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Abstract

Botnets, large groups of networked zombie computers under centralised control, are recognised
as one of the major threats on the internet. There is a lot of research towards ways of detecting
botnets, in particular towards detecting Command and Control servers. Most of the research
is focused on trying to detect the commands that these servers send to the bots over the
network. For this research, we have looked at botnets from a botmaster’s perspective. First,
we characterise several botnet enhancing techniques using three aspects: resilience, stealth and
churn. We see that these enhancements are usually employed in the network communications
between the C&C and the bots. This leads us to our second contribution: we propose a
new botnet detection method based on the way C&C’s are present on the file system. We
define a set of file system based indicators and use them to search for C&C’s in images of
hard disks. We investigate how the aspects resilience, stealth and churn apply to each of
the indicators and discuss countermeasures botmasters could take to evade detection. We
validate our method by applying it to a test dataset of 94 disk images, 16 of which contain
C&C installations, and show that low false positive and false negative ratio’s can be achieved.
Approaching the botnet detection problem from this angle is novel, which provides a basis
for further research.
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Chapter 1

Introduction

Botnets, large groups of networked zom-
bie computers under centralised control, are
recognised as one of the major threats on the
internet. As a proper understanding of this
phenomenon is vital to be able to fight it,
a lot of research is dedicated to this topic.
Academia as well as anti virus companies,
operating system developers and law enforce-
ment agencies all spend considerable time and
effort in botnet research, botnet disruption
and botnet takedown operations.

A large part of the academic botnet research
is geared towards developing ways of detect-
ing botnets. Almost all detection methods
discussed in the literature focus on network
traffic, be it analysis of individual packets or
by looking at more general netflow data. This
focus makes sense from the perspective of re-
searchers (academic as well as law enforce-
ment agencies). Network data can be mon-
itored and analyzed with relative ease: legal
systems usually have provisions for intercept-
ing network traffic and there are enough tools
available for the analysis of intercepted data.
The control traffic is also what separates bot-
net bots from, for instance, regular viruses
and trojan horses, making it an obvious can-
didate for botnet detection.

1.1 Problem

What happens, however, when network data
is unavailable? Scenario’s for such a case are
the following:

• If a number of different servers share
the same internet connection it may be
impossible to determine which of the
servers is the actual C&C and which are
less interesting.

• When a number of servers is confiscated
for an offense other than hosting botnet
infrastructure, there may not be enough
legal reason to capture network traffic
for every server, or not enough capac-
ity to do so, rendering network based
botnet detection impossible. Such a
scenario may occur when dealing with
bulletproof hosting providers (see next
chapter), who rent out a number of
servers, each of which can be used for
a different (illicit) purpose.

• Automatically detecting which servers
host a botnet C&C may also be used in
a triage procedure, to reduce the num-
ber of servers that one has to investigate
by hand.

• A final use case is botnet detection
on live systems, where a hosting com-
pany could periodically scan whether
rented systems are being used as botnet
C&C’s, possibly alongside traditional
network based botnet detection.

In these scenario’s it may help to have other
C&C detection methods available, methods
that rely less on network traffic and more on
the servers themselves. Our problem state-
ment is as follows:

How can we determine whether a given sys-
tem contains a botnet C&C, without the use
of network data?

There is little research, however, on the lay-
out and used technologies of the C&C soft-
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ware. This can be explained in part by the
difficulty of gaining access to C&C software:
apart from a few commercial crimeware kits
(such as ZeuS[52] and SpyEye[53]) generally
only law enforcement agencies have access to
C&C software through confiscated C&C ma-
chines.

1.2 Contribution

For our research, we will look at botnets from
the botmaster’s perspective. Our contribu-
tion is twofold. We will analyse a number of
botnet enhancing techniques in light of three
aspects: resilience, stealth and churn. Re-
silience defines how well a botnet is equipped
versus takedown. Stealth defines how well a
botnet can operate without being detected.
Churn defines how fast bots join the botnet,
i.e how fast machines are infected and how
fast infected machines are disinfected again.
These aspects help us look at botnets from a
botmaster’s perspective, so that we can see
the motivation behind using certain botnet
enhancing techniques.

For our second contribution, we propose a new
botnet detection method.

We will focus on the way a C&C is stored on
a file system. Information on the file system
is well structured, can be accessed and pro-
cessed quickly and contains the heart of the
C&C infrastructure: the place where the ac-
tual C&C program code resides. We will try
to find a set of indicators that, when searched
for within a file system, can indicate whether
a C&C infrastructure is present on the ma-
chine or not.

We will develop a proof of concept botnet de-
tection implementation which, using these in-
dicators, can search for botnet C&C infras-
tructures in disk images. We will apply our
method to a test dataset consisting of 94 disk
images of confiscated servers of a bulletproof

hosting provider and discuss the results for
each indicator.

1.3 Research questions

The research questions to which we try to find
an answer are the following:

• Which file system indicators can we use
to correctly identify the presence of a
botnet C&C?

• Which indicator has the lowest false pos-
itive rate and which has the lowest false
negative rate and why?

• How feasible is using these indicators
when searching through large datasets?

In our search for file system indicators, we fo-
cus on the “quick wins”: simple yet fast and
effective methods of finding out whether a sys-
tem hosts a C&C infrastructure or not. The
reasoning is that simple indicators can be lo-
cated and processed fast so that many systems
can be checked as fast as possible. Our re-
search is highly exploratory: we think of some
indicators, build a proof of concept implemen-
tation that will search for these indicators and
see how each indicator performs. Some indi-
cators may give a high false positive or false
negative ratio, some will work unexpectedly
well. Since this is one of the first researches
of its kind, we just want to see what’s out
there and provide a basis for further research.

The remainder of this work is as follows. In
the next chapter we will give an overview of
the current literature regarding botnet char-
acteristics and botnet detection methods. Af-
ter that, in chapter 3, we will look at our own
detection method and at the setup for the ex-
periment we conduct. Then, in chapter 4, we
discuss the results of our experiments. We
conclude in chapter 5. The appendix at the
end contains some metrics and other informa-
tion about our proof of concept implementa-
tion, including some possible optimizations.
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Chapter 2

Related work

This chapter provides an overview of the cur-
rent state of the literature regarding botnet
characteristics and botnet detection methods.
The contents are as follows. We will start
with describing what botnets are, how they
work and what they are used for in section 2.1.
Then, in section 2.2, we will dive deeper into
the characteristics of different botnet designs.
We will look at the different communication
channels used and at some of the techniques to
enhance botnets. After that, in section 2.3 we
will discuss several detection methodologies,
subdividing them into those based on mali-
cious traffic and those based on C&C traffic.

2.1 Botnet overview

Offenders have always been resourceful in
their ways of making money. As people in-
corporate internet in more and more aspects
of their life, offenders started seeing opportu-
nities for making money in the digital world
through scams, extortion schemes, property
destruction, theft, etc. One branch of this so-
called “cybercrime” involves the use of ma-
licious pieces of software, called “malware”,
with the goal of making a target’s computer
perform actions that the target hasn’t con-
sented to or knows about. If the malware al-
lows the offender to control the infected com-
puters remotely, such a group of computers

is generally called a “botnet”. A single com-
puter within this group is known as a “bot”
or “zombie” and the person(s) controlling the
computers are known as “botherders” or “bot-
masters”.

Besides offenders there are other parties that
use botnets, such as (cyber)terrorists[54] and
government agencies[55]. Although we will
mention the activities they employ below, the
setups they use are largely outside the scope
of this paper and will not be discussed further.
Before we look at botnet activities, however,
we will first discuss botnet design, to give the
reader a better understanding of what botnets
are and how they operate.

2.1.1 Botnet design

Although there are many different possible de-
signs for botnets, all designs have some factors
in common. First of all, all botnets consist
of a group of devices infected with malware
to perform the actual work. These devices
can be infected through a variety of attacks
including drive-by downloads, automated ex-
ploitation (like with computer worms), mal-
ware on USB flash drives or malicious attach-
ments in e-mails. The goal of the infection
is to get a piece of malware running on the
target’s device, preferably without the target
knowing about it; this way the target is less
likely to take steps to remove the malware.

Once a target’s device is infected, the botmas-
ter needs to set up some sort of control mech-
anism to tell the infected device what to do.
The way this control mechanism is designed
forms one of the characterizing features used
by researchers to taxonomize botnets[1][2][3].

On one side of the spectrum there is a central-
ized control architecture. In this architecture
all the bots connect to one or more centrally
located servers, called “Command & Control
servers” (also known as C&C or C2). The bot-
master connects to the C&C as well and the
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commands which she provides get distributed
from this central point to all the bots.

On the other side there is a decentralized ar-
chitecture. In this architecture there are no
centralized machines; every machine in the
infrastructure is of equal importance. Com-
mands are given to one or a few bots, chosen
at random, which in turn make sure that the
commands reach all the other bots in the bot-
net.

These two architectures form two extremes.
In reality botnets employ aspects of each ar-
chitecture in a hybrid design. We will discuss
this more deeply in section 2.2.

Reported sizes of botnets vary greatly. Re-
search into enumerating botnets is still
ongoing[4][5] and each new trick botmasters
invent to hide their botnets makes estimat-
ing the actual size harder. There have been
reports of botnets with over 30 million total
infections (Bredolab, see [56]). Most of the
malicious activities (see below) hinge on the
number of bots available, so maximizing the
number of infections is paramount for the bot-
master.

2.1.2 Malicious botnet activities

Botmasters use their botnets for all kinds of
different purposes, most of which are con-
sidered malicious and/or harmful. The rea-
sons botmasters use botnets for these activi-
ties are many. As we will see in the next sec-
tion, botnets provide a measure of anonymity
which, because of the malicious nature of the
activities, is a necessity. Furthermore, the
geographically distributed nature of botnets
means that it is difficult for researchers to
track them. Different time zones, languages,
laws and jurisdictions all form barriers, aiding
the botmaster in staying ahead of the law[6].

Some activities that have been seen in the
field include:

Spam[7]

Sending spam means surreptitiously sending
unsolicited e-mails in the hope that the re-
cipient follows the link inside the e-mail. The
page the link points to can, for instance, be a
phishing page (designed to steal login creden-
tials) or a pharmacy scam (designed to sell
counterfeit drugs). Having more bots in the
botnet means that more mails can be sent,
thus raising the chances of a recipient follow-
ing the link.

DDoS[8]

DDoS attacks are attacks on a website or
other internet facing service, performed by
generating so much traffic to it that it can’t
handle all the requests and will be unavailable
for regular users. This can then be used ei-
ther in an extortion scam (“pay me 100.000$
or your site will remain offline”) or purely as
a way of harassing others. Having more bots
in the botnet means that more traffic can be
generated, which in turn means that larger,
more popular websites can be taken offline.
This can be useful in an extortion scheme,
where more money can be extorted for larger
websites.

Information stealing[57]

Some offenders gather login credentials, e-
mail addresses, company secrets, credit card
numbers or other information using their bot-
net. The information can be gathered by
various methods, such as keyloggers or file
system crawlers. It can be sold on the black
market or used by the botmaster herself for
other purposes. Obviously, having more bots
means more gathered information.

