply MDE technologies to support the specification of QoS requirements in SOA
at both PIM-level and PSM-level?”

Below, several research sub-questions have been defined that help to answer the main research
question.

RQ1 Which activities of stakeholders in the service life-cycle involve the modeling of quality require-
ments and can be facilitated by applying MDE?

RQ1.1 How detailed must the quality requirements be modeled in this activity?
RQ1.2 How can the productivity of this activity be improved?

RQ2 Which SOA modeling languages are available and are most suitable to model the PIM-level
service models?

RQ2.1 Which platform-independent SOA modeling language is most promising and suitable
for further research?

9

CHAPTER 1. INTRODUCTION

RQ2.2 How does this language support the modeling of quality requirements?

RQ3 Which platform-specific SOA techniques are available and are able to represent the quality re-
quirements of the service models?

RQ4 How can we achieve transformations from the quality requirements defined in the platform-
independent service models to the platform-specific models we identified?

RQ4.1 Can existing metamodels be used for the PIM to PSM transformation, and how can we
map the PIM metamodel onto the PSM metamodel?

RQ5 Is productivity of the stakeholder activities improved by using model-driven engineering for the
transformation of quality attributes in PIM service models to PSM techniques?

1.5 Approach

Figure 1.2 illustrates our approach. The upper left corner of each step shows a possible relation
to the research questions of a step.

Define service
life-cycle and

criteria

Evaluate and
select SOA
modeling
language

Case study on
modeling

quality
attributes with

selected
language

Study on the
availability of
suitable PSM

SOA modeling
languages

Select the
activities and

quality attribute
to be designed

and
implemented

Design of
transformation

experiments
from PIM to

PSM SOA
models

RQ1 RQ2.1 RQ2.2 RQ3

Problem analysis

Solution design Solution validation

Evaluation on the
feasibility and

effectiveness of the
transformations

RQ 4 RQ 5

feedback

Build/select an
environment for
case study and

experiments

Figure 1.2: Research approach

To fulfill the objectives, the following steps have been performed:

1. A literature study, based on the service life-cycle, to explore and select PIM-level SOA
modeling languages for this research. This step (shown in Figure 1.2 in the dashed area)
has already been partly performed in prior research [13], and is summarized and further
explained in this document.

10

CHAPTER 1. INTRODUCTION

2. A selection of actual activities and corresponding quality requirements of certain stake-
holders that are used in the research to define the scope of the project.

3. The development and/or selection of tooling and environment in which the SOA modeling
languages are evaluated and in which the transformation experiments are performed.

4. A case study in which the selected PIM-level language has been evaluated to test its capa-
bilities to model quality requirements at platform-independent level.

5. A further study to explore suitable PSM modeling languages which are able to represent
the quality requirements at the platform-specific level.

6. Design and execution of the PIM to PSM transformation of SOA models including the
quality requirements.

7. A test of hypothesis to evaluate the success of the transformation experiments. In this
step we check whether the transformations have improved the speed of development and
correctness of SOA applications.

1.6 Scope of the research

A design always should have a purpose, for instance, generating an implementation, refining
another or analysis of system properties. In this research, models are considered in which qual-
ity attributes should be specified by stakeholders. The relation and transformation of these
models, from PIM-level to PSM-level, is also considered in this research.

This means that this document focuses on (technical) service models rather than business
models which can be considered at the CIM-level. This work is about technical (ICT) services
and the corresponding SOA applications that are composed with these services.

1.7 Structure of report

The structure of the thesis resembles the research questions we have answered during our re-
search. The remainder of this thesis is structured as follows:

Chapter 2 introduces the service life-cycle, and identifies the activities of stakeholders which
involve modeling of quality attributes. Eventually, the chapter lists some typical optimizable
activities which are used as guiding line in this research.

Chapter 3 introduces some relevant MDE concepts and explains why SoaML has been selected
as the most suitable PIM-level SOA modeling language for further research. The chapter also
gives a brief introduction to the language and shows which environment and tooling is used in
this research.

Chapter 4 evaluates SoaML on its capabilities to model quality of service aspects. The chapter
shows which techniques can be used to include quality attributes in SoaML models, and ex-
plains why we have selected a QoS modeling language as our choice.

Chapter 5 studies the available PSM-level models often used to support the quality aspects as
defined in the PIM-level SoaML models. The chapter considers policy and service contract tech-
niques and explains the final selection so that these languages can be used as languages for the

11

CHAPTER 1. INTRODUCTION

target models of the transformations.

Chapter 6 explains the transformation environment and how QoS-aware SoaML models can be
transformed to PSM models including the quality attributes. The chapter also shows results of
the transformation.

Chapter 7 gives an overview of related work, summarizes our findings, and suggests topics for
future research.

12

Chapter 2

Service models

This chapter defines and explains the service life-cycle we considered
in this research. It also explains which activities of the different
stakeholders involve the modeling of quality requirements.

2.1 Service life-cycle

Figure 2.1 introduces the terminology used in this report. We use the term service models to
denote all models of a service that describe the functionality, interface, terms, conditions and
behavior of the service, i.e., the complete specification of a service. The term service description
is used to denote the models needed for publishing, finding and using a service, i.e., the models
needed in the service registry.

usesService
implementation

Service interface

implemented by

(composite) service

SOA Application

consumes

...

service

...

service

usesconsumes

...

service

consumes

Service contract

requirements/conditions on service

Describes

technical level

business entities

responsible for

Service provider

designs

Service designer

Service implementer

implements

responsible for provision of

responsible for provision of

Service provider

Figure 2.1: Terminology SOA application and service composition

13

CHAPTER 2. SERVICE MODELS

A SOA application uses services and is developed for the end-user (the potential customer).
The end-user may be a company if an employee of a company uses SOA to improve the com-
pany’s business. A SOA application could involve multiple services and stakeholders. Each
service has a service interface, which is publicly available for others, and an implementation.

A service that is formed from other services (component services) is called a composite ser-
vice. The concept of building services from other services is called service composition. The
term service contract is used to describe an agreement on the requirements, criteria and/or spec-
ification of the required interaction of a service. Initially we call this specification a proposed
service contract or contract template. When involved parties agree to terms of the contract, we
call it an instantiated (or agreed) service contract.

It is important to acknowledge the distinction between the business level and the technical
level as shown in Figure 2.1. When we talk about service consumers and providers we mean
the stakeholders at business level, which are responsible for the entities in the technical level.
For instance, the employee responsible for the SOA application in Figure 2.1 manages a SOA
application that consumes services. This employee plays the role of a service consumer, but the
actual service consumption is in the application at the technical level. When we talk about the
consumed/provided service or SOA application we mean the entities at the technical level.

A service life-cycle describes through which phases a service goes from design to operation.
Some commonly identified phases of a service life-cycle [18, 19, 20] are listed below, where
the stakeholders’ points of view are not considered yet. Figure 2.2 shows the phases we have
identified from the literature.

The black arrows show the sequence of phases during the development and usage of a ser-
vice. The grey dashed arrows show that certain phases are related to each other, for instance,
the SOA application uses services in operation.

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

service development service discovery service usage

Service models
Service

implementation
Service

description
Service

contract

Service
description

SOA application

makes use of

Figure 2.2: General view service of the life-cycle

Figure 2.2 further shows the corresponding results of each phase. For instance, when the
service design phase ends, service models should have been produced, and a service description
is needed to publish and find a service.

14

CHAPTER 2. SERVICE MODELS

2.2 Stakeholders

In this section we identify the stakeholders according to the service life-cycle depicted in Figure
2.2. In principle, each stakeholder is responsible for part of the service life-cycle. Stakeholders
are either involved or participate in the life-cycle activities. The following list shows the differ-
ent types of stakeholders which are explained in the next sections. The composition designer
subroles are explained later because separate scenarios are used as explained in the approach
(see Section 1.5.

• Providing services
- Service developer

- Service designer
- Service implementer
- Composition designer

-Service provider
• Consuming services

-Service consumer
• Designing and providing SOA application

- Application provider
- Composition designer

• Providing and maintaining service registry
- Service broker

For stakeholders it is important to know how to properly apply MDE to their activities in
building, maintaining and using services and SOA applications. Different stakeholders with
different points of view need different models for the activities of their part of the service life-
cycle. Because the development and maintenance of a SOA application involves many parties,
models of a certain stakeholder must be understood by other participants, stakeholders and
maybe even other companies.

To achieve this, MDE should be applied to those models that can be transformed to other
models, and which can then be understood by other stakeholders. It is also important to know
which phases of the development can be facilitated by model transformations, such as service
design to service implementation for the service developer. In principle, modeling and model
transformations should be used in the life-cycle of services and in the SOA application when this
is beneficial for stakeholders. Examples are the transformation of policies to service contracts
and instantiating the service contract for provider and consumer.

2.3 Service developer

Figure 2.3 shows the phases that are relevant for the service developer. We distinguish the
(sub)roles service designer, composition designer and service implementer since these activities
can be performed by different people.

In the service design phase, a service designer needs to specify the service [18] according to
the requirements. A service designer must be able to specify how a service works and how it can
be used by others. In order to do so the designer needs a SOA modeling language that allows the
specification of the service’s functionality, interfaces, interaction protocols, messages and other

15

CHAPTER 2. SERVICE MODELS

aspects. The designer also needs corresponding tools which facilitate the modeling of services.
When the design phase ends the service models must have been defined.

When a service requires bi-directional interaction with the consumer, i.e. the interaction
is more advanced than a request-response scenario, this should be modeled by the service de-
signer. When such bi-directional interaction is defined, and possibly also other criteria, a service
contract is used [11] which refers to the required interaction. In that case all parties should agree
on the contract before the service can be used. The actual form of the service contract is not an
activity for the service developer but for the service provider.

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

service development

Service models
Service

implementation

SOA application

makes use of

Realm of service designer

Realm of service implementer

Figure 2.3: Service life-cycle service developer

During the design of the service, the designer may need service discovery to seek for ex-
isting services. If certain services can be reused, service composition is used to build the new
service instead of building the new service from scratch (see Section 2.9). When no services
are reused, the service implementer implements the service according to the service designs by,
for instance, programming code. In this life-cycle we assume that testing is part of the design
and implementing activities. At the end of the testing and implementation phase the service is
implemented.

The service implementer may apply MDE in the development process. Especially the tran-
sition between design and implementation (and tests) can profit from MDE. In this case, the
models from the design phase are transformed into more concrete models in the implementa-
tion phase. This could lead to, for instance, code generation of the implementation and tests
[12]. Languages and tools to implement the service in the service implementation phase are
necessary [18]. To make use of MDE, the tool could support transformations from CIM and PIM
to PSM models, for instance, facilitating the transition from design to implementation with code
generation.

The service designer needs to be able to:

• [mandatory task] Discover services.

16

CHAPTER 2. SERVICE MODELS

• [mandatory task] Specify the service interface(s) and other service models.

• [optional task] Specify the required interaction with other participants (included in
service contract template).

The service implementer needs to be able to:

• [mandatory task] Implement services according to service design models.

2.4 Service provider

When services are published, potential consumers can discover services via the service registry
by looking through the service descriptions. When a suitable service is found, a contract has
to define how well services are delivered in terms of costs, availability, performance, etc., by
the service provider [18]. When all involved parties agree on the contract, the service can be
provided according to the contract and used in a SOA application.

Consumer Provider

Requirements Offers

Service contract

Agree?

Policy statements Policy statements

Figure 2.4: General service negotiation view

In some cases, before the service is used the consumer and provider need to negotiate in
order to agree about the terms of service provisioning. Usually services are only accessible by
authorized users. Figure 2.4 shows a general view of a negotiation. A consumer has certain
requirements on the service to be consumed, and a provider has certain offers with respect to
the provided service. These offers and requirements can relate to many aspects, such as security,
privacy, availability and functionality. We denote these requirements/offers as the policy of that
provider.

A service provider needs to able to define a policy (which could become a contract) de-
scribing its offers and capabilities. This contract might refer to a specification of the required
interaction (choreography) defined by a service developer. It should be possible to model these
concepts in such a way that it can be realized and instantiated in the negotiation phase. MDE

17

CHAPTER 2. SERVICE MODELS

can help to transform a policy of a provider to a contract template which can be accepted by
a service consumer. Another example is the realization of an agreed service contract (enforce-
ment) on a certain platform. In all these cases modeling and model transformations can help
optimize the process. Preferably these policies can already be modeled at PIM-level and then
be included in the transformation to PSM-level models to use the advantages of MDE.

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

service discovery service usage

Service
description

Service
contract

SOA application

makes use of

Realm of service provider Service
description

Figure 2.5: Service life-cycle service provider

Figure 2.5 shows the phases in which the service provider plays a role. The service provider
publishes the service to the service registry in order to allow potential consumers to find the
service. A provider should be able to define constraints/conditions on the use of the provided
service [16], which should be included in a service template. In case some party wants to use the
published service and agrees with the contract template, a contract is established. The service
provider is then expected to provide the service in the service provision phase according to the
agreed contract.

When the service is provided, monitoring is needed to check if the agreements in the contract
are met. This is captured in the service operation phase. For instance, if the contract defines
that the service should have an availability of 99%, then service monitoring is used to measure
whether the availability of the service is sufficient.

Furthermore, changes to the service should have as less as possible impact to clients. This
means that any runtime changes that occur should be handled [18], e.g., in an agreement that
could be included in the service contract.

The service provider needs to be able to:

• [mandatory task] Publish services.
• [mandatory task] Provide service description for service discovery (e.g. for a register).

• [optional task] Specify a service contract template with his offers, and/or express
offers with a policy.

• [optional task] Participate in the contract negotiation.

18

CHAPTER 2. SERVICE MODELS

• [optional task] Monitor services.
• [mandatory task] Maintain services.

2.5 Service consumer

Entities that use services are service consumers, possibly after finding the services in a service
registry. A service consumer often uses a service for the realization of a SOA application (as de-
picted in Figure 2.1). This application also has its life-cycle phases from design to maintenance.
These phases do not directly involve the service life-cycle, but modeling an SOA application
can be helpful for the common understanding among all stakeholders. An IT department of
a company which is responsible for building the SOA application can play the role a service
consumer [11, 15, 21]. However, it is also possible that there are different service consumers
involved in the SOA application, all realizing a part of the SOA application [11]. A distinction
is made between the role of a service consumer and application provider (where the latter is the
role of designing and maintaining the SOA application, explained in the next section).

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

service discovery service usage

Service
description

Service
contract

SOA application

makes use of

Realm of service consumer

Figure 2.6: Service life-cycle service consumer

In the service consumer role, service discovery, usage, and service composition are impor-
tant. The quality of the consumed services is also important for consumers. A consumer should
check the service description of a provided service to determine if its offers are sufficient. If the
offers are not sufficient a consumer might start a negotiation with the provider. A consumer can
also express his requirements with a policy, so that providers or possibly a broker can see them.

Figure 2.6 shows that the consumer is involved in service discovery, composition, the nego-
tiation and monitoring in the operation. A consumer needs service discovery to find suitable
services to fulfil its requirements. When a potential service is found in the registry, a negotia-
tion between provider and consumer takes place to agree on the usage of the service. In case the
service is selected for usage, the result of this negotiation is an instantiated service contract.

Furthermore the consumer is important in the service design as potential user of the new
service.

19

CHAPTER 2. SERVICE MODELS

The service consumer needs to be able to:

• [mandatory task] Discover services.
• [mandatory task] Participate in the contract negotiation, e.g., by expressing requirements

with a policy.
• [optional task] Agree on the service contract and use service.
• [optional task] Monitor the consumed service.

2.6 Application provider

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

SOA application

makes use of

Realm of application provider

Figure 2.7: Service life-cycle activities application provider

We distinguish the role of a application provider from the role of a service consumer because
the activities can be performed by different people. The application provider is responsible for
the SOA application, i.e., the application for the end-user that consists of several cooperating
services. In many cases the application provider will also play the role of a service consumer for
each of the services in the SOA application.

Modeling and maintaining an SOA application are the activities of the application provider.
This stakeholder needs a language to model the SOA application. For instance, the application
provider might need a language to describe the application architecture (high-level architec-
ture) if this helps improve the business process and understanding for all involved stakeholders.
A model of a SOA application can include participants, service contracts and the used services.

The application provider needs to be able to:

• [mandatory task] Model an SOA application.
• [mandatory task] Maintain SOA application.

2.7 Service broker

A service broker is a role often identified in the literature which acts as an intermediary be-
tween a provider and a consumer [22]. The main role of a service broker is to maintain service

20

CHAPTER 2. SERVICE MODELS

information which is contained in a service registry to support service discovery. We assume
that services should be visible for consumers somehow [16, 11] because the visibility is neces-
sary for service discovery. If services are not visible, consumers can not find and access services.
Providers use the service registry to publish their services, while consumers use it to look up
services [22, 15].

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

service
requests

service discovery service usage

Service
description

Service
contract

SOA application

makes use of

Realm of service broker

Figure 2.8: Service life-cycle service broker

The service broker is involved in the service discovery, negotiation and management phase.
This stakeholder is responsible for the functioning and maintenance of a service registry. When
the registry needs maintenance this should preferably effect the other stakeholders as little as
possible. The service broker facilitates the service negotiation and provision phase by making
service information available for consumers.
The service broker needs to be able to:

• [mandatory task] Support service discovery (with a service registry).
• [mandatory task] Maintain the service registry.

2.8 Composition designer

Service composition can also be considered in the stakeholder activities. Two stakeholders are
able to use service composition in their activities.

A service designer might reuse other services to built a new service. In this case service
composition is part of the design phase of the service, e.g., the new service is obtained with
composition and the developer needs to learn how other services can be used in the new service.
The service designer then plays the role of a composition designer. The composition designer
“implements” the service as a composition. In this case the designer does not know the actual
service consumer.
The service designer as composition designer needs to be able to:

• [mandatory task] Design a service as a composition at design time.

21

CHAPTER 2. SERVICE MODELS

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

Service composition

uses uses

service
requests

service development

Service models
Service

implementation

SOA application

makes use of

Realm of service designer

Realm of service implementer

Realm of composition designer

Figure 2.9: Service life-cycle service broker

The second stakeholder who might need service composition is the application provider. In
this case the application provider might use other services, and thus use service composition to
compose a service for its needs [20]. An application provider applies service composition to use
several services in combination to fulfill a certain business goal. Since the consumer does not
want to develop a new service at design time (as explained in the role of a service implementer),
the consumer must be able to model this composition in the SOA application. In this case,
the consumer plays the role of a service composition designer which composes new services at
runtime.

Service design
Service

implementation
Service publishing Service provision

and negotiation

requirements /
business process

specification

Service operation

Service discovery

Service composition

uses

service
requests

SOA application
uses

makes use of

Realm of application provider

Realm of composition designer

Figure 2.10: Service life-cycle service broker

The application provider as composition designer needs to be able to:

22

CHAPTER 2. SERVICE MODELS

• [optional task] Design a SOA application as a composition at runtime.

2.9 Quality aspects

When modeling SOA applications and services, often the term quality of service (QoS) is used
to refer to the collection of quality requirements for a service. QoS should be modeled [14] be-
cause these quality requirements can then be acknowledged by stakeholders. Different services
can provide the same functionality for consumers, so QoS specifications of these services are
essential in determining the most suitable services for consumers [23]. With respect to SOA
QoS often covers security, performance, availability, and privacy [24]. The importance of a cer-
tain quality aspect depends on the context of the project in which the SOA is designed. A SOA
modeling language should be able to model quality aspects, so that requirements on these as-
pects can be specified in the models [15]. In order to properly model quality requirements it
should be determined at which abstraction levels these requirement are relevant, and how we
can describe these requirements. Some concepts related to QoS in SOA are briefly discussed
below.

Policies

Service developers, providers and consumers might need to specify the QoS of services being
supported. A concept often used to specify constraints on models is a policy [11, 16]. A policy
represents some constraint or condition on the use, deployment or description of an owned
entity as defined by a participant. Policies allow the definition of constraints on required or
supported QoS. Service policies potentially apply to many aspects of SOA, such as, for example,
security, privacy and manageability [16]. For example, the service consumer may require secure
interactions. A service provider might specify that his service has a minimum availability of
95%. Therefore we must investigate how to describe constraints and policies in and on the
models with SOA modeling languages.

Policies relate to, but are different from, service contracts. A service contract is an agree-
ment between two or more participants, while a policy is associated with the point of view of
an individual participant [16]. For instance, a service provider’s policy may be fulfilled by a
service contract between them when a service consumer agrees to the provider’s policy. Below
we discuss some concepts related to policies.

Service negotiation

During the negotiation phase, the consumer and provider negotiate on the usage of the service.
When both participants agree, the agreement is captured in the service contract. In order to
enforce the contract, service monitoring is needed to check whether the agreement is violated
or respected.

Figure 2.11 visualizes how policies and contracts relate to each other. The proposed service
contract of the service provider is shown on the left side. This includes a description of the
service with information about offers, service interface and possibly also the choreography. The
policy of the provider contains a QoS offer and other possible terms and conditions. The service

23

CHAPTER 2. SERVICE MODELS

consumer also has its constraints, which has to be fulfilled by the final service contract. The
service contract reflects the agreements on the usage of the service.

Service level agreement (SLA) is the term often used in literature to denote a template for
service contracts [15]. An instantiated SLA can represent the agreement on the policies as de-
picted in Figure 2.11.

Proposed service contract

Service description

Provider
policy Service

interface

Agreement on
policy

agree

Agreement on
using specified

interface /
choreography

Proposed service contract

Choreography
Optional

Provider Consumer

Consumer
policy Service

interface

Choreography
Optional

agree

Negotiation

Figure 2.11: Service contract instantiation with policies

An SLA describes the intended boundaries for a service, particularly with regard to non-
functional properties. SLA’s are used when a certain level of verifiable quality is required. The
key to defining SLAs is to provide enough information or verifiable metrics for a service con-
sumer to preselect services based on the desired level of quality [25]. Service providers instru-
ment their services in such a way that measurements are collected and then compared to the
metrics specified in the SLA. A service consumer needs to agree with the SLA before the service
can be consumed. An SLA is part of the service description, and could be instantiated in the
service contract [15].

Aggregated QoS

When taking into account composite services we also have to consider how the QoS provided
by composite services is defined, also known as the aggregated QoS. These are based on and
influenced by the QoS of the component services [14]. Low quality of a component service may
cause all services based on this service to degrade in quality [26]. Calculating the aggregated
QoS is helpful for the provider of a composite service to define policies.

