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Abstract

During the development of high performance mechatronic systems it is necessary
to ensure high quality products and short time-to-market. Because the Embedded
Software (ESW) is a fundamental part of such systems, it is necessary to provide a
well suited testing environment. A challenge in testing ESW is that its hardware
environment, called the plant, is needed to properly evaluate its behavior. It is, in
many cases, not feasible to test the ESW on the hardware because there are no, or
not enough, hardware resources available. To address this problem, the ESW can
be tested using a software simulation of the plant behavior. This leads to several
advantages. For example, the plant hardware is not needed for testing the ESW
and it is possible to test faster, more frequent and more effective.

Since five years, such a simulation environment has been in use at Océ to test
the part of the ESW that controls the paper transport inside the printer. This is
done by executing the ESW together with a plant model, emulating the hardware
included in the paper transport, on a software engineer’s workstation. Due to the
great success of this simulation environment, the goal of this project is to extend
the simulation environment to be able to test the ESW of the whole printer, using
simulated plant models.

In order to achieve this goal, the architecture of the simulation environment
has been reviewed and newly designed to meet the new requirements. The new
version of the simulation environment is well prepared for the future use of multiple
different plant models, which is important to reach the goal of testing all printer
functions in the simulation environment.

To support the creation of plant models, a plant modeling framework has been
developed. This plant modeling framework enables short modeling times and re-
quires only little domain knowledge of the plant concepts and the modeling of
physical systems. These are important properties of the framework, since the main
users of the framework are software engineers.

The evolution of the testing environment has been an important step towards
developing high performance printers without the need of hardware prototypes.
This leads to lower cost, since there are no costs for hardware. It also leads to a
short time-to-market, since no build and adaption time is needed when the hard-
ware evolves, and the development of ESW can start earlier in the development
process.
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Glossary

RoseRT IBM Rational Rose RealTime, A development and code-generation en-
vironment for the development of real-time software.

ESW Embedded Software, The software that is developed and deployed on
embedded controllers to control the behavior of Mechatronic Systems.

Mechatronic
System

System consisting of subsystems from different domains, like Mechanics,
Electronics, hydraulics, pneumatics and software engineering.

SIL Software-In-The-Loop, When using a SIL simulation, the ESW is exe-
cuted with a model of the plant. SIL is also the internal name of the
SIL simulation environment used within Océ.

Named Pipe Named Pipe or also called FIFO for first in first out is a kind of inter
process communication.

CAN bus The controller area network (CAN) bus, designed by Bosch, is a standard
designed for the communication between micro controllers in vehicles.
The standard is also used in other applications for communication means
between micro controllers.

Main node Supervisory control that controls several sub nodes

Sub node Controller that controls I/O-devices and is controlled by a main node.

Paper handling The handling of sheets as they move through the printer. That com-
prises accelerating and decelerating sheets according to a timing model,
correction of the sheet position on the Z axis, as well as the correction
of askew papers (rotation on Y axis)

SheetLogic SheetLogic is the name of the paper path plant model used in the SIL
simulation environment.

FPGA A Field programmable gate array (FPGA) is a programmable integrated
circuit that is programmed in a hardware description language (HDL).
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DLL A DLL (Dynamic Link Library) is a library of functions, which can be
used by multiple computer programs. A DLL can be loaded and used
dynamically in runtime.

Simulation
Module

The term simulation module is used to describe plant models or ESW
that are compiled to a DLL and can be loaded and executed by SIL.
Plant model module and ESW module are also used if a separation is
needed between the two types.

Substrate Material that is used to print on. For example, paper.

xi



Chapter 1

Introduction

Océ is a company that offers office printing and copying systems, high speed digital production
printers and wide format printing systems for both, technical documentation and color display
graphics as well as related software. It was founded in 1877, with headquarters in Venlo, The
Netherlands. Océ is active in over 100 countries and employs some 20,000 people worldwide.
Total revenues in financial 2010 amounted to approximately 2.7 billion. The main Research
and Development site is also located in Venlo, The Netherlands. This department develops new
printers including mechanics, electronics and embedded control software.

To give an impression of a high volume, high performance printer, figure 1.1 shows a Vari-
oPrint 6250. The printer consists of Paper input modules (PIM) on the left, the Print Engine

Figure 1.1: The VarioPrint 6250.

(PE) and finisher (FIN) modules on the right. The printer is suitable for from 600,000 up to
8,000,000 prints per month and has a print speed of 250 A4/letter prints per minute or 132 A3
prints per minute. The printer can be equipped with up to 12 input trays, which can be refilled
during printing and can hold different types of paper (size, coating). The output storage can
take on 6000 prints but prints can be unloaded while printing. The toner can also be refilled
while printing.

The development of such complex mechatronic systems includes multiple disciplines as me-
chanical engineering, electronic engineering and software engineering. The role of software
engineering is to develop embedded software (ESW) that controls the behavior of the parts of
the printer. Testing the ESW is a challenge since it needs its hardware environment, also called
the plant, to be evaluated properly. The ESW observes phenomena in the plant via sensors,
and controls the plant via actuators. That means that the software needs to be tested on the
actual hardware, which has several disadvantages. The development progress of the ESW de-
pendents on the progress of the other engineering groups. This leads to the situation that the
ESW cannot be tested in early stages of a project when there is not yet a prototype available.
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Even if there is hardware available, it is often not feasible to let every software engineer test the
written software on a prototype. Testing on the target hardware can also be ineffective due to
long preparation and the fact that error injection and reproduction is difficult. In the case of
high performance mechatronic systems it is also likely that the needed hardware is expensive.

To provide a more efficient way of testing, Océ has developed a Software-in-the-loop (SIL)
simulation environment (internally simply called SIL), which allows to test the software on an
ordinary workstation. In this environment, the ESW is executed with a model of the plant that
emulates the behavior of the real plant. Originally, SIL was only used to evaluate the ESW
that does the paper handling. The paper handling is the control of the flow of paper through
the printer (paper transport) along the so called paper path. Van der Hoest [13] established the
foundation of the SIL simulation environment in 2006. After that other works in this context
have been performed to add new features or improve the simulation environment. Examples
are the simulation of the print process in laser printers [7] or an interactive visualization [8].
Not all those improvements are used in the current SIL simulation environment because some
are specific to one kind of printer architecture, and can therefore not be used in all development
projects.

The goal of this project is to extend the current SIL simulation framework in a generic way
to make modeling and simulation of the behavior of the remaining plant elements of a printer
possible. The extension of SIL and the modeling framework, presented in this document, offer
several advantages in different stages of the development process. It makes it possible to test
more frequent, more controlled and on the developer’s workstation and therefore provides shorter
feedback cycles during software development. It is also possible to test the software before the
actual hardware is build. Those advantages should ultimately lead to a shorter time to market
and better quality.

Previous to this work a survey on plant modeling approaches [12] has been created to get a
broad overview of different techniques that can be used to model physical systems. The paper
also provides a taxonomy for plant modeling approaches to make a clear categorization possible.
After the survey part, the paper presents and discusses ways to structure and modularize plant
models to enhance maintainability and extensibility.

The remainder of this report is organized as follows. Chapter 2 gives an introduction to the
current state of SIL and identifies research questions, based on the goals for the evolution of
SIL. Chapter 3 presents the design, evaluation and implementation of a new global architecture
of SIL. Chapter 4 presents a plant modeling framework that makes it possible to create plant
models for emulating the behavior of several parts of a printer. Chapter 5 discusses the results
and presents future work. Chapter 6 draws conclusions of this project.
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Chapter 2

Project Context

This section presents the context in which this project is carried out. The first section of this
chapter presents the goals for the evolution of SIL and the research questions identified for this
project. After that motivations and the problem statement that lead to the initial design of a
SIL simulation environment are presented. Last, the current situation of SIL is described.

2.1 Problem Statement

SIL is widely use in several projects to test the embedded software for the paper handling.
Several projects use SIL for the major part of the testing work, when developing the ESW of a
new printer. Since SIL is used for testing the ESW with great success, there are new goals for
the evolution of SIL or the use of simulation in the development process in general. The long
term vision is that in the future a virtual printer environment is used to develop new printers.
This environment consists of models of different parts of the printer from different domains.
This environment is used to test the system even before the first mechanical prototype is built.
The following advantages have been identified for the use of such a virtual printer system.

• Critical interactions between disciplines can be studied by combining models of the indi-
vidual aspects. This fits in a multi-disciplinary Model-Driven-Design approach.

• A virtual printer has the advantage of lower price and shorter lead and adaptation time.

• When the first physical prototype is built, many issues are already solved.

• The virtual printer gives more control over the test conditions (such as climate, error
conditions, and tolerances)

• During the development, knowledge is gathered in models, which are used for simulation
but also as documentation.

• Better quality due to regression testing.

• A virtual printer consumes less energy and paper.

The short term goal for SIL is to create a virtual version of the whole printer, which is only
used to evaluate the ESW and not systems from other disciplines (mechanics, electronics). In
this environment software engineers can compose a test system out of ESW modules and plant
model modules. All parts of the printer can be easily modeled and used as plant model modules
for simulation in SIL. SIL provides easy deployment, resulting in high acceptance and it is part
of an integrated tool chain, used in product development.

In order to reach the short term goals and to work towards the vision for SIL, a new plant
modeling approach has to be chosen or developed. In addition, the architecture of the SIL
simulation environment has to be reviewed to determine if it is suited for the intended use.
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Two research questions can be identified that summarize the problems to be solved in order to
achieve the short term goals.

• How to design a plant modeling framework for the creation of plant models for simulation
in a Software-In-The-Loop simulation environment that is expressive enough to model a
multitude of domain concepts of high performance printers, but also uses an adequate level
of abstraction to make the approach usable for non-domain experts?

• How to develop a modular and extensible Software-In-The-Loop simulation environment
that enables the execution of multiple embedded software modules and multiple plant models
with the goal of evaluating the behavior of the embedded software?

These two questions are addressed in the following two chapters. Chapter 3 describes the
design and implementation of a modified and extended SIL. Chapter 4 presents the developed
of a plant modeling approach.

2.2 Motivation for the Initial SIL Simulation Design

This section illustrates the motivations for the initial development of SIL. For this project,
the documentation of earlier SIL related projects has been examined to get a clear view on
motivations, requirements and use cases that has been identified in those projects.

2.2.1 Traditional Development Process of Mechatronic Systems

To better understand the motivations for the initial development of SIL, this section describes
the common traditional development process for the development of mechatronic systems. Sev-
eral steps are performed leading from the concept to a finished product. Figure 2.1 shows the
development time of the involved domains in the traditional process of a project.

Figure 2.1: The interdisciplinary development process of high performance printers.

The first steps before designing and developing a printer is to analyze the situation on the
market and the customers needs. After this analysis, the different functional properties of the
printer are identified and the appropriate print technologies are chosen. The whole process
of identifying those system requirements is presented by Heemels et al. in [14]. After the
concept and goals for the design are clear, a first initial design of the printer is created. This
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design is further developed by mechanical engineers. At a certain stage electrical engineering
becomes more involved in the process. After some time software engineers begin to develop
the corresponding ESW for the printer model. While developing the ESW, it is important to
continuously test the ESW with the plant to evaluate its behavior. In early states those tests
are executed on hardware test boards that contain the I/O hardware that is going to be used.
Those test are done to test the low level control of sensors and actuators rather than the high
level logic of ESW. In later stages several prototypes so called lab models are built. These lab
models are used to prove that the designed concept works and can be used for testing the high
level logic of the ESW. The result of the development is a so called engineering prototype, which
is given to the manufacturing department where it is further optimized in terms of ease-of-use,
print quality and speed.

Important factors in the development process are:

• Short time-to-market: The time it takes from initial concept to product.

• High printer performance: Such as energy consumption, print speed and print quality.

• High printer reliability: Achieving high quality of hard- and software to increase the mean
time between failures.

A problem that can be identified in this development process is that embedded software
can be developed from the beginning, but that it can not be tested till the corresponding
hardware is created. Thus, the development of the ESW dependents on the progress of the
other engineering disciplines. This leads to the situation that the ESW can not be tested in
early stages of a project when there is not yet a prototype available.

2.2.2 Drawbacks Regarding Testing Performance

Even if there is hardware available, it is often not feasible to let every software engineer test the
written software on a prototype. Testing on the target hardware can also be ineffective due to
long preparation and the fact that error injection and reproduction is difficult. In the case of
high performance mechatronic systems it is also likely that the needed hardware is expensive.

2.2.3 Advantages of Testing ESW in a Simulation Environment

So, a testing environment, which could be used to test the ESW without the hardware plant
would lead to several advantages. A possible approach to solve the above mentioned problems
is to model and simulate the behavior of the plant of the target mechatronic system in software.
That enables the software engineer to carry out tests in a simulated instead of the real environ-
ment. An advantage is that the software can be tested on the software engineer’s local system
and therefore allow shorter feedback cycles. It is further possible to create and investigate situ-
ations that are difficult or not even possible to create and investigate when testing with the real
hardware though it is relevant to test them. Another major advantage is that regression testing
is possible. So, simulation based testing is likely to improve two of the three important factors
identified for the development process of mechatronic systems in section 2.2.1, namely “Short
time-to-market” and “High printer reliability”. The “time-to-market” gets shorter because the
development of the ESW can start earlier. The ESW is likely to have a higher reliability because
it is tested more frequently (regression testing).

2.2.4 The Predecessors of SIL

Before SIL was developed, another simulation environment was implemented. This simulation
environment served as a reference for the initial SIL implementation. The simulation environ-
ment was implemented as a proof of concept to elaborate if a simulation will offer advantages

5



in the development of ESW for the paper path. The following subsection provides background
information about the paper handling of a printer.

Paper Handling

The paper path describes the path of the paper as it moves through the printer. Figure 2.2 shows
an example of a printer’s internals. The figure shows the way of the paper from the paper input

Figure 2.2: An example of the internals of a printing system.

module through the print engine to the finisher, which, in this case, stacks the printed paper.
Most printers can have multiple configurations. That means different numbers of PIMs and
different numbers and/or types of finishers. In addition, some printers have different versions
that differ in speed. Figure 2.3 shows a 2D sketch of an example paper path.

Figure 2.3: A paper path layout.

The paper transport is controlled by ESW with the use of motors, which drive pinches,
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which move the paper. Sensors are used to sense the presence or absence of paper. During
the design of the physical (mechanical) paper path of a printer, a timing model is created that
describes the desired movement of the sheets as a speed profile. So it is defined for the sheet
at which point on the paper path it has which speed. In the printer this model is implemented
by the use of pinches that are accelerating or decelerating the sheets. All pinches in between
such pinches, which accelerate or decelerate a sheet, run at a constant speed. For example, a
sheet enters the paper path, described in figure 2.3, with a speed of 1,5 m/s. P0 and P1 run at
a constant speed so that the paper is further transported with 1,5 m/s. After the paper leaves
P1 and is only in contact with P3, P3 decelerates the paper to 0,9 m/s. P4 again runs at a
constant speed so that the paper is transported further with 0,9 m/s. The timing model is used
as an input for the ESW, which uses the timing information to control the involved motors in
such a way that the accelerations and decelerations are performed. Next to the variation in
speed, there are different kinds of checks and corrections of the sheet positions in z-position and
to correct occurring rotation of the sheets, as the sheets travel through the printer.

There are several reasons why the development of the paper handling can be difficult.

• Sheets can have different formats.

• Print jobs can contain sheets that are printed simplex (1-sided) and/or duplex (2-sided).

• Some printers support different throughput rates, for example, both 50 and 70 pages per
minute.

• During development the paper path typically changes with each new prototype, which
leads to repeated redefinition of the timing model.

• When the image is printed on a sheet, it is important that the sheets position is aligned
with the image.

The Matlab Simulink Paper Path Simulation

Figure 2.4: A simulation environment for testing the paper path software in Matlab Simulink.

Figure 2.4 shows the high level structure of the simulation environment. The block SheetLogic
simulates the hardware of a printer, which is in this case sensors, actuators and also the behavior
of the sheets based, on actuator signals. The block Embeddedcontrol contains the ESW, which
is included using the tool TrueTime [1]. The third block, Animation is used to visualize the
movement of the sheets.
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This simulation was evaluated by different software engineers and was considered very help-
ful in the process of developing ESW. Van der Hoest identified two major drawbacks of this
simulation environment, maintainability and license cost [13]. It is hard to maintain the Sheet-
Logic Matlab Simulink block because for doing this one needs to be able to model a physical
system in Matlab Simulink. In this case the hardware of the paper path of a printer has to be
modeled accurate enough to use the model for evaluating the ESW. This is not feasible because
Matlab Simulink is not widely used by the software engineers, which would have to perform this
task. Using Matlab Simulink as a simulation environment would also lead to high license cost
because a Matlab Simulink license is needed for every software engineer that uses this tooling.

2.2.5 Goals of the Initial SIL Implementation

After identifying flaws in the classical way of testing ESW in the context of a multidisciplinary
project and recognizing possibilities and advantages of a simulation based testing approach, the
initial SIL was implemented with the following key drivers [13]:

• Ease-of-use. SIL should be easy to use for software engineers and integrators to be accepted
by them. This is especially the case for the process of specifying a printer layout and
preparing the ESW for simulation.

• Maintainability. Especially for the modeled plant behavior.

• Early feedback. Simulating and testing should provide immediate feedback.

• Reliability. The simulation should be accurate and reproducible. When a certain test
case fails, it should be possible to repeat the simulation with exactly the same results, for
further analysis.

• Low cost. The use of commercial products that cause high license costs should be avoided.

2.3 Current Situation of SIL

This section presents the initial SIL implementation to give a technical context for this project.
The SIL simulation tooling has undergone several extensions and improvements since the first
release in 2006. SIL and also the corresponding visualization tool, Argus, where attractive fields
of research in several research projects that were carried out by students.

First an overview of the architecture of the software under test is given. After that the
structure of SIL and the interfacing with the ESW and the plant models are presented.

2.3.1 The Software under Test (SuT)

The architecture of the ESW and the needed steps to prepare the ESW for execution in the SIL
environment, are a major concern because the software should not be changed for the purpose
of testing.

Software Architecture

The architecture of the ESW can is divided in so called controllers, main nodes and sub nodes.
The controller of a printer is the high level control that communicates with the outside world,
provides a local user interface, schedules print jobs and converts the data of the print jobs in
a format that is usable by the printer. The main node is the main controlling entity in the
embedded software. It receives tasks from the controller and splits these tasks in sub tasks and
sends them to the corresponding sub nodes. The sub nodes are low level entities in the printer
ESW architecture, and are used to control I/O-devices. This is done with an I/O-layer that
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provides functions to communicate with different I/O-devices. Sub nodes have a time sliced
structure. That means that a function that initiates all calculations and controls, is called in
a defined frequency by the real-time embedded system. This function is called “tick” function.
Figure 2.5 shows the high level architecture of the embedded software of most printers. Main

Figure 2.5: Architecture of the embedded control software when in SIL Simulation.

and sub nodes are implemented using C/C++ in RoseRT. The controller software is split up in
different parts, which are implemented using different general purpose and scripting languages.
The main node communicates with the sub nodes via a CAN bus. The communication between
controller and main node is realized using an interface based on high-level commands. For some
I/O-devices an additional low level control layer is used, next to the I/O-layer, that implements
low level control functionality. This layer is often implemented using FPGAs. This is, for
example, used for stepper motor control. If the ESW starts a stepper motor, the I/O-layer calls
a function of the low level control that starts the motor at a certain time or position with a
certain speed etc. The low level control translates this function call into a low level signal that
is send to the stepper motor.

Preparing the ESW for SIL Simulation

The part of the software that is tested in SIL consists of the main node and the sub nodes of a
printer. In the test setup, the functions of the controller are performed by a java application that
communicates with the main node. To be able to use the ESW in the simulation, it has to be
compiled for a Microsoft Windows environment that is used on the development workstations.
The ESW is compiled as a dynamic link library (DLL). That makes it possible for SIL to load the
ESW modules dynamically. For the communication between the main node and the sub nodes,
a simulated CAN bus is used that uses a named pipes approach, which is illustrated in figure
2.6. There are more changes necessary to let the ESW communicate with the simulated plant.
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Figure 2.6: The simulated CAN bus.

In the normal case, when the ESW is compiled for an embedded system, an I/O-layer is used to
implement the low level communication with I/O-devices or the low level control. For different
target embedded systems, different I/O-layers are available. When the ESW is build for SIL, a
SIL simulation I/O-layer is used. The interface between the ESW-layer and the I/O-layer stays
the same. An overview of the architecture of a sub-node for a target embedded system and for
simulation is shown in figure 2.7. The communication between the SIL simulation I/O-layer
is based on high-level sensor and actuator signals. Examples for those signals are the logical
value of a digital actuator or sensor (ON or OFF) or the “start at time” or “start at position”
command of a stepper motor. When the ESW is run and tested in the SIL simulation, it is

Figure 2.7: Architecture of the embedded control software.

compiled with a simulation specific I/O-layer. The I/O-layer provides an interface between SIL
and the ESW. Through this layered structure it is possible to just exchange the I/O-layer of the
ESW and leave the ESW itself untouched, as shown in figure 2.7. A drawback is that the other,
embedded system specific versions of the I/O-layer, are not tested when the ESW is executed
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in SIL. Figure 2.8 shows the concept of the I/O-layer. The different I/O-elements are specified
in an I/O-specification header file (left). This file is a list of I/O-devices, that uses macros
to specify each I/O-device. These macros (right) are used to create functions, which can be
used by the ESW to communicate with I/O-devices. So, every definition in the ESW header
creates functions specific for this device function names based on the name of the device. Which
functions are generated depends on the type of I/O-device and therefore which macro is used.

Figure 2.8: I/O-layer macros and the use of them.

2.3.2 Global Structure of SIL

The global structure of SIL did not change significant over the time SIL was used. The structure
has been examined in the beginning of this project to be able to evaluate its suitability for the
intended extensions. Figure 2.9 shows the different entities of SIL. Subsequently, all entities are
described in short.

SIL core and SheetLogic

The SIL simulation environment is a custom made tool implemented in RoseRT using C/C++.
In the current SIL simulation environment, the most important plant model that is used, is a
model of the paper path of the printer, called SheetLogic. SheetLogic consists of different I/O-
devices and mechanical parts that are simulated to emulate the paper path behavior. Examples
of those elements are motors, stepper motors, pinches, pinch lift actuators, or paper path
segments. Important to mention is that the low level control layer is also included in SheetLogic.
SheetLogic uses these elements to create a model of the printer’s paper path by reading the
specification and properties of different parts from MoBasE (described in the next subsections).
It is embedded in the SIL core because SIL was initially designed to only test the ESW for
the paper handling. SIL and SheetLogic are coupled because SIL needs information about the
I/O-devices used in SheetLogic, to set up the connection between ESW and SheeLogic (section
2.3.3).

The SIL core consists, besides SheetLogic, of functionality to load, execute and schedule
ESW modules. The scheduling is done by the clock component, which holds an internal schedule
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Figure 2.9: The current structure of the simulation environment.

of all loaded ESW modules. Since the ESW of the nodes is time sliced as discussed earlier, the
clock can call the “tick” function of the ESW. SheetLogic has also a “tick” function that initiates
the calculation of a new state. For SheetLogic and all ESW modules, the sample frequency can
be adjusted. While running, the clock calls the “tick” function of all modules and SheetLogic
according to the defined schedule.

