
 

Ensuring the pigs don’t chicken out 

Improving the use of good practices 

in agile software development 

 

 

 

 

 

 

 

 

 

 

 

Roel van der Hoorn 



 2 

 

Ensuring the pigs don’t chicken out 

Improving the use of good practices 

in agile software development 

 

 

 

 

 

 

 

 

Author:  Roel van der Hoorn 

E-mail:  vanderhoorn@gmail.com 

University: University of Twente 

Master:  Business Information Technology 

Date:  July 1, 2011 



 3 

Summary 

This research takes place in a small company in Enschede, The Netherlands. The company delivers 

web-related IT services and software. Its main activities are web development and web hosting. The 

reason for this research is that managers and developers are not always completely satisfied with the 

software development process. The following research goal is applicable: 

The purpose of this study is to improve the agile software development process from the 

point of view of developers and managers in the context of a small web development 

company with off-site customers by analyzing available documents, doing a literature review 

and conducting interviews. 

This lead to the following research question: 

How can we improve the use of good practices in the agile software development process of a 

small sized company? 

To answer this question, we did an exploratory case study research with the following elements: 

 We used theory on agile methods to describe that the agile software development process 

consists of the collection of agile methods used. 

 We used theory on practices to describe what a good practice is. 

 We used 20 dimensions to describe the context of the company’s projects, so they can be 

easily compared. 

 We analyzed available documents in the company, conducted interviews with managers and 

a developer, and observed the actual software development process to determine what the 

root causes of the problems are the company experiences and what good practices the 



 4 

company uses. 

Based on the data we collected and analyzed, we recommend the following process for improving 

the agile software development process: 

1. Investigate which problems the company has and find out what the root causes of these 

problems are. We recommend using a problem bundle to visualize the dependencies among 

these problems. 

2. Keep track of the good practices that the company uses and doesn’t use. We recommend 

writing the practices in the form of patterns to keep a consistent structure between 

practices. 

3. Try to match potential useful unused practices to the problems the company experiences 

and implement these patterns to solve the problems. 

4. Have managers and developers share among each other which patterns they are using in 

which projects, through a knowledge management system, like for example a Wiki. This also 

allows new employees to quickly gain knowledge how the company works, and ensures that 

knowledge is kept in the organization if someone leaves. 

We believe this process not only leads to an improved use of good practices in the agile software 

development process of a small company, but also encourages managers and developers to find 

solutions to problems they are experiencing, while also keeping knowledge about the development 

process inside the company. 

 



 5 

About the title 

The title of this thesis is based on two groups of stakeholders in Scrum: the so-called “pigs” and 

“chickens”. The names of these groups come from an old joke, as explained by Ken Schwaber (2004): 

A chicken and a pig are walking down the road. The chicken says to the pig, “Do you want to 

open a restaurant with me?” The pig considers the question and replies, “Yes, I’d like that. 

What do you want to call the restaurant?” The chicken replies, “Ham and Eggs!” The pig 

stops, pauses, and replies, “On a second thought, I don’t think I want to open a restaurant 

with you. I’d be committed, but you’d only be involved.” 

The “pigs” are those stakeholders who have a management responsibility in the project, while the 

“chickens” are stakeholders that have no management responsibility, but do have an interest in the 

project. 

In other words, the title of this thesis means this research tries to ensure the “pigs” are being 

committed to the project and are taking their share of the project’s management responsibility. 

More on the Scrum roles can be found in paragraph 3.1.2. 

 



 6 

Preface 

This report concludes my research into agile software development for the master Business 

Information Technology (BIT) at the University of Twente, in Enschede. The actual research for this 

thesis is done in a small sized company. With this master thesis I finish the BIT curriculum and obtain 

the Master of Science grade. 

The report and it results would not be possible without the help and support from my supervisors 

from the University of Twente, Maya Daneva, and Chintan Amrit. Their constructive feedback and 

suggestions always motivated me a lot. Also their knowledge on the subject and relevant literature 

gave me new directions in which to continue and provided me with new insights on the subject. 

Secondly, I would like to thank my colleagues at the company, who provided me with the 

opportunity and space to complete this research. They were very constructive with providing input 

throughout the duration of my research, even when I asked them (too) many questions. They never 

doubted my ability to complete this research. 

Thirdly, I would like to thank my family and friends for their continued support. 

Last but not least, I would like to thank my girlfriend for her ability to motivate, even when my 

motivation was low. 

 

Enschede, June 2011 

Roel van der Hoorn 

 



 7 

Table of contents 

Summary ................................................................................................................................................. 3 

About the title ......................................................................................................................................... 5 

Preface ..................................................................................................................................................... 6 

Table of contents ..................................................................................................................................... 7 

List of tables .......................................................................................................................................... 17 

List of figures ......................................................................................................................................... 18 

1 Introduction ................................................................................................................................... 19 

1.1 Research setting .................................................................................................................... 19 

1.2 Research content ................................................................................................................... 19 

1.2.1 Agile software development ......................................................................................... 19 

1.2.2 Problems ........................................................................................................................ 20 

1.3 Research goal ........................................................................................................................ 20 

1.4 Project context ...................................................................................................................... 21 

1.4.1 Ruby on Rails ................................................................................................................. 22 

1.4.2 Stakeholders .................................................................................................................. 23 

1.4.3 Scrum roles .................................................................................................................... 25 

1.4.4 Extreme Programming roles .......................................................................................... 25 



 8 

2 Research design ............................................................................................................................. 26 

2.1 Research goal ........................................................................................................................ 26 

2.2 Research model ..................................................................................................................... 26 

2.2.1 Phase (a) ........................................................................................................................ 27 

2.2.2 Phase (b) ........................................................................................................................ 27 

2.2.3 Phase (c) ........................................................................................................................ 27 

2.2.4 Phase (d) ........................................................................................................................ 28 

2.2.5 Phase (e) ........................................................................................................................ 28 

2.3 Research questions................................................................................................................ 28 

2.4 Research material .................................................................................................................. 29 

2.5 Research strategy .................................................................................................................. 30 

2.5.1 Case study research ....................................................................................................... 30 

2.5.2 Single-case versus multiple-case designs ...................................................................... 31 

2.5.3 Holistic versus embedded case studies ......................................................................... 31 

2.5.4 Multiple sources of evidence and chain of evidence .................................................... 32 

2.5.5 Case study protocol ....................................................................................................... 32 

2.5.6 Case study database ...................................................................................................... 32 

2.6 Expected results .................................................................................................................... 33 



 9 

3 Relevant literature ......................................................................................................................... 34 

3.1 Scrum ..................................................................................................................................... 34 

3.1.1 Scrum process ............................................................................................................... 35 

3.1.2 Scrum roles .................................................................................................................... 37 

3.1.3 Scrum meetings ............................................................................................................. 38 

3.1.4 Scrum artifacts ............................................................................................................... 39 

3.2 Extreme Programming .......................................................................................................... 41 

3.2.1 Values ............................................................................................................................ 43 

3.2.2 Principles ....................................................................................................................... 45 

3.2.3 Practices ........................................................................................................................ 45 

3.2.4 Roles .............................................................................................................................. 45 

3.3 Pragmatic Programming ........................................................................................................ 46 

3.4 Organizational patterns ......................................................................................................... 46 

3.5 Extracting patterns from project data ................................................................................... 49 

3.6 Validity of good and best practices ....................................................................................... 49 

4 The company’s context ................................................................................................................. 51 

4.1 Dimensions ............................................................................................................................ 52 

4.2 Context of the projects .......................................................................................................... 54 



 10 

5 Relevant documents ...................................................................................................................... 62 

5.1 Collecting the documents ...................................................................................................... 62 

5.2 Bug trackers ........................................................................................................................... 62 

5.2.1 Managed by the company ............................................................................................. 63 

5.2.2 Managed by others........................................................................................................ 63 

5.2.3 Management tasks ........................................................................................................ 65 

5.3 Source repositories ................................................................................................................ 65 

5.3.1 Managed by the company ............................................................................................. 65 

5.3.2 Managed by others........................................................................................................ 66 

5.4 Wikis ...................................................................................................................................... 66 

5.4.1 Trac ................................................................................................................................ 66 

5.4.2 DokuWiki ....................................................................................................................... 66 

5.4.3 Redmine......................................................................................................................... 67 

5.5 Internal mailing lists .............................................................................................................. 68 

5.6 Time tracking system ............................................................................................................. 68 

5.6.1 E-mail ............................................................................................................................. 69 

5.6.2 Sherlock ......................................................................................................................... 69 

5.6.3 Back to e-mail ................................................................................................................ 70 



 11 

5.6.4 Excel ............................................................................................................................... 70 

5.6.5 SlimTimer ....................................................................................................................... 70 

5.7 Invoice system ....................................................................................................................... 70 

5.8 Scrum artifacts ....................................................................................................................... 70 

5.8.1 Product Backlog ............................................................................................................. 71 

5.8.2 Sprint backlog ................................................................................................................ 71 

5.8.3 Burn down chart ............................................................................................................ 72 

5.9 Documents on the network disk ........................................................................................... 72 

5.10 Conclusions ............................................................................................................................ 73 

6 Interviews with relevant people.................................................................................................... 74 

6.1 Collecting the information .................................................................................................... 74 

6.1.1 Legends .......................................................................................................................... 75 

6.2 Developer A ........................................................................................................................... 75 

6.2.1 Manager and developer(s) give time estimation .......................................................... 76 

6.2.2 Manager creates new project in Redmine and adds tickets ......................................... 77 

6.2.3 Developer writes code based on the tickets ................................................................. 77 

6.2.4 Developer commits code to the repository .................................................................. 78 

6.2.5 Developer creates or updates a ticket .......................................................................... 79 



 12 

6.2.6 A customer creates or updates a ticket......................................................................... 79 

6.2.7 An e-mail is received ..................................................................................................... 80 

6.2.8 An exception is received by e-mail ................................................................................ 81 

6.2.9 Developer needs to track time ...................................................................................... 81 

6.2.10 Developer needs functionality that may be present in a gem or plug-in ..................... 82 

6.2.11 A new version of a gem, plug-in or the Ruby on Rails framework is released .............. 83 

6.3 Manager B ............................................................................................................................. 84 

6.3.1 Manager and developer(s) give time estimation .......................................................... 86 

6.3.2 Manager generates quote ............................................................................................. 88 

6.3.3 Manager sets up project................................................................................................ 89 

6.3.4 Developer writes code based on the tickets ................................................................. 90 

6.3.5 Developer commits code to repository ......................................................................... 90 

6.3.6 Developer creates or updates a ticket .......................................................................... 91 

6.3.7 Customer tests results ................................................................................................... 91 

6.3.8 Customer creates or updates a ticket ........................................................................... 92 

6.3.9 Manager sends invoice for finished functionality ......................................................... 93 

6.3.10 An exception is received by e-mail ................................................................................ 94 

6.3.11 Manager needs to generate report on worked hours .................................................. 94 



 13 

6.3.12 Developer needs functionality that may be present in a gem or plug-in ..................... 94 

6.3.13 A new version of a gem, plug-in or the Ruby on Rails framework is released .............. 95 

6.4 Manager C ............................................................................................................................. 95 

6.4.1 Manager and developer(s) give time estimation .......................................................... 98 

6.4.2 Manager sets up project................................................................................................ 98 

6.4.3 Developer writes code based on the tickets ................................................................. 99 

6.4.4 Developer commits code to repository ....................................................................... 101 

6.4.5 Developer creates or updates a ticket ........................................................................ 101 

6.4.6 Customer tests results ................................................................................................. 103 

6.4.7 Customer creates or updates a ticket ......................................................................... 103 

6.4.8 Developer or manager deploys application to live environment ................................ 104 

6.4.9 Manager sends invoice for finished functionality ....................................................... 105 

6.4.10 Customer wants new functionality ............................................................................. 105 

6.4.11 An e-mail is received ................................................................................................... 105 

6.4.12 An exception is received by e-mail .............................................................................. 106 

6.4.13 Manager needs to generate report on worked hours ................................................ 107 

6.4.14 Developer needs functionality that may be present in a gem or plug-in ................... 108 

6.4.15 A new version of a gem, plug-in or the Ruby on Rails framework is released ............ 109 



 14 

6.5 Results ................................................................................................................................. 110 

7 Data analysis ................................................................................................................................ 113 

7.1 Problem bundle ................................................................................................................... 113 

7.2 Patterns overview................................................................................................................ 116 

7.3 Prioritizing and countering the problems ........................................................................... 123 

7.4 Using patterns to improve the software development process ......................................... 126 

8 Conclusions and discussion ......................................................................................................... 128 

8.1 Conclusions .......................................................................................................................... 128 

8.2 Validity ................................................................................................................................. 130 

8.2.1 External validity ........................................................................................................... 130 

8.2.2 Construct validity ......................................................................................................... 131 

8.2.3 Internal validity ............................................................................................................ 132 

8.2.4 Reliability ..................................................................................................................... 132 

8.3 Contributions ....................................................................................................................... 133 

8.3.1 Deliverables ................................................................................................................. 133 

8.3.2 Process ......................................................................................................................... 134 

8.4 Future research ................................................................................................................... 135 

8.4.1 The use of good practices in other market sectors ..................................................... 135 



 15 

8.4.2 Determining the validity of good (or best) practices .................................................. 135 

8.4.3 Validation of the problem bundle ............................................................................... 136 

8.4.4 Improving the dimensions of a project’s context ........................................................ 136 

8.4.5 Determining the priority of problems in the problem bundle .................................... 136 

8.4.6 Sharing used patterns .................................................................................................. 137 

8.4.7 Internal validation of using practices to solve problems ............................................ 137 

References ........................................................................................................................................... 138 

Appendix A: Project dimensions ......................................................................................................... 144 

Project B .......................................................................................................................................... 145 

Project C .......................................................................................................................................... 145 

Project D .......................................................................................................................................... 146 

Project F ........................................................................................................................................... 147 

Project G .......................................................................................................................................... 147 

Project H .......................................................................................................................................... 148 

Project I ........................................................................................................................................... 149 

Project J ........................................................................................................................................... 149 

Project K .......................................................................................................................................... 150 

Project L ........................................................................................................................................... 151 



 16 

Project M ......................................................................................................................................... 151 

Project N .......................................................................................................................................... 152 

Project O .......................................................................................................................................... 152 

Project P .......................................................................................................................................... 153 

Project R .......................................................................................................................................... 154 

Project S ........................................................................................................................................... 154 

Project T........................................................................................................................................... 155 

Project U .......................................................................................................................................... 156 

Project V .......................................................................................................................................... 156 

Project W ......................................................................................................................................... 157 

Project X .......................................................................................................................................... 158 

Project Y........................................................................................................................................... 158 

Project Z ........................................................................................................................................... 159 

Appendix B: Problem bundle traceability matrix ................................................................................ 160 



 17 

List of tables 

Table 1: Case study tactics to improve research validity (Yin, 2009) .................................................... 31 

Table 2: Structure of a pattern (Coplien & Harrison, 2004, p. 22) ........................................................ 48 

Table 3: Patterns, the source where the pattern is described, and its use in the company ............... 123 

Table 4: Root problems the company experiences and potential patterns that can counter them .. 126 

 



 18 

List of figures 

Figure 1: Scrum process and the actual process (Andringa, 2008) ....................................................... 22 

Figure 2: Onion model of stakeholders (Alexander & Robertson, 2004) .............................................. 23 

Figure 3: Research model ...................................................................................................................... 27 

Figure 4: The Scrum process (Schwaber, 2004) .................................................................................... 36 

Figure 5: The Scrum process (Andringa, 2008) ...................................................................................... 37 

Figure 6: Example burndown chart (Schwaber, 2004) .......................................................................... 41 

Figure 7: Organization chart of the company........................................................................................ 51 

Figure 8: Legends for Flowchart diagrams (left) and Dataflow diagrams (right) .................................. 75 

Figure 9: The company’s software development process according to Developer A ........................... 76 

Figure 10: The company’s software development process according to Manager B ........................... 85 

Figure 11: The company’s software development process according to Manager C ........................... 97 

Figure 12: The company’s software development process................................................................. 111 

Figure 13: Data Flow Model of the company’s development process ................................................ 112 

Figure 14: Problem bundle of the software development process in the company .......................... 115 

Figure 15: A process for countering identified problems with good practices ................................... 135 

 



 19 

1 Introduction 

1.1 Research setting 

This research takes place in a small company in Enschede, The Netherlands. The company operates 

on national as well as international level, delivering web-related IT services and software. Its main 

activities are web development and web hosting. The structure of the company is flat: a small 

management team accompanied by 5-10 highly-educated developers. Developers are encouraged to 

take on various other tasks, besides software development. 

In the field of web development, the company aims to deliver high quality software in a flexible way: 

high quality software in terms of customer satisfaction, a low number of bugs and high 

maintainability; and flexibility in terms of the ability to adapt to the customer’s wishes and needs. 

1.2 Research content 

During software development requirements tend to change, stakeholders have different priorities, 

the priorities of the requirements for the business change, stakeholders may not have the required 

skills to elicit requirements, and developers may interpret requirements differently than the 

customer does (DeGrace & Stahl, 1990; Alexander & Robertson, 2004). This leads to delivered 

software not being aligned with the customer’s wishes and needs, and ultimately results in a low 

customer satisfaction. If changed requirements are addressed in subsequent releases, the overall 

system may become less maintainable, leading to a higher number of bugs. The company is trying to 

address the customer’s needs as best as possible by aligning the software requirements as early as 

possible in the software development cycle. 

1.2.1 Agile software development 

To be able to align the software requirements early in the development cycle, the company applies 

agile development methods. It also uses these methods to adhere to its software development goals 



 20 

(i.e. high quality software in a flexible way). The agile development strategy applied by the company 

is a combination of Scrum (Schwaber, 1996) and Extreme Programming (XP) (Beck, 1999), as well as 

parts of pragmatic programming (Hunt & Thomas, 1999). Both Scrum and XP focus on regular 

customer feedback to be able to align requirements (Beck, 1999; Schwaber, 2004); XP encourages 

refactoring and test-driven development (TDD) leading to, respectively, a high maintainable software 

product and a low number of bugs (Beck, 1999). By having a software product that has a high 

alignment of requirements and a low number of bugs, the company tries to accomplish a high 

customer satisfaction. 

1.2.2 Problems 

The company’s customers are mostly external, causing the product owner to be often located 

outside the office. Although the company is willing to pursue in active customer contact by meeting 

on-site with the customer or by training customers who have no experience with agile software 

development (e.g. Scrum, Extreme Programming), the costs associated with moving the 

development team on-site and training are found to be too high by some customers. Also, while the 

company prefers time and materials based pricing, its customers prefer fixed pricing. Subsequently 

several problems were found during initial investigation of the company’s development process, by 

talking to management and developers: 

 The customers often demand a fixed price, but also want to add, change and remove 

requirements during the software development process. 

 The management is not always completely satisfied with the overall development process. 

 Developers are not always completely satisfied with the overall development process. 

These problems are the main reason for this research. 

1.3 Research goal 

Based on the problems and stakeholders, we can use a Goal-Question-Metric (GQM) template (Basili, 



 21 

Caldiera, & Rombach, 1994; Van Solingen & Berghout, 1999) to state the following research goal: 

The purpose of this study is to improve the agile software development process from the 

point of view of developers and managers in the context of a small web development 

company with off-site customers by analyzing available documents, doing a literature review 

and conducting interviews. 

The research questions are defined in chapter 2. 

1.4 Project context 

The software development process of a project at the company consists of multiple iterations named 

sprints. The length of the iterations and the number of iterations depends on the required time for 

the total development process. After an initial version of the product is launched, the software 

product often enters a maintenance period, although this is not explicitly defined as such. This 

maintenance period consists of iterations of irregular length and number, depending on when the 

customer wants new features and how long it takes to develop these features. For this research we 

consider both the software development process and the maintenance period, as these periods are 

often not strictly separated in the company. Most problems indicated by the managers and 

developers are not specific to one period either. According to Andringa (2008), Figure 1 shows the 

difference between the Scrum process as designed and the process as used by the company in one of 

its projects. 



 22 

 

Figure 1: Scrum process and the actual process (Andringa, 2008) 

The two process diagrams show that for this project the length of the iterations (sprints) was 

reduced from 30 days to 14 days, and that the sprint review meeting and sprint planning meeting 

were combined into one meeting. We leave it out of scope of this research whether 14 days is better 

than 30 days; Beck and Andres (2004) just mention ‘weekly cycle’ and ‘quarterly cycle’ as part of 

Extreme Programming. More on the context of the company’s projects can be found in chapter 4. 

1.4.1 Ruby on Rails 

The company primary uses the Ruby on Rails framework to develop its web applications. Ruby on 

Rails (RoR) is a web development framework using the Ruby language that favors convention over 

configuration. Its main focus is on programmer happiness and sustainable productivity (Hansson, 

2009). Thomas and Hansson (2007) describe Ruby on Rails as a framework that makes it easier to 

develop, deploy, and maintain web applications. The company also uses other Ruby libraries to write 

its software, as it prefers one language to a set of programming languages; it does also handle 

integrations between web applications written in Ruby and web applications written in other 

programming languages. The company also takes over maintenance of existing web applications, as 

long as they are written in Ruby. 



 23 

1.4.2 Stakeholders 

The software that the company develops, as well as the development process that it uses, is 

influenced by and has influence on several stakeholders. Alexander and Robertson (2004) apply the 

onion model to the relationships between stakeholders and come up with a four-layered model. 

From inner layer to outer layer these are: 

 The kit or our product that is being developed. 

 Our system, which includes the product as well as the people who operate and maintain the 

product and deliver its results. The normal operators deliver these results to the functional 

beneficiaries. Our system also includes procedures for operation. 

 The containing system, which includes our system as well as non-operational beneficiaries. 

Functional beneficiaries are people that work in the containing system and benefit from the 

product. They work for other beneficiaries in the wider environment. 

 The wider environment, which includes the containing system as well as all other 

stakeholders who affect decisions made about our system. 

 

Figure 2: Onion model of stakeholders (Alexander & Robertson, 2004) 



 24 

The onion model can also be applied to the situation of the company, although the roles are often 

not explicitly defined as such: 

 The kit is the web software itself. 

 A normal operator is usually a person or department of the customer. 

 The helpdesk is most often located at the customer’s site, but it can sometimes include 

employees, depending on the purpose of the software and who the functional beneficiaries 

are. Often no specific helpdesk is present. 

 A maintenance operator is usually an employee of the company, but a person or department 

of the customer may perform some tasks as well. 

 A functional beneficiary can be a person or department of the customer, a client of the 

customer or an Internet user, depending on the purpose of the software. The purpose of the 

software also determines whether the normal operator and functional beneficiary are the 

same (i.e. the user hybrid role). 