Common quality aspects in SOA applications

There are several papers providing overviews of common quality aspects in SOA applications.
Some quality aspects which are often mentioned are availability, reliability, performance, us-
ability [27, 23, 26]. The work of [23] is interesting because it considers multiple stakeholders
as it is done in this work. We are interested in common quality requirements for stakeholders
which should preferably be modeled during design-time. The exact form of the QoS require-
ments depends on the SOA application being developed. Some examples are listed below:

24

CHAPTER 2. SERVICE MODELS

Availability A common quality aspect is availability. Some example metric is the availability of
the service itself: availability = uptime / (uptime - downtime) [23]. A certain QoS require-
ment for a consumer could be that a service to be consumed should have an availability of
at least 99%, because otherwise the SOA application does not function properly.

Performance Another aspect for the consumer could be performance. One example metric is
the service response time (SRT) which can be calculated as: time when service consumer
finishes sending request to the service - time when service consumer starts receiving re-
sponse from the service.

Reliability A well-known example of a reliability requirement for the consumer could be that
the mean time between failure (MTBF) should be lower than a certain limit. The MTBF
can be calculated as: summations of time between failures / total number of failures [23].

Other example aspects Other examples of quality requirements for a provider could be the
completeness of the interface description, the maximum number of the web service re-
quests served in a given period of time (throughput) and security.

2.10 Optimizable activities

The previous sections have shown which activities and models are possible for service stake-
holders, and why it is necessary to model quality attributes. This section lists some typical ac-
tivities that require the modeling of quality attributes and which could be optimized with MDE.
The following activities are used in this research to show that modeling quality attributes at
PIM-level and corresponding transformations to more detailed models are beneficial for stake-
holders. This section defines the hypothesis for our transformations. We take a closer look at
these activities to determine at which level and how quality attributes must be specified in the
corresponding models.

Policy specifications A consumer has certain quality requirements on the service to be con-
sumed. For instance, one obvious requirement would be that the service has a certain
level of availability which is sufficient for the consumer. The provider also has to specify
a policy on quality aspects such as availability, throughput, security and interoperabil-
ity [23]. It would be beneficial to already model these policy specifications at PIM-level
because these requirements, or at least the type and bounds of these requirements, are
probably already known at design time of the SOA application. Otherwise these require-
ments should be added later on (i.e., during the transformation to PSM-level models),
which costs extra time. It would also be better to have as much as possible already speci-
fied in the PIM-level model because a PIM-level model should gather all the information
needed to describe the behavior of the system in a platform independent way [28].

Figure 2.12 gives an overview of the situation. QoS requirements expressed in the policies
of the consumer and provider can already be (partly) modeled at PIM-level. When gen-
erating PSM-level models (and ultimately runtime models, which we consider as detailed
PSM-level models), the QoS requirements are already available.

25

CHAPTER 2. SERVICE MODELS

Platform-independent level (PIM)

Platform-specific level (PSM)

Policy Policy

Availability > 98%
Service response time < 2s
Service failure ratio < 2
...

Availability > 99.5%
Throughput > 20/s
...

Policy

Availability > 98%
Service response time < 2s
Service failure ratio < 2
...

To be included in or
connected to the PIM-level

models

runtime

To be expressed with PSM-
level models (which are able

to represent or help to
enforce the QoS
requirements)

Consumer Provider

Availability > 99.5%
Throughput > 20/s
...

Policy

M
o

d
el evo

lu
tio

n
 (fro

m
 a m

o
re ab

stract
P

IM
 to

 a d
etailed

 P
SM

)

Service

Service

Service

Figure 2.12: QoS specification with policies

Service contracts When modeling an SOA application, service contracts can already be mod-
eled at design time to define the agreements on the usage of services [11]. The service
contracts then form (a part of) the SOA application, and the modeling of these contracts is
therefore part of the activities of the application provider. In order to fully model a service
contract, agreements on quality attributes must be included in the service contract (as ex-
plained in Section 2.9). Both the provider and consumer are involved in the instantiation
of this contract, because the service contract is based on the policies of these stakehold-
ers. When these contracts are defined at PIM-level it would be effective to (automatically)
translate these contract models to PSM-level models which are able to express or even
instantiate the contracts on that specific platform.

Platform-independent level (PIM)

Platform-specific level (PSM)

To be included in or
connected to the PIM-level

models

runtime

To be expressed with PSM-
level models (which are able

to represent or help to
enforce the QoS
requirements)

Consumer Provider

M
o

d
el evo

lu
tio

n
 (fro

m
 a m

o
re ab

stract
P

IM
 to

 a d
etailed

 P
SM

)

Contract template

Service
Instantiated contract

Contains agreement on QoS
requirements of service

Contains agreement on QoS
requirements of service

SOA application designer

Contract template

Service

Service

Figure 2.13: Contract definition

26

CHAPTER 2. SERVICE MODELS

Figure 2.13 shows how an instantiated contract can be achieved based on a PIM-level
contract, which preferably, already includes as much as possible QoS information.

The previous two activities can both be optimized when it is possible to already model quality
attributes at PIM-level. Some advantages are that the transition from PIM-level to PSM-level
models can be done faster and that the QoS requirements are already specified at PIM-level.
This makes it possible to specify the design of the SOA application and services more complete
and rigorous [17].

27

Chapter 3

SOA modeling

The chapter introduces some relevant MDE concepts and explains
why the SOA Modeling Language (SoaML) is selected as PIM-level
modeling language for further evaluation. It further gives a brief
introduction the SoaML.

3.1 Relevant MDE principles for SOA

MDA is by far the most well-known MDE initiative and a lot literature is devoted to it. In this
report the MDA concepts are also used regularly and therefore this section briefly introduces
MDA’s most important concepts. MDA defines the following models:

1. Computation-independent models (CIM) are a view of a system from the computation-
independent viewpoint. The computation-independent viewpoint focuses on the envi-
ronment and the requirements of the system; the details of the structure and processing
of the system are hidden or are yet undetermined. A CIM does not show details of the
structure of systems. A CIM is sometimes called a domain model, and a vocabulary that
is familiar to the practitioners of the domain in question is used in its specification [29].

2. Platform-independent models (PIM) are a view of a system from the platform independent
viewpoint. The platform independent viewpoint focuses on the operation of a system
while hiding the details necessary for a particular platform. A platform independent view
shows that part of the complete specification that does not change from one platform to
another. A PIM exhibits a specified degree of platform-independence so as to be suitable
for use with a number of different platforms of similar type [29].

3. Platform-specific models (PSM) are a view of a system from the platform-specific view-
point. A PSM combines the specifications in the PIM with the details that specify how that
system uses a particular type of platform [29].

In principle an MDA process starts with defining CIM or domain models, then these models
can be transformed to PIM and PSM models. These transformation are called vertical transfor-
mations. A direct vertical transformation is not always possible because the gaps between the
models that are too big to bridge in a single transformation. In these cases, additional trans-
formations are used to, for instance, transform a certain abstract PIM model to a more detailed
PIM. A PIM-model has a certain level of platform-independence which has to be identified.
This could, for instance, be done using the concept of abstract platforms [30] supporting the
platform-specific realization of a model.

28

CHAPTER 3. SOA MODELING

When applied to the development of SOA applications, the CIM-level could describe busi-
ness models which include goals, business rules, business processes and business services. This
could be done with for instance the Business Motivation Model (BMM) and Business Process
Modeling Notation (BPMN).

The PIM-level describes SOA models which are independent of the execution platform or
technology being used. It includes models of service interfaces, service contracts, service en-
actments, participants, etc [11]. Models at this abstraction level are considered as software
specification models.

The PSM-level describes platform models as executable artefacts. These models can be con-
sidered as software realization models. If the SOA application is implemented with, for in-
stance, web services, service interfaces can be represented using the Web Service Definition
Language (WSDL) [31]. Another example is the Business Process Execution Language (BPEL)
for specifying business process behavior based on web services [32].

Metamodels

For MDE, metamodels are an important concept. Every model in a certain modeling language
conforms to that language’s metamodel. A metamodel can be considered as an explicit descrip-
tion (constructs and rules) of how a model can be built.

Model transformations can be used for many MDE and SOA purposes, such as, e.g., trans-
forming PIM to PSM models, generating specific models for a certain stakeholder’s viewpoint,
etc. The most well-known metamodel-based model transformation languages are ATLAS Trans-
formation Language (ATL) [33] and Query/View/Transformation (QVT) [34].

In order to apply MDE (and particularly MDA) to the development of SOAs, it is important
to have a concrete metamodel for the SOA application to be modeled. If such a metamodel
is not available it must be defined. This metamodel mechanism is needed to unambiguously
define modeling languages, so that a transformation tool can then read, write, and understand
the models. Transformations are defined as relations between metamodel elements the source
and target models. [35].

3.2 PIM-level language selection

Several SOA reference models, reference architectures, maturity models, ontologies, modeling
languages, and governance specifications have been released. Most of them come from open
standards work fostered by OASIS (Organization for the Advancement of Structured Informa-
tion Standards), The Open Group and OMG (Object Management Group). Because an abun-
dance of specifications and standards have emerged, Kreger et al. [36] wrote an overview docu-
ment that explains and positions these SOA architectural standards. Next to the open standards
work, several SOA modeling initiatives come from the research community.

Role of UML

Software systems are often modeled with the general-purpose Unified Modeling Language (UML).
OMG has fostered the UML standardization since in 1997. Over the past few years it has gone
through several revisions up to UML 2.4, including notation techniques to model software-

29

CHAPTER 3. SOA MODELING

intensive systems. It offers various diagrams to model the structure and behavior of software
systems.

Although UML originally was developed for object-oriented system modeling, it can easily
be extended to support modeling of, for instance, user interface flows, business activities, and
data schemas [3]. Recent versions allow designers to describe many aspects of SOA applications
[11]. However, [3] and [37] also emphasize the need to able to model a service component,
which cannot be properly modeled with UML. Directly applying UML concepts for modeling
SOA, although it can be regarded as a good starting point, is not an entirely convenient approach
[37]. This means that with standard UML it is not possible to properly model the SOA concepts
we have mentioned in our criteria [13].

Metamodel and UML profiles

UML has a built-in lightweight extension mechanism called UML profiles. With this mechanism
it is possible to extend UML to match the needs of a certain domain. A set of stereotypes and
constraints can be created and grouped into a profile. These stereotypes can be applied to mark
up a model for a specific platform or domain.

These UML profiles are a way to implement metamodels represented in these SOA modeling
specifications. Several authors defined a UML profile for their approach, such as [38], [10] and
[11].

The UML profile is appropriate when the objective is to model services and SOA applications
using already existing UML editors. The use of stereotypes and tagged values in these profiles
preserve the UML semantics and do not create new languages.

For the transformations the metamodeling approach seems to be more suitable. In the first
place, a metamodel is more convenient than UML profiles in transformation languages as ex-
plained in [39] and [33]. Furthermore a metamodel can be used to extend the modeling language
so that it can be used in different domains. Users can reuse metamodel implementations and
extend them to create their own domain specific languages [12]. This is beneficial for possible
future work.

Overview SOA modeling approaches

Table 3.1 shows a summary of several SOA modeling approaches that have been evaluated in
[13]. It gives an overview of several prominent and relevant SOA modeling approaches, docu-
ments and specifications. A short description and purpose of each approach is given.

Table 3.1: SOA modeling approaches

Name Description Purpose

OASIS
Reference
Model
(SOA RM)
(2006) [16]

The SOA RM is intended to capture the essence
of SOA, as well as provide a vocabulary and
common understanding of SOA [36]. It is writ-
ten at a high abstraction level and it supports
much of the SOA modeling criteria as defined
in [13].

Explaining SOA core
concepts

Used to understand SOA
concepts, no modeling
language.

30

CHAPTER 3. SOA MODELING

Open
Group SOA
Ontology
(2010) [40]

This ontology extends, refines, and formalizes
some of the core concepts of the OASIS Ref-
erence Model. It is used for understanding
the core SOA concepts and facilitates a model-
driven approach to SOA development [36] [40].

Explaining SOA core
concepts

Used to understand SOA
concepts, no modeling
language.

OASIS
Reference
Archi-
tecture
(OASIS RA)
(2011) [15]

OASIS RA is an abstract, foundation reference
architecture addressing the ecosystem view-
point for building and interacting within the
SOA paradigm. It specifies three viewpoints;
specifically, the Service Ecosystem viewpoint,
the Realizing SOAs viewpoint, and the Own-
ing SOAs viewpoint. Since it is an abstract and
foundational reference architecture, it does not
contain the level of specificity required to di-
rectly implement SOA-based systems. It does
provide metamodels and architectural implica-
tions for each of the views useful in guiding
other architecture work, including other refer-
ence architectures [36].

Understanding SOA
from different view-
points

Used to understand SOA
concepts, less abstract
than the reference model,
no concrete modeling
language.

Open
Group SOA
Reference
Architec-
ture (2011)
[21]

The Open Group SOA Reference Architecture
is a layered architecture from the consumer and
provider perspective with cross-cutting con-
cerns describing these architectural building
blocks and principles that support the realiza-
tions of SOA. It is used for understanding the
different elements of SOA, deployment of SOA
in the enterprise, basis for an industry or orga-
nizational reference architecture, implication
of architectural decisions, and positioning of
vendor products in SOA context [36]

Understanding SOA
from different view-
points

Used to understand SOA
concepts, much aimed at
business integration.

31

CHAPTER 3. SOA MODELING

Soa Mod-
eling
Language
(SoaML)
(2012) [11]

The SOA Modeling Language (SoaML) is a
promising dedicated language for the model-
ing of SOAs. The Object Management Group
SoaML Specification supports services model-
ing UML extensions. SoaML is used to rep-
resent SOA artifacts in UML. It supports a
lot of the SOA concepts mentioned in The
Open Group SOA Reference Architecture [36].
SoaML is not a methodology for developing
SOAs but purely a modeling language. It is a
standard proposed by OMG. It offers intuitive
and complete support for modeling services in
UML [11]. It keeps the main SOA modeling
principles of PIM4SOA [41]. SoaML is meant to
provide a rigorous definition of service-related
terms and thereby form a foundation for dia-
log and common understanding in the service
domain. It is focused on general service de-
sign and provisioning, it is methodology agnos-
tic and is not able to cover the full service life-
cycle [42].

SOA modeling lan-
guage (metamodel +
UML profile)

At first sight most
complete language for
our purposes. Satisfies
most of the criteria,
including all the
functional aspects. They
mention that service
discovery, applicability,
methodologies,
deployment and runtime
of services are out of
scope.

A Platform
Indepen-
dent Model
for SOA
(PIM4SOA)
(2007) [43]

The PIM4SOA project aims to develop a meta-
model for SOA. This metamodel consists of
a set of essential aspects for SOA. PIM4SOA
addresses four system aspects (views): pro-
cesses (logical order in terms of actions, con-
trol flows and interactions between services),
information (related to the messages or struc-
tures exchanged by services), services (descrip-
tion of services: access, operations and types)
and quality of service (extra-functional qual-
ities that can be applied to services, informa-
tion and processes). The project also provides a
set of transformations that link the metamodel
with specific platforms (agents, web services,
etc.) following the MDA approach.

SOA modeling lan-
guage (metamodel)

Satisfies part of the
criteria. Mainly the
functional aspects but
QoS is also supported.
Service contracts,
choreography and
service discovery are not
covered.

32

CHAPTER 3. SOA MODELING

CBDI-
SAE Meta
Model
(2011)

The CBDI-SAE Meta Model for SOA is a class
model of the concepts contained in the CBDI
Service Architecture & Engineering (CBDI-
SAETM) Reference Framework. The authors
worked on the design of SoaML [44] and men-
tion that the SAE Meta Model complements
SoaML by providing full lifecycle support (for
their SAE methodology). They say that CBDI-
SAE Meta Model supports metadata and poli-
cies where SoaML does not support this. They
say that SoaML is enough if additional meta-
data is not needed. However, to support the
full service life-cycle, they claim SoaML is not
enough. CBDI-SAE Meta Model defines a map-
ping to SoaML.

SOA modeling lan-
guage (metamodel +
UML profile)

Commercial modeling
language part of their
SAE methodology. Looks
complete according to
our criteria, but has no
service discovery and
security support.

Service-
Oriented
Modeling
and Ar-
chitecture
(SOMA)
(2004) [7]

SOMA is a modeling and design technique for
defining and developing a service-based IT so-
lutions proposed by IBM in 2004. It was one of
the first modeling approaches for SOAs.

They describe that the main first-class con-
structs in an SOA are services, service compo-
nents, and process flows. These are at a higher
level of abstraction than that of objects, classes,
and components. Hence, there needs to be a
higher level of modeling and design principles
that deal with the first-class constructs of an
SOA [7]. The SOMA approach is built on top
of object-oriented analysis and design (OOAD)
while it adds modeling and design techniques
specific to SOA.

Deliverables of SOMA can be created with,
for instance, the SOMA-Modeling Environment
(SOMA-ME). This is a framework based on
SOMA that uses UML profiles (which extend
UML 2.0) to model SOAs in a model-driven way
[45]. However it says that IBM’s newest version
of the SOMA methodology (version 2.9) heav-
ily uses SoaML and is tightly aligned with the
SoaML tooling in the modeling products [5]. It
is hard to find further information about the
SOMA methodology because the development
is closed. Documentation and their commercial
tools are not freely available.

SOA-based lifecycle
methodology serving
as a service-modeling
platform

Commercial modeling
language part of their
SOMA methodology.
Moved to SoaML as
main modeling
language.

33

CHAPTER 3. SOA MODELING

Service-
Oriented
Modeling
Framework
(SOMF)
(2008) [46]
[8]

The SOMF framework is an agile model-driven
engineering methodology that offers a model-
ing language and best practices that can be
used during various stages of the software de-
velopment life cycle [46] proposed by Micheal
Bell. The SOMF framework is very broad, it
aims as a holistic language to design any ap-
plication, business and technological environ-
ment, either local or distributed.

SOMF specifies technology-neutral services. It
does not assume a web service SOA-based im-
plementation. The technology neutral repre-
sentation of services is expressed at multiple
levels of abstraction: conceptual, analysis, de-
sign and architecture.

SOA-based methodol-
ogy including model-
ing language

Commercial modeling
language included in
SOMF framework.
Remarkably few research
papers about SOMF.
Uses its own different
syntax to represent SOA
concepts. Includes
support for standard
notations such as
SoaML.

Modelling
of Service-
Oriented
Archi-
tectures
with UML
(2008) [10]

Lopez-Sanz et al. proposed a UML profile for
modeling PIM level architecture. With this
profile it is possible to model several types of
services and contracts in UML using stereo-
types at the PIM level. Lopez-Sanz et al. were
working on a specification of PSM-level SOA ar-
chitectural models for different service execu-
tion platforms (web service, CORBA, etc.).

SOA modeling lan-
guage (metamodel)

Modeling language
which satisfies all our
functional criteria and
some constraints at a
basic level. Next to the
paper, there is less
information available
about their metamodel.
Defined before SoaML
was released.

UML-S
(2008) [47]

Dumez et. al proposed the UML-S (UML for
Services) extension. It extends the UML 2.0
class and activity diagram to support develop-
ing composite web services. In order to real-
ize the model-driven vision they provide high-
level UML-S models which can be transformed
to platform-specific code [47].

SOA UML extension
(specifically aimed at
service composition,
includes UML-profile)

This UML extension
does cover some of the
functional criteria and
composition, but misses
a lot of other aspects
such as participants,
discovery, definition of
constraints etc.

34

CHAPTER 3. SOA MODELING

Some SOA modeling approaches were not further evaluated because they are outdated, not
complete or irrelevant. Examples are IBM’s “UML 2.0 Profile for Software Services” [48] which
is deprecated (and replaced by SoaML), UML-RT, governance frameworks, maturity models
and various other papers such as Zhang et. al [49] which seem to be overtaken by the SoaML
standard. Also the “Web Services Architecture” from W3C [50] was not evaluated further in
detail because it just focuses on characteristics of web services, and does not propose a SOA
modeling approach.

When we specifically look at SOA modeling languages, the CBDI-SAE Meta Model is another
interesting model. It looks very complete, but unfortunately it is not a standard and has only
commercial support. However, the metamodel is freely available in various formats. They also
mentioned that their metamodel will be continued (as part of their methodology) so it might be
interesting to consider this work when necessary. The research work and metamodel proposed
by Lopez-Sanz et al. [10] may also be worth investigating, because they support PIM-level SOA
modeling that is not based on any previous modeling language or methodology.

Most of the other approaches are unfortunately commercial, limited or only focused on ex-
plaining SOA concepts.

The most promising and complete SOA modeling approach is SoaML. In the recent future
it is expected that SoaML becomes more and more adopted as a standard modeling language
for SOA [37] [42]. Almost every well-known SOA modeling approach/company (such as OMG,
OASIS, the Open Group and Everware-CBDI) have contributed to this language, apart from the
fact that they already have a modeling language themselves. The language is available since
2008 and IBM’s SOMA methodology already moved to SoaML. Other methodologies such as
CBDI’s SAE and SOMF support mapping and/or integration with SoaML.

3.3 SoaML concepts

SoaML is a recently proposed standard which is becoming increasingly popular for the model-
ing of SOAs [37, 51]. The SoaML specification supports services modeling with UML extensions
and is used to represent SOA artifacts in UML. SoaML is not a methodology for developing
SOAs but purely a modeling language. It offers intuitive and complete support for modeling
services in UML [11]. SoaML is meant to provide a rigorous definition of service-related terms
and thereby form a foundation for dialog and common understanding in the service domain. It
focuses on general service design and provisioning, it is methodology agnostic and is not able
to cover the full service lifecycle [42, 13] because certain aspects are out of SoaML’s scope.

SoaML is suitable to specify both services and SOA applications, taking into account the
needs of different stakeholders. It was designed to support MDA and as such provides a baseline
modeling language for the specification of services within a SOA application. The extensions
to UML provide the key language constructs for specifying the structure of services. SoaML
does not specify which kind of behavioral notation to use. The goal of SoaML was not to be a
broad modeling language to support all aspects of SOAs, but rather to be a small core that can
be extended and integrated with other modeling languages such as, e.g., BPMN for behavioral
modeling [31].