MoBasE

MoBasE is short for Model Based Engineering. The MoBasE is a data model framework that
enables engineers to define a minimalistic data model that spans over disciplines and helps
keeping important design information in one place. In the context of SIL, MoBasE is used to
read the layout of the paper path of a certain printer for visualization and for generation of the
SheetLogic plant model.
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Visualization

The visualization front-end of SIL is called Argus. Argus provides different functionality to
visualize the state of SheetLogic. The properties of the different parts (pinches, sensors, etc)
can be visualized as a list or in a 3D environment. The 3D animation shows the paper path
of the tested printer, consisting of segments, pinches, sensors and the moving sheets of paper
(figure 2.10). Argus also provides functionality to manipulate the simulation by, for example,
changing sensor actuator values or stopping sheets. This is done via the so called command
interface.

Figure 2.10: The Argus visualization tool.

I/O-layer

The I/O-layer, as mentioned in section 2.3.1, is used to let the ESW communicate with the
hardware on the target hardware environment. When the ESW is executed in SIL, the target
hardware I/O-layer is replaced with a SIL simulation specific I/O-layer that translates function
calls of the ESW to the I/O-layer into function calls to SheetLogic.

ESW

The block ESW contains the software that has to be tested. As described in section 2.3.1, the
SuT comprises the main node as well as the sub node(s). But only the sub nodes communicate
with SheetLogic via the I/O-layer. The main node in contrast, communicates with the remote
control and the sub nodes.

Stub

It is possible to create stubs, which are basically hand coded plant models that use the same
I/O-layer as the ESW but with inverted behavior. That means that a stub can set sensor values
and read actuator values in SheetLogic instead of reading sensors and writing actuators in the
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case of the ESW. This mechanism was added to SIL as a first possibility to emulate the plant
behavior of printer parts other than the paper path.

Embedded Software Logging

The ESW has extensive logging capabilities, which are used to debug the embedded software
and to evaluate test cases.

Remote Control

The so called remote control is a java application that emulates the printer controller. It can,
for example, be used to start print jobs and to read the machine state. The user interface of
the remote control is shown in figure 2.11

Figure 2.11: The RemoteControl.

Test Executor

The test executor can be used on top of the remote control to automatically run test cases.

VirtualSystem

The VirtualSystem is a XML configuration file specifying, for example, which ESW modules
have to be loaded, from where and with which sample frequency.
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CommandInterface

The command interface is used to inject error into SheetLogic. It can also be used to request the
state and value of sensors and actuators. This functionality can be used by the TestExecutor
or the visualization.

2.3.3 Interface between SIL, SheetLogic and ESW

Since the goal of this project is to add new plant models to SIL, the interface of SIL and the
ESW is reviewed. The interfacing of the ESW, respectively the I/O-layer, and SheetLogic is set
up by the SIL core in the beginning of the simulation. During the initialization of the simulation,

Figure 2.12: The current interface during startup and while running.

the ESW interfacing component of the SIL core, called ModuleAdapter, configures the ESW
module. This is done by transmitting several function pointers to the I/O-layer by calling the
corresponding “set F ′′ functions of the I/O-layer. Each type of I/O-device in the SheetLogic
has a number of functions to change or read the current state of the device. The function
pointers transmitted to the I/O-layer of the ESW are pointing to those functions in SheetLogic.
The function pointers are used by the I/O-layer to call the functions in SheetLogic in run-time.
Each type of I/O-device has also a “getId” function, which is used during initialization by the
I/O-layer to retrieve the id of all I/O-devices, based on the names of the I/O-devices. This id
is stored locally and is used as a parameter when calling the other functions of this I/O-device.
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2.3.4 Running a Simulation

When running a simulation the simulation can be controlled by the remote control, which
emulates the controller of the printer. The RemoteControl application is shown in figure 2.11.

The behavior of the simulated printer and the ESW can be analyzed using Argus, ESW
logging and the tooling for plotting actuator and sensor values. Argus provides different tools
for visualization like a 3D visualization, list views of all I/O-devices and recording capabilities.
In addition, Argus can be used to inject errors into SheetLogic. Argus is shown in figure 2.10.

Figure 2.13 shows the tool dPlot which is used to plot values of I/O-devices from SheetLogic.
The SIL core is executed in a console application, which provides a simple menu to plot graphics
(lower left corner in figure 2.13).

Figure 2.13: Plotting I/O-device values while simulating.
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Chapter 3

Refining the Architecture of SIL

This chapter presents the design of a evolved version of SIL, which meets the requirements that
are derived from the short term goals from section 2.1. For convenience the new version is
referred to as SILv2 and the old as SILv1 throughout the document. The research question,
discussed in this chapter is:

• How to develop a modular and extensible Software-In-The-Loop simulation environment
that enables the execution of multiple embedded software modules and multiple plant models
with the goal of evaluating the behavior of the embedded software?

This chapter is organized as follows. First requirements and key drivers for the development
of SILv2 are identified. After that, design decisions are discussed and the design for SILv2 is
presented and evaluated. Subsequently the implementation and integration into SIL is discussed.
Finally some conclusions are drawn.

3.1 Requirements for SILv2

3.1.1 Requirements

From the short term goals for the evolution of SIL (section 2.1), several functional and non-
functional requirements for the evolution of SIL have been derived, as shown in table 3.1.

R1 ESW shall be encapsulated within simulation modules.

R2 Plant models shall be encapsulated within simulation modules.

R3 A simulation shall be composed of multiple simulation modules.

R4 Plant models can be implemented using different plant modeling tech-
nologies.

R5 Communication between ESW simulation modules and plant model sim-
ulation modules shall be based on a generic and well maintainable in-
terface.

Table 3.1: Requirements for SILv2.

3.1.2 Key Drivers

From the short term goals (section 2.1), it can be derived that the new SIL design should be:

• Modular. Logically independent entities of SIL should be separated, and encapsulated in
modules.
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• Generic. The SIL core and the communication between the SIL core and the simulation
modules should be generic.

• Extensible. There are many imaginable extensions and change cases for SIL (new types
of ESW or plant models). By Modularizing SIL and using generic ways of communication
between the entities, SIL can adapt more easily to future changes and extensions.

• Composable. Simulation modules should be composable to make it possible to run simu-
lations of sub-parts of a printer or of the whole printer.

• Efficient. SIL should have good performance so that it is possible to run the simulation in
a decent speed. In the current situation, the main load is caused by the SheetLogic. This
can not be changed by SILv2, but a goal is that the performance stays approximately the
same compared to SILv1 (+- 5%).

3.2 Detailed Analysis of Problems in SILv1

SIL was originally designed as a dedicated test tool for testing the ESW that controls the paper
path of a printer. The short term goals are that SIL evolves to a global test framework for ESW
in general. So, SILv1 has been evaluated regarding the requirements and qualities to identify
problems that need to be solved in order to meet the requirements. For each problem identified
in this section, the related requirement or requirements from table 3.1 are given.

3.2.1 Communication of ESW and SheetLogic

The interface and communication between ESW and SheetLogic, presented in section 2.3.3,
is a major concern. The current techniques introduce several problems with respect to the
requirements of SILv2.

Coupling of SIL Core and SheetLogic/ other plant models

Related requirements: R1, R2, R3, R4, R5.
The SIL core sets up the connection between the ESW module and SheetLogic by transmitting
function pointers, that point to functions of I/O-devices in SheetLogic, in the ESW module.
That implies that these functions are known by the SIL core. That hinders the separation of
SheetLogic ( or plant model simulation modules in general) and the SIL core, which is desirable
for the modularization of SIL. Another problem occurs if several plant model simulation modules
and several ESW modules are composed in the future. The SIL core needs information about
which functions are located in which plant model simulation module and also which function
pointers are required by which ESW module. This introduces strong coupling of the SIL core
and the different plant model simulation modules.

Growing Interface between ESW and SheetLogic

Related requirements: R5.
There are several functions for each I/O-device that are used by the ESW to communicate with
the device (function pointers). This interface also implies that the ESW module has to provide
functions, which can be used by the SIL core to set these function pointers. The results in a
very crowded interface, which consists in the current situation of 67 functions in the I/O-layer
just for setting function pointers to I/O-devices in SheetLogic. Because of the fact that over
time more and more new I/O-devices are added and old I/O-devices still have to be supported,
it is likely that the interface keeps growing over time and is hard to maintain.
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3.2.2 SheetLogic as the Central Concept of Simulating Plant Behavior

Related requirements: R1, R2, R3.
In SILv1, SheetLogic is the only plant model in use (next to the stub mechanism) and can
be seen as the central point of plant behavior simulation. For this reason some features are
included in SheetLogic that should be part of the SIL core, when SIL supports multiple plant
model simulation modules. Those features are the connection to the visualization and to the
so called command interface, which is used for error injection and debugging. Even the plant
behavior implemented using the stub mechanism (section 2.3.2) is heavily dependent on the
implementation in SheetLogic. This is because of the fact that the I/O-devices, controlled by
the stub, are located in the SheetLogic and are controlled by the stub via the same interface that
is also used by the ESW (though with inverted behavior, writes sensors and reads actuators).

Another identified problem is that parts of the control software, the low level control, is
included in SheetLogic, which makes the interface to some I/O-devices very complex. The
interface between I/O-layer and low level control, so between the ESW simulation module
and the SheetLogic, is based on function calls (figure 3.1). For a stepper motor the interface
consists of 22 functions. Because of the fact that the low level control is totally integrated
in SheetLogic, the interface between SIL core and simulation module has to implement those
functions. It would also be a better logical separation to make the low level control part of the
ESW simulation modules because it is logically part of the control.

Figure 3.1: Low level control in SILv1.

3.3 Design Decisions

For the identified problems in the previous section, there are several possible solutions. These
solutions are discussed in this section and motivations for the final decisions are given.
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3.3.1 Generic or Specific Interface

SILv1 uses an I/O-device specific interface for communication between SIL core and simulation
modules. That means the communication is based on using function calls to specific simulated
I/O-devices. An example is the simple sensor I/O-device, which is a digital sensor that can be
in high or low state. Even for this simple I/O-device, four functions in SheetLogic and the four
function pointers to these functions in the I/O-layer are needed.

In this communication approach, every kind of information that is communicated needs a
dedicated function. So, a function in the plant model, a function pointer to the function in the
plant model, and a function in the simulation module to set the corresponding function pointer,
is needed. This leads to a growing interface and the coupling of plant model simulation modules
and the SIL core, as described in section 3.2. So the way of the communication is regarded as
a possible point of improvement.

Options

1. Communicate via function calls to I/O-devices, as in SILv1.

Advantages: Old communication approach, using function calls to I/O-devices can be
kept. The communication approach uses dedicated functions to write and read to and
from I/O-devices, which makes usage of the interface in the simulation modules and SIL
core simple and consistent.

Disadvantages: The communication approach has specific functions for all kinds of I/O-
devices, which leads to an interface that growth when new kinds of I/O-devices are added.
This leads to poor maintainability. The SIL core has to have knowledge about the different
I/O-devices in the different plant models to set up the connection, which leads to coupling
between plant models and SIL core. The communication approach is little extensible and
decreases modularity by introducing coupling.

2. Communicate via generic variables. This means that a simulation module has input and
output variables, representing sensors and actuators, that can be identified via the name
of the variable. For each I/O-device, a variable is created, which is used to communicate
the status of the I/O-device between the simulation modules. In terms of the example
of the simple sensor that would mean that a variable with the name of the sensor is cre-
ated. This variable holds the current state of the sensor. The communication between
plant model simulation module and ESW simulation module is realized by sending this
variable back and forth between them. The SIL core does not have knowledge what kind
of information is communicated.

Advantages: The generic concept makes it possible to communicate a multitude of infor-
mation via a simple interface. The SIL core does not need to have knowledge of the used
I/O-devices. The communication approach is more extensible and better to maintain due
to the fact that it does not depend on used I/O-devices.

Disadvantages: The usage of this communication approach implies that the communicated
variables have to be interpreted properly on the other end of communication.
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Decision

Use a more generic interface and communicate via variables representing I/O-devices.

Rationale

The communication based on variables makes SIL more generic because the communication
is not limited to I/O-devices. It becomes also more extensible because, the SIL core and the
interface do not have to be changed, when new I/O-devices are used. This approach is chosen
because these characteristics are key drivers for the development of SILv2.

3.3.2 Storage and Communication of Communication Variables

Since the communication between simulation modules and SIL core is changed to a more generic
interface, which uses variables, the options on how to store and communicate these variables
are reviewed. The global principle, that simulation modules are loaded by the SIL core as a
DLL, should be kept.

Options

1. Communication via pointers to variables, storing them in the SIL core.

Figure 3.2: Storing variables only in the SIL core.

Figure 3.2 shows the structure when variables are stored in the SIL core and simulation
modules access them using references.

Advantages: Simple usage in simulation modules. Minimal storage is needed.

Disadvantages: Pointers may be accessed by multiple entities leading to errors (has to be
made thread safe).

2. Communication via pointers to variables, storing them in simulation modules. Figure
3.3 shows the structure when variables are only stored in one simulation module and are
communicated using references to these variables. In figure 3.3, simulation module one
holds all variables. All other simulation modules have a reference to the variables they
need (indicated by the dashed rectangle). The SIL core is just used for setting up the
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Figure 3.3: Storing variables only in one simulation module.

connections during initialization and is not involved in communication during simulation.

Advantages: Simple usage in simulation modules. Minimal storage is needed.

Disadvantages: Pointers may be accessed by multiple entities leading to errors (has to
be made thread safe). Complex configuration of simulation modules during initialization
because the SIL core needs to know which simulation module holds which value to set up
the connection between simulation modules properly. No central storage.

3. Communication via pointers to variables, storing them in the SIL core and a copy in sim-
ulation modules. Figure 3.4 shows the structure of SIL when variables are stored in the

Figure 3.4: Storing variables in the SIL core and a copy in the simulation modules.

SIL core and a copy in the simulation modules. The SIL core takes the active part of the
communication while running. This is done by copying values to and from the simulation
modules by using a reference to the variables in the simulation module.

Advantages: Simple usage in simulation modules. Parallel execution is possible without
much effort. Central variable storage can also be used for other testing purposes, like
error injection, debugging and visualization etc. Setup of simulation modules during ini-
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tialization is less complex because it has just to be known which variables are written to
and read from the SIL core by a simulation module. Communication happens through the
SIL core so it has the full control over what is communicated between simulation modules.

Disadvantages: Variable values need to be synchronized properly. Needs more storage
because variables are stored multiple times. A realistic estimate is that three times more
memory is needed because the variable is stored in the simulation module that writes the
value, in the SIL core and in the simulation module that reads the value. In a simulation
containing 200 different variables this would be 4.8 KB instead of 1,6 KB for the approaches
where each variable is stored only once (assuming a variable size of 8 byte (size of double)).

4. Communication via function pointers to access variables of other simulation modules with
storage of variables only in simulation modules. The structure is the same as in figure
3.3. The difference is that the variables are not communicated using a reference to the
variable, but a function to get or set a variable.

Advantages: Simple usage in simulation modules. Minimal storage is needed.

Disadvantages: Complex configuration of simulation modules during initialization because
the SIL core needs knowledge about which simulation module holds which value to set the
right function pointers. Pointers may be accessed by multiple entities leading to errors
(has to be made thread safe). There is no central storage.

5. Communication via function pointers to access variables stored in the SIL core. The
structure is the same as in figure 3.2, with the difference that function pointers are used
in stead of references to the variables themselves.

Advantages: Simple usage in simulation modules. Minimal storage is needed. The setup
of simulation modules during initialization is easy. Central variable storage can be used
for error injection and visualization etc. Communication happens through the SIL core
so it has the full control over what is communicated between simulation modules.

Disadvantages: Pointers may be accessed by multiple entities leading to errors (has to be
made thread safe).

Decision

Use the communication via pointers to variables using multiple copies of the data (option 3).

Rationale

The two options (2. and 4.) are not used because in these cases the SIL core has no control
over the communication, which prevents a central point for error injection etc. Additionally, in
all options except 3, parallel execution of simulation modules leads to more problems because
pointers could be used by multiple simulation modules at the same time. Finally the approach
using multiple copies of the variables and communication via references to variables is chosen.
The reason is the better decoupling that is provided by this approach in comparison to option
5. The simulation modules do not call functions implemented in the SIL core but the SIL core
initiates and performs the communication. The drawback of the additional memory needed
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(a few KB) is negligible since the simulation is executed on a workstation PC where enough
memory is available.

3.3.3 SheetLogic and the Low Level Control

There are also several options when it comes to the modularization of SheetLogic and the low
level control in SILv2.

Options

1. Keep SheetLogic as part of the SIL core and the low level control simulation part of Sheet-
Logic as shown in figures 2.9 and 3.1.

Advantages: The low level control simulation stays in a central place in the SIL core and
can therefore be used by other plant model simulation modules.

Disadvantages: SheetLogic is part of every simulation, even if it is not needed. Simulation
modules can not communicate with low level control simulation via the new communica-
tion approach because it requires synchronous communication. Coupling of SheetLogic
and low level control simulation and SIL core, which has negative impact on modularity.

2. Extract SheetLogic from the SIL core and keep the low level control simulation as part of
SheetLogic (communication still as in figure 3.1).

Advantages: SheetLogic can be added to a simulation if needed.

Disadvantages: The low level control simulation is needed by all other plant model simula-
tion modules that use I/O-devices that have low level control. So, SheetLogic has always
to be included. Simulation modules can not communicate with low level control simula-
tion via the new communication approach because it requires synchronous communication.

3. Extract SheetLogic from the SIL core and extract the low level control simulation from
SheetLogic. The use of the low level control in ESW simulation modules is shown in figure
3.5.

Advantages: SheetLogic can be added to a simulation, if needed. The low level control
simulation can be used independent of SheetLogic. The low level control simulation can
be used as a layer beneath the I/O-layer and the output of this low level control layer is
communicated to the SIL core, enabling communication only via the new communication
approach.

Disadvantages: The low level control simulation has to be used multiple times, as a part of
each ESW simulation module that uses I/O-devices that have low level control, resulting
in code duplication.

Decision

Extract SheetLogic from the SIL core and extract the low level control simulation from Sheet-
Logic.
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Figure 3.5: Low level control in SILv2.

Rationale

To provide the possibility to freely compose simulation modules with each other, the SheetLogic
also has to become a simulation module. Much functionality can be taken from SheetLogic
because it is also used by other plant models. SheetLogic becomes also decoupled from the
SIL core because the new communication approach does not require the SIL core to know the
functions of SheetLogic anymore. So the step to a total decoupling gets smaller. Examples
for the extracted functionality are the command interface, visualization and error injection.
The low level control simulation can be added as a layer to the ESW simulation modules (as
shown in figure 3.5) so that the communication with the SIL core can be realized via the new
communication approach.

3.4 New Communication Strategy

With the design decisions from the previous section, a new communication strategy is designed
that meets the new requirements and supports the desired modular structure of SIL.

3.4.1 Global Principle

A solution for the problems, identified in section 3.2 is to modify the communication approach
within SIL. The suggested solution is to use a more generic interface between simulation modules
and the SIL core. The goal is a Plug-and-Play like approach for including simulation modules.
The communication of the ESW and the plant models is still established by the SIL core.
However, it is not necessary that the SIL core has knowledge of the used types of I/O as
in SILv1. The communication in SILv2 is based on the exchange of variables between the
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simulation modules. simulation modules have a certain number of I/Os that are represented by
double variables. Those variables are created for sensors and actuators, used by the simulation
modules. When the simulation is initialized, the simulation modules are loaded and started by
the SIL core. During startup each module creates a data structure, called the SIL interface
structure, containing the I/O information of the module comprising input and output variables
and also variables that are defined as input and output. An input variable is only read by the
simulation module, an output variable is only written and a variable that is defined as input
and output is read and written by the simulation module. The structure of the SIL interface
structure is shown in figure 3.6. The name and value of each I/O variable is stored. A reference
to this data structure is requested by the SIL core, and is further used to communicate with the
simulation modules. The variables of all simulation modules are stored in a central data storage
in the SIL core, the variable database. To set up a connection for communication between
simulation modules, the I/O variables from the modules are matched by name. If one module
needs to communicate with another, each of them needs to register a variable with the same
name. In the case of a digital sensor, for example, the plant model simulation module registers
an output variable with the name “sens” and the ESW simulation module registers an input
variable with the same name. The communication in runtime is done by the SIL core. The SIL
core is responsible for updating the input variables of a simulation module with data from the
variable database before a simulation module is executed and to write output variables back to
the variable database after a module has been executed. This is done using the reference to the
SIL interface structure of the corresponding simulation module. The communication between

Figure 3.6: The structure of the SIL interface structure.

SIL core and modules is presented in figures 3.7 and 3.8. Figure 3.7 shows the initialization
and figure 3.8 shows the communication in running state. During startup of the simulation, the
following steps are taken when a module is loaded (numbers refer to figure 3.7):

1. The simulation module is loaded and started by the SIL core by calling “sil StartNode()′′.

2. During startup, the SIL interface structure, consisting of lists of input and output variables
and variables that are defined as in- and output, is generated by the module. This is done
by the ESW by calling the “init” function of all I/O-devices. In the “init” function a
variable is created and added to the SIL interface structure.

3. When the simulation module is started successfully, the SIL core retrieves a reference to
the SIL interface structure of the module by calling “sil GetInterface()′′.

4. The variables from the SIL interface structure are added to or found in the variable
database. A list of handles (“HandleList”) for the variable values is stored for the module.
These handles are used in runtime to access the values of the variables without the need
of searching them in the variable database.
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Figure 3.7: The new interface between simulation modules and the SIL core during initialization.

When the simulation is running, the following steps are taken with each computational step
(tick function “sil StartScheduling()′′) of the module (numbers refer to figure 3.8):

5. In the simulation module, the local values of the input variables and variables that are
defined as in- and output, are updated by the simulation core. The new input values are
requested from the Variable database by calling “getV alues(HandleList)′′.

6. A computational step of the simulation module is executed using “sil StartScheduling()′′.
The ESW reads from and writes to I/O-devices. In the SIL I/O-layer this means the ESW
reads from and writes to the variable values in the SIL interface structure.

7. The new output values and the values of variables that are defined as in- and out-
put, are read by the simulation core and written to the variable database by calling
“setV alues(HandleList, V alueList)′′.

The structure of SILv2 is shown in figure 3.9. The SIL core and the simulation modules are
strictly separated and only communicate via the presented interface (figure 3.7). The interface
of simulation modules consists of the following functions:

• “sil GetInterface()′′

• “sil GetV ersionInfo()′′

• “sil StartNode()′′

• “sil StartScheduling()′′
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Figure 3.8: The new interface between simulation modules and the SIL core when running.

• “sil StopNode()′′

“sil GetV ersionInfo()′′ and “sil StopNode()′′ are not shown in the sequence diagrams in fig-
ures 3.7 and 3.8. “sil GetV ersionInfo()′′ is optional used to get version information of an
ESW simulation module. “sil StopNode()′′ is used to stop the simulation module when the
simulation is ended.

Figure 3.9: The global structure of SILv2.

The communication approach of SILv2 is inspired by the Blackboard architecture and the
Publish/Subscribe messaging pattern. The Blackboard pattern is an architectural pattern that
is used, for example, for artificial intelligence systems, which uses a central storage, which is
used by several agents to communicate with each other. The central storage is called blackboard
and the agents are called knowledge sources [11]. The idea of a central storage, similar to a
blackboard, and multiple modules, similar to knowledge sources, is taken from this architectural
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pattern. The way the simulation module communicates its inputs and outputs during initializa-
tion is inspired by the Publish/Subscribe messaging pattern [5]. Theoretically, the simulation
module subscribes to some input variables and publishes several output variables.