 An interfacing system is a different (web) application which the software should integrate 

with. This can be an application owned by the customer or a third party service. The 

integration can be part of a Service Oriented Architecture (SOA), but not necessarily. Most 

often the Representational State Transfer (REST) architectural style is used (and preferred by 

the company), but SOAP and RPC are sometimes used as well. 

 The purchaser of the system itself is the customer, but the customer may charge its clients 

for results as well; so in that case the clients of the customer are purchasers as well. Again, 

this role depends on the purpose of the software. 

 The political beneficiary is the customer’s company itself or a director or manager within the 

customer’s company. 

 The financial beneficiary is the company itself, as it is paid for its development activities. If 

clients of the customer are purchasers, the customer is also a financial beneficiary. 



 25 

 A developer is an employee of the company. 

 A negative stakeholder is, if present, most often located within the customer’s company. 

 A regulator is, if present, often some form of government body. 

The list above shows that many stakeholders influence the requirements of the software application. 

It is therefore important that regular communication within the company takes place, as well as 

communication between the company and its customers. 

1.4.3 Scrum roles 

Scrum tries to limit the communication problems of requirements alignment by defining (only) three 

roles: the Product Owner (or customer) who is responsible for the requirements and the release 

plans, the Team who is responsible for developing the product, and the ScrumMaster who is 

responsible for the overall Scrum process. All management responsibilities for a project are divided 

among these three roles (Schwaber, 2004). More on the Scrum roles can be read in paragraph 3.1.2. 

According to Andringa (2008), the company implements the three roles as well. More on 

responsibilities can be found in the interviews in chapter 6. 

1.4.4 Extreme Programming roles 

Beck (2000) describes several roles when ‘working extreme’: the Programmer, the Customer, the 

Tester, the Tracker, the Coach, the Consultant and the Big Boss. The Programmer and Customer are 

the two primary roles (Beck, 2000; Martin, 2000), while the Tester is not a separate person, but only 

a separate role (Beck, 2000). Beck also writes that if you have people who don’t fit the roles, change 

the roles, don’t try to change the people. More on these roles can be read in paragraph 3.2. 

 



 26 

2 Research design 

Now that we have described the research setting, problem statement, research goal and project 

context, we can model a proper research design. This chapter identifies what the research questions 

are, how they are being answered and what phases the research consists of. Verschuren and 

Doorewaard (1998) describe two groups of activities that together form the basics of designing a 

research, namely the conceptual design and the (research-)technical design. We will use both the 

conceptual design and the technical design to structure our research. The conceptual design consists 

of the research goal, the research model, the research questions and definitions. The technical 

design consists of the research material, the research strategy and the research planning. As the 

planning was for internal use only, we do not include it in this thesis. 

2.1 Research goal 

The research goal, based on a GQM template, was already stated in paragraph 1.3. For completeness 

it is also stated below: 

The purpose of this study is to improve the agile software development process from the 

point of view of developers and managers in the context of a small web development 

company with off-site customers by analyzing available documents, doing a literature review 

and conducting interviews. 

2.2 Research model 

The research model is a schematic and visual way of displaying the necessary steps for doing 

research to reach the before-mentioned research goal (Verschuren & Doorewaard, 1998). Figure 3 

shows the steps for our research. Each box at the right of an arrow is the result of the steps before. 

The letters below each column, e.g. (a), denote a phase in the research. 

 



 27 

Literature review

of Scrum, XP, and 

Pragmatic 

Programming

Theory on good 

practices and 

patterns

Initial problem 

investigation in the 

development 

process at the 

company

Method of 

abstracting good 

practices from 

project data

Case study at the 

company

List of problems 

within the company

List of 

recommendations 

to the problems

(a) (b) (c) (d)

Evaluation of 

research validity

(e)

List of good 

practices used in 

the company

 

Figure 3: Research model 

2.2.1 Phase (a) 

In phase (a) we do a literature review of Scrum, Extreme Programming (XP) and Pragmatic 

Programming, and investigate the theory on good practices and patterns. We use the theory on good 

practices together with the practices used in Scrum, XP and Pragmatic Programming to create a 

method for extracting good practices from projects. We also use the initially reported problems in 

the company (paragraph 1.2.2) to support our case study. 

2.2.2 Phase (b) 

In phase (b) we analyze the company based on the context of its projects, the documents (and 

information systems) used, and interviews with relevant stakeholders. Together with the method for 

abstracting good practices from project data, we create a list of problems that appear in the 

company and a list of good practices that the company uses. We also add additional literature where 

appropriate to support our findings and to add external validity. 

2.2.3 Phase (c) 

In phase (c) we analyze the company’s problems and try to find patterns used in agile software 

development that may provide solutions to these problems. We also try to find good practices that 



 28 

the company uses and write these in the form of patterns, so they can be used by companies in a 

similar context. 

2.2.4 Phase (d) 

In phase (d) we analyze the recommendations (i.e. patterns) to see how they can be implemented in 

the company. 

2.2.5 Phase (e) 

In phase (e) we evaluate the validity of our research. In paragraph 2.5.1 we list tactics to increase the 

validity of our research, which we revisit in our evaluation. We also ask the interviewed people in the 

case study to value our recommendations to the problems we found. 

2.3 Research questions 

Based on the research goal (paragraph 2.1) and research model (paragraph 2.2) we deduct our 

research questions. The following main research question applies: 

How can we improve the use of good practices in the agile software development process of a small 

sized company? 

Based on the main research question we can state the following research questions: 

1. How are good practices used in the agile software development process? 

a. What do we mean with the agile software development process in this research 

project? 

b. What do we mean with a good practice in this research project? 

c. How are good practices used in Scrum, Extreme Programming and Pragmatic 

Programming? 



 29 

2. How can we describe good practices in a uniform way? 

3. How can we extract the use of good practices from project data? 

a. What methods exist for describing the context of projects? 

b. What methods exist for facilitating experience reuse among software managers 

and/or developers? 

c. How can we institutionalize the use of good practices in an organization and 

promote it among software managers and/or developers? 

2.4 Research material 

To let the potential solution be meaningful, we need to gather empirical evidence that supports the 

existence of the problems mentioned in paragraph 1.2.2. Verschuren and Doorewaard (1998) 

mention five different types of information sources: people, media, reality, documents, and 

literature. For our research media and reality are not relevant and thus will not be used. 

 People: For our research we use interviews with developers and managers. Interviews may 

result in finding potential problems not easily found using documents. The results of the 

interviews are discussed in chapter 6. 

 Documents: For our research we use, among others, a bug tracker, source repositories, a 

time tracking system, e-mails sent to a private mailing list used for communicating between 

developers, and Scrum deliverables. Documents are preferred over people, as they provide a 

more objective perspective. Relevant documents are discussed in chapter 5. 

 Literature: For our research we use relevant literature to create a theoretical framework that 

should support the gathering of empirical data. We also use literature to find potential 

solutions. Relevant literature is discussed in chapter 3. 



 30 

2.5 Research strategy 

Verschuren and Doorewaard (1998) mention five ways to conduct research: a survey, an experiment, 

a case study, a funded theoretical approach, and office investigation. As we want to get an in depth 

overview of the problems within the company and how they are related, we prefer a case study 

research over other methods. A case study research is qualitative in depth way of doing research 

with a relative low number of research units (Verschuren & Doorewaard, 1998). We now describe in 

more detail how we conduct the case study research. 

2.5.1 Case study research 

When doing empirical social research, and thus a case study, there are four tests that determine the 

quality of such a research: construct validity, internal validity, external validity, and reliability (Yin, 

2009, p. 40). Yin (2009, p. 41) also describes several tactics than can be used in case study research 

to deal with these tests. These tactics are categorized by phase: research design, data collection, data 

analysis, and composition. We will discuss each of the tactics in the appropriate chapter. Below is an 

overview of all the tactics categorized by phase showing for which test they help to increase the 

quality of research. Although the tactics are categorized by phase, this does not necessarily mean 

each tactic only occurs in that phase (Yin, 2009, pp. 40–41), but it allows us to address each tactic in a 

more structured way. 

Phase of research Case study tactic Quality test 

Research design 

Chapter 2 and 3 

 Use theory in single-case studies 

 Use replication logic in multiple-
case studies 

 External validity 

 External validity 

Data collection 

Chapter 4, 5 and 6 

 Use multiple sources of evidence 

 Establish chain of evidence 

 Use case study protocol 

 Develop case study database 

 Construct validity 

 Construct validity 

 Reliability 

 Reliability 



 31 

Data analysis 

Chapter 7 

 Do pattern matching 

 Do explanation building 

 Address rival explanations 

 Use logic models 

 Internal validity 

 Internal validity 

 Internal validity 

 Internal validity 

Composition 

Chapter 6, 8 

 Have key informants review draft 
case study report 

 Construct validity 

Table 1: Case study tactics to improve research validity (Yin, 2009) 

Yin (2009, p. 46) describes four different designs how to conduct a case study, based on two 

variables: single-case versus multiple-case designs, and holistic versus embedded case studies. 

2.5.2 Single-case versus multiple-case designs 

One of the rationales for a single case study is when it represents an extreme or a unique case (Yin, 

2009, p. 47). Looking at the available empirical studies on agile software development (Abrahamsson 

et al., 2003; Dybå & Dingsøyr, 2008), none of the studies mentioned in these review papers cover the 

use of Scrum and Extreme Programming (XP) together. Also none of the studies mentioned in the 

review papers deal with an external customer. Although there may be companies that operate in a 

similar context to the company where we do the research in, we could not find any empirical 

research on this subject. We therefore consider the use of both Scrum and XP in combination with an 

external customer, not necessarily a unique case, but definitely an extreme case, which results in the 

choice for a single-case study research. 

2.5.3 Holistic versus embedded case studies 

Yin (2009, p. 50) describes the difference between a holistic case study and an embedded case study, 

whether or not the case study involves more than one unit of analysis. 

Using common sense, we have come up with several possible units of analysis: an employee, a 

(Scrum) development-iteration, a development project, and a company. We do not want to limit 

ourselves to only improve the way an employee works or to only improve single iterations. Instead 



 32 

we prefer a broader view, as problems may not be related to employees or iterations at all. A focus 

on employees or iterations would also be limited by the information available; the development 

team is located in one office, so many conversations between developers take place in person, and 

are therefore hard to trace. Choosing a company as unit of analysis would mean we would limit 

ourselves to the software development process as a whole. From initial investigation we found that 

the software development process differs somewhat between projects; also most of the initial 

problems we found in the company, as mentioned in paragraph 1.2.2, are typically associated with a 

project as a whole. Thus we consider a project the unit of analysis. Looking at the company’s 

portfolio, we think most projects are appropriate for inclusion in the case study. 

More on the context of the projects can be found in chapter 4. To improve the internal validity of this 

project, we will interview people with different perspectives on the project, i.e. managers and 

developers. To improve external validity, we use literature to see what problems similar companies 

experienced and how they solved these problems. 

2.5.4 Multiple sources of evidence and chain of evidence 

To improve construct validity, we use multiple sources of evidence (people, documents, and 

literature, as explained in paragraph 2.4. We also try to establish a chain of evidence by using a 

traceability matrix (Appendix B: Problem bundle traceability matrix) to allow readers to find for each 

problem on which source or sources of evidence it is based. 

2.5.5 Case study protocol 

We do not explicitly use a case study protocol, as suggested by Yin (2009, p. 79–82). Instead we use 

the protocol for a research as suggested by Verschuren and Doorewaard (1998), as we are more 

familiar with its layout. 

2.5.6 Case study database 

According to Yin (2009, p. 118–120) it is important to develop a case study database with all the 



 33 

material used in the research. This way other researchers can check the relevant data for more 

information and can check if no data was omitted in the research. We keep track of all the 

documents that we used in the research in chapter 5 and we include an overview of the context of all 

the projects that we investigate in Appendix A: Project dimensions. We record all the interviews that 

we hold, so that other researchers can listen to them as well, although we do not include the full 

interviews in text in this research. 

2.6 Expected results 

The results of this research should be three-fold: 

1. A process how the company can improve the use of good practices within the organization. 

This includes recommendations on how managers and developers can share practices which 

each other. 

2. Some kind of model that allows the company to find the root causes to its problems and to 

find out which problems are most important to deal with. 

3. A table with relevant patterns used (and not used) in the company to be able to find 

potential solutions to the problems in the model. 

We believe the latter two deliverables are important to ensure the process becomes more 

structured. 

 



 34 

3 Relevant literature 

Below we will describe relevant literature to the company’s case to position our research. As Yin 

(2009, p. 41) mentions in his case study tactics, it is important in single-case studies to use theory for 

internal validation. 

We first use relevant literature on agile software development methods to understand the 

characteristics of these methodologies. For this research we limit ourselves to relevant methods for 

the company, i.e. Scrum (paragraph 3.1), Extreme Programming (XP) (paragraph 3.2) and Pragmatic 

Programming (paragraph 3.3). Next, we describe the theory on software patterns to understand 

what patterns are and how they work (paragraph 3.4). We then examine each agile software 

development methodology on what software patterns they (implicitly or explicitly) use. The results 

allow us to compare the actual use of agile methodologies in projects to how these are supposed to 

be used, based on the relevant patterns. In other words, we can compare the patterns used in 

projects with the patterns that are supposed to be used when using the before-mentioned agile 

methods. 

3.1 Scrum 

Although made famous by Ken Schwaber, the roots of Scrum lie within the paper by Takeuchi and 

Nonaka (1986), who first use the term scrum to compare the product development process to the 

scrum used in rugby. They describe a holistic method that has six characteristics that can still be 

found in the Scrum process as described by Schwaber (2004): built-in instability, self-organizing 

project teams, overlapping development phases, multi-learning, subtle control, and organizational 

transfer of learning (Takeuchi & Nonaka, 1986). 

Schwaber and Sutherland co-developed the Scrum process in the early 1990s to help organizations 

manage complex development projects (Schwaber, 2004). It was first formally described by 

Schwaber in 1996 (Schwaber, 1996), although Scrum got more known after he published a book in 



 35 

2004 (Schwaber, 2004). In his book Schwaber describes Scrum as “a simple process for managing 

complex projects” and as “a framework and set of practices that keep everything visible”. It is also 

sometimes described as a “development method” or “an extension pattern language” (Beedle, 

Devos, Sharon, Schwaber, & Sutherland, 1999). Although not specifically designed for developing 

software, Beedle et al. (1999) specifically apply Scrum to the software development process. Rising 

and Janoff (2000) do the same thing and describe it as a “process for incrementally building software 

in complex environments”. Sutherland (2001) states that “the goal of Scrum is to deliver as much 

quality software as possible within a series of short time-boxes called sprints, which last about a 

month.” 

Beedle et al. (1999) argue that a repeatable and defined process, such as pursued by those that favor 

the Capability Maturity Model (CMM) is based on assumptions (i.e. a repeatable/defined problem, 

repeatable/defined solutions, repeatable/defined developers and a repeatable/defined 

organizational environment) that have been found wrong in practice. These assumptions assume 

non-chaotic behavior, although small unknowns in the process can have big influences on the result. 

Instead of non-chaotic behavior, Scrum assumes chaotic behavior and tries to solve the problems 

associated with incorrect assumptions (Beedle et al., 1999). It does this by moving control from a 

central scheduling authority to individual teams, and by shortening the feedback loop between 

customer and developer, between wish list and implementation, and between investment and 

return on investment (Schwaber, 2004). Rising & Janoff (2000) describe Scrum as time-boxed 

incremental development with a twist, appropriate for projects where requirements can’t be defined 

up front and chaotic conditions are anticipated throughout the product development life cycle. 

Schwaber (2004) explains Scrum in several terms: the Scrum (process) skeleton, the roles, the flow 

(or meetings) and the artifacts. Below each of these will be shortly explained. 

3.1.1 Scrum process 



 36 

Schwaber (2004) describes the Scrum process as iterative and incremental. An overview of the Scrum 

process by Schwaber (2004) is displayed below in Figure 4. 

 

Figure 4: The Scrum process (Schwaber, 2004) 

At the heart of Scrum is the iteration, called a Sprint. A Sprint is time-boxed, meaning its end date 

cannot change (Rising & Janoff, 2000). A Sprint typically takes 30 days (Schwaber, 2004). Every day a 

Daily Scrum (paragraph 3.1.3) is held to discuss the status of the Sprint. Tasks that need to be done 

for the Sprint are placed in the Sprint Backlog (paragraph 3.1.4). These tasks are derived from the 

Product Backlog (paragraph 3.1.4), which contains a list of requirements ordered by priority. At the 

end of a Sprint the implemented functionality is demonstrated. The Scrum process by Andringa 

(2008) is displayed below in Figure 5. The Sprint planning meeting (paragraph 3.1.3) is held at the 



 37 

beginning of a Sprint and the Sprint review meeting (paragraph 3.1.3) is held at the end of a Sprint. 

 

Figure 5: The Scrum process (Andringa, 2008) 

Both figures are not showings the Sprint retrospective meeting (paragraph 3.1.3). 

3.1.2 Scrum roles 

Scrum describes three roles, namely the Product Owner, the ScrumMaster and the Team, over which 

all management responsibilities are divided (Schwaber, 2004). 

 The Product Owner is responsible for the interests of those that have a stake in the project 

and resulting system. The Product Owner should keep track of the Product (i.e. the project’s 

requirements, see paragraph 3.1.4), return on investment (ROI) objectives and release plans. 

The Product Backlog is kept by the Product Owner to make sure that the most valuable 

functionality for the stakeholders is produced first (Schwaber, 2004). According to 

Sutherland (2005), the Product Owner owns the business plan for the product, the functional 

specification for the product, the Product Backlog, and prioritization of the Product Backlog. 

 The ScrumMaster is responsible for the Scrum process, i.e. its implementation within the 

organization, the training of everyone involved with the rules and practices, the adherence 



 38 

to these rules and practices, and the measurement of progress toward the goal of the 

development of functionality for the Sprint (Rising & Janoff, 2000; Schwaber, 2004). He 

ensures that everyone makes progress, records decisions made at meetings and keeps the 

Scrum meetings short and focused (Rising & Janoff, 2000). 

 The Team is collectively responsible for developing the functionality. They are self-managing, 

self-organizing, and cross-functional (i.e. covering multiple disciplines). The Team is also 

responsible for figuring out how to break up items from the Product Backlog into iterations 

and how to implement these items (Schwaber, 2004). 

Although all management responsibilities are divided over the above three roles, this does not mean 

the people who fulfill these roles are the only people involved. Other stakeholders may be interested 

in the project as well, but Scrum ensures the stakeholders that have responsibility also have 

authority and that stakeholders without responsibility have no authority, within the project 

(Schwaber, 2004). 

More information on the roles used in Extreme Programming can be found in paragraph 3.2.4. 

3.1.3 Scrum meetings 

Scrum has several meetings that allow the stakeholders with responsibilities to inform each other on 

the status of the project and what needs to be done to reach completion of the project. 

 The Daily Scrum is a daily short meeting of ca. 15 minutes by the Team, with the purpose of 

synchronizing the work of all Team members and team-building. Each member of the Team 

says what he has done on the project since the last Daily Scrum, what he plans to do on the 

project until the next Daily Scrum and what problems he found that limit him in meeting the 

goals of this Sprint and project (Rising & Janoff, 2000; Schwaber, 2004). The Daily Scrum is 

also attended by remote contributors, making them feel part of the Team and making their 



 39 

work visible to the other members of the Team (Rising & Janoff, 2000). 

 The Sprint planning meeting is held at the beginning of each Sprint and cannot take longer 

than 8 hours. It consists of two parts; each part cannot take longer than 4 hours. In the first 

part the Product Owner explains the items from the Product Backlog with the highest priority 

to the Team. The team selects as many items at it thinks it can complete in the coming 

Sprint. During the second part, the Team plans out the Sprint by splitting the Product Backlog 

items into tasks that are put into the Sprint Backlog, see paragraph 3.1.4 (Schwaber, 2004). 

 The Sprint review meeting is held at the end of a Sprint and cannot take longer than 4 hours. 

In this informal meeting the Team presents the implemented functionality to the Product 

Owner and any other stakeholder that wants to attend (Schwaber, 2004). 

 The Sprint retrospective meeting is held between the Sprint review meeting of the previous 

Sprint and the Sprint planning meeting of the next Sprint and cannot take longer than 3 

hours. In this meeting the ScrumMaster and the Team try to find ways to improve the 

development process for the next Sprint, of course constrained by the Scrum rules and 

practices (Schwaber, 2004). 

Documents we found regarding meetings held in the company can be found in paragraph 5.9. 

3.1.4 Scrum artifacts 

Scrum describes several artifacts (sometimes called deliverables) that are used during the Scrum 

process (Schwaber, 2004): 

 The Product Backlog contains the requirements and initial estimation for these requirements 

for the product being developed. The Product Owner is responsible for the contents, 

prioritization, and availability of the Product Backlog. The requirements in the Product 

Backlog are not fixed, but subject to change, meaning that the company (i.e. the business for 



 40 

whom the product is developed) can adjust the Product Backlog according to its wishes. The 

Product Owner should ensure the requirements reflect the wishes of the business; the Team 

estimates the time necessary for implementing the requirements. 

 The Sprint Backlog contains the tasks that need to be done for that Sprint. Based on 

requirements from the Product Backlog, the Team defines the tasks for the Sprint Backlog. A 

single task should not take more than 4 to 16 hours. If a task takes longer than 4 to 16 hours, 

it should be split into smaller tasks. Only the Team is allowed to change the Sprint Backlog. 

 A burn down chart is a graph that shows the amount of work remaining across time and the 

progress of the Team in reducing this work. A burn down chart can be created for a single 

Sprint, as well as for a release. The burn down chart can be used to estimate when the 

remaining work is completed, thus showing if the estimated time is accurate. A simple 

example of a burn down chart is given below, although we notice that various types exist. 



 41 

 

Figure 6: Example burndown chart (Schwaber, 2004) 

More information on the artifacts that are used in the company can be found in paragraph 5.8. 

3.2 Extreme Programming 

Beck (2000) describes Extreme Programming (XP) as a lightweight methodology for small-to-

medium-sized teams developing software in the face of vague or rapidly changing requirements.” 

Beck and Fowler (2000) argue that XP “is the programming discipline … we are evolving to address 

the problems of quickly delivering quality software, and then evolving it to meet changing business 

needs”, explicitly avoiding the word ‘method’ (or ‘methodology’). Wake (2000) calls it a programming 

discipline too, but also mentions it is a team discipline and a discipline for working with customers. 