SoaML supports the modeling of SOA concepts by introducing specialized diagrams (e.g.,
the service contract diagram) and extends other UML concepts (e.g., ports) with additional se-
mantics. These diagrams are extensions to the UML standard diagrams. Figure 3.1 shows an

35

CHAPTER 3. SOA MODELING

example of a SoaML diagram describing a service interface. The extensions provide the required
syntax to model the SOA concepts and can be used to express the semantics of these concepts.

Figure 3.1: Example of a service interface defined in SoaML

SoaML is also based on loose coupling. Loosely coupled systems imply that services should
be designed with little or no knowledge about particular consumers of these services. Different
consumers may have a different view of what to do with a service based on what they are trying
to accomplish [11]. For example, service contracts promote loose coupling in SoaML, since it is
not necessary to define who, how or why parties will fulfill their obligations in a service contract.
This may be modeled using SoaML in, e.g., a Participant diagram.

Furthermore SoaML supports modeling at different abstraction levels, by separating the in-
side and outside of several SOA concepts (such as participants). In this way, SOA concepts can be
modeled more easily by different stakeholders. For instance, a SOA application stakeholder can
model the overall architecture of an SOA, while a service implementer can model some service
operations. Furthermore SoaML allows nesting of concepts, which further promotes modeling
at different abstraction levels.

SoaML does not support service discovery. Service discovery has to be realized separately
with a service registry and suitable service descriptions. The specification of policies and non-
functional constraints of services are not covered either. Furthermore, the SoaML specification
does not mention how we can refine SoaML models to PSM (e.g., runtime) models. Exam-
ples of stakeholder activities that need refinements of PIM models implementation towards
concrete services (possibly including composition) and the enforcement of choreographies and
other agreements in the contract.

SoaML can be used to model most of the mentioned criteria in [13], but some aspects are
out of the scope. For instance, the SoaML specification does not address the specification of
quality constraints. The SoaML specification describes that policies and quality attributes can
be modeled as constraints that can be rules owned by model elements, including service ports
and service participant components. The actual form of these policies and further details are
out of scope for the SoaML specification [11].

In order to be able to use SoaML, stakeholders should know in which ways and how well
quality constraints can be modeled in SoaML models. The SoaML specification explains it is
possible to model quality aspects in SoaML, but does not prescribe any technique or methodol-
ogy.

36

CHAPTER 3. SOA MODELING

3.4 SoaML tooling

Since SoaML is a standard published in March 2012, its tool support is still limited. OMG’s
SoaML wiki [52] lists some of the available tool support for SoaML.

Table 3.2: SoaML tool support

Name Description Licensing

ModelPro ModelPro is a general purpose MDA provision-
ing engine able to produce a wide variety of ar-
tifacts from models, based on the Eclipse tool-
ing framework. It provides a SoaML cartridge
which is able to produce executable web ser-
vice implementations for services architectures
defined in SoaML. Apparently SoaML is imple-
mented as an UML profile [52].

Open
source

Cameo SOA+ suite
(NoMagic MagicDraw)

This suite provides a plugin for MagicDraw
from No Magic and the ModelPro MDA tool-
ing from ModelDriven.org. With this suite it is
possible to visually model SoaML application
in both MagicDraw and Eclipse (also code gen-
eration is supported in combination with Mod-
elPro) [52, 53]

Commercial

Modelio Commercial modeling tool with an open-
source SoaML designer extension. Code gen-
eration is supported.

Commercial
(partly
open-
source)

IBM Rational Software
Architect

Commercial software architect tool supporting
SoaML modeling. To be used in combination
with other IBM Rational products [54]. Very
complete implementation of SoaML based on
its profile. It also support transformations to
PSM-level models.

Commercial

SparxSystems Enter-
prise Architect

Commercial software architect tool supporting
SoaML modeling. SoaML is supported in the
Corporate, Systems Engineering, Business and
Software Engineering and Ultimate editions of
Enterprise Architect [52].

Commercial

37

CHAPTER 3. SOA MODELING

SoaML Eclipse plug-in
by Delgado et al. [55]

Eclipse plug-in (based on Eclipse EMF and
GEF) which implements the SoaML profile,
support visual modeling with a Papyrus (UML
design tool) extension. SoaML models can be
imported and exported as XMI files, but the
tool seems to lack full SoaML support, because,
for instance, service behavior cannot be mod-
eled. [55]

Open-
source
(source-
code not
available
yet)

SoaML Eclipse plug-in
by Ali et al. [12]

A tool for modeling SOA using SoaML and
generating OSGi Declarative Services Models
from SoaML models. SoaML metamodel has
been implemented as an Ecore model using
the Eclipse Modeling Framework (EMF). An
Eclipse plug-in that allows architects to graph-
ically design SoaML models has been devel-
oped using the Graphical Modeling Framework
(GMF) [12].

Source-
code not
available

Where possible, we prefer open-source tooling for our work because in this case we are not
limited by licenses and possibly also get access to the source code. Furthermore we also prefer
tools that use the SoaML metamodel (as explained in section 3.2) instead of the UML profile
because this is more convenient for the model transformations. Most of the tools in Table 3.2
are commercial and some tools are results from research projects.

Most tools in Table 3.2 do not strictly cover SoaML as specified in the SoaML specification
[11]. For instance, the supported syntax is slightly different, some functionality is missing or
some constraints on the models are not implemented.

The open-source ModelPro project looks promising because [53] discusses how they used
SoaML models with the MDA. A drawback is that SoaML is implemented as profile, and the
documentation targets ModelPro in combination with the Cameo SOA+ suite, which is com-
mercial.

The work of Delgado et al. [55] also seemed promising. The SoaML plugins are freely
available, but it also uses UML profiles, needs further improvements, and the source code is not
published yet.

3.4.1 Selection

The most appropriate choice for the modeling of the SoaML models seems to be IBM Ratio-
nal Software Architect. This tool seems to be the most complete and mature SoaML tool. A
drawback is its commercial support and licenses, and the use of the SoaML’s UML profile.

With respect to the transformations, a suitable environment would be using EMF as done in
[12]. EMF is open-source, we can use the SoaML metamodel, and generate editors to model the
SOA applications. Furthermore we already have some experience with Eclipse EMF. A drawback
is that we have to convert the SoaML metamodel to the Ecore format to make it suitable for EMF,
and initially visual modeling will not be possible unless we implement a graphical editor, which
takes a lot of time.

38

CHAPTER 3. SOA MODELING

We have made the following decision for the environment: IBM Rational Software Architect
is used to model the SOA applications and services in SoaML. With this tool we test SoaML
capabilities to include QoS specification at PIM-level. We can fall back to EMF for the model
transformations. In that case the SoaML models created using Rational Software Architect must
be converted (or rebuilt) in EMF.

39

Chapter 4

QoS specifications in SoaML

This chapter identifies ways to represent QoS in SoaML. This is done
using a case study and some modeling criteria. Several techniques
and languages are evaluated to test how they can be used to model
the QoS requirements as defined in SoaML models of the case study.

4.1 Case study

Throughout this chapter we apply the specification of quality attributes (as defined in Section
2.9) in SoaML to a simplified version of the use case explained in the tutorial of [56]. The case
study consists of a company that wants to order products from a manufacturer. The ordering
process involves scheduling, invoicing and shipping of the ordered products.

Company Manufacturer

Shipper

order

sh
ip

 re
qu

es
tstatus check re

sp
on

se
s

responses

response

Figure 4.1: High-level view of the example

Figure 4.1 illustrates the case study. Since the business process specifications are out of the scope
of this research, we assume the following services should be modeled: invoicing, scheduling and
shipping.

We modeled the case study using the tool IBM Rational Software Architect (RSA). The mod-
els may look different from the SoaML models in the SoaML specification because IBM RSA uses

40

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

a slightly different syntax than the syntax shown in [11].

4.2 The scope of SoaML

The SoaML specification does not prescribe how non-functional constraints should be described.
The specification states that policies should be modeled as constraints that can be owned rules of
any model element, including service ports and service participant components. The actual rep-
resentation of these policies are out of scope for the SoaML specification [11]. These UML model
elements can then contain constraints that express quality requirements. UML constraints are
an extension mechanism that enables one to refine the semantics of an UML model element.
A constraint refines a model element by expressing a condition or a restriction in a textual
statement to which the model element must conform [57]. UML constraints can be used in the
service interface and contract-based approaches to specify policies. These UML constraints can
be specified in, for instance, the Object Constraint Language (OCL) [58] or in natural language.
In addition, the OMG QoS specification [59] may be used to model QoS constraints for services.

To facilitate the organization of models and constraints on models, SoaML introduced cat-
egorization. A certain model may be used for many different purposes and viewed from the
perspective of many different stakeholders. As a result, the information in a model may need
to be organized in various ways across many orthogonal dimensions. Categorization may also
be useful for describing constraints, policies, or qualities of service that are applicable to the
categorized element. For example, a model element in the service layer of an SOA might have
additional policies for distribution, security, and transaction scope [11].

In summary, SoaML gives some hints on the specification of constraints on service models,
but it does not prescribe how constraints should be defined nor give examples of constraints.
The description of a policy in a service contract is possible with UML constraints, but the SoaML
specification gives no further guidelines on how this can be done. The enforcement of policies
and non-functional constraints of a service contract are out of the scope of SoaML, since en-
forcement of policies belongs in the platform-specific domain.

4.3 Available QoS modeling approaches

In this section some options to model quality attributes are investigated. We investigated how
we can formally, unambiguously and correctly include the quality requirements in the SoaML
models. In fact, all QoS modeling approaches need modeling guidelines which define where
and which QoS requirements can be expressed and in which place in the SoaML models. These
guidelines should be defined in order to optimize the selected lifecycle activities from Section
2.10. For each approach we list the observations we made and in the end we compare the
approaches and make a selection. We use the following main criteria for the evaluation of the
modeling approaches:

1. QoS definition level: Can be used to systematically define QoS aspects and metrics, i.e.,
the quality aspects and metrics listed in Section 2.9 for requirements of the selected activ-
ities in Section 2.10.

2. QoS usage level: Can be used to systematically use, organize and link QoS requirements
to SoaML model elements, i.e., use and connect the defined QoS metrics to SoaML model

41

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

elements of the case study. This includes instantiating a defined QoS metric so that we can
set a value to it, which then expresses a QoS requirement.

3. Transformations: Can be used in automatic model transformations. Some techniques are
more suitable than others in model transformations, see also Section 3.2. We also take into
account how the technique can be used with our tool preferences as explained in Section
3.4.1.

4. Tooling: Can be used with the SoaML tools as selected in Section 3.4.1, or has its own
tooling that can be used to specify the QoS.

5. Usability: Is easy to use from the stakeholder’s point of view.

We identified several ways to model QoS for SoaML model elements. Each way is briefly dis-
cussed below, explaining some potential benefits and drawbacks. In the remaining part of this
section several concrete techniques are discussed in more detail.

• Textual descriptions. A first option to specify QoS requirements are textual descriptions.
UML constraints are an approach to textually describe constraints in models [57], and can
be used to add quality attribute specifications to SoaML models. This approach requires
no further extensions to SoaML. In most cases, users prefer to express QoS requirements
using natural language, given that this does not require additional specific expertise be-
cause the specification can be done informally [60]. However, it is advisable to use some
systematic notation in order to avoid ambiguity, avoid misinterpretation and to ensure
proper understanding [60]. A more systematic specification of QoS requirements would
be obtained by using OCL instead of natural language to specify the UML constraints.

• QoS languages. Another option is to model QoS attributes in SoaML models by using a
QoS modeling language, e.g., a UML profile which can be linked to SoaML. A possible
choice would be OMG’s profile for Modeling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms (QoS&FT) [59] which is given as an example in the SoaML
specification [11]. This profile can be used in combination with SoaML, i.e., the SoaML
models contain references to quality attributes specified using the QoS&FT profile. Guide-
lines should describe which and where these references could be placed in the SoaML
models. A potential benefit of this approach is that we can define and use QoS aspects
in a systematic way. A potential drawback would be increasing complexity of the trans-
formations to PSM-level models, because additional languages (in addition to SoaML) are
involved.

• Metamodel extension. A third option is a heavyweight extension in which the SoaML’s
metamodel is extended to model quality attributes. A similar approach has been reported
in [61] where SoaML is extended to model security aspects. In this approach, SoaML
can be extended, for instance, with the model elements of an existing QoS language as
explained in the previous approach. A benefit would be that no new languages are used,
and thus the model transformations will possibly be less complex. A potential drawback
is that heavy-weight extensions require more effort to built and maintain, and existing
UML editors are not usable.

4.3.1 SoaML UML constraints

UML allows one to add constraints to SoaML’s model elements, such as to SoaML’s participant,
contract and interface model elements. A constraint refines a model element by expressing a

42

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

condition or a restriction in a textual statement to which the model element must conform. Con-
straints represent conditions or restrictions that cannot be represented in any other way in UML.
An example of a constraint is a condition of an attribute that must have a specific value. There
are several ways to represent these constraints [57]. Languages in which the constraints can be
specified are natural languages such as English, programming languages (Java), mathematical
notations and OCL [57].

Figure 4.2: Policy specification as UML constraint

A first option is to express the policy in natural language (or some pseudo language) as
shown in Figure 4.2. In this case we have to define guidelines on where and how to specify
QoS requirements in the SoaML models so that stakeholders responsible for the transformation
to PSM-level models can transform these values. We recognize that some commonly under-
stood language rules are essential for automatic model transformations. Without an agreement
about a specific format to express the QoS requirement (in that case you actually define a QoS
modeling language), the natural language approach is only suitable for manual transformations
because natural language can then only be understood by people. To illustrate this approach,
we choose to add the policy to the shipper that is modeled in a SoaML services architecture
diagram as shown in Figure 4.2. In practice, the policy specification could be added to any
modeling element in SoaML. When using this approach, we should define extensive guidelines
that help clarify the positions and semantics of the QoS specifications being modeled in the
SoaML models.

Table 4.1: Natural language UML constraints approach observations

Simple to use.

Potentially easy to understand with modeling guidelines.

Can be added to any model element in SoaML.

43

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

Can express any QoS requirements.

Directly applicable in UML editors that support UML con-
straints.

Does not enable systematic definition of QoS aspects and metrics
at design-time.

Does not enable systematic usage and expression of QoS require-
ments.

Requires manual QoS-aware transformations to PSM-level mod-
els when used language is not regular.

Requires extensive modeling guidelines to represent and inter-
pret QoS requirements (to define semantics of QoS aspects, met-
rics and values).

The UML element constraints also allow us to use the Object Constraint Language (OCL)
to define constraints. OCL is a standard language used to describe constraints on UML models
[58]. The benefit of OCL is that it describes the constraints in a standardized way, and thus
can be used to express QoS requirements in a more systematic way, as indiciated in our second
criterion. However, a policy specification as in Figure 4.2 cannot be directly represented in
OCL, since the SoaML models should have elements (such as attributes) where OCL expressions
can be written about. The SoaML participant has no availability, performance or any other QoS
attributes by default so we would have to add these attributes. QoS requirements can be defined
by adding attributes to a participant, and then adding OCL constraint on these attributes. This
means we can actually define QoS aspects and metrics, but not in a systematic way as prescribed
in the first criterion.

Figure 4.3: Policy specification as UML OCL constraint

To illustrate this approach in Figure 4.3 we defined an availability attribute of the type In-
teger in the Shipper participant, and added an OCL constraint that defines an availability of at

44

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

least 99%.
A drawback of this method is that the QoS specification requires the modeling of addi-

tional attributes in diagrams, while these attributes do not describe any functionality of the
SOA application. As with the natural language approach, in order to organize and use the QoS
specifications in transformations, we have to develop extensive guidelines on how and where
to specify certain QoS aspects in SoaML models. These guidelines also should describe the se-
mantics of the QoS specifications. Another drawback is that the transformations to PSM-level
models will possibly become complex.

For instance, during the transformation, the attribute named availability in a participant
diagram should be transformed to a PSM-level model that defines an availability described by
the corresponding OCL constraint. In order to realize a transformation like this, this example
requires guidelines on the positioning, naming and type of QoS attributes in SoaML models, and
also requires the OCL metamodel to navigate and understand the OCL constraints that express
the QoS requirement. This approach does not allow to systematically defined QoS aspects and
metrics at definition level, e.g., defining an availability metric that can be reused. But this must
be achieved indirectly via properties.

Table 4.2: OCL UML constraints approach observations

Able to systematically use and express QoS requirements, with
additional guidelines to define the semantics.

Potentially easy to understand with modeling guidelines.

Relatively simple to use, only requires OCL knowledge.

Directly applicable in UML editors that support OCL constraints.

Does not enable systematic definition of QoS aspects and metrics
at design-time.

Requires additional QoS attributes in SoaML models so that non-
functional attributes are mixed with functional attributes. This
might lead to misunderstanding and makes it more difficult to
organize the requirements.

Cannot be used with any model element in SoaML, since some
elements do not allow the definition of attributes.

QoS-aware transformations to PSM-level models will become
complex because this approach lacks definition of QoS aspects
and metrics, and the transformation requires the OCL meta-
model to interpret the QoS requirements.

Requires extensive modeling guidelines to represent and inter-
pret QoS requirements (to define semantics of QoS aspects, met-
rics and values).

45

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

4.3.2 QoS languages

In the last decade, there have been many proposals that apply QoS specifications to SOA models
[24, 62, 60, 63]. We looked for recent extensions that can be used in combination with UML to
represent QoS requirements at the PIM-level, because we want to include these requirements in
SoaML models.

A few examples are UML-Q (UML for the QoS information specification) and UML-M [64],
QoS Modeling Language (QML) [63] and OMG’s UML Profile for Modeling Quality of Service
and Fault Tolerance (QoS&FT) [59]. Each of these languages are briefly discussed below.

OMG QoS&FT

The QoS&FT profile was adopted in 2004 [59], and deals with non-functional aspects, more
specifically QoS and Fault Tolerance (FT) issues. The general QoS framework provides support
to ensure consistency in modeling different QoS aspects. The FT part assesses the capability of
a system to deliver continuous and failure-free service. Since our research concentrates on QoS
requirement specification approaches, the FT part of the profile is considered out of scope and
ignored. In order to evaluate the profile we had to (manually) integrate the profile in the test
environment.

Figure 4.4: Part of the QoS&FT profile implementation in RSA

The QoS&FT profile consists of the following subprofiles: QoS characteristics, QoS con-
straints and QoS levels. Each subprofile has associated UML concepts (metamodels and stereo-
types) and well-formedness rules and semantics expressed in OCL [59]. Quality requirements
in QoS&FT are defined in three steps:

46

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

1. The definition of QoS characteristics.
2. The definition of a quality model in which QoS characteristics parameters are assigned to

actual values).
3. The annotation of UML models with QoS constraints and QoS values according to the QoS

characteristics defined in the quality model [60].

We have implemented part of the QoS&FT profile (Figure 4.4) to illustrate how we could
use this profile. Figure 4.5 shows the defined availability QoS characteristic and some QoS
dimensions which we apply to the case study.

Figure 4.5: Definition of availability characteristic

QoS constraints can be defined in several way with QoS&FT as explained in [59]. One way is
to define them as UML constraints with stereotype «QoSRequired», «QoSOffered», or «QoSCon-
tract». The constraint then defines an OCL expression that limits the allowed values of the spe-
cific availability QoS characteristic, see Figure 4.6. This approach also uses UML constraints and
OCL, however, in this approach we do not have to define additional attributes in the participant
class itself, but we can use the QoS modeling elements provided by the QoS&FT profile.

Figure 4.6: Defining a QoS constraint with UML constraints

Another way to express QoS constraints is to use an UML Dependency relationship with
stereotype «QoSRequired», «QoSOffered», or «QoSContract». This relationship represents the
dependency of a model element on a «QoSValue». This approach uses QoS value objects instead
of OCL to express the allowed values of a QoS requirement, as shown in Figure 4.7.

47

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

The QoS&FT profile allows us to systematically define QoS aspects and metrics, and also
instantiate and use them. OCL is therefore not required to express the requirements. This
approach seems to be more suitable for automatic model transformations because there are
dedicated model elements available that can be used for mappings, there are elements available
to connect the requirements to SoaML model elements, and the transformation does not have to
manipulate OCL expressions.

Figure 4.7: Defining a QoS constraint with UML dependency and QoS value objects

The work of [60] shows that the practical use of the profile is still limited. This is probably
because the profile lacks good examples and is relatively complex for users. Another drawback
is the tool support which is still limited, i.e., as far is we know, the QoS&FT UML profile is
directly include in any UML tool.

Table 4.3: QoS&FT approach observations

Enables systematic definition of QoS aspects and metrics at
design-time.

Enables systematic use and expression of QoS requirements.

QoS requirements can be organized and categorized.

Enable a clear approach to link QoS requirements to SoaML
model elements.

Usable in any existing UML editor.

Automatic QoS-aware model transformations are facilitated.

From a stakeholders’ perspective harder to use because it con-
tains many modeling elements and lacks good examples.

Poor direct tool support.

Profile-based QoS-aware transformations are harder to im-
plement than metamodel-based transformations, and next to
SoaML, an additional profile (QoS&FT) must be considered in
transformation.

UML-Q

The work of [64] also proposes two UML profiles to extend UML (2001). The first one (called
UML-Q) has, for instance, been developed to allow specifying (at design time) how long it should

48

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

take to obtain the results of the invocation of a method of a particular object of an application.
The second one (called UML-M) has been developed to allow specifying how to check whether
that requirement is satisfied or not during runtime, by introducing new code into the applica-
tion, for monitoring external events, etc [64]. Only UML-Q matches the scope of our research
because we are looking for a profile that allows us to model PIM-level (design-time) models.

When compared with the QoS&FT profile, UML-Q seems to be outdated and not used in
practice. UML-Q also defines a QoS constraint element which is similar to the one in QoS&FT.
Other similarities are the QoS characteristics and QoS characteristic feature, which is named
QoS dimension in the QoS&FT profile. QoS requirements are expressed differently in this pro-
file. For instance, QoS requirements are organized in UML packages and only OCL can be used
to express the requirements, by specifying the allowed values of a QoS requirement.

Table 4.4: UML-Q approach observations

Enables systematic definition of QoS aspects and metrics at
design-time.

Enables systematic use and expression of QoS requirements, but
actual representation is limited to OCL.

QoS requirements can be organized and categorized.

Usable in any existing UML editor.

Automatic QoS-aware model transformations are facilitated.

From a stakeholders’ perspective harder to use because of addi-
tional modeling elements.