3.4.2 Changed and added Entities of SIL

Figure 3.10: The entities changed in this project (everything that is solid black).

SIL Core

To apply the new communication approach, SheetLogic is logically decoupled and extracted
from the SIL core. The SIL core becomes a generic simulation core that contains a scheduler,
interfacing components to simulation modules and the variable database, which holds the cur-
rent value of all variables from all modules. In addition there are additional features like the
connection to the visualization and the command interface.

Module Adapter, the Interface to Simulation Modules
The module adapter component of the SIL core (called Node in SILv1) is responsible for loading
and communicating with simulation modules. The module adapter also communicates with the
variable database. In order to implement the new communication approach, this component
has been changed to a large degree.
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Figure 3.11: The new SIL core.

The most relevant changes are:

• Deletion of function pointer transmission of the old communication approach.

• Adding functionality to request SIL interface structure.

• Adding functionality to communicate with the variable database to write and read variable
values.

• Adding functionality to write to and read from the SIL interface structure of simulation
modules.

Variable Database
The newly added variable database contains the current value of all variables that are commu-
nicated between simulation modules. For each variable, the name and current value is stored.
Next to the value and the name, additional information about variables is stored. For example,
if a variable is overwritten with a certain value for error injection. The name is used as unique
identification. The elementary functionality that has to be integrated is:

• Find or create variables, that are sent to the variable database by the module adapter,
based on the variable name. When doing this a list has to be created, containing handles
to the variable values, that can be used while simulating to access the value.

• Read variable values from the variable database using a list of handles.

• Write variable values to the variable database using a list of handles.

I/O-layer

The global structure of the I/O-layer not changed because it is not necessary. It is also not
desirable because the interface to the ESW has to stay the same, so that the ESW itself has not
to be modified. The global concept of the I/O-layer is to provide macros that can be used by the
ESW. The macros expand into a number of functions that can be called by the ESW as shown
in 2.8. The bodies of those functions have to be changed to implement the new communication
approach. The functions do not have to use the function pointers to I/O-devices in SheetLogic
anymore. In the functions the values of the variables in the SIL interface structure are read
respectively written.
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SheetLogic

SheetLogic is extracted and decoupled from the SIL core. SheetLogic is redesigned to use the
new communication approach. To use the new communication approach, SheetLogic also uses
the I/O-layer. In SILv2 SheetLogic becomes one of many plant model simulation modules. So
it is also possible to run simulations without SheetLogic, which has not been possible in SILv1.

Low Level Control Simulation

In SILv1 (figure 3.1), the functionality of low level control is included in SheetLogic. The chosen
solution is to extract the low level control from SheetLogic and to add it as a layer to the ESW
simulation modules beneath the I/O-layer, like shown in figure 3.5. This solution makes it
possible to use the new communication approach, because communication with the SIL core is
based on physical variables like position of a motor as shown in figure 3.5. The low level control
is included in SILv1 as a simulation. It would be better to include the real code of the low level
simulation as a layer to the ESW simulation modules, enabling testing also for the low level
control ESW.

3.5 Evaluation

To determine if and how the goal qualities of SILv2 are achieved and if SILv2 meets the identified
requirements, the design is evaluated. In addition the design is compared to SILv1.

3.5.1 Change Case Impact Analysis

SILv2 has not only to deal with the day to day use of SIL during testing but also with possible
change cases. Because of this, an evaluation and impact analysis of SILv2 and SILv1 is given
for some identified change cases. First, for each change case, a high level description is given
that describes the goals of the change. After that, an explanation of the necessary changes, is
given.

A. Add a new kind of plant model

SheetLogic and also the EZ-VirtualPrinter approach (chapter 4), developed in this project, are
implemented using a general purpose language. In is also possible to include Matlab Simulink
models in SIL (chapter 4). To extend the simulation environment in the future, other, more
specialized system modeling technologies, have to be integrated in SIL. An example is the object
oriented physical system modeling language Modelica [2, 12].

SILv1
When a new type of plant model is added to SILv1, all I/O-device functions, which are used by
the ESW simulation modules, have to be implemented as in SheetLogic. The low level control
simulation has to be integrated in the new plant model simulation module or used from Sheet-
Logic. Finally the new plant model must be integrated into the SIL core so that the SIL core
can establish the communication between ESW simulation modules and the new plant model.

SILv2
In SILv2, a new plant model can be added with less effort compared to SILv1. The plant model
must implement the SILv2 interface. The SIL interface structure has to be created with the
corresponding in- and outputs. There is no need to create functions for different I/O-devices,
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but it is necessary to interpret the variables communicated by the ESW simulation modules in
the right way. The plant model has to be compiled to a DLL that can be loaded by the SIL
core. How new kinds of plant models can be added to SILv2 is also discussed in the following
chapter.

B. Add new Kind of I/O-device

The I/O-layer provides functionality to communicate with several I/O-devices. If a new I/O-
device is used in a plant model simulation module and the corresponding ESW simulation
module, it is necessary to add this I/O-device to the I/O-layer to enable communication. It is
also necessary that the plant model knows how to handle the data from the new I/O-device.

SILv1
When a new I/O-device should be used in SILv1, it has to be added in the I/O-layer and the
plant model. In addition, all functions to communicate with the I/O-device have to be added
to the interface between the SIL core and the ESW simulation module. The transmission of
the corresponding function pointers has to be added to the functionality of the SIL core that
transmits the function pointers to the I/O-device functions to the simulation modules.

SILv2
In SILv2, the I/O-device has only to be added to the I/O-layer and to the plant model. The
SIL core itself is not affected.

C. Add new Visualization

Another imaginable case is that a new visualization tool or an extension to Argus is used to
enable visualization of new plant model simulation modules or to simply add visualization func-
tionality.

SILv1
In SILv1, the visualization tool Argus connects directly to SheetLogic. If a new visualization is
used it has to meet the requirements of the interface provided by SheetLogic. The other option
is to change the interface in SheetLogic or to introduce a central entity in the SIL core that
connects to the visualization.

SILv2
In SILv2, a new visualization can use the simulation module interface or a specialized version
of it, if additional functionality is needed. The visualization can add all variables of the sim-
ulation to its inputs. With this technique the visualization can receive the state of the whole
simulation. That means, the state of all variables of all simulation modules can be retrieved by
the visualization, without the need of extensions in the SIL core or the interface.

D. Change Settings of Simulation Modules On-The-Fly

Another change case is that simulation modules can change their configurations on-the-fly during
simulation (for example, the sample period). This can be useful, if a plant model needs to
simulate some process with higher accuracy but other processes can be simulated less accurate.
In the current situation the sample time of each module is specified before starting the simulation
in the specification in the Virtual System XML file. One time specified, it stays fixed for a
simulation run.
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A first step would be that the simulation module defines its own sample frequency and
communicates it during initialization. The following step would be that a simulation module
can change its own configurations on-the-fly every time it is executed.

SILv1
To achieve this change case in SILv1 it is on the one hand necessary to implement the corre-
sponding functionality in the SIL core. On the other hand a function pointer has to be added
to the interface and has to be transmitted to the simulation module during initialization. This
function pointer can be used to set or change the configurations of the simulation module in
the SIL core.

SILv2
In SILv2, it is also necessary to implement the corresponding functionality in the SIL core. In
SILv2 it is possible to add a list of configuration parameters to the SIL interface structure to
communicate configurations. This can either be done during initialization or every time the
simulation module is executed. If changes of the configuration are done on the fly, the SIL core
has to check every “tick” if settings are changed in the SIL interface structure.

E. Going Back in Time for Debugging

When simulating, it is possible that the system shows undesired behavior. In this case, it
could be desirable to stop the simulation and to rewind the simulation to closer investigate the
situation.

In the current situation Argus provides record capabilities that make it possible to record
the 3D visualization and to playback it later. However, only the visualization is recorded which
can make it difficult to find the reason for the undesired behavior.

SILv1
In SILv1, the used plant model simulation modules could be used to record the state of the
plant model entities to be able to replay incidents later. This implies that every plant model
has to implement suitable functionality, which can be difficult or needs a lot of effort, if different
plant modeling approaches are used.

SILv2
In SILv2, the current state of all I/O-devices is stored in the variable database, which makes
it possible to log the current state of all plant models from this central place and to use the
logged data to playback the simulation later.

F. Distributed Simulation

When more and more simulation modules and other features are added to SIL, it can be an
option to distribute the simulation over two or more computers to enhance performance. A pos-
sible case is that the SheetLogic plant model simulation module of a large printing system with
several PIMs and FINs is executed on another computer. In this case the communication of a
simulation module and the SIL core has to be done via the network or comparable technology.

SILv1
First of all, it is not really possible to distribute the simulation in SILv1 because of the close cou-
pling of plant model simulation modules and the SIL core. So, the SIL core has to be executed
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on a computer together with the plant model simulation modules. To implement Distributed
Simulation (distribution of ESW simulation modules) in SILv1, it is necessary to implement
a proxy for the computer on which the SIL core (and SheetLogic or other plant model simu-
lation modules) is executed and one for the computer on which the ESW simulation modules
are executed. The proxy on the simulation module side has to implement all functions for all
I/O-devices that are needed by the simulation module and has transmit the corresponding func-
tion pointers to the simulation module. The proxy on the SIL core side needs to be configured
with the function pointers pointing to the I/O-device functions in SheetLogic by the SIL core.
The ESW simulation modules and the SIL core can then communicate with the corresponding
proxy. The communication between the proxies can be implement in an intermediate format.
Figure 3.12 shows an overview of the proxies in the distributed simulation in SILv1.

Figure 3.12: Overview of proxies in distributed simulation.

SILv2
In SILv2, the implementation of proxies is easier because less function pointers need to be
communicated to the simulation module, which is caused by the higher degree of decoupling
compared to SILv1. So less functions need to be implemented in the proxies. The data transfer
can be implemented by simply sending the SIL interface structure from proxy to proxy, for
example, via Ethernet. The key feature of the proxies has to be the forwarding of the “tick”
function and the synchronization of the SIL interface structure. This can again be done in an
intermediate format between the proxies. Figure 3.13 shows an overview of the proxies in the
distributed simulation in SILv2.

G. Plant Modeling Approach with own Clock

In SILv1, the only plant model that is used is SheetLogic (next to the stub mechanism), which
has, like the ESW simulation module, a “tick” function to perform a computational step. Also
in SILv2, a requirement for the simulation modules is that the SIL core can call a “tick” func-
tion to let the simulation module perform a computational step. If a plant modeling approach
is used, which uses an own clock in the created plant models, there must be a possibility to
synchronize the SIL clock and the plant model clock.
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Figure 3.13: Overview of proxies in distributed simulation.

SILv1
This change case requires, similar to change case 4, communication of additional data via the
interface of simulation module and SIL core. For SILv1 and SILv2 the corresponding function-
ality needs to be implemented in the SIL core and the plant model simulation module. The
difference in this change case of SILv1 and SILv2 is that the synchronization information is
communicated different. For SILv1 the needed function pointers need to be added to the inter-
face and communicated to the simulation module during initialization.

SILv2
In SILv2 it is possible to add a “clock” or “time” variable to the SIL interface structure to syn-
chronize the clocks of SIL and plant model simulation module. This would not lead to changes
in the interface.
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Impact Analysis

The following table provides an overview that shows the impact of different change scenarios in
SILv2 and SILv1. Globally, changes that comprise the communication of additional information
have less impact in SILv2. This is because of the new, more generic interface. Again, this ranking
is created together with two software engineers, who supervise the evolution of SIL since the
first version. The scale that is used consists of high, medium and low impact.

SILv2 SILv1

A. New plant model
type

Medium High

B. New I/O-device type Low Medium

C. New Visualization Low High

D. Change Settings of
Simulation Modules
On-The-Fly

Medium High

E. Going Back in Time
for Debugging

Low High

F. Distributed Simula-
tion

Low Medium

G. Plant Modeling Ap-
proach with own Clock

Medium Medium

Table 3.2: Impact analysis of change cases in SILv1 and SILv2.

3.5.2 Key Drivers

This subsections evaluates to what extend the design of SILv2 achieves the identified key drivers.
First, for each quality a statement is given how it has been considered in the design and by
which decisions it has been affected. Based on these qualities, SILv2 and SILv1 are compared
to evaluate if and how the design of SILv2 improves the qualities.

Modularity

Modularity is a key driver throughout the design of SILv2. A modular design is in this case the
foundation to meet the other requirements and to achieve the important qualities. Modularity
has been achieved by logical separation of logical independent entities of SIL. Examples are the
separation of SheetLogic (or plant model simulation modules in general) and the SIL core or
the separation of SheetLogic and the low level control. Those modules are more loosely coupled
than in SILv1 by using a more generic and minimalistic interface.

Generic

Because the goal is to compose several simulation modules of different types, and to be well pre-
pared for future changes, the SIL core and the communication between SIL core and simulation
modules have to be generic. This is achieved by using a new communication approach, which
uses a more generic interface and way of communication. This makes it possible to use SIL as a
Plug-and-Play environment. Change cases B and D show that the generic interface enables the
communication of arbitrary information via the new communication approach as long as the
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information can be stored in one or more double variables and no synchronous communication
is needed.

Extensibility

To be prepared for future changes, the design has to be extensible. Extensibility is achieved
by modularizing the entities of SIL and reduce the coupling between them. So by keeping the
design modular and the communication approach generic, the design is also more extensible
than SILv1. Several change cases show how low the impact of certain changes in SILv2 is.

Performance

When using SIL to test the behavior of ESW, it is important to have a decent performance to
make testing more effective. SILv2 does not enhance or lessen performance drastically. This is
because the main load is produced by SheetLogic, other plant models and the ESW simulation
modules. Theoretically SILv2 has less performance than SILv1 because all inputs and outputs
are copied with each tick of a simulation module, even if they are not changed. In SILv1, if the
ESW does not call the I/O-layer function of an I/O-device to change the status of an actuator or
to request the status of a sensor, the corresponding function in SheetLogic was also not called by
the I/O-layer. In the case when all inputs and outputs are changed by the ESW with each tick,
the performance of SILv1 and SILv2 should be the same. In cases in which the ESW changes
the state of an actuator or requests the state of a sensor multiple times in a “tick”, SILv2 has
a slight advantage since the values are, also in this case, only copied one time with each tick.
In this case, in SILv1, the callback function to SheetLogic is used every time an I/O-device is
accessed by the ESW. In practice, the difference in performance between SILv2 and SILv1 is
not noticeable. This has also been confirmed by the users of SIL, working in projects in which
SILv2 is already used.

Comparison SILv2 and SILv1

SILv1 and SILv2 have been compared how well the two designs support the key drivers of this
project. The ranking has been created together with two software engineers, who supervise the
evolution of SIL since the first version. The used scale for evaluation is:

++ very good

+ good

0 moderate

- bad

– very bad

SILv2 SILv1

Modularity ++ +

Generic + -

Extensibility ++ 0

Composability ++ 0

Performance 0 0

Table 3.3: Comparison of key qualities in SILv1 and SILv2.

SILv2 has a higher ranking in the most of the key qualities, because it has been designed with
those in mind. The requirements for SIL changed drastically over time since SILv1 introduced.
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SILv1 has been designed as a dedicated testing tool for testing ESW for the paper handling, so
the difference is inevitable.

3.5.3 Meeting Requirements

This subsection evaluates if and how the new design meets the identified requirements.

R1. ESW shall be encapsulated within simulation modules.

The ESW simulation modules were already encapsulated to some degree in SILv1. However
the fact that the old interface required the use of function pointers, which point to functions in
SheetLogic, within the ESW simulation module, made the functioning of the ESW dependent
on the function implementations in SheetLogic.

In SILv1, 67 functions in SheetLogic are called by the ESW simulation modules via function
pointers. With the new communication approach, the ESW simulation modules do not need
to call any function in SheetLogic or the SIL core. Since the ESW simulation modules do not
have function pointers to SheetLogic (or other plant model simulation modules), the interface
functions for setting those function pointers are also not needed anymore. So, in SILv2 the ESW
simulation modules are even more decoupled by using the communication based on variables.

R2. Plant models shall be encapsulated within simulation modules.

By changing the communication approach, it is possible to encapsulate plant model simulation
modules in the same way as ESW simulation modules. This can be done because the coupling
of the SIL core, SheetLogic (or some other plant model simulation module) and the low level
control, is eliminated by not using function pointers for communication anymore. So, the SIL
core does not need to have any knowledge about functions in plant model simulation modules.
From the point of view of the SIL core there is no difference between a plant model simulation
module or an ESW simulation module because the interface is the same.

R3. A simulation shall be composed of multiple simulation modules.

It has already been possible to compose several ESW modules in SILv1 (R1). But the only
usable plant model has been SheetLogic (next to the stub mechanism), which was used by all
ESW modules. The communication approach of SILv2 makes it possible to encapsulate plant
model simulation modules (R2). These plant model simulation modules use the same interface
as the ESW simulation modules, which is based on exchange of variables. In contrast to SILv1,
it is possible to use multiple plant model simulation modules in SILv2. All simulation modules
used in a simulation setup can communicate with each other by registering communication
variables with the same name. A limitation of the composability is that not more than one
simulation module can have a certain variable defined as output. So, it is valid if one simulation
module has the variable “sens1” defined as output and 3 other simulation modules have the
variable “sens1” defined as input. A fifth simulation module that is added to the simulation,
which also outputs a value for the variable “sens1”, leads to undesired behavior.

R4. Plant models shall be implemented using different plant modeling technologies.

SILv2 itself does not provide the possibility to use multiple plant modeling approaches for
creating plant model simulation modules. However, SILv2 enables the composition of multiple
plant model simulation modules (R3), which is a foundation for meeting this requirement. The
interface that a plant model must provide (SILv2) is also more compact and generic than the
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old interface (SILv1). Integrating it in a plant modeling approach, therefore needs less effort.
change case A and also the next chapter provide information about adding a new kind of plant
model.

R5. Communication between ESW simulation modules and plant model simulation
modules shall be based on a generic and well maintainable interface.

The communication approach of SILv2 introduces a compact and generic interface that does
not depend on communicated I/O types. The interface is better maintainable because no
functions have to be added if a new I/O-device is added to a ESW or plant model simulation
module. Change case B and D show how new information can be communicated via the new
communication approach without changing the interface structure.

3.5.4 Additional Advantages of SILv2

SILv2 introduces the variable database as a central storage of the current state of the variables
from all simulation modules. In SILv1 the current status was stored in SheetLogic. SheetLogic
was the central place of simulating plant behavior in SILv1 and therefore this choice intro-
duced no problems. SILv2 supports multiple plant model modules, which makes it necessary to
somehow manage visualization and error injection of plant model simulation modules. Those
features have been included in SheetLogic in SILv1. The variable database as central storage
entity can be used to implement those feature in SILv2. In SILv1, the visualization tool, Argus,
is connected to SheetLogic via a dedicated interface. When using multiple plant model modules
it is not feasible to connect Argus, or another visualization, to all used plant model modules.
In SILv2 the aim is to connect Argus via the simulation module interface. Argus adds all vari-
ables of the variable database to its input variables, so that it receives the current values of
all simulation modules. The variable database can also be used to inject errors by overwriting
variable values in the variable database.

3.6 Implementation

The implementation of SILv2 is separated in two major parts. The one being the implementation
of the new communication approach in the I/O-layer of the simulation modules and the other
being the implementation of the new communication approach in the SIL core. The complete
implementation of SILv2 is beyond the scope of this project. The complete implementation
consists of:

• Extract and modify SheetLogic from the SIL core.

• Extract the low level control simulation from SheetLogic.

• Modify the SIL core (ModuleAdapter) for the new communication approach.

• Add the variable database to the SIL core.

• Modify I/O-layer for the new communication approach.

• Change the I/O-device-macros to use the SIL interface structure.

A major part of these modifications have been implemented in this project:

Extract and modify SheetLogic from the SIL core/ Extract the low level control
simulation from SheetLogic: The low level control has not been extracted from SheetLogic
because this requires a complete redesign of SheetLogic and of the low level control simulation.
SheetLogic has been separated from the SIL core to some extend as a prove of concept. This
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has been done by adding a layer that implements the SILv2 interface. Via those layer, the
I/O-devices that have no low level control, are communicating with the SIL core via the new
communication approach.

Modify the SIL core (ModuleAdapter) for the new communication approach/ Add
the variable database to the SIL core: These modifications are implemented in the SIL
core and are used in several projects.

Modify I/O-layer for the new communication approach/ Change the I/O-device-
macros to use the SIL interface structure: The new communication approach has been
integrated in the I/O-layer. The I/O-device-macros are only changed for the I/O-devices that
are also supported by the adapted SheetLogic. So, only for those that do not use the low level
control simulation.

3.6.1 I/O-layer

The SIL I/O-layer is implemented in C. The implementation is distributed over several separate
files of which three are defining the interface and communication approach. These files are:

• SILSimulationItf.h: This file defines all interface functions of a simulation module. It
also defines the SIL interface structure and type definitions for the function pointers to
SheetLogic, set by the SIL core.

• ln main.c: This is the main file of the simulation module I/O-layer. It contains the
following functions of the interface: “sil GetV ersionInfo()′′, “sil StartNode()′′,
“sil StartScheduling()′′ and “sil StopNode()′′.

• ln iolayerTargetMacros.c: This files defines the I/O-device-macros that are used by the
ESW to create the functions that are used to communicate with I/O-devices, as described
in figure 2.8. In this file the creation and initialization of the SIL interface structure is
implemented. It also contains the function “sil GetInterface()′′.

All of those three files are modified to implement the new communication approach.

SIL Interface Structure

The SIL interface structure has two responsibilities. It is, on the one hand, used to communicate
the interface description of the simulation module to the SIL core, and is, on the other hand,
used for communication. The SIL interface structure is defined in SILSimulationItf.h using a
struct:

1 struct sil_Variable

2 {

3 const char* name;

4 double value;

5 };

6
7 struct sil_Interface

8 {

9 struct sil_Variable *inputs;

10 int inpCount;

11 struct sil_Variable *outputs;

12 int outpCount;

13 struct sil_Variable *inAndOutputs;

14 int inAndOutpCount;

15 };

Listing 3.1: The SIL interface structure.
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I/O-device-target macros

The first step when a simulation module is started is to create the SIL interface structure.
After that, the I/O’s are initialized by the ESW of the simulation module, which causes that
a variable is added to the SIL interface structure. How this is done is demonstrated with the
following example. Listing 3.2 shows the initialization part of the macro definition that is used
for the simple sensor I/O-device.

1 #define SILSIMULATION_SIMPLE_SENSOR(symbolicName , deviceId , IoId)\

2 double* symbolicName ## _state = NULL;\

3 void symbolicName ##_init(void)\

4 {\

5 if(symbolicName ## _state == NULL)\

6 {\

7 symbolicName ## _state = addInpComponent (# symbolicName);\

8 }\

9 }\

Listing 3.2: Part of the macro for simple sensors.

First the pointer to the state variable of this I/O device is created (“double∗ symbolicName##
state′′). The function “void symbolicName## init(void)′′ is called by the ESW of the simula-
tion module after startup. In the this function, the function “double∗ addInpComponent(const
char∗ name)′′ is called, which is shown in listing 3.3.

1 static double* addInpComponent(const char* compName)

2 {

3 struct sil_Variable temp={compName , 0};

4 outputs[outpCompCount] = temp;

5 return &outputs[outpCompCount ++]. value;

6 }

Listing 3.3: The function addInpComponent.

The parameter of this function is the name of the device, which becomes the name of the
variable. The return value is a pointer to the value of the newly created SIL variable in the SIL
interface structure. This pointer is further used in the macro, which can be seen in listing 3.4.
The initialization step is the same for all I/O-devices.