Martin (2000) agrees somewhat by saying the focus is more on people and writes that XP is a 

“software development method that views people, rather than paper, as a project’s most potent 

element.” Don Wells (2002) says that the definition of XP depends on the view: “For some people 



 42 

Extreme Programming (XP) is a new set of rules, for others it is a humanistic set of values, and to 

some it is a very dangerous oversimplification.” Beck and Andres (2004) state that “XP is a style of 

software development focusing on excellent application of programming techniques, clear 

communication, and teamwork” and “XP is a methodology based on addressing constraints in 

software development”. XP includes a philosophy of software development, a body of practices, a set 

of complementary principles, and a community that shares these values (Beck & Andres, 2004). So 

while Scrum is not specifically targeted on software development, Extreme Programming (hence the 

word Programming) is. 

Beck and Andres (2004) describe how XP works by defining values, principles and practices: 

 Values are large scale criteria people use to judge what they see, think and do; they are also 

universal (Beck & Andres, 2004). Values are ideals; they are abstract, identifiable and distinct 

(Shore & Warden, 2007). The values that are used in XP are described in paragraph 3.2.1. 

 Principles are the connection between values and practices; they can be considered domain-

specific guidelines (Beck & Andres, 2004). Principles are applications of values to an industry 

(Shore & Warden, 2007). The principles of XP are described in paragraph 3.2.2. 

 Practices are evidence of values. Values bring meaning to practices and in turn practices 

bring accountability to values (Beck & Andres, 2004). Practices are principles applied to a 

specific type of project (Shore & Warden, 2007). The practices that are used in XP are 

described in paragraph 0. 

While these three levels of knowledge are important, they do not describe XP completely. Beck and 

Andres (2004) as well as Shore and Warden (2007) describe several roles that may be useful to have 

in the Team, or it could happen that people with a certain role may be involved in the project. 

However, while Beck and Andres (2004) note that having certain roles can be of benefit to the Team, 

there is no necessary one-on-one relationship between roles and people and not necessarily every 



 43 

role is present. Using roles may provide means to create better software, but defining abstract roles 

is no goal by itself. Roles possibly used in XP are described in paragraph 3.2.4. 

Shore and Warden (2007) also give a list of prerequisites and recommendations for the Team’s 

environment to successfully use XP in the organization. 

3.2.1 Values 

Five1 distinct values can be identified in XP: communication, simplicity, feedback, courage and 

respect (Beck & Andres, 2004; Shore & Warden, 2007). Beck and Andres (2004) note that these five 

values are not the only positive values for effective software development; however they are the 

driving values behind XP. The values are intended to be used together, not apart. The values of XP 

balance and support each other. 

 Communication is giving the right people the right information on the right time (Shore & 

Warden, 2007). It is the most important value when developing software in teams, although 

it is not all you need (Beck & Andres, 2004). Communicating creates a sense of team and 

ensures effective cooperation. 

 Simplicity is discarding things we want, but don’t actually need (Shore & Warden, 2007). It 

makes only sense in context (Beck & Andres, 2004). 

 Feedback is learning the right lessons at every possible opportunity (Shore & Warden, 2007). 

As instant perfection is often hard to reach, improvement is the next best thing. It can be 

achieved by using feedback to get closer to the goals. XP tries to generate as much as the 

team can handle and as soon as possible by shortening the feedback cycle (Beck & Andres, 

                                                           
1
 In the original book by Beck on Extreme Programming only four values were mentioned (Beck, 1999); a fifth 

value, Respect, was added in the second edition of the book (Beck & Andres, 2004). 



 44 

2004). In essence, this is also why there are Sprints and various other regular meetings in 

Scrum (see paragraph 3.1.3). 

 Courage is making the right decisions, even when difficult, and to tell stakeholders the truth 

(Shore & Warden, 2007). That right decision can be taking action, when a problem is known 

or having patience when the problem is not yet known. However, the consequences of 

courage should always be taken into account; so the other values are important for 

‘guidance’. Courage without counterbalancing values is dangerous (Beck & Andres, 2004). 

 Respect is treating you and others with dignity, and acknowledging expertise and the mutual 

desire for success (Shore & Warden, 2007). If team members don’t care about each other 

and what they are doing, XP won’t work. Also, if team members don’t care about the project, 

it will not bring the wanted result. (Beck & Andres, 2004). 

Beck and Andres (2004) also explain the relationships between the values (i.e. how they balance and 

support each other): 

The simpler the system, the more easy it is to communicate about. Improving communication makes 

early waste reduction possible, which in turn results in a simpler system. Feedback is a critical part of 

communication. Earlier feedback results also in a simpler system and (like communication) the 

simpler a system the easier to it is to get feedback. Courage together with the other values is 

powerful: the courage to tell the truth generates trust and encourages communication, the courage 

to discard failing solutions and useless features encourages simplicity and the courage to seek real 

answers generates feedback. Respect lies below the surface of the other four values. 

We leave the measurement of these values out of scope, as we believe they are too abstract to be 

measured effectively. Also, we feel that measuring these values may lead to conclusions that would 

be too subjective. 



 45 

3.2.2 Principles 

Although values are important to keep in mind, they don’t provide concrete advice what to do in 

software development. In other words: values are too abstract. Principles bridge the gap between 

values and practices that are in harmony with these values (Beck & Andres, 2004). Beck and Andres 

(2004) list various principles that guide XP, although these principles are not the only principles used 

in software development. Other principles may be important, but are not necessary applicable to all 

software. The principles that guide XP are: humanity, economics, mutual benefit, self-similarity, 

improvement, diversity, reflection, flow, opportunity, redundancy, failure, quality, baby steps, and 

accepted responsibility. 

We will not explain all the principles in detail here. The principles can be used to understand how to 

apply a certain practice in the context of a project. In other words: the principles tell what the 

practices are trying to accomplish. As with values, we consider these principles out of scope for our 

research, as we feel that they are not defined in a way they can be measured effectively. 

3.2.3 Practices 

According to Beck and Andres (2004) practices are situation dependent, but there is no fixed list of 

situated, context-dependent practices that covers all of software development. In their book, Beck 

and Andres (2004) list 24 different practices. Some of these practices are directly copied from Beck’s 

first book (Beck, 1999); others are renamed or were described implicitly in the first book. 

Shore and Warden (2007, p. 25-27) list almost the same practices, but add some, remove some and 

cross reference them with the first edition of XP (Beck, 1999), the second edition of XP (Beck & 

Andres, 2004) and Scrum. 

For each practice we investigate whether and how it is used in the company. The results can be 

found in paragraph 7.2. 

3.2.4 Roles 



 46 

Beck and Andres (2004) mention that roles on a mature XP team aren’t fixed and rigid, but having 

them supports everyone in contributing to the best he can. This also means roles and people do not 

necessarily have to be mapped one-on-one. This is somewhat similar to the cross-functional team in 

Scrum (paragraph 3.1.2). However, in contrast to Scrum, in XP no explicit distinction is made 

between roles with responsibility and roles without. 

Beck and Andres (2004) mention the following roles: testers, interaction designers, architects, 

project managers, product managers, executives, technical writers, users and programmers. 

In the interviews with relevant people (chapter 6) we provide more insight into the roles used in the 

company, although we leave it largely out of scope. 

3.3 Pragmatic Programming 

The Pragmatic Programmer is a book written by Hunt and Thomas (1999) that aims to “cut through 

the increasing specialization and technicalities of modern software development to examine the core 

process—taking a requirement and producing working, maintainable code that delights its users.” 

The book covers principles for software developers. Note that these principles are somewhat 

different than the principles of XP (described in paragraph 3.2.3). The principles of Pragmatic 

Programming should be considered more an equivalent to the practices of Extreme Programming. 

As there are quite many principles mentioned in the book (Hunt & Thomas, 1999), we will not list 

them here. Also the principles are on a too low level relevant for this research, although we do think 

that many of the patterns used in Pragmatic Programming are actually in use in the company. 

3.4 Organizational patterns 

As the company uses a combination of Scrum, Extreme Programming and Pragmatic Programming, 

our focus will be on those three methodologies. According to Rising and Janoff (2000) Scrum 

provides empirical controls that enable the development organization to be as close to chaos as the 



 47 

organization can tolerate. They successfully applied the Scrum process to their organization, saw an 

increase in productivity, and noticed that Scrum combines and uses organizational patterns that they 

previously encountered. Beedle et al. (1999) describe the relationships among organizational 

patterns used in Scrum and other organizational patterns. They also mention that by combining the 

Scrum patterns with other organizational patterns, it leads to a highly adaptive software 

development organization. 

The building architect Christopher Alexander was the first who described patterns (Alexander, 

Ishikawa & Silverstein, 1977; Alexander, 1979). Although he used patterns for describing recurring 

problems and solutions in creating cities, towns, neighborhoods and buildings, it was later applied to 

any environment that has recurring problems and solutions (Rising & Janoff, 2000). Coplien and 

Harrison (2004) mention that practices provide a way to combine “broad invariant practices of 

socially build artifacts” with “specialized practices of individual disciplines” and the relationship 

between them. 

Looking at software, Coplien and Harrison (2004) chose organizational structure (specifically the 

structure of relationships between roles) as a basis for system understanding, instead of process-

based approaches, such as ISO 9000. Each organizational pattern describes a problem that occurs 

often in the organizational context and then describes the core of the solution to that problem, in 

such a way that the solution can be different every time you encounter such a problem (Rising & 

Janoff, 2000). So each pattern solves a problem by adding structure to a system (Coplien & Harrison, 

2004). In software engineering recurring problems and solutions have been found on all levels of 

software development, e.g. from high-level architecture to implementation, testing and deployment 

(Rising & Janoff, 2000). 

In 1996 Kent Beck wrote about best coding practice patterns for Smalltalk (Beck, 1996). Later, in 

1999 in 2000 he would use his experience with patterns to write on Extreme Programming (XP) 



 48 

(Beck, 1999; Beck & Fowler, 2000). Although XP doesn’t include a list of patterns, it builds heavily on 

them (Beck & Andres, 2004; Coplien & Harrison, 2004). Beck (1999) explains that XP is based on best 

practices for developing software, e.g. unit testing, pair programming, and refactoring. Kerievsky 

(2000) notes that including patterns into the development organization improves XP, especially the 

refactoring part. 

Coplien and Harrison (2004) use the following form for organizing the important components of a 

pattern: 

Title The title of the pattern. 

Context The context in which the pattern is applicable. 

Problem A description of the problem that arises in the context. 

Forces A description of the forces that describe the problem. 

Solution A solution to the problem. 

Rationale A rationale why the pattern should be successful. 

Table 2: Structure of a pattern (Coplien & Harrison, 2004, p. 22) 

Amrit (2008) mentions four types of patterns that deal with software development: design patterns, 

analysis patterns, organizational patterns, and process patterns. 

Although the title of the book by Coplien and Harrison (2004) specifically describes organizational 

patterns for use in agile software development, it is broader than agile development and more 

concerned with effective software development, according to the authors. 

So, according to Coplien and Harrison (2004), we can use organizational patterns to provide a way to 

combine human structures with the best practices of software development. To establish what 



 49 

(organizational) patterns are used by the company, we need a) to find a method to extract patterns 

from available project data, and b) to understand what makes a practice a best (or good) practice, so 

we can evaluate the validity of these patterns. 

3.5 Extracting patterns from project data 

Petter and Vaishnavi (2008) use narratives to facilitate experience reuse among software project 

managers, which they name Experience Exchange. The software project managers write these 

narratives and store them in a so called Experience Exchange Library. Other (novice) project 

managers can use these narratives to improve their understanding of managing projects (Petter, 

2008; Petter and Vaishnavi, 2008). 

We believe that we can achieve something similar in our case by using a pattern as a substitute for a 

narrative. Thus developers and managers can write patterns based on their experiences in a project. 

By storing and sharing these patterns, other developers and managers can use (and potentially 

refine) these patterns in other projects. 

3.6 Validity of good and best practices 

Daneva and Ahituv (2010) provide a literature review of the ways in which software engineering 

practices are judged and the approaches used to evaluate the validity of specific practices. Only in a 

relatively small portion of the reviewed sources the practices were evaluated on validity. In this 

portion of the reviewed sources a practice is labeled ‘good’ or ‘best’ if successful organizations use 

the practice frequently in their projects, based on the assumption that successful projects follow 

sound engineering principles, while failing projects do not. However, Daneva and Ahituv (2010) 

observe that for the majority of the practices, there is no statistically representative evidence of the 

good practice status of these practices. This status is for the majority of the practices exclusively 

based on anecdotic evidence in successful software projects. Daneva and Ahituv (2010) also note 

there is no agreement on what a valid practice is or what validity means; quantitative as well as 



 50 

qualitative research techniques were used. Jones (2000, 2009) explicitly recommends that any 

potential best practice needs empirical results from at least 10 companies and 50 projects. 

To overcome the limitations in determining validity, we include for each potentially new 

organizational pattern in what projects it is used. Daneva et al. (2007) describe 20 relevant 

dimensions of projects for the purpose of exploring interface problems of requirements engineering 

and architectural design. While we feel that the company’s problems may not only be related to 

requirements engineering and architectural design, we still consider the dimensions relevant for this 

research, as they provide an adequate overview of the company’s projects. More on the dimensions 

can be found in chapter 4. 



 51 

4 The company’s context 

To understand the problems the company is experiencing, we need to understand the context in 

which it is operating. First we show an organization chart of the company. The relationship between 

the management and the developers is very informal, which results in a relatively flat organizational 

hierarchy. As the focus of our research is primarily on the software development process, we 

consider the financial administration out of scope. 

Owner

Management

(2 managers)

Financial 

administration

(1 employee)

Developers

(6 employees)

 

Figure 7: Organization chart of the company 

As the company’s problems are related to its projects, we need to specify the context of each project 

to be able to find solutions to the problems, as well as to ensure validity of our research. Daneva et 

al. (2007) describe 20 relevant dimensions of projects for the purpose of exploring interface 



 52 

problems of requirements engineering and architectural design. While we feel that the company’s 

problems may not only be related to requirements engineering and architectural design, we still 

consider the dimensions relevant for this research, as they provide an adequate overview of the 

company’s projects and allow us to compare the projects with each other. We assigned each project 

a letter, which we use throughout this research. 

In paragraph 4.1 we provide an overview of all dimensions by giving the definition of each dimension 

as written by Daneva et al. (2007). In paragraph 4.2 we provide more information on the actual 

context of the company’s projects. For a detailed overview of the dimensions of each project, see 

Appendix A: Project dimensions. 

4.1 Dimensions 

Below we give for each dimension the definition as stated by Daneva et al. (2007). For more 

information on these dimensions, we recommend the source. 

1. Project nature refers to whether the project is new or whether it involves some form of 

modification to existing applications. 

2. Technology gap addresses how much experience the developers and maintainers have with 

the technology that the project depends on. 

3. Level of integration is to reflect the level of integration with other applications. It addresses 

whether the application is stand-alone or integrated with other applications (and if so, to 

what extent). 

4. Project organization addresses whether the project team members are co-located or 

dispersed at national or international level. 

5. Availability of project resources refers to whether the project team members are dedicated 



 53 

resources or shared. 

6. Project relationship structure addresses ‘the business arrangement’ behind the project 

execution. It implies a unique business model, assuming certain roles of the actors in the 

software industry and certain approach to software funding. It is considered worth keeping a 

distinction among: in-house projects, contract/subcontract projects, and fixed-price. 

7. Procurement process is concerned with the type of process used to bid, screen, and select 

vendors, and acquire the software system. 

8. Market focus reflects if a project “knows its users by name” at the time of its conception or it 

is done for mass market. 

9. Business sector is about the business sector of the organization that uses the application. 

10. Functional area identifies the functional area in a business being addressed by the project. 

11. Development organization reflects the size of the organization (not the specific team) 

responsible for the project delivery. 

12. Size of the client organization reflects the size of the organization (not the specific team) 

that will use the delivered system. 

13. Business risk reflects the strategic importance of a project and, consequently, the damage to 

business due to project failure. 

14. System risk is concerned with risks posed on the environment of the system due to system 

failure. 

15. Risks to the project is concerned with the types and severities of the various risks posed to 

the project. 



 54 

16. Project size is about the functional size of the application being developed or modified. 

17. Duration reflects how long a project is planned for. 

18. Client experience with IT projects refers to whether the client organization is technology-

aware and used to make technology-related decisions (while primarily relying on their own 

well-informed judgments of their options). 

19. Methodology used addresses aspects of the methodology a project team adopts. These sub-

dimensions are considered important: 

a. how iterative it is 

b. what is the amount of documentation involved 

c. implied notations to be used 

20. Project governance model addresses some aspects of the approach to managing the project. 

It covers: 

a. the rules and regulations under which a system delivery project functions with 

respect to project organization and reporting 

b. the mechanisms put in place to ensure compliance with those rules and regulations 

4.2 Context of the projects 

In Appendix A: Project dimensions, we provide detailed tables with all the dimensions for each 

project. The values for the dimensions for the projects are based on a) personal communication with 

the company’s employees, b) information in the company’s information systems and various 

documents (see chapter 4) and c) on informal interviews with the company’s employees (see chapter 

6). Based on the tables and the information from chapter 4 and 6, we can conclude the following for 



 55 

each dimension: 

1. Project nature: We found 11 Greenfield projects, 7 projects that required Enhancement and 

corrective maintenance and 5 Replacement projects. The projects that required 

Enhancement and corrective maintenance were all taken over from other development 

companies or from freelance developers. 

The company’s employees (both developers and managers) prefer almost always Greenfield 

and Replacement projects over projects that require Enhancement and Corrective 

maintenance. The quality of the source code of projects that are taken over is found a large 

problem, as well as the lack of (proper) unit and functional tests. From the interviews with 

the employees, we can conclude that the quality of the source code of projects that are 

taken over is a Risk to the project (15). 

For future research we recommend looking into applying test driven development to 

projects that do not have a test suite. 

2. Technology gap: We found 14 projects without a clear technology gap, 6 projects with a 

moderate technology gap, and 3 projects with an above average technology gap. Some 

employees feel there is a higher technology gap when the Level of integration (3) with other 

applications is high: the projects that have a moderate or above average technology gap all 

have some form of integration. We also think there are higher Risks to the project (15) if the 

technology gap is larger. From the 6 projects with a moderate technology gap, 5 had a 

medium level of risks to the project, and from the 3 projects with an above average 

technology gap, 2 had a medium level and 1 a high level of risks to the project. For 

comparison, from the 14 projects with a non-existent technology gap, 8 had a low level of 

risks to the project. 

For future research we recommend looking into potential correlations between technology 



 56 

gaps, level of integration, and risk to the project. 

3. Level of integration: We found 13 projects with some form of integration and 10 projects 

that were stand-alone (i.e. no integration at all). See Technology gap (2) for information on 

the relation between the technology gap and level of integration. 

4. Project organization: The developers within the company are always co-located, while the 

customer is almost always located elsewhere, except for the 2 projects that were done in-

house. The responsibility for project management is almost always shared between the 

company and the customer. 

5. Availability of project resources: We found that 16 projects in the company are done based 

on shared resources (i.e. developers work on multiple projects at the same time); 7 older 

projects used a combination of dedicated and shared resources. 

6. Project relationship structure: We found that 18 projects in the company are done as a 

contractor, 3 are done as subcontractor and 2 projects are done in-house. The projects that 

are done as subcontractor are all fixed price. Of the 18 projects that are done as a contractor, 

4 use time and materials based pricing, the others are fixed price. 

The company’s management prefers projects as contractor as it gives them more control and 

more revenue; management also prefers projects that use time and materials based pricing if 

the client has a high experience with IT projects (18). The projects that the company did in-

house were found to be too complex from the start. 

We recommend that the company takes a careful approach when developing new projects 

in-house to ensure the new project doesn’t become too complex. We also recommend 

looking more into how users actually use a product instead of finding requirements for all 

possible cases. More complex situations can be handled in a later release. Thus, in Scrum 

terms, the Product Owner should be careful in selecting what he really requires to be 



 57 

implemented. 

7. Procurement process: The company gets its projects through the channels mentioned 

below. Although some of these are unknown, we see that the company gets many of its 

projects through its business network (via-via) and by customers who have previous 

experience with other projects done by the company. We believe that while these two 

channels remain important, there is potential in the other channels. 

 Unknown: 7 projects (some of these may be because a client found the company on 

the Internet, or through one of the channels below) 

 Business network: 6 projects 

 Previous experience: 6 projects 

 In-house: 2 projects 

 Neighborhood: 1 project 

 Tenders: 1 project 

8. Market focus: As the company’s projects are web based, the market focus is often the 

customer itself on the back-end side of the product, but also mass market on the front-end 

side of the product. This makes it tough to make a clear distinction on the market focus of 

each project. 

9. Business sector: The business sector differs between the company’s projects. 

10. Functional area: The functional area differs a lot between the company’s customers. 

For future research we recommend choosing an appropriate classification scheme or 

nominal scale to describe the functional area, so it is possible to compare projects more 



 58 

easily. 

11. Development organization: The size of the development organization (i.e. the company) is 

always very small. 

12. Size of the client organization: We found 6 projects with a very small client organization, 8 

with a small client organization and 9 with a large client organization. No projects with a 

medium client organization were found. Like Market focus (8), it is not always easy to 

determine who the actual client is; for example when the back-end is used by the customer 

itself, while the front-end may be used by everyone on the Internet, or by a collection of 

other companies. To overcome these situations we use the size of the client organization of 

the main user of the product. 

13. Business risk: We found 9 projects with a low business risk, 12 projects with a medium 

business risk and 2 projects with a high business risk. The two projects that had a high 

business risk were supported by venture capital, but had also inadequate budget availability. 

Based on the company’s projects, we believe a higher business risk leads to more 

involvement by the customer. See also Client experience with IT projects (18). 

For future research we recommend looking into potential correlations between business risk 

and customer involvement. 

We recommend for the company that if the business risk of the project is low, there is more 

need for it to be involved in project management, especially regarding management of 

deadlines. 

14. System risk: In 16 of the company’s projects the system risk is low. In 7 projects the system 

risk is medium: in all medium cases this is a monetary risk. 

15. Risks to the project: We identified the risks below for the company’s projects. 8 projects had 

no risk that we could identify; 3 projects had two identifiable risks. Some form of integration 



 59 

(6 projects) and projects that are taken over (5 projects) are the highest risks according to 

the company. Only two projects that were taken over are not considered a risk. In one case 

the project was very small and in the other case the code quality seemed adequate and a 

test suite was available at the time the project was taken over. 

The IT infrastructure of the customer is often a risk when the customer uses caching proxies 

or outdated web browsers. 

For future research we recommend looking into correlations between Project nature (1) and 

Level of integration (3) on the one hand and risks to the project on the other hand. 

 Some form of integration: 6 projects 

 Project was taken over: 5 projects 

 IT infrastructure of the customer: 3 projects 

 Inadequate budget availability: 2 projects 

 Technology that is unknown to the project team: 1 project 

 Many different parties involved: 1 project 

16. Project size: Most projects that the company does can be considered small, only 2 medium 

and 2 large projects were found. No very large projects were identified. 