No direct tool support, i.e., the profile is not included nor suitable
to use in existing tools.

Automatic model transformations require the OCL metamodel to
interpret the QoS requirements expression.

Profile-based QoS-aware transformations are harder to im-
plement than metamodel-based transformations, and next to
SoaML, an additional profile (UML-Q) must be considered in
transformation.

Other languages

Another language to represent QoS is the QoS Modeling Language (QML) by HP (1998) [63].
QML is different in that it proposes a separate language to express the QoS requirements, and
uses stereotypes to link the QoS specifications to UML models. QML seems to be easy to use
and expressive. Some disadvantages are that no metamodel is available, the method of linking
QML specifications to UML models limits the specification of QoS in SoaML models and there
is no tool support [60].

We also looked at the CQML QoS profile definition of [65] which has been submitted as a
reaction to the request for proposal of the now available QoS&FT. We have not evaluated this

49

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

profile further because we observed that the QoS&FT profile provides similar functionality but
has more capabilities.

The same applies to other work, such as [62, 66] which we consider less suitable for the
specification of QoS in SoaML because they are less expressive or less suitable for model trans-
formation than languages such as QoS&FT.

4.3.3 SoaML metamodel refinements

A heavy-weight metamodel extension is also an option to add QoS modeling capabilities to
SoaML. This approach seems to be most suitable for the transformations to PSM-level models
because in this case we only have to consider the extended SoaML metamodel and no additional
profiles. There are several QoS metamodels available. An example is the metamodel presented
in [67], which is a straightforward model to express QoS requirements but does not prescribe
how these requirements can be linked to UML models.

A better choice would probably be a metamodel extension obtained by using the meta-
model derived from one of approaches discussed in the previous section. One example is the
PIM4SOA metamodel [43] that uses part of the QoS&FT profile to enable QoS specifications.
SoaML4Security also uses part of the QoS&FT profile for QoS specification [61]. In this project
we would then extend SoaML’s metamodel with, for instance, QoS&FT modeling elements. In
this evaluation we assume SoaML’s metamodel is being extended with such QoS modeling ele-
ments sufficient to model QoS at both definition and usage level.

With this approach some drawbacks of the profile-approach disappear, such as the poten-
tially complex profile transformations, and we can choose to keep the QoS part simple by only
adding the necessary new QoS modeling elements. Furthermore, graphical notations to facili-
tate QoS specifications are easier to define with a metamodel extension.

The metamodel approach also has drawbacks in comparison with profile-based approaches,
such as the definition of a new language, which cannot be used directly with other UML tools,
and thus lacks visual modeling. A potential benefit is that the metamodel implementation can
easily be reused by others to create their own domain-specific language with elements that are
not supported by UML.

Table 4.5: Metamodel-based approach observations

Enables systematic definition of QoS aspects and metrics at
design-time.

Enables systematic use and expression of QoS requirements.

QoS requirements can be organized and categorized.

Automatic QoS-aware model transformations are facilitated.

Flexible to extend in future work.

No direct tool support.

Defines a new language.

50

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

4.4 Selection QoS modeling approach

To conclude the evaluation of several QoS modeling approaches in SoaML we made an overview
and final selection. Figure 4.8 shows a comparison table of the evaluation based on the criteria
of Section 4.3.

- - - + +
-
+
+
+

o o + -
+ o o o
+ o - o
+ + - +

 Natural language UML constraints

 OCL UML constraints

 QoS&FT profile

 UML-Q

 Metamodel-based

 Q
oS definition

 level

 Q
oS usage

 level

Transfor-

m
ations

Tooling

U
sability

Figure 4.8: Evaluation QoS modeling techniques for SoaML

First of all, the approaches in which we use UML constraints (natural language and OCL)
and no further extensions only seem to be suitable for simple and straightforward QoS specifi-
cations. Complex QoS specifications with this approach are hard to organize, and the specifi-
cations can lead to cluttered models and misinterpretations by the stakeholders. This approach
might be suitable in relatively simple projects where manual QoS transformation are no prob-
lem, but in our research, we are investigating techniques that allows us to specify QoS aspects
and metrics in a systematic way (first two criteria) and we want to use them in automatic model
transformations, making this approach unsuitable.

The use of additional modeling elements in the form of UML profiles (QoS&FT and UML-Q)
is in this case a better way to specify QoS requirements. These approaches can be used directly
with SoaML; we can model QoS requirements in a systematic way, and the more extended pro-
files are able also to represent and organize the QoS requirement in a suitable way. In this
approach we do not have to define additional attributes in the participant class itself, but we
can use the QoS modeling elements provided by the profile to define QoS aspects and metrics
at definition level. One disadvantage is the more complex model transformation to PSM-level
models as we pointed out in Section 3.2, and explained in the profile evaluations. Also the tool
support is poor for these profiles since the profiles are not include or directly suitable to use in
existing UML tools. The QoS&FT profile seems to be the most complete standard QoS speci-
fication language of the evaluation [60], and therefore we chose this profile as the language to
model the QoS. One of the drawbacks of this profile is its lack of practical examples and poor
tool support.

The metamodel-based approach is in our case more suitable for the transformations, but
lacks graphical modeling support at this moment. This approach requires us to do some addi-
tional preparations in order to make use of the metamodel extension. For example, building the
metamodel and creating a (visual) editor.

We decided to use a combination of the last two approaches. As explained in Section 3.4.1,
we use IBM Rational Software Architect (RSA) to model the SoaML models using the SoaML

51

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

profile. In this tool we are able to express QoS requirement in SoaML using the QoS&FT profile
in the intended visual way. In order to transform the SoaML models to PSM-level models we
have used EMF. We extended SoaML with QoS&FT profile elements as metaclasses, and rebuilt
the profile-based SoaML models created in RSA to metamodel-based models (see Section 6.1.2).

The best solution would be a SoaML modeling tool that uses SoaML’s metamodel and allows
us to extend it. However, to our knowledge, such a tool does not exist and it is not feasible
to build one in this project. Our choice has been convenient from the point of view of tool
support because we think it is inconvenient to evaluate SoaML with textual or tree models in
EMF. Therefore we use RSA and QoS&FT in the remaining part of this chapter.

4.5 Implementing SoaML models

In this section the case study is further elaborated with the selected SoaML QoS specification
technique based on the activities listed in Section 2.10.

We modeled the case (Section 4.1) with the following elements. We defined three partici-
pants: a company, a manufacturer and a shipper (Figure 4.9). The company is the customer
that orders products, i.e., this participant needs some services for his needs. The manufacturer
provides a purchase service with which customers can order products. This service consists of
a request-response function that requires some order information and returns an invoice (we
assume this invoice is generated automatically). The shipper provides two services:

1. A shipping service which can be used by the manufacturer to ship ordered products. This
service is a bit more complicated because it uses asynchronous communication, i.e., the
shipper responds when the shipping schedule is ready. A service contract describes how
this interaction exactly works.

2. A shipping status service which can be used by the company to check the current shipment
status.

Figure 4.9: The involved participants

52

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

4.5.1 Quality requirements

Several common QoS attributes are listed in Section 2.9. In this section we apply these QoS
attributes to our case. We assume that all participants have some quality expectations from the
service they provide and/or consume, and we model these expectation in terms of policies and
contracts.

We assume that the company requires an availability of 99% of the purchase service and
expects the invoice within 30 seconds, i.e., the service response time should be smaller than
30 seconds. Because the manufacturer cannot handle more than 10 order requests per minute,
this limitation in terms of maximum throughput must be described as QoS offer in the man-
ufacturer’s policy. Furthermore a service contract between the manufacturer and the shipper
describes that these parties agree on the maximum number of allowed failures, which must not
exceed 3 failures per day on average.

First of all we organized all SoaML models in packages. For instance, the SoaML participant
models are in the ”participants” package, the service interface models are in the ”interfaces”
package etc. We defined a new “qos” package in which we defined the required QoS&FT QoS
characteristics. These “qos” package thus contains the QoS aspects and metrics which can be
instantiated and referred to from other packages.

4.5.2 Modeling policies

The company’s policy should express some QoS availability and performance requirements.
Therefore we defined some QoS characteristics for these requirements as shown in Figure 4.10.
The minimal-uptime dimension for availability has the following properties: increasing direc-
tion, minimum qualifier and percentage as unit. This means; an uptime of 99% is better than
98% (direction), the values should be interpreted as a minimum value (qualifier) and the value
is expressed in percentage. These properties are also defined for the service response time (SRT)
dimension.

The next step is to specify the QoS requirement in the SoaML models. Because we are mod-
eling the policy for the company, these requirements should be defined somewhere in the com-
pany participant.

Figure 4.10: Availability and performance characteristics

We have decided to model the QoS values in a policy package inside the participant. These
QoS values are instances of QoS metrics defined in the “qos” package. The policy of a consumer

53

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

has been modeled on SoaML request ports, and the policy of the provider has been modeled
on SoaML service ports. With SoaML dependencies we can express which QoS requirements
belong to which ports. Figure 4.11 shows that the required QoS for the purchasing service
request is defined as an uptime of at least 99% and a maximum SRT of 30 seconds. Figure 4.11
shows the organization of the QoS specifications on the left side.

A policy should have one subject. For example, in our case, the policy relates to the Purchas-
ingService. If we want to specify QoS requirements for the ShipmentStatus, these specifications
should be included in a separate policy package.

Figure 4.11: Linking QoS requirements to participant

We also considered that QoS requirements may be optional. For instance, when at least one
of the two requirements should be satisfied, this can be modeled by setting the logical operator
of these dependencies to “or”. When all requirements must be satisfied, all operators must be
set to “and”. When the logical operator is not set, we assume that the requirement must be
satisfied. Combinations are possible, e.g., two requirements must always be satisfied, and three
requirements are optional. We consider all requirements in a policy package as one group.

More complex situations, such as grouping requirements, can be modeled by composing
the policy from nested sub-policies, which is possible with our approach of defining policies in
packages. Nested policies can be added as packages named “policy”, and can be structured in
the same way as the parent policy. Figure 4.12 shows an example of a nested policy. Assuming
all logical operators are set to “or”, we can interpret this specification as either the Requirement
1 or 2 have to be satisfied and either Requirement 3 and 4 have to be satisfied. Without a nested
policy, i.e., when all requirements were specified at the same level, the interpretation would be
Requirement 1, 2, 3 or 4 have to be satisfied.

54

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

Figure 4.12: Nested QoS specifications

The policy of the manufacturer is also modeled with this approach. In our case study we
have modeled a policy of a provider. The differences shown in Figure 4.13 are the QoS offered
dependency instead of a QoS required dependency, and it is linked to a service port instead of
a request port.

Figure 4.13: Expressing QoS offers

4.5.3 Modeling QoS in service contracts

In some cases QoS requirements can already be modeled in the service contract at PIM-level as
explained in Section 2.10, for instance, in case a service contract describes certain QoS require-
ments that must be agreed in order to realize a well-functioning SOA application. In our case,
we took the mean-time-between-failure (MTBF) QoS reliability requirement as example.

This QoS agreement should express that the MTBF must not exceed 3 failures per day on
average. The MTBF QoS characteristic has the following properties: direction decreasing, max-

55

CHAPTER 4. QOS SPECIFICATIONS IN SOAML

imum qualifier and failures/week as unit. The QoS value that must be linked to the contract
should define a maximum of (3 * 7 days) 21 failures per week, assuming every day has an equal
chance of having failures.

Figure 4.14: QoS specification in service contract

We think the most convenient place to specify the QoS requirements is in the service contract
model element itself. However, packages cannot be specified inside a SoaML service contract
because of limitations of the UML metamodel, i.e., a UML collaboration element cannot contain
a package. A possible solution is to define a root package for all contract specifications, where we
can define a QoS package which is used in a similar way as the policy in the previous examples,
so that we can use the QoS values in the collaboration diagram. With this approach the QoS
specifications are at the same level as the service contract collaboration diagram. Figure 4.14
shows how the reliability requirement is linked to the SoaML service contract. The left side of
Figure 4.14 shows how we organized the QoS packages.

Similarly as with the policy specifications, optional requirements can be set with the logical
operator property, and QoS packages can be nested to the define more complex alternatives.

56

Chapter 5

PSM-level QoS modeling

This chapter gives an overview of the available PSM-level modeling
techniques to which SoaML models can be transformed. With these
languages we build PSM models that allow the representation of the
defined QoS aspects, metrics and requirements at a lower abstraction
level than SoaML. These models can be used by stakeholders to
realize the SOA application on a certain platform.

5.1 Search scope

There are many techniques available which can be used to realize web services on a specific
platform. We are specifically searching for (preferably standard) techniques which we can use
to describe QoS, and combine them with other commonly used techniques, such as, the Web
Services Description Language (WSDL). We do not search for techniques that monitor, realize
or enforce the required or offered QoS, but techniques that allow the description of the QoS as
done in Section 4.5 but then at the platform level. We preferably search for generic techniques
which can be used to express many QoS requirements, so that this technique can be applied to
optimize many of the stakeholders activities listed in Chapter 2.

Functionality of a web service is often defined in WSDL, an XML standard which allows the
specification of the operations that the web service can perform. The information provided in
the WSDL covers all the data needed to invoke the web service itself, but does not allow the
specification of the offered QoS [14].

There have been proposals that extend WSDL to allow QoS specifications, such as [24] and
[68]. However, preferably QoS attributes should be described in a systematic way, and loosely
coupled with the web service. This is not the case with these WSDL extensions. A better way
would be a WSDL description that refers to a policy that specifies constraints and capabilities
of the service implementation as explained by [69].

5.2 Available policy languages

In our PIM-level models, we have specified policies for providers and consumers. We are inter-
ested in how these policies can be represented at PSM-level, i.e., we search for techniques that
can be used to represent QoS requirements of providers and consumers at the platform level.

For each language we list the observation we have made and in the end we compare all
languages and make a selection. We use the following main criteria for the evaluation of the
languages:

57

CHAPTER 5. PSM-LEVEL QOS MODELING

1. Consumer: Can be used to represent the consumer policies.
2. Provider: Can be used to represent the provider policies.
3. Policy structure: Supports modeling of more complex policies by supporting alternatives

and priorization etc.
4. Transformations: Provides a metamodel that can be used in the transformation, or pro-

vides enough information to create a metamodel.
5. QoS expression: Provides grammar to express the QoS requirements.
6. Integration: Can be used in combination with other commonly used (XML-based) SOA

techniques such as WSDL.
7. Usability: Is easy to use from the stakeholder’s point of view. Considering syntax, docu-

mentation and provided examples.

5.2.1 WS-Policy

WS-Policy is a W3C recommendation published in 2007. This standard is used to express web
services policies based on their non-functional properties [70]. WS-Policy is a specification that
allows web services to advertise their capabilities, requirements, and general characteristics in
a flexible and extensible grammar using XML format [71, 26].

WS-Policy also provides a mechanism to link the QoS requirements to the service models.
The WS-PolicyAttachment recommendation [72] explains how to to associate policies with their
subjects, reference policies from WSDL definitions, or associate policies with deployed web
service endpoints.

A policy is defined as a collection of alternatives which is, itself, defined as a collection of
assertions. An assertion is used to represent a requirement, capability or a behavior of a service
[73]. Listing 5.1 shows a policy that requires a minimal response time of 5 seconds. Line 5 of
this listing shows a pseudo code assertion as plain text. In practice we have to use a grammar to
express this requirement.

Listing 5.1: Example policy with pseudo code assertion
1 <wsp: Policy xmlns:wsp=" . . . / policy ">
2 <wsp:ExactlyOne>
3 <wsp: All>
4 MRT = 5 seconds
5 </wsp: All>
6 </wsp:ExactlyOne>
7 </wsp: Policy>

WS-Policy introduces a grammar for defining policies, but it does not come with (prede-
fined) assertions. The WS-Policy working group has developed the WS-PolicyAssertions speci-
fication to allow the description of some generic assertions (e.g. used character set) which are
not related to QoS and are thus not directly interesting for this work [74]. External organiza-
tions or communities are in charge of defining domain-specific assertion grammar. For instance,
WS-SecurityPolicy [75] and WS-ReliableMessaging [76] define assertions such as IncludeTimes-
tamp, EncryptSignature, and Uses-SequenceSSL to formalize security and robustness require-
ments [69]. To the best of our knowledge, there is no standard assertion grammar for QoS
attributes, such as, availability and service response time.

58

CHAPTER 5. PSM-LEVEL QOS MODELING

The exact type of assertions that can and should be used depends on the type of QoS to
be expressed, and the environment where the policies will be used. A monitoring or QoS en-
forcement framework might require a specific kind of assertion that can be interpreted by the
framework. One example is the WS-MeditationPolicy by IBM [77], which provides assertions
that can be used in combination with their policy enforcement and policy administration prod-
ucts, such as e.g. WebSphere. Another example for a provider are assertions that refer to a
service registry entry describing the actual QoS value as done in [78].

For our service models, we could develop some custom assertion grammar to express our
QoS requirements. With these custom assertions we could demonstrate how to use the WS-
Policy framework in combination with SoaML models.

Table 5.1: WS-Policy observations

Standard technique.

Allows policies to be connected to other techniques such as
WSDL and UDDI.

Accepted and adopted language in industry [74].

Suitable to express policies.

Different QoS assertion grammars may be needed for a complete
QoS specification, depending on the project.

QoS assertion grammar has to be defined.

5.2.2 UDDI

UDDI (Universal Description, Discovery and Integration) is an XML-based registry which de-
fines a set of data structures to describe web services for the purpose of advertisement and
discovery. Service providers can publish their web services to an UDDI registry so that the
potential consumers can discover these services through different approaches [14].

A way to represent the quality offered by providers is to include QoS specifications in the
service registry. In this way, potential consumers check the offered QoS of a service via the
registry. Expressing the quality requirements of consumers is not possible with this approach,
since we can only represent the QoS offerings defined in the policy of a provider.
UDDI contains three components which help service consumers find the right service [26]:

1. White pages serve as a telephone book. They give information about the service providers
such as contact information and business area.

2. Yellow pages serve as industrial categorization of web services based on standard tax-
onomies. In UDDI we use the businessEntity element to include white and yellow page
information.

3. Green pages offer technical information about the services offered by business identi-
ties including reference to specifications and pointers to access points [26]. In UDDI the
businessService element is used to describe this information of the webservice, and bind-
ingTemplate elements are used to describe technical information to access the webservice.

59

CHAPTER 5. PSM-LEVEL QOS MODELING

The actual green page information is saved in tModels, a generic container for the speci-
fication of information. Each tModel should contain an overviewURL, which references a
document that describes the tModel and its use in more detail [14]. The green page is also
the place to include QoS descriptions, by storing information in such tModels.

There are many different ways to express QoS with tModels [79]. In this approach we can
express the provider’s policy in a certain QoS tModel, which can then be attached to a web
service entity.

Table 5.2: UDDI QoS extension observations

UDDI is a succesful concept [26].

UDDI is a standard.

No dedicated policy language.

No standard way to express QoS with tModels.

Only enables the description of provider’s policies. Not suitable
for expressing consumer’s policies.

5.2.3 Web Services Policy Language (WSPL)

The Web Services Policy Language, WSPL [80] was developed to satisfy a set of use cases and
requirements that were collected, reviewed, and published in an open, public forum. WSPL was
defined as a strict subset of the OASIS eXtensible Access Control Markup Language (XACML).
WSPL is a generic framework just as WS-Policy, but then based on XACML [74].

WSPL uses XACML attributes, which are always name-value pairs. The definition of the QoS
attributes used by a particular service is outside the scope of WSPL. The semantic description of
the attribute is irrelevant to the WSPL policy and its evaluation. WSPL does not specify either
how a policy user obtains values for attributes [80]. Listing 5.2 illustrates a fictitious policy
expressing the MRT of a service.

Listing 5.2: Example policy with WSPL
1 Policy (Aspect = ‘ ‘Performance’ ’) {
2 Rule {
3 Attribute = ‘ ‘MRT’ ’ ,
4 Value < 5 }
5 }

The central problem in WS-Policy, from XACML authors perspective, is the lack of formal-
ization. Therefore, issues such as merging consumer and service provider policies as means
of negotiation a commonly accepted policy need domain models. XACML does not have this
problem. However, possibly due to popularity of WS-Policy (at least in terms of how well it is
known), Oracle (formerly known as Sun) has expressed an interest to reconcile the differences
with Web Services Policy Constraints Language (WS-PolicyConstraints), which is basically a
stripped down version of WSPL [74]. In fact, WS-PolicyConstraints can be used as an additional
layer between the WS-Policy framework and the assertion grammar to add additional semantics.

60

CHAPTER 5. PSM-LEVEL QOS MODELING

However, in practice, this language seems to be barely used.

Table 5.3: WSPL observations

Suitable to express policies.

Supports merging of policies.

Less documentation and practical examples.

Seems to be overtaken by WS-Policy (in terms of popularity).

5.2.4 Other techniques

Other policy specification languages include WSDL compositors [74] and WSDL 2.0 “Features
and properties” element [81]. We have not further investigated these languages because they
are outdated or less suitable for transforming the SoaML models.

Semantic web services initiatives have also looked at the specification of policies at PSM-
level. One example is a mapping between WS-Policy constructs and Web Ontology Language
(OWL) for Semantic Web Services (OWL-S) constructs [82]. However, these semantic web tech-
niques have been excluded because they take a completely different direction. In this research,
we focus on relatively known non-semantic web alternatives.

5.3 Selection of policy language

+ + + + - + +
-
+

+ - o + o +
+ o o o o o

 WS-Policy

 UDDI

 WSPL

Consum
er

Provider

Transfor-

m
ations

Q
oS expression

Integration

U
sability

Policy

structure

Figure 5.1: Evaluation PSM-level policy languages

Figure 5.1 shows a comparison table of the evaluation based on the criteria of Section 5.2. From
the techniques we have considered, WS-Policy and UDDI seem to be the most suitable and prac-
tical techniques (in terms of usability) to which the models can be transformed. Both techniques
are widely used and have good documentation.

UDDI seems to be a practical choice, since it is widely used, and the generated models (e.g.
tModels with QoS information) could potentially be directly usable in practice. However, the
technique is not perfectly suitable to express policies. We can create our own UDDI models that
include some QoS requirements, but these models only consider the provider’s point of view and
are not directly able to express complex policy specifications (e.g., prioritizing requirements,

61

CHAPTER 5. PSM-LEVEL QOS MODELING

and giving alternative options). Possible QoS requirements of a consumer cannot be expressed.
Therefore we think in this situation, the other techniques are more suitable.