1 #define SILSIMULATION_SIMPLE_SENSOR(symbolicName , deviceId , IoId)\

2 \

3 /* create a double pointer that points to the variables value */\

4 double* symbolicName ## _state ;\

5 \

6 void symbolicName ##_init(void)\

7 {\

8 if(initialized != 1)\

9 {\

10 /* call addInpComponent at init and retrieve */\

11 /* pointer that points to the variables value.*/\

12 /* Values of inputs are automatically update by SIL before */\

13 /* the software module gets a tick. Outputs are */\

14 /* automatically read by SIL after a ‘‘tick ’’ */\

15 symbolicName ## _state = addInpComponent (# symbolicName);\

16 }\

17 }\

18 \

19 E_SimpleStatus symbolicName ## _status(void)\

20 {\

21 /* use the pointer instead of the sheetlogic functions */\

22 if (doubleEqual (* symbolicName ##_state , 0.0))\

23 {\

24 return SENSOR_INACTIVE ;\

25 }\

26 else\
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27 {\

28 return SENSOR_ACTIVE ;\

29 }\

30 }\

31 void symbolicName ##_on(void)\

32 {\

33 *symbolicName ## _state = 1.0;\

34 }\

35 void symbolicName ##_off(void)\

36 {\

37 *symbolicName ## _state = 0.0;\

38 }\

Listing 3.4: The whole simple sensor I/O macro.

The rest of the I/O macro consists of three more functions that are called by the ESW
of the simulation modules in runtime. “E SimpleStatus symbolicName## status(void)′′

is called by ESW simulation modules to retrieve the current status of the sensor. “void
symbolicName## on(void)′′ and “void symbolicName ## off(void)′′ are used by stub simu-
lation modules to set a new status of a sensor. It can be seen that in those functions simply the
pointer to the value of the SIL variable in the SIL interface structure is used. All other modified
I/O-device-target macros can be found in the file ln iolayerTargetMacros.c in appendix A.

3.6.2 SIL Core

The SIL core is implemented using RoseRT. For the evolution to SILv2 several entities in the
SIL core are added or modified.

Overview

The global structure of the SIL core did not significantly change, since SheetLogic has not been
fully extracted. Figure 3.14 shows the RoseRT overview of the SIL core. The variable database
does not appear in the overview since it is implemented using a passive (normal) class. Those
entities are not shown in overviews of active classes (capsules).

Module Adapter

The module adapter component, called A Node in the implementation and in figure 3.14, is
used to load and configure simulation modules during initialization. When the simulation is
running, the module adapter communicates with the clock, the simulation module and with the
variable database. Figure 3.15 shows the state diagram of the module adapter component. For
each simulation module, a module adapter is instantiated. In the initial transition, the module
adapter is configured using information from the VirtualSystem XML file. This comprises, for
example, the name of the simulation module and the path to the corresponding DLL. If the DLL
is not found, the module adapter is stopped and is not further executed (“false” transition of
choice point isDllFound). If the DLL is found, the simulation module DLL is loaded. After the
DLL is loaded, it is checked if the DLL provides the needed functions of the DLL interface. If
not all needed functions are found the, the module adapter is stopped and not further executed
(“false” transition of choice point isDllFound). When all functions are found, the simulation
module is started by calling “void sil StartNode()′′. The ModuleAdapter registers itself with
the sample rate of the simulation modules with the SIL clock, so that it receives “ticks” according
to the sample rate. In the “true” transition from the choice point isDllFound, function pointers
are transmitted to the simulation modules for I/O-devices that are not yet changed to the new
interface. After that, in the same transition, the SIL interface structure is requested form the
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Figure 3.14: RoseRT structure diagram of the SIL core.

simulation module and the contained variables are send to the variable database to receive the
handles (listing 3.5). In listing 3.5, three vectors are created, one for each list of variables
(inputs, outputs and inAndOutputs). Each variable list is iterated and the name of the variable
is send to the variable database. The returned handle is added to the corresponding handle
vector.

1 vp_VariableStruct ->inpCount ; i++){ v_InputHandleVector.push_back(vp_VarDB ->

2 getVariableHandle(vp_VariableStruct ->inputs[i].name , false));

3 }

4 for( int i = 0 ; i < vp_VariableStruct ->outpCount ; i++){

5 v_OutputHandleVector.push_back(vp_VarDB ->

6 getVariableHandle(vp_VariableStruct ->outputs[i].name , true));

7 }

8 for( int i = 0 ; i < vp_VariableStruct ->inAndOutpCount ; i++){

9 v_InAndOutputHandleVector.push_back(vp_VarDB ->

10 getVariableHandle(vp_VariableStruct ->inAndOutputs[i].name , true));

11 }

Listing 3.5: Get variables handles.

After this is done, the module adapter is in running state and waits for the clock to send a
“tick” that triggers a “tick” transition. The “tick” transition updates the input variables of the
simulation module, calls the “tick” function (“void sil StartScheduling()′′) of the simulation
module and writes the new output values of the simulation module to the variable database
(listings 3.6, 3.7, 3.8).
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Figure 3.15: RoseRT state diagram of the module adapter component.

1 // read values of input variables from variable database and

2 // write them to the SIL interface structure of the simulation module

3 f_UpdateValues ();

4 // sil\ _StartScheduling ()

5 vfp_NodeTrigger ();

6 // read values of output variables from SIL interface structure of the

7 // simulation module and send them to variable database

8 f_WriteValues ();

9 // Send done to the clock so that the next ModuleAdapter receives a "tick"

10 p_Clock.done().send();

Listing 3.6: Tick transition of the ModuleAdapter.

1 vp_VarDB ->getValues (& v_InputHandleVector ,vp_VariableStruct ->inputs);

2 vp_VarDB ->getValues (& v_InAndOutputHandleVector ,vp_VariableStruct ->inAndOutputs);

Listing 3.7: f UpdateValues()

1 vp_VarDB ->setValues (& v_OutputHandleVector ,vp_VariableStruct ->outputs);

2 vp_VarDB ->setValues (& v_InAndOutputHandleVector ,vp_VariableStruct ->inAndOutputs);

Listing 3.8: f WriteValues()

The communication with the simulation module is simply done by reading and writing to the
variable values in the pointer to the SIL interface structure of the corresponding simulation
module. The functionality of the functions, provided by the variable database (VarDB), is
further explained in the following paragraph.
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Variable Database

The Variable database provides an interface for the module adapter for communication during
initialization and while running. The variable database is implemented using the singleton
pattern to avoid the use of multiple instances. In previous section, describing the module
adapter, some functions are mentioned that are used by the module adapter. These functions
are:

• “void getV alues(sil V ariable∗ listOfV ariables, std :: vector < int > ∗ handleList)′′

• “void setV alues(sil V ariable∗ listOfV ariables, std :: vector < int > ∗ handleList)′′

• “int getV ariableHandle(char∗ ap Name, bool a IsOutputV ariable)′′

and are further presented in this section. Two attributes in the context of the communication
with the module adapter are “nameMap′′ and “valueV ector′′. The “nameMap′′ is implemented
using a map data structure with a string (variable name) as key and an integer (index of the
variable value in the “valueV ector′′) as value. At start it is empty and after initialization it
holds the names of all variables from all simulation modules and their corresponding index
in the “valueV ector′′. The “valueV ector′′ is implemented using a vector. It holds objects of
the type “V arInfo′′. “V arInfo′′ is a helper class, which stores the variable value and other
information about a variable. The function “int getV ariableHandle(char∗ ap Name, bool
a IsOutputV ariable)′′ is shown in listing 3.9.

1 // parameters : char* ap_Name , bool a_IsOutputVariable

2 // check if variable exist in nameMap and returns handle (index)

3 std::map <std::string , int >:: const_iterator lc_Iter;

4 lc_Iter = nameMap.find(ap_Name);

5 if( lc_Iter != nameMap.end())

6 {

7 // is in map

8 D_VarInfo l_VarInfo = valueVector[lc_Iter ->second ];

9 if(a_IsOutputVariable)

10 {

11 // varNames contains variables written by the module

12 if(l_VarInfo.get_isOutputOfModule ())

13 {

14 // variables are already written by another value ERROR

15 log ->logPrintf(logGroup , LOG_LEVEL_INCARNATION ,

16 "WARNING: Variable %s is written by more than one module .\n",ap_Name);

17 return lc_Iter ->second;

18 }

19 else

20 {

21 // not written yet. add to handle list and set alreadyWritten to true

22 l_VarInfo.set_isOutputOfModule(true);

23 return lc_Iter ->second; // return index of vector

24 }

25 }

26 else

27 {

28 // varNames contains variables that are just input. no check needed

29 return lc_Iter ->second; // return index of vector

30 }

31 }

32 else

33 {

34 // not in map

35 D_VarInfo* lp_VarInfo = new D_VarInfo(a_IsOutputVariable , ap_Name , 0);

36 nameMap[ap_Name] = nrOfVariables; // create map entry with name and next available

index

37 valueVector.push_back (* lp_VarInfo);

38 return nrOfVariables ++; // return index in vector , last available index ++

39 }

Listing 3.9: getVariableHandle()
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Basically, the function searches in the “nameMap′′ for the variable name and determines
if the variable is already known. If it is known the index of the variable value, stored in the
“nameMap′′, is returned. Otherwise the variable is added to the “nameMap′′ and the value to
the “valueV ector′′, and the index of the of the value of the new variable in the “valueV ector′′

is returned. The code becomes more complex because it has to be checked if more than one
simulation module has defined a certain variable as output, which is an indication for wrong
configuration and a warning is written to the log file. After initialization each ′′moduleAdapter′′

has called this function and holds lists with handles to the values of its input and output
variables.

In runtime the module adapter uses the functions

• “void getV alues(sil V ariable∗ listOfV ariables, std :: vector < int > ∗ handleList)′′

• “void setV alues(sil V ariable∗ listOfV ariables, std :: vector < int > ∗ handleList)′′

to read fresh values of input variables from the variable database and write new values to output
variables in the variable database. The following two listings (3.10, 3.11) show the two functions.

1 // parameters : std :: vector <int >* ap_Handles , sil_Variable * ap_Vars

2 for ( unsigned i = 0 ; i < ap_Handles ->size() ; ++i )

3 {

4 // for each handle: add the value from the list of variables

5 // to the corresponding index in the valueVector

6 valueVector [(* ap_Handles)[i]]. setValue(ap_Vars[i].value);

7 }

Listing 3.10: setValues()

1 // parameters : std :: vector <int >* ap_Handles , sil_Variable * ap_Vars

2 for( unsigned i = 0 ; i < ap_Handles ->size() ; ++i)

3 {

4 // add the value from the valueVector on the index saved in

5 // the ith element of the list of indices to the valueList

6 ap_Vars[i].value = valueVector [(* ap_Handles)[i]]. getValue ();

7 }

Listing 3.11: getValues()

While reading or writing the values, there is no need for searching the variables because of the
handle list system. This improves performance and makes the implementation of those two
function very compact.

Error Injection via the Command Interface

To make it possible to overwrite variables in the variable database during simulation to inject
errors, the command interface has been extended. The “V arInfo′′ class, which is used by the
variable database to store information such as the current value of a variable, has also methods
and fields that make it possible to overrule variables. The fields involved are:

• “bool overruled′′

• “double overruledV alue′′

and the involved methods are:

• “void resetOverruleV ariable()′′

• “void overruleV ariable(double a V alue)′′

46



As described in the context of this project (section 2.3.2), the command interface can be used to
inject errors from Argus into the SIL core. It can also be used to retrieve sensor or actor values.
This command interface is only changed slightly to provide the possibility to overrule a variable
in the variable database to enable error injection. Functionality to request variable values from
the variable database from Argus has also been implemented. Overruling a variable means to
add a overrule value to the variable, which will be returned when the variable value is requested
till the overruling is reset. The real value is still set to the variable but the overrule value
is returned. To overrule a variable, the variable is searched by name and the function “void
overruleV ariable(double a V alue)′′ is called with the desired value. When a reset overrule
command is send, the reset overrule function is called and the real value of the variable is
returned again.

Plotting Variable data in Runtime

As described in the context of this project (section 2.3.2), it is possible to plot the values of I/O-
devices when the simulation is paused. This functionality has also been added for variables from
the variable database. When the simulation is paused, a menu in the SIL console application can
be used to navigate through the variables of the system and to plot them. For this purpose the
function “double getV ariableV alue(const char∗ name)′′, which has been added to the variable
database, is used. Figure 3.16 shows the console menu. In the case of figure 3.16, there are
three variables available that can be plotted. The program that is used for plotting variables is
still the same as in SILv1 as shown in figure 2.13.

Figure 3.16: The SIL console menu to plot variables.

3.6.3 Adaption of SheetLogic for the new Communication Strategy

To support the new interface, SheetLogic has been modified so that it conforms to the new
interface. A total redesign of the SheetLogic plant model has, however not been in the scope
of this project. The adaption to the new interface has been done via a “glue layer”. This
“glue layer” translates communication from the new interface to the old interface (function
calls to I/O-devices in SheetLogic) and back again to the new interface. This way SheetLogic
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Figure 3.17: The glue layer to adapt the communication of SheetLogic to the new interface.

Figure 3.18: The glue layer to adapt the communication of SheetLogic to the new interface.

has been changed only slightly. Figure 3.17 shows the communication during initialization and
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figure 3.18 shows the communication in runtime. The glue layer basically simulates the new
interface in direction of the SIL core and the old function call based interface in the direction
of SheetLogic. The glue layer consists of two classes, the “SheetLogicModuleAdapter′′ and the
“SheetLogicI/O − layer′′. These to classes are comparable to the I/O-layer and the module
adapter for simulation modules.

The initialization corresponds for the most part to the initialization of a simulation mod-
ule. Differences are that the SheetLogic does not need to be loaded because it is still part
of the SIL core and is started together with it. When SheetLogic reads in all I/O-devices
from the VirtualSystem XML file and instantiates them during initialization, a variable is cre-
ated and added to the SIL interface structure for every I/O-device (step 1. in figure 3.17).
After that “sil GetInterface()′′, located in the “SheetLogicI/O − layer′′, is called by the
“SheetLogicModuleAdapter′′. After that the handles for the variables are requested from the
variable database (step 2. in figure 3.17). While running, the SheetLogic gets “ticks” from the
SIL clock to perform computational steps just as the module adapter. After the “tick” function
is called, the input variables of SheetLogic are requested from the variable database and up-
dated in SheetLogic (step 3. in figure 3.18). The input variables of SheetLogic are the variables,
created for actuators. In step four, all plant elements in SheetLogic receive a “tick” to calculate
the next state. The last step comprises writing the new sensor values (output variables) back
to the variable database (step 5. in figure 3.18).

The functions “void updateActuators()′′ and “void updateSensors()′′ perform the transla-
tion from the new interface to function calls and vice versa. Listing 3.12 shows the translation
from variables to function calls for SheetLogic. Listing 3.13 shows the translation from function
calls to variables for the new interface.

1 std::map <int , int >:: iterator l_IterAct;

2 for(l_IterAct = simpleActuatorMap.begin(); l_IterAct != simpleActuatorMap.end();

l_IterAct ++)

3 {// iterate all Simple Actuators in SheetLogic

4 if(( uint16_t)interfaceStruct.inputs[l_IterAct ->first].value != Actuator ::

Actuator_getStatus(l_IterAct ->second))

5 {// if the variable value differs from the value of the actuator in SheetLogic

6 if(interfaceStruct.inputs[l_IterAct ->first].value == 0.0)

7 {// If value is 0

8 Actuator :: Actuator_off(l_IterAct ->second);// turn actuator off

9 }

10 else

11 {// If value is 1

12 Actuator :: Actuator_on(l_IterAct ->second);// turn actuator on

13 }

14 }

15 }

16
17 // update analog actuator in sheetlogic if the variable value is changed

18 std::map <int , int >:: iterator l_IterAnaAct;

19 for(l_IterAnaAct = analogActuatorMap.begin (); l_IterAnaAct != analogActuatorMap.end();

l_IterAnaAct ++)

20 {// iterate all analog Actuators in SheetLogic

21 if(( int16_t)interfaceStruct.inputs[l_IterAnaAct ->first ]. value != AnalogActuator ::

AnalogActuator_getStatus(l_IterAnaAct ->second))

22 {// if the variable value differs from the value of the actuator in SheetLogic

23 if(interfaceStruct.inputs[l_IterAnaAct ->first ]. value == 0.0)

24 {// If value is 0

25 // turn actuator off

26 AnalogActuator :: AnalogActuator_off(l_IterAnaAct ->second);

27 }

28 else

29 {// If value is something else

30 // turn actuator on with specific value

31 AnalogActuator :: AnalogActuator_on(l_IterAnaAct ->second , (int16_t)interfaceStruct.

inputs[l_IterAnaAct ->first].value);

32 }
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33 }

34 }

Listing 3.12: updateActuators()

35 std::map <int , int >:: iterator l_IterSens;

36 // for each sensor in SheetLogic

37 for(l_IterSens = simpleSensorsMap.begin(); l_IterSens != simpleSensorsMap.end();

l_IterSens ++) {

38 // write sensor value to interface structure

39 interfaceStruct.outputs[l_IterSens ->first].value = (double)Sensor ::

SimpleSensor_getStatus(l_IterSens ->second);

40 }

41 // update analogSensors

42 std::map <int , int >:: iterator l_IterAnaSens;

43 // for each sensor in SheetLogic

44 for(l_IterAnaSens = analogSensorsMap.begin (); l_IterAnaSens != analogSensorsMap.end();

l_IterAnaSens ++) {

45 // write sensor value to interface structure

46 interfaceStruct.outputs[l_IterAnaSens ->first ]. value = (double)AnalogSensor ::

AnalogSensor_getStatus(l_IterAnaSens ->second);

47 }

Listing 3.13: updateSensors()

3.7 Conclusion

To get a clear view on the short and long term goals of SIL, several users of SIL have been
interviewed (section 2.1). From those goals, requirements for the SILv2 simulation environ-
ment have been derived (section 3.1). After identifying those requirements, the old situation
of the SIL simulation environment has been reviewed and several problems, regarding the re-
quirements, have been identified in its structure (section 3.2). To meet the requirements, a
new communication approach between the SIL core and the simulation modules as well as a
corresponding interface has been designed, implemented and evaluated (chapter 3). After the
redesign of the overall structure of SIL by developing a new communication approach between
simulation modules and SIL core, SIL is well prepared for the future use of different plant model
simulation modules. The evaluation (3.5) shows that SILv2 meets the qualities that have been
the key drivers in the development (Modular, Generic, Extensible, Composable, Efficient) and
the identified requirements for the evolution of SIL.
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Chapter 4

The SILv2 Plant Modeling
Framework

The previous chapter presented the design of SILv2, which is an evolution of SILv1 that changes
the communication between the SIL core and the simulation modules to create a generic simula-
tion environment to test ESW. This section presents the design of a plant modeling framework
that can be used to create plant model simulation modules. Previous to this project, a literature
study has been done, that analyzes and categorizes several plant modeling approaches in the
context of SIL simulation [12]. The research question treated in this chapter is:

• How to design a plant modeling framework for the creation of plant models for simulation
in a Software-In-The-Loop simulation environment that is expressive enough to model a
multitude of domain concepts of high performance printers, but also uses an adequate level
of abstraction to make the approach usable for non domain experts?

First an analysis is presented that identifies stakeholders and requirements. After that the
design of the plant modeling framework is presented. After presenting the implementation, the
framework is evaluated. Last, conclusions are drawn.

4.1 Requirement Analysis

In preparation for the design of the plant modeling framework, an analysis is done to get an
overview of who is going to use the approach.

4.1.1 Stakeholders

There are several people that use SIL and the plant modeling framework. The following roles
in a project have different usages and requirements for the plant modeling framework.

Software Engineer

The software engineer uses SIL on a regular basis to test the implemented ESW. The ESW
can be tested directly by the software engineer after implementing a new part of ESW or after
modification, providing immediate feedback.

Architect

Architects use SIL, for example, to analyze the impact of changes in the ESW or in the plant.
To do this, an architect needs to create or change plant models, and change the simulation
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setup to perform the experiments.

Maintainer

The software engineer that designs and implements a certain part of the ESW, is also responsible
to create the corresponding plant model simulation module for this part of the ESW. This has
been the case in SILv1. However, it is imaginable that a software engineer takes the role of a
maintainer, who is responsible for several plant models in SILv2, because more and more plant
model simulation modules are added and have to be maintained. This includes creating new
plant model simulation modules as well as updating plant model simulation modules and the
VitualSystem setup file, as the plant is changed throughout the development of a printer.

Integrator

The ESW is implemented in different modules. There are different parts of ESW for different
functions of the printer. The integrator puts together all different parts of the ESW. The
integrator uses SIL to test the interaction between the different parts of the ESW.

Test Engineer

The test engineer defines, performs and evaluates test cases for SIL to evaluate the ESW of a
printer.

Domain Expert

In the context of the modeling framework, a domain expert is an engineer from another discipline
(mechanics, electronics). The domain expert provides domain knowledge for the plant modeling
process, if necessary.

4.1.2 Requirements

The global high level requirement for the new plant modeling framework is that it can be used
to model the “remaining plant elements” that are necessary to properly evaluate the ESW’s
behavior. “Remaining plant elements” means, everything that is not covered by SheetLogic.
The following requirements have been identified by interviewing stakeholders that are going to
use the plant modeling framework.

R1, The plant modeling framework shall support short modeling times.

Stakeholder(s): Software Engineer, Architect, Maintainer, Integrator
Since the creation of plant model simulation modules is not a main activity of the day-to-day
work of a software engineer, there is not much time available for creating plant model simulation
modules. The time needed to create a plant model should be less than the time needed to create
a plant model, for the same sub system of the plant, using the stub mechanism (section 2.3.2).

R2, It shall be possible for a non-domain expert to create plant model simulation
modules.

Stakeholder(s): Software Engineer, Architect, Maintainer, Integrator
The plant model simulation modules are going to be created by software engineers. A soft-
ware engineer has typically not much detailed domain knowledge of the domains involved in
the plant development, like mechanics, electronics and chemistry, or the modeling of physical
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systems. So, the modeling process should not require, for example, knowledge of mathematical
representations of mechanical processes.

R3, The modeling framework shall provide capabilities to model a plant in enough
detail to properly evaluate the ESW.

Stakeholder(s): Software Engineer, Architect, Maintainer, Integrator
The main goal of the plant models, created with the modeling framework, is the evaluation of
the ESW. Requirement two states that no detailed domain knowledge of domains like mechan-
ics, electronics and chemistry, or the modeling of physical systems, should be required in the
modeling process. However, the level of detail should be high enough to be able to properly
test the ESW.

R4, The modeling framework shall be well maintainable.

Stakeholder(s): Maintainer
The maintenance of the plant modeling framework is also done by software engineers next to
their day-to-day work. So, not much time is available and therefore the maintenance effort has
to be kept as low as possible.

R5, The models created with the modeling framework shall be well maintainable.

Stakeholder(s): Maintainer
Throughout the development process of a printer, the plant is changed multiple times. It is
necessary that the models, created with the SIL plant modeling framework are easy to update
and to modify.