Pay-per-install[9]

Already infected machines can be sold to
other botmasters so that they can install their
own malware in an easy fashion. In such a
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pay-per-install scheme, the other botmaster
doesn’t have to devise a way of spreading the
malware on its own. Having more bots in
the pay-per-install botnet means that more
“installs” can be sold.

Click Fraud[10]

A botmaster can also use his botnet to gener-
ate clicks on his own website’s advertisements,
with the goal of getting paid for each click. If
there are More bots in the botnet, this means
more clicks and thus more money.

Mining or stealing Bitcoins[58][59]

Mining or stealing bitcoins is a relatively new
botnet activity. Bitcoins[60] are a digital cur-
rency based on cryptographic principles that
started emerging around 2009 and has grown
to quite a big user base[61]. The idea be-
hind Bitcoins is that they can be “mined”
(basically generated) on a computer and that
they can be used in anonymous but verifi-
able transactions to purchase goods. Bitcoin
mining requires significant computational re-
sources; the more resources one has avail-
able the quicker one can generate Bitcoins.
The massive computational power a botnet
provides can thus be used to mine Bitcoins:
having more bots means more computational
power and thus more Bitcoins. Of course, one
can also try to steal other people’s Bitcoins
as they are stored in a file (called a “wallet”)
on the computer.

Cyberwarfare[11]

Malware can be used by political groups or
nations to attack another political group or
nation, with the intention of causing damage
or disruption to the target’s systems, or to
steal information. This activity was first seen
with the Stuxnet virus which was allegedly
designed by the United States of America to-
gether with Israel to impair Iran’s uranium
enrichment capabilities. Another example is

the Flame virus, which sends screenshots,
keyboard activity, network traffic and docu-
ments from the infected computer to its C&C.
Flame infections were initially only found
at government organizations and prominent
state officials in Middle Eastern countries,
leading the belief that it was indeed an act
of cyberwarfare.

Both these examples were targeted attacks,
instead of the erratic, non discriminant in-
fection behaviour we see with “regular” bot-
nets. Nonetheless, we classify cyberwarfare
as a botnet activity because of other prop-
erties: both viruses were designed to spread
to other systems and both were controlled
from a central location. As the attacks were
targeted and never meant to leak out to the
public, this is one of the few botnet activities
in which larger numbers aren’t directly bene-
ficial to the botmaster.

Botnet improvement

Using the bots in the botnet to enhance
the botnet itself by raising botnet resilience,
stealth or churn (see section 2.2). The ex-
act methods will be explained later, but this
usually means using the bots as a “shield” of
sorts, to make sure that researchers are un-
able to find the real identity of the botmaster.

Hacktivism[62]

Even though hacktivism isn’t strictly a botnet
activity, it is worth mentioning here. Most
of the activities mentioned above can also be
used from an idealogical instead of a mone-
tary standpoint. Instead of trying to make
money, people use botnets to get a political
standpoint across. These protests often take
the form of so-called opt-in DDoS botnets.
These botnets are formed by people who will-
ingly install a piece of software on their sys-
tem after which their system can join in on a
DDoS attack. These attacks are usually tar-
geted against websites that publicize a politi-
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cal opinion different from the attackers’ opin-
ion. An example of such an opt-in DDoS bot-
net is the attacks by hacker group Anonymous
on the website of the Scientology church, in
which people could install the LOIC1 tool to
join in on the DDoS attack[63].

2.1.3 Comparing botnets to regular
cloud services

Parallels can be drawn between botnets and
regular cloud services, such as Amazon’s EC2.
Both provide massive computational power,
network bandwidth and storage. Some bot-
nets provide lease services, where one can hire
part of the botnet to perform tasks such as
the ones mentioned above, but also for use
as a regular hosting service or computation
platform[64][65]. Botnets and cloud services
also provide a level of resilience: a service
that runs on top of either of the two infras-
tructures can remain online even if some of
the nodes that make up the infrastructure get
taken down.

The three botnet aspects that we will discuss
in the next section, however, reveal some dif-
ferences as well. First of all, because of the il-
legitimate nature of botnets they tend to have
a stealthy setup, trying to hide as much of
the infrastructure as possible from the outside
world. Secondly, the composition of nodes in
a botnet changes more rapidly than in a regu-
lar cloud service. Regular cloud services usu-
ally only swap out nodes if they suffer hard-
ware failure and add nodes when the com-
putational requirements surpass the computa-
tional power available. The involuntary par-
ticipation of the infected machines in a botnet
means that the number of node joins and node
leaves is much higher than in a regular cloud
service. A final difference is the number of ille-
gitimate services ran from a botnet; a regular
cloud service has strict rules on what activ-
ities are allowed and which are not whereas

a botnet (even a rented one) can be used for
any and all activities.

In some ways, cloud service providers could
learn from the evolution of botnets. Meth-
ods for decentralized control, dealing with
node failure and dealing with the heterogene-
ity of the operating systems of different nodes
are all problems shared between cloud service
providers and botmasters.

After this brief overview of the botnet world
we will now discuss the characteristics of bot-
nets over the years.

2.2 Botnet characteristics

Today’s botnets have come a long way from
the IRC based bots that were used at the be-
ginning of the 21st century. In this chapter we
will provide an overview of historic and cur-
rent botnet characteristics. We will discuss
these characteristics in light of three main
botnet aspects: resilience, stealth and churn.

Resilience indicates how well a botnet can
withstand takedown. Setting up a botnet
takes time and money, so keeping the botnet
online as long as possible raises the botmas-
ter’s return on investment.

Stealth means how well a botnet can stay hid-
den from researchers and targets. The longer
a botnet stays hidden, the longer it can oper-
ate without problems. Stealth also indicates
how well the botmaster can stay hidden in
case of an investigation.

Churn has everything to do with the spread-
ing capability of the malware used to create
the botnet. It indicates how fast new ma-
chines are infected and how fast malware is
removed again. As long as the churn is “pos-
itive”, more bots are joining than there are
bots leaving, meaning that the botnet grows
in size.

1Low Orbit Ion Cannon
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These aspects impact the size and availability
of a botnet: a botmaster wants to have a bot-
net with many bots that can operate undis-
turbed for as long as possible. A high posi-
tive churn impacts the botnet’s size because
churn defines how fast bots join the botnet.
A high resilience and good stealth helps to let
the botnet operate undisturbed.

We have chosen these three aspects as they
show what kind of properties botmasters want
in their botnets. Compared to the survey
work by Bailey et al. [12] and Li et al. [13],
our aspects provide a view on the characteris-
tics of botnets that is centralised around the
botmaster’s wishes, instead of focusing purely
on the botnet characteristics from an out-
sider’s perspective.

The following sections will discuss some of
the techniques employed by botmasters to en-
hance their botnets and we will show how
each technique impacts resilience, stealth and
churn. As each of the techniques described
below requires effort to implement, choosing
whether or not to add a given technique to
a botnet will always be a matter of weighing
the implementation costs versus the benefits
that the technique will bring.

2.2.1 Attack vectors

An important factor in the success of a bot-
net is its ability to infect new machines. As
we have seen in section 2 there are many pos-
sible attack vectors, each with its own advan-
tages and disadvantages. Which attack vec-
tor(s) the botmaster employs greatly impacts
resilience, stealth and churn. For instance,
if she chooses to use a virus that exploits a
known vulnerability in some piece of software,
it is likely that the success rate won’t be very
high, as targets have already patched the vul-
nerability. If she develops a virus that ex-
ploits an unknown vulnerability, however, the
chance of infection will become higher, but
developing such a virus takes a lot more time.

Besides viruses that directly attack software
she could also try to use phishing e-mails to
get a target to start the malware or use mal-
ware that spreads using USB sticks only. The
attack vector’s infection rate determines how
fast bots join the botnet and thus has a great
impact on botnet churn.

A second factor that impacts botnet churn is
the speed with which an infection can be re-
moved from a system. If the malware tar-
gets a piece of software that is developed by
a company that hardly ever fixes vulnerabil-
ities in their software, targets are going to
have a hard time protecting their system from
infections. Furthermore, the employed mal-
ware could use rootkit and other process hid-
ing techniques, hiding the malware from the
operating system, making removal a difficult
task. Increasing the difficulty with which the
malware can be removed increases the botnet
churn rate and raises botnet resilience.

The aggressiveness of the chosen attack vec-
tor also determines how stealthy the botnet is
going to be: if 100.000 computers are infected
within a few hours, somebody is bound to no-
tice whereas a slow infection using USB sticks
only may go undetected for quite some time.

2.2.2 Overall botnet infrastructure
and communication channels

Once machines are infected, they need to re-
ceive commands from the C&C. Over the
years a number of different protocols have
been used by botmasters to communicate
with their bots. The botnet business started
with bots controlled through IRC in a purely
centralized fashion. Soon after, botmasters
realized that IRC-based botnets were too easy
to takedown, so they moved to other chan-
nels instead, such as botnets controlled with
an HTTP webserver. Lately, even more ad-
vanced communication channels have begun
to emerge, such as peer-to-peer channels and
even misuse of social networking sites such as
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Facebook or Twitter. In this section we will
look at some of these communication channels
and their impact on the three main botnet as-
pects.

All the different communication channels
mentioned below can be used to add stealth
and resilience to the botnet. A botnet inves-
tigation usually starts with a researcher in-
vestigating an infected machine and trying to
trace control communications from this ma-
chine back to the botmaster. Adding one or
more proxy layers between the botmaster and
her bots means that finding the botmaster
becomes more difficult, thus adding stealth.
Furthermore, controlling the bots using mul-
tiple C&C machines in parallel means that
when a single C&C machine is taken down,
the botnet can still survive, thus raising re-
silience.

IRC based botnets

One of the first programs with botnet char-
acteristics known to the academic world
was Eggdrop[66], an IRC bot used to man-
age and protect IRC channels from takeover
attempts[13]. Although Eggdrop does not
have malicious capabilities per se, it was one
of the first to make multiple programs work
together towards a certain goal under central-
ized remote management. Furthermore, we
see that IRC is the communications channel
of choice for botmasters at the start of the
botnet era. Various bots using IRC as the
primary communication channel have been
developed since Eggdrop, including Slapper,
Agobot and Sdbot, the latter two of which
are still actively seen in the wild[67].

Just like regular IRC users, bots of IRC based
botnets connect to a centralized IRC server.
The botmaster controls the bots by connect-
ing to the same IRC network and then either
gives the bots commands one by one, or lets

all the bots join a single chatroom in which
the botmaster posts commands for all bots
to see. The botmaster can use a public IRC
server or run her own. Both possibilities are
encountered in the field; a public server re-
quires less setup but running one’s own server
provides slightly more anonymity. A third
party server usually logs all incoming connec-
tions, including the botmaster’s IP, meaning
that a takedown operation could uncover the
true identity of the botmaster[68].

Most botmasters use IRC as a control channel
because of its simplicity. Using IRC does not
greatly increase resilience, stealth or churn,
but is easy to setup, easy to maintain and
provides the most basic form of centralised
control. This is probably also the reason
why IRC-based botnets are still seen in the
wild, even though there are plenty of detec-
tion methods available for IRC-based botnets
(see section 2.3).