The main benefit of WSPL over WS-Policy is the support for negotiation. While we consider
negotiation as is an important aspect, because it is part of activities as we pointed out in Chapter
2, we also see that there are initiatives that support negotiation with WS-Policy, such as [70].
Furthermore, the WSPL language provides a standard grammar that can be used for assertions,
where WS-Policy has not.

Considering all benefits and drawbacks for this project, WS-Policy seems to be the most
suitable choice to express policies as defined in a SOA application. The technique can be used in
practice to express policies for both consumer and provider, and is also able to express optional
QoS requirements. The specification clearly shows how the language works we can therefore
built a metamodel for the transformation. WS-Policy does not prescribe an assertion grammar
so we are free to choose our own. Because no suitable grammars were found to express the QoS
aspects used in this project, we developed an assertion grammar to demonstrate the technique.
The development of our own grammar, and the lack of negotiation support are some drawbacks
for WS-Policy, but in comparison with WSLA, WS-Policy seems to be a more practical choice in
terms of documentation, integration examples and user community.

5.4 Available service contract languages

There are several techniques to describe service contracts at PSM-level. QoS is usually defined
in static manually managed SLAs. However, systematic and dynamic languages to represent
these contracts are becoming increasingly necessary because they make it possible to interpret
these contracts so that, for instance, service providers can be chosen on the fly [83]. In this
section we give an overview of several well-known service contract techniques that allow QoS
specifications as part of the agreement.

In the same way as we have evaluated policy languages, we evaluate service contract lan-
guage using the following main criteria:

1. Contract structure: Supports modeling of complete contract including aspects such as
template, roles, expiration dates, penalties, alternatives and priorities.

2. Transformations: Provides a metamodel that can be used in the transformation, or pro-
vides enough information to create a metamodel.

3. QoS expression: Provides grammar to express the QoS requirements.
4. Integration: Can be used in combination with other commonly used (XML-based) SOA

techniques such as WSDL.
5. Usability: Is easy to use from the stakeholder’s point of view. Considering syntax, docu-

mentation and provided examples.

5.4.1 WS-Agreement

WS-Agreement [84] is a specification published in 2007 that defines a language and a protocol
to create Service Level Agreements (SLA) between a service provider and a service consumer.
It is a general framework for XML specification of agreements and agreement templates. An
agreement is contract negotiated between a client and a provider, for instance, on QoS attributes

62

CHAPTER 5. PSM-LEVEL QOS MODELING

such as latency or availability. An agreement is just a empty canvas, and WS-Agreement allows
the use of any language for the actual contained specifications. The structure of an agreement
template is the same as that of an agreement, but an agreement template may also contain
creation constraint section, i.e. a section with constraints on possible values of terms for creating
an agreement. The constraints make it possible to specify the valid ranges or distinct values that
the terms may take [85].

An agreement consist of the agreement name, its context and the agreement terms. The
context contains information about the involved parties and metadata such as the duration of
the agreement [85]. Agreement terms define the content of an agreement. There are several
types of agreement terms:

1. Service description terms (SDTs) define the functionality that is delivered under an agree-
ment. A SDT includes a description of the offered or required functionality (the service
itself) [85].

2. Guarantee terms define this assurance on service quality, associated with the service de-
scribed by the SDTs [84].

3. Service level objectives (SLOs) describe the actual bound of the QoS requirement of the
service that have to be fulfilled by the provider.

Listing 5.3 shows a stripped example version of an agreement about the ShipmentStatus
service. In this example the SLO (line 16) is expressed in pseudo code.

Listing 5.3: Stripped example contract with WS-Agreement
1 <wsag:Agreement Name="exampleContract" xmlns:wsag=" . . . ">
2 <wsag:AgreementContext> . . . context of the contract . . .</wsag:AgreementContext>
3 <wsag:Terms>
4 <wsag: All>
5 <wsag:ServiceDescriptionTerm wsag:Name="General" wsag:ServiceName="ShipmentStatus">
6 . . . describe service and offered functionality . . .
7 </wsag:ServiceDescriptionTerm>
8 <wsag: ServiceProperties
9 wsag:Name="AvailabilityProperties " wsag:ServiceName="ShipmentStatus">

10 <wsag: VariableSet>
11 <wsag: Variable wsag:Name="SRT"></wsag: Variable>
12 </wsag: VariableSet>
13 </wsag: ServiceProperties>
14 <wsag:GuaranteeTerm name="FastReaction" obligated="ServiceProvider">
15 <wsag:ServiceScope ServiceName="ShipmentStatus"> . . . refers to service description . . .</wsag:

ServiceScope>
16 <wsag: ServiceLevelObjective>SRT = 5 seconds</wsag: ServiceLevelObjective>
17 </wsag:GuaranteeTerm>
18 </wsag: All>
19 </wsag:Terms>
20 </wsag:Agreement>

The WS-Agreement specification describes that a typical agreement creation process consists of
the following three steps [85]:

1. The initiator retrieves a template from the responder, which advertises the types of offers
the responder is willing to accept.

2. The initiator makes an offer.
3. The offer is either accepted or rejected by the responder.

63

CHAPTER 5. PSM-LEVEL QOS MODELING

Table 5.4: WS-Agreement observations

Standard technique.

Highly extensible; contains several sections where intended users
are expected to define domain-specific elements and properties
[25].

Accepted and adopted language in industry [86].

A suitable domain-specific language must be defined (or found)
to express service descriptions and guarantee terms.

5.4.2 Web Service Level Agreement (WSLA)

A WSLA document (referred to as a WSLA) defines assertions of a service provider to per-
form a service according to agreed guarantees for quality attributes, such as response time and
throughput, and measures to be taken in case of deviation and failure to meet the asserted ser-
vice guarantee, such as, for example, a notification of the service customer [87].

WSLA consists of a framework for defining and monitoring SLAs for web services. The
WSLA language is designed to capture service level agreements in a formal way to enable au-
tomatic configuration of both the service implementation of a provider organization as well as
the system that is used to supervise the agreed quality of service. To facilitate automatic config-
uration,an WSLA comprises [87]:

1. A description of the parties, their roles (provider, customer, third parties) and the action
interfaces they expose to the other parties of the contract.

2. A detailed specification of the service level parameters (SLA parameters) to which guar-
antees are applied to. SLA parameters are specified by metrics, which define how to mea-
sure an item (in the case of resource metrics) or how to aggregate metrics into composite
metrics. A metrics description also includes which party is in charge of measuring and
aggregating the metrics and how the metrics can be retrieved.

3. A representation of the parties’ obligations. Service level objectives contain a formal ex-
pression of the guaranteed condition of a service in a given period. Action guarantees
represent promises of parties to take some actions, for example, to send a notification in
case the guarantees are not met.

Listing 5.4 shows the structure of an WSLA top-level document.

Listing 5.4: Stripped example top-level contract with WSLA
1 <wsla :SLA xmlns: xsi="http ://www.w3.org/2001/XMLSchema−instance" xmlns:wsla="http ://www.ibm.com/wsla" name="

ExampleContract" >
2 <Parties>
3 . . . participant info . . .
4 </Parties>
5 <ServiceDefinition>
6 . . . describe service and offered functionality , and metrics . . .
7 </ServiceDefinition>
8 <Obligations>
9 <ServiceLevelObjective name="g1" serviceObject=ShippingService">

10 <Expression>

64

CHAPTER 5. PSM-LEVEL QOS MODELING

11 <Predicate xsi : type="wsla :Less"><SLAParameter>SRT</SLAParameter><Value>5</Value></Predicate>
12 </Expression>
13 </ServiceLevelObjective>
14 </Obligations>
15 </wsla :SLA>

Table 5.5: WSLA observations

Mature language with practical examples.

Includes elements to define and express QoS requirements.

Lacks flexibility with respect to contract structure [88].

Bound to IBM tools and examples because these are the only re-
sources available.

5.4.3 SLA*

Another promising language that we found is SLA* [88]. SLA* was developed as a generalization
and refinement of the web service-specific XML standards: WS-Agreement, WSLA, and WSDL.
SLA* uses much of the WS-agreement constructs. The SLA* model was developed as part of the
SLA@SOI project [88].

The most significant difference between WS-Agreement and SLA* is the dependency on a
certain metalanguage or rendering. WS-Agreement is inherently dependent on XML (and XML
Schema) as a description language. References within an SLA document in WS-Agreement, for
example, are therefore most conveniently realized using XPath [89].

Another important difference between both languages is that WS-Agreement does not offer
any domain-specific expressions that could be used to define ranges or constraints. These are
left entirely to the user of the specification. SLA*, on the other hand, can be used to directly
describe a large number of resources and constraints on those resources [89].

Listing 5.5 shows the structure of an SLA* contract.

Listing 5.5: Stripped example contract with SLA*
1 sla_template{
2 // "qos" = "http ://www. slaatsoi .org/commonTerms#"
3 uuid = example_contract // universally unique identif ier for this SLAT
4 sla_model_version = sla_at_soi_sla_model_v1.0
5 parties { . . . participant info . . . }
6 interface_declr { . . . describe service and offered functionality . . . }
7 agreement_term{
8 id = term_1
9 guaranteed_state{

10 id = guaranteed_state_1
11 qos:completion_time(shipping_service) < 5s
12 }
13 }
14 }

65

CHAPTER 5. PSM-LEVEL QOS MODELING

Table 5.6: SLA* observations

Provides good practical examples and clear syntax [88].

Does not depend on XML.

Less popular than WS-Agreement.

5.4.4 SLAng

The primary aim of SLAng is to provide a language that enables the specification of contrac-
tual relationships between consumers and providers, and by that allows for a clear definition
of obligations on all involved partners with respect to the provided QoS [90]. The SLAng white
paper defines an SLA as an arrangement between a customer and a provider, describing techni-
cal and non-technical characteristics of a service, including QoS requirements and the related
set of metrics with which the provision of these requirements should be measured [91].

The SLAng syntax is defined using an XML Schema, which favours the integration with
existing service description languages. For example, SLAng can be easily combined with WSDL
[91].

The content of an SLA varies depending on the service offered, and incorporates the elements
and attributes required for the particular negotiation. In general, an SLA includes:

1. An end-point description of the contractors (e.g., information on customer/provider loca-
tion and facilities).

2. Contractual statements (e.g., start date, duration of the agreement, charging clauses).
3. Service Level Specifications (SLSs), i.e. the technical QoS description and the associated

metrics [91].

SLAng places emphasis on semantics, providing formal notions of SLA compatibility, mon-
itorability and constrained service behavior. It is, however, targeted at electronic services and
provides only a limited set of domain-specific QoS constraints [88].

Even though the language seems to be very well designed, activities on this topic seem to
have slowed down or probably stopped, as the last activities on the repository have occurred in
2009 [90].

Table 5.7: SLAng observations

Complete language (with an emphasis on semantics)

Not an adopted language.

No signs for further development.

5.4.5 Other techniques

Another technique that can be used to include QoS contracts is the Rule-Based Service Level
Agreement (RBSLA) language [92]. RBSLA is based on the XML-based Rule Markup language
RuleML, which is a standardization initiative with the goal of creating an open XML/RDF based

66

CHAPTER 5. PSM-LEVEL QOS MODELING

web language for rules [92].
CC-Pi offers a theoretical framework for mapping SLAs to service constraints. The CCPi

model is, however, tightly-coupled to the mechanics of negotiation, and does not address com-
mon constructs such as agreement party details or service interfaces [88].

We have not further investigated these techniques because they are barely used in practice,
or are not as complete and suitable as the techniques discussed before.

5.5 Selection of service contract language

+ + - + +
o
+
o

+ + o o
+ + o o
- o + -

 WS-Agreement

 WSLA

 SLA*

Contract

structure

Transfor-

m
ations

Integration

U
sability

Q
oS expression

 SLAng

Figure 5.2: Evaluation PSM-level contract languages

The most referenced and complete specifications that relate to service contracts for SOA
environments, and in particular web services, are WSLA and WS-Agreement [25]. Another
suitable and relatively new language is SLA*.

Although the WSLA specification is available for download, few cases studies have been
reported outside of IBM. It seems that the specification language has not been widely adopted
but rather superseded by WS-Agreement [25]. Furthermore, WSLA has a closed source nature
and lacks further development since 2003 [90]. In fact, core concepts of the WSLA were brought
into the WS-Agreement [25].

WS-Agreement’s main benefit is its versatility. The specification leaves room for domain-
specific implementations and imposes minimal restrictions on potential usage scenarios. The
basic protocol is another advantage, since it allows an easier adoption to new partners that al-
ready use WS-Agreement. The protocol has the further advantages of being symmetric, so that
both producers and consumers can be either initiators or responders [89]. WS-Agreement’s min-
imalist nature can be regarded as a disadvantage as well, because a domain-specific language
must be provided. In some mid-sized scenarios this overhead might be considerable and thus
stakeholders may decide to use other specifications [89].

WS-Agreement currently provides the only standardized way to negotiate and create SLAs.
There is a strong user community and their working group, responsible for the development
and maintenance of WS-Agreement, is active and responsive [90]. SLA* is also a complete and
suitable language with the potential to become popular. In fact, both WS-Agreement and SLA*
are suitable for our project. Furthermore, we would like to see that languages support as much
as possible of the information from SoaML models. Examples are the role types in a service con-
tract etc. SLA* and WS-Agreement both satisfy this requirement regarding contract structure.

67

CHAPTER 5. PSM-LEVEL QOS MODELING

When we compare the two languages we have the impression that WS-Agreement is at this
moment the most widely used language, and it is also a standard that goes well with the policy
technique we have selected. We chose WS-Agreement as the technique to represent QoS with
service contracts at the PSM-level. WS-Policy and WS-Agreement are both standards in the
WS-* group, and we recognized similar language constructs when studying these specifications.
This means we may be able to create language elements that are usable in both the policy and
contract transformations, such as a domain-specific grammar.

5.6 Implementing PSM models

In this section we briefly introduce WS-Policy and WS-Agreement by explaining their meta-
models. We also show some example models implemented in these languages. Ultimately, the
models shown here are target models which should be automatically generated by models trans-
formations based on the SoaML input models.

Policies

Figure 5.3: Partial WS-Policy Ecore implementation

In order to describe policies in the EMF, we have to built a WS-Policy metamodel in Ecore.
Figure 5.3 shows our representation of the metamodel described by the WS-Policy specification
[71]. The building blocks of policies are assertions which are composed using alternatives (All,
ExactlyOne). For instance, all assertions in an “All” alternative must be satisfied to conform to
that policy. In an “ExactlyOne” alternative, one of the assertions must be satisfied. The current

68

CHAPTER 5. PSM-LEVEL QOS MODELING

WS-Policy specification lacks the “OneOrMore” operator so the interpretation of “ExactlyOne”
may sometimes be “at least one” [93]. We leave the interpretation of this ExactlyOne operand to
the user. Furthermore, alternatives can be nested to create more complex policies.

As mentioned earlier, an assertion grammar is needed to express the QoS requirements. We
have defined a simple example grammar which is sufficient to model the QoS requirements
specified in the SoaML models. Figure 5.4 shows the metamodel of the grammar. A Qual-
ityAspect can be used to create a quanti aspect such as performance. A QualityAttribute can be
used to represent the actual value and metric of a QoS requirement for that aspect. For example,
the service response time of a certain which should be lower than 30 seconds.

With these metamodels we are able to build PSM-level WS-Policy models. The right side of
Figure 5.4 shows a WS-Policy that corresponds to the policy specified in SoaML in Figure 4.11.

Figure 5.4: Simple WS-Policy assertion grammar (l) and example model (r)

Service contracts

Similarly to the WS-Policy metamodel, we have also defined the WS-Agreement metamodel in
Ecore for the service contract transformations. The metamodel in Figure 5.5 shows our repre-
sentation of the WS-Agreement specification [84], and the WS-Agreement metamodel presented
in [94].

This metamodel is more complex than WS-Policy’s metamodel. The left side of Figure 5.6
shows the basic structure of an agreement. The agreement has a name and context (Agree-
mentContext in metamodel) explaining the purpose and some metadata of the agreement. The
agreement is structured by the term compositors: “All”, “ExactlyOne” and “OneOrMore”. The
first two have the same meaning as in WS-Policy, and furthermore an “OneOrMore” operator
is available here. These compositors can be used to structure the actual terms, e.g., description
terms, references, properties and guarantee terms (as explained in Section 5.4.1).

69

CHAPTER 5. PSM-LEVEL QOS MODELING

Figure 5.5: Partial WS-Agreement Ecore implementation

Figure 5.6: Structure WS-Agreement model [1] (l) and example model (r)

70

CHAPTER 5. PSM-LEVEL QOS MODELING

WS-Agreement allows the definition of a lot of information in a contract, such as business
values, penalties, rewards, expiration times etc. We consider this data out of the scope of this
project and focus on the structure and specification of quality requirements in the contract.
Therefore, we try to fill in the agreement as completely as possible based on the information
included in the SoaML models. Additional information can be added later on by the service
provider and consumer during the negotiation.

The right side of Figure 5.6 shows a WS-Agreement that corresponds to the service contract
specified in SoaML in Figure 4.14. We reuse the custom grammar, shown in the left side of
Figure 5.4, to express the service level objectives.

71

Chapter 6

Model transformations

This chapter gives an overview of the transformation environment
preparation. It further shows the mappings of SoaML to WS-Policy
and WS-Agreement, and the performed model transformations of
SoaML models to these PSM models.

6.1 Transformation environment

As explained in Section 3.4.1 we have chosen EMF as the environment to build and perform the
transformations. In order to do so, some preparations were required.

First of all, it was needed to built the SoaML metamodel in Ecore. We also had to build a
part of the QoS&FT specification and combine it with the SoaML metamodel. Furthermore we
also prepared and built the PSM-level metamodels in Ecore so we could transform the SoaML
models to these techniques. The second step was to rebuild the profile-based SoaML models
to metamodel-based models that use our created Ecore metamodel. The last step was to create
mappings and design the transformations.

This section explains the steps first two steps that were needed to prepare the environment
and metamodels for the transformations.

6.1.1 Implementing the extended SoaML metamodel

Figure 6.1: Partial SoaML Ecore implementation

72

CHAPTER 6. MODEL TRANSFORMATIONS

The specification of SoaML briefly describes SoaML’s metamodel [11]. Initially, all SoaML model
elements are explained by referencing the SoaML profile. Later on in the specification, the meta-
model elements are mapped to the profile elements, and thereby explains the semantics and
constraints of the metamodel elements. Constraints are not described in OCL but in natural
language. If we want to implement these constraints, we have to convert them to OCL, or use
another technique to implement the constraints.

Our intended SoaML metamodel is similar as it is done in the work of Ali et al. [12], how-
ever, we extended it with QoS&FT modeling elements. We only implemented the modeling
elements that are required to model the SoaML models as done in Section 4.5. A part of the
SoaML implementation of the Ecore metamodel is shown in Figure 6.1 (the inheritance to UML
metamodel elements are not shown).

Figure 6.2: Partial QoS&FT Ecore implementation

We also implemented part of the QoS&FT specification to model the quality requirement in
the same way as we have done before. With these elements the QoS requirements can be mod-
eled and linked to the SoaML model elemenets. Figure 6.2 shows the implemented metamodel
part.

6.1.2 Rebuilding the SoaML profile models

The created metamodel allows us to design metaodel-based SoaML models, include QoS spec-
ification with it, and use the models in model transformations. The SoaML models presented
in Section 4.5 have been rebuilt to such metamodel-based SoaML models. Figure 6.3 shows the
one-to-one correspondence of the profile-based models elements to the Ecore elements. The left
side shows the profile-based model, the right side the new Ecore metamodel-based model.

There are not much differences. In fact, all stereotypes are now a model type. A subtle
difference is the definition of the properties of model elements. Stereotype properties are now
properties of the model element itself as shown in Figure 6.4.

The steps have also been performed for the service contract package and other packages.

73

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.3: Profile-based to metamodel-based models

Figure 6.4: Properties of QoSDimension

6.2 Mappings

This section explains the mapping of the SoaML models to PSM-level techniques. These map-
pings explain which elements of the input models should be transformed to which elements of
the output models. For each mapping figure in this section the following holds: the left side
shows the SoaML model, the right side shows the targeted PSM model.

6.2.1 Policies

Policies are packages contained in SoaML participants. Each policy package represent a policy
of a certain subject, for instance, a service request port. Therefore we map each policy package
to a WS-Policy document. For convenience, some extra information can be included in the

74

CHAPTER 6. MODEL TRANSFORMATIONS

name of the policy so that it is clear to which subject the policy belongs. An example is shown
in Figure 6.5.

Figure 6.5: Participant policy package to WS-Policy document

In each policy package, QoS requirements are connected to the policy subject. In the SoaML
models, this is done using dependencies. These dependencies have a logical operator property
which can be set to “or” or “and”. These value of this property is important for the structure
of the WS-Policy document. In WS-Policy the structure is modeled using alternatives, i.e., with
“All” and “ExactlyOne” clauses, and nesting of these elements. When all requirements are
modeled as “and” dependencies, the requirements should be transformed into a WS-Policy “All”
clause. I.e., all requirements must be satisfied. QoS requirements linked with “or” dependencies
are transformed into an “ExactlyOne” clause. I.e., one of these requirements must be satisfied.
An example is shown in Figure 6.6.

Figure 6.6: Dependency to alternatives

Nested packages are handled in a nested “All” clause. With this approach, every possible
assertion combination with these operators are possible to model. Furthermore, policies that
belong to another subject (e.g., another service request) should obviously be mapped to a sepa-
rate WS-Policy document. Figure 6.7 shows the mapping of a nested policy, and a policy with a
different subject.

All dependencies connect the subject to a certain QoS Value, which is the actual QoS re-
quirement. Each QoS requirement is a WS-Policy assertion which we have to express with our
custom grammar. Figure 6.8 shows the mapping of QoS values to QoS Aspect in our custom
grammar. The actual name of the quality aspect should be the name of the QoS characteristic,
not the name of the QoS value.

75

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.7: Separate policy subjects and nested policy

Figure 6.8: QoS values to quality aspects

The last mapping consists of mapping the actual quality requirement metric to a so-called
quality attribute in the custom grammar. Also in this case, the actual name of the quality at-
tribute should be the name of the corresponding QoS Dimension. Much of the data, such as the
unit and direction, are also contained in the QoS Dimension and must therefore be mapped to
the properties of the quality attribute. The value of the quality requirement is contained as a
slot in the QoS Value and must be mapped to the value property of the quality attribute. Figure
6.9 shows the mapping to quality attributes and its corresponding properties that are filled with
the corresponding data.