4.2 Design Decisions

4.2.1 Level of Abstraction

There are many approaches for modeling physical systems as shown in [12]. In the literature
study, approaches are categorized using a novel taxonomy that divides the presented approaches
in continuous, discrete and hybrid approaches, on a high level. Continuous modeling is used to
describe systems in terms of differential equations. These equations are used to examine the
evolution of physically significant variables, for example, velocity or torque, over time. This
approach has its origins in classical mechanics. Example approaches are: Modelica, Matlab
Simulink and Bond graphs. Discrete modeling approaches model systems using discrete events
and state transitions. The underlying theory is automata theory. In these approaches, a system
is always in a certain state. If a certain input is received, the state of the system can change.
If the state is changed, actions can be performed like the generation of outputs. An example
approach is the modeling with state charts. Hybrid system modeling is, as the name suggests,
a mix of continuous and discrete modeling. The two possible approaches for hybrid modeling
are to include continuous models in the states of discrete models or to switch the behavior of a
continuous equation system by using a discrete model [12].

When testing ESW it can be enough to have a plant model with a high level of abstraction,
because the ESW is most of the time only interested in high level information. An example is
the movement of the sheet in the paper path of a printer. The ESW starts a motor and expects
a sensor to sense a sheet after a defined time. In this case it is sufficient to move the sheet
according to the speed of the motor, without taking the loss of energy through friction in the
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motor and in the gearbox, or similar phenomena, in account. So a detailed model is not needed
in this case.

However, some processes that are controlled by the ESW are more complex and can require
a precise and physically correct simulation. An example is the pre-heating of paper when it
is printed in a laser printer. This process depends on many different physical variables that
are controlled by the ESW. It is therefore necessary to model this process precisely to properly
evaluate the behavior of the ESW.

Generally, continuous, discrete and hybrid modeling can be used to model a physical system
on a high or low level of abstraction. However, continuous modeling is a very detailed and phys-
ically correct approach to model physical systems, and is therefore very suitable for modeling
the detailed behavior of mechatronic systems. Discrete modeling is more suitable to model a
system on a high level of abstraction.

Options

1. Use a low level of abstraction to model the plant with high detail.

Advantages: Physically precise models can be created. It is possible to model everything
in the plant.

Disadvantages: Creation and execution of models takes long. Detailed domain knowledge
is needed.

2. Use a High level of abstraction to model the plant with lower detail.

Advantages: Creation of models requires little time. Approaches with a high level of
abstraction are easier to use, also for non domain experts because no, or less detailed,
domain knowledge and knowledge of physical system modeling, is needed.

Disadvantages: A high level approach is typically not as expressive as a low level approach.
The created models are typically less precise. So, it is possible that necessary detail is lost.

Decision

Use both; an approach with a low-level of abstraction and an approach with a high-level of
abstraction, according to the needed level of detail in different situations.

Rationale

The use of a high level and a low level approach makes the plant modeling framework more
flexible. Since in SILv2 it is possible to compose multiple plant model simulation modules with
multiple ESW simulation modules, it is possible to use different plant modeling approaches for
different plant model simulation modules, in different situations, to adapt to the needed level
of abstraction. The remaining design decisions are made separately for the high-level and the
low-level approach.

4.2.2 (C)OTS vs. Custom-Made

Another decision has to be made about if a (commercial) of the shelf ((C)OTS) or a custom-
made approach should be used. This decision has to be made for the low-level and the high-level
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approach.

Options

1. Use a (C)OTS.

Advantages: No time for development is needed, and there are no development costs.
Support from the vendor is available. Tool is updated by the vendor.

Disadvantages: The tool possibly has high License cost. A COTS tool is likely to be less
flexible.

2. Use a Custom-Made.

Advantages/Disadvantages are the exact opposite of using a (C)OTS tool.

Decision

Use a COTS for the plant modeling approach with a low level of abstraction and a custom-made
approach for the plant modeling approach with a high-level of abstraction.

Rationale

For the low-level approach the decision is made to use a COTS approach because many suitable
approaches are available and it would take a long time to develop a custom one. The software
that is going to be used is Matlab Simulink. This tool is used in the whole company and so there
is no disadvantage of high license cost because floating licenses are available. Several models of
printer plant systems are already available that are used to evaluate the plant behavior from a
mechanical point of view (from mechanical engineers). These could be reused as plant model
simulation modules for SIL simulation.

For the high-level plant modeling approach, the decision has been made to develop a custom-
made plant modeling environment. The reason for this is that the high-level approach should be
a modeling environment suitable for the printer domain. This approach can be used to create
high-level models as a combination of general printer plant concepts, like moving elements
and the transport of toner or ink through the printer. The decision for the high-level plant
modeling approach is to create a domain specific modeling language (DSML). This is done
because a DSML can be created specifically for the domain of printers and provides the desired
functionality of combining high level concepts.

4.2.3 Modeling by Hand and Generation of Plant Models

As mentioned in the context of this project (section 2.3.2), information about the paper path
structure is taken from MoBasE to automatically generate an instance of SheetLogic of the
current printer. So, the SheetLogic can be seen as a meta model of a paper path, holding
the basic concepts, which is used together with information from MoBasE to instantiate a
paper path. This leads obviously to short or no modeling time, if the information is available
in MoBasE. MoBasE is used to store and exchange information about the printer between
disciplines. So, information is added and kept up to date. This information can be reused
in SIL for plant modeling. A similar approach is imaginable for the DSML. However, in the
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current situation, MoBasE is not prepared to hold all the information needed to generate plant
models for other printer parts than the paper path. So the structure of MoBasE would have to
be modified.

Options

1. Generate high level of abstraction plant models from MoBasE.

Advantages: Little or no modeling time is needed, if information is available from MoBasE.

Disadvantages: MoBasE has to be modified to store the new information. There is a
possibility that errors are introduced in the process of generating models, so correctness
has to be checked. Only the current state of the printer and no alternative versions are
stored in MoBasE.

2. Create high level of abstraction plant models by hand.

Advantages: Creating models by hand is more flexible than the creation from MoBasE
because alternative versions of the printer can be modeled.

Disadvantages: More time is needed to create models. A suitable editor has to be devel-
oped to support the modeling process.

Decision

Once more, the decision is to use both options; to generate high level of abstraction plant models
from MoBasE and to provide a modeling environment to create plant models by hand.

Rationale

Since in the time this project is carried out, another project has been done to extend MoBasE, it
has been possible to add information, needed for generating plant models, to MoBasE. However,
there are cases in which the creation of models by hand is desirable. An imaginable case is that
an architect wants to analyze the impact of a change in the plant on the ESW. Since only the
current state of the printer development is stored in MoBasE, alternative plant model simulation
modules have to be created by hand. Figure 4.1 shows a schema, explaining the work-flow of
creating plant model simulation modules with the DSML.

4.2.4 Implementation Environment/Tools for Implementing the DSML Tools

There are two choices to make for the implementation of the DSML tools. The DSML tooling
consists of two main parts, the front-end and the back-end. The front-end provides functionality
to create plant models. The back-end provides functionality to generate plant model simulation
modules (DLL that can be loaded by SIL) from the plant models created in the front-end or
from MoBasE. So, one decision has to be made about the implementation of the back-end and
another about the implementation of the editor. The structure of the tools of EZ-VP can be
found in figure 4.21.
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Figure 4.1: Creation of plant model simulation modules with the DSML.

Options, implementation environment/tools for the Back-end

1. C + + using RoseRT.

Advantages: It is widely used within the company. It can easily compile into a DLL.
There is the possibility to reuse from SheetLogic (also implemented in RoseRT).

Disadvantages: There is no dedicated support for DSML development.

2. Eclipse Modeling Framework. The Eclipse modeling framework (EMF) [4] is a tool suite
for the Eclipse IDE that supports DS(M)L development.

Advantages: It supports DSML development. DLLs can be generated but not as easy as
with RoseRT. It is free.

Disadvantages: Eclipse is used very little within the company, so there is no experience.

3. Another general purpose language like Java or C#.

Advantages: Free choice.

Disadvantages: Not all languages prove support to create DLLs. There is no dedicated
support for DSML development.

Options, implementation environment/tools for the Editor (Front-end)

1. C + + using RoseRT.

Advantages: It is widely used within the company.

Disadvantages: There is no support for graphical user interfaces.

2. Eclipse Modeling Framework.
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Advantages: Provides dedicated support for the implementation of DSML editors.

Disadvantages: Eclipse is not used within the company, so there is no experience.

3. Another general purpose language like Java or C#.

Advantages: Many languages support easy graphical user interface creation.

Disadvantages: No dedicated support for DSML development available.

Decision

Use RoseRT for the implementation of the back-end and the EMF for the implementation of
the editor.

Rationale

Since the back-end implements the plant behavior, which is a big part of the implementation,
and it is possible to reuse from SheetLogic, RoseRT has been chosen for the implementation.
Another important advantage is that nearly all users of the DSML have experience with RoseRT,
so that maintenance is easier.

The EMF offers sophisticated functionality for the implementation of DS(M)L editors. When
a meta model is created as a language definition, an editor for the corresponding DSML can
be generated. So, it is possible, also for users with little experience in Eclipse, to update the
DSML editor during maintenance.

4.2.5 Including the SIL Interface

Plant model simulation modules created with Matlab Simulink and the DSML have to comply
to the SILv2 interface. Since the SIL simulation specific I/O-layer of the ESW simulation
modules, as described in section 2.3.1, could be reused, this possibility has been contemplated
for the DSML and the Matlab Simulink approach.

DSML Approach

Options

1. Use the ESW simulation module I/O-layer.

Advantages: No development time is needed. Can be included without great effort, be-
cause the approach is implemented in RoseRT (as the ESW). Only one I/O-layer has to
be maintained.

Disadvantages: The solution is less flexible, if additional functionality is needed in the
plant modeling approach.

2. Use a custom made I/O-layer for the approach.
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Advantages: The solution is more flexible, if additional functionality is needed.

Disadvantages: Has to be maintained separately. Takes time to develop.

Matlab Simulink Approach

Options

1. Use the ESW simulation module I/O-layer.

Advantages: No development time is needed. Only one I/O-layer has to be maintained.

Disadvantages: It is possibly hard to integrate in the code generation process of Matlab
Simulink because it was developed for RoseRT. Less flexible, if additional functionality is
needed in the plant modeling approach.

2. Use a custom made I/O-layer for the approach.

Advantages/Disadvantages: Same as for DSML approach.

Decision

Use the ESW simulation module I/O-layer for the DSML and a custom one for Matlab Simulink.

Rationale

Since the DSML back-end is developed entirely in RoseRT and the ESW simulation module
I/O-layer can be included with very low effort, it is advantageous to reuse this I/O-layer. If
flexibility is needed, it is possible to add generic functions to the I/O-layer to add and use
output and/or input variable next to the I/O-device specific functions.

For the Matlab Simulink approach, the choice is to implement a custom I/O-layer. This is
done mostly because the ESW I/O-layer can not be included in the Matlab Simulink approach
easily. Since I/O-devices are not modeled explicitly, the target macros are not used and the use
of the ESW simulation module I/O-layer would not offer advantages.
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4.3 The Custom-Made High-Level Plant DSML Approach EZ-
VirtualPrinter(EZ-VP)

This section presents the design of the high-level domain specific modeling language called
EZ-VirtualPrinter (EZ-VP spoken as, easy virtual printer). The main purpose of DSMLs in
general is to make the creation of models easier for people from the domain by using domain
specific names and concepts. When designing a DSML, the specific domain has to be analyzed
to identify common domain concepts and constructs and the connection between them. These
concepts are used to create a meta model that serves as a language definition. An editor has to
be provided that supports the modeling process in the corresponding DSML. The models are
parsed by some kind of compiler or interpreter, which transforms the model into a form that
can be executed or in some other way used for calculation. In a DS(M)L the model is often
transformed to a general purpose language in this step.

EZ-VP is used to create high level plant model simulation modules for the evaluation of
ESW in SIL. It provides the modeler with generic high-level concepts from the domain of high-
performance printers. Those concepts can be combined, without the need that the modeler
known the underlying behavior, which makes modeling easy and fast. EZ-VP has a front-end,
which consists of a model editor that outputs a model in an intermediate format that is used by
the back-end. The back-end uses the model in the intermediate format to create a simulation
module for SIL. Intermediate models can not only be created using the EZ-VP editor but can
also be taken from MoBasE. This structure is shown in figure 4.21.

The following sections present the development of EZ-VP, starting with a domain analysis to
identify overlapping concepts of the different printer models. Selected concepts are abstracted
to be more generic and therefore applicable in more situations. These concepts are subsequently
implemented in EZ-VP.

4.3.1 Example Printer Models

To identify generic concepts that are used in many printers, several printer models have been
inspected. The chosen models are of different types to have a broad view on the used hardware
and concepts used in the plant. These four models have been inspected for the domain analysis:

1. A continuous feed ink-jet printer called Color Stream (left in fig. 4.2).

2. A wide format printer that jets melted toner balls called Color Wave (right in fig. 4.2).

3. A cut-sheet laser printer called VarioPrint 6250 (figure 1.1 in the introduction).

4. A display graphics ink-jet printer called Arizona (beneath in fig. 4.2).

Those printers represent the different kinds of printers very well.

4.3.2 Identification of Overlapping Concepts

Even though the inspected printers partially use completely different technology, some global
similarities can be identified. This is done by reviewing the different technologies and by inter-
viewing experts.

Print Process

All printers use some material, like toner or ink, to form a picture on some kind of substrate
(material the printer prints on). The Color Stream, Color Wave and the Arizona use print heads
to jet a liquid on the substrate, whereas the VarioPrint uses another technique with which the
image is applied from a drum to the substrate using heat and pressure.
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Figure 4.2: Three of the four printers inspected for the domain analysis.

When using print heads to jet liquids on the substrate, a plate of microscopic nozzles is
used to control where ink/toner is applied and where not, thereby forming the image on the
substrate. In the VarioPrint a photosensitive drum is used that first has a negative electrostatic
charge. Then, light is used to form the image on the drum. This is done by exposing the parts
of the drum to light where toner should stick, eliminating the negative charge. Then, toner is
applied to the drum that will stick in the places of the drum that are not negatively charged.
The created toner image is transferred to the substrate, using pressure and heat.

In those processes, the ESW controls the creation of the image that is transferred and the
conditions in the printer, so that the image can be transferred. These conditions comprise, for
example, the position of moving parts of the printer, if enough material is available and if the
right temperature is reached. The print process for the different printers, using print heads, is
similar. This is also the case for the different laser printers.

Temperature/Humidity Conditioning

In different processes in the printers, the control of temperature and humidity is needed. An
example is the print process of the VarioPrint in which the substrate and the drums are heated
to transfer the image. Another example is the heater used to melt the toner balls in the print
head of the Color Wave before jetting the melted toner. Some printers, like the Color Stream,
have humidity and temperature control in their cabinets to ensure good external conditions
while printing.

61



Movement

All inspected printers have moving parts for different purposes. Movements can be separated in
rotational movements, like the movement of the drums in the VarioPrint, and linear movements,
like the movements of the carriage of the Arizona and the Color Wave.

Transport of Ink and Toner through the Printer

Independent of the used technology (toner, toner balls or Ink), it is always necessary to transport
the material from some stock to the print process. Dependent on the used technology, this
process can be more or less complex. For example in the Color Wave, the transport is limited
to letting toner balls drop in the print head, if the temporary reservoir in the print head is
almost empty. In ink jet printers the transport tends to be more complex due to the use of
multiple tanks and loops in the system for ink conditioning. In addition to a pump, pressure in
the tank can be used to initiate flow.

4.3.3 Controlling the Plant

The control of the concepts has the form of a feedback loop from one or more actuators, via
several hardware parts of the concept, to one or more sensors, as shown in figure 4.3. To
identify important parts of the concept, the causality of phenomena from the actuators to the
sensors has been reviewed. As a result, a concept that is used throughout the printer and all

Figure 4.3: General form of a control loop in the plant.

earlier presented concepts, is the concept of I/O-devices. I/O-devices are used by the ESW to
control the printer parts in the plant. They can be used to sense (sensor) or to cause (actuator)
certain phenomena in the plant. So the I/O-devices provide an interface between ESW and
the plant. This section shows how to abstract from multiple I/O-devices to a small number
of I/O-devices by identifying elementary similarities and abstracting from hardware specific
differences. The identification of different I/O-devices has been done by reviewing the SIL
specific I/O-layer, which provides an interface for the ESW to all I/O-devices. The SIL specific
I/O-layer abstracts several I/O-devices. An example is the use of analog sensors. An analog
sensor senses an analog value in the plant and makes this value accessible to the ESW. Several
different kinds of analog sensors are used that need different control from the ESW I/O-layer.
This is, for example, caused by different electrical wiring etc. So, for each type of analog sensor,
a different I/O-macro is used even if the underlying logic is the same. However, in the SIL
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specific I/O-layer this is not necessary because the values of all analog sensors can be retrieved
in the same way from the SIL interface structure. So the number of I/O-devices that need to
be considered is much smaller in the SIL I/O-layer than in the real ESW hardware I/O-layer.

In addition to the above described differences in I/O-device control, there are several kinds
of sensors and actuators that require certain special control from the point of view of the ESW.
This is caused by the low level control that is discussed in section 3.4.2. An example for
such a sensor is a “time capture sensor”. The behavior of this sensor is implemented in the
low level control (FPGA), which is still part of SheetLogic, since SILv2 is not yet completely
implemented. This sensor can be used to capture the time a sensor is activated or deactivated
very fine grained. This sensor is used because the ESW of a sub node is typically executed with
200Hz, which is not exact enough in some cases when measuring the time of certain events (the
low level control is triggered more often). When the time capture sensor is used by the ESW,
first the sensor is set to capture mode. This means that if a change in state happens, the precise
time is stored in the low level control. Every following tick, after enabling the capture sensor,
the sub node checks if a capture has been done. If a capture was done, the time value can be
retrieved from the time capture sensor. This value can further be used by the ESW. So for the
ESW this is a special kind of sensor, but from the point of view of the plant it is just a digital
sensor, which is read by the low level control.

From the point of view of the plant model, the types of I/O-devices that have to be supported
are the following, and every I/O-device, used by the ESW and the low level control, can be
abstracted to one of the following sensors.

• Analog Sensor; measures an analog value in the plant.

• Analog Actuator; causes phenomena in the plant based on an analog value.

• Digital Sensor; measures a digital value (ON, OFF).

• Digital Actuator; causes phenomena in the plant based on a digital value(ON, OFF).

The following two sections present the two plant concepts, chosen to be included in EZ-VP.
The identified I/O-devices are used to provide an interface between the ESW and the identified
parts of the concepts.

4.3.4 Abstracting the Plant Concept of Moving Elements

For the initial version of EZ-VP the concepts of linear moving parts and the transport of
ink/toner are further worked out, abstracted as far as possible and implemented. To do this,
for each concept, important properties and characteristics are identified. The different involved
I/O-devices and their relation to these two concepts are also investigated. For each concept, a
part of the meta model for the language definition of EZ-VP, is created. This meta model is
used to instantiate concrete examples of systems.

In printers, it is often the case that parts of the printer, like print head carriages, are
moved. Those movement are controlled by the ESW, using some kind of actuator to initiate
the movement, for example, a motor. The movement is observed using a sensor, for example,
a digital sensor, sensing if the carriage is in home position. Figure 4.4 shows the movement of
the carriage of the Arizona. In case of the ColorWave, the carriage only moves in X direction
over the breadth of the printer.

Identifying Parts and Properties

To be able to model this concept, the important parts and their properties are identified. A
movement is always made along some kind of guidance. The position of the moving element
can always be seen relative to the guidance. It is also possible that multiple movements are
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Figure 4.4: The carriage of an Arizona wide format printer.

combined by using multiple guidances, like in the case of the Arizona carriage (figure 4.4). In
this case, the carriage can move in three dimensions (when looked at from above), along the X
and Y axis to move the carriage over the printed material, and a small amount in Z direction
to lift and lower the carriage. The involved I/O-devices are motors, encoders (analog sensors
that count the rotations of the motor) and sensors to sense the position of the moving element
relative to the guidance.

Figure 4.5: Simple example system.

Figure 4.5 shows an abstraction of the print head carriage of the ColorWave that moves
along a mechanical guidance (values of the properties are randomly chosen, names of parts are
shown in italic letters). The important entities here are:

• A motor, which drives the carriage.

• A mechanical guidance.

• The moving element itself.

• Two sensors on the mechanical guidance to sense the moving element.

For these elements the following properties are identified.
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• The sensors have a position on the mechanical guidance.

• The moving element has a position relative to the mechanical guidance.

• The size of the moving element has to be known to determine when it is sensed by the
sensors.

• There is a ratio that describes how much the moving element moves when the motor runs.

• The mechanical guidance has a length.

Those parts and properties where found in several of the example printers. However, there are
some differences in the number of sensors that are used and the number of motors that drive
the moving element.

The Meta Model of Moving Elements

Those parts and properties are captured in the part of the meta model, shown in figure 4.6.
The figure shows the meta model implemented in the EMF. For each entity in the meta model

Figure 4.6: Part of the meta model capturing the concept of moving elements.

a detailed description is given. Additionally, examples of specific printer parts that can be
abstracted to the corresponding meta model entity, are given.

• MovingElement is the central entity in the concept of moving elements. It is a generic
concept describing a part or group of parts in the printer that is moving. The MovingElement
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can be seen as a container for other plant elements that are moving. An example is
the frame of a print carriage. To model a print carriage, a MovingElement is created
and all elements that are part of the carriage in reality, can be added as children to
it (child relation of Element). The MovingElement has two attributes, a size and a
relativePosition. The attribute size holds the size of the surface of the MovingElement
that can be sensed by the Sensors on the MechanicalGuidance as shown in figure 4.5.
The attribute relativePosition holds the position of the MovingElement, relative to the
MechanicalGuidance it is connected to.

• MechanicalGuidance is a concept that defines the movement of a moving element. An-
other possible name for this concept could be movement, because it abstracts from the
mechanical domain to a generic description of a movement that is initiated by an Actuator
and sensed by some Sensors. However, since all other entities in the meta model are phys-
ical parts and to keep the naming consistent, the concept is named MechanicalGuidance.
The Mechanical Guidance is connected to an Actuator via a Transmission. The
MechanicalGuidance has zero or more Sensors positioned on it, which are used to
determine the position of the MovingElement as it moves along the guidance. The
positions of the Sensors are stored in the attribute sensorPositions. The length of the
MechanicalGuidance is stored in the attribute length. Examples of specific plant ele-
ments that are abstracted to a MechanicalGuidance are a spindle drive or a toothed
belt. A spindle drive is basically a threaded rod driven by a motor on which a screw nut is
placed. The part that should be moved is attached to the screw nut and can be moved by
turning the threaded rod. Another specific version of a MechanicalGuidance is a toothed
belt, which is driven on two sides by gear wheels. The MovingElement is fastened to the
belt and can be moved by turning the gear wheels.

• The entity Transmission defines a ratio between the Actuator and the MovingElement.
This ratio defines the distance the MovingElement moves when the motor makes one
turn. So the ratio not only defines the ratio of a probably used gearbox, but abstracts
from the whole connection from Motor to the MovingElement. So the Transmission
comprises properties like a gearbox used with the motor and the thread pitch of a spindle
drive and combines them to one ratio.

• DigitalSensor, AnalogActuator and Actuator are the used I/O-devices in the concept.
They hold an attribute value, which represents an digital or analog value based on the
type.

• In addition to the concept of moving elements, a superclass for all elements in the meta
model is added. The Element is the central entity of the model. Every entity in the meta
model is an Element. An Element can be connected to another Element, which creates
a parent-child relation. In reality this relation means that the parent Element is somehow
mechanically connected to the child Element, for example, bolted or screwed to the child
Element. The Element has an attribute name so that every element in the meta model
has the attribute name.