Web (HTTP) based botnets

In recent years, more and more botnets have
appeared that use communication channels
other than IRC[69]. The reason for this is
probably that it is not very hard to detect IRC
based botnets in network traffic, as proven
by the general interest and the amount of
successful detection methods provided by the
academic world[70][68][71]. To remain be-
yond the reach of the law, botmasters need to
constantly tweak, upgrade and reinvent their
botnet architectures and corresponding bot-
net communication channels. Two of these
new channels are web-based protocols (e.g.
HTTP) and peer-to-peer (P2P) protocols.

Many of today’s large2 botnets use HTTP as a
communication channel: Bredolab (2009)[72],
Rustock (2006)[14], Conficker (2008)[73],
TDL4 (2010)[64] and ZeuS (2007?)[15] are
prominent examples. Using HTTP has a few

2There is a lot of research on how to measure a botnet’s size, here we mean the botnets with the most
overall infections
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advantages over IRC as a communications
channel[16]:

• Firewalls usually allow free access to the
web by default, whereas they may block
IRC traffic. This way, more infected
computers can reach the C&C, effec-
tively enlarging the botnet.

• There is a large amount of “regular”
web traffic, making hiding in the crowd
easy. This adds stealth to the botnet.

• Extra anonymity can be gained by us-
ing a hacked webserver instead of one’s
own machines; there are enough inse-
cure webservers out there. This, again,
raises stealth.

• Encryption of the traffic between a bot
and the C&C can be implemented easily
using HTTPS. This raises stealth, but
also raises resilience as researchers will
have a harder time figuring out how a
botnet works.

In contrast with IRC based bots, web based
bots usually work in a pull fashion; commands
are put online on publicly facing web servers
which the bots occasionally poll to see if there
are new commands.

Peer-to-peer botnets

Recently (starting at about 2003) we started
seeing a third type of communication chan-
nel become popular besides HTTP: peer-to-
peer based communication channels. Start-
ing with the Slapper worm[17] and later the
Nugache and Storm[18] botnets, application
of P2P technology promises to substantially
change the botnet world.

Both IRC and Web based botnets have a
purely centralized control architecture. That
is, the botmaster has all the bots communi-
cate with one or more centralized servers to
receive their commands. These centralized

servers form a weak point in the botnet infras-
tructure; if a law enforcement agency or other
botmaster somehow takes these servers down
the botnet is crippled or even completely shut
down since the bots can no longer be con-
trolled.

P2P techniques can be used to mitigate this
problem[19]. In a P2P botnet, bots have the
ability to contact each other directly, pass-
ing on commands and data from one bot to
another. To give a command to her botnet,
a botmaster contacts a few nodes and gives
them the command. These bots will, in turn,
make sure that the command is passed on to
every node that they know. The receiving
nodes will, in turn, propagate the command
to all the nodes they know, etc. In this way
the command ripples through the entire bot-
net, provided that every node in the botnet
can be reached from the first few (i.e. the net-
work that the bots form amongst themselves
is a connected graph). This simple, flat ar-
chitecture is employed by the Slapper botnet
[17].

Another P2P architecture (such as used by
Nugache) “promote” bots to become so-
called servant bots, putting them hierarchi-
cally above a group of regular bots. From that
moment on, the servant bot is responsible for
relaying commands to these regular bots. If
the servant bot goes offline for whatever rea-
son, another servant bot is chosen to take its
place. Commands can propagate between the
servants in a P2P fashion (one servant noti-
fies another) or again in a hierarchical fashion
where a “super-servant” notifies all other ser-
vants. In this hierarchical architecture, a bot
does not need to know about all the other bots
in the botnet; it suffices if a bot knows those
bots that come “below” it and those that are
“above” it.

The advantage of using such a dynamic hi-
erarchical architecture is that command la-
tency is much lower than in the normal flat
design. Since the flat design has no guaran-
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tees on which bot knows which other bots,
commands can take a long time to traverse
the entire network [20]. The hierarchical de-
sign helps mitigate this issue by making sure
the command travels between the servant bots
first, which amongst each other know all the
bots in the network.

Note that the absence of a centralized com-
mand infrastructure is not a necessity for a
botnet to be classified as a P2P botnet; Storm
is a good example of a “hybrid P2P botnet”,
which mixes a P2P structure with centralized
command and data store components[74].

With regard to resilience and stealth, using
P2P provides some additional advantages over
using HTTP. First of all, since the botnet it-
self provides the C&C machines it is easy to
replace C&C machines that are taken down.
In an HTTP scheme replacement C&C ma-
chines have to be bought or hacked, meaning
a lot of work for the botmaster. Secondly, pe-
riodically changing which machines perform
C&C functions is easy. This provides extra
stealth and resilience to the botnet, as suspi-
cious C&C activities can only be monitored
for a short while on the same machine, after
which the channel switches again.

2.2.3 Using DNS

There are several other techniques botmasters
use to enhance their botnets. In this section
we will look at a few of them. The first three
of these revolve around the use of DNS and
they form three steps of increasing resilience.
One could argue that these techniques also
increase stealth, as they add a layer of indi-
rection between the bots and the C&C, but
since regular DNS has to be publicly accessi-
ble it is also accessible to researchers, meaning
that no additional stealth is provided.

The first and simplest technique involving
DNS is to let bots find the C&C by letting
them resolve a domain instead of hardcod-

ing an IP address. If (part of) the C&C is
taken down by authorities, the botmaster can
change the DNS record to point to a newly
set up C&C infrastructure with a different IP
address, effectively keeping the botnet alive
with minimal losses. Using low TTL values
for the DNS record ensures that bots always
have the latest IP address to connect to.

Sinkholing and domain-flux

One of the techniques researchers use to anal-
yse and disrupt botnets is called sinkholing.
In general network terms, sinkholing means
routing all traffic with a certain destination
away from its original destination and towards
a new destination. The objective for the re-
searcher is to make sure that instead of the
real C&C, the bots in a botnet either can’t
talk to a server at all (blackholing) or talk to a
server under the researcher’s control. The for-
mer technique only disrupts the botnet where
the latter gives the researcher full control, so
he could use it to collect data or even remove
the bot software from the infected machines,
effectively taking down the whole botnet.

There are three ways of sinkholing[21]:

1. Redirect all traffic matching a certain
destination domain name to the re-
searchers machine (DNS based)

2. Redirect all traffic matching a certain
destination IP to the researchers ma-
chine (IP based)

3. Rebind the IP of the destination ma-
chine to the researchers machine (IP
based)

The first measure has to be implemented at
the registrar which handles the registration of
the DNS records in question. The other two
measures can only be implemented at the ISP
which hosts the C&C infrastructure.

Botmasters use several approaches to mitigate
the effects of sinkholing. First of all, most
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botmasters set up their C&C infrastructures
at so called “bulletproof hosting providers”;
providers which do not respond to complaints
from outside parties. As the 2nd and 3rd sink-
hole methods require ISP coöperation, using
a bulletproof hosting provider makes it diffi-
cult for researchers to harm the botnet using
IP based sinkholing.

A simple answer to the DNS based sinkhole
method is to design the botnet in such a way
that no DNS is required at all, as we see with
the Nugache botnet[18]. Besides this, the bot-
master can also make her bots try not just
a single domain but a large set of domain
names when trying to find their C&C. In this
way, researchers will have to sinkhole a large
number of domains, increasing the difficulty of
the operation. A further enhancement to this
scheme is to let the bots create the list of do-
main names anew periodically, based on some
seed (such as the current date). This tech-
nique is called “domain-flux”[75]. Since the
botmaster knows the algorithm and the seed
that the bots will use to generate the domain
names she can calculate a list of domains in
advance, register one of them beforehand and
let it resolve to the C&C server of her choice.
If researchers want to sinkhole a botnet using
domain-flux techniques, they would need to
know which domains are going to be used for a
given period (i.e. by reversing the bot binary),
then register all those domain names before
the botmaster does. If the effort succeeds the
researchers have control of the botnet for as
long as the bots use the same domain name,
since the next period all the bots will gener-
ate a new list of domains. To keep control of
the botnet the researchers would either have
to keep registering all domain names for ev-
ery period to come, or they would have to
change how the bot generates domain names,
a procedure raising legal and ethical questions
because the researcher would have to use the
botnet to change the bot software.

Fast-Flux

Many of the uses of botnets require an in-
ternet facing webserver to distribute mali-
cious content: hosting phishing sites, provid-
ing bots with updates, providing spam send-
ing bots with new e-mail addresses and tem-
plates and sites where password stealing bots
can dump their gathered information (see also
section 2 on the uses of botnets). This proves
to be a problem for the botmaster. If a
static location (such as a rented webserver
or a hacked webserver of a third party) is
used to host the malicious site on, researchers
can find the IP address of this static loca-
tion with relative ease; they can simply re-
solve the domain name found in the phish-
ing e-mail or look at the network traffic of
an infected machine to see where it connects
to. To prevent researchers from finding the IP
address in such an easy manner and to make
taking down these hosting sites harder, bot-
masters can use another dynamic DNS tech-
nique known as “Fast-Flux”[22]. In a Fast-
Flux scheme the botmaster makes sure that
a malicious domain does not directly resolve
to the IP address of the machine hosting the
malicious content, but instead she lets it re-
solve to a subset of all the IP addresses of
bots in her botnet. Since the bot population
in a botnet changes rapidly (bots go offline,
bots come online, new machines are infected,
machines are disinfected by anti virus soft-
ware, etc.), the set of IP addresses that the
domain resolves to needs to change rapidly
as well. The botmaster could even decide to
switch out certain IP addresses based on bot
health; bots with high bandwidth and low la-
tency may be preferable over other bots. Us-
ing a Fast-Flux scheme, the botmaster can use
the bots themselves to host the content, mak-
ing it harder for researchers to take down the
hosting facilities.

An improvement to the Fast-Flux scheme is to
combine it with a reverse proxy scheme. In-
stead of hosting the content on each bot par-
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ticipating in the Fast-Flux, the content can
be hosted on a single server, called the Fast-
Flux “Mothership” in the literature. Each bot
can then act as a reverse proxy, transparently
forwarding requests for content to the Moth-
ership and forwarding every reply from the
Mothership back to the target. This tech-
nique is called a “reverse proxy” because the
bots function as a proxy for a group of servers,
whereas a normal “forward proxy” functions
as a proxy for a group of clients.

Another improvement is to not just use Fast-
Flux for content, but also for DNS itself; be-
sides hosting content every bot can become a
DNS server, accepting and forwarding DNS
queries, providing another layer of redirec-
tion. In the literature this scheme is known
as “double-flux” whereas the simpeler scheme
is known as “single-flux”[76].

The advantages of a Fast-Flux scheme are as
follows:

• Simplicity
Maintaining content on one server is
easier than maintaining it on all the
bots.

• Protection
The extra layers of redirection make it
harder for researchers to find the server
that actually hosts the content in a re-
verse proxy scheme.

• Extended lifespan
If researchers do not fully reverse engi-
neer the bot software it is hard to de-
tect whether the bot uses Fast-Flux and
where the content actually comes from.
Researchers may spend time investigat-
ing machines that are actually dispos-
able assets instead of focussing on the
actual content hosting server.