 Small: 19 projects 

 Medium: 2 projects 

 Large: 2 projects 

17. Duration: We found that 8 projects in the company have a duration of less than 3 months, 12 

projects have a duration of 3-9 months, and 3 projects have a duration of more than 18 



 60 

months. We include maintenance in the duration if the project is actively maintained, 

meaning that some form of service level agreement is present or if the customer regularly 

asks for new enhancements.  

18. Client experience with IT projects: We found 9 projects in the company with clients with low 

experience in IT projects, 5 with medium experience in IT projects, and 9 with high 

experience in IT projects. We believe that in general clients with a low experience in IT 

projects require more ‘guidance’ with managing the IT project. In other words, the company 

should play an active role in project management if the client does not have that much 

experience with managing IT projects. On the other hand, the company’s management also 

got the feeling that some clients with a high experience with IT projects also require a more 

active role by the company on project management. See also Business risk (13). 

We recommend for the company that if the client experience with IT projects is low, there is 

more need to be involved in project management, especially regarding management of 

deadlines. 

19. Methodology used: Overall we see that some form of agile development is used in all of the 

company’s projects. Some projects are more agile than others, but all projects use Extreme 

Programming (XP) and most projects have a low amount of documentation. 

 In all projects XP was used; in 5 projects this was used in combination with Scrum. 

One project used waterfall, although user tests were performed during 

development. One project claimed to use agile, but in practice it seemed more spiral. 

 We found 18 projects with a low amount of documentation, 4 with a medium 

amount of documentation and 1 with a high amount of documentation. 

 All projects used text in natural language. We found 9 projects that used design 

mock-ups (although other projects may have used this as well) and 5 projects that 



 61 

used diagrams (e.g. class diagrams) as documentation. 

20. Project governance model: We found only 5 projects in the company that used an ‘official’ 

project governance model, in all cases some form of agile project governance; in 17 projects 

we found that in practice some form of agile project governance was used, while it was not 

explicitly defined for those projects. In one project, we couldn’t really make out what project 

governance model was used. 

We believe that making the project governance model more explicit would result in more 

awareness by the customer and developers of their responsibilities. 

 



 62 

5 Relevant documents 

In this chapter we describe the relevant documents we collected for this research. In paragraph 2.4 

we wrote that we would gather data from three different types of information types: people, 

documents, and literature. We described relevant literature in chapter 3. Below we state what 

relevant documents are used and have been in use in the company. Most of these documents are in 

the form of information systems. We also interviewed the company’s employees and asked them 

why certain documents and systems are no longer in use and why certain decisions related to these 

documents and systems were made. The results of these interviews can be found in chapter 6. 

5.1 Collecting the documents 

To make sure we gather all relevant documents, we first asked managers and developers what 

systems and documents are used in the development process. To ensure we didn’t miss any relevant 

sources, we used literature to find other potential data sources available in the company, which are 

used in its projects. Below we first shortly state the relevant documents, after which we describe 

them in more detail. 

From knowledge management perspective (Binney, 2001; Earl, 2001) the following systems are 

identified within the company: bug trackers (5.2), source repositories (5.3), wikis (5.4) and internal 

mailing lists (5.5). We also identified a time tracking system (5.6), an invoice system (5.7) and some 

folders with Word, PDF and Excel documents on the network disk (5.9). 

As explained in paragraph 3.1.4 Scrum recommends using the following deliverables (or artifacts): 

the Product Backlog, Sprint Backlogs, and burn down charts. Although Scrum was explicitly used in 

only a few projects, we describe if and how these deliverables are used in all projects (5.8). 

5.2 Bug trackers 

The company has used several bug trackers (also called issue trackers or ticket trackers) in its 



 63 

lifetime. Most of the time, the bug tracker was managed by the company itself, but in two projects, 

the bug tracker was initially kept by the client of those projects. 

We also discovered that initially the bug tracker was only used internally by the company, but that 

more recently it’s moving its customers to use Redmine as a feedback system as well. 

5.2.1 Managed by the company 

The first bug tracker used in the development process of the company was Trac. Trac can be 

described as “an enhanced wiki and issue tracking system for software development projects”, while 

using “a minimalistic approach to web-based software project management” (Edgewall Software, 

2010). Trac has Subversion (a type of code repository) support, which was also used by the company 

at the time. 

Later, the company migrated to a different bug tracker named Redmine (Lang, 2010). While the 

original Trac data is no longer available, fortunately the company moved all its Trac projects to 

Redmine, including existing data. Thus, no data was lost, although some internal links between 

tickets did not work well afterwards. Both Trac and Redmine have a repository browser, so 

developers can browse through the repository. 

We found no reason why specifically Redmine was chosen over other bug trackers, although 

Redmine was created using the Ruby on Rails framework. As the company also uses Ruby on Rails in 

its projects, there may have been a preference for using a project created with the same technology. 

We do know no explicit comparison was made between bug trackers, to select the ‘best’ option for 

the company. 

5.2.2 Managed by others 

In two projects a bug tracker was used that was managed by the client. 

 In Project B a bug tracker named Codebase was used. Codebase also includes repository 



 64 

hosting, wikis and time tracking (aTech Media, 2010). The reason for choosing Codebase was 

mainly because the project was taken over by the company, thus the repository and bug 

tracker were already present. 

When Project B was taken over by the company, the bug tracker and code repository in 

Codebase remained in use, while the company used its own wiki for this project. 

As the project progressed it was decided, mainly by the management, to start maintaining 

the tickets in Redmine and move the code to the company’s code repository. Tickets in 

Codebase were not moved to Redmine and Codebase is no longer used in the project, 

neither by the company or the client. So while Codebase is still active, older tickets are not 

maintained anymore. As they are all closed, this is not really an issue. 

 In Project X, a Redmine instance managed by the client was used. As the company’s Redmine 

was not yet set-up to allow customers to create tickets as well, initially the client’s Redmine 

was used. When the company’s Redmine was set-up correctly, the project was also moved to 

the company’s Redmine. Tickets in the client’s Redmine instance are no longer maintained. 

As they are all closed, this is not really an issue. 

Thus currently for all projects Redmine is used as a bug tracker. The company configured Redmine in 

such a way that a ticket can currently have one of the following statuses: 

 New: A new ticket. 

 Agreed: Either the customer agreed to pay for the estimated time given in the ticket, or it is a 

bug that the company needs to fix, in which case no time estimation is given. 

 In progress: Someone is working on the ticket. 

 Resolved: The company is done working on the ticket. The customer needs to test the result. 



 65 

 Closed: The result of the ticket is accepted by the customer. 

 Feedback: The ticket requires feedback, most often by the person that created the ticket. 

 Rejected: The ticket is rejected for whatever reason. Mostly these are duplicate tickets, or 

the customer filed a bug report that really wasn’t a bug report, or the customer is not willing 

to pay for a certain ticket. 

By default in the ticket overview in Redmine, tickets that have either the status Closed or Rejected 

are not displayed, and are considered closed. Thus tickets that have the status New, Agreed, In 

progress, Resolved and Feedback are displayed and are considered open. 

5.2.3 Management tasks 

The company has a dedicated project in Redmine in which managers can keep track of certain 

management tasks. 

5.3 Source repositories 

The company uses various source repositories for storing the source of its projects. Sometimes, the 

source repository is managed by the company itself; sometimes it’s managed by the client. Two 

types of repositories are used: Subversion and Git. 

5.3.1 Managed by the company 

The first type of code repository used in the development process of the company was Subversion 

(sometimes abbreviated as SVN). Subversion describes itself as “a full-featured version control 

system originally designed to be a better CVS” (The Apache Software Foundation, 2010). 

There were several problems with Subversion identified by the company, mostly related to managing 

different versions of the same code: 

1. A repository could be forked (branched), but it was not evident to merge changes in the fork 



 66 

back into the main repository. 

2. A single commit made to a branch could not be easily picked out to be applied to other 

branches of the same repository. 

Later, the company migrated to a different source repository named Git. Git advertises itself as “a 

free & open source, distributed version control system designed to handle everything from small to 

very large projects with speed and efficiency” (Baudis, P. & Chacon, S.). Only active projects were 

moved to Git, while older projects were left on Subversion. The Subversion repository is still active, 

so if code from older projects is required, Subversion can still be accessed. Newer projects are only 

stored in Git. 

5.3.2 Managed by others 

Some clients prefer to keep the source code for their projects in-house and some clients have 

multiple projects, which are not all maintained by the company. In these cases the repositories in use 

are either Subversion or Git as well. 

5.4 Wikis 

The company has used several wikis in its lifetime to store knowledge information. In all cases the 

wiki was managed by the company itself. 

5.4.1 Trac 

At first, the company used the wiki that was integrated into Trac. As there were Trac instances for 

each project, the information in each Trac-wiki was mostly project related: e.g. hosting information, 

deployment information, repository information, and contacts (phone numbers, etc.). 

5.4.2 DokuWiki 

After the move to Redmine, a new separate wiki was used, called DokuWiki. DokuWiki is described as 

“a standards compliant, simple to use Wiki, mainly aimed at creating documentation of any kind. It is 



 67 

targeted at developer teams, workgroups and small companies” (Gohr, 2010). As the company also 

added hosting to its services, server related information (e.g. how to install, software used, and 

general layout) was also added to the wiki, besides the project related documentation. 

Also some good code practices in Ruby on Rails, plug-ins to use in Ruby on Rails projects and 

software patches were stored in the wiki. So it appears that during this time a) some tacit knowledge 

was made explicit and b) some explicit knowledge was centralized. However, updates rarely occurred 

on the plug-ins to use and good code practices. When updates did take place, it was mostly related 

to projects and server information, if necessary (e.g. when a username/password changed, or when 

some more contacts were known), thus the knowledge on what plug-ins to use and good code 

practices lost its value over time.  

We believe the most important reason for not updating the explicit knowledge is the speed in which 

the explicit knowledge becomes outdated. While some good code practices still remained good 

practices after a while, most patches and plug-ins to use became outdated fairly quickly: 

 Plug-ins were often not well-maintained, so what was “the” plug-in to use at one moment in 

time, was already an outdated plug-in three months later. 

 Patches were most of the time specific patches for Ruby on Rails versions. As there was a 

new version released every few months or so, the patches quickly lost their value. 

 The good code practices were sometimes useful from a higher point of view (i.e. how to 

solve a specific problem), but the code itself was often targeted at a specific version of the 

Ruby on Rails framework thus not always directly useable. 

So as the speed to which knowledge becomes outdated is relatively high, programmers in the 

company often rely more on Google and their colleagues, than on the wiki. 

5.4.3 Redmine 



 68 

After DokuWiki had been in use several years, the company moved away from it and back to a more 

project-centered approach. Thus the still relevant knowledge in DokuWiki was moved to Redmine, 

which also has wiki functionality. The knowledge is now again stored separate for each project. For 

specific tasks related to hosting, a separate project is present with associated wiki. 

5.5 Internal mailing lists 

The company has several internal mailing lists for communication among developers. Some of these 

are topic based, while others are project based: 

 A general office mailing list, which is used for all topics potentially interesting for all 

developers. 

 An admin mailing list, which is used for all hosting and server related topics. 

 An exception mailing list, to which all exceptions (page views with an HTTP 500 status code) 

are emailed by the web server; i.e. when a web application maintained by the company 

produces an HTTP 500 status code, the whole request, including response is e-mailed. This 

allows the company to respond quickly to potential bugs. 

 Previously there were separate mailing lists for each project to which updates to tickets in 

Redmine were emailed. Also the exceptions (see previous bullet point) were sent to these 

mailing lists. Nowadays these mailing lists fell largely into disuse. Updates to tickets are now 

emailed separately to each developer. Other topics that were previously discussed on these 

separate mailing lists are now discussed in regular e-mails between developers, managers, 

and customers. The reasons for moving away from a separate mailing list for each project are 

that projects are often too small (i.e. a low volume and only a few developers) and that it 

becomes rather time consuming to manage (e.g. what developer is on what mailing list). 

5.6 Time tracking system 



 69 

As some of the developers now are and in the past were part-time employed, it is important to track 

the time an employee has worked. Also, the management wants to know which projects run well and 

which do not. Time tracking helps determining how much time was spent on a project. The company 

has used several ways for tracking time in its past. 

5.6.1 E-mail 

In the beginning e-mail was used for communicating the hours worked. Developers e-mailed the 

hours they worked to the management, which used these e-mails to know how much to pay each 

developer. These e-mails were sometimes only stating the hours worked on a day, but later by 

request of the management, became more specific and also stated how much time was worked on 

specific tasks. 

5.6.2 Sherlock 

As the company wanted to create products they could sell multiple times to customers, instead of 

waiting for a customer to ask for a product, they chose a product they could use themselves as well, 

i.e. a time tracking system. Also the management didn’t want to count hours for each employee by 

hand and to be able to compare indicated hours for a task with actual hours spent. 

A system was specified that could, among others, track time, manage companies, manage projects 

and manage quotes; it was named Sherlock. Although it could do a lot of things, the thing it didn’t do 

well was track time. Adding hours was a rather time consuming process for employees and hours 

could be added from three different perspectives (general, employee and project). Especially the 

latter was a real problem as sometimes the perspective changed if the employee added hours. Also 

the management information gained from Sherlock was not really the information the management 

needed. 

We believe the most important reason for the failure of the project was the lack of proper focus from 

the start. The system was designed from the start to do a lot of things, but that also made it overly 



 70 

complex. Although the development team worked in iterations and Scrum was used to guide the 

development, the system wasn’t used until it was complete. So instead of creating a time tracker 

that worked well in practice and then adding new features, the system had a lot of features, but 

didn’t properly track time in practice. 

5.6.3 Back to e-mail 

As the employees didn’t really track time with Sherlock, it was decided to move back to e-mail. 

5.6.4 Excel 

As the management still wanted an easy way to be able to count hours worked by their employees, 

an Excel sheet was created in which the employees could track their time. Every week the employees 

had to send a filled out Excel sheet to the management. 

5.6.5 SlimTimer 

To accommodate the need by the management to gain easier insight into which projects run well 

and which do not, time tracking is now done with SlimTimer. SlimTimer is about “making time 

tracking easier by eliminating timesheets in favor of using a web based timer” (White, 2006). So 

SlimTimer does not only allow adding hours to specific tasks, but also allows an employee to track 

time by starting and stopping a timer. 

SlimTimer also provides basic management information about how much hours were spent on tasks 

and it is no longer necessary to combine data from Excel sheets. 

5.7 Invoice system 

To manage its outgoing invoices, the company uses MoneyBird. MoneyBird is a web application that 

allows one to create and manage invoices and quotes (BlueTools, 2010). 

5.8 Scrum artifacts 

The company explicitly used Scrum in some projects. Below we describe for each Scrum artifact if 



 71 

and how it is used, for projects in which Scrum was explicitly used but also for the projects in which it 

was not. 

5.8.1 Product Backlog 

Only in Project D the company explicitly kept a Product Backlog. This project was also the largest 

project that the company developed. Although Scrum prescribes the Product Owner (i.e. the 

customer) should keep the Product Backlog, in fact it was the ScrumMaster (an employee of the 

company) who kept it. We do not know whether this caused any direct problems, but the reason the 

Product Owner should keep the Product Backlog is that the Product Owner also makes the decision 

which feature should be implemented next, i.e. the one that makes the decision should also bear the 

responsibility. 

It is possible that a Product Backlog was also kept in other projects, but in that case the customer did 

not explicitly mention it. 

5.8.2 Sprint backlog 

There are no projects in which a Sprint Backlog was explicitly kept in document form, but in all 

projects a bug tracker was used. In almost all projects there were also milestones set in the bug 

tracker, sometimes even with explicit names like “Sprint 1”.  As mentioned in paragraph 3.1.4 the 

Sprint Backlog contains the tasks that need to be done for that Sprint. Single tasks should not take 

more than 4 to 16 hours and only the Team is allowed to change the Sprint Backlog. We believe that 

in most projects the bug tracker adheres to these principles. 

Based on this information, we find that the bug tracker can be considered a Sprint Backlog. Still, in 

some projects, the bug tracker is also used as a feedback system for the customer, in which the 

customer can add bugs and features. To some extend this allows the developers and customers to 

communicate directly, but we believe that using the bug tracker as a feedback system should have 

some rules or guidelines to ensure the customers do not restrict the Team in any way to organize 



 72 

themselves. 

5.8.3 Burn down chart 

We couldn´t find any use of burn down charts in the company’s projects. In the project in which the 

Product Backlog was explicitly kept (see paragraph 5.8.1), the Product Backlog did include a “burn 

down percentage”, but no real charts were used. And although the burn down percentage is stated 

in the Product Backlog, it gives a percentage that only covers the last sprint (i.e. what percentage of 

the last sprint is done). We believe some form of improvement is possible here. 

5.9 Documents on the network disk 

Besides the recommended deliverables in the Scrum methodology, some other documents were 

identified: 

 Project proposals, sometimes for tenders. There are also designs (layouts) for some projects. 

Many projects also have some form of class diagram. 

 In the project where the Project Backlog is explicitly kept, there are also documents related 

to the sprint meetings: agendas, minutes, documents that describe the goals for the next 

sprint, time indications for potential features, and documents that are used to inform the 

customer what was done during the last sprint. 

 For Project D there are also some minutes from sprint retrospective meetings and a log with 

lessons learned. It seems the log was created in the beginning, but not kept up-to-date, as 

only three “lessons” are present. 

 Some (old) plug-ins and libraries, including often used icons. 

 E-books and PowerPoint slides on various topics. Some of the slides were from conferences 

that were attended by the company’s employees. 



 73 

 Various other administrative documents. 

5.10 Conclusions 

From the use of documents and systems in the company, we can already conclude the following: 

 In Project D it seems Scrum was used with most meetings, roles and artifacts present. The 

actual development process used by the company in this project was shortly described by 

the ScrumMaster in his bachelor thesis (Andringa, 2008). This thesis also provides us with the 

reasons for using Scrum within that specific project. More on these reasons can be found in 

chapter 7. 

 It seems the company is moving towards more centralized systems. We have seen that 

Redmine is now used as a bug tracker, code repository browser, customer feedback system 

and wiki. We also see that instead of creating mailing lists for each project, there are now 

only a few mailing lists, unrelated to specific projects. Specific project information is now 

emailed by developers between each other. 

 We haven’t seen any burn down charts. Although we haven’t discovered specific problems 

related to the absence of these charts, we think that using these charts (potentially 

automatically created in Redmine) could improve insight into the progress of the various 

projects. 

 



 74 

6 Interviews with relevant people 

In this chapter we describe how the employees of the company work. In paragraph 2.4 we wrote that 

we would gather data from three different types of information types: people, documents, and 

literature. We covered relevant literature in chapter 3 and relevant documents in chapter 5. Below 

we describe how the employees in the company interact with each other, with customers, and with 

the available information systems and documents. These descriptions are based on informal 

interviews we held with three employees (two managers and one developer). 

6.1 Collecting the information 

To collect information on how the employees work, we held informal interviews with three of them 

(one developer: Developer A and two managers: Manager B and Manager C), specifically asking them 

how they work, what tasks they usually have, with which documents and information systems they 

interact and how they interact with them, and what common problems they encounter in the 

projects they work on. 

To improve construct validity (Yin, 2009), we each showed them the results of their interview and 

asked them for feedback. We also improved the questions in later interviews by using the results 

from earlier interviews. The interviews were recorded (audio) to ensure we didn’t lose any 

information in the collection process. In the results below, we assigned each interviewed employee a 

letter, so we know who said what, while at the same time ensuring some form of anonymity. 

Interviews took between 45 minutes and 1 hour 50 minutes and were held in Dutch. The information 

in the interviews was translated into English and restructured, meaning that the order of information 

in the next chapters was not necessarily the order in which the information was received. 

To visualize the information from the interviews we add a flowchart diagram and data flow diagram 

for the results of each interviewee. Next, we combine the individual diagrams of each employee into 

one flowchart and one data flow diagram, resulting in an overview of the software development 



 75 

process in the company. For the sake of clarity we separate the management role from the 

developer role, so one employee can fulfill multiple roles; this allows us to combine the flowchart 

diagrams more easily. 

6.1.1 Legends 

The legends below describe the diagrams we use in the following paragraphs. 

Process

Decision

Start- / Endpoint

Process flow
                                                   

Process

Interface

Data Store

Data Flow
 

Figure 8: Legends for Flowchart diagrams (left) and Dataflow diagrams (right) 

6.2 Developer A 

Developer A has worked approximately 2.5 years for the company. In the interview he described the 

software development process roughly as displayed in Figure 9 below. Paragraph 6.2.1–6.2.6 (also 

mentioned in Figure 9) explain the development process in more detail. Paragraph 6.2.7–6.2.11 

mention other aspects of the development process, not covered by the flowchart in Figure 9. 

 



 76 

Customer wants a 

new product

6.2.1. Manager 

and developer(s) 

give time 

estimation

Is information 

clear?

Manager asks 

customer for more 

information

No

Yes

Customer agrees with 

time estimation?

Yes

Product is not 

developed

No

6.2.2. Manager 

creates new 

project in Redmine 

and adds tickets

6.2.3. Developer 

writes code based 

on the tickets

Customer tests 

results

6.2.4. Developer 

commits code to 

repository

Developer deploys 

application to 

staging 

environment

6.2.6. Customer 

creates or updates 

a ticket

6.2.5. Developer 

creates or updates 

a ticket

Developer deploys 

application to live 

environment

Functionality 

complete?

No

Yes

Project 

finished?
Project is finished

YesCustomer wants 

new functionality

Customer adds 

ticket to Redmine

No

Developer gives 

time estimation

Customer 

agrees?

Feature is not 

developed

No

Yes

 

Figure 9: The company’s software development process according to Developer A 

6.2.1 Manager and developer(s) give time estimation 

Depending on the size of the project, a manager and one or two developers together estimate the 

time necessary to implement the requested features. The larger the project, the more developers are 



 77 

included. Mostly the features are defined very high-level, which are also mentioned in the quote. 

During development of the project, the customer can still decide to add or skip certain features. 

6.2.2 Manager creates new project in Redmine and adds tickets 

One of the problems Developer A experiences is that tickets are not always clear enough. According 

to Developer A there are two main reasons why tickets are not clear enough: 

 A customer experiences a bug and describes it very briefly or unclearly (see also paragraph 

6.2.6). As bugs can often only be fixed if they can be reproduced (Hooimeijer & Weimer, 

2007), Developer A often needs more information. 

 Global backlog items (for example stated in a quote) are directly copied to a new ticket by 

management, often lacking more specific information, although Developer A thinks 

management is in this case missing information as well. This is mostly due to functionality 

specified in quotes being (too) global, and thus often unavoidable. On the other hand, 

Developer A thinks its management’s task to ensure there is enough information if it creates 

a ticket. 