Example Instantiations

Figure 4.7 shows an instantiation of the system shown in figure 4.5. Figure 4.8 shows another
example for a moving element. This system is an abstraction of a print head carriage similar to
the one of the Arizona. In this system, the carriage can move in X and Y direction. Figure 4.9
shows the instantiation of the meta model for this system. The guidance for the movement in Y
direction is connected to the moving element “attachmentOfYguidance”. This way the guidance
for the movement in Y direction becomes the moving element that moves in X Direction. The
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Figure 4.7: Instantiation of the meta model with the system of figure 4.5.

Figure 4.8: Another example system for the concept of moving elements.

carriage is the moving element attached to the guidance in Y direction. This way the carriage
can move in X and Y direction. This way it is also possible to add yet another guidance for
movement in Z direction. Then the carriage could move in three dimensions. This system is
also used in a case study (section 4.6.1). In this case study a plant model simulation module
based on this system is controlled by ESW.
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Figure 4.9: Instantiation of the meta model with the system of figure 4.8.

Behavior of the Plant Model

Figure 4.10 presents the behavior of the model when it gets a “tick” from SIL. (Numbers in the
enumeration refer to the numbers in figure 4.10).

1. The position of the MovingElement is updated.

2. The Sensors of the MechanicalGuidance are updated based on the position of the
MovingElement.

In this version, the main element of the concept that gets the first “tick” from the class
PlantModel, is the MovingElement. Alternatives for this are that not the MovingElement
but the motor gets a “tick” and the calculation is done in the sequence of the causality of the
movement, or the other way around, from the sensor to the actuator. The reason why the
version from figure 4.10 is chosen, is that it makes the code more readable and understandable,
since the two core entities of the concept (MovingElement and MechanicalGuidance) initiate
the calculation.
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Figure 4.10: Behavior of the MovingElement in EZ-VP.

4.3.5 Abstracting the Plant Concept of Transport of Material through the
Printer

As identified earlier, in all printers there is the need to transport ink or toner from a stock to
the print process. Even though the transport of toner and ink is quite different in reality due to
the fact that ink is a liquid and toner is a powder, some analogies can be found. The material
is in some kind of container. From this container it is moved to another container based on
some actuator controlled by the ESW. The amount in the containers is sensed by some kind of
sensor. At a certain point the material leaves the system (print process).

Identifying Parts and Properties

The first system that is reviewed is an example ink handling system of an ink jet printer. This
system is shown in figure 4.11. The system consists of two tanks. The left is the stock tank and
the right is a buffer tank before the print head. Ink is transported from the first to the second
tank with a pump. If there is pressure in the second tank and the valve in the connector to
the way out of the system is opened and the system is printing (print head), the ink leaves the
system.
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Figure 4.11: An example material transport system in a printer.

Again, the important parts of this concept are identified:

• A tank, which is the container holding the material (ink).

• A connector, which connects two tanks, enabling the transport of material between the
tanks, or that connects a tank to the print process.

• In a connector there can be pumps and/or valves.

• A tank can have analog level sensors and/or digital threshold sensors.

• A tank can be connected to a pressure source, which adds pressure to the tank (negative
or positive).

• A pressure source contains a compressor, can contain valves and/or pressure sensors.

• Material leaves the system at a certain point based on if the system is printing or not.

These elements have important properties:

• A tank has a volume, a current level of material and a current pressure.

• The level sensor in a tank have a certain height of placement (digital and analog sensors).

• A connector has a certain width, which is needed to determine how much material flows
at which pressure.

• Flow between tanks is initiated by pumps or pressure in the tanks. A pump has a certain
delivery rate. The delivery rate caused by pressure depends on the pressure in the tanks
and the width of the connector.

The Meta Model of Material Transport

Figure 4.12 shows the part of the meta model capturing the concept of material transport. For
each entity in the meta model a detailed description is given. Additionally, examples of specific
printer parts, that can be abstracted to the corresponding meta model entity, are given.
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Figure 4.12: Meta model of the material transport concept.

• The core of the concept is represented by the entity Tank. The Tank is the container,
which holds the material. A Tank has a volume, a current level of material and a current
pressure. The pressure in the Tank is generated by a PressureSource. In a Tank there
are Sensors that sense the current level of material in it. For these Sensors, the placement
height is saved with the attribute SensorPositions. The used Sensors can be digital,
which sense if the level of material exceeds a certain threshold, or AnalogSensors, which
sense the current level of material. In reality, Tanks have different forms and different
materials. It is assumed that the relation between volume and level of the material and
Tank is linear. That means if the Tank holds 25% material of its volume the level is also
at 25%. When 50% of the volumen is in the Tank the level is 50% etc. Tanks can have
multiple in- and outgoing TankConnectors.

• The entity TankConnector represents a connection between Tanks, enabling transport
of material. A TankConnector has a certain width, which is used to determine the flow
of material, based on pressure in the Tank. A TankConnector can have valves, which
are represented by Actuator and can close the TankConnector so that no material can
flow. TankConnectors can also have pumps to initiate flow. TankConnectors connect
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two Tanks, or a Tank and the print process. In reality TankConnectors can be elastic
tubes or pipes.

• PressureSources are used to create a positive or negative pressure in the Tanks. A
PressureSource has a Compressor, which is an Actuator that is connected to the
PressureSource via a Transmission. A PressureSource can also have V alves that
are represented by Actuators. Sensors can be added to the PressureSource to mea-
sure the generated pressure. In reality, a PressureSource is a Compressor, which is
connected to a Tank with a hose.

• As in the concept of moving elements, in this concept the entity Transmission is used.
The Transmission is used for the Compressor in the PressureSource and for the pump
in the Connector. For the pump the ratio in the Transmission defines how much material
is transported when the Pump is turned on (mm3/ms) and for the Compressor how
much pressure (mBar/ms) is added when the Compressor is turned on. So again the
Transmission is an abstract concept to describe a ratio between an Actuator value and
an effect in the plant.

The print head, respectively the print process is not included, since this can also be modeled as
a valve in the connector to the exit of the system. The entities Element and PlantModel are
the same as in the part of the meta model describing the moving elements concept.

Example Instantiations

Figure 4.13: Instantiation of the example material transport system from figure 4.11.

Figure 4.13 shows the instantiation of the meta model for the example system from figure
4.11. Figure 4.14 shows another example system. This system transports, in contrast to the
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first system, not ink but toner. It consists of two tanks, a storage and a buffer tank. Both tanks
have level sensors. When the actuator between the two tanks is activated, toner falls from the
storage to the buffer tank. From the buffer tank the toner leaves the system, if the actuator,
representing the print process, is activated. Figure 4.15 shows the instantiation of the second
example material transport system.

Figure 4.14: Example material transport system.
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Figure 4.15: Instantiation of the example material transport system from figure 4.14.

Behavior of the Plant Model

The behavior of a plant model of the material transport for a computational step is as follows
(Figure 4.16, 4.17, 4.18 and 4.19). The numbers on the right in the figures corresponds to the
numbers of the items in the following enumerations.

1. The plant model module receives a “tick” from the SIL core.

2. The plant model forwards the “tick” to every tank in the plant model successively.

3. The tank requests the generated pressure from the pressure source, if a pressure source
is installed. The value of the analog actuator (compressor) is requested by the pressure
source.

4. The value of the pressure sensors of the pressure source are updated.

5. The state of the valves of the pressure source is checked. If one or more are closed, a
pressure value of zero is returned. Otherwise the calculated pressure value is returned.
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Figure 4.16: Material transport plant model behavior.

6. The transport of material is initiated for each outgoing connector. Material is only trans-
ported, if all valves of the connector are opened.

7. The amount of material that is transported is determined. If a pump is installed in the
connector, it is determined by the delivery rate of the pump, otherwise by the pressure in
the tanks it connects.

8. Material is transported based on the previously calculated amount.
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Figure 4.17: Material transport plant model behavior.

Figure 4.18: Material transport plant model behavior.

9. The digital level sensors of the tank are updated based on if the material level is higher
than the position of the sensor.

10. The analog level sensors are updated based on the position of the sensor and the level of
the material in the tank.
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Figure 4.19: Material transport plant model behavior.

4.3.6 The Whole Meta Model

Figure 4.20 shows the whole meta model, comprising the two presented concepts. It can be seen
that the I/O-devices, Element, PlantModel and the Transmission are used by both concepts.
This meta model is further used as the language definition for EZ-VP.
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Figure 4.20: The whole meta model, comprising the concept of moving elements and the trans-
port of material through the printer.

4.3.7 Tools of EZ-VP

EZ-VP is separated in different tools, which together are used to create plant model simulation
modules. Figure 4.21 shows an overview of the EZ-VP framework and the plant model simu-
lation module creation process. The front-end end of EZ-VP consists of two parts. A DSML
editor, created with the EMF, and MoBasE. Both parts produce output that is used by the
back-end to create SIL plant model simulation modules.

EZ-VirtualPrinter Edit

EZ-VirtualPrinter Edit is created as an Eclipse plug-in using the EMF [4]. The EMF offers
functionality to create a meta model, which is used to automatically generate an Eclipse plug-in.
This plug-in comprises an editor that can be used to combine and parameterize the elements
specified in the meta model and therefore to create instantiations of it. Figure 4.22 shows
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Figure 4.21: Creation of plant model simulation modules with EZ-VP and Matlab Simulink.

the generated editor. The left part of the editor shows the created elements. The shown
model represents the model from figure 4.5 (The entity PlantModel and PrintModule are added
as overall parent elements). The hierarchy of the elements represents containment relations
between the elements. So, PlantModel contains the PrintModule, which is again the parent
(Element parent/ child relation in meta model) of the Carriage and the CarriageGuidance. The
CarriageGuidance contains the two sensors, the motor and the transmission. The right part of
the editor shows the properties of the elements. In figure 4.22, the properties view shows the
properties of the Carriage. The Carriage is parameterized according to the example system in
figure 4.5. The model that is generated is stored in XML, which can be read in by the back-end
to create a SIL simulation module. The XML output is shown in listing 4.1.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <metamodel:PlantModel ..>

3 <elements Name="printModule">

4 <child xsi:type="metamodel:MovingElement" p

5 parent="// @elements .0" Name="Carriage" guidance="// @elements .0/ @child .1"

6 size="200.0" relativePosition="100.0"/>

7 <child xsi:type="metamodel:MechanicalGuidance"

8 parent="// @elements .0" Name="CarriageGuidance" length="1500.0"

9 sensorPositions="20.0">

10 <child xsi:type="metamodel:Motor"

11 parent="// @elements .0/ @child .1" Name="DriveMotor"/>

12 <positionSensor parent="// @elements .0/ @child .1"

13 Name="HomeSensor" value="1.0"/>

14 <positionSensor parent="// @elements .0/ @child .1"

15 Name="EndSensor"/>

16 <drive parent="// @elements .0/ @child .1" Name="geraBoxAndSlider"

17 motor="// @elements .0/ @child .1/ @child .0" ratio="2.0"/>

18 </child>

19 </elements >
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20 </metamodel:PlantModel >

Listing 4.1: The model stored in XML.

Figure 4.22: EZ-VP-Edit in Eclipse.

MoBasE

The other source of XML models that can be read by the back-end is MoBasE. The data needed
by EZ-VP in this project has been added to MoBasE, so that the information from MoBasE
can also be used to generate models.

Back-End

The EZ-VP back-end is a DLL created with RoseRT. It reads the generated XML models from
EZ-VP-Edit or MoBasE and configures itself with the information from the model. So, the
approach is very similar to SheetLogic. This configuration of the DLL is done when it is loaded
by SIL. The class structure in the back-end reflects the entities and their relations in the meta
model. The difference is that the classes actually implement the behavior of the model that has
been presented in figures 4.10 and 4.16 till 4.19.

When a model is read from a XML model file, for each entity in the model an instance of the
corresponding class is created and parameterized with the information from the XML model.
So the goal of this step is to create the same structure as defined in the XML model with the
classes in the back-end. All created instances are stored in a list of elements. Each time a “tick”
is received from the SIL core, this list is iterated and every containing element receives a tick.

4.4 Matlab Simulink SIL Plant Model Simulation Modules

The COTS approach that is used in the plant modeling framework is Matlab Simulink. This
tool is used within the company in nearly every project and is used by different disciplines
to create models to, for example, evaluate electronics, mechanics or control functions. Even
though software engineers do not have a lot of experience and therefore can not model complex
systems in Matlab Simulink themselves, the models from other disciplines can be modified and
used as plant model simulation modules.
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To integrate Matlab Simulink models in SIL it is necessary to generate a DLL from a Mat-
lab Simulink model that implements the SIL interface. For this purpose the Matlab Simulink
toolbox Simulink Coder (formerly Real-Time Workshop) has been used [3]. This toolbox pro-
vides means to generate code from Matlab Simulink models. Matlab Simulink Coder provides
a work-flow to generate code from a model and compile it into a DLL. Simulink Coder also
provides to add user defined code to the generated code using a so called “custom code block”.
This custom code block is used to implement the SIL interface and the SILv2 communication
approach. The plant model simulation module, create with Matlab Simulink, also has a “tick”
function that causes the model to do a computational step. A schema of the DLL generation
with Matlab Simulink can be found in figure 4.21.

Figure 4.23 shows an example model that consists of two parts. The left model consists
of a counter (counts till ten and starts at 1 again), one input and two outputs. The output
testCounter always equals the value of the counter, whereas the output outCounter is defined
as the product of the input enableCounter and the counter value. The entities in this model
that are defined as inputs and outputs are the signal lines. Those signal lines appear in the
generated code as global variables and can therefore be used in the earlier mentioned custom
code block that implements the SILv2 communication approach.

Figure 4.23: Example Matlab Simulink model.

4.5 Implementation

The implementation of the SIL plant modeling framework consists of three main activities:

• Implementing the SILv2 communication approach and the SILv2 interface in the code
generation of Matlab Simulink Coder for the creation of plant model simulation modules
with Matlab Simulink.

• Implementing the DSML editor EZ-VP-Edit.

• Implementing the EZ-VP back-end.

Nearly everything of these three parts has been implemented in this project. The only detail
that has not been implemented is reading in intermediate plant models from the front-end in the
back-end. This feature is essential for good usability but is not needed for the proof of concept
implementation. The models created in the case studies are made by hand in the back-end and
are not created from intermediate models.

Because the feature of reading XML intermediate models is not implemented, there is
also no further information about the implementation of the part of the front-end concerning
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MoBasE models, since the integration of MoBasE models consists purely of reading intermedi-
ate XML models exported from MoBasE. However, to be able to create intermediate models
from MoBasE, all needed information (identification of entities, attributes of entities and their
relations) are added to MoBasE. This is done in the project presented in [10].

4.5.1 EZ-VP-Edit

The front end of the EZ-VP DSML consists of the editor EZ-VP-Edit and MoBasE. Since the
intermediate models from MoBasE are only read in by the back-end, and the feature of reading
intermediate models has not been implemented, only the implementation of EZ-VP-Edit is
presented.

EZ-VP-Edit is implemented using EMF [4]. EMF has been used to create the EZ-VP meta
model as a language definition. This meta model has been used to generate an editor that can
be used to create models in the language defined by the meta model. The steps that have to
be taken to create a DS(M)L editor with EMF are:

1. Create the meta model in the graphical editor, resulting in a so called “ecore model” and
an “ecore diagram”, which is the graphical representation of the ecore model.

2. Create a so called “generator model”. This entity has capabilities to generate an eclipse
plug-in, providing an editor for the DSL defined in the meta model.

3. Generate editor Eclipse plug-in with the “generator model”.

Figure 4.24 shows the graphical editor in which the EZ-VP meta model has been created.
The toolbox on the left provides different types of entities that can be created. This tool
box is divided in “Objects” and “Connections”. Objects are again divided in entities like
“classes” and “packages”, and properties of those entities like “attributes” and “operations”.
An example of a class can be found in the upper left corner of the meta model, the “class”
MechanicalGuidance. The “class” MechanicalGuidance has a property length, which is
an “attribute”. Beneath the “Objects”, different connection types can be found. Examples
are “Inheritance” and “EReference”. Examples for the two types are the relation between
MechanicalGuidance and Element, which is an “inheritance” relation, and the relation be-
tween MechanicalGuidance and DigitalSensor, which is an “EReference” relation. At the
bottom of the figure, the properties window can be found. In this window the properties of the
different entities in the diagram can be edited. In the figure, the properties of the “attribute”
length can be seen. These comprise, for example, the “name”, “upper and lower bound” and
the “type” of the attribute.

After the creation of the meta model, a “generator model” has been created. this is used
to generate code for the Eclipse plug-in, including the editor. Figure 4.25 shows the drop down
menu provided by the generator model, which the option of generating an editor. On the left
side of the figure the resulting projects that are created by the generator model are shown.
The project “MetaModel.editor” can be started as an eclipse application, which causes a new
instance of Eclipse to start. This instance contains the editor plug-in, which enables the creation
of models in the language defined by the meta model. Figure 4.26 shows the instance of Eclipse
with the created editor plug-in.
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Figure 4.24: The EMF ecore diagram editor.

Figure 4.25: The generator model.
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Figure 4.26: EZ-VP-Edit.

In figure 4.26, on the left, in the project explorer, a project is created in which an EZ-VP
model is created (extension .ezvp). In the center, the hierarchy of the model can be seen. On the
right, the properties (attributes) of the entities can be edited. To create new entities the drop-
down menu that appears when performing a right click on an entity can be used. This is shown
in figure 4.27 with an example using the MechanicalGuidance entity. For each containment
relation a child can be created. In the case of the MechanicalGuidance it is possible to create
every entity of the meta model as a child (inherited child relation from entity Element). It is
further possible to create a DigitalSensor in the role of a position sensor, or a Transmission
in the role of a drive for the guidance. The drive is grayed out in the menu because for this
guidance, there is already a drive created (relation has a cardinality of one).
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Figure 4.27: EZ-VP-Edit.

When the EZ-VP model is finished it can be opened in an text editor to see the underlying
XML file structure. The file for the model shown in figure 4.26 and 4.27, is shown in listing 4.2.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <metamodel:PlantModel xmi:version="2.0" xmlns:xmi="http: //www.omg.org/XMI" xmlns:xsi="

http://www.w3.org /2001/ XMLSchema -instance" xmlns:metamodel="http: // metamodel /1.0">

3 <elements Name="PrintModule">

4 <child xsi:type="metamodel:MechanicalGuidance" parent="// @elements .0" Name="

GuidanceX" length="1000.0">

5 <child xsi:type="metamodel:MovingElement" parent="// @elements .0/ @child .0" Name="

AttachmentOfYguidance" guidance="// @elements .0/ @child .0" size="50.0"

relativePosition="500.0">

6 <child xsi:type="metamodel:MechanicalGuidance" parent="// @elements .0/ @child .0/

@child .0" Name="GuidanceY" length="500.0">

7 <child xsi:type="metamodel:MovingElement" parent="// @elements .0/ @child .0/

@child .0/ @child .0" Name="Carriage" guidance="// @elements .0/ @child .0/ @child

.0/ @child .0" size="200.0" relativePosition="250.0"/>

8 <child xsi:type="metamodel:AnalogActuator" parent="// @elements .0/ @child .0/

@child .0/ @child .0" Name="MotorY"/>

9 <drive parent="// @elements .0/ @child .0/ @child .0/ @child .0" Name="

GearboxAndSliderY" actuator="// @elements .0/ @child .0/ @child .0/ @child .0/

@child .1"/>

10 <sensorPositions >20.0</sensorPositions >

11 <sensorPositions >450.0 </sensorPositions >

12 <positionSensor parent="// @elements .0/ @child .0/ @child .0/ @child .0" Name="

HomeSensorY"/>

13 <positionSensor parent="// @elements .0/ @child .0/ @child .0/ @child .0" Name="

EndSensorY"/>

14 </child >

15 </child>

16 <child xsi:type="metamodel:AnalogActuator" parent="// @elements .0/ @child .0" Name="

MotorX"/>

17 <drive parent="// @elements .0/ @child .0" Name="GearboxAndSliderX" actuator="//

@elements .0/ @child .0/ @child .1" ratio="2.0"/>
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18 <sensorPositions >120.0 </sensorPositions >

19 <sensorPositions >880.0 </sensorPositions >

20 <positionSensor parent="// @elements .0/ @child .0" Name="HomeSensorX"/>

21 <positionSensor parent="// @elements .0/ @child .0" Name="EndSensorX"/>

22 </child>

23 </elements >

24 </metamodel:PlantModel >

Listing 4.2: The created model in XML.

So, the model shown in figures 4.26 and 4.27 is a graphical representation of the XML file shown
in listing 4.2. It can be seen that, as in the editor, the containment relationships are represented
by nesting. Other relation like the “parent” relation are realized by attributes in the XML tag
(parent = ”//@elements.0/@child.0/@child.0/@child.0”). This XML file is the intermediate
model that is further used by the back-end of EZ-VP.

4.5.2 EZ-VP Back-End

The back-end of EZ-VP is implemented in RoseRT. The back-end consists of a DLL that can be
parameterized with a XML file holding an intermediate model from MoBasE or EZ-VP-Edit. So
the approach is very similar to SheetLogic. The core of the back-end is the EZ-VP meta model.
The meta model, implemented in the class structure of the back-end in RoseRT, is shown in
figure 4.28.

Figure 4.28: EZ-VP meta model implemented in RoseRT in the back-end.

86



The different types of entities are separated in different packages as shown in figure 4.29.
Those packages are:

Figure 4.29: Structure of the EZ-VP back-end.

• TopLevel, this package contains the class PlantModel, which is the main entry point of
the back-end DLL.

• Helper, this package contains the class D SilUniqueId, which holds the name and mod-
uleId of a plant element. This class is reused from SheetLogic.

• IO, this package contains the classes representing I/O-devices.

• PhysicalElements, this package contains all plant elements of the implemented plant con-
cepts.

I/O-devices

The first parts of the meta model, that are presented, are the I/O-devices. The two su-
per classes of the I/O-devices are AbstractSensor and AbstractActuator. The abstract class
AbstractSensor is the superclass of AnalogSensor and DigitalSensor. It defines the attribute
value, which is a pointer to a double value in the SIL interface structure. Each I/O-device is
represented by a variable in the SIL interface structure of the plant model simulation module.
So, the I/O-devices form the interface between the SIL interface structure and the physical
elements. The variable, representing the I/O-device, is added to the SIL interface structure,
when the I/O-device is created. An example of the creation is:

1 D_DigitalSensor* HomeSensorX = new D_DigitalSensor(new D_SilUniqueId("Engine","

HomeSensorX"), addOutpComponent("HomeSensorX"));

Listing 4.3: Adding variables to the SIL interface structure when an I/O-device is created.

In this example a DigitalSensor is created with the name “HomeSensorX”. The corresponding
variable is created in the SIL interface structure by calling the function addOutpComponent in
the I/O-layer (as described in section 3.6.1). The return value of this function, which is a pointer
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to the double value of the created variable is given as a parameter to the created I/O-device.
The physical elements use the functions void setV alue(double) and double setV alue(void) can
be used to access and write the values of the I/O-devices. In the SIL interface structure, Sensors
are defined as in- and outputs and actuators as inputs.

PhysicalElements

The common super class in the PhysicalElements package is the class Element. It defines
the attribute name and the parent and child relation between entities. Everything except the
class PlantModel is a sub class of Element. The other physical elements in this package are
implemented as described in the design of EZ-VP (section 4.3.4).

The delivery rate caused by pressure is implemented as a simple formula in the initial
implementation. The flow of material equals the pressure in a tank multiplied by a factor. If
this equation is fine tuned with measurements from the hardware prototype, it can be used for
testing (case studies). However, in the future, it would lead to better results to let a domain
expert design a equation that can be used to determine the delivery rate.