With the explained mappings, policies, in a SoaML model which is modeled properly ac-
cording to our guidelines, can be transformed to WS-Policy documents. The mappings are im-
plemented in the SoaML2WSPolicy ATL model-to-model transformation. Appendix A.1 shows
the source of the implemented transformation.

76

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.9: QoS value data to quality attributes

6.2.2 Service contracts

In our SoaML models, service contracts consist of a root package with the actual SoaML service
contract, and a “QoS” package with the QoS requirements. We refer to this “QoS” package
as the contract package. We assume each SoaML service contract is about one service and the
provider and consumer. More detailed contract specifications, such as method-level contracts,
or contracts involving multiple stakeholders and services are considered out of the scope. More
details can be found in the future work, see Section 7.3. Each contract package is mapped to
a WS-Agreement document that describes the agreement between the provider and consumer
about that service.

Figure 6.10: Contract specification to WS-Agreement document

The first part of a WS-Agreement document consists of the context. Figure 6.11 shows the
mapping of the contract to the context. Some information is already filled in. We assume the
first participant in a contract is the initiator because this is often the consumer. In the example
case of Section 4.1, this means the Company is the initiator of the contract. As a consequence,
the responder is the provider, which is the Shipper in this case. Other information, such as
expiration time must be filled in by the stakeholders.

77

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.11: Service contract to context

Next to the context, WS-Agreement documents consist of terms, including service descrip-
tion terms, properties and guarantee terms. Figure 6.11 shows that all terms are mapped into
a root “All” clause because all terms have to be considered. The QoS requirements specified in
the SoaML models are mapped to guarantee terms which include service level objectives that
are expressed with our custom grammar. This means that the guarantee terms are structured
as alternatives using term compositors. Service description terms and service properties are ex-
tracted from this mapping and placed on top in the root “All” clause. We start with explaining
the structuring of the guarantee terms based on the SoaML models.

In the same way as in the SoaML2Policy, QoS requirements are connected to their subjects
by dependencies. In service contracts, this is done with the “QoSContract” dependency. These
dependencies have a logical operator property which we can use to make requirements optional.
The difference in WS-Agreement is the support for the “OneOrMore” operator, as explained in
Section 5.6. In order to support this operator, we use the “next” property of the dependency
element, which can link to another dependency element.

Figure 6.12: Dependency to alternatives

78

CHAPTER 6. MODEL TRANSFORMATIONS

We defined the following guidelines to express the term compositors:

1. Map into “All” clause: all requirements where logical operator is set to “and”, or where
logical operator is empty.

2. Map into “ExactlyOne” clause: all requirements where logical operator is set to “or”, and
where “next” property is not set.

3. Map into “OneOrMore” clause: all requirements where logical operator is set to “or”, and
where “next” property points to the next “OneOrMore” dependency.

Figure 6.12 illustrates this mapping of dependencies to alternatives using the compositors.
To allow grouping of requirements and more complex combinations we support nested QoS
packages. A nested QoS package will be mapped as a nested “All” clause, similarly as its done
in the SoaML2WSPolicy transformation. Figure 6.13 shows the mapping of such a nested QoS
package. In this example, all dependencies, reliability 1 to 3, are modeled with “or” operators.

Figure 6.13: Nested QoS specifications

Figure 6.12 and 6.13 also show the service description term and service properties. One gen-
eral description term is generated to describe the provided service. This term should be filled
in by the stakeholders since this information is not available in the SoaML models. Further-
more service properties are generated for each QoS value. These properties define measurable
and exposed properties associated with a service, such as response time and throughput. We
generate properties for each value so that stakeholders are able to refine the property of a QoS
requirement when this is necessary.

The last elements we have to consider are the guarantee terms themselves. These terms con-
sist of a service scope, the service level objective and a business value list. In this mapping, the
service scope is connected to the generated service description term and the business value list,
with possible penalties, rewards etc., has to be filled in by the stakeholders. The service level
objective is expressed with our custom grammar. We map each QoS value to a QualityAttribute
element which contains all information of the QoS requirements. The QualityAttribute is auto-
matically linked to the corresponding service property. Figure 6.14 shows the mapping of QoS
values to service properties and guarantee terms.

79

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.14: QoS value to properties and guarantee terms

With the explained mappings, service contracts, in a SoaML model modeled properly ac-
cording to our guidelines, can be transformed to WS-Agreement skeleton documents. The WS-
Agreement are already properly structured and can be completed by the stakeholders which are
involved the service contract negotiation. The mappings are implemented in the SoaML2WSAgreement
ATL model-to-model transformation. Appendix A.2 shows the source of the implemented trans-
formation.

6.3 Transformation results

This section demonstrates the implemented transformation and shows how it can be used to
optimize the stakeholder activities. We evaluate how this approach improves the activities in
comparison with without specifying QoS in PIM-level models, and without automatic model
transformations to answer our last research question RQ5 (see Section 1.4). We look how the
transformation satisfied our expectations as explained in Section 2.10.

6.3.1 Policies

The SoaML2WSPolicy transformation (see Appendix A.1) is applied to the SoaML input models
as explained in Section 6.1.2. The resulted target models (Figure 6.15) consist of two WS-Policy
document which contain the QoS requirements for the corresponding participant. These pol-
icy documents could be used at the platform level to express the QoS requirements when the
documents are attached to their subjects.

80

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.15: Transforming the SoaML models to WS-Policy

This demonstration shows how model transformations help to automatically generate WS-
Policy PSM-level models based on information included in the SoaML PIM-level models. Re-
ferring back to Section 2.10, we see that this transformation optimizes the policy specification
activity.

The service consumer, provider and application provider can benefit from this approach
because they can earlier include essential model information during the service life-cycle. Fur-
thermore the speed of development is increased because the policy documents do not have to
be built from scratch. In this case, the automatic models transformations also ensure that QoS
requirements do not have to be modeled twice.

6.3.2 Service contracts

Similarly, the SoaML2Agreement transformation (see Appendix A.2) is applied to the SoaML
input models as explained in Section 6.1.2. The resulted target model (Figure 6.16) consist of a
WS-Agreement document that can be used to instantiate a contract between the company and
the shipper at the platform level.

81

CHAPTER 6. MODEL TRANSFORMATIONS

Figure 6.16: Transforming the SoaML models to WS-Agreement

This demonstration shows how automatic model transformations help to generate WS-Agreement
skeleton documents from service contracts defined SoaML. Referring back to Section 2.10, we
see that this transformation optimizes the service contract specification activity.

Service consumer, provider and application provider can benefit from this approach. The
application provider can already model service contracts and QoS requirements at PIM-level
to specify the desired SOA application. Service consumer and provider benefit because their
QoS requirement are already (partly) defined in the WS-Agreement skeleton document which
they can use for the negotiation. During this negotiation provider and consumer complete the
WS-Agreement template and ultimately they have a complete service contract.

82

Chapter 7

Final remarks

In this work we investigated the transformation of SoaML PIM-
level models into PSM-level models that support the specified
quality requirements. This chapter discusses some related work,
presents our conclusions and gives recommendations for future
work.

7.1 Related work

This work is a combination of different topics, like the support of the service life-cycle, the
application of MDE to SOA, and the specification of QoS requirements in SoaML and some
PSM-level techniques.

Several researchers investigated which activities are involved in the service life-cycle as we
have done in Chapter 2. Gu et al. [18] also consider the views of different stakeholders and
their activities based on the service life-cycle. However, in our work we refine the provider into
different finer-grained stakeholders because we think in practice these roles can be performed
by different people. Furthermore, we try to map the stakeholders to their role in more general
phases, such as design and implementation, where Gu et al. define separate phases for each
stakeholder. Weinreich et al. [19] also define different activities, but they focus on the point of
view from the provider at a detailed level.

There has been a lot of work done on applying MDE to SOA. Most of the work considers the
functional part of SOA, e.g., transform service models into WSDL and BPEL descriptions, such
as done in [95] and [96]. In our work, we consider non-functional aspects. There is also a lot of
work that considers QoS specifications in their MDE processes such as [24] and [67], however,
not much work has been done on the use of SoaML as the language to model SOA applications,
as we do in this thesis. Some work extends SoaML for domain-specific purposes such as ambient
calculus [97] and security [61]. The first one is about a functional domain-specific extension,
where our work considers general non-functional aspects. The second one is more close to our
work because it considers the security aspect with SoaML, however, it does not consider the
transformation to the PSM-level.

Furthermore, the work of Ali et al. [12] is quite close to ours in that it applies MDA tech-
niques to SoaML and transform the functional part of the service models to platform-specific
Declarative Services (DS) models. Our research is different in that it focuses on non-functional
aspects, i.e., the specification of QoS in SoaML, and the mapping to QoS modeling techniques
at the PSM-level such as, e.g., WS-Policy.

83

CHAPTER 7. FINAL REMARKS

7.2 Research results

Our goal was to investigate how quality requirements of service models should be specified
at both PIM and PSM level and how these PIM models should be transformed to PSM mod-
els, so that productivity for the activities of stakeholders in the service life-cycle is improved.
We achieved this objective by defining several guidelines and models transformation to service
models. Below, we discuss the research questions and the contributions of this thesis.

Some of the stakeholders’ activities in the service life-cycle (Chapter 2) can be optimized
with MDE and some practical implementations reported in the literature have already shown
this [95, 96]. We showed the benefits of modeling QoS at both PIM and PSM-level, and listed
some common quality aspects and typical activities that could be optimized with MDE. The se-
lected activities for this work include the specification of QoS with policies and service contracts
in SOA applications (RQ1).

We observed that SoaML currently is the most complete and promising language to model
PIM-level SOA applications (RQ2.1) and surveyed several QoS modeling techniques that can
be used to specify the QoS requirements of stakeholders in SoaML (RQ2.2). These techniques
have been evaluated with a case study to test their suitability for this project. We have chosen
QoS&FT [59] to model QoS requirements because this language also allows us to interpret and
use the requirements in model transformations. Furthermore, our work shows that the QoS&FT
profile’s tool support is limited and the profile lacks good examples of practical use. One con-
tribution of our work are the QoS&FT examples that might help others start using this profile.
We also show how to include QoS requirements (expressed with QoS&FT) in SoaML models,
by modeling both policies and service contracts, and we explain the consequences of profile-
versus metamodel-based models for the corresponding tools and model transformations.

We investigated several PSM-level techniques for policies and service contracts and chose
the most suitable ones as target languages for the transformations (RQ3). Once we prepared
our transformation environment, we defined the mappings of policies defined in SoaML to WS-
Policy documents. We implemented the mapping as a ATL transformation (SoaML2WSPolicy)
and showed how the transformation can be used to generate policy files. This transformation
can be used to improve the process of producing policy specifications for the platform-level.
Similarly, we have implemented the SoaML2WSAgreement transformation that transforms ser-
vice contracts in SoaML to WS-Agreement skeleton documents (RQ4).

These automatic model transformations are beneficial in several ways for stakeholders such
as the service provider, consumer and application provider. Firstly, the stakeholders are able to
include model information which is essential for the functioning of the SOA application earlier
in the development process. This increases consistency and understandability for other stake-
holders during the evolvement of these models. Secondly, the stakeholders’ productivity is in-
creased because documents are generated automatically based on SoaML models. Productivity
increase is an example of how the application of MDE to SoaML can be beneficial (RQ5).

7.3 Future work

This research’s topic, applying MDE to SOA considering QoS, offers lots of directions and possi-
bilities for further research. During this project we were able to investigate and implement just

84

CHAPTER 7. FINAL REMARKS

a part of our ideas. Below, we give an overview of possible future work that can help to improve
or extend this work.

Activities

In Chapter 2 of this thesis we gave an overview of several activities for various stakeholders
during the service life-cycle. Because limited time was available, we have elaborated and opti-
mized just a few of these activities in this work, i.e., specification of policies and contracts. It is
interesting to investigate how that also other activities can be facilitated by the application of
MDE to realize the full benefit of model-driven SOA.

Quality aspects

In this thesis we concentrated on a limited number of quality aspects (e.g., performance) and
metrics (e.g., response time), as listed in Section 2.9 and Section 2.10. Other quality aspects
should also be investigated to determine how to represent them at both PIM and PSM levels.
For instance, modeling security might need additional notations at PIM-level to clearly specify
the security requirements in a service model.

Tooling

Currently we are working with profile- and metamodel-based SoaML models because of tool
limitations explained in Chapter 3. This process of developing SoaML models could be fa-
cilitated in several ways. An option would be to develop a comprehensive (metamodel-based)
SoaML tool that supports visual modeling, implements the QoS support, and supports the trans-
formation to the PSM-level. Another option would be to implement auxiliary transformations,
e.g., a transformation from profile-based models to metamodel-based models, to facilitate the
generation of metamodel-based models.

The SoaML and QoS Ecore metamodel implementations (see Section 6.1.1) could be extended
with constraints (described in [11] and [59]). These constraints could help to describe the se-
mantics of model elements in a systematic way, e.g., with OCL. In the end, models based on
these metamodels can be validated for correctness. Furthermore, constraints can be defined to
check whether the QoS is properly specified in the SoaML models, as we explained in Section
4.5 and Section 6.2.

Model transformations

The target models of our transformations (see Section 6.3) are default XMI-based models that
conform to their corresponding metamodel as generated using EMF. A further improvement is
to implement model-to-text (M2T) transformations that map the models to target models de-
fined in the language’s concrete syntax in order to obtain actual code.

In an ideal situation, also the functional part of the SoaML would transformed during these
transformations. For example, WSDL descriptions could be generated for the service interfaces
or WS-CDL descriptions could be generated for the defined choreographies [95, 96]. With re-
spect to the policy transformation (SoaML2WSPolicy), it would then be possible to generate

85

CHAPTER 7. FINAL REMARKS

attachments, which could be used to automatically attach the policies to their subjects, i.e., a
service interface described in WSDL. Another option would be to generate glue code that links
QoS requirements to an UDDI record, e.g., as done in [73].

At this moment, the SoaML2WSAgreement transformation is able to fill in part of the infor-
mation for the WS-Agreement document, as explained in Section 5.6 and Section 6.2.2. This
transformation could be extended. For example, finding a way to support the specification of
business values, multi-party contracts, or creation constraints in SoaML models could be an in-
teresting extension. For example, business values for a service contract may already be defined
at the CIM-level, and could be considered in SoaML PIM-level models.

Monitoring and enforcement of QoS

In this thesis we have considered PSM techniques that express QoS aspects and requirements at
PSM-level. It is possible to go a step further by considering how to enforce and monitor these
requirements. It might also be possible to (automatically) generate models that support certain
monitoring and enforcement platforms (such as WebSphere DataPower [77] to enforce policies),
which leads to a more complete coverage of the service life-cycle.

86

References

[1] Fraunhaufer, “WS-Agreement Language.” http://packcs-e0.scai.fraunhofer.de/wsag
4j/wsag/wsag-language.html, 2012.

[2] T. Gherbi, D. Meslati, and I. Borne, “MDE between Promises and Challenges,” 11th Inter-
national Conference on Computer Modelling and Simulation, 2009.

[3] Z. Stojanovic, A. Dahanayake, and H. Sol, “Modeling and Design of Service-Oriented Ar-
chitecture,” 2004 IEEE International Conference on Systems, Man and Cybernetics, 2004.

[4] A. T. Zade, S. Rasulzadeh, and R. Torkashvan, “A Middleware Transparent Framework for
Applying MDA to SOA,” World Academy of Science, Engineering and Technology 42, 2008.

[5] Object Management Group, “MDA Specifications.” http://www.omg.org/mda/specs.htm,
2011.

[6] Systems and Network Attack Center, “Service Oriented Architecture Security Vulnerabili-
ties - Web Service.” http://www.nsa.gov/ia/_files/factsheets/SOA_security_vulnera
bilities_web.pdf, 2007.

[7] N. Bieberstein, R. G. Laird, D. K. Jones, and T. Mitra, Executing SOA: A Practical Guide for
the Service-Oriented Architect. IBM Press, 2004.

[8] Methodologies coorporation, “Introduction to SOMF: Agile Software Modeling.” http://

www.modelingconcepts.com/pages/download.htm, 2011.

[9] Model Driven Solutions, “Enterprise Service Oriented Architecture Using the OMG SoaML
Standard,” 2009.

[10] M. Lopez-Sanz, C. J. Acuna, C. E. Cuesta, and E. Marcos, “Modelling of Service-Oriented
Architectures with UML,” Electronic Notes in Theoretical Computer Science, No. 194, 2008.

[11] Object Management Group, “Specification for the UML Profile and Metamodel for Services
(UPMS).” http://www.omg.org/spec/SoaML/1.0/PDF/, 2012.

[12] N. Ali, R. Nellipaiappan, and R. Chandran, “Model Driven Support for the Service oriented
architecture Modeling Language,” PESOS ’10, May 2-8, 2010, 2010.

[13] N. Schot, “Model-Driven SOA: report for research topics,” 2012.

[14] M. O. Hilari, “Quality of Service (QoS) in SOA Systems. A Systematic Review.”
http://upcommons.upc.edu/pfc/bitstream/2099.1/7714/1/Master%20thesis%20-%
20Marc%20Oriol.pdf, 2009.

[15] OASIS, “Reference Architecture Foundation for Service Oriented Architecture Version
1.0.” http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html, 2011.

87

http://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html
http://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html
http://www.omg.org/mda/specs.htm
http://www.nsa.gov/ia/_files/factsheets/SOA_security_vulnerabilities_web.pdf
http://www.nsa.gov/ia/_files/factsheets/SOA_security_vulnerabilities_web.pdf
http://www.modelingconcepts.com/pages/download.htm
http://www.modelingconcepts.com/pages/download.htm
http://www.omg.org/spec/SoaML/1.0/PDF/
http://upcommons.upc.edu/pfc/bitstream/2099.1/7714/1/Master%20thesis%20-%20Marc%20Oriol.pdf
http://upcommons.upc.edu/pfc/bitstream/2099.1/7714/1/Master%20thesis%20-%20Marc%20Oriol.pdf
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html

REFERENCES

[16] OASIS, “Reference Model for Service Oriented Architecture 1.0.” http://docs.oasis-ope
n.org/soa-rm/v1.0/soa-rm.html, 2006.

[17] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-Functional Requirements in
Model-Driven Development,” 2010.

[18] Q. Gu and P. Lago, “A Stakeholder-driven Service Life Cycle Model for SOA,” IW-SOSWE
2007, 2007.

[19] R. Weinreich, A. Wiesauer, and T. Kriechbaum, “A Service Lifecycle and Information
Model for Service-Oriented Architectures,” 2009 Computation World: Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns, 2009.

[20] E. Silva, J. M. Lopez, L. Ferreira Pires, and M. van Sinderen, “Defining and Prototyping a
Life-cycle for Dynamic Service Composition,” Concepts and Technologies for Service Oriented
Computing (ACT4SOC 2008), 2008.

[21] Open Group, “SOA Reference Architecture.” http://www.opengroup.org/projects/so
a-ref-arch/, 2011.

[22] IBM, “Web services architect: Part 1.” http://www.ibm.com/developerworks/webservice
s/library/ws-arc1/, 2001.

[23] Z. Balfagih and M. F. Hassan, “Quality Model for Web Services from Multi-Stakeholders’
Perspective,” 2006.

[24] A. D’Ambrogio, “A Model-driven WSDL Extension for Describing the QoS of Web Ser-
vices.,” 2006.

[25] P. Bianco, G. A. Lewis, and P. Merson, “Service Level Agreements in Service-Oriented Ar-
chitecture Environments,” 2008.

[26] A. Al-Moayed and B. Hollunder, “Quality of Service Attributes in Web Services,” 2010 Fifth
International Conference on Software Engineering Advances, 2010.

[27] S. W. Choi, J. S. Her, and S. D. Kim, “Modeling QoS Attributes and Metrics for Evaluating
Services in SOA Considering Consumers Perspective as the First Class Requirement,” 2007
IEEE Asia-Pacific Services Computing Conference, 2007.

[28] A. Modelbased.net, “What is MDA?.” http://www.modelbased.net/mdi/mda/mda.pdf,
2006.

[29] Object Management Group, “MDA Guide Version 1.0.1.” http://www.omg.org/cgi-bin/d
oc?omg/03-06-01.pdf, 2003.

[30] J. A. Almeida, R. Dijkman, M. van Sinderen, and L. Ferreira Pires, “Platform-independent
modelling in MDA: supporting abstract platforms,” Model Driven Architecture. European
MDA Workshops: Foundations and Applications, 2005.

[31] B. Elvesæter and A.-J. Berre, “Specifying services using the SOA modeling language
(SoaML),” 2011.

88

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://www.opengroup.org/projects/soa-ref-arch/
http://www.opengroup.org/projects/soa-ref-arch/
http://www.ibm.com/developerworks/webservices/library/ws-arc1/
http://www.ibm.com/developerworks/webservices/library/ws-arc1/
http://www.modelbased.net/mdi/mda/mda.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

REFERENCES

[32] A.-J. Berre, D. Roman, B. Elvesester, and C. Carrez, “SoaML Tutorial @MOPAS2010,
Athens, Greece,” 2010.

[33] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation tool,” 2008.

[34] Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification,” 2008.

[35] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Professional, 2003.

[36] H. Kreger and J. Estefan, “Navigating the SOA Open Standards Landscape Around Archi-
tecture,” A paper published by The Open Group, 2009.

[37] I. Todoran, Z. Hussain, and N. Gromov, “SOA Integration Modeling: An Evaluation of how
SoaML Completes UML Modeling,” 2011.

[38] R. Amir and A. Zeid, “A UML Profile for Service Oriented Architectures,” 2004.

[39] A. Randak, S. Martinez, and M. Wimmer, “Extending ATL for Native UML Profile Support:
An Experience Report,” 2011.

[40] Open Group, “Service-Oriented Architecture Ontology.” http://www.opengroup.org/pro
jects/soa-ontology/, 2010.

[41] Y. Lemrabet, J. Touzi, D. Clin, M.Bigand, and J.-P. Bourey, “Mapping of BPMN models into
UML models using SoaML profile,” 8th International Conference of Modeling and Simulation
- MOSIM 10, 2010.