Overview

Table 2.1 shows an overview of the three
DNS based techniques described above. The
“Speed” column in this table denotes the
relative speed with which DNS records are
changed. Regular use of DNS (e.g. no flux)
in botnets means records are only changed in
case of a takeover attempt, therefore the rel-
ative speed is “slow”. All other techniques
are “fast”. The “Flux scope” column denotes
which DNS parts of the botnet are fluxed, e.g.
DNS entries in that scope are changed regu-
larly.

2.2.4 Miscellaneous botnet enhanc-
ing techniques

We will now discuss some other botnet en-
hancing techniques.

Encoding, obfuscation and encryption

A lot of the research into botnets these
days revolves around reverse engineer-
ing bot software binaries and network
protocols[25][26][14][16]. Botmasters use a
variety of techniques to hamper researchers
in these areas.

To make the code of botnet software harder
to understand, botmasters use encoding and
obfuscation techniques. These techniques re-
arrange and reformat binary code, making it
harder to understand the flow of the program
and often making it hard to read the “use-
ful” code without actually running the bi-
nary. “Packers” can be used to transform
the binary into a self-extracting archive of
sorts, where only the unpacking code is di-
rectly readable through disassembly and the
packed code is not readable until after un-
packing. Besides deterring reverse engineer-
ing efforts, these techniques can also be used
to fool antivirus software based on malware
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Name Speed Flux scope Example botnet

Regular DNS use Slow None Cutwail[23] & Grum[77]
Domain flux Fast Finding the C&C Torpig[24] & Kraken[78]
Single Fast-Flux Fast Malicious content Warezov/Stration[76]
Double Fast-Flux Fast DNS server and mali-

cious content
Storm[79]

Table 2.1: Botnet enhancing techniques using DNS. The Speed column denotes the relative speed with
which DNS records are changed. The Flux scope column denotes which parts of the botnet using DNS
are fluxed.

signatures. Encoding and obfuscation meth-
ods raise the resilience of the botnet, as well as
the stealth if they are used to evade detection
by antivirus software.

Besides encoding and obfuscation, encryption
techniques are also used to hide a bot’s inten-
tions. Encryption of bot communication[25]
as well as encryption of the bot binary
itself[14] has been seen in the wild. Both
these forms of encryption raise resilience and
stealth, as they mask information from re-
searchers, making it hard to detect and un-
derstand the botnet.

TOR/VPN

Regardless of which control mechanism is
used, in the end the botmaster will need to
connect to her botnet command infrastruc-
ture to provide commands to her bots. Rather
simple but effective measures can be taken
in this phase to make sure that it is hard to
track the origin and content of the connection,
namely by using Tor[27] or a Virtual Private
Network (VPN).

Tor is an anonymity providing proxy based on
layered (or onion-like) encryption. It assures
anonymity even in a situation where multi-
ple nodes in the network have been compro-
mised, meaning that it is extremely difficult
for researchers to trace a connection back to
its source. Although at the time of writing,
no fully Tor based botnet designs have been
found in the literature, there have been some

proposals on what such a design should look
like[80].

Besides using Tor a botmaster can easily set
up a VPN service on the server running the
command infrastructure (if there is such a
server). Although a VPN server does not
hide the connection’s origin it will encrypt all
traffic between the botmaster and the C&C,
meaning that it is hard to perform network
analysis on captured network traffic. Such a
VPN has been used in the field, for instance
in the Bredolab and Mariposa botnets[28].

Although TOR and VPN do not explicitly
hide a botnet from outside spectators, they
do provide extra anonymity for the botmas-
ter, so both TOR and VPN usage raise botnet
stealth.

Interfering programs

As more and more offenders see the benefits of
using botnets to make money, competition be-
tween botmasters rises. Computers may get
infected with different pieces of malware be-
longing to different botnets and botmasters
may not be willing to share their profits with
other botmasters. Recently, pieces of malware
have begun to emerge with the ability to re-
move other bots from an infected machine, en-
suring sole dominion over the infected system.
An example of this is the SpyEye bot, which
features a “bot-killer” for its most prominent
rival, the ZeuS bot[29]. This bot-killer tries
to find out whether the ZeuS malware is in-

16



stalled on the infected host and if it is, shut
it down and remove it from the system.

Besides defences against other bots, bot-
masters have also built defences against an-
tivirus software, as seen in recent Agobot
instances[30]. This last feature makes bot-
nets more resilient against removal from the
infected system and also helps the bot stay
hidden from the user, provided that the an-
tivirus software is inactivated in such a way
that it still seems active to the target.

2.2.5 Future botnet developments

As researchers progress their efforts in un-
derstanding, disrupting and taking down bot-
nets, botmasters will need to resort on their
ingenuity to come up with new defense mech-
anisms, new control channels and new ways of
spreading their malware. In this section we’ll
take a brief look at what we can still expect
in the future.

Different control channels

Other communication channels have been
considered besides P2P, IRC and HTTP. The
academic world has evaluated numerous pos-
sibilities, hoping that their research can pre-
emptively identify novel botnet communi-
cation channels so that defensive measures
can be designed before botmasters decide to
use those channels. Examples of such new
communication channels are Bluetooth[31], e-
mail[32], social media (such as Twitter)[33]
and even SMS[34]. Moving to these new chan-
nels means that the tried and true botnet
detection and takedown procedures may no
longer work. This could lead to delays in the
judicial process or even to researchers failing
to detect a botnet altogether.

Mobile botnets

Just like in the general virus world[35], bot-
masters seem to become interested in mo-
bile phones as well. Starting with the
SymbOS/Yxes[36] worm, serious advances
have been made in building mobile malware
capable of being controlled from the internet.
One of the first fully-fledged mobile botnets
was built around an iPhone ssh vulnerabil-
ity, exploited by iKee.B[37]. This bot can
pull new commands from a webserver using
the phone’s internet connection and is able to
spread to other phones by exploiting the same
vulnerability on phones connected to the lo-
cal network. Because more and more people
use their phones for mobile banking, mobile
malware may the new platform of choice for
botmasters[38]. So far there have been no re-
ports of C&C infrastructures moving to mo-
bile platforms as well.

Botnet builders

While building and running one’s own bot-
net is a profitable business[81], it brings with
some risks that not all botmasters are will-
ing to take; getting caught is always a real
possibility. Therefore, some choose to take
botnet business exploitation to the next level,
designing and building “bot kits” which cus-
tomers can buy, after which customers can
create their own botnet with just a few mouse
clicks. Examples of this are the ZeuS and Spy-
Eye kits.

Paying customers can buy additional modules
if they need specific functionality such as an
information stealer or a form grabber for a
specific browser. They can also buy updated
malware in case too many systems have had
vulnerabilities patched and the existing mal-
ware starts losing potential. Lastly, if cus-
tomers find issues within the kit or within the
bots that it builds, the developer provides full
support[82][83].
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This commercial availability and easy setup
make botnets accessible for a much broader
group of offenders, leading to a proliferation
of small botnets. We already see this happen-
ing with the ZeuS and SpyEye kits3.

2.3 Botnet detection

The goal of much of the research into bot-
nets is to provide support to law enforcement
agencies and other parties in their efforts to
disrupt or take down botnets. Besides re-
search into the botnets themselves another big
branch of research is geared towards develop-
ing methods and tools for detecting botnets.
In this section we will take a brief look at the
basics of botnet detection.

In our overview we will make a distinction be-
tween two areas of research: detection based
on malicious traffic and detection based on
C&C traffic. We will discuss both areas and
give some examples of research.

2.3.1 Malicious traffic-based detec-
tion

The first area is focused on detecting botnets
by monitoring network traffic and trying to
find the malicious traffic that bots generate,
i.e. DDoS, spam or malware infection traffic.
Within this area a further distinction can be
made between signature-based and anomaly-
based techniques.

Signature-based techniques focus on deriving
signatures of traffic or behaviour from known
botnets. These signatures can then be used
to search for similar traffic in a live net-
work setting. Two examples of signature-
based detection techniques are Snort[39] (an
open source Intrusion Detection System) and
Rishi[40] (a signature-based botnet detector
for IRC-based botnets). A disadvantage of

any signature-based detection method, be it
for botnets or otherwise, is the reliance on
knowing the signatures in advance; if no sig-
natures are known for a botnet, a signature-
based detection method will not be able to
detect this botnet. This deficiency can be mit-
igated partially by generating the signatures
automatically, such as proposed by Perdisci
et al. in their work on clustering and signa-
ture generation for HTTP-based malware[41],
although they still require a labeled malware
training set.

This disadvantage also brings us to the sec-
ond technique: anomaly-based detection. In-
stead of relying on patterns that need to be
known in advance, anomaly-based detection
focuses on network traffic anomalies, such as
high traffic volumes, suspicious packet sizes or
anomalies in network flow data. Early work in
this area was performed by Binkley et al. [42]
in 2006, who developed a detection methodol-
ogy for IRC-based botnets based on the obser-
vation that “IRC hosts are grouped into chan-
nels by a channel name [..] and that an evil
channel is an IRC channel with a majority
of hosts performing TCP SYN scanning”[42].
They analysed a year’s worth of network traf-
fic to create 2 sets of groups of hosts. One set
consists of groups of hosts that are in the same
IRC channel based on IRC commands in the
captured TCP packets. The second set con-
sists of all hosts that have a high “work load”,
defined as the ratio of TCP control packets
versus the total number of TCP packets. This
metric is meant to find hosts that are perform-
ing port scan activities as their work load is
higher than the work load of normal hosts. If
a high percentage of hosts in an IRC chan-
nel also has a high work load, it means they
are probably all performing port scans and
chances of those hosts being part of a botnet
are high.

A bit later, in 2007, Gu et al. [43] de-
signed and implemented BotHunter, a bot-

3See the ZeuS and SpyEye trackers at http://abuse.ch
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net detection system based on following the
dialog between a host trying to infect an-
other host. They modelled the infection pro-
cess as a loosely ordered series of informa-
tion exchanges, such as port scanning, in-
bound exploitation, new malware download-
ing and C&C communications. They combine
this model with information from an IDS in
which they model each of these information
exchanges using packet contents, netflow data
and payload signatures for known botnet. By
correlating the information from the IDS with
the infection model they are able to detect bot
infections in the monitored network.

The same team also designed BotMiner in
2008[44], which incorporates both malicious
traffic and Command & Control traffic. They
look at two types of traffic, designated by
them as C-plane (“Who is talking to whom”)
and A-plane (“Who is doing what”) traffic.
The C-plane traffic is captured by a regu-
lar netflow capture tool. This “C-flow” data
shows which hosts were talking to each other
during a day. The flows are clustered by
projecting them into a space and then us-
ing Ξ-means clustering. The A-plane traffic
is captured by a modified version of BotH-
unter. Each record in the A-plane is grouped
by recorded activity and then each group is
clustered further using specific activity fea-
tures. For instance, for the activity “send-
ing spam” one could cluster using the desti-
nation of the SMTP connection or the content
of the spam message. After both the C-plane
an A-plane data is clustered, a cross-plane
correlation is performed to determine which
hosts performed similar activities in the A-
plane and appear in the same C cluster. This
finally shows which hosts are probably part of
the same botnet.