TopLevel

The top level class of the back-end is the class PlantModel. In this class, the class structure
is instantiated to create a plant simulation module. The PlantModel holds a list of Elements,
which is iterated with each “tick” that is received by the plant model simulation module from
SIL. Each Element in the list receives a tick. The most Elements just inherit the function
“tick” from the common super class Element, which is an empty method. Only the classes
MovingElement and Tank overwrite the “tick” function of the super class to perform the
needed actions in each “tick” (as described in the behavior description in section 4.3.4).

4.5.3 Matlab Simulink Plant Model Simulation Module Creation for SIL

The other approach in the SIL plant modeling framework is Matlab Simulink. Since Matlab
Simulink is a COTS approach, the implementation consists of developing a work-flow to create
plant model simulation modules from models created in Matlab Simulink. For this the code
generation capabilites of the Matlab Simulink Coder tool box have been used. A tutorial for
the generation of DLL with the Simulink Coder has been used to create this work-flow for
generating simulation modules [6].

The main activity in the integration of Matlab Simulink models into SIL has been the
implementation of the SIL interface and the SIL communication approach. This is done in a
custom code block, which is a model entity, provided by the Simulink Coder tool box.

In the Matlab Simulink models, signal lines can be configured to represent I/O-devices for
the communication with SIL. Those signal lines have to be configured as “exported global”,
which makes them global variables in the generated code. This way it is possible to read and
write the variable values to update them from the SIL interface structure or to write the values
of them to the SIL interface structure. The custom code block defines the SIL interface structure
as shown in section 3.6.1 in listing 3.1. Listing 4.4 shows the part of the custom code block in
which the SIL interface structure is created. In addition to the creation of the SIL interface
structure, the list of inputs and the list of outputs is created.
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1 static struct sil_Interface io;

2
3 /* **************************************************************************** */

4 // create input and output lists. Order is important and should be equal

5 // when updating and writing in sil_StartScheduling

6 static struct sil_Variable inputs [] = {

7 { "in", 0 },

8 {"enableCounter", 0}

9 };

10 static struct sil_Variable outputs [] = {

11 { "outCounter", 0 },

12 { "out", 0} ,

13 {"testCounter" ,0}

14 };

15 /* **************************************************************************** */

Listing 4.4: Adding variables to the SIL interface structure.

Listing 4.5 shows the function struct sil Interface∗ sil GetInterface(), implemented in the
custom code block. In this function, the SIL interface structure io is filled with the in- and
output lists and is returned.

1 struct sil_Interface* sil_GetInterface ()

2 {

3 io.inputs = inputs;

4 io.inpCount = sizeof(inputs)/sizeof(struct sil_Variable);

5 io.outputs = outputs;

6 io.outpCount = sizeof(outputs)/sizeof(struct sil_Variable);

7 io.inAndOutputs = 0;

8 io.inAndOutpCount = 0;

9 return &io;

10 }

Listing 4.5: void sil GetInterface() in the custom code block.

SIL calls the function void sil StartScheduling() to let the simulation module perform a com-
putational step. This function is shown in listing 4.6.

1 void sil_StartScheduling ()

2 // Periodic update function {

3 /* **************************************************************************** */

4 // update inputs ( IMPORTANT: the same order as added to the list)

5 in = (real_T)io.inputs [0]. value;

6 enableCounter = (real_T)io.inputs [1]. value;

7
8 // call the step function of model

9 simple_example_step (); // stepfunction for the model generated by Simulink

10 coder

11
12 // update outputs ( IMPORTANT : the same order as added to the list)

13 io.outputs [0]. value = (double)outCounter;

14 io.outputs [1]. value = (double)out;

15 io.outputs [2]. value = (double)testCounter;

16 /* **************************************************************************** */

Listing 4.6: void sil StartScheduling() in the custom code block.

First, the inputs are updated by writing the values of the input variables from the SIL inter-
face structure to the global variables (in, enableCounter). After this, the Simulink model is
executed. After the execution, the values of the global variables, that are outputs, are written
to the corresponding variables in the SIL interface structure. The whole custom code block can
be found in appendix B.
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4.6 Case Studies

To evaluate the EZ-VirtualPrinter approach of the modeling framework, two case studies are
carried out. A case study for both, the moving elements concept and the material transport
concept, of the EZ-VP approach is presented.

4.6.1 Case Study 1. Moving Elements

To evaluate the concept of moving elements modeled with EZ-VP, a case study has been per-
formed. The system modeled in this case study is the system presented in figure 4.30. This

Figure 4.30: The system modeled with EZ-VP in this case study.

system has first been modeled in EZ-VP-Edit. The EZ-VP model is shown in figure 4.31. The

Figure 4.31: The system modeled with EZ-VP in this case study.
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entities in the model have been parameterized according to the values in figure 4.30. In ad-
dition to this, the instantiation of the meta model for this system can be found in figure 4.9
in section 4.3.4. To control this plant model simulation module, ESW has been implemented.
Both moving elements in the plant model are moved from the corresponding home-sensor to
the end-sensor and back again. The control software is shown in listing 4.7.

1 if(HomeSensorX_status () == SENSOR_ACTIVE){

2 if(! Xstopping){

3 printf("HomeSensorX is active , stopping MotorX\n");

4 MotorX_stopNow(true);

5 Xstopping = true;

6 }

7 if(MotorX_stopped () && !Xstarted){

8 printf("MotorX stopped , begin movement to EndSensorX\n");

9 MotorX_on (1000);

10 Xstarted = true;

11 }

12 }else if(EndSensorX_status () == SENSOR_ACTIVE){

13 if(! Xstopping){

14 printf("EndSensorX is active , stopping MotorX\n");

15 MotorX_stopNow(true);

16 Xstopping = true;

17 }

18 if(MotorX_stopped () && !Xstarted){

19 printf("MotorX stopped , begin movement to HomeSensorX\n");

20 MotorX_on ( -1000);

21 Xstarted = true;

22 }

23 }else{

24 Xstopping = false;

25 Xstarted = false;

26 }

27 if(HomeSensorY_status () == SENSOR_ACTIVE){

28 if(! Ystopping){

29 printf("HomeSensorY is active , stopping MotorY\n");

30 MotorY_stopNow(true);

31 Ystopping = true;

32 }

33 if(MotorY_stopped () && !Ystarted){

34 printf("MotorY stopped , begin movement to EndSensorY\n");

35 MotorY_on (1000);

36 Ystarted = true;

37 }

38 }else if(EndSensorY_status () == SENSOR_ACTIVE){

39 if(! Ystopping){

40 printf("EndSensorY is active , stopping MotorY\n");

41 MotorY_stopNow(true);

42 Ystopping = true;

43 }

44 if(MotorY_stopped () && !Ystarted){

45 printf("MotorY stopped , begin movement to HomeSensorY\n");

46 MotorY_on ( -1000);

47 Ystarted = true;

48 }

49 }else{

50 Ystopping = false;

51 Ystarted = false;

52 }

Listing 4.7: Control software for the moving element.

As actuators for the movement in X and Y direction stepper motors are used. When a stepper
motor is stopped or started, it takes some time till the stepper motor is ready with the operations
and can receive new commands. Because of this, some additional if statements in the ESW are
necessary to prevent that functions of the motor are called during the execution of a start or
stop command.
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To visualize the movement of the system, simple command line prints are used, since the
visualization in Argus is not yet available. The following five figures (4.32 - 4.36) show screen
shots of the SIL console window, in which the position of the moving elements and other
interesting behavior (sensor activation, motors) is printed.

Figure 4.32: Running the System with control software in SIL.

First, both motors (MotorX, MotorY) are started. The prints of the motor are generated
by the low level control simulation in SheetLogic. After the motors start, it can be seen that
the relative position of the moving elements change. The carriage moves on the Y guidance
in the direction of the end-sensor (increasing relative position) whereas the attachment of the
Y guidance on the X guidance moves in the direction of the home sensor (decreasing relative
position).

Figure 4.33: Running the System with control software in SIL.

The carriage reaches the end sensor on the Y guidance. The sensor is located at 450mm
on the Y guidance and the relative position of the carriage is 250mm. Since the carriage has a
size of 200mm the sensor can sense the carriage (position of 250 + size of 200 = 450 = sensor
position). MotorY is stopped and started again in the other direction.
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Figure 4.34: Running the System with control software in SIL.

The same happens when the carriage reaches the home sensor on the Y guidance, the MotorY
stops and is started in the other direction. This way the carriage moves to and fro on the Y
guidance.

Figure 4.35: Running the System with control software in SIL.

The same behavior as the carriage on the Y guidance can be seen in the movement of the
attachment of the Y guidance on the X guidance. In listing 4.35 the home sensor is reached and
the moving element starts to move in the other direction. In figure 4.36, the moving element is
sensed at the end sensor of the X guidance at a relative position of 830mm. This is because the
sensor is located at 880mm and the attachment of the Y guidance has a size of 50mm (position
of 830mm + size of 50mm = 880mm = end sensor position).
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Figure 4.36: Running the System with control software in SIL.

4.6.2 Case Study 2. Material Transport

To evaluate the material transport concept of EZ-VP, a case study has been carried out. The
system used in this case study is shown in figure 4.37. This system uses the two possible ways to
transport material, with pressure or with a pump. Again, the system has first been modeled in

Figure 4.37: An example material transport system in a printer.

EZ-VP-Edit, as can be seen in figure 4.38. The parameter values of the model are set according
to the values in figure 4.37. Since the system used in this case study is also mentioned in the
design, an instantiation of the EZ-VP meta model can be found in figure 4.13 in section 4.3.5.
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Figure 4.38: The system modeled with EZ-VP in this case study.

The system is controlled by a simple control ESW, which is shown in listing 4.9. In the
initialization of the ESW simulation module (listing 4.8), the “bufferToPrintHeadValve” is
opened so that material can flow when the print head is active. Further the compressor of the
pressure source is turned on and the valve of the pressure source is opened.

1 PressureSourceValve_on ();

2 Compressor_on (1);

Listing 4.8: Init of the control software for the material transport.

After the initialization, the following ESW is executed with every tick. In lines 3 till 8, it is
determined if the system is printing, based on a random value. If the system is printing, the
print head is turned on and material is flowing out of the system based on the pressure in the
buffer tank. Lines 9 till 14 implement a simple pressure control for the buffer tank. Lines 15
till 22 show the control that refills the buffer tank, if the level of it is to low. Pumping from the
stock to the buffer is started, if the threshold sensor in the buffer tank is 0 and the system is
not yet pumping from the stock to the buffer tank. The pumping is stopped again, when the
buffer tank is full or the stock tank is empty.

1 printf("stockTankLevelSensor: %d, bufferTankLevelSensor: %d, bufferTankThresholdSensor: 

%d\n"

2 ,StockTankLevelSe_status (),BufferTankLevelSe_status (),

BufferTankThresSe_status ());

3 if((rand() % 51) < 25){

4 PrintHead_on ();

5 printf("printing\n");

6 }else{

7 PrintHead_off ();

8 }

9 if(PressureSens_status () < 10){

10 Compressor_on (++ compVal);

11 }else if(PressureSens_status () > 20){

12 Compressor_off ();

13 compVal = 0;

14 }
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15 if(BufferTankThresSe_status () == 0 && StockTankToBufferPumpMotor_status () == 0){

16 StockTankToBufferPumpMotor_on (20);

17 printf("Pumping from stock to buffer\n");

18 }

19 if(BufferTankLevelSe_status () < 100 || StockTankLevelSe_status () > 999){

20 StockTankToBufferPumpMotor_off ();

21 printf("Stop Pumping from stock to buffer\n");

22 }

Listing 4.9: Control software for the material transport.

The following figures show screen shots of the execution of the ESW simulation module and
the plant model simulation module, presented in this case study, in SIL. Again, for visualization,
interesting behavior is printed in the SIL console.

Figure 4.39: Running the System with control software in SIL.

In every “tick” of the ESW simulation module, the values of the level sensors of the two
tanks and the value of the threshold sensor of the buffer tank are printed. When the print head
is active, the output “printing” can be seen. In figure 4.39, it can be seen that the printer is
printing sometimes and that therefore material is removed from the buffer tank. When material
is taken from the tanks the value of the level sensors becomes bigger (distance from sensor to
material surface).

Figure 4.40: Running the System with control software in SIL.

After some time the material level in the buffer tank becomes so low that the threshold
sensor of the buffer tank is 0. Now, the pump in the connector from the stock to the buffer
tank is turned on and material is flowing from the stock to the buffer tank.
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Figure 4.41: Running the System with control software in SIL.

The transport of material from the stock to the buffer tank stops, when the value of the
level sensor of the buffer tank is lower than or equal to 100.

4.7 Evaluation

To evaluate the design of the SIL plant modeling framework, it has been determined if and
how the requirements of the design are met. To do this, case studies have been performed and
evaluated. In addition the modeling framework has been reviewed and evaluated by future users
of the framework.

R1, The plant modeling framework shall support short modeling times.

The modeling framework provides three ways to create a plant model simulation module for SIL.
This is done to give the modeler the possibility to make a trade-off between high expressiveness
(Matlab Simulink), and short modeling times (EZ-VirtualPrinter). With EZ-VP it is possible
to generate a plant model simulation module from MoBasE, resulting in virtually no modeling
time, assuming the needed information is already in MoBasE.

The modeling using EZ-VP-Edit also offers the possibility to create models in short time.
The models created for the case studies (4.6.1, 4.6.2), had a modeling time of about 15 minutes
each. This time is pure modeling time. Before it is possible to create a model it is necessary
to investigate the real plant to obtain the right parameter values for the model. An important
and in some circumstances difficult to determine value is the ratio of a transmission. This is
because, in the case of a moving element, it abstracts from the whole mechanic connecting the
drive motor to the moving element. The same applies for the transmission, used in the context
of material transport.

Compared to the creation of models with the stub mechanism, EZ-VP has a shorter modeling
time since the behavior has not to be implemented. So, this requirement is met for the developed
DSML EZ-VirtualPrinter. The creation of plant models with Matlab Simulink takes longer than
modeling in EZ-VP (dependent on the size of the created model). The time needed for creating
plant models with Matlab Simulink can be decreased drastically by reusing earlier created
Simulink blocks or by reusing whole models created by people from other disciplines.

R2, It shall be possible for a non-domain expert to create plant model simu-
lation modules.

EZ-VP-edit makes it possible to create plant model simulation modules on a high level of
abstraction, which makes modeling much more feasible for software engineers compared to a
general purpose modeling language for physical systems. This has also been confirmed by the
software engineers, who have been interviewed to evaluate the plant modeling framework. It
has been confirmed by them that every software engineer has enough knowledge of the printer
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he works on, to model its plant in EZ-VP. However, some properties of the model have to be
requested from domain experts (mechanical-, electrical engineers), like the transmission value.
When intermediate EZ-VP XML models, for the generation of simulation modules, are taken
from MoBasE, no domain knowledge is needed. Even if modeling in Matlab Simulink is not
trivial, it is possible to reuse an already created block, to make modeling easier for software
engineers.

R3, The modeling framework shall provide capabilities to model a plant in
enough detail to properly evaluate the ESW.

During the analysis for the plant modeling framework, it has been realized that most of the time,
meaning for the most of the control loops of the ESW, only a high level of abstraction, meaning
high level information, is needed to properly evaluate the ESW. So, the concepts included in EZ-
VP are abstracted as much as possible while maintaining enough detail to evaluate ESW. Next
to the evaluation in the case studies, the meta model of both concepts, the moving elements
concept and the material transport concept, has also been evaluated with domain experts and
software engineers to determine whether it is possible to model systems using these two concepts
in EZ-VP, and if the models have enough detail to properly evaluate the ESW. The result of
this has been that it is possible to model the parts of a plant that use these concepts, in EZ-VP.

Since Matlab Simulink is a general purpose modeling language, it is possible to model all
parts of the plant of a printer in the desired detail, making it a very expressive but time
consuming modeling approach.

R4, The modeling framework shall be well maintainable.

In the case of Matlab Simulink, the maintenance effort is minimal. This is because it is a COTS
solution with the associated advantages like updates and support from the vendor.

In the case of EZ-VP, maintenance involves more effort. When a new I/O-device or plant
concept is added, the meta model in EZ-VP-Edit and in the back-end, has to be updated. In
the back-end, the right semantics for the new I/O-device or concept have to be added. New
I/O-devices only have to be added to EZ-VP if the I/O-device can not be abstracted to an
analog sensor/actuator or digital sensor/actuator. It has also to be prevented that specific
concepts (for example, only for one printer model) are added to EZ-VP, because this would
lead to a steadily growing meta model of EZ-VP and therefore would make maintenance very
complex. To keep EZ-VP maintainable, it is necessary to chose wisely which concepts are added
to EZ-VP.

R5, The models created with the modeling framework shall be well maintain-
able.

The plant model simulation modules, created in EZ-VP, are created by parameterizing the
back-end DLL with intermediate models from EZ-VP-Edit or MoBasE. To update models that
are created in EZ-VP-Edit, the models can be altered using EZ-VP-Edit and provided to the
back-end DLL to create an updated simulation module. To update models that are taken from
MoBasE, MoBasE has to be updated and the new model can be used to create a new simulation
module.

The models created with Matlab Simulink have to be updated by modifying the model in
the Matlab Simulink editor. The effort of doing this depends on the needed changes in the
model. If the interface of the plant model has changed, these changes also have to be performed
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in the custom code block implementing the SIL interface structure. After that a new simulation
module DLL can be generated.

4.8 Conclusion

A plant modeling framework has been designed that supports easy creation of plant model
simulation modules for the purpose of emulating the plant behavior to evaluate the ESW of
printers in the SIL simulation environment. The requirements for the plant modeling framework
have been identified by interviewing the future users of the framework (section 4.1.2). With
the new communication approach and interface of SIL, it has been possible to make use of two
plant modeling approaches that are suitable in different situations:

• For the modeling of common plant concepts, the DSML EZ-VirtualPrinter has been de-
signed (section 4.3), implemented (section 4.5) and evaluated (section 4.7). This easy-to-
use plant modeling approach enables short modeling times and is well suited for software
engineers.

• To integrate plant models, created with Matlab Simulink, into SIL, the SIL communication
approach and interface have been implemented in the code generation process of Matlab
Simulink Coder, making the generation of SIL simulation modules directly from Matlab
Simulink possible (sections 4.4, 4.5.3). The integration of Matlab Simulink in SIL makes
it possible to use Matlab Simulink to model plant concepts that are not included in EZ-
VirtualPrinter. That are, for example, models of concepts specific to only one printer
type. Another reason to use Matlab Simulink is that a plant concept is very complex and
therefore Matlab Simulink is more appropriate.

During the design of the SIL plant modeling framework the main trade-off has been between
expressiveness and ease-of-use. This trade-off is important, since the plant models must have
enough detail to properly evaluate the ESW and the modeling process should be easy enough
for a software engineer. The evaluation shows that the identified requirements of the plant
modeling framework are met (section 4.7) and that, especially EZ-VP, provides a well suited
tool to enable plant modeling for software engineers.
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Chapter 5

Discussion and Future Work

In this project, the SIL simulation environment has been evolved and a plant modeling frame-
work has been added. A main driver in the development of the architecture of the SIL sim-
ulation environment and the plant modeling framework has been ease-of-use. Ease-of-use has
been important since the simulation setup, plant modeling and simulation runs are performed
by software engineers, next to their day-to-day work. If, particularly the plant modeling, would
be performed by domain experts, for example, mechanical engineers with experience in physical
system modeling, at first glance it would not have been necessary to design a DSML. One might
argue that, in this case, it would have been enough to design the work flow to include Matlab
Simulink models into SIL. However, next to the fact that EZ-VP does not require this detailed
domain knowledge and experience in physical system modeling, it is possible to generate models
from MoBasE, which is an enormous advantage of EZ-VP. Modeling in EZ-VP is also less error
prone than modeling in another general purpose modeling language, since the modeler models
the behavior on a high level. So, even if domain experts and not software engineers create plant
models, EZ-VP still is a well suited approach.

There are nearly endless possibilities to include concepts in EZ-VP, however it is important in
the future that the language is well maintained to prevent that more and more specific concepts
are added, because this way the language would become unmaintainable. Concepts that are,
for example, specific for one type of printer, can be modeled using Matlab Simulink. There are
some concepts that have not been implemented in EZ-VP in the initial design. Those are cross-
cutting concepts like energy consumption of I/O-devices or tolerances of certain parts of the
system. This would make it possible to not only evaluate the correctness of the ESW but also to
optimize the ESW in certain ways (for example, print speed vs. energy consumption). Since the
approach of SheetLogic and EZ-VP to generate plant models from MoBasE are very similar, it
is also desirable to include the plant concepts of SheetLogic in EZ-VP for better maintainability.
This could be an option during the redesign of SheetLogic to implement SILv2.

Globally speaking, from this project can be seen that DS(M)Ls can be regarded very suit-
able in situations where the domain is very bounded or the concepts of the domain can be
abstracted to be more generic. However, abstracting to generic domain concepts has to be done
with caution to prevent loosing important detail. In the case of the two implemented concepts
of EZ-VP, moving elements and transport of material through the printer (section 4.3), the
model has been detailed enough for the purpose of evaluating the ESW. The use of a DSML
has been very suitable for the situation since it bridges the implementation gap and no detail
of how the physical processes in the model are constructed, is needed.

There are many imaginable future projects in the context of the SIL simulation environment.
One important project would be to complete the implementation of SILv2. This comprises:
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• Extract SheetLogic from the SIL core and compile it as a simulation module, with the
new interface, as a DLL. This way it becomes one of many simulation modules in SIL and
can be used in a simulation when needed.

• The low level control simulation has to be removed from SheetLogic. It has to be added
as a layer beneath the I/O-layer in the ESW simulation modules as described in figure
3.5 and figure 3.1.

Other future projects are the consequence of the change cases that have been presented in the
evaluation of SILv2 (section 3.5). The visualization tool Argus has to be extended to visualize
other plant models. For the concepts in EZ-VP, a 3D visualization, similar to the visualization
of SheetLogic, should be implemented. For plant models created with Matlab Simulink, or for
all plant models in general, it would be helpful to implement the possibility to visualize variable
values in Argus. Another possible feature is described in change case “4. Change Settings
of Simulation Modules On-The-Fly”, in section 3.5.1. This feature makes it possible to load
simulation modules by just knowing the place the DLL is stored. This makes the configuration
of SIL easier because the SIL core does not need information about the simulation module
configuration beforehand. Generally, it would be helpful to improve the usability of the SIL
simulation environment. This could, for example, be done by implementing a user interface
for the SIL simulation environment. In the current state the SIL simulation (console window),
the Remote Control and the visualization have to be started separately. To setup a simulation,
several XML files have to be edited by hand. The integration of all steps, from the simulation
setup, the simulation run till the evaluation of test cases should be integrated in one tool, which
would make SIL much more user-friendly.

There are two major future activities that are needed to make EZ-VP a well usable plant
modeling language for the domain of printing systems. These activities are:

• Implement that the EZ-VP back-end can read in intermediate models from the front-end
(MoBasE and EZ-VP-Edit).

• Integrate more generic plant concepts to EZ-VP (print process, temperature/humidity
control).