In both cases the customer needs to be contacted (either by updating the ticket or by e-mail or 

telephone) to gain more information. Developer A doesn’t start coding, until he knows enough 

information, so he doesn’t waste time writing something that has a large risk of not being the right 

feature. 

6.2.3 Developer writes code based on the tickets 

If Developer A experiences a problem during coding to which he has no direct solution, he will ask a 

colleague if he thinks the colleague may know the answer, otherwise he will use Google. Developer A 

almost never uses the wiki for solving his problems, as he found searching in it not really easy, the 

information was often outdated and he felt that the Internet is the largest knowledge database, thus 

it would be illogical to search in a subset (i.e. the wiki). Developer A only uses the wiki for project 



 78 

specific account information (login information for servers, etc.), so he prefers the wiki in Redmine 

over Dokuwiki. The only other time Developer A used the wiki, was when a former employee of the 

company wrote an article on Ruby blocks (a certain aspect of the Ruby language) and put in the wiki. 

This article, in contrast with other information in the wiki, remains quite up-to-date. 

Developer A almost never uses e-books or conference slides for information. He only used an e-book, 

called Agile Web Development with Rails, when he joined the company. The company has the policy 

that every new developer should first work his way through this e-book. The e-book is in the form of 

a tutorial guiding the inexperienced Rails developer through all aspects of the Rails framework in an 

agile setting. To keep himself up-to-date with the latest news, Developer A often watches ‘Railscasts’ 

(Railscasts, 2010); sometimes he reads a blog or article. 

Developer A actively uses the source repository browser in Redmine. Especially when other people 

commit code, he wants to know what has changed. The repository browser is also used when a bug 

report comes in, to see what changed in the past. 

6.2.4 Developer commits code to the repository 

If Developer A wants to commit updated code to a project, he tries to commit the new code to the 

source repository. If it fails, it is usually because someone else committed code before he did. 

Developer A worked in the company with Subversion as well as Git, but prefers Git over Subversion. 

He finds it easier in Git to make branches (forks), to switch between branches and to merge changes 

from one branch to another. Therefore he finds Git a large improvement over Subversion. He also 

feels Subversion generated more conflicts when trying to merge changes from one branch to 

another. The branching and merging improvement helped, especially in Project D. 

He finds the only disadvantage is the steep learning curve Git has in comparison to Subversion. Git 

can do a lot more, but that also means it’s more complex to learn and thus more easy to do 



 79 

something wrong. Still, he thinks Subversion has no real advantage, feature wise, over Git. 

Developer A says the company moved from Subversion to Git, because one former employee was 

very positive about Git. Also Ruby on Rails (and gems and plug-ins often used in projects) moved to 

Git as well, but he is not really sure whether this was a real reason for the move. 

6.2.5 Developer creates or updates a ticket 

If Developer A needs to create a ticket himself, it depends on for whom the ticket is meant if 

information is added. He will try to use less technical terms if the ticket is for a customer, than if the 

ticket is meant for another developer or himself. 

6.2.6 A customer creates or updates a ticket 

When a customer or other employee (see also paragraph 6.2.2) creates or updates a ticket in 

Redmine, an e-mail is sent to all managers and developers. It depends on whether Developer A is 

active on the project whether he takes action, but he also actively follows changes to tickets on 

projects that he worked on in the past. 

If so, Developer A tries to have an active response to tickets to get the information clear as quickly as 

possible and to give the customer the feeling that he is taken seriously. He likes it that the customer 

can directly respond to tickets, instead of sending e-mails or calling to the office. Developer A also 

tries to keep his hands off contact with the customer, besides contact through Redmine. He also feels 

that Redmine works well if the customer knows how to work with it, but if the customer doesn’t 

communication becomes more cumbersome. 

If the ticket is not clear enough, Developer A will ask for more information, otherwise it depends on 

the type of ticket and project how he responds. If the ticket is a bug that is caused by an employee, 

he will try to fix it, or leaves it to a colleague. If the ticket is a task, suggestion or feature request, he 

will estimate the time necessary to implement the request if the project requires it (most often it 



 80 

depends whether the project is fixed price or hourly based). 

In one project Developer A uses a requirements document (in Dutch Programma van Eisen, PvE), 

which was created by the customer before they contacted the company, although the presence of 

such a document is not common. Developer A thinks it’s nice to have, as some corner cases are well 

thought of (especially business logic), but only because it’s there. He wouldn’t choose to write such a 

document first, if it weren’t available. During development some requirements change, but not 

much. 

Developer A does not have a clear preference for Redmine or previously used Trac, but does think 

Redmine has a somewhat higher usability. He is in general very satisfied with Redmine, but finds the 

workflow in Redmine not always evident: 

 In the index multiple tickets can be selected and fields can be edited for those selected 

tickets at once, but other fields cannot be edited in the same way, although you would 

expect so. 

 If a ticket has the status Resolved or Feedback, the ticket is still considered open, but it 

requires no action by a developer. Instead it is the customer that should act. We believe this 

limitation of Redmine can largely be explained by the fact that is not meant as a customer 

feedback system. Still, there are filter options to display only tickets with a certain status. 

Developer A also thinks there is more functionality in Redmine than he really uses, but this is not 

necessarily a bad thing. 

6.2.7 An e-mail is received 

Besides the obvious trigger, i.e. the customer, Developer A is also triggered by different types of e-

mails he receives; this e-mail can be by a colleague (manager or developer), a customer, the ticket 

tracker (Redmine) or a web server. Considering the latter two: 



 81 

 When a ticket in Redmine is created or updated, it automatically sends an e-mail to all 

managers, developers and customer contacts that have access to the project the ticket 

belongs to. 

 The company configured its projects in such a way that when the web server running a 

project generates an exception (see paragraph 6.2.8), it sends automatically an e-mail to the 

company’s employees with details on the exception. The actual visitor of the website gets an 

HTTP 500 error page if an exception occurs. 

Developer A prefers a mailing list per project, although it depends a bit on the project: on a small 

project there is less need for a separate mailing list, especially when there is only one developer. 

Currently, Developer A has the feeling that he sometimes misses information, because people e-mail 

each other, but do not necessarily include all people involved in the project. So for workflow 

Developer A finds it nicer when there is always a mailing list for each project. 

6.2.8 An exception is received by e-mail 

If the exception is found to be critical, Developer A immediately takes action. If the exception is not 

really critical, it depends on the project whether he takes action or not. If the project is a project that 

he works or worked on, he is more likely to take action. If Developer A sees the exception and knows 

it can be fixed easily, he is more likely to fix it without creating a ticket. If the exception is more 

serious and there is no obvious solution, a ticket is created with the contents of the exception. 

6.2.9 Developer needs to track time 

Developer A thinks SlimTimer works well and prefers it over previously used Excel sheets. Using the 

Excel sheets became one large mess (there was one Excel sheet per employee per week). Developer 

A uses SlimTimer in two ways: 

 He starts the timer, so time is automatically tracked. 



 82 

 He enters the time he worked at a later moment. 

Developer A feels there is no real need to integrate SlimTimer or some other form of time tracking in 

Redmine, although he believes management may like it. He thinks that for management it may still 

be not clear how time is spent. 

Developer A says that the reason for Sherlock falling into disuse is that the workflow was too difficult 

for adding hours. He also believes that the backend for the management was not easy enough and 

that it was quite cumbersome to get the necessary results. He thinks the company could have fixed 

Sherlock, although he didn’t work on the Sherlock project himself. 

6.2.10 Developer needs functionality that may be present in a gem or plug-in 

Developer A likes not inventing the wheel again, so he prefers to use (Ruby) gems or plug-ins if that 

makes developing easier. The difference between gems and plug-ins is that gems are installed 

separately from the project and can be included in all project that run on the same computer, while 

plug-ins are typically project specific. Also, gems always have a version, while plug-ins often do not. 

Developer A finds that some experience with gems and plug-ins is useful to avoid certain gems and 

plug-ins that have caused problems in the past. Also gems and plug-ins that not have received 

updates in a while usually have to be avoided. He also finds that colleagues often have knowledge 

about which gems and plug-ins to use and which to avoid. 

Developer A finds that if the gem or plug-in has too much functionality for the problem he wants to 

solve, he prefers to write code himself. If code in the gem needs to be adapted, he does one of two 

things: 

 He forks the gem in his own repository and releases a new version. 

 He packages the gem into the project. This effectively means that the gem becomes a plug-in 

and thus becomes manageable in the project itself. 



 83 

It depends on the gem and type of change which option he chooses. 

6.2.11 A new version of a gem, plug-in or the Ruby on Rails framework is released 

While we feel that when a new version of a gem, plug-in or the Ruby on Rails framework is released, 

this should somehow be a trigger to let the customer know.  

In general Developer A does not keep the gems or plug-ins up-to-date for a project. Also the version 

of the Ruby on Rails framework is usually not changed if a new version is released. Also when 

security fixes are released for the Ruby on Rails framework, no actions are taken. Only when the 

project actually suffers from the bug, upgrades are recommended to the client. 

He thinks there are several reasons why there no action gets taken: 

 Updating the Ruby on Rails framework gives a lot of problems with gems and plug-ins. So 

while a combination of certain gems and plug-ins works well on one version of Rails, it 

generates problems on newer versions. Thus updating Rails means also all gems and plug-ins 

have to be checked. The developer believes that if updating would be easier, projects would 

get updated more often. 

With Ruby on Rails version 3 updating gems should be somewhat easier, as all gems (often 

with compatible versions) are stored in a file in the project. Previously, in Ruby on Rails 

version 1 and 2 this was not the case. 

 There is no good way of tracking security fixes in gems and plug-ins. The Ruby on Rails 

website generally gives information about security fixes, but this only includes the Ruby on 

Rails framework itself. 

 There is no ticket created when a security fix for Rails comes out. Thus, the customer doesn’t 

know about updates. Developer A also thinks that the customer may not care about updates. 

As long as the application works, the customer is not interested in newer versions of the 



 84 

framework, as it generates no direct value for him. 

We believe there is some room for improvement here. Creating a ticket takes relatively a short 

amount of time and gives the customer the choice of paying for the update or not. Also a different 

SLA model could be used in which updates are paid for. 

6.3 Manager B 

Manager B has worked approximately 2 years for the company. The work of Manager B is diverse; 

most of the time he’s busy dealing with e-mails and various administrative tasks: time tracking, 

writing quotes and contracts, project management, and generating invoices (both regular projects 

and service level agreements); when there’s time left, he develops code as well, which he finds very 

important as programming is the company’s core business. 

In the interview Manager B described the software development process roughly as displayed in 

Figure 10 below. Paragraph 6.3.1–6.3.9 (also mentioned in Figure 10) explain the development 

process in more detail. Paragraph 6.3.10–6.3.13 mention other aspects of the development process, 

not covered by the flowchart in Figure 10. 

Besides the aspects of the development process, Manager B thinks other issues are important as 

well: e.g. finding new projects, finding new employees and keeping employees, but we regard these 

issues out of scope. 



 85 

Customer wants a 

new product

6.3.1. Manager 

and developer(s) 

give time 

estimation

Is information 

clear?

Manager asks 

customer for more 

information

NoYes

6.3.2. Manager 

generates quote

Is information 

clear?

No

Yes

Customer 

agrees with 

quote?

Product is not 

developed

No

6.3.3. Manager 

sets up project

Yes

6.3.4. Developer 

writes code based 

on the tickets

6.3.7. Customer 

tests results

6.3.5. Developer 

commits code to 

repository

Developer deploys 

application to 

staging 

environment

6.3.8. Customer 

creates or updates 

a ticket

6.3.6. Developer 

creates or updates 

a ticket

Developer or 

manager deploys 

application to live 

environment

Functionality 

complete?

No

Yes

Project 

finished?
Project is finished

YesCustomer wants 

new functionality

Customer adds 

ticket to Redmine

No

Developer and/or 

manager gives 

time estimation

Customer 

agrees?

Feature is not 

developed

No

Yes

6.3.9. Manager 

sends invoice for 

finished 

functionality

 

Figure 10: The company’s software development process according to Manager B 



 86 

6.3.1 Manager and developer(s) give time estimation 

When a customer asks for a quote for a new project or new functionality, Manager B often asks a 

developer to estimate the development time for this functionality, besides himself. Manager B tries 

to spread enjoyable and less enjoyable projects over developers, which is difficult sometimes. He 

also tries to keep the same developer on the same project to ensure a high quality product and a 

satisfied customer, as the developer has more knowledge on how the project is organized and where 

what is located in the source code. 

Manager B believes the following properties are expensive, both for the customer and the company, 

as the number of hours necessary to implement the functionality is always high and the risk of going 

over budgeted hours is also high: 

 Everything that has to do with design (HTML and CSS) as well as technical implementations 

of everything that comes from designers. Manager B believes that if the company does the 

design during the development process, it is more efficient and cheaper for the customer. 

 Integrations with other systems are expensive, especially SOAP integrations and instable 

APIs. Integrations in which information should be stored or synchronized are always more 

work to implement than information that should only be exposed or displayed. 

Also, when the company is brought into the development process relatively late (e.g. Project J), the 

client does not always get the desired product for the price he wants. This happens often if the 

customer already has a designer that does not have web design as its core business, as the designer 

does not know the limitations of designing for the web, but also misses possibilities that are possible 

with web design. This lack of knowledge of designing for the web, as well as understanding that 

creating software is not a linear process (at least in agile settings) create situations where designers 

do not function well as project managers. Also when the company is brought in late, the deadlines 

are relatively short before the project should be finished. 



 87 

Manager B thinks that the company should try to get into the development process earlier, as it is 

also capable of creating designs and doing consultancy. This would not only generate more revenue, 

but would also lead to a higher quality product for the client and a deadline that is more easily met. 

 

Projects are taken over quite often. Manager B finds that if the company creates the project 

themselves from the start, it is less painful dealing with new features and the product is of higher 

quality. If a project is taken over, it is all about quality and responsibility, and also responsibility over 

the quality. Often there are bugs in the product that the customer did not expect. If the project has 

bugs at the start, it is hard to determine who is responsible. Responsibility is also hard to determine 

if the customer paid to invest in quality and tests, but there are still bugs in the system. 

Five projects that were taken over did not have a very high code quality (Project B, Project C, Project 

M, Project U, and Project W). Project P was also taken over, but does have a test suite (test driven 

development was used by the original developers) and consequently the quality of Project P is 

considered adequate. Especially Project B, Project C and Project M are a real problem quality wise. 

This is mostly a problem for the customer, because he has a product of low quality and subsequent 

improvements to the code are expensive, as it takes more time to add improvements to low quality 

code. For projects that are taken over Manager B prefers time and materials based pricing over fixed 

price contracts. 

Also, most of these projects do not have a test suite (so no test driven development was used). This 

may lead to regression when new functionality is added. Especially Project M suffers from regression 

due to parts of the system being connected, that should have no connection at all. 

 

If the company is a subcontractor (Project I, Project Y, and Project Z), Manager B has the feeling that 



 88 

the product is sold to the customer for a very high price. This also means that sometimes the 

company misses contracts as subcontractor, because the contractor tries to sell the product for a too 

high price to the customer, who in turn will choose a different implementation partner. 

Also when the company works as a subcontractor, it should always have the right to say it made the 

product. This led to difficulties with the contractor in Project Y and Project Z. 

 

For in-house projects (like Project K and Project R) Manager B recommends that the initial project 

should be kept simple and have more features added when necessary. 

6.3.2 Manager generates quote 

When Manager B writes a quote for a customer, he uses a recent quote for a similar project and 

copies usable parts to the new quote. Currently he does not have a template for writing a quote, 

although he would prefer this. 

For the planning of the project, the company does have a template, which consists of 4 tables (in 

Excel): 

 A table with features; for each feature one can add the estimated time and the sprint in 

which it will be implemented, showing the estimated time for each sprint. 

 A table with configurations; the number of weeks per sprint can be configured, as well as the 

starting week and the number of weeks in the current year. The costs per hour can be 

configured, so based on the estimated time, the costs per issue are calculated; the costs per 

hour can be configured, so it calculates the costs per issue. 

 A table with sprints (automatically generated); for each sprint a short description can be 

entered. 



 89 

 A table with invoice moments. 

Only the table with configurations is not copied into quote, while the other 3 tables are. If the 

customer accepts the quote, the features are copied to tickets in Redmine. Manager B would 

actually prefer to create parts of the quote in Redmine and then generate a quote based on these 

parts. This has the advantage that he wouldn’t have to copy information from Excel to Redmine; in 

addition all the relevant information in the quote is actually already in Redmine, so for developers 

this would mean they have more easy access to all available information. 

6.3.3 Manager sets up project 

Previously the company had a separate mailing list for each project. Manager B doesn’t think it’s 

necessary to have a separate mailing list for smaller projects (e.g. if there is only one developer 

active on the project), although he doesn’t mind either if other people want a separate mailing list. 

On the other hand, Manager B thinks it’s difficult to manage a project if the customer and developer 

share information without letting the project manager know, especially considering additional 

functionality that the customer needs to pay for. 

Manager B wants to have some sort of template or list for a project in Redmine, with tickets for all 

things that should be done when setting up a new project, among others: creating a repository, 

setting up a hosting account, asking for testimonials afterwards, creating a mailing list. This still 

allows managers or developers to skip certain steps if those aren’t necessary, but it ensures no steps 

are forgotten. This would also allow new employees in the company to see what is necessary to start 

a new project. 

Not only does Manager B want to standardize on the setup of projects, but on service level 

agreements (SLAs) as well. Some customers (Project D, Project J, Project P, Project S, and Project U) 

have a special status compared to other customers, especially when new bugs are encountered or 

features are requested. On the one hand these customers request more new features, so the 



 90 

revenue is relatively large, but on the other hand more time is spend in communication, so the costs 

are also relatively high. Although in general larger projects form an excellent portfolio together, 

Manager B feels that the company should work towards one standard SLA for all customers in e.g. a 

fixed number of spendable hours, a staggered pricing in the number of hours, fixed pricing or time 

and materials based pricing, response time, duration of the contract, uptime for hosting; with a few 

configurable options. This would give the company better insight in what its rights and obligations 

are towards its customers. 

6.3.4 Developer writes code based on the tickets 

The wiki is mostly used for project specific information, like account and server information, and 

contact information. Manager B copied all information from DokuWiki to Redmine, so no 

information was lost. We are not sure everyone knows this information is there. 

Manager B does not know exactly why Redmine was chosen over Trac, but he thinks it had to do 

with the fact that the company started doing its own hosting. Trac was not based on Ruby on Rails, 

while Redmine was, so it was possible for the company to host it themselves. Manager B also 

believes the interface and functionality of Redmine is better, than the interface and functionality of 

Trac. 

If Manager B develops he usually uses Google and colleagues. He especially uses colleagues when 

things are hard to search for, e.g. if he does not know the name of certain functionality. He also uses 

RSS-feeds to keep up-to-date with the latest news on Ruby on Rails. 

Some older products are hard to maintain (e.g. Project D), even though time is spent on refactoring. 

As new versions of Ruby on Rails are released frequently, projects age fast; this makes it difficult to 

maintain. People still call the company for new projects based on old products, but often it is just too 

old to use it as a basis. 

6.3.5 Developer commits code to repository 



 91 

Manager B thinks the switch from Subversion to Git was partly a hype, although looking back it 

wasn’t a bad choice. Git feels better and more modern. It has conceptually an advantage, because it 

is decentralized, although the company doesn’t really require this functionality. Git has a steeper 

learning curve than Subversion. On the other hand, Git has only one hidden folder in a project, while 

Subversion creates a hidden folder in each project. This makes moving code, while using Subversion, 

rather painful. Nowadays more files are automatically generated in projects, e.g. by using Sass 

(Catlin, Weizenbaum & Eppstein, 2010), which Git can work more easily with than Subversion. 

6.3.6 Developer creates or updates a ticket 

Manager B finds it a good thing that customers can see that developers create tickets, for exceptions 

for example. Even though the customer may not understand the actual issue, it provides 

transparency and the customer sees a pro-active response, which is very positive. 

In general Manager B is quite satisfied with Redmine, but finds that grouping and sorting tickets 

doesn’t always work as expected. Also, these grouping and sorting queries, e.g. a query for SLA 

periods, cannot be made available for all users, which makes it difficult to share views between 

employees. If Manager B discovers functionality that doesn’t really work the way he would expect it 

to, he doesn’t directly file a bug report with Redmine. On the other hand Redmine is actively 

developed, which is positive. 

As Redmine is written in Ruby and as it is open source, the company can always adapt or write 

something they would like themselves. This also guarantees that the company can use Redmine in 

the future, so there is no risk of vendor lock-in. 

6.3.7 Customer tests results 

Customers differ a lot. Some customers are really active on project management themselves, while 

others need a lot of guidance by the company. Manager B thinks that customers who do not have 

experience with IT projects (Project G, Project H, and Project T) require the company to take a more 



 92 

active role, although there are also customers with a high level of experience with IT projects that 

require a more active role by the company, especially if there are many things unclear during the 

project (Project L and Project N). If the company is not active enough projects may run over time or 

over budget (Project L and Project N). 

If the customer is not involved enough in project management and when the company does not 

fulfill this role, one of the most important problems for the company is that the customer starts using 

and testing the product quite late (even though the product of functionality is finished for a few 

weeks already according to the company). So the customer (Project S and Project T) tests the product 

at a very late stage and then still expects the company to fix all the issues, while the company only 

gives a standard warranty of two months. 

Manager B feels that if the customer has a lot of experience with IT projects and takes an active role, 

fixed price contracts are OK; otherwise he prefers time and materials based contracts. He also thinks 

that the company should determine how experienced the customer is at the start of the project, to 

avoid the above mentioned problems. The company could also do more consultancy work and 

project management for customers who do not have the ability or time to do it themselves, but fixed 

price would be hard in this case. All in all Manager B thinks the company should determine what kind 

of customer they’re dealing with and tailor the project more to the client. 

6.3.8 Customer creates or updates a ticket 

Manager B finds it very useful that customers put tickets in Redmine. It ensures customers send less 

e-mails and provides an archive of issues. Some customers do not use Redmine often, but Manager B 

believes that if they want something badly, they will have to use Redmine anyway. Not all customers 

provide adequate information in the tickets, so Manager B says the company could hire someone 

(first line of support) who can improve the quality of the tickets by contacting the customer and who 

can handle phone calls of customers; this would allow developers to focus on the actual problem, 



 93 

instead of figuring out what the problem was in the first place. 

6.3.9 Manager sends invoice for finished functionality 

MoneyBird is used for invoicing customers. Every month invoices are sent for finished functionality 

and service level agreements. Invoices are created based on the tickets in Redmine. Manager B 

would like the ability to automatically create invoices in MoneyBird for SLAs based on closed tickets 

in Redmine at the end of a month. 