Work by Ehrlich et al. [45] is a methodol-
ogy geared towards spam. Using a classifier
based on a Bayesian classification of a labeled
training set, they divide spam and non-spam
SMTP traffic. They then determine whether
the spam senders also communicate with a

C&C by looking at the entropy of the lo-
cal and remote ports used for each connec-
tion and comparing that entropy to models of
known botnet spam senders and known non-
botnet spam senders. They then try to find
this C&C by combining several flow-based
metrics with DNS metadata to find a sin-
gle source of control for all the found spam
sources, making this another method combin-
ing malicious traffic and C&C traffic.

Each of the detection methods has its own
shortcomings. Lying a focus on IRC botnets
only, such as Binkley et al. have done, may
no longer be sufficient, as botnets are moving
away from their IRC base. The BotHunter
detection process relies, in part, on the detec-
tion of inbound exploitation attempts, by us-
ing Snort rules for specific exploits. In the val-
idation they provide for their method, almost
every successful detection was based on de-
tecting a known botnet malware. It is unclear
whether their methods work as well as they
claim for unknown pieces of malware. Fur-
thermore, their detection method is based on
a bot communication model, something that
may change for future botnets. BotMiner in-
corporates BotHunter as part of its detection
method, making it vulnerable to the same
weaknesses. None of these detection meth-
ods are capable of detecting the C&C if they
find a botnet, they require additional analysis
of the malware. The spam-based method pro-
posed by Ehrlich et al. uses traffic statistics
from SMTP servers to determine whether a
bot sends spam or not. Botmasters can evade
detection by using legitimate mail accounts,
using stolen webmail login credentials.

It is also interesting to note that the detec-
tion methods mentioned above focus on spe-
cific malicious activities: malware infections,
port scanning and sending spam. None use
malicious activities such as DDoS, informa-
tion stealing or click fraud; it may be prudent
to develop detection methods based on these
activities.
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2.3.2 Command & Control traffic-
based detection

As the goal of botnet detection is usually to
find the C&C and shut it down, focusing on
malicious traffic might not be the best ap-
proach; instead one could also try to find
the C&C directly, by finding and analyzing
the communication between the C&C and the
bots.

An interesting field of anomaly-based bot-
net detection research in this area is the re-
search based on “IP flows”, as we have al-
ready seen above. This relatively new field
acknowledges the problem of using full packet
inspection to analyse network traffic due to
the sheer amount of processing required and
instead focuses on aggregate information in
the form of IP flows. These flows are gathered
for every connection made through a central
point (such as a router) from one host to an-
other and encompass general network statis-
tics about that connection, such as times-
tamps, the number of transferred bytes and
the number of sent packets. Based on this in-
formation one can perform an anomaly-based
traffic analysis to find indicators of botnet
traffic[46].

In 2007, Karasaridis et al. [47] provided
a detection method for IRC-based botnets
based on IP flows. They propose a multistage
approach starting with trigger information
of suspicious activities from distributed con-
sumer IDS systems to find suspicious hosts.
All flows from and to these hosts are gathered
and filtered using three different approaches.
Firstly, all traffic to known IRC ports is gath-
ered. Secondly, if a host has many incoming
connections it may be a control hub, so traf-
fic to such a hub is gathered as well. Lastly,
they used an (undocumented) flow model for
IRC traffic to classify flows that are probably
IRC traffic. This filtered data, which they
call “Candidate Controller Conversations”, is
then filtered again in two steps. First, if many

flows point towards the same destination ad-
dress and destination port, that destination is
marked as a possible C&C and all flow sources
are marked as suspected bots. All destina-
tions are rated on the number of suspected
bots and destinations which fall below a cer-
tain threshold are discarded for further eval-
uation. All flows to the remaining destina-
tion hosts are compared to the IRC traffic
model again, to determine which destination
address/port combinations are most interest-
ing. For each item in this final list of ad-
dress/port combinations a heuristics score is
determined, based on how periodic the flows
are for the item. All these calculated metrics
are combined in a confidence score, which fi-
nally rates how likely it is that a given host is
a C&C.

Later, in 2008, Gu et al. [48] designed Bot-
Sniffer. BotSniffer uses IP flow information
along with payload information to determine
which nodes in a network respond to the same
query within the same time frame and with a
high similarity in payload content. Using this
“spatial-temporal correlation and similarity”
they can find which computers are part of a
botnet.

A different approach was taken by Livadas et
al. [49], who use machine learning techniques
to first distinguish IRC from non-IRC traf-
fic and then to distinguish botnet IRC traf-
fic from non-botnet IRC traffic. They evalu-
ate different machine learning methodologies
(such as J48, naive Bayes and Bayesian net-
work classifiers) and conclude that, although
difficult and quite sensitive to the quality of
the training data, using machine learning for
botnet detection should be feasible.

Later work by Strayer et al. [68] and Ehrlich
et al. (see above) proves this conclusion by
using various machine learning techniques to
detect botnet C&C traffic and ultimately, the
C&C itself. The work by Strayer et al. uses
a set of increasingly more complex analyzers
to find out which hosts are part of a bot-
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net and determine the botnet C&C. They
start with some basic filtering of the flow
data based on white/blacklists and some sim-
ple flow attributes to remove non-TCP traf-
fic, port scans, high-bitrate flows, flows with
very large packets and flows with a short du-
ration. Then a classifier tries to determine
which flows have chat-like characteristics, us-
ing machine learning classification algorithms.
This step was unsuccessful in their training
set as the false positive and false negative rate
was too high for all tried algorithms, but can
probably be improved with a better training
set. The third step is a flow correlation step,
which is implemented in a fashion similar to
the C-flow clustering mentioned earlier in the
BotMiner summary. Each flow is projected
in a d-dimensional space, using different at-
tributes of the flow for each dimension, and
the normalized Euclidean distance between
two flows determines whether flows are close
to each other; if the distances are close to 0
chances are good that the flows are somehow
related. The final step in the determination
process is to analyze the clusters of flows with
a low distance to each other and look for the
host that has the most incoming connections;
this host is most likely the C&C, the other
hosts are most likely bots.

Ramachandran et al. [50] use data on DNS
blacklist lookups, which botmasters that want
to send spam perform to see if their bots are
placed in a DNS blacklist, as a measure to
see which systems are infected. They build a
DNS blacklist query graph from data gathered
from the blacklist query logs from ISPs. An
edge from A to B in such a graph denotes that
host A queried the blacklist to see if host B is
on it. They then examine the graph to look
for two properties: Spatial relationships and
Temporal relationships. A legitimate SMTP
server will send queries to the blacklist to find
out if connecting hosts are legitimate, but the
server itself will be the subject of queries by
other hosts as well, i.e. it is the object and
subject of queries. A botmaster only queries

about its own hosts, but is never the subject of
queries, so this should be visible in the graph
by nodes with a high out-degree and a low in-
degree. For the second property, a comparison
between the arrival of e-mail and the arrival of
blacklist queries is performed. Queries from
legitimate SMTP servers will correlate with
the arrival of e-mail whereas queries from bot-
masters will not. This property wasn’t tested
by the authors and remains the topic of future
work.

A final mention here should also go to Bot-
Miner (see above), as their approach uses IP
flow information to find hosts with similar
traffic characteristics (i.e. bots).

As already discussed by Sperotto et al. [46],
a lot of the C&C traffic based botnet detec-
tion methods are based on analysis of netflow
data. Active evasion by botmasters could im-
pair these detection methods. As they are all
based on detecting anomalies in the traffic,
botmasters could try to shape their bot traf-
fic even more like regular HTTP traffic, effec-
tively hiding their botnet. Another reason for
concern is that none of these detection meth-
ods can detect P2P botnets. The dynamic-
ity of the botnet world means that detection
methods will have to evolve as well, if we are
to stay ahead of the threat.

2.3.3 Comparison

In this section we will compare the mentioned
detection techniques using some of the com-
parison metrics Feily et al. [51] used in their
botnet detection survey. The results are pre-
sented in table 2.2. The “Low false positive”
metric is high or low compared to the best
false positive rates found in the field, espe-
cially those of BotMiner and the project by
Ehrlich et al, which were both around 2%.
In some cases no false positive and/or false
negative measurements were performed or the
measurements were too unclear for interpreta-
tion, in which case the table lists a question
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Class Ref
Name or

researcher

Unknown
bot

detection

Protocol &
structure

independent

Encrypted
bot

detection

Low false
positive

[39] Snort × × X ×
[40] Rishi × × × ×
[41] Perdisci × × × X

Malicious
traffic based

[42] Binkley X × X ?
[43] BotHunter × × × X
[45] Ehrlich X X X XHybrid
[44] BotMiner X X X X
[47] Karasaridis X × X X
[48] BotSniffer X × X X
[49] Livadas X × X ×
[68] Strayer X × X ?

C&C traffic
based

[50] Ramachandran X X X ?

Table 2.2: Comparison of botnet detection techniques

mark. The “Encrypted bot detection” met-
ric indicates whether a detection technique
can detect bots even though the traffic that
is analysed is encrypted.

It is worth noting that the low false positive
rates are mainly encountered in later work
(e.g. after 2008), which is to be expected in
a starting field of research. Another observa-
tion is that there aren’t many detection tech-
niques that are protocol & structure indepen-
dent. Given the variety of today’s botnets and
the ingenuity of the botmasters, it would be
prudent to focus on developing more gener-
ally applicable detection methods in the fu-
ture. A last observation is that the newest
and most successful research uses information
both from the malicious traffic as well as the
C&C traffic.

2.3.4 Conclusion

In the past pages we have discussed bot-
nets and botnet detection methods. We have
looked at the general design, at botnet uses,
at botnet characteristics and at the ways re-
searchers try to detect botnets.

We see that botnets grow in sophistica-
tion over time, as do the detection meth-

ods provided by the literature. Recent news
items[84][85][86] show the interest in botnets
by law enforcement agencies and large soft-
ware companies alike.

As already discussed in the introduction, all
detection methods we have seen focus on net-
work traffic in one form or another. In the
next few chapters we will discuss a novel bot-
net detection method based on file system in-
dicators. We will show the results of applying
our method to a test dataset and discuss some
of the advantages and shortcomings.
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Chapter 3

Method

We set ourselves the goal of determining
whether a given computer system contains a
botnet C&C or not. As discussed in the intro-
duction we want to focus on the file system,
so we assume that we only have access to the
computer’s hard disk. In the forensics world
it is customary to process hard disk informa-
tion in the form of disk images, created by
tools such as “dd”, “FTK” or “EnCase”, so
we assume that the disk information from the
computer(s) we want to research comes in the
form of a disk image. This disk image can be
created from a physical or a virtual machine.

There are multiple ways of looking at hard
disk information. One way is to process the
information available through the file system.
This means that the file system needs to be
intact, uncorrupted and unencrypted. Us-
ing this method one can look at the informa-
tion present on the disk as if it were a regu-
lar local disk, including directories, files and
metadata. Another way of looking at hard
disk information is by ignoring the file sys-
tem altogether and processing the raw data
stream available from a hard disk. An advan-
tage of this method is that all information on
the disk will be processed, even information
that is hidden outside the regular file system
boundaries. The first method may miss in-
formation if the file system is corrupt, if file
systems are removed from a disk or if a sus-

pect hides files outside the file system on pur-
pose. A disadvantage of the second method
is that every single byte of the disk needs to
be processed, even if most of the disk contains
garbage data, making this method slow com-
pared to the first method. It also has another
problem: if we can’t use information from the
file system we do not know where files start
and end on the disk, meaning that finding the
contents of a single file may be cumbersome.