To make the plant modeling framework more user-friendly, a user interface should be imple-
mented that leads the user through the creation of models. In the future, it is also imaginable
to include another approach, like Modelica, into the SIL plant modeling framework. But if
and how another approach should be integrated, depends on the future use of the SIL plant
modeling framework. If more and more domain experts create plant models for SIL, it could be
advantageous to integrate such a specialized modeling language for modeling physical systems,
into the SIL modeling framework.
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Chapter 6

Conclusion

This project has been undertaken to evolve the SIL simulation environment, from a dedicated
test tool for the ESW, controlling the paper handling, to a test environment for testing the ESW
of printers in general. The project has been separated in two major activities; the modularization
of the SIL simulation environment and the design and implementation of a plant modeling
framework.

To get a clear view on the short and long term goals of SIL, several users of SIL have been
interviewed (section 2.1). From those goals, requirements for the SILv2 simulation environment
have been derived (section 3.1). These requirements are:

• R1. ESW shall be encapsulated within simulation modules.

• R2. Plant models shall be encapsulated within simulation modules.

• R3. A simulation shall be composed of multiple simulation modules.

• R4. Plant models shall be implemented using different plant modeling technologies.

• R5. Communication between ESW simulation modules and plant model simulation mod-
ules shall be based on a generic and well maintainable interface.

After identifying those requirements, the old situation of the SIL simulation environment has
been reviewed and several problems, regarding the requirements, have been identified in its
structure (section 3.2). To meet the requirements, a new communication approach between the
SIL core and the simulation modules as well as a corresponding interface has been designed,
implemented and evaluated (chapter 3). After the redesign of the overall structure of SIL by
developing a new communication approach between simulation modules and SIL core, SIL is
well prepared for the future use of different plant model simulation modules. The evaluation
(3.5) shows that SILv2 meets the qualities that have been the key drivers in the development
(Modular, Generic, Extensible, Composable, Efficient) and the identified requirements for the
evolution of SIL.

The research question, identified in section 2.1:

• How to develop a modular and extensible Software-In-The-Loop simulation environment
that enables the execution of multiple embedded software modules and multiple plant models
with the goal of evaluating the behavior of the embedded software?

can be answered as follows. It is important to separate unrelated entities in the simulation
environment (for example, plant models, ESW and a simulation core). The resulting modularity,
and the use of a generic way to set up connections and to communicate between ESW and plant
models, leads to an environment in which multiple modules can communicate with each other.
Together with a minimalistic and generic interface between modules and simulation core, which
can be implemented with low effort for the ESW and plant model approaches, this results in a
modular and extensible environment.
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In addition, a plant modeling framework has been designed that supports easy creation of
plant model simulation modules for the SIL simulation environment (Chapter 4). The require-
ments for the plant modeling framework have been identified by interviewing the future users
of the framework (section 4.1.2). The requirements are:

• R1. The plant modeling framework shall support short modeling times.

• R2. It shall be possible for a non-domain expert to create plant model simulation modules.

• R3. The modeling framework shall provide capabilities to model a plant in enough detail
to properly evaluate the ESW.

• R4. The modeling framework shall be well maintainable.

• R5. The models created with the modeling framework shall be well maintainable.

With the new communication approach and interface of SIL, it has been possible to make use
of two plant modeling approaches that are suitable in different situations:

• For the modeling of common plant concepts, the DSML EZ-VirtualPrinter has been de-
signed (section 4.3), implemented (section 4.5) and evaluated (section 4.7). This easy-to-
use plant modeling approach enables short modeling times and is well suited for software
engineers.

• To integrate plant models, created with Matlab Simulink, into SIL, the SIL communication
approach and interface have been implemented in the code generation process of Matlab
Simulink Coder, making the generation of SIL simulation modules directly from Matlab
Simulink possible (sections 4.4, 4.5.3). The integration of Matlab Simulink in SIL makes
it possible to use Matlab Simulink to model plant concepts that are not included in EZ-
VirtualPrinter. That are, for example, models of concepts specific to only one printer
type. Another reason to use Matlab Simulink is that a plant concept is very complex and
therefore Matlab Simulink is more appropriate.

During the design of the SIL plant modeling framework the main trade-off has been between
expressiveness and ease-of-use. This trade-off is important, since the plant models must have
enough detail to properly evaluate the ESW and the modeling process should be easy enough
for a software engineer. The evaluation shows that the identified requirements of the plant
modeling framework are met (section 4.7) and that, especially EZ-VP, provides a well suited
tool to enable plant modeling for software engineers.

The research question, identified in section 2.1:

• How to design a plant modeling framework for the creation of plant models for simulation
in a Software-In-The-Loop simulation environment that is expressive enough to model a
multitude of domain concepts of high performance printers, but also uses an adequate level
of abstraction to make the approach usable for non-domain experts?

can be answered as follows. The use of a DSML for plant modeling, is very suitable in a case
in which the modeler has no detailed domain knowledge or experience with modeling physical
systems. The steps that have to be taken in order to design a plant modeling DSML are:

• Analyze the domain and identify common domain concepts.

• Analyze the structure and behavior of parts in the identified domain concepts.

• Abstract the domain concepts to make them applicable in many situations.

• Create a language definition (meta model).

• Create an editor for model creation.

• Create a model interpreter or compiler to create an executable version of the model.

In this project, SIL has evolved from a dedicated test tool to test the ESW for controlling
the paper transport, to a test framework to evaluate the behavior of ESW in general. The
partial implementation of SILv2, presented in 3.6, is used in three projects. Together with the
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novel SIL plant modeling framework, it is now possible to use SIL for evaluating the ESW of
the whole printer. This means that the advantages identified for the ESW development, using
SIL, apply now for the whole ESW development process. Those advantages are, testing without
hardware and therefore starting the development earlier in the development of a printer, easy
error injection and direct feedback for software engineers. This project has been an important
step in the direction of developing printers with virtual prototypes rather than hardware proto-
types, which is a long term goal for the development process of printers. With virtual prototype
based development, the number of needed hardware prototypes in the development process can
be decreased, which leads to lower cost and a short time-to-market.
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Appendix A

I/O-layer

Listing A.1: changed parts of ln iolayerTargetMacros.c

1 /******************************************************************* *

2 * %name: ln_iolayerTargetMacros.c %

3 * %version: 41 %

4 * %created_by: hhun %

5 * %date_created: Thu May 31 11 :25:28 2012 %

6 * %full_filespec: ln_iolayerTargetMacros.c~41 :csrc:ve020 #12 %

7 *

8 ******************************************************************/

9 #include "ln_iolayertypes.h"

10
11 #include <stdio.h>

12 #include <string.h>

13 #include <math.h>

14
15 #define MAX_STRING_LEN 80

16
17 #define EPSILON 0.001

18 #define MAX_IN_OUT_PUT 500

19 #include "SILSimulationItf.h"

20
21 int inpCompCount = 0;

22 int outpCompCount = 0;

23 int inAndOutpCompCount = 0;

24 static struct sil_Variable inputs[MAX_IN_OUT_PUT ];

25 static struct sil_Variable outputs[MAX_IN_OUT_PUT ];

26 static struct sil_Variable inAndOutputs[MAX_IN_OUT_PUT ];

27 static struct sil_Interface io;

28 static int initialized = 0;

29
30 #ifdef __cplusplus

31 extern "C" {

32 #endif

33
34 extern char g_IoModuleId [100];

35
36 #ifdef __cplusplus

37 }

38 #endif

39
40 // helper for double compare

41 bool doubleEqual(double a, double b)

42 {

43 return fabs(a - b) < EPSILON;

44 }

45
46 // create the sil_Interface from the IO lists and return it

47 struct sil_Interface* sil_GetInterface ()

48 {

49 io.inputs = inputs;



50 io.inpCount = inpCompCount;

51 io.outputs = outputs;

52 io.outpCount = outpCompCount;

53 io.inAndOutputs = inAndOutputs;

54 io.inAndOutpCount = inAndOutpCompCount;

55 initialized = 1;

56 return &io;

57 }

58
59 // for SIL plant models the direction of IO is inverted.

60 // So outputs of the ESW as actuators are inputs in a plant model.

61 // ESW inputs become inAndOutputs and not only outputs because

62 // the plant model still needs to read them occasionally. So,

63 // outputs become inputs and inputs become inAndOutputs.

64 #ifdef SILPLANTMODEL

65 // adds an component to the outputs list and returns

66 // pointer to the variables value

67 static double* addOutpComponent(const char* compName)

68 {

69 struct sil_Variable temp={compName , 0};

70 inputs[inpCompCount] = temp;

71 return &inputs[inpCompCount ++]. value;

72 }

73
74 // adds an component to the inAndOutputs list and returns

75 // pointer to the variables value

76 static double* addInpComponent(const char* compName)

77 {

78 struct sil_Variable temp={compName , 0};

79 inAndOutputs[inAndOutpCompCount] = temp;

80 return &inAndOutputs[inAndOutpCompCount ++]. value;

81 }

82 #endif /* SILPLANTMODEL */

83
84 #ifndef SILPLANTMODEL

85 // adds an component to the inputs list and returns

86 // pointer to the variables value

87 static double* addOutpComponent(const char* compName)

88 {

89 struct sil_Variable temp={compName , 0};

90 inputs[inpCompCount] = temp;

91 return &inputs[inpCompCount ++]. value;

92 }

93
94 // adds an component to the outputs list and returns

95 // pointer to the variables value

96 static double* addInpComponent(const char* compName)

97 {

98 struct sil_Variable temp={compName , 0};

99 outputs[outpCompCount] = temp;

100 return &outputs[outpCompCount ++]. value;

101 }

102
103 // adds an component to the inoutputs list and returns

104 // pointer to the variables value

105 static double* addInAndOutpComponent(const char* compName)

106 {

107 struct sil_Variable temp={compName , 0};

108 inAndOutputs[inAndOutpCompCount] = temp;

109 return &inAndOutputs[inAndOutpCompCount ++]. value;

110 }

111 #endif /* SILPLANTMODEL */

112
113 #define SILSIMULATION_SET_VARIABLE(symbolicName , deviceId , IoId)\

114 \

115 double* symbolicName ## _value ;\

116 \

117 void symbolicName ##_init(void)\

118 {\

119 if(initialized != 1){\



120 symbolicName ## _value = addOutpComponent (# symbolicName);\

121 }\

122 }\

123 \

124 void symbolicName ## _setValue(double a_Value)\

125 {\

126 *symbolicName ## _value = a_Value ;\

127 }\

128
129 #define SILSIMULATION_GET_VARIABLE(symbolicName , deviceId , IoId)\

130 \

131 double* symbolicName ## _value ;\

132 \

133 void symbolicName ##_init(void)\

134 {\

135 if(initialized != 1)\

136 {\

137 symbolicName ## _value = addInpComponent (# symbolicName);\

138 }\

139 }\

140 \

141 double symbolicName ## _getValue(void)\

142 {\

143 return *symbolicName ## _value ;\

144 }\

145
146 // Simple sensor is used as an example to show what the general

147 // steps are to use the new interface

148 #define SILSIMULATION_SIMPLE_SENSOR(symbolicName , deviceId , IoId)\

149 \

150 /* create a double pointer that points to the variables value */\

151 double* symbolicName ## _state ;\

152 \

153 void symbolicName ##_init(void)\

154 {\

155 if(initialized != 1)\

156 {\

157 /*call addInpComponent at init and retrieve */\

158 /* pointer that points to the variables value .*/\

159 /* Values of inputs are automatically update by SIL before */\

160 /* the software module gets a tick. Outputs are */\

161 /* automatically read by SIL after a tick */\

162 symbolicName ## _state = addInpComponent (# symbolicName);\

163 }\

164 }\

165 \

166 E_SimpleStatus symbolicName ## _status(void)\

167 {\

168 /*use the pointer instead of the sheetlogic functions */\

169 if (doubleEqual (* symbolicName ##_state , 0.0))\

170 {\

171 return SENSOR_INACTIVE ;\

172 }\

173 else\

174 {\

175 return SENSOR_ACTIVE ;\

176 }\

177 }\

178 void symbolicName ##_on(void)\

179 {\

180 *symbolicName ## _state = 1.0;\

181 }\

182 void symbolicName ##_off(void)\

183 {\

184 *symbolicName ## _state = 0.0;\

185 }\

186
187
188 #define SILSIMULATION_SIMPLE_ACTUATOR(symbolicName , deviceId , IoId)\

189 \



190 double* symbolicName ## _state ;\

191 \

192 void symbolicName ##_init(void)\

193 {\

194 if(initialized != 1)\

195 {\

196 symbolicName ## _state = addOutpComponent (# symbolicName);\

197 }\

198 }\

199 \

200 void symbolicName ##_on(void)\

201 {\

202 *symbolicName ## _state = 1.0;\

203 }\

204 \

205 void symbolicName ##_off(void)\

206 {\

207 *symbolicName ## _state = 0.0;\

208 }\

209 \

210 /* status function can be used by external simulation packages */\

211 E_SimpleStatus symbolicName ## _status(void)\

212 {\

213 if (doubleEqual (* symbolicName ##_state , 0.0))\

214 {\

215 return SENSOR_INACTIVE ;\

216 }\

217 else\

218 {\

219 return SENSOR_ACTIVE ;\

220 }\

221 }\

222
223
224 #define SILSIMULATION_ANALOG_SENSOR(symbolicName , deviceId , IoId)\

225 \

226 double* symbolicName ## _state ;\

227 \

228 void symbolicName ##_init(void)\

229 {\

230 if(initialized != 1){\

231 symbolicName ## _state = addInpComponent (# symbolicName);\

232 }\

233 }\

234 \

235 uint16_t symbolicName ## _status(void)\

236 {\

237 return (uint16_t)*symbolicName ## _state ;\

238 }\

239 /* on function can be used by external simulation packages */\

240 void symbolicName ##_on(uint16_t a_Value)\

241 {\

242 *symbolicName ## _state = (double)a_Value ;\

243 }\

244 void symbolicName ## _setValue(uint16_t a_Value)\

245 {\

246 *symbolicName ## _state = (double)a_Value ;\

247 }\

248
249
250 #define SILSIMULATION_ANALOG_ACTUATOR(symbolicName , deviceId , IoId)\

251 \

252 double* symbolicName ## _state ;\

253 \

254 void symbolicName ##_init(void)\

255 {\

256 if(initialized != 1)\

257 {\

258 symbolicName ## _state = addOutpComponent (# symbolicName);\

259 }\



260 }\

261 \

262 void symbolicName ##_on(int16_t a_Value)\

263 {\

264 *symbolicName ## _state = (double)a_Value ;\

265 }\

266 void symbolicName ##_off(void)\

267 {\

268 *symbolicName ## _state = 0.0;\

269 }\

270 /* statusd function can be used by external simulation packages */\

271 uint16_t symbolicName ## _status(void)\

272 {\

273 return (uint16_t)*symbolicName ## _state ;\

274 }\

275
276 #define SILSIMULATION_FPGA_WRITE_REGISTER16(symbolicName , deviceId , IoId)\

277 \

278 double* symbolicName ## _state ;\

279 \

280 void symbolicName ##_init(void)\

281 {\

282 if(initialized != 1)\

283 {\

284 symbolicName ## _state = addOutpComponent (# symbolicName);\

285 }\

286 }\

287 \

288 void symbolicName ##_set(uint16_t a_Value)\

289 {\

290 *symbolicName ## _state = (double)a_Value ;\

291 }\

292 /* statusd function can be used by external simulation packages */\

293 uint16_t symbolicName ## _status(void)\

294 {\

295 return (uint16_t)*symbolicName ## _state ;\

296 }

297
298
299 #define SILSIMULATION_PWM_ACTUATOR(symbolicName , deviceId , IoId)\

300 \

301 double* symbolicName ## _state ;\

302 \

303 void symbolicName ##_init(void)\

304 {\

305 if(initialized != 1)\

306 {\

307 symbolicName ## _state = addOutpComponent (# symbolicName);\

308 }\

309 }\

310 \

311 void symbolicName ##_on(int16_t a_Value)\

312 {\

313 /* duty cycle is int , but is between 0 and 1000 */\

314 *symbolicName ## _state = (double)a_Value ;\

315 }\

316 void symbolicName ##_off(void)\

317 {\

318 *symbolicName ## _state = 0.0;\

319 }\

320 /* status function can be used by external simulation packages */\

321 uint16_t symbolicName ## _status(void)\

322 {\

323 return (uint16_t)*symbolicName ## _state ;\

324 }\

325 void symbolicName ## _maskExtHwEnaLine(int a_Value)\

326 {\

327 }\

328
329



330 #define SILSIMULATION_INVERTED_PWM_ACTUATOR(symbolicName , deviceId , IoId)\

331 \

332 double* symbolicName ## _state ;\

333 \

334 void symbolicName ##_init(void)\

335 {\

336 if(initialized != 1)\

337 {\

338 symbolicName ## _state = addOutpComponent (# symbolicName);\

339 }\

340 }\

341 \

342 void symbolicName ##_on(int16_t a_Value)\

343 {\

344 /* duty cycle is int , but is between 0 and 1000 */\

345 *symbolicName ## _state = 1000 -(double)a_Value ;\

346 }\

347 void symbolicName ##_off(void)\

348 {\

349 *symbolicName ## _state = 1000;\

350 }\

351 /* status function can be used by external simulation packages */\

352 uint16_t symbolicName ## _status(void)\

353 {\

354 return (uint16_t)*symbolicName ## _state ;\

355 }\

356 void symbolicName ## _maskExtHwEnaLine(int a_Value)\

357 {\

358 }\

359
360
361 #define SILSIMULATION_PWM_ACTUATOR_WITH_ENABLE(symbolicName , deviceId , IoId ,

symbolicNameEnable)\

362 \

363 double* symbolicName ## _state ;\

364 \

365 void symbolicName ##_init(void)\

366 {\

367 if(initialized != 1)\

368 {\

369 symbolicName ## _state = addOutpComponent (# symbolicName);\

370 }\

371 }\

372 \

373 void symbolicName ##_on(int16_t a_Value)\

374 {\

375 *symbolicName ## _state = (double)a_Value ;\

376 symbolicNameEnable ##_on();\

377 }\

378 void symbolicName ##_off(void)\

379 {\

380 symbolicNameEnable ##_off();\

381 *symbolicName ## _state = 0.0;\

382 }\

383 /* status function can be used by external simulation packages */\

384 uint16_t symbolicName ## _status(void)\

385 {\

386 return (uint16_t)*symbolicName ## _state ;\

387 }\

388 void symbolicName ## _maskExtHwEnaLine(int a_Value)\

389 {\

390 }\

391
392 #define SILSIMULATION_PWM_ACTUATOR_WITH_DIRECTION(symbolicName , deviceId , IoId ,

symbolicNameDirection)\

393 \

394 double* symbolicName ## _state ;\

395 \

396 void symbolicName ##_init(void)\

397 {\



398 if(initialized != 1)\

399 {\

400 symbolicName ## _state = addOutpComponent (# symbolicName);\

401 }\

402 }\

403 \

404 void symbolicName ##_on(int16_t a_Value)\

405 {\

406 if( a_Value < 0 )\

407 {\

408 symbolicNameDirection ##_off();\

409 /* do not make value positive , SIL derives direction from

polarity */\

410 }\

411 else\

412 {\

413 symbolicNameDirection ##_on();\

414 }\

415 *symbolicName ## _state = (double)a_Value ;\

416 }\

417 void symbolicName ##_off(void)\

418 {\

419 symbolicNameDirection ##_off();\

420 *symbolicName ## _state = 0.0;\

421 }\

422 /* statusd function can be used by external simulation packages */\

423 uint16_t symbolicName ## _status(void)\

424 {\

425 return (uint16_t)*symbolicName ## _state ;\

426 }\

427 void symbolicName ## _maskExtHwEnaLine(int a_Value)\

428 {\

429 }\

430
431 #define SILSIMULATION_PWM_ACTUATOR_WITH_ENABLE_AND_DIRECTION(symbolicName , deviceId ,

IoId , symbolicNameEnable , symbolicNameDirection)\

432 \

433 double* symbolicName ## _state ;\

434 \

435 void symbolicName ##_init(void)\

436 {\

437 if(initialized != 1)\

438 {\

439 symbolicName ## _state = addOutpComponent (# symbolicName);\

440 }\

441 }\

442 \

443 void symbolicName ##_on(int16_t a_Value)\

444 {\

445 if( a_Value < 0 )\

446 {\

447 symbolicNameDirection ##_off();\

448 /* do not make value positive , SIL derives direction from

polarity */\

449 }\

450 else\

451 {\

452 symbolicNameDirection ##_on();\

453 }\

454 *symbolicName ## _state = (double)a_Value ;\

455 symbolicNameEnable ##_on();\

456 }\

457 void symbolicName ##_off(void)\

458 {\

459 symbolicNameEnable ##_off();\

460 symbolicNameDirection ##_off();\

461 *symbolicName ## _state = 0.0;\

462 }\

463 /* statusd function can be used by external simulation packages */\

464 uint16_t symbolicName ## _status(void)\



465 {\

466 return (uint16_t)*symbolicName ## _state ;\

467 }\

468 void symbolicName ## _maskExtHwEnaLine(int a_Value)\

469 {\

470 }\



Appendix B

Simulink to SIL module custom code
block code

Listing B.1: The custom code block

1 struct sil_Variable

2 {

3 const char* name;

4 double value;

5 };

6
7 struct sil_Interface

8 {

9 struct sil_Variable *inputs;

10 int inpCount;

11 struct sil_Variable *outputs;

12 int outpCount;

13 struct sil_Variable *inAndOutputs;

14 int inAndOutpCount;

15 };

16
17 static struct sil_Interface io;

18
19 /* **************************************************************************** */

20 // create input and output lists. Order is important and should be equal

21 // when updating and writing in sil_StartScheduling

22 static struct sil_Variable inputs [] = {

23 { "in", 0 },

24 {"enableCounter", 0}

25 };

26 static struct sil_Variable outputs [] = {

27 { "outCounter", 0 },

28 { "out", 0} ,

29 {"testCounter" ,0}

30 };

31 /* **************************************************************************** */

32
33 void sil_StartScheduling () // Periodic update function

34 {

35 /* **************************************************************************** */

36 // update inputs ( IMPORTANT: the same order as added to the list)

37 in = (real_T)io.inputs [0]. value;

38 enableCounter = (real_T)io.inputs [1]. value;

39
40 // call the step function of model

41 simple_example_step (); // stepfunction for the model generated by simulink coder

42
43 // update outputs ( IMPORTANT : the same order as added to the list)

44 io.outputs [0]. value = (double)outCounter;

45 io.outputs [1]. value = (double)out;

46 io.outputs [2]. value = (double)testCounter;



47 /* **************************************************************************** */

48 }

49 void sil_GetVersionInfo(unsigned char * ap_VersionV , unsigned char * ap_VersionR ,

50 unsigned char * ap_VersionL , unsigned char *

51 ap_VersionP) {

52 /* **************************************************************************** */

53 simple_example_initialize(true);

54 /* **************************************************************************** */

55 *ap_VersionV = (unsigned char)versionVersion;

56 *ap_VersionR = (unsigned char)versionRelease;

57 *ap_VersionL = (unsigned char)versionLevel;

58 *ap_VersionP = (unsigned char)versionPatch;

59 }

60 /* ********************* Generic code below DON ’T TOUCH *********************** */

61 struct sil_Interface* sil_GetInterface ()

62 {

63 io.inputs = inputs;

64 io.inpCount = sizeof(inputs)/sizeof(struct sil_Variable);

65 io.outputs = outputs;

66 io.outpCount = sizeof(outputs)/sizeof(struct sil_Variable);

67 io.inAndOutputs = 0;

68 io.inAndOutpCount = 0;

69 return &io;

70 }

71
72 void sil_StartNode(const char *apc_ModuleId , const char * apc_Parameters) {}

73 void sil_StopNode (){}