If the customer wants functionality next to the functionality stated in the quote, it is only billed if the 

estimated time (in the quote) has actually been spent or not. If it has, a new invoice is created for 

billing the additional functionality. Manager B ensures beforehand that it is clear for the customer 

what functionality requires additional payment and what functionality is covered by the initial quote. 

SlimTimer is used by the management to discover billability for the active projects, although this 

functionality is fairly limited. Management puts the estimated time in the description of a task in 

SlimTimer, so it can be compared to the actual time. However, this is a tedious job if it should also be 

done for SLAs, as the estimated time changes frequently over the duration of the month; thus, it is 

often not done at all. 

Manager B wants to find out if employees can track their time directly in Redmine (with help from a 

plug-in), to avoid the need of using a separate application (i.e. SlimTimer). However, it shouldn’t be 

more cumbersome than SlimTimer is, to keep employees satisfied; if available plug-ins are not easy 

enough to work with, maybe the company should write a plug-in. Sherlock made it clear that 

usability is very important if you want people to work with the system, so if time tracking in Redmine 

is cumbersome it is no viable solution. Sherlock wasn’t too complex, but the forms for tracking time 

were. At the time SlimTimer was a good choice, but now that the company has more projects, the 

overview becomes more difficult. It is not really clear which customer pays relatively much and which 

customer pays relatively little. 



 94 

6.3.10 An exception is received by e-mail 

When an exception is received, it depends on the project and how often it appears whether 

Manager B takes action. If he is active on the project, most of the time he creates a ticket for it. 

The default warranty period that the company uses for its code is two months and is stated in all the 

quotes that it sends. It depends if the warranty expired whether the bug is immediately fixed (for 

free) or if a time estimation is given, although it also depends on the relationship with the customer 

and whether there is continuity in the project. If there is a lot of goodwill between the company and 

the customer (e.g. Project X), than the company is more eager to fix bugs for free, even when they 

are discovered outside of the warranty period. If contact between the company and the customer is 

tough, the warranty period is followed more strictly (e.g. Project L and Project N). The company’s 

willingness to fix bugs after the warranty period also depends on whether the customer has a 

support contract or not. The company encourages its customers to sign a support contract, so the 

applications are kept up-to-date. This avoids the customer having to replace the application after 

several years due to a lack of maintenance. 

Manager B also thinks that creating tickets out of exceptions could be automated, so developers 

won’t have to create tickets for exceptions anymore. 

6.3.11 Manager needs to generate report on worked hours 

Manager B uses SlimTimer to generate weekly reports on hours worked by employees, which is sent 

by e-mail to the financial administration. These weekly reports have the days of the week on one axis 

and the employees on the other; totals are provided for the number of hours worked per day, per 

week and per employee. The latter is important for the financial administration, although Manager B 

does not know how this information is processed further (i.e. what systems are used). 

6.3.12 Developer needs functionality that may be present in a gem or plug-in 

Manager B uses external gems and plug-ins sparingly. Mostly he uses them based on past 



 95 

experiences and whether they are new or not. If the gem or plug-in contains few lines of code or if 

the code is of bad quality, it is better not to use the gem or plug-in. Manager B finds that gems or 

plug-ins are often parts of code copied from a project, making them too specific with too few 

options. 

6.3.13 A new version of a gem, plug-in or the Ruby on Rails framework is released 

Only if the company actively works on a project, it is interesting to update gems or Ruby on Rails, but 

mostly only if new features are useful for the project. Except for security fixes maybe, Manager B 

believes gems shouldn’t be updated for features or bugs pro-actively. Bugs only have to be fixed if 

they appear. 

The company doesn’t have a protocol for security updates (both in gems or Ruby on Rails) for 

communication with the customer. Manager B thinks for security the company could be more pro-

active, for example keeping track of security patches. 

6.4 Manager C 

Manager C has worked approximately 3.5 years for the company. The work of Manager C is diverse; 

most of the time he’s busy dealing with e-mails, phone calls and various other administrative tasks; 

he’s also responsible for the company’s hosting and various projects (most notably Project D). 

Most of the e-mails that Manager C receives are questions by customers, updates on tickets by 

Redmine, server related information, and web server exceptions. Except for the first type, most of 

the e-mails he receives, he immediately throws away. 

Manager C has many things on his to do list for which he has no time. Project D and hosting are 

difficult to combine, time wise. He has the feeling that he continuously runs behind schedule, 

although nowadays the days that he only spends answering e-mails are rare. 

In the interview Manager C described the software development process roughly as displayed in 



 96 

Figure 11 below. Paragraph 6.4.1–6.4.10 (also mentioned in Figure 10) explain the development 

process in more detail. Paragraph 6.4.11–6.4.15 mention other aspects of the development process, 

not covered by the flowchart in Figure 11. We also held an e-mail conversation with Manager C, 

mostly regarding the cause of the exceptions that are received by e-mail. The results of the e-mail 

conversation are stated in paragraph 6.4.12 and are merged with results from the interview. 

Besides the aspects of the development process, Manager C thinks other issues are important as 

well: e.g. finding and keeping employees, and competence management; it is hard to get people. For 

this research we regard these issues out of scope. 

Manager C thinks specific knowledge is very hard to hold on to. You can never replace people from 

one day on the other; new people need to orient themselves on new projects. Still, with Ruby on 

Rails the introductory period of projects is quite low. 

Keeping knowledge on hosting is a much larger problem. This also means documenting knowledge 

and making sure knowledge is transferred is more important for hosting. Knowledge of code, e.g. 

gems, becomes outdated relatively fast (a year or so), so trying to keep or transfer knowledge on 

programming aspects is very difficult and time consuming. Keeping and sharing knowledge on how to 

tackle management problems would also be useful. 

Manager C thinks code conventions could be useful, as well as conventions on what you should test 

and what not, when do you document code and what is acceptable without documentation, what 

are good names for methods. The lack of these conventions is noticeable when new inexperienced 

developers are hired, although they do pick up things fairly quickly from projects. Ruby kind of 

documents itself, in practice. 

In case many new people are hired that would require training, then making a document with code 

conventions could be useful. For now it would mean a lot of work and a lot of arguing, resulting in a 



 97 

lot of overhead. 

Customer wants a 

new product

6.4.1. Manager 

and developer(s) 

give time 

estimation

Is information 

clear?

Manager asks 

customer for more 

information

NoYes

Customer agrees with 

time estimation?

Yes

Product is not 

developed

No

6.4.2. Manager 

sets up project

6.4.3. Developer 

writes code based 

on the tickets

6.4.6. Customer 

tests results

6.4.4. Developer 

commits code to 

repository

Developer deploys 

application to 

staging 

environment

6.4.7. Customer 

creates or updates 

a ticket

6.4.5. Developer 

creates or updates 

a ticket

6.4.8. Developer 

or manager 

deploys 

application to live 

environment

Functionality 

complete?

No

Yes

Project 

finished?
Project is finished

Yes6.4.10. Customer 

wants new 

functionality

Customer adds 

ticket to Redmine

No

Developer and/or 

manager gives 

time estimation

Customer 

agrees?

Feature is not 

developed

No

Yes

6.4.9. Manager 

sends invoice for 

finished 

functionality

 

Figure 11: The company’s software development process according to Manager C 



 98 

6.4.1 Manager and developer(s) give time estimation 

Manager C always tries to meet with new customers that call. Often he gets customers that “just 

want to know what it costs”, while he feels he can’t give an appropriate answer at that time. More 

details are necessary to be able to give an estimation of the development costs. If a customer doesn’t 

want to meet, he tries to convince him to send information by e-mail, so he can give a better 

estimate. 

When existing customers want new functionality or a new product, Manager C tries to get clear what 

they exactly mean, so he can estimate the required time in advance. If the customer puts 

information on the functionality in Redmine, Manager C can keep a better overview of all issues. 

Sometimes the customer communicates new functionality by e-mail, which means Manager C has to 

copy the information into Redmine. Whether the customer used Redmine or e-mail depends a bit on 

the customer; some customers feel that it is impossible to explain certain aspects in a ticket. 

Depending on whether the customer agrees to the time estimation, the functionality is actually 

made. 

The company can take over maintenance of existing Ruby on Rails applications very quickly without 

too much problems. Still, Manager C thinks you cannot take over a project blindly and say you will fix 

everything. Taking over a project should be seen as some kind of renovation, so it requires a few 

weeks work to get the quality up. If the customer doesn’t want to invest this much time, then it is 

questionable whether the project should be taken over at all; especially because if you do take over 

the project and don’t spend enough time in the beginning, the customer will never be satisfied with 

the quality of the project. 

6.4.2 Manager sets up project 

Manager C says that roles (especially project management) between customers and the company is 

not strictly defined or enforced, making the communication sometimes a bit unstructured. He thinks 



 99 

that having a single contact on the customer’s side and one on the company’s side could improve 

communications. This doesn’t mean all communication has to pass through one person; for example 

the ticket tracker still ensures communication can reach all people involved. 

6.4.3 Developer writes code based on the tickets 

If Manager C runs into a problem while programming, he uses Google or asks around in the office. 

Manager C thinks asking other people gives you new ideas and makes you pick a good solution. He 

never uses e-books and uses the wiki only for projects. On the wiki there are also some manuals for 

the office equipment, but the programming part is very outdated. Manager C doesn’t really miss this 

information, as most employees are almost always in the office; also it requires a lot of time to keep 

the wiki articles regarding programming up-to-date. 

In the past the company kept exactly how its server were setup (i.e. every command). This 

information is no longer usable, because for the next servers it is already outdated and slightly 

different tools are used. When dealing with hosting the commands you need to use are often the 

same, anyway. 

Manager C likes it that the wiki is now incorporated into Redmine. Dokuwiki worked with 

configuration files, while in Redmine you can change settings in the application itself. This made 

working with Dokuwiki rather painful. 

It is very useful that you can directly find information in the wiki if you already selected the project. 

On the other hand, if you selected a different project, it is quite cumbersome to see the wiki of a 

different project: first you have to browse to the project after which you can browse to the wiki. 

Manager C feels the latter situation is actually the most common one, so there is room for 

improvement there. 

Considering project related information, the wiki is generally quite up-to-date. The information 

mostly lacking is information from customers on specific functionality; Manager C mostly realizes this 



 100 

information is missing during programming. 

Manager C only reads a blog or watches a part of webcast if he specifically needs to know something, 

and even then often only the code fragments; the webcasts mostly just take too long. There are no 

blogs that he follows actively. 

Manager C seldom uses the source repository browser in Redmine; only for projects that he hasn’t 

stored locally. He uses Git to checkout a different version of the code of the project, so he can 

examine older versions. 

Manager C seldom reports bugs in Redmine or other systems. If he does report a bug, it is mostly for 

bugs in open source products that he has no clue about how to fix or circumvent; for example a 

segmentation fault somewhere. Sometimes the maintainers ask for more information, but he doesn’t 

always know what they mean, and sometimes the maintainers don’t do anything with the bug 

report. If the issue is not resolved, Manager C tries to find a different approach to the problem. 

Manager C almost never reports bugs in gems or in Rails, although this depends a bit on the level of 

dependence on the needed functionality and whether Manager C is capable of fixing it himself. If he 

fixes it himself, he almost never reports the problem and solution, although he thinks it would be 

better if he did. The general problem is that the advantage of reporting a bug and solution is 

relatively low; the only advantage would be when later the gem needs to be updated in the project 

itself. 

Manager C thinks this is kind of a shame, because not reporting a bug or solution doesn’t make the 

product better. On the one hand people are complaining that some things don’t work, but at the 

same time they are not helping with improving it either. On the other hand, it also often happens 

that if you report a bug or solution, no action is taken on the developer’s side. 

Manager C understands both viewpoints; as a developer of an open source project, often fixes are 



 101 

committed of which the quality is really low, untested, undocumented without a clue what it is 

actually for. 

If Manager C has a useful fix, he usually forks the project and puts it on GitHub. GitHub is a platform 

for hosting and managing public and private Git repositories, including collaborative development 

(GitHub, 2011). 

6.4.4 Developer commits code to repository 

Manager C has worked in the company with Git and Subversion. He prefers Git over Subversion, as it 

is more powerful. The largest advantage of Git is its flexibility; it has more possibilities to go back to 

older versions and to switch between versions. Git is focused on keeping multiple versions of 

projects. Especially if you are working on one project with more than three people, it is very useful to 

be able to create your own branches. Subversion is based on an older concept for that matter; 

keeping multiple branches of one project is not very easy. 

Subversion is also used on the servers in hosting to keep the configurations up-to-date. This allows 

the Control Panel (accessible by customers) to change configuration files and ensures the servers 

always have the latest configuration files. In this case it is a completely linear process (i.e. there is 

only one branch), so there is no need to switch to Git. 

The largest disadvantage of Git is the complexity; this is especially an issue when you just start using 

it. The Git commands are relatively long. In general Manager C is quite happy with Git. It is more 

complex, but it has more functionality, so this is kind of logical. The advantage of Subversion is that it 

breaks less easily, although canceling a commit halfway doesn’t really work out well. In Git a lot of 

data can be recovered, but you really have to know what the commands are. 

6.4.5 Developer creates or updates a ticket 

Redmine is now setup primarily from a developer’s point of view. Manager C thinks other fields, like 

how much it’s going to cost, when it is finished and when it is invoiced could be added or used more 



 102 

frequently. 

The statuses New and Agreed are quite clear, but at the end of the development process it becomes 

a bit unclear. Currently Resolved and Closed are used. Manager C thinks Closed should mean it is 

done and paid for and one should probably never have to see the ticket again. Between Resolved and 

Closed there is room for improvement, for example Online, Ready for testing, Approved, Live, and 

Invoiced. The statuses should also be about going from tickets to invoices. 

According to Manager C the move from Trac to Redmine was primarily due to the lack of possibilities 

to distinguish between customers and developers. Customers had always access to all tickets, which 

wasn’t desirable at the time. Later in Redmine customers gain access to all tickets again. Trac was 

also hard to maintain, as it requires a separate instance of Trac for each project; secondly all 

configurations are located in configuration files, instead of being directly accessible from the 

interface. Functionality wise there is not much difference, but Manager C thinks Redmine is more 

flexible. Redmine was chosen over other potential ticket trackers, because it is written in Ruby. 

Redmine is a little bit bloated. It has a lot of functionality; this is an advantage as well as a 

disadvantage. Sometimes you want to be able to do things, but it only works in certain situations, 

although in the last versions this is greatly improved. Especially moving or editing multiple tickets at 

the same time was a problem, but this is now possible. 

For customers Redmine may be a little bit complicated. You see a lot of fields and it is not really 

possible to manage who sees what fields. That would be a nice improvement. Some parts of tickets 

are focused on customers; if a developer takes over, the content of the ticket switches to more 

technical aspects. The customer also gets an e-mail of these technical aspects; this may impede the 

use of Redmine by customers. 

Manager C does take into account that customers can read all the tickets, language wise, although 

he does put technical details in the tickets. He thinks it’s both an advantage and disadvantage that 



 103 

you cannot keep tickets hidden from customers. 

Manager C hasn’t used any other ticket trackers besides Redmine in its projects. 

6.4.6 Customer tests results 

Manager C finds that customers don’t always test everything. Sometimes new functionality is already 

online, but they still ask when it will be deployed. In other cases they do specifically mention the 

functionality is tested on the acceptance environment and can be deployed to the production 

environment. The latter works ideally. 

What you do see is that some customers don’t change the status of a ticket. For example, they 

respond to the ticket saying they agree with the time estimation, so a developer can create the 

functionality, but the customer doesn’t actually change the status to Agreed. So adding new statuses 

may not help if they don’t use them. 

Another example is that customers can enter a date for a deadline, but they don’t. Manager C thinks 

customers find all the fields just too complicated. 

6.4.7 Customer creates or updates a ticket 

If a customer enters a ticket, it depends whether Manager C immediately takes action. If the ticket is 

serious (i.e. high priority) or if he directly knows the answer, he immediately takes action. If the 

ticket concerns new functionality it takes more time and so he responds later. In general Manager C 

thinks it depends on the priority of the ticket how fast he responds. 

Manager C sometimes reads tickets from other projects, although this depends a bit on the project. 

If the project is not really active or only in maintenance he is more inclined to read the ticket, than if 

the project is in active development. In the latter case he presumes someone else is working on the 

project and will act on the issue. It also depends on the number of tickets that are created or 

updated: if this number is small, Manager C reads the tickets more often, than if a large number of 



 104 

tickets are created or updated in a short period of time. 

Manager C thinks that open discussions can be done through e-mail, but for concrete tasks and 

issues he prefers to do business through Redmine; it gives a good overview of the project. Some 

things are still being communicated through e-mail, but Manager C has the feeling he sometimes 

loses information, although he does flag his e-mails sometimes. Manager C thinks that it is important 

that customers use only one communication channel. This ensures that you know where to look for 

information, instead of having to search in multiple channels. 

The disadvantage of e-mail is that often only one person receives the information; this is especially a 

problem if that person is away for a longer time. An example was that a customer (Project O) sent an 

e-mail to Manager C, while he was on vacation, instead of putting the information in a ticket in 

Redmine. This meant the customer got a very late response. A slightly different example is that three 

employees of the same customer (Project O) each e-mailed the same question separately, without 

knowing that someone else already asked the question. In the beginning of the project, the customer 

(and also the customer of Project D) was skeptical about using Redmine, but now that they have seen 

it has advantages, they do use it. 

According to Manager C customers use the medium of the “least resistance”, i.e. they prefer the 

medium on which they get the fastest response. 

Manager C thinks that in default SLAs one could enforce the use of the ticket tracker. This doesn’t 

mean people can’t call or send e-mails, but it ensures that the company can say they only act on 

issues if they are reported in the ticket tracker. 

6.4.8 Developer or manager deploys application to live environment 

According to Manager C the largest problems in hosting are reliability and scalability. The current 

servers are becoming quite full and therefore slow. Lately the stability hasn’t been that good either. 

This is not really the quality the company wants to stand for and it should thus be solved. Solving it is 



 105 

not really difficult, but past choices relating to the setup of the hosting environment resulted in more 

problems than it prevented. Afterwards it appears it could have been done better. The main problem 

is unreliable open source software, especially tooling that doesn’t work as expected.  The hosting 

platform is therefore a bit unreliable. It works, but the reliability becomes a bit critical. 

Another problem is that the hosting platform is fixed to one Ruby version with a fixed set of gems. 

According to Manager C hosting independent of the Ruby version is the way to go. This means 

customers can have their own Ruby version and set of gems. This does mean the servers require 

more memory, but from a deployment viewpoint it becomes way more manageable and transparent. 

Now rarely an application breaks if a new version of a gem is installed on the server. This is not 

desirable. Another advantage of this setup is that if one application breaks for some reason, it would 

not influence any other application. Setting up this new environment, however, requires significant 

changes to the whole hosting environment. 

6.4.9 Manager sends invoice for finished functionality 

Manager C finds that calculating the overhead on each project takes too much time and therefore is 

often skipped. Manager C feels that he should be focused more on management, instead of writing 

code. 

6.4.10 Customer wants new functionality 

Manager C thinks SLAs can be improved by seeing maintenance of Ruby on Rails applications as a 

separate product, next to, among others, software development and hosting; not just as aftercare. 

The customer buys a maintenance service, which should be like a fixed amount per month for which 

the customer gets bug fixes, security fixes and Ruby on Rails updates, etc. For example, Project J 

already has this structure for a few hours per month. 

6.4.11 An e-mail is received 

Manager C thinks project specific mailing lists mainly result in overhead. Every employee was on 



 106 

every mailing list. Currently there are only mailing lists for management, hosting, office, exceptions 

and projects. It gives overhead to create a list for every project, adding all employees, while in 

practice the list often falls into disuse. If you need to communicate to only a few people, you send 

them a private e-mail. If you have a more general question, you can send it to the office mailing list. 

Manager C thinks it only becomes an issue when the number of employees grows. Also part-timers 

know what’s going on in the office if everyone gets the e-mails. 

6.4.12 An exception is received by e-mail 

Manager C receives so many e-mails that he throws most of the exception related e-mails away, 

without reading them. He often only responds if he just deployed a new version of a project or if he 

immediately knows how to fix it. If he has seen the exception before (i.e. it sparely appeared already 

earlier), which is most cases, he does not take any direct action. He also usually disregards exceptions 

generated by web crawlers. 

Except for projects that are taken over without a test suite (like Project M), Manager C thinks most 

exceptions are generated due to a lack of proper tests. First of all this is caused by developers that 

have the feeling that writing tests takes more time than just writing code and secondly because 

developers only write tests for when the input is correct. He also has the feeling that in certain 

projects that are relatively old (e.g. Project D), the tests become somewhat outdated; thus 

developers do not run the test suite of this project. 

Manager C external dependencies may also cause exceptions, but are relatively unimportant. He 

thinks sometimes the difference in development and production environment does result in 

problems. 

Manager C thinks that having some kind of coding or testing guide, updating old test suites, and 

using continuous integration again, may solve most of the problems regarding the number of 

exceptions. 



 107 

6.4.13 Manager needs to generate report on worked hours 

Manager C finds SlimTimer to be way better than Excel sheets, but it is not the best solution possible. 

There are better tools, but these are missing the reporting functionality. Entering hours works OK, 

especially the timer works well. Entering hours afterwards (if the timer is not used) is relatively easy, 

but it could be a little better. 

Generating reports on worked hours is OK as well; it does what we need. A downside is that the 

billability of projects is not really easy to see, but Manager C thinks this can really only be done if 

time is kept in a ticket tracker and if you can track your time really easy in it as well; especially if you 

can directly keep time at a ticket. For example: you open a ticket, start the timer, and when you’re 

done, you can directly see how much time you spent on that ticket and how much time was 

estimated. 

SlimTimer has the option to generate a report at the end of the month on how much time was spent 

on a project; if you sum the number of estimated hours in Redmine, you can compare these 

numbers, but it is far from ideal. If time tracking would be integrated into Redmine, there would be 

continuous insight into how a project is doing. Now it is only possible to see after another month has 

passed that, for example 140 hours were spent instead of 120. But why this was the case and on 

which tickets it was spent is very hard to deduct. It is impossible to find out on what issues more time 

was spent than estimated. In SlimTimer one can add tags, but Manager C finds that this doesn’t 

really work either, as you don’t know how much time was estimated for a certain tag. 

Integrating time tracking in Redmine would require discipline, according to Manager C, especially 

starting and stopping the timer. Potentially one should be able to start a timer on the project itself 

and on some default tasks. Dropdowns as implemented in Sherlock do not really work well; Manager 

C says it must be single button to make it easy and part of an employee’s routine. It is easy for 

everyone if one’s hours are filled in automatically. And if you try to enter your hours later, it is often 



 108 

impossible to tell on what issue exactly you sent how much time; in which case the hours should be 

entered on the project itself. 