For our botnet detection, we don’t need to
have the guarantee that all possible evidence
is found and processed. Furthermore, we try
to identify simple indicators which can be lo-
cated relatively fast, so we will use the first of
the methods described above. In this context
the word fast means that we don’t want to
have to parse every byte of every file on the
file system, looking for indicator matches.

3.1 Dataset

Before we dive into the indicators themselves,
we need to discuss the dataset we use to de-
rive the indicators from, as well as the dataset
that we use to test our detection method.
The dataset that we use consists of a total
of 207 disk images that were created from 129
confiscated computers in the “Tolling” case,
run by the National High Tech Crime Unit
of the Dutch National Crime Squad. The to-
tal size of the dataset is 23TB of compressed
EnCase images, about 57TB of uncompressed
data. The images have been created using the
EnCase R© Forensic software.

The Tolling case was a botnet takedown case
in 2010, in which the C&C for the Bredolab
botnet was taken down. Strictly speaking
there is no such thing as the Bredolab bot-
net, as the malware that was used seems to
keep resurfacing under different names. The
name Bredolab is most often used to denote
this specific botnet setup, however, so we will
use it in this fashion.
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The C&C infrastructure itself consisted of 6
different computers, each with its own func-
tion. Besides the Bredolab computers a lot
of other computers were confiscated in the
same case, all of which belonged to the same
bulletproof hosting provider. A bulletproof
hosting provider is an individual or organi-
sation that provides webhosting or dedicated
servers with a high level of leniency towards
the content that is distributed with the pro-
vided webhosting or server. Bulletproof host-
ing is used extensively in the spamming and
copyright infringing content distribution in-
dustries. In this particular case a bulletproof
hosting provider called John Datri rented
servers from LeaseWeb, one of the largest
hosting providers in Europe. He then sub-
leased these servers to third parties, with the
guarantee that these third parties would re-
main anonymous with regards to LeaseWeb.
The Bredolab botmaster rented his servers
from this bulletproof hosting provider. There
was sufficient evidence to suggest that the
other computers that John Datri rented out
were also involved in illegitimate businesses,
be it botnet related or otherwise, so the Dis-
trict Attorney decided that these other com-
puters should be confiscated as well.

For our research, we discard all images that
have no valid file system. We can see whether
a disk has a valid file system by looking at
the Master Boot Record (MBR), to find out
whether the disk is partitioned and if so,
which file system type is used for each par-
tition. To determine this information pro-
grammatically we use the open source foren-
sics toolkit “The Sleuth Kit”[87]. 45 images
were removed from the set in this step.

We also discard all images containing the
Windows operating system, which removes
another 60 images. The reason for this is
that a lot of well-known botnet C&C’s are
known to run on Linux, including ZeuS, Spy-
Eye, Flame[88] and Bredolab. Because of this,
the indicators we have gathered come only
from C&C’s that are installed on Linux. The

directory structures for Unix operating sys-
tems and the Windows operating system dif-
fer substantially, leading to a difference in in-
dicators. Furthermore, the tools used most of-
ten for hosting websites and databases are dif-
ferent between Windows and Unix operating
systems, meaning that searching for certain
indicators may become difficult or even im-
possible. Adding support for searching Win-
dows file systems as well remains future work.

After this filtering, 102 images remain, be-
longing to 90 different computers. Six of these
images belong to the Bredolab C&C infras-
tructure. In order to validate our method we
labelled each of the images in this final 102
as “botnet” or “clean”, by manually looking
through the file system on each image to de-
termine whether it contains C&C related ma-
terial. The distribution of these labels can be
seen in table 3.1. All the Bredolab images are
classified as “botnet”. Within the rest of the
images we have found that 18 images contain
botnet control software, making a total of 24
botnet images.

3.2 Indicators

To determine whether a given system contains
a botnet C&C or not, we want to search its
file system for indicators that reveal the pres-
ence of a C&C. However, before we can start
searching, we need to know which indicators
to look for.

It is worth explaining our use of the term
“C&C” for this section. There are two mean-
ings to this term: the broad term for “entities
that control the bots in botnets” and the nar-
row term used when indicating a specific C&C
infrastructure for a specific botnet, i.e. “The
Bredolab C&C”. We will try to find indicators
that are present in as many different C&C’s
as possible, in the narrow sense of the word.
The distinction between these two meanings
leads to two different approaches:
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Bredolab C&C Other Total

Botnet 6 18 24
Clean 0 78 78
No valid file system 0 45 45
Windows 0 60 60

Total 6 201 207

Table 3.1: The number of Bredolab and other disk images

One approach would be to build a database
of the files making up the C&C’s belonging
to as many known botnets as possible, then
look for those files on the file system, i.e. a
signature-based approach. If a number of files
in this database are found on the file system,
we can be pretty sure that there is a C&C
present. This method is similar to the way
most antivirus programs try to detect viruses.
Unfortunately, this would mean that we can
only detect C&C’s for known botnets, as our
indicators would be too botnet specific.

Another approach would be to collect a num-
ber of C&C’s for known botnets and try to
distill generic C&C indicators from this collec-
tion, incorporating information from the lit-
erature and opinions of field experts. There
is no guarantee that the indicators that re-
sult from this process will be present in the
C&C’s of future botnets, but it would be a
step in the right direction. We have chosen
to use this approach for our research. In the
next few sections we will discuss how we came
to our indicators.

We have used two sources for gathering known
C&C’s. The first source is the leaked versions
of ZeuS and SpyEye, as discussed in section 1.
For the second source we used part of our
dataset. To this end, we divided the dataset
into a “indicator group” and a “test group”.
In the indicator group, we included the full
Bredolab infrastructure (6 images) and two
other images labeled as botnet. All the other
images are part of the test group. The full dis-
tribution of images can be seen in table 3.2.

Besides these two sources we have also spoken

with experts in the field of botnet research
and botnet takedowns. These are:

1. The digital investigators who were
involved with the Bredolab case at
NHTCU, who know the Bredolab
dataset well and helped devise the indi-
cators “File Type” and “Database table
name”.

2. The Director of the Digital Crimes Unit
at Microsoft; Kayne Naughton at Shad-
owserver; a legal consultant at Fox-IT
and a number of technical representa-
tives of the NCSC (former GOVCERT),
all of whom helped to validate the de-
tection method.

Besides these expert opinions a number of
academic publications have helped our under-
standing of the inner workings of certain com-
mon botnets, such as ZeuS[15], SpyEye[29]
and Cutwail[23]. These papers show how
more and more bots use the http protocol to
communicate with their C&C, which in turn
tells us something about the way the C&C is
set up.

Below follows a list of the indicators we have
gathered. For each indicator we discuss the
reasoning behind it and we will say something
about the robustness of the indicator. The
robustness of an indicator shows how hard it
is for a botmaster to adapt their C&C soft-
ware such that the indicator no longer applies.
For instance, the robustness of the “Database
table name” indicator is “fragile”, because a
botmaster can change the names of the tables
the C&C software uses, after which we can
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Indicator group Test group Total

Botnet 8 16 24
Clean 0 78 78

Total 8 94 102

Table 3.2: The number of disk images in the indicator and test groups

no longer detect the C&C using that specific
indicator.

3.2.1 Database table name

The Bredolab C&C, as well as the ZeuS and
SpyEye C&C all use suspicious names for the
tables in the database that they use to store
information about each bot. Examples are
“bm2bots stats” or “4bnevbotstatus”. We
try to find out where the database is located
on disk by parsing the configuration files for
the database software. We then extract the
database table names and see if they contain
the word “bot”.

Robustness: fragile, because a botmaster can
change the names of the tables used by the
C&C software.

3.2.2 File size

Law enforcement see full disk encryption and
encrypted vaults more and more often in their
cases[89][90][91]. It makes sense for a botmas-
ter to put the vital parts of the C&C in an en-
crypted vault as it will make forensics of the
machine virtually impossible without getting
hold of the encryption key or accessing the
machine while the vault is already opened. If
the botmaster ever gets caught by law enforce-
ment, hiding the C&C software and data in
an encrypted vault may deny law enforcement
access to crucial evidence to make a case.

However, simply looking for large files on the
file system gives us many false positives. If
the server is used for sharing movies or host-
ing virtual machines, for instance, large files

will be present, but the machine doesn’t nec-
essarily contain an encrypted vault. Calculat-
ing the entropy of each large file also doesn’t
solve this problem as movies or other large
files may have the same entropy characteris-
tics as an encrypted vault and on top of that,
calculating the entropy of a file takes a lot of
time.

We try to lower the number of false positives
by marking an image as suspicious if and only
if the number of files over 1GB is larger than 0
and less than 5. Of course, even if the large file
is an encrypted vault, this does not necessarily
mean that the machine is botnet related. The
next chapter will show whether this indicator
yields many false positives or false negatives.

Robustness: medium, if a botmaster wants to
use encrypted vaults these will usually be de-
tectable. A botmaster can, however, use full
disk encryption instead of encrypted vaults, in
which case there is no access to the file system
and thus no files to look for.

3.2.3 SQL queries

This indicator is an extension of the database
table name indicator mentioned above. For
all web hosting related scripts we find on a
file system, we try to see if hard coded SQL
queries contain the word “bot” using a regular
expression and if so, mark the system contain-
ing the scripts as suspicious.

Robustness: fragile, as with Table names, a
botmaster can change the SQL queries to cir-
cumvent the indicator.

26



3.2.4 File type

Bredolab was a so-called pay-per-install bot-
net. The botmaster used Bredolab as a plat-
form to distribute other pieces of malware for
third parties in exchange for money. As we
only look at Unix operating systems the pres-
ence of Windows binaries, especially if they’re
known pieces of malware, is suspicious. We
use the libmagic library1 to discover the file
type of files in the file system. If a file is
a Windows binary, we calculate its SHA-1
hash. We use this hash to search through the
Virustotal2 and Team Cymru3 malware hash
databases to see if the file is a known piece of
malware.

Robustness: medium, a botnet needs (Win-
dows) binaries to spread, so these will usu-
ally be present. The indicator can be fooled,
though, by storing the binaries in encrypted
format, or in a compressed file.

3.2.5 Spam lists

The final indicator in our list has everything
to do with spam sending botnets. Many bot-
nets are being used to send spam[92]. Send-
ing spam requires access to large amounts of
e-mail addresses. The two extra images we
have used in our training set contain plain
text files with many e-mail addresses, some-
times multiple gigabytes. We search the files
on the file system for e-mail addresses using a
regular expression and if a file contains more
than 500 e-mail addresses we mark the system
containing the file as suspicious. The reason
we have set this number is because the spam
lists we have encountered are usually quite
large. They contain several million e-mail ad-
dresses, making processing each of these files
completely an arduous task, so we limit the
amount of processing performed.