[42] Everware-CBDI, “Introduction to SoaML and its Place Within the CBDI-SAE Meta Model.”
http://everware-cbdi.com/index.php?cID=19&cType=document, 2009.

[43] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore, and M. Friess, “A Platform
Independent Model for Service Oriented Architectures,” Athena project, 2007.

[44] Everware-CBDI, “CBDI-SAE Meta Model for SOA.” http://everware-cbdi.com/cbdi-s
ae-metamodel, 2011.

[45] L.-J. Zhang, N. Zhou, Y.-M. Chee, A. Jalaldeen, K. Ponnalagu, R. R. Sindhgatta, A. Ar-
sanjani, and F. Bernardini, “SOMA-ME: A platform for the model-driven design of SOA
solutions,” IBM Systems Journal 47, 2008.

[46] M. Bell, Service - Oriented Modeling Service Analysis Design and Architecture. John Wiley &
Sons, 2008.

[47] C. Dumez, A. N. sidi moh, J. Gaber, and M. Wack, “Modeling and specification of web
services composition using UML-S,” 4th International Conference on Next Generation Web
Services Practices, 2008.

[48] IBM, “UML 2.0 Profile for Software Services.” http://www.ibm.com/developerworks/rati
onal/library/05/419_soa/, 2005.

89

http://www.opengroup.org/projects/soa-ontology/
http://www.opengroup.org/projects/soa-ontology/
http://everware-cbdi.com/index.php?cID=19&cType=document
http://everware-cbdi.com/cbdi-sae-metamodel
http://everware-cbdi.com/cbdi-sae-metamodel
http://www.ibm.com/developerworks/rational/library/05/419_soa/
http://www.ibm.com/developerworks/rational/library/05/419_soa/

REFERENCES

[49] T. Zhang, S. Ying, S. Cao, , and X. Jia, “A Modeling Framework for Service-Oriented Ar-
chitecture,” Proceedings of the Sixth International Conference on Quality Software (QSIC’06),
2006.

[50] W3C, “Web Services Architecture.” http://www.w3.org/TR/ws-arch/, 2004.

[51] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck, “Evaluation of Service
Designs Based on SoaML,” 2010.

[52] Object Management Group, “SoaML Wiki - Tool support.” http://www.omgwiki.org/Soa
ML/doku.php?id=tool_support, 2011.

[53] ModelPro, “ModelPro - Hello World tutorial.” http://www.screencast.com/users/Model
Driven.org/folders/ModelPro%20Tutorials/media/4e19939c-7f07-4aa5-bb80-ea3a
788217ec, 2009.

[54] IBM, “Modeling with SoaML, the Service-Oriented Architecture Modeling Language: Part
1. Service identification.” http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/, 2009.

[55] A. Delgado, “MINERVA: Tools Dimension / Eclipse SoaML plug-in.” http://alarcos.esi
.uclm.es/MINERVA/TOOLS/soamlPlugin.htm, 2010.

[56] J. Amsden, “Modeling with SoaML, the Service-Oriented Architecture Modeling Language:
Part 1 to 5..” http://www.ibm.com/developerworks/rational/library/09/modelingwi
thsoaml-1/, 2010.

[57] IBM, “UML constraints.” http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m
0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/cconstrnt.html, 2012.

[58] ISO/IEC, “Information technology - Object Constraint Language (OCL),” 2012.

[59] Object Management Group, “UML Profile for Modeling Quality of Service and Fault Tol-
erance Characteristics and Mechanisms Specification,” 2008.

[60] Rossana Abdul Carimo, “Evaluation of UML Profile for Quality of Service from the User
Perspective,” 2006.

[61] S. Kou, M. A. Babar, and A. Sangroya, “Modeling Security for Service Oriented Applica-
tions,” ECSA 2010, August 23-26, 201, 2010.

[62] H. Espinoza, H. Dubois, S. Gerard, J. Medina, D. C. Petriu, and M. Woodside, “Annotating
UML Models with Non-Functional Properties for Quantitative Analysis,” 2006.

[63] S. Frolund and J. Koistinen, “QML: A Language for Quality of Service Specification,” 1998.

[64] J. I. Asensio, V. A. Villagrá, J. E. L. de Vergara, and J. J. Berrocal, “UML Profiles for the
Specification and Instrumentation of QoS Management Information in Distributed Object-
based Applications,” 2001.

[65] J. Øyvind Aagedal and J. Earl F. Ecklund, “Modelling QoS: Towards a UML Profile,” 2002.

90

http://www.w3.org/TR/ws-arch/
http://www.omgwiki.org/SoaML/doku.php?id=tool_support
http://www.omgwiki.org/SoaML/doku.php?id=tool_support
http://www.screencast.com/users/ModelDriven.org/folders/ModelPro%20Tutorials/media/4e19939c-7f07-4aa5-bb80-ea3a788217ec
http://www.screencast.com/users/ModelDriven.org/folders/ModelPro%20Tutorials/media/4e19939c-7f07-4aa5-bb80-ea3a788217ec
http://www.screencast.com/users/ModelDriven.org/folders/ModelPro%20Tutorials/media/4e19939c-7f07-4aa5-bb80-ea3a788217ec
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/
http://alarcos.esi.uclm.es/MINERVA/TOOLS/soamlPlugin.htm
http://alarcos.esi.uclm.es/MINERVA/TOOLS/soamlPlugin.htm
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/
http://www.ibm.com/developerworks/rational/library/09/modelingwithsoaml-1/
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/cconstrnt.html
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/cconstrnt.html

REFERENCES

[66] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu, “An XML-based Quality of Ser-
vice Enabling Language for the Web,” 2001.

[67] A. Al-Moayed and B. Hollunder, “An Approach to Model, Configure and Apply QoS At-
tributes to Web Services,” 2011 IEEE Asia-Pacific Services Computing Conference, 2011.

[68] Changying Dai and Zhibin Wang, “A flexible extension of WSDL to describe non-
functional attributes,” 2010.

[69] B. Hollunder, “WS-Policy: On Conditional and Custom Assertions,” 2009.

[70] F.-Z. Belouadha, H. Omrana, and O. Roudies, “A MDA approach for defining WS-Policy
semantic non-functional properties,” 2010.

[71] W3C, “Web Services Policy 1.5 - Framework.” http://www.w3.org/TR/ws-policy/, 2007.

[72] W3C, “Web Services Policy 1.5 - Attachment.” http://www.w3.org/Submission/WS-Polic
yAttachment/, 2007.

[73] S. Chaari, Y. Badr, and F. Biennier, “Enhancing Web Service Selection by QoS-Based Ontol-
ogy and WS-Policy,” SAC 08, 2008.

[74] T. Nurmela, “WS-Policy specifications,” 2005.

[75] OASIS, “WS-SecurityPolicy 1.2.” http://docs.oasis-open.org/ws-sx/ws-securitypol
icy/v1.2/ws-securitypolicy.pdf, 2007.

[76] OASIS, “Web Services Reliable Messaging (WS-ReliableMessaging) 1.2.” http://docs.oas
is-open.org/ws-rx/wsrm/v1.2/wsrm.pdf, 2009.

[77] IBM, “WS-MeditationPolicy 1.6.” ftp://public.dhe.ibm.com/software/solutions/soa/
pdfs/WSMediationPolicy1.6-20120124.pdf, 2012.

[78] Diego Zuquim Guimarães Garcia and Maria Beatriz Felgar de Toledo, “A Web Service Ar-
chitecture Providing QoS Management,” 2006.

[79] C.-C. Lo, D.-Y. Cheng, P.-C. Lin, and K.-M. Chao, “A Study on Representation of QoS in
UDDI for Web Services Composition,” International Conference on Complex, Intelligent and
Software Intensive Systems, 2008.

[80] S. Microsystems and A. H. Anderson, “An Introduction to the Web Services Policy Lan-
guage (WSPL),” 2004.

[81] Glen Daniels, “Comparing Features / Properties and WS-Policy.” http://www.w3.org
/2004/08/ws-cc/gdfpwsp-20040904, 2004.

[82] B. Parsia, V. Kolovski, and J. Hendler, “Expressing WS Policies in OWL,” 2005.

[83] Reto Kaiser, Universität Basel, “Web Services Quality of Service,” 2010.

[84] Open Grid Forum (OGF), “Web Services Agreement Specification (WS-Agreement),” 2007.

[85] Wolfgang Ziegler, “WS-Agreement,” 2011.

91

http://www.w3.org/TR/ws-policy/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.pdf
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.pdf
ftp://public.dhe.ibm.com/software/solutions/soa/pdfs/WSMediationPolicy1.6-20120124.pdf
ftp://public.dhe.ibm.com/software/solutions/soa/pdfs/WSMediationPolicy1.6-20120124.pdf
http://www.w3.org/2004/08/ws-cc/gdfpwsp-20040904
http://www.w3.org/2004/08/ws-cc/gdfpwsp-20040904

REFERENCES

[86] Ganna Frankova and Daniela Malfatti and and Marco Aiello, “Semantics and Extensions
of WS-Agreement,” 2006.

[87] IBM, “Web Service Level Agreement (WSLA) Language Specification 1.0,” 2003.

[88] Keven T. Kearney and Francesco Torelli and Constantinos Kotsokalis, “SLA*: An Abstract
Syntax for Service Level Agreements,” 2010.

[89] Peter Chronz and Philipp Wieder, “Integrating WS-Agreement with a Framework for
Service-Oriented Infrastructures,” 2010.

[90] Optimus, “Analysis of Existing solutions and Requirements for SLAs,” 2009.

[91] D.Davide Lamanna and James Skene and Wolfgang Emmerich, “SLAng: A Language for
DefiningService Level Agreements,” 2003.

[92] Adrian Paschke, “RBSLA A declarative Rule-based Service Level Agreement Language
based on RuleML,” 2005.

[93] Vladimir Kolovski and Bijan Parsia and Yarden Katz and and James Hendler, “Represent-
ing Web Service Policies in OWL-DL,” 2005.

[94] Mi Abuela Acierta Más, “Explaining Inconsistencies of WS-Ag docs.” https://miabuela

aciertamas.googlecode.com/files/Secci%C3%B3n%20de%20WS-Ag.pdf, 2010.

[95] Mardiana and Keijiro Araki and Yoichi Omori, “MDA and SOA approach to Development
of Web Application Interface,” 2011.

[96] Christian Emig and Karsten Krutz and Stefan Link, “Model-Driven Development of SOA
Services,” 2007.

[97] N. Ali and M. A. Babar, “Modeling Service Oriented Architectures of Mobile Application
by Extending SoaML with Ambients,” 2009.

92

https://miabuelaaciertamas.googlecode.com/files/Secci%C3%B3n%20de%20WS-Ag.pdf
https://miabuelaaciertamas.googlecode.com/files/Secci%C3%B3n%20de%20WS-Ag.pdf

Appendix A

ATL transformations

This appendix contains the source of the ATL [33] model-to-model transformations.

A.1 SoaML2WSPolicy

Listing A.1: SoaML to WS-Policy ATL model-to-model transformation
1

2 −−−
3 −− Transformation f i le to generate several WS−Policy documents from policies specified in SoaML models.
4 −− v.0.1
5 −−−
6

7 module SoaML2WSPolicy;
8 create OUT : WSPolicy from IN : SOAML;
9

10 −−−−−−−−−−−−−−−
11 −− Helpers
12 −−−−−−−−−−−−−−−
13

14 −− Helper to determine i f a QoS constraint uses an ’and’ operator
15 helper context SOAML!QoSConstraint def : usesAndOperator : Boolean =
16 i f (self . logicalOperator . toString () = ’and’ or self . logicalOperator . toString () = ’ ’) then
17 true
18 else
19 false
20 endif ;
21

22 −− Helper to convert (IN !name)−kind to (name)−kind strings
23 helper context String def : convertToId : String =
24 self . substring(4 , self . size ()) ;
25

26 −− Helper to get ID of the corresponding assertion referenced by dependency
27 helper context SOAML!QoSConstraint def : getAssertionName : String =
28 self . supplier . f i rs t () . toString () . convertToId ;
29

30 −− Helper to get ID of the corresponding QoS characteristic referenced by QoS value definition
31 helper context SOAML!QoSValue def : getCharacteristicName : String =
32 self . classifier . f i rs t () . toString () . convertToId ;
33

34 −− Helper to check i f object is a QoS dependency
35 helper context OclAny def : isDependency : Boolean = (self . oclIsTypeOf(SOAML!QoSRequired) or self . oclIsTypeOf(

SOAML!QoSOffered)) ;
36

37 −− Helper to check i f object is a policy
38 helper context OclAny def : isPolicy : Boolean = (self . oclIsTypeOf(SOAML!SoaMLModel) and self .name=’policy ’) ;
39

40 −− Helper that maps source statistical qualifiers to assertion qualifiers
41 helper def : qualifierMap : Map(OclAny,OclAny) = Map{(#maximum,#maximum) ,(#minimum,#minimum) ,(#range,

OclUndefined) } ;
42

43 −− Helper that maps source directions to assertion directions

93

APPENDIX A. ATL TRANSFORMATIONS

44 helper def : directionMap : Map(OclAny,OclAny) = Map{(#increasing ,#increasing) ,(#decreasing,#decreasing) } ;
45

46

47 −−−−−−−−−−−−−−−
48 −− Starting rule
49 −−−−−−−−−−−−−−−
50

51 −− Transform each policy package in a participant to WS−Policy document
52

53 rule Participant2Policy {
54 from
55 policy : SOAML! Participant (policy .packagedElement−>exists (d | d. isPolicy))
56 do {
57 policy .packagedElement−>select (p | p .name=’policy ’)−>collect (c | thisModule . Policy2Policy (c)) ;
58 }
59

60 }
61

62

63 −−−−−−−−−−−−−−−
64 −− Lazy rules
65 −−−−−−−−−−−−−−−
66

67 −− Transform each policy package to a WS−Policy document
68

69 lazy rule Policy2Policy {
70 from
71 policy : SOAML!SoaMLModel
72 using {
73 policyName : String = policy . refImmediateComposite() .name;
74 policyPackagesElements : OclAny = policy .packagedElement;
75 qoSDependencies : OclAny = policyPackagesElements−>select (b | b . isDependency) ;
76 nestedPolicies : OclAny = policyPackagesElements−>select (b | b . isPolicy) ;
77 requiredAssertions : OclAny = qoSDependencies−>select (c | c .usesAndOperator) ;
78 optionalAssertions : OclAny = qoSDependencies−>select (d | not d.usesAndOperator) ;
79 dependency : OclAny = i f not qoSDependencies. isEmpty() then qoSDependencies. f i rs t () . client . f i rs t ()

else OclUndefined endif ;
80 }
81 to
82 policydoc : WSPolicy ! Policy
83 (
84 −− Give policy name of the corresponding participant
85 name <− ’ Participant : ’ .concat(policyName) .concat(’ , connectTo: ’) .concat(dependency. toString () .

convertToId) ,
86 −− Transform all QoS dependencies to alternative elements
87 alternatives <− policyPackagesElements−>collect (e |
88 −− Transform assertions that must be satisfied in ’ All ’ clause
89 i f (requiredAssertions . f i rs t () = e) then
90 thisModule . LogicalOperatorAll2Alternative(e)
91 else
92 −− Transform all assertions of which at least one must be satisfied to ’ExactlyOne ’ clause
93 i f (optionalAssertions . f i rs t () = e) then
94 thisModule . LogicalOperatorOr2Alternative(e)
95 else
96 −− I f there are nested policies
97 i f (e . oclIsTypeOf(SOAML!SoaMLModel) and e.name=’policy ’) then
98 thisModule .NestedPolicy2Policy(e)
99 else OclUndefined endif

100 endif
101 endif
102)
103)
104 }
105

106

94

APPENDIX A. ATL TRANSFORMATIONS

107 −− Transform each nested policy package to an All clause inside root clause
108

109 lazy rule NestedPolicy2Policy {
110 from
111 policy : SOAML!SoaMLModel
112 using {
113 qoSDependencies : OclAny = policy .packagedElement−>select (b | b . isDependency) ;
114 requiredAssertions : OclAny = qoSDependencies−>select (c | c .usesAndOperator) ;
115 optionalAssertions : OclAny = qoSDependencies−>select (d | not d.usesAndOperator) ;
116 dependency : OclAny = qoSDependencies. f i rs t () . client . f i rs t () ;
117 }
118 to
119 allclause : WSPolicy ! All
120 (
121 −− Transform all QoS dependencies to alternative elements
122 nestedAlternative <− qoSDependencies−>collect (e |
123 −− Transform assertions that must be satisfied in ’ All ’ clause
124 i f (requiredAssertions . f i rs t () = e) then
125 thisModule . LogicalOperatorAll2Alternative(e)
126 else
127 −− Transform all assertions of which at least one must be satisfied to ’ExactlyOne ’ clause
128 i f (optionalAssertions . f i rs t ()=e) then
129 thisModule . LogicalOperatorOr2Alternative(e)
130 else
131 −− I f there are nested policies
132 i f (policy .packagedElement−>exists (d | d. oclIsTypeOf(SOAML!SoaMLModel) and d.name=’

policy ’)) then
133 policy .packagedElement−>collect (g |
134 i f (g. oclIsTypeOf(SOAML!SoaMLModel) and g.name=’policy ’) then
135 thisModule .NestedPolicy2Policy(g)
136 else OclUndefined endif
137)
138

139 else OclUndefined endif
140 endif
141 endif
142)
143)
144 }
145

146

147 −− Creates an ’ All ’ clause for corresponding QoS constraints
148

149 lazy rule LogicalOperatorAll2Alternative {
150 from
151 −− Transform the QoS policy of the provider or consumer
152 qosconstraint : SOAML!QoSConstraint
153 to
154 andoperator : WSPolicy ! All (
155 assertions <− SOAML!QoSValue−>allInstances ()−>collect (a |
156 −− Transform assertions that belong in this clause
157 i f a.name=qosconstraint .getAssertionName then
158 thisModule .QoSValue2PolicyAssertion(a)
159 else
160 −− I f another constraint is in the same package as reference constraint , also include his

referenced assertion
161 i f (qosconstraint . refImmediateComposite() .packagedElement−>exists (d | d. isDependency))

then
162 SOAML!QoSConstraint−>allInstances ()−>collect (b |
163 −− I f constraint uses ’AND’ operator and has the same ID
164 i f (b .usesAndOperator) and (qosconstraint . refImmediateComposite() .packagedElement

−>one(d | d.name=b.name)) then
165 −− Check the assertions with current assertion , i f OK; include this assertion

in same clause

95

APPENDIX A. ATL TRANSFORMATIONS

166 i f (qosconstraint . refImmediateComposite() .packagedElement−>any(d | d.name=b.
name) .getAssertionName = a.name) then

167 thisModule .QoSValue2PolicyAssertion(a)
168 else OclUndefined endif
169 else OclUndefined endif
170)
171 else OclUndefined endif
172 endif
173)
174)
175 }
176

177

178 −− Creates an ’ExactlyOne ’ clause for corresponding QoS constraints
179

180 lazy rule LogicalOperatorOr2Alternative {
181 from
182 −− Transform the QoS policy of the provider or consumer
183 qosconstraint : SOAML!QoSConstraint
184 to
185 oroperator : WSPolicy !ExactlyOne (
186 assertions <− SOAML!QoSValue−>allInstances ()−>collect (a |
187 −− Transform assertions that belong in this clause
188 i f a.name=qosconstraint .getAssertionName then
189 thisModule .QoSValue2PolicyAssertion(a)
190 else
191 −− I f another constraint is in the same package as reference constraint , also include his

referenced assertion
192 i f (qosconstraint . refImmediateComposite() .packagedElement−>exists (d | d. isDependency))

then
193 SOAML!QoSConstraint−>allInstances ()−>collect (b |
194 −− I f constraint uses ’ExactlyOne ’ operator and has the same ID
195 i f (not b.usesAndOperator) and (qosconstraint . refImmediateComposite() .

packagedElement−>one(d | d.name=b.name)) then
196 −− Check the assertions with current assertion , i f OK; include this assertion

in same clause
197 i f (qosconstraint . refImmediateComposite() .packagedElement−>any(d | d.name=b.

name) .getAssertionName = a.name) then
198 thisModule .QoSValue2PolicyAssertion(a)
199 else OclUndefined endif
200 else OclUndefined endif
201)
202 else OclUndefined endif
203 endif
204)
205)
206 }
207

208

209 −− Maps each QoS Value name (instance of the QoS characteristic) to an assertion , and then continues with
aspect mapping

210

211 lazy rule QoSValue2PolicyAssertion {
212 from
213 soamlQoSValue : SOAML!QoSValue
214 to
215 qualityAspect : WSPolicy ! PolicyAssertion (
216 assertions <− thisModule .QoSValue2QualityAspect(soamlQoSValue)
217)
218

219 }
220

221

222 −−−−−−−−−−−−−−−
223 −− Custom grammar rules

96

APPENDIX A. ATL TRANSFORMATIONS

224 −−−−−−−−−−−−−−−
225

226 −− Maps each QoS Value name (instance of the QoS characteristic) to quality aspect (QualityAspect elements in
our custom grammar))

227

228 lazy rule QoSValue2QualityAspect {
229 from
230 soamlQoSValue : SOAML!QoSValue
231 to
232 qualityAspect : WSPolicy !QualityAspect (
233 name <− soamlQoSValue. classifier . f i rs t () .name,
234 −− Iterate over al l slots
235 attributes <− soamlQoSValue. slot−>collect (a | thisModule . Slot2QualityAttribute (a))
236)
237

238 }
239

240

241 −− Maps each slot to an assertion (QualityAttribute elements in our custom grammar)
242

243 lazy rule Slot2QualityAttribute {
244 from
245 soamlSlot : SOAML! Slot
246 to
247 qualityAttribute : WSPolicy ! QualityAttribute (
248 name <− soamlSlot . definingFeature .name,
249 value <− soamlSlot . value . f i rs t () . value ,
250 unit <− soamlSlot . definingFeature . unit ,
251 direction <− thisModule . directionMap .get(soamlSlot . definingFeature . direction) ,
252 qualifier <− thisModule . qualifierMap .get(soamlSlot . definingFeature . statisticalQualifier)
253)
254 }

In this transformation element names are used to identify elements. When using this transfor-
mation, do not forget to uniquely name elements inside a policy package.