Manager C thinks it would be great if the company would gain insight into billability on a day-to-day 

basis. There is currently not enough insight in the status (costs and hours) of projects. Sometimes 

more time is spent on a project than invoiced, but it is not really known how much and on which 

projects. 

According to Manager C, the reason Sherlock is no longer used is the interface that just wasn’t user 

friendly enough for the most important tasks, namely adding hours. The project was actually just a 

bunch of CRUD-interfaces, but not really suitable for daily use. It has to better than this if you expect 

your employees to use it every day. 

6.4.14 Developer needs functionality that may be present in a gem or plug-in 

Manager C often uses external gems and plug-ins, although the results are variable. He does think 

that if someone else spent time on a certain solution, you can at least check out what the solution 

looks like. If it isn’t satisfying, it is always possible to make it yourself. However, creating your own 

solution to a larger problem is always tougher than you think. The creator of the gem or plug-in often 

dealt with caveats that you still need to deal with, if you decide to write a solution yourself. 

Manager C chooses to a use a gem partly on past experiences. Besides that he also looks at the 

commit history, the current activity of the project, how many people forked the project and what 

commits are in the forks. If the project itself is not really active, but a fork is, then the code if often 

still usable. It provides a good start, although you still need to write code yourself. If the gem or plug-

in saves time, Manager C considers it useful. 

In projects there are regularly problems with gems or plug-ins, especially if they deal with so called 

ActiveRecord models and mess with so called validations and filters. 



 109 

If a gem or plug-in doesn’t work as expected, Manager C first tries to make a workaround in the 

project itself, so the code of the gem or plug-in doesn’t have to be changed. Sometimes however, the 

code is really bad and then you do have to change the code in the gem or plug-in itself. Manager C 

finds this kind of a shame, because it makes the project already less maintainable. 

6.4.15 A new version of a gem, plug-in or the Ruby on Rails framework is released 

Security fixes in Ruby on Rails and gems are rarely applied. Manager C thinks the largest problem is 

that a lot of stuff breaks on an upgrade. Gems are updated sparely. In practice minor updates of 

gems are automatically used, because the version of the gem is not so tightly fixed to the project. If 

there are really serious security issues, Manager C thinks updating is important, but otherwise not 

really. 

Manager C doesn’t create a new ticket if a new version of Ruby on Rails is released. The only way 

when upgrades are performed is if the customer pays and Manager C finds that the customer often 

doesn’t see any value in upgrading. Customers mostly only value new functionality for the end user; 

technical improvements are not considered so valuable. Technical improvements are only interesting 

for the customer if it saves costs in the future. 

Manager C thinks that updates of Ruby on Rails can be part of the SLAs; this means for a fixed price 

updates to new versions are always performed. Currently old versions often become unmaintainable.  

This is not a risk on the short term, but on the long term updating becomes a rather painful process. 

Especially for new developers older applications become a problem, because they learned to 

program in a newer version of Ruby on Rails. 

Manager C thinks the only way to force an upgrade of Ruby on Rails is through an SLA. Some 

customers do see the necessity or advantages of upgrading (e.g. Project B and Project X), but most 

customers only look at the buttons on their screen. Those customers are often the same as the 

customers using outdated browsers. Manager C thinks this has to do with the mentality of the 



 110 

customers and a lack of understanding computers. 

6.5 Results 

Based on results from the interviews we created a combined flowchart diagram in Figure 12. We also 

include a Data Flow Model (DFD) in Figure 13 to show the interaction each stakeholder has with the 

information systems in the company. We believe this gives some more insights next to the flowchart 

diagram. 



 111 

Customer wants a 

new product

Manager and 

developer(s) give 

time estimation

Is information 

clear?

Manager asks 

customer for more 

information

NoYes

Manager 

generates quote

Is information 

clear?

No

Yes

Customer 

agrees with 

quote?

Product is not 

developed

No

Manager sets up 

project

Yes

Developer writes 

code based on the 

tickets

Customer tests 

results

Developer 

commits code to 

repository

Developer deploys 

application to 

staging 

environment

Customer creates 

or updates a ticket

Developer creates 

or updates a ticket

Developer or 

manager deploys 

application to live 

environment

Functionality 

complete?

No

Yes

Project 

finished?
Project is finished

YesCustomer wants 

new functionality

Customer adds 

ticket to Redmine

No

Developer and/or 

manager gives 

time estimation

Customer 

agrees?

Feature is not 

developed

No

Yes

Manager sends 

invoice for finished 

functionality

 

Figure 12: The company’s software development process 



 112 

Customer

1/2
Redmine

Create or 

update ticket

Redmine

Check for 

new tickets 

and updates

Developer

1/2

Send e-mail 

to people 

watching 

ticket

Customer

2/2

Developer

2/2

Generate 

exception

Web server

1/2

Send e-mail

Ask for a 

quote

Manager

1/2

Give time 

estimation

Manager

2/2

SlimTimer

Track time

Write quote

Generate 

weekly report 

of worked 

hours

Write code

Internet

E-books

Financial 

administration

Compare 

actual hours 

with quoted 

hours

Colleagues

Git

Deploy code

Web server

2/2

Send quote

Figure 13: Data Flow Model of the company’s development process 



 113 

7 Data analysis 

Based on the context of the company’s projects (chapter 4), the documents it uses (chapter 5), and 

the interviews with relevant people (chapter 6), we analyze the problems the company is 

experiencing (7.1), analyze which patterns are used (7.2), which patterns can be used to counter the 

problems (7.3), and provide a long term solution for the company to improve its software 

development process by using patterns in its projects (7.4). The latter may also be interesting for 

companies in a similar context. 

7.1 Problem bundle 

To provide some structure to the problems discovered in the data and the interviews, we give an 

overview of the company’s problems, below in Figure 14 in the form of a problem bundle. Although 

some problems regarding hosting are identified in the interviews, we leave most of these issues out 

of the figure, as we regard them out of scope. 

The problem bundle is a descriptive overview of a company’s problems. Daneva and Wieringa (2006) 

use a somewhat similar approach, called a problem dependency map. The problem bundle is also 

similar to a causal factor chart used in Root Cause Analysis (RCA). According to Rooney and Vanden 

Heuvel (2004), RCA is a four-step process involving the following: 1. Data collection; 2. Causal factor 

charting; 3. Root cause identification; and 4. Recommendation generation and implementation. 

For this case study, we provide the collected data in chapter 4, 5 and 6. Instead of causal factor 

charting, we use the problem bundle shown in Figure 14; this figure also shows the root causes 

(depicted in green). Recommendations to the problems are given in paragraph 7.3; actual 

implementation of the recommendations is considered out of scope for this research. 

While we do think that a causal factor chart, together with thorough root cause identification could 

have been used in this research, we feel that due the large number of problems, the problem 



 114 

bundle’s simplicity provides a better overview for the company’s management to identify its 

problems. 

Regarding syntax, all problems in the problem bundle are identified by rectangles; lines depict 

causalities. These causalities mean that if an underlying problem is solved or removed, the 

occurrence would be prevented, or reduced in its severity. Note that the empirical evidence for these 

causalities is largely based on data found in certain projects in the company. Thus these causalities 

cannot be considered scientific regarding other projects or companies. Also, some of the problems in 

the problem bundle are mere opinions by employees and thus should not be regarded as something 

more than that. And some proposed causalities might be more complex, than we discovered in this 

research. We do, however, think that a problem bundle provides some structure to the large number 

of identified problems. The colors of the rectangles depict the type of problem: 

 Red rectangles show the main effects (or results) the other problems are causing. These are 

the issues that the company is suffering from the most. 

 Yellow rectangles show problems largely due to external factors. These problems are very 

hard or largely impossible to change by the company itself. 

 Green rectangles show the root problems. These are the problems we think the company’s 

management should focus on. We recommend that the root problems are prioritized, so that 

the most important problems are solved first. 

 Blue rectangles show all other related problems. 

The numbers before each problem are used to trace the relations between the problems back to the 

data we collected; they have no meaning. A traceability matrix can be found in Appendix B: Problem 

bundle traceability matrix. 



 

112. Too many 

exceptions are 

received by e-mail

18. A project is not 

tested well-enough

106. An integration 

with a different 

system didn’t work as 

expected

14. Continuous 

integration is not 

running anymore

13. Continuous 

integration is hard to 

set-up

9. A project, without a 

test suite, is taken 

over

16. Tests take a long 

time to run

15. It is difficult to test 

projects based on 

modules (so called 

“engines”)

19. The quality of a 

project is low

41. It takes a lot of 

time to add new 

functionality

105. Developers do 

not enjoy working on 

a low quality project

17. Developers do 

not write enough 

(good) tests

20. Adding new 

features leads to 

regression

108. Customer adds 

a ticket for a bug

50. The company is 

brought into the 

development process 

relatively late

52. Decisions on how 

the project should be 

managed are already 

made

53. An external 

designer is already 

present

59. Development on 

the project becomes 

expensive

58. There are 

integrations with 

other applications

55. It is hard to 

implement a design 

created by external 

designer

57. A design is not 

always made for the 

web

56. A designer lacks 

knowledge about 

designing for the web

51. The deadline for 

the project is 

relatively short

109. A bug is entered 

into Redmine

114. Developer does 

not always create a 

ticket for an 

exception

110. It takes a lot of 

time to determine the 

responsibility for a 

bug

107. A bug occurs in 

the project

113. It is a bit 

cumbersome to 

create a ticket based 

on an exception

115. A bug is not 

entered into Redmine

111. An exception is 

received by e-mail

118. For some bugs 

no time estimation is 

given

119. A bug is not 

paid for

104. There is a 

warranty period in 

which bugs are fixed 

for free

54. The company is 

hired as a 

subcontractor

82. The total price for 

a project is 

considered too high

81. The contractor 

tries to take a too 

high margin

83. The company 

misses a potential 

project

12. Developers only 

write tests for the 

cases where the 

input is correct

6. The development 

and production 

environment 

sometimes differ

10. The company 

does not have a 

code-style guide and 

testing guide 

22. It takes a lot of 

time to update gems, 

plug-ins and the 

Ruby on Rails 

framework

26. Customers are 

not always willing to 

pay for updates to 

the Ruby on Rails 

framework

36. To apply security 

updates, the Ruby on 

Rails framework must 

be updated as well 

35. The Ruby on 

Rails framework is 

outdated

37. A project is 

outdated

44. It is hard to track 

security fixes for 

gems and plug-ins

48. Security fixes are 

not always applied

47. The customer is 

not always informed 

about security 

updates

45. The company 

does not have a 

policy for security 

fixes

43. It is not always 

clear what the 

company’s rights and 

obligations are 

regarding SLAs

30. The company 

does not have a 

standard contract for 

SLAs

31. The company 

does not include 

security in its SLAs

42. Not all customers 

pay the same for 

SLAs

46. It is not always 

known there is a 

security threat

33. New versions of 

Ruby on Rails are 

released frequently

39. Developers do 

not enjoy working on 

outdated projects

73. Customer 

describes ticket not 

clear enough

74. Tickets are not 

always described 

clear enough

71. Manager 

describes ticket not 

clear enough

69. Global backlog 

items are copied from 

Excel to tickets, 

without context

76. Not all projects 

have a mailing list

75. There is no guide 

for setting up a new 

project

77. Developer or 

manager misses 

information

66. Not all customers 

use the bug tracker 

for issues

67. Some information 

is not present in 

tickets

70. Manager has to 

copy texts

68. The company 

does not have a 

template for 

generating a quote in 

Redmine

72. Manager does 

not like to copy texts

78. It is hard for new 

developers to 

understand how a 

project is set-up

79. Git has a steep 

learning curve

80. New developers 

may be missing 

information on how 

the company works

32. The company 

does not enforce the 

use of its bug tracker 

in its SLAs and 

quotes

28. The company 

does not have a clear 

policy regarding its 

SLAs

29. Updates to the 

Ruby on Rails 

framework are not 

included in SLAs

34. The company 

often does not create 

a ticket for updating 

the Ruby on Rails 

framework

25. Updating the 

Ruby on Rails 

framework brings no 

direct value to the 

customer

117. A bug is 

sometimes fixed 

without an associated 

ticket

86. Not all 

functionality works as 

expected in the ticket 

tracker

85. The company 

does not always 

report issues to 

developers of 

software it uses

84. The company 

does not have a 

policy regarding bugs 

and feature requests 

in applications used

97. A customer is not 

active enough on 

project management

102. A customer 

tests the project very 

late 

103. Bugs are 

reported very late in 

the development 

process

98. The company is 

not active enough on 

project management

101. A project runs 

over time or budget

100. Communication 

between customer 

and the company is a 

bit unstructured

95. Project 

management is 

shared between the 

company and the 

customer

91. It is hard for the 

company to 

determine the 

billability of its 

projects

87. SlimTimer does 

not provide adequate 

means to establish 

the billability of 

projects

90. Time spent is 

stored in a different 

system than time 

estimated

99. It is not clear for 

the company which 

customer pays 

relatively much or 

little

89. The ticket tracker 

does not support time

tracking without

plug-ins

96. The business risk 

of the project is low

88. The company 

does not have an 

adequate tool for 

discovering the 

billability of its 

projects

93. In-house projects 

are often made too 

complex

92. The company 

does not know how 

to act as its own 

customer

4. The hosting 

platform cannot run 

certain Ruby on Rails 

versions at the same 

time

94. Roles in the 

development process 

are not explicitly 

defined

5. The hosting 

platform cannot run 

multiple Ruby 

versions at the same 

time

3. The hosting 

platform does not 

support multiple sets 

of gems

2. The setup of the 

hosting platform is 

outdated

23. Customers 

mostly only value 

new functionality for 

the end user

24. Customers do not 

find technical 

improvements very 

valuable

21. Functionality 

Often breaks when 

updating

40. The older the 

Ruby on Rails 

version, the harder it 

is to update 

38. Inexperienced 

new developers have 

problems with coding 

on outdated projects

27. Maintenance is 

not regarded as a 

separate product

1. Changing the 

setup of the hosting 

platform requires 

significant 

adaptations

65. Customers do not 

always see the 

advantages of using 

the ticket tracker

60. The ticket tracker 

is setup from a 

developer’s point of 

view

62. The statuses a 

ticket goes through 

(process wise) are a 

bit unclear

63. The customer 

does not always 

change the status of 

a ticket

64. Customers never 

add deadlines to 

tickets

61. The ticket tracker 

is a bit too complex 

for most customers

8. Customers do 

often not realize what 

the quality of their 

project is

7. A project is taken 

over

116. A bug is not 

fixed

49. A project has a 

security vulnerability

11. New 

inexperienced 

developers do not 

always follow coding 

and testing 

conventions

 

Figure 14: Problem bundle of the software development process in the company 



 116 

7.2 Patterns overview 

Below we give a list of patterns used in agile software development. This list is based on several 

sources: Coplien and Harrison (2004), Elssamadisy (2009), Beck (1999), Beck and Andres (2004), 

Shore and Warden (2007). The patterns are presented in random order. 

The authors all provide some kind of structure to how patterns are related. We did not take this 

relation into account due to the amount of patterns involved. As the methods for determining the 

validity of patterns is rather scarce (see paragraph 3.6), we would also need to determine a method 

for establishing the validity of the relations between patterns. 

While the patterns in these sources may not be exhaustive, we think it gives a good general 

impression of commonly used practices in agile software development. 

The list gives the name of a pattern (including alternative names), the sources in which we found the 

pattern and whether we could establish if the pattern was used. The latter is done based on the 

context of the company’s projects (chapter 4), its documents (chapter 5), the interviews with 

relevant people (chapter 6), and our own observations. 

For this thesis we only list the patterns that we could measure or observe; based on the data we 

gathered we don’t want to make assumptions on patterns for which we do not have enough data. 

Those patterns are therefore not included below. We also excluded the patterns from the Pragmatic 

Programming book as those patterns are on a lower level than we could discover in the data we 

gathered, although we do think that many of the patterns used in Pragmatic Programming are 

actually in use in the company. We believe research on a lower level could reveal the use of these 

patterns. 

 

 



 117 

Pattern Source Used? 

Size the schedule Coplien & Harrison, 2004, 
p. 36 – 37 

 No: developers are not rewarded for 
negotiating a schedule they prove they can 
meet. 

 Yes: external schedules are often two weeks 
longer than internal schedules. 

Get on with it; 
partial evaluation 

Coplien & Harrison, 2004, 
p. 38 – 41 

 Yes: development is started as soon as some 
requirements are clear. In its quotes the 
company also writes that unclear requirements 
are made clearer during the development 
process. 

Named stable 
bases 

Coplien & Harrison, 2004, 
p. 42 – 43 

 No: it is often not relevant, but in projects 
where it might be relevant, it isn’t used. 

Incremental 
integration 

Coplien & Harrison, 2004, 
p. 44 – 45 

 Yes: developers regularly commit code to the 
repositories, there are no restrictions; new 
versions of the applications are also often 
deployed, giving quick feedback. 

 No: during the development of Project D, 
developers often committed code only at the 
end of the day, leading to frustration due to 
failing tests if someone else committed just 
before. 

Private world Coplien & Harrison, 2004, 
p. 46 – 48 

 Yes: developers have their own development 
environment. They can also create branches 
from the last version of an application and 
merge their changes later. 

Build prototypes Coplien & Harrison, 2004, 
p. 49 – 52 

 No: prototypes are never made, although 
design mock-ups are sometimes made. 

Completion 
headroom 

Coplien & Harrison, 2004, 
p. 56 – 57 

 Yes: headroom is calculated at the beginning of 
a project. 

 No: headroom is not calculated during the 
development process of a project. 

Work split Coplien & Harrison, 2004, 
p. 58 – 59 

 Yes: work is often split into the smallest task 
for which a time estimation can be given, 
whether that work is urgent or not. 

Recommitment 
meeting 

Coplien & Harrison, 2004, 
p. 60 – 61 

 Yes: we observed this in Project D and Project 
R. Besides that the office allows employees to 
talk to each other easily, so we noticed that 
meetings are often informal. 

Work queue Coplien & Harrison, 2004, 
p. 62 – 63 

 Somewhat: work is divided into iterations and 
thus more critical tasks are done first; however 
work items in a single iteration are almost 
never given a distinct priority, except when it is 
a critical issue. 

Informal labor 
plan 

Coplien & Harrison, 2004, 
p. 64 – 65 

 Yes: developers can make their own short-term 
prioritization plan, although new inexperienced 
developers are guided somewhat more. 



 118 

Implied 
requirements; 
user story 

Coplien & Harrison, 2004, 
p. 68 – 69; Elssamadisy, 
2009, p. 149 – 152 

 Yes: especially in quotes to customers implied 
requirement are often used. If the customer 
accepts the quote, the requirements are often 
made more explicit in the ticket tracker.  

Developer 
controls process 

Coplien & Harrison, 2004, 
p. 70 – 72 

 Yes: the developer controls the process. 

Work  flows 
inward 

Coplien & Harrison, 2004, 
p. 73 – 77 

 Yes: customers create tickets, which 
developers can pick-up; often there is no 
interference from management. 

Programming 
episodes; 
iteration 

Coplien & Harrison, 2004, 
p. 78 – 79; Elssamadisy, 
2009, p. 71 – 76 

 Yes: work is almost always done in iterations 
(often two weeks). 

 No: when looking at a larger perspective (i.e. 
multiple sprints) we observed that in-house 
applications are made with functionality that 
isn’t required at that time. 

Someone always 
makes progress 

Coplien & Harrison, 2004, 
p. 80 – 81 

 Somewhat: tickets are always assigned to one 
person, so in that sense only one person deals 
with a single issue. On the other hand, this 
doesn’t necessarily mean someone else is 
dealing with primary tasks. 

Day care; 
progress team; 
training team 

Coplien & Harrison, 2004, 
p. 88 – 91 

 No: there is no single person in charge of all 
novices. 

Mercenary 
analyst 

Coplien & Harrison, 2004, 
p. 92 – 95 

 No: if technical documentation is written at all, 
it is done by someone who is also involved in 
the development of that specific project 
(observed in Project D). 

Apprenticeship Coplien & Harrison, 2004, 
p. 108 – 109 

 Yes: new employees have to follow a tutorial 
before they can start on real projects, although 
they may need more guidance after they 
completed the tutorial. 

Solo virtuoso Coplien & Harrison, 2004, 
p. 110 – 111 

 Yes: observed in most projects (notable 
exceptions are Project D, Project K and Project 
R). 

Engage 
customers 

Coplien & Harrison, 2004, 
p. 112 – 115 

 Yes: contact with customers is considered very 
important. Developers and customers can talk 
freely and there are often feedback moments. 
Customers can provide feedback whenever 
they want and developers are encouraged to 
help finding out what the customer really 
wants. 

Surrogate 
customer 

Coplien & Harrison, 2004, 
p. 116 – 117 

 Yes: a surrogate customer was present in each 
in-house project (Project K and Project R). 

Scenarios define 
problem; use 
case; stories 

Coplien & Harrison, 2004, 
p. 118 – 119; Elssamadisy, 
2009, p. 153 – 156; Beck 
& Andres, 2004; Shore & 
Warden, 2007 

 No: use cases are rarely used. As far as we 
know only in Project V they were used. 



 119 

Firewalls Coplien & Harrison, 2004, 
p. 120 – 121 

 Somewhat: managers deal with conflict 
situations with customers, if they arise. On the 
other hand, managers do develop themselves 
as well, making it hard for the managers to be 
tough on the customers. 

Gatekeeper Coplien & Harrison, 2004, 
p. 122 – 123 

 No: we did not observe someone with the 
gatekeeper (or similar) role. 

Self-selecting 
team; team 
continuity 

Coplien & Harrison, 2004, 
p. 124 – 125; Beck & 
Andres, 2004 

 No: teams are often based on the availability of 
people and the availability of people is often 
low. 

Team pride Coplien & Harrison, 2004, 
p. 128 – 129 

 Yes: employees clearly feel they produce better 
software than other companies do, especially 
other technical third parties who write 
software they have to integrate with. 

Patron role Coplien & Harrison, 2004, 
p. 133 – 134 

 Yes: the owner fulfills this role somewhat. 

Matron role Coplien & Harrison, 2004, 
p. 140 – 141 

 Yes: someone with a matron role is present. 

Wise fool Coplien & Harrison, 2004, 
p. 148 – 149 

 Somewhat: in general, developers do not mind 
speaking up to managers (or customers). 

Moderate truck 
number 

Coplien & Harrison, 2004, 
p. 155 – 157 

 Somewhat: looking at software development, 
the company has a low truck number: not 
many people have critical domain expertise. 
When looking at hosting, the truck number is 
high: critical information regarding hosting 
resides with one person. 