Robustness: medium, spam sending botnets
will always need access to large numbers of
e-mail addresses, but a botmaster can try to
hide the spam lists, for instance by encoding
or encrypting them.

3.2.6 Web script file name

In section 2 we have already seen that many
botnets are controlled via the HTTP proto-
col. We also see this in the Bredolab, ZeuS
and SpyEye C&C’s. We can use the indica-
tor above (database table name) for web host-
ing related scripts as well: some of the PHP
scripts in the SpyEye C&C also have “bot” in
their filename. Therefore, we look for files re-
lated to web hosting (PHP files, HTML files,
CGI files, etc.) with the word “bot” in their
filename.

Robustness: fragile, because the botmaster
can change the names of the web scripts the
C&C software comprises of.

3.2.7 Web script entropy

Another interesting characteristic of the
Bredolab C&C files is that the web hosting re-
lated scripts used to control and monitor the
bots were all encoded with the Zend Guard4

encoder. Zend Guard can be used to encode
and obfuscate PHP files, to make reading or
changing the original source harder for re-
searchers or customers of the botnet. We have
not seen this behaviour in any other C&C
in our indicator group, but it makes sense
for developers of crimeware kits to want to
hide their source files to protect their busi-
ness model; if anybody could modify and re-
sell the C&C source they would soon be out
of business.

1http://linux.die.net/man/3/libmagic
2https://www.virustotal.com/
3https://www.team-cymru.org/Services/MHR/
4http://www.zend.com/en/products/guard/
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We try to find such encoded web script files
by looking at their entropy. The entropy of
a file shows how “random” the content a file
is. If we compare the entropy of the Bredolab
PHP files with the entropy of the PHP files
in some well known PHP frameworks (Word-
press, Zend, CodeIgniter and CakePHP) we
see that the entropy of the Bredolab PHP
files is much higher than the entropy of the
PHP files in the frameworks. The encoding
used for the Bredolab files ensures that the
content has a high entropy, a high random-
ness. The files in the PHP frameworks are
not encoded or obfuscated, so their random-
ness is a lot lower and thus so is their entropy.
The Shannon[93] entropy scale ranges from
1 to 8, where 8 denotes the highest entropy
and 1 is the lowest. The Shannon entropy
number describes how many bits would be re-
quired to encode all the symbols of a given file:
the higher the number, the more bits are re-
quired, meaning that more different symbols
are present in the file, which means a higher
entropy. The Bredolab files all have an en-
tropy between 7 and 8, whereas the “regular”
files have an entropy below 6. Encoding and
obfuscation techniques work on any web host-
ing related script, so we measure the entropy
for every web hosting related script and look
for scripts that have a Shannon entropy above
6.

Unfortunately, encoding and obfuscation
techniques are used in legitimate businesses
as well, by software development companies
that want to keep the source of their products
hidden. Therefore, the false positive ratio for
this indicator may be quite high, depending
on how many of these legitimate uses we come
across.

Robustness: fragile, if a botmaster wants to
hide his code he doesn’t have much choice
but to use obfuscation/encoding, but botnets
such as ZeuS and SpyEye do not use encod-
ing/encryption like the Bredolab botnet does.

3.2.8 Other indicators

There were some other ideas for indicators
that never made it off the drawing board.
These are:

Log parsing

One could parse log files for web servers or
other services to see if many incoming or out-
going connections were seen to many differ-
ent IP addresses in a short time. These com-
munications could indicate that the system
was sending commands to or receiving con-
tent from bots. However, differences between
the way these log files are formatted make this
a difficult task, so we did not implement this
indicator.

Known botnet files

One could also gather as many different C&C
files as possible, then search for the presence
of these files on the system. Beside the rea-
sons already mentioned in the beginning of
this section, gathering these different C&C
files is a difficult task. Laws in different coun-
tries, organizational policies and different ju-
risdictions often make it difficult to get access
to the files, even if they are readily available
for employees.

Popular exploitation tools

Botmasters often use exploitation kits, such
as the Blackhole exploit kit[94], to infect their
targets. They may also hack web servers to
use as a distribution platform for the botnet
malware. It is reasonable to assume that they
have a number of popular hacking tools avail-
able on their systems. One could build an
indicator to search for these tools. There are
a number of reasons we did not implement
this indicator. First of all, we did not find
any exploitation related software other than
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the actual botnet malware on the machines
in the indicator set. Secondly, even if a bot-
master used popular hacking tools they would
most likely be present on his desktop, not on
his C&C machine. Lastly, building a database
of the files of such hacking tools would most
likely require more time than we have avail-
able for this research.

3.3 Detection methodology

Now that we have defined the indicators we
look for, we will discuss the exact method of
searching for these indicators.

3.3.1 Disk images

As already mentioned above, the test group
we have defined consists of 94 EnCase images.
Each of these images contains a (compressed)
byte-by-byte copy of the disks of the confis-
cated systems. To get access to the raw file
system, we first use the “xmount”5 tool to ex-
pose the uncompressed data contained in the
EnCase image. This process creates a virtual
file representing the raw data of the disk im-
age on the local computer. We then use The
Sleuth Kit to identify which file system type is
used and where each partition resides on the
image, measured as an offset in bytes. With
this information we can mount each partition
locally, read-only, using the default Linux ap-
plication “mount”, giving us access to the files
and directories on each partition. We then
proceed with processing this file system tree,
searching for the indicators mentioned above.

3.3.2 The search process

We search by recursively walking over every
directory in the file system. For each direc-
tory we look at which files are available. A file
can be either a regular file or a “special” file,

such as a “symbolic link” or a “block special
file”. As our indicators focus on file metadata
and content, we are only interested in regular
files. The other types of files are used by the
system for a variety of purposes but explain-
ing these is outside the scope of this paper.
We match the file with each of the indicators,
to see if one or more indicators have a hit.

File filtering

Some of the indicators suffer from a high false
positive ratio due to the presence of a specific
set of files; the same files are present on a lot
of different images. We can identify and fil-
ter these files before any of the indicators are
tested. The filtering is performed by compar-
ing the name of each file to a list of patterns
and when a pattern matches, remove the file
from further consideration for this image. The
following files or filename patterns are filtered
out:

• changelog

• /var/lib/rpm/packages

• .cpan/metadata

• /var/lib/apt/lists

These are files that are often present in soft-
ware source code distributions, containing in-
formation on how to contact the programmers
that work on a piece of software. This leads to
a large number of e-mail addresses when a lot
of different programmers are involved, which
in turn leads to a false positive for the Spam
List indicator for every file.

• /mail/root

The pattern /mail/root is found in
the files /var/spool/mail/root and
/var/mail/root. Both these files contain
mail used by the Linux system to relay log-
ging information to the root user. This in-
ternal mail is addressed to an e-mail address,

5https://www.pinguin.lu/index.php
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leading to false positives for the Spam List
indicator.

• /var/log/btmp

The /var/log/btmp file logs each failed lo-
gin attempt, both for local and remote
(ssh) access. If a server has had a pub-
lic function, chances are that ssh brute force
scripts have tried to log into the server us-
ing commonly used user/password combina-
tions. As these logins will fail for any prop-
erly managed server, they are logged into the
/var/log/btmp file. Because of this, the file
will grow in size quickly, generating false pos-
itives for our Big Files indicator.

• robotparser.py

• robotparser.html

• bottom.html

• bottom.php

Both the robotparser files are part of the
standard library of the Python program-
ming language, meant to assist in parsing
robots.txt files. The two bottom files are
found in numerous legitimate web frame-
works, such as Squirrelmail, and the Zend
framework. These four files cause false pos-
itives for the Web script name indicator; they
contain the word “bot” even though they are
not botnet related.

• /doc/cups

Files contained in a /doc/cups directory
are packaged with the CUPS printing sys-
tem. They are documentation files, usually
in HTML, available in different languages,
amongst which are Korean and Japanese. As
these languages use characters that are not
available in the regular ASCII character set,
these files are encoded using UTF-8, which
uses two bytes for each single character. On
top of that, these languages have more charac-
ters than the Latin alphabet. These two facts
combined cause the entropy of these files to
rise above the threshold, which in turn causes

the Web script entropy indicator to generate
false positives.

3.3.3 Proof of concept implementa-
tion

The proof of concept implementation we have
built is written in the Python programming
language. It works in two stages. In the first
stage it performs all of the steps discussed
above automatically for a given list of disk
images. After the mounting process it walks
through the file system in search of files. It
feeds the location of every file it encounters
to a list of plugins, each of which searches for
one or more indicators.

If an indicator matches (e.g. a file is found
containing a lot of e-mail addresses) a report
is generated containing the following details:

• The name of the image

• The full path to the file within the im-
age that matched the indicator

• The indicator that matched

• Some relevant details of the matched in-
dicator and file

The details included in this report depend on
the indicator. For instance, if a file is matched
by the Spam lists indicator we include the file
type and if it is matched by the File size in-
dicator we include the file size.

In the second phase, it performs some post-
processing on the generated report. The sys-
tem that has access to the disk images may
not at the same time have access to internet,
due to the fact that the images are considered
case evidence. This impairs our File type indi-
cator, as we cannot see if the found Windows
binaries are known pieces of malware. In this
second phase we remove any File type indica-
tor hit that is not in one of both databases.

We will try to determine which indicators are
best at correctly identifying images that have
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a botnet C&C. For each indicator, we will
classify an image as suspicious for that indi-
cator if one or more files are found on the
image that match the indicator. We will de-
termine false positive and false negative ra-
tio’s by comparing each classification to the
labels we have given each image; we say that
an image is classified correctly by an indicator
if there was an indicator hit for a file on the
image and the image is labeled as “botnet”.
If an indicator classifies an image as suspi-
cious, but the image does in fact not contain
a C&C we say that the indicator generates
a false positive for that specific image. If, on
the other hand, an image does contain a C&C
but an indicator does not have any hits for the
image, we say that the indicator generates a
false negative for that specific image. A cor-
rect positive classification is called a true pos-
itive; a correct negative classification is called
a true negative. We calculate the false posi-
tive ratio by using the following formula:

FPR =
FP

FP + TN

We calculate the false negative ratio by using
the following formula:

FNR =
FN

FN + TP

In the next chapter we will discuss the results
of applying our proof of concept implemen-
tation to our test dataset. We will also dis-
cuss some advantages and disadvantages of
our method and of each chosen indicator.
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Chapter 4

Results

As we have seen in the previous section, the
dataset that we have used in our experiments
consists of 94 disk images, with a total of 18
verified botnet C&C’s.

4.1 Results per indicator

We have calculated the false positive and false
negative ratio’s for each of the indicators.
These results can be found in table 4.1.

We can see that some indicators perform bet-
ter than others. The Database table name
indicator and SQL queries indicator perform
best on average, both with a low FPR and
average ratio. We also see that the Spam lists
indicator has a high FPR of 33.33%, mean-
ing that an image that does not contain a
C&C has over 30% chance of being classified
wrong by this indicator. The File type indi-
cator has a low FPR and an FNR of almost
47%, so it misses a large number of C&C’s,
even though it almost never misclassifies any
clean machines.