A.2 SoaML2WSAgreement

Listing A.2: SoaML to WS-Agreement ATL model-to-model transformation
1

2 −−−
3 −− Transformation f i le to generate WS−Agreement skeleton documents from contracts specified in SoaML models.
4 −− v.0.1
5 −−−
6

7 module SoaML2WSAgreement;
8 create OUT : WSAgreement from IN : SOAML;
9

10 −−−−−−−−−−−−−−−
11 −− Helpers
12 −−−−−−−−−−−−−−−
13

14 −− Helper to determine i f a QoS constraint uses an ’and’ operator (to WS−Agreement ’ All ’ clause)
15 helper context SOAML!QoSConstraint def : usesAndOperator : Boolean =
16 i f (self . logicalOperator . toString () = ’and’ or self . logicalOperator . toString () = ’ ’) then
17 true
18 else
19 false
20 endif ;
21

97

APPENDIX A. ATL TRANSFORMATIONS

22 −− Helper to determine i f a QoS constraint uses an ’or ’ operator and has not a next property (to WS−Agreement ’
ExactlyOne ’ clause)

23 helper context SOAML!QoSConstraint def : usesOrOperator : Boolean =
24 i f (self . logicalOperator . toString () = ’or ’ and self . next . oclIsUndefined ()) then
25 true
26 else
27 false
28 endif ;
29

30 −− Helper to determine i f a QoS constraint uses an ’or ’ operator and has a next property (to WS−Agreement ’
OneOrMore’ clause)

31 helper context SOAML!QoSConstraint def : usesOrOperatorAndNext : Boolean =
32 i f (self . logicalOperator . toString () = ’or ’ and not self . next . oclIsUndefined ()) then
33 true
34 else
35 false
36 endif ;
37

38 −− Helper to convert (IN !name)−kind to (name)−kind strings
39 helper context String def : convertToId : String =
40 self . substring(4 , self . size ()) ;
41

42 −− Helper to get ID of the corresponding assertion referenced by dependency
43 helper context SOAML!QoSConstraint def : getAssertionName : String =
44 self . supplier . f i rs t () . toString () . convertToId ;
45

46 −− Helper to get ID of the corresponding QoS characteristic referenced by QoS value definition
47 helper context SOAML!QoSValue def : getCharacteristicName : String =
48 self . classifier . f i rs t () . toString () . convertToId ;
49

50 −− Helper to check i f object is a QoS dependency
51 helper context OclAny def : isDependency : Boolean = (self . oclIsTypeOf(SOAML!QoSContract)) ;
52

53 −− Helper to check i f object is a slot
54 helper context OclAny def : isSlot : Boolean = (self . oclIsTypeOf(SOAML! Slot)) ;
55

56 −− Helper to check i f object is a QoS specification in contract package
57 helper context OclAny def : isQoSSpec : Boolean = (self . oclIsTypeOf(SOAML!SoaMLModel) and self .name=’QoS’) ;
58

59 −− Helper to check i f object is a QoS specification in contract package
60 helper context OclAny def : isQoSValue : Boolean = (self . oclIsTypeOf(SOAML!QoSValue)) ;
61

62 −− Helper to check i f object is the ServiceContract in contract package
63 helper context OclAny def : isServiceContract : Boolean = (self . oclIsTypeOf(SOAML! ServiceContract)) ;
64

65 −− Helper that maps source statistical qualifiers to assertion qualifiers
66 helper def : qualifierMap : Map(OclAny,OclAny) = Map{(#maximum,#maximum) ,(#minimum,#minimum) ,(#range,

OclUndefined) } ;
67

68 −− Helper that maps source directions to assertion directions
69 helper def : directionMap : Map(OclAny,OclAny) = Map{(#increasing ,#increasing) ,(#decreasing,#decreasing) } ;
70

71 −− Template counter
72 helper def : counter : Integer = 1;
73

74 −− Contract subject
75 helper def : contractSubject : String = ’subject ’ ;
76

77 −− Root QoS specification
78 helper def : rootQoSSpec : SOAML!SoaMLModel = OclUndefined;
79

80

81 −−−−−−−−−−−−−−−
82 −− Starting rule
83 −−−−−−−−−−−−−−−

98

APPENDIX A. ATL TRANSFORMATIONS

84

85 −− Transform each QoS package in a service contract to a WS−Agreement document
86

87 rule ServiceContract2Agreement {
88 from
89 qosspec : SOAML! ServiceContract (qosspec. refImmediateComposite() .packagedElement−>exists (d | d.

isQoSSpec))
90 do {
91 −− Remember what the root QoS specification is
92 thisModule .rootQoSSpec <− qosspec. refImmediateComposite() .packagedElement−>any(p | p .name=’QoS’) ;
93 −− Remember contract name
94 thisModule . contractSubject <− qosspec.name. substring(1 ,qosspec.name. size ()−8) ;
95 −− Call f i rs t rule that transform QoS package into agreement
96 thisModule .QoSPackage2Agreement(thisModule .rootQoSSpec) ;
97 −− Increment template counter
98 thisModule .counter <− thisModule .counter + 1;
99 }

100 }
101

102

103 −−−−−−−−−−−−−−−
104 −− Lazy rules
105 −−−−−−−−−−−−−−−
106

107 −− Transform each QoS package to a WS−Agreement document
108

109 lazy rule QoSPackage2Agreement {
110 from
111 qosspec : SOAML!SoaMLModel
112 using {
113 contractName : String = qosspec. refImmediateComposite() .name;
114 }
115 to
116 qualityAspect : WSAgreement!Agreement
117 (
118 −− Give contract of the service contract
119 name <− contractName,
120

121 context <− thisModule .QoSPackage2Context(qosspec) ,
122 terms <− thisModule .QoSPackage2RootAll(qosspec)
123)
124 }
125

126

127 −− Transforms QoS Package to an agreement context
128

129 lazy rule QoSPackage2Context {
130 from
131 qosspec : SOAML!SoaMLModel
132 to
133 agreementcontext : WSAgreement!AgreementContext
134 (
135 expirationTime <− ’ [to be f i l led in] ’ ,
136 templateName <− qosspec. refImmediateComposite() .name,
137 templateId <− thisModule .counter . toString () ,
138 −− First role is considered as init iator
139 agreementInitiator <− qosspec. refImmediateComposite() .packagedElement−>any(a | a. isServiceContract

) . ownedAttribute . f i rs t () .name,
140 −− Second role is considered as responder
141 agreementResponder <− qosspec. refImmediateComposite() .packagedElement−>any(a | a.

isServiceContract) . ownedAttribute . at(2) .name,
142 serviceProvider <− #AgreementResponder
143)
144 }
145

99

APPENDIX A. ATL TRANSFORMATIONS

146

147 −− Transforms QoS to root All clause
148

149 lazy rule QoSPackage2RootAll {
150 from
151 qosspec : SOAML!SoaMLModel
152 using {
153 qoSDependencies : OclAny = qosspec.packagedElement−>select (b | b . isDependency) ;
154 requiredAssertions : OclAny = qoSDependencies−>select (c | c .usesAndOperator) ;
155 oneAssertions : OclAny = qoSDependencies−>select (d | d.usesOrOperator) ;
156 oneOrMoreAssertions : OclAny = qoSDependencies−>select (d | d.usesOrOperatorAndNext) ;
157 dependency : OclAny = qoSDependencies. f i rs t () . client . f i rs t () ;
158 }
159 to
160 rootclause : WSAgreement! All
161 (
162 −− Generate service description from contract
163 ownedTerms <− thisModule .QoSPackage2ServiceDescriptionTerm(thisModule .rootQoSSpec) ,
164

165 −− Transform all QoS Values to service properties
166 ownedTerms <− thisModule .rootQoSSpec.packagedElement−>collect (a |
167 i f (a. isQoSValue) then
168 thisModule .QoSValue2ServiceProperties(a)
169 else OclUndefined endif
170) ,
171

172 −− Also transform possible nested service properties and place them in root
173 ownedTerms <− i f (thisModule .rootQoSSpec.packagedElement−>one(z | z . oclIsTypeOf(SOAML!SoaMLModel)

and z .name=’QoS’)) then
174 thisModule .rootQoSSpec.packagedElement−>flatten ()−>select (z | z . oclIsTypeOf(SOAML!SoaMLModel) and

z .name=’QoS’)−>collect (a | a.packagedElement−>collect (b |
175 i f (b . isQoSValue) then
176 thisModule .QoSValue2ServiceProperties(b)
177 else OclUndefined endif
178))
179 else OclUndefined endif ,
180

181

182 −− Transform slots to guarantee terms
183 ownedTerms <− qosspec.packagedElement−>collect (e |
184 −− Transform assertions that must be satisfied in ’ All ’ clause
185 i f (requiredAssertions . f i rs t () = e) then
186 thisModule . LogicalOperatorAll2Alternative(e)
187 else
188 −− Transform all assertions of which at least one must be satisfied to ’OneOrMore’ clause
189 i f (oneOrMoreAssertions . f i rs t () = e) then
190 thisModule . LogicalOperatorOrAndNext2Alternative(e)
191 else
192 −− Transform all assertions of which one must be satisfied to ’ExactlyOne ’ clause
193 i f (oneAssertions . f i rs t () = e) then
194 thisModule . LogicalOperatorOr2Alternative(e)
195 else
196 −− I f there are nested QoS specifications
197 i f (e . oclIsTypeOf(SOAML!SoaMLModel) and e.name=’QoS’) then
198 thisModule .NestedQoSPackage2All(e)
199 else OclUndefined endif
200 endif
201 endif
202 endif
203)
204

205)
206 }
207

208

100

APPENDIX A. ATL TRANSFORMATIONS

209 −− Transform each nested QoS package to an ’ All ’ clause inside root clause
210

211 lazy rule NestedQoSPackage2All {
212 from
213 qosspec : SOAML!SoaMLModel
214 using {
215 qoSDependencies : OclAny = qosspec.packagedElement−>select (b | b . isDependency) ;
216 requiredAssertions : OclAny = qoSDependencies−>select (c | c .usesAndOperator) ;
217 oneAssertions : OclAny = qoSDependencies−>select (d | d.usesOrOperator) ;
218 oneOrMoreAssertions : OclAny = qoSDependencies−>select (a | a.usesOrOperatorAndNext) ;
219 dependency : OclAny = qoSDependencies. f i rs t () . client . f i rs t () ;
220 }
221 to
222 allclause : WSAgreement! All
223 (
224 −− Transform all QoS dependencies to alternative elements
225 ownedTerms <− qoSDependencies−>collect (e |
226 −− Transform assertions that must be satisfied in ’ All ’ clause
227 i f (requiredAssertions . f i rs t () = e) then
228 thisModule . LogicalOperatorAll2Alternative(e)
229 else
230 −− Transform all assertions of which at least one must be satisfied to ’OneOrMore’ clause
231 i f (oneOrMoreAssertions . f i rs t () = e) then
232 thisModule . LogicalOperatorOrAndNext2Alternative(e)
233 else
234 −− Transform all assertions of which at least one must be satisfied to ’ExactlyOne ’

clause
235 i f (oneAssertions . f i rs t () = e) then
236 thisModule . LogicalOperatorOr2Alternative(e)
237 else
238 −− I f there are nested QoS specifications
239 i f (qosspec.packagedElement−>exists (d | d. oclIsTypeOf(SOAML!SoaMLModel) and d.name=

’QoS’)) then
240 qosspec.packagedElement−>collect (g |
241 i f (g. oclIsTypeOf(SOAML!SoaMLModel) and g.name=’QoS’) then
242 thisModule .NestedQoSPackage2All(g)
243 else OclUndefined endif
244)
245

246 else OclUndefined endif
247 endif
248 endif
249 endif
250)
251)
252 }
253

254

255 −− Creates an ’ All ’ clause for corresponding guarantee terms
256

257 lazy rule LogicalOperatorAll2Alternative {
258 from
259 qosconstraint : SOAML!QoSConstraint
260 to
261 andoperator : WSAgreement! All (
262 ownedTerms <− SOAML!QoSValue−>allInstances ()−>collect (a |
263 −− Transform terms that belong in this clause
264 i f a.name=qosconstraint .getAssertionName then
265 a. slot−>collect (x | thisModule .Slot2GuaranteeTerm(x))
266 else
267 −− I f another constraint is in the same package as reference constraint , also include this

assertion
268 i f (qosconstraint . refImmediateComposite() .packagedElement−>exists (d | d. isDependency))

then
269 SOAML!QoSConstraint−>allInstances ()−>collect (b |

101

APPENDIX A. ATL TRANSFORMATIONS

270 −− I f constraint uses ’AND’ operator and has the same ID
271 i f ((b .usesAndOperator) and (qosconstraint . refImmediateComposite() .

packagedElement−>one(d | d.name = b.name))) then
272 −− Check the term with current term, i f OK; include this term in same clause
273 i f (qosconstraint . refImmediateComposite() .packagedElement−>any(d | d.name=b.

name) .getAssertionName = a.name) then
274 a. slot−>collect (z | thisModule .Slot2GuaranteeTerm(z))
275 else OclUndefined endif
276 else OclUndefined endif
277)
278 else OclUndefined endif
279 endif
280)
281)
282 }
283

284

285 −− Creates an ’ExactlyOne ’ clause for corresponding guarantee terms
286

287 lazy rule LogicalOperatorOr2Alternative {
288 from
289 qosconstraint : SOAML!QoSConstraint
290 to
291 oroperator : WSAgreement!ExactlyOne (
292 ownedTerms <− SOAML!QoSValue−>allInstances ()−>collect (a |
293 −− Transform assertions that belong in this clause
294 i f a.name=qosconstraint .getAssertionName then
295 a. slot−>collect (x | thisModule .Slot2GuaranteeTerm(x))
296 else
297 −− I f another constraint is in the same package as reference constraint , also include his

referenced assertion
298 i f (qosconstraint . refImmediateComposite() .packagedElement−>exists (d | d. isDependency))

then
299 SOAML!QoSConstraint−>allInstances ()−>collect (b |
300 −− I f constraint uses ’ExactlyOne ’ operator and has the same ID
301 i f ((b .usesOrOperator) and (qosconstraint . refImmediateComposite() .

packagedElement−>one(d | d.name = b.name))) then
302 −− Check the assertions with current assertion , i f OK; include this assertion

in same clause
303 i f (qosconstraint . refImmediateComposite() .packagedElement−>any(d | d.name = b.

name) .getAssertionName = a.name) then
304 a. slot−>collect (z | thisModule .Slot2GuaranteeTerm(z))
305 else OclUndefined endif
306 else OclUndefined endif
307)
308 else OclUndefined endif
309 endif
310)
311)
312 }
313

314

315 −− Creates an ’OneOrMore’ clause for corresponding guarantee terms
316

317 lazy rule LogicalOperatorOrAndNext2Alternative {
318 from
319 qosconstraint : SOAML!QoSConstraint
320 to
321 oroperator : WSAgreement!OneOrMore (
322 ownedTerms <− SOAML!QoSValue−>allInstances ()−>collect (a |
323 −− Transform assertions that belong in this clause
324 i f a.name=qosconstraint .getAssertionName then
325 a. slot−>collect (x | thisModule .Slot2GuaranteeTerm(x))
326 else

102

APPENDIX A. ATL TRANSFORMATIONS

327 −− I f another constraint is in the same package as reference constraint , also include his
referenced assertion

328 i f (qosconstraint . refImmediateComposite() .packagedElement−>exists (d | d. isDependency))
then

329 SOAML!QoSConstraint−>allInstances ()−>collect (b |
330 −− I f constraint uses ’OnOreMore’ operator and has the same ID
331 i f ((b .usesOrOperatorAndNext) and (qosconstraint . refImmediateComposite() .

packagedElement−>one(d | d.name = b.name))) then
332 −− Check the assertions with current assertion , i f OK; include this assertion

in same clause
333 i f (qosconstraint . refImmediateComposite() .packagedElement−>any(d | d.name = b.

name) .getAssertionName = a.name) then
334 a. slot−>collect (z | thisModule .Slot2GuaranteeTerm(z))
335 else OclUndefined endif
336 else OclUndefined endif
337)
338 else OclUndefined endif
339 endif
340)
341)
342 }
343

344

345 −− Transform slots into guarantee terms
346

347 lazy rule Slot2GuaranteeTerm {
348 from
349 soamlSlot : SOAML! Slot
350 to
351 agreementcontext : WSAgreement!GuaranteeTerm
352 (
353 name <− thisModule . contractSubject .concat(’− ’) . concat(soamlSlot . definingFeature .name) ,
354 −− Service provider is responsible by default
355 obligated <− #ServiceProvider ,
356

357 slo <− thisModule . Slot2ServiceLevelObjective(soamlSlot) ,
358 bvl <− thisModule . Slot2BusinessValueList (soamlSlot) ,
359 scope <− thisModule .Slot2ServiceScope(soamlSlot)
360)
361 }
362

363

364 −− Generate service scope element for guarantee term
365

366 lazy rule Slot2ServiceScope {
367 from
368 soamlSlot : SOAML! Slot
369 to
370 bv : WSAgreement!ServiceScope
371 (
372 serviceName <− thisModule . contractSubject .concat(’Service ’) ,
373 scopeSDT <− thisModule .QoSPackage2ServiceDescriptionTerm(thisModule .rootQoSSpec)
374)
375 }
376

377

378 −− Generates general service description for service contract subject
379

380 unique lazy rule QoSPackage2ServiceDescriptionTerm {
381 from
382 qosspec : SOAML!SoaMLModel
383 to
384 agreementcontext : WSAgreement! ServiceDescriptionTerm
385 (
386 serviceName <− thisModule . contractSubject .concat(’Service ’) ,

103

APPENDIX A. ATL TRANSFORMATIONS

387 name <− ’General ’
388)
389 }
390

391

392 −− Generates service properties definition from QoS value
393

394 unique lazy rule QoSValue2ServiceProperties {
395 from
396 soamlQoSValue : SOAML!QoSValue
397 to
398 serviceproperties : WSAgreement! ServiceProperties
399 (
400 name <− soamlQoSValue.name.concat(’Property ’) ,
401 serviceName <− thisModule . contractSubject .concat(’Service ’) ,
402 −− Define variables of the service property
403 variableSet <− soamlQoSValue. slot−>collect (a | thisModule .QoSDimension2Variable(a))
404)
405 }
406

407

408 −− Transforms dimension refered by slot to property variable
409

410 unique lazy rule QoSDimension2Variable {
411 from
412 soamlSlot : SOAML! Slot
413 to
414 variable : WSAgreement! Variable
415 (
416 name <− soamlSlot . definingFeature .name,
417 location <− thisModule .QoSPackage2ServiceDescriptionTerm(thisModule .rootQoSSpec)
418)
419 }
420

421

422 −− Transform slot into Service Level Objective
423

424 lazy rule Slot2ServiceLevelObjective {
425 from
426 soamlSlot : SOAML! Slot
427 to
428 slo : WSAgreement! ServiceLevelObjective
429 (
430 assertion <− thisModule . Slot2QualityAttribute (soamlSlot)
431)
432 }
433

434

435 −− Transform slot into to be fi l led−in business values
436

437 lazy rule Slot2BusinessValueList {
438 from
439 soamlSlot : SOAML! Slot
440 to
441 bv : WSAgreement! BusinessValueList
442 (
443 importance <− 1
444)
445 }
446

447

448 −−−−−−−−−−−−−−−
449 −− Custom grammar rules
450 −−−−−−−−−−−−−−−
451

104

APPENDIX A. ATL TRANSFORMATIONS

452 −− Maps each slot to an assertion (QualityAttribute elements in our custom grammar)
453

454 lazy rule Slot2QualityAttribute {
455 from
456 soamlSlot : SOAML! Slot
457 to
458 qualityAttribute : WSAgreement! QualityAttribute (
459 name <− soamlSlot . definingFeature .name.concat(’−definition ’) ,
460 value <− soamlSlot . value . f i rs t () . value ,
461 unit <− soamlSlot . definingFeature . unit ,
462 qualifier <− thisModule . qualifierMap .get(soamlSlot . definingFeature . statisticalQualifier) ,
463 direction <− thisModule . directionMap .get(soamlSlot . definingFeature . direction) ,
464 usedProperty <− thisModule .QoSDimension2Variable(soamlSlot)
465)
466 }

In this transformation element names are used to identify elements. When using this transfor-
mation, do not forget to uniquely name elements inside a QoS package.

105

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Objectives
	1.4 Research questions
	1.5 Approach
	1.6 Scope of the research
	1.7 Structure of report

	2 Service models
	2.1 Service life-cycle
	2.2 Stakeholders
	2.3 Service developer
	2.4 Service provider
	2.5 Service consumer
	2.6 Application provider
	2.7 Service broker
	2.8 Composition designer
	2.9 Quality aspects
	2.10 Optimizable activities

	3 SOA modeling
	3.1 Relevant MDE principles for SOA
	3.2 PIM-level language selection
	3.3 SoaML concepts
	3.4 SoaML tooling
	3.4.1 Selection

	4 QoS specifications in SoaML
	4.1 Case study
	4.2 The scope of SoaML
	4.3 Available QoS modeling approaches
	4.3.1 SoaML UML constraints
	4.3.2 QoS languages
	4.3.3 SoaML metamodel refinements

	4.4 Selection QoS modeling approach
	4.5 Implementing SoaML models
	4.5.1 Quality requirements
	4.5.2 Modeling policies
	4.5.3 Modeling QoS in service contracts

	5 PSM-level QoS modeling
	5.1 Search scope
	5.2 Available policy languages
	5.2.1 WS-Policy
	5.2.2 UDDI
	5.2.3 Web Services Policy Language (WSPL)
	5.2.4 Other techniques

	5.3 Selection of policy language
	5.4 Available service contract languages
	5.4.1 WS-Agreement
	5.4.2 Web Service Level Agreement (WSLA)
	5.4.3 SLA*
	5.4.4 SLAng
	5.4.5 Other techniques

	5.5 Selection of service contract language
	5.6 Implementing PSM models

	6 Model transformations
	6.1 Transformation environment
	6.1.1 Implementing the extended SoaML metamodel
	6.1.2 Rebuilding the SoaML profile models

	6.2 Mappings
	6.2.1 Policies
	6.2.2 Service contracts

	6.3 Transformation results
	6.3.1 Policies
	6.3.2 Service contracts

	7 Final remarks
	7.1 Related work
	7.2 Research results
	7.3 Future work

	References
	A ATL transformations
	A.1 SoaML2WSPolicy
	A.2 SoaML2WSAgreement