The question is which of the two ratio’s has
more impact on the practical applications of
file system based botnet classification: FPR
or FNR. A high FPR means that when the
classification is used in a triage procedure
there will be a lot of machines that are falsely
accused of containing a C&C. A high FNR

means that some machines that do contain a
C&C will be missed. In this use case we will
probably favour a high FPR over a high FNR:
missing a C&C machine is probably worse
than the extra work involved in investigating
a machine that turns out to be a clean.

As is usually the case in a classification proce-
dure, indicators with a low FPR have a high
FNR and vice versa; there is no indicator with
both a low FPR and a low FNR. Also, the in-
dicators with a low average error ratio (below
20%) are all fragile; they can be circumvented
easily.

4.2 Combining indicators

One way to solve this problem is by finding
better, more robust indicators, but we leave
this endeavor for future work. Another way
would be to “smooth” the rules we use to de-
fine when an image is suspicious. Instead of
using a single indicator we can try to com-
bine indicators; we say that an image is suspi-
cious when a predefined number of indicators
match, regardless of which ones match.

Table 4.2 shows the FPR and FNR results for
this experiment. The headers of the columns
denote the number of indicators that should
match before we regard an image as sus-
picious. We have added a robustness esti-
mate to each column. The robustness lowers
as more indicators are needed for a positive
match: the chance that a botmaster circum-
vents every indicator is much lower than that
a botmaster circumvents one or two indica-
tors.

As expected, when only a single indicator is
needed for positive classification the FPR is
very high and the FNR is very low; the chance
that an indicator matches, regardless which
one, is quite high. We see that as more indi-
cators are needed for a positive classification,
the FPR lowers and the FNR rises. Figure 4.1
shows a visualisation of this. This figure also
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TOTAL 94 94 94 94 94 94 94
FP's 0 18 2 4 39 19 19
FN's 6 11 5 14 2 5 4
FPR 0% 19% 3% 5% 33% 20% 20%
FNR 27% 41% 24% 47% 11% 24% 20%
Average 14% 30% 13% 26% 22% 22% 20%
Robustness Fragile Medium Fragile Medium Medium Fragile Fragile

Table 4.1: FPRs per indicator

1 2 3 4 5 6 7
TOTAL 94 94 94 94 94 94 94
FP's 43 34 18 6 0 0 0
FN's 2 2 3 5 7 13 15
FPR 36% 30% 19% 7% 0% 0% 0%
FNR 11% 11% 16% 24% 30% 45% 48%
Average 23% 21% 17% 15% 15% 22% 24%
Robustness Robust Robust Medium Medium Medium Fragile Fragile

Table 4.2: FPRs when using multiple indicators
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Figure 4.1: Graph of FPR and FNR for different numbers of indicators
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shows where the equal error ratio (EER) re-
sides: between 3 and 4 required indicators.

It is interesting to note that we can reach
practically the same false positive and false
negative ratio’s for this combined indicator
method as we could for the method using in-
dividual indicators. We can see this when we
use 4 or 5 indicators: the average FPR and
FNR ratio’s are comparable to the best indi-
vidual indicators, between 13 and 15 percent.

4.3 Indicator performance
analysis

The indicators Database table name and SQL
queries perform better than the other indica-
tors, especially regarding false positives. An
explanation for this is that both metrics re-
volve around the same principle: database ta-
bles with names containing the word “bot”.
So, either many C&C databases have this par-
ticular trait or all the C&C’s present in our
test dataset belong to the same botnet fam-
ily. The latter explanation is viable as we have
already seen that the crimeware kit business
flourishes, based largely around the ZeuS and
SpyEye kits, which both use database tables
with “bot” in the name.

There are some parts of our indicators that
could be improved:

• The File size indicator does find a num-
ber of encrypted containers, but some of
the C&C machines in the test set don’t
use encrypted vaults. Other large files
that it finds are usually logging files or
spam lists.

• The File type indicator usually gets it
right when it matches, but many of the
C&C’s in the test apparently store the
malware on a different machine than the
one we have in our possession.

• As we have already seen in the section

on filtering certain files, the Spam lists
indicator matches on any file contain-
ing a lot of e-mail addresses, including
a lot of legitimate files. Lowering the
FPR ratio for this indicator even fur-
ther may be accomplished by filtering
out more files, by raising the number of
required e-mail addresses or possibly by
tweaking the indicator implementation
to better match the specific character-
istics of spam lists such as e-mail host
heterogeneity and storage format.

• The Web script file name and Web
script entropy indicators share the same
issue: many files share the same charac-
teristics as the C&C related files, caus-
ing the indicator to match too often.

Combining indicators by requiring a number
of them to match before declaring an image
as suspicious helps to raise the overall accu-
racy. All in all we can see that the number
of machines that an investigator will have to
analyze manually can be reduced by as much
as much as 60% while keeping the number of
false negatives low. Further research may take
this number even higher.
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Chapter 5

Conclusion

In the past pages we have discussed bot-
nets and botnet detection methods. We have
looked at the general design, at botnet uses,
at botnet characteristics and at the ways re-
searchers try to detect botnets.

We have proposed a novel botnet detection
method using file system indicators. We have
seen that we can use individual indicators to
detect botnets with a low false positive rate
and that using a combination of indicators
raises the robustness of the detection method,
while keeping the false positive and false neg-
ative ratio’s within bounds.

5.1 Future work

Unfortunately, there are also a number of
shortcomings to our proposed method. We
will discuss these shortcomings in the follow-
ing sections, providing ideas on how to solve
the shortcoming in each section.

First of all, none of the proposed indicators
have both a low false positive and a low false
negative rate. Using a combination of indica-
tors does not solve this problem, at least not
in the simple manner in which we combine
them. One could think of more intricate ways
of combining the indicators, weighing each in-
dicator’s strengths and weaknesses.

Secondly, none of the indicators we have found
have a high robustness; each indicator could
be circumvented by the botmaster, albeit with
some work. Developing more robust indica-
tors by further studying the file system char-
acteristics of C&C’s would help solve this
problem.

A third shortcoming is that our method is
based solely on Unix like operating systems.
The first Windows based C&C has already
been seen in the Mariposa botnet[25], which
would not have been detected by our method.
Adapting our detection method to provide
support for the Windows file system and de-
veloping indicators that work on Windows as
well as on Linux is required to detect as many
C&C’s as possible.

The dataset we have used to test our detection
method comes from a single source and may
therefore not be the best representation of the
real world. To further validate our methods,
they should be applied to various other data
sources, preferably from parties other than
law enforcement, to make sure they work well
in all scenario’s.

A final mention should go to the speed and
efficiency of the proposed method. The entire
classification process for every image in our
test set took little over 93 hours. Of this total
time, 53 hours were spent on only 2 images,
both of which contain a large number of small
and similar files: session files for a PHP web-
site. Anomalies such as this can be expected
when searching through large numbers of im-
ages, each of which was owned by a different
person. Enhancing the detection method to
deal with such anomalies in a smart way could
lower the running time significantly.

We see that botnets grow in sophistica-
tion over time, as do the detection meth-
ods provided by the literature. Recent news
items[84][85][86] show the interest in botnets
by law enforcement agencies and large soft-
ware companies alike. But as the battle rages
on, it is only a matter of time before botmas-
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ters become so proficient in hiding their bot-
nets that fighting them becomes very much a
cat-and-mouse-game where the mice are nu-
merous, invisible and more vicious than the
cat.
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Appendix A

Proof of concept
implementation

A.1 Modules

The proof of concept implementation consists
of the following modules. The number af-
ter each module indicates the number of lines
of source code, excluding comments, for the
module (SLOC).

classify.py (62)

This is the main module which parses the list
of disk images that the user provides, handles
the logging setup and makes sure reports are
generated based on the results of each plugin.

image parser.py (160)

This module mounts each EnCase image,
searches through the image to look for par-
titions using The SleuthKit python bindings
and mounts each partition. It then walks over
every file available in the file system on the
partition and calls each plugin for each file.

util.py (120)

This module contains a number of utility
functions for file path manipulation, hashing
and functions used to call external libraries
such as xmount and mount.

plugins/1 table names.py (63)

This plugin handles the indicator Database
table name, by parsing database configura-
tion files to look for the location on the file
system where the data files for the database
are stored. It then searches through these files
to look for suspicious table names.

plugins/2 suspicious.py (129)

This plugin handles all other indicators. The
reason all these indicators are handled by a
single plugin is because indicators may reuse
information already generated by other indi-
cators for the same file, e.g. if an indicator
matches and generates a SHA-1 hash, a later
indicator does not need to recalculate this
hash. Another reason is that we only want to
load and process the raw data of a file once,
instead of loading the contents of a file once
for every indicator.

plugins/entropy/entropy.c (49)

Calculating the Shannon entropy of a file re-
quires us to look at every byte of raw data
of a file and perform a number of calcula-
tions for every byte. Instead of performing
this process in pure Python code we created
a Python API1 based module written in C,
which proved to be a factor 20 faster than the
same implementation written in pure Python.
Because this module uses the Python API it
can be loaded as a Python module for easy
access.

tools/lookup hashes.py (56)
tools/virustotal.py (24)
tools/team cymru.py (12)

These three modules are used in the second
phase of the C&C searching process, where
the results for the indicator File type are fil-
tered to include only known malware binaries.

1http://docs.python.org/2/c-api/
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A.2 Performance

A total of 23 TB of compressed EnCase im-
ages takes little over 93 hours to process us-
ing our proof of concept implementation. In
comparison: the manual classification we per-
formed to produce our labeled test dataset
took about 2 weeks. Speed improvements
could be made, however, in the following ar-
eas:

A.2.1 Different programming lan-
guage

We chose Python as the programming lan-
guage for our proof of concept implementa-
tion because of it’s simplicity and it’s avail-
ability of different libraries. Using a “faster”
programming language such as Java or even
C(++) may improve speed.

A.2.2 Parallel processing

Our proof of concept implementation handles
every image in a serial fashion. While pro-
cessing an image, one CPU core of our test
system was fully saturated, whereas the net-
work link was not. Because we handle each
image separately several of them could be pro-
cessed in parallel so we make use of as many
CPU cores as possible, until the network link
is saturated.

A.2.3 Smart file selection

As already mentioned in the conclusion, more
than half of the total running time was spent
only two images containing millions of small
empty files. These files provide a challenge
because a request has to be made to access
each file, even though the file is empty. De-
vising a smarter way of selecting which files
to process could decrease the running time.
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Glossary

botmaster An individual or group in control of a botnet. 5

botnet A large group of networked zombie computers under centralised control. 3

bulletproof hosting provider An individual or group providing access to anonymous and
abuse tolerant web hosting or dedicated servers. 3

C&C An infrastructure used to control the bots in a botnet, either centralised or decen-
tralised. 3

disk image A byte-by-byte copy of the hard disk of a computer. 4

EnCase EnCase is a company that creates software to perform forensics on systems, includ-
ing EnCase Forensic which can create raw byte-by-byte copies of hard disks and perform
analysis on the resulting disk image. 22

file system A means to organize data on a hard disk, usually in the form of directories
containing files. 4

netflow Abstract captured network data including observed connections and high level statis-
tics. 3

takedown Destroying or disrupting botnet activities. 3

triage Deciding which element, from a set of elements, requires immediate attention. 3
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