Failed project 
wake 

Coplien & Harrison, 2004, 
p. 162 – 163 

 No: Project C and Project F were ultimately 
canceled, but no ‘wake’ was held. 

Developing in 
pairs; pair 
programming 

Coplien & Harrison, 2004, 
p. 165 – 167; Elssamadisy, 
2009, p. 223 – 227; Beck, 
1999; Beck & Andres, 
2004; Shore & Warden, 
2007 

 No: developing in pairs is rarely used. 

Engage quality 
assurance 

Coplien & Harrison, 2004, 
p. 168 – 170 

 Yes: testing is part of the development process. 
Exceptions that users experience are 
automatically e-mailed to all developers. 

Group validation Coplien & Harrison, 2004, 
p. 174 – 175 

 Yes: the initial (global) design is included in the 
quote; communication on architecture and 
design takes place through the ticket tracker. 

Few roles Coplien & Harrison, 2004, 
p. 180 – 181 

 Yes: there are only a few roles in the software 
development process: developer / programmer 
and (project) manager; external roles are 
customer and more specifically (end) user. 

Producers in the 
middle 

Coplien & Harrison, 2004, 
p. 184 – 186 

 Somewhat: developers get involved in all 
programming aspects of a project, but are not 
involved in all information on the project. 

Stable roles Coplien & Harrison, 2004, 
p. 187 – 188 

 Yes: roles are stable for the duration of each 
project. 



 120 

Conway’s law Coplien & Harrison, 2004, 
p. 192 – 193 

 Yes: the organization is compatible with the 
product architecture. 

 No: the organization does not have periodic 
reviews of the product architecture or project 
management strategies. 

Organization 
follows market 

Coplien & Harrison, 2004, 
p. 197 – 198 

 No: the company provides more types of 
services (consultancy, design, development, 
hosting, and maintenance), than clear 
responsibilities are defined within the 
development organization. 

Face to face 
before working 
remotely 

Coplien & Harrison, 2004, 
p. 199 – 201 

 Yes: management always tries to meet with a 
customer, before the start of the project, 
except when the customer is located 
internationally. 

Shaping circular 
realms 

Coplien & Harrison, 2004, 
p. 204 – 205 

 Yes: developers and managers are all located in 
the same office, encouraging communication. 

 Yes: Redmine allows all developers and 
managers to view all tickets of all projects. 

Hallway chatter; 
co-located team; 
sit together 

Coplien & Harrison, 2004, 
p. 213 – 216; Elssamadisy, 
2009, p. 119 – 123; Beck 
& Andres, 2004; Shore & 
Warden, 2007 

 Yes: developers and managers are all located in 
the same office, although customers are almost 
always located outside of the office. 

The watercooler Coplien & Harrison, 2004, 
p. 226 – 228 

 Yes: there are many social structures in the 
company unrelated to workplace structures. 

Coupling 
decreases latency 

Coplien & Harrison, 2004, 
p. 231 – 233 

 Yes: all central roles (developer, customer, 
manager) can communicate directly with each 
other. The use of a ticket tracker encourages 
sharing of information between all roles. 

Architect controls 
product 

Coplien & Harrison, 2004, 
p. 239 – 240 

 No: the architect role is not specifically 
specified for a project. 

Stand-up 
meeting; daily 
meeting 

Coplien & Harrison, 2004, 
p. 247 – 249; Elssamadisy, 
2009, p. 93 – 98 

 No: rarely used nowadays. 

 Yes: known to have been used in Project D 
(initial development), Project F and Project R. 

Architect also 
implements 

Coplien & Harrison, 2004, 
p. 254 – 256 

 Yes: although the architect role isn’t explicitly 
defined, the person who architects the project 
also writes code. 

Generics and 
specifics 

Coplien & Harrison, 2004, 
p. 257 – 258 

 Yes: experts design generic parts, if applicable. 

Standards linking 
locations 

Coplien & Harrison, 2004, 
p. 259 – 260 

 Yes: the company prefers to use standards, 
especially for integrations, although the 
customer may sometimes decide differently. 

Code ownership Coplien & Harrison, 2004, 
p. 261 – 263 

 No: in general everyone can change all code. 

Feature 
assignment 

Coplien & Harrison, 2004, 
p. 264 – 265 

 Yes: the ticket tracker has the option to assign 
a ticket to a person. If the ticket describes a 
feature, that person is effectively responsible 
for implementing that feature. 



 121 

Private 
versioning 

Coplien & Harrison, 2004, 
p. 268 – 269 

 Yes: developers can create local revisions, 
which they can later commit to the central 
repository. 

Kickoff meeting Elssamadisy, 2009, p. 77 – 
80 

 No: for most projects no official kickoff meeting 
has been held. 

 Yes: for Project D an official kickoff meeting 
was held. 

 Yes: a manager discusses a project with a 
developer before he writes a quote. 

Backlog Elssamadisy, 2009, p. 81 – 
86 

 Yes: a quote lists for each sprint which tasks are 
to be performed. 

 Yes: for Project D an official product backlog 
was kept by the ScrumMaster. 

 Yes: the ticket tracker lists the tasks for each 
milestone. 

 No: customers do not explicitly keep product 
backlogs. 

Planning poker Elssamadisy, 2009, p. 87 – 
91 

 Somewhat: planning poker is used irregularly in 
projects. In some projects planning poker is 
used for time estimations, while in others it is 
not. 

Demo Elssamadisy, 2009, p. 103 
– 107 

 Yes: in Project D, Project F, Project K and 
Project R. 

 No: in other projects. 

Retrospective Elssamadisy, 2009, p. 109 
– 113 

 No: retrospective meetings are not held 
anymore. 

 Yes: we found documents that retrospective 
meetings were held in the past. 

Release often; 
daily deployment 

Elssamadisy, 2009, p. 115 
– 118; Beck & Andres, 
2004 

 Yes: new code for projects is deployed often to 
acceptance and live servers. 

Self-organizing 
team 

Elssamadisy, 2009, p. 125 
– 129 

 Somewhat: to some extend people can pick 
their own tickets, although it also happens that 
a manager decides who does what. 

Cross-functional 
team; whole 
team 

Elssamadisy, 2009, p. 131 
– 135; Beck & Andres, 
2004 

 Yes: on most projects the team works together 
all the time; there are no hand-over moments. 

Customer part of 
team; real 
customer 
involvement 

Elssamadisy, 2009, p. 137 
– 142; Beck & Andres, 
2004; Shore & Warden, 
2007 

 No: for all external projects the customer isn’t 
part of the team. 

 Yes: for in-house projects (Project K and Project 
R) the customer is part of the team. 

Evocative 
document 

Elssamadisy, 2009, p. 143 
– 147 

 No: if documentation is written at all (e.g. 
Project D) it is mostly representational, not 
evocative. 

Information 
radiator; 
informative 
workspace 

Elssamadisy, 2009, p. 157 
– 160; Beck & Andres, 
2004; Shore & Warden, 
2007 

 No: there is no information radiator. 



 122 

Automated 
developer tests 

Elssamadisy, 2009, p. 163 
– 172 

 Yes: on all new projects a test suite is available 
to all developers. Every developer can run the 
test suite to see what tests succeed and what 
tests fail. 

 No: on most projects that are taken over, no 
test suite is available. 

Test-last 
development 

Elssamadisy, 2009, p. 173 
– 176 

 No: instead test-driven development is used. 

Test-first 
development; 
test-first 
programming; 
test-driven 
development 

Elssamadisy, 2009, p. 177 
– 182; Beck & Andres, 
2004; Shore & Warden, 
2007 

 Yes: test-driven development is used on all new 
projects. On projects that are taken over no 
test-driven development is used. 

Refactoring Elssamadisy, 2009, p. 183 
– 187; Beck, 1999; Shore 
& Warden, 2007 

 Yes: refactoring is often used before new 
functionality is implemented. 

Continuous 
integration 

Elssamadisy, 2009, p. 189 
– 196; Beck & Andres, 
2004 

 No: continuous integration is not used 
anymore. 

 Yes: continuous integration has been in use in 
the past, although due to maintenance 
problems, it no longer is. 

Simple design; 
incremental 
design 

Elssamadisy, 2009, p. 197 
– 201; Beck, 1999; Beck & 
Andres, 2004; Shore & 
Warden, 2007 

 Somewhat: in some situations the design is 
made more complex than necessary based on 
future expectations. In other situations the 
design is made as simple as possible, relying on 
future refactoring. 

Functional tests Elssamadisy, 2009, p. 203 
– 217 

 Somewhat: functional tests are often written, 
but they are mostly not written together with 
the customer. 

Collective code 
ownership; 
shared code 

Elssamadisy, 2009, p. 219 
– 222; Beck, 1999; Beck & 
Andres, 2004; Shore & 
Warden, 2007 

 Yes: on most projects all developers can change 
all code. 

40-hour week; 
energized work 

Beck, 1999; Beck & 
Andres, 2004; Shore & 
Warden, 2007 

 Yes: working overtime is considered an 
exception; also developers and managers work 
in general no more than 8 hours per day. 

Slack Beck & Andres, 2004; 
Shore & Warden, 2007 

 Somewhat: there is officially no time reserved 
for slack, but in general the schedule is not 
really tight, allowing developers to do other 
things, besides programming. 

Ten-minute build Beck & Andres, 2004; 
Shore & Warden, 2007 

 No: at least Project D does not build in ten 
minutes. 

 Yes: some smaller projects 

Shrinking teams Beck & Andres, 2004  Yes: at the end of the development phase, 
often some developers start working on a 
different project. 

Code and tests Beck & Andres, 2004  Yes: only code and tests are maintained for a 
project. 



 123 

Single code base Beck & Andres, 2004  Yes: in the cases of code duplication, projects 
are based on the same code base. 

 No: in the past various projects (Project D, 
Project J, Project O, and Project S) were all 
based on the same code, but had a different 
code base. This led to various problems with 
outdated projects. 

Negotiated scope 
contract 

Beck & Andres, 2004  Somewhat: some contracts can be large from 
the start, so in that sense multiple contracts 
could be used instead. However, after the 
initial version of a project is released, the 
agreement between a customer and the 
company is often based on single tickets; thus 
effectively making a contract equal to a single 
ticket. 

Table 3: Patterns, the source where the pattern is described, and its use in the company 

7.3 Prioritizing and countering the problems 

From the problem bundle (Figure 14), we deduct a list of root problems (the problems shown in 

green). These root problems can be prioritized according to various methods; we can ask 

stakeholders for their priority, for example by using the 100-Point Method (Leffingwell & Widrig, 

2003); or we can count related problems in the problem bundle. Both have their advantages and 

disadvantages. Counting related problems is probably more objective than asking stakeholders. On 

the other hand, the problem bundle is a representation of the real world. Stakeholders may also hold 

information on how difficult or expensive it is to counter certain problems, while the problem bundle 

does not. Another disadvantage is that some related problems may be more detailed than others. 

Thus counting those problems places each of them on the same level. A combination of counting and 

asking stakeholders could be used as well. 

For this research we choose to count related problems. We interviewed only three employees, so the 

results may give certain stakeholders an advantage if we would ask them for a priority; or 

alternatively if we would only ask those three employees, the results may be fairly biased. We 

believe counting related problems gives more reliable results in this case. 

We can count the number of main effects (red rectangles) and related problems (blue rectangles) 



 124 

that a root problem influences; fixing a root problem should result in a reduction in the associated 

main effects and related problems. We can also count the number of other problems that influence 

related problems of the root problem, which may diminish the effect of fixing a root problem. For 

this research we left the latter out of scope. More research is required in determining the 

effectiveness of fixing certain root problems in relation to other problems in the problem bundle. 

Maybe we could extend the relations in the problem bundle with estimated percentages of how 

much a certain problem influences another. This would allow us to calculate the effectiveness of 

fixing a certain problem on a related problem further down more easily and precise.  

Below we give for each of the root problems one or more patterns that may be used to counter 

these problems. We also give a rationale to explain why the patterns may be a solution. The first two 

columns describe the number of main effects (Red rectangles) and related problems (Blue 

rectangles) influenced by the root problem. 

R B Problem Pattern Rationale 

7 14 Maintenance is not 
regarded as a separate 
product 

Organization 
follows market 

Although this pattern may be useful for 
larger companies, we believe this pattern 
can still be useful, in the context of laying 
the responsibility for a specific service 
(consultancy, design, development, 
hosting, and maintenance) with one 
manager. 

5 16 The company does not 
have a code-style guide 
and testing guide 

  

4 18 The setup of the hosting 
platform is outdated 

Moderate truck 
number 

We believe that having a shortage in 
people available for hosting results in the 
hosting platform becoming outdated, due 
to a lack of time. We recommend 
investigating a lower truck number for 
hosting; thus a higher number of people 
being capable of doing the same things. 

4 15 Continuous integration is 
not running anymore 

Continuous 
integration 

Although it is difficult to setup and 
maintain, we still recommends using 
continuous integration again. 

4 15 Tests take a lot time to 
run 

Ten-minute build We recommend making sure builds can 
be tested in ten minutes. If not, the tests 
(or code) should be refactored, so that 
they do run in ten minutes. 



 125 

4 14 A project, without a test 
suite, is taken over 

  

4 7 The company often does 
not create a ticket for 
updating the Ruby on 
Rails framework 

Code ownership 
 
 
 
 
 
Deploy along the 
grain; deploy 
people along the 
grain of the 
domain; one 
person/many hats 

Nobody feels responsible for creating a 
ticket when a new version of Ruby on 
Rails is released; making someone 
responsible for the quality of a project, 
could potentially counter this effect. 
 
A different approach could be making an 
employee responsible for keeping the 
development framework (i.e. Ruby on 
Rails) up-to-date for a certain project, or 
possibly for more than one project. The 
latter means the employee has 
knowledge on problems that arise when 
updating the framework. 

4 3 The company does not 
have a policy regarding 
bugs and feature 
requests in applications 
used 

Code ownership Nobody feels responsible for creating a 
ticket when a bug is encountered in an 
application used by the company (created 
and/or maintained by someone else). 
Making an employee responsible for a 
certain application may result in more 
bug reports being created, and thus 
potentially more bug fixes in applications 
used by the company. 
We do note that this is a kind of wide 
interpretation of the pattern. 

3 7 Roles in the development 
process are not explicitly 
defined 

Stable roles 
 
 
 
 
 
 
 
 
Move 
responsibilities 

Because the roles in the software 
development process are not explicitly 
defined, the responsibility for certain 
issues shifts between someone from the 
customer and someone from the 
company. Using stable roles means also 
having the responsibilities straight, so the 
roles won’t change overtime. 
 
Together with Stable roles, moving 
responsibilities can mean a decoupling 
between the customer’s organization and 
the development organization, which in 
turn may improve the communication in 
the development process. 

2 4 It is a bit cumbersome to 
create a ticket based on 
an exception 

  

2 4 The company does not 
have a template for 
generating a quote in 
Redmine 

  



 126 

2 3 The company does not 
have an adequate tool 
for discovering the 
billability of its projects 

Planning poker Although effective use of planning poker 
does not give insight in the billability of a 
project, we believe it does increase the 
billability. 

2 2 There is no guide for 
setting up a new project 

Kickoff meeting Some kind of kickoff meeting with 
developers and managers would 
encourage them to think how the new 
project should be setup and how to 
divide responsibilities. 

1 6 The ticket tracker is 
setup from a developer’s 
point of view 

  

1 4 The statuses a ticket goes 
through (process wise) 
are a bit unclear 

  

1 2 The company does not 
have a policy for security 
fixes 

Code ownership 
 
 
 
 
 
Deploy along the 
grain; deploy 
people along the 
grain of the 
domain; one 
person/many hats 

Nobody feels responsible for creating a 
ticket when a security bug is 
encountered; making someone 
responsible for the quality of a project, 
could potentially counter this effect. 
 
A different approach could be making an 
employee responsible for security in a 
certain project. 

1 1 Customer describes 
ticket not clear enough 

  

1 0 The company does not 
know how to act as its 
own customer 

Simple design; 
incremental 
design 
 
Scenarios define 
problem; use case; 
stories 

Applying the simple design practice 
would limit the scope and complexity of 
the project. 
 
If scenarios and use cases are written, 
they may limit the scope and complexity 
of the system. 

Table 4: Root problems the company experiences and potential patterns that can counter them 

Table 4 shows that we did not find a pattern for every problem. For some of those, the problem also 

describes the solution, e.g. “The company does not have a template for generating a quote in 

Redmine” would be solved by having a template for generating a quote in Redmine. For future uses 

of the problem bundle, we recommend writing problems in such a way that they do not include a 

solution in itself, allowing a less biased approach in finding patterns that may solve the problems. 

7.4 Using patterns to improve the software development process 



 127 

Besides using patterns to counter problems the company is experiencing, we also recommend that 

companies keep track of the patterns they currently use in the company, potentially for each project. 

By sharing the patterns among employees, (new) employees can learn more about the software 

development process of the company. 

It also means employees can see for each project what patterns are used, and thus adjust their way 

of working, if required, and it means if employees run into a problem, they potentially can figure out 

how the problem was solved or prevented in other projects, thus enabling them to use existing 

practices in the company. 

By making tacit knowledge explicit and letting existing employees list which patterns they use in 

which projects, the employees can see what the differences are in the use of practices between 

projects. By keeping track of the patterns, the employees can share knowledge on how the company 

works. We believe this kind of knowledge sharing can be done through a Wiki, although other 

software that enables knowledge sharing in the form of patterns can be used as well. 



 128 

8 Conclusions and discussion 

Based on the analysis of the data we gathered, this chapter presents our answers to the research 

questions stated in paragraph 2.3. Below we give conclusions to the research questions (8.1), we 

evaluate the validity of our research (8.2), we explain what the contribution of our research is (8.3), 

and finally we provide several directions for future research (8.4). 

8.1 Conclusions 

Below we answer each of our research questions. We include the answers to the subquestions 

together with the main questions. 

1. How are good practices used in the agile software development process? What do we mean 

with the agile development process in this research project? What do we mean with a good 

practice in this research project? How are good practices used in Scrum, Extreme 

Programming and Pragmatic Programming? 

In our research project we use the term ‘agile software development process’ to describe the 

collection of agile software methods and practices used by an organization. We use the term ‘good 

practice’ for practices that have empirical results from at least 10 companies and 50 projects, based 

on Jones (2000, 2009); we must note however that we find this definition rather limited validity wise. 

We also believe that a practice that includes information on the context in which it is applicable is 

more valid than a practice that does not. We deliberately avoid the term ‘best practice’ in our 

research, as it implies that there is no better alternative to the specific practice. Scrum uses various 

good practices, although it doesn’t explicitly name them as such. Still, authors such as Beedle et al. 

(1999), and Shore and Warden (2007) name good practices used in Scrum. Extreme Programming 

includes values, principles and practices; Pragmatic Programming can be considered a list of good 

programming practices. 



 129 

2. How can we describe good practices in a uniform way? 

We used patterns to describe good practices in a uniform way. A pattern has a title, it includes 

information on the context in which it is applicable, it provides a description of the problem that 

arises in the context and a description of the forces that describe the problem, it gives a solution to 

the problem, and it explains why the pattern should be successful in countering the problem. 

3. How can we extract the use of good practices from project data? What methods exist for 

describing the context of projects? What methods exist for facilitating experience reuse 

among software managers and/or developers? How can we institutionalize the use of good 

practices in an organization and promote it among software managers and/or developers? 

We found that there are almost no standardized ways of describing the context of projects. Although 

it is specifically targeted at exploring interface problems of requirements engineering and 

architectural design, we found the method by Daneva et al. (2007) relevant for our research. The 

dimensions in this method provided an adequate overview of the company’s projects and allowed us 

to compare the projects with each other. Still, we believe some further research is necessary to 

refine these dimensions, so we provided some hints for future research in paragraph 4.2. 

Petter and Vaishnavi (2008) use narratives to facilitate experience reuse among software project 

managers, which they name Experience Exchange. We use a similar method as they do, but instead 

of using narratives we use patterns. Because these patterns are used by more practitioners in the 

software industry, it not only allows companies to share patterns internally, but externally as well. 

We can institutionalize the use of these practices in an organization by letting the organization keep 

track of the practices it uses (and doesn’t use) in each project. By encouraging managers and 

developers to share what selection of practices they use, other managers and developers can see 

how they can improve their use of practices, so that the overall software development process is 



 130 

improved as well. 

How can we improve the use of good practices in the agile software development process of a 

small sized company? 

Based on the data we collected and analyzed, we recommend the following process for improving 

the use of good practices in the agile software development process: 

1. Investigate which problems the company has and find out what the root causes of these 

problems are. We recommend using a problem bundle to visualize the dependencies among 

these problems. 

2. Keep track of the good practices that the company uses and doesn’t use. We recommend 

writing the practices in the form of patterns to keep a consistent structure between 

practices. 

3. Try to match potential useful unused practices to the problems the company experiences 

and implement these patterns to solve the problems. 

4. Have managers and developers share among each other which patterns they are using in 

which projects, through a knowledge management system, like for example a Wiki. This also 

allows new employees to quickly gain knowledge how the company works, and ensures that 

knowledge is kept in the organization if someone leaves. 

8.2 Validity 

We considered the possible validity threats (Yin, 2009) in this research. Below we give for each 

validity concern how and where we tried to address it to increase the quality of the research. 

8.2.1 External validity 

To improve external validity, Yin (2009) suggests using theory in single-case studies and using 



 131 

replication logic in multiple-case studies. We have a single-case study, so we used theory. Our 

rationale for doing a single-case study can be found in paragraph 2.5.2 and 2.5.3.  

If we look at the contributions of our research (paragraph 8.3), we feel that for each contribution 

external validity must be addressed. We therefore think that although we used theory to support our 

single-case study, we believe a multiple-case study may yield an improvement in external validity, as 

it means the contributions are tested in multiple companies. 

However, we also note that according to research methodologists (e.g. Wieringa, 2010) we could 

generalize our conclusions based on a single case study. If we use Wieringa’s mechanism-based 

generalization reasoning, then we could assume that our observations in the case study company 

could be similar to those that a researcher could make in other companies that share the same 

contextual settings as our case company. For example, we could think that our findings would also be 

observable in other small-sized agile companies in northern Europe that serve the same type of 

clients, work under the same type of contractual agreements, have similar work cultures, and face 

similar market challenges. 

8.2.2 Construct validity 

To improve construct validity, Yin (2009) suggests using multiple sources of evidence, establishing a 

chain of evidence, and having key informants review draft case study reports. 

In our research we used literature and documents (and information systems), and held interviews 

with relevant people, so we did use multiple sources of evidence to support our research. We have 

also investigated multiple projects to establish the context the company is operating in. We do think 

some more interviews with relevant people would improve the quality of our constructs. 

By using a traceability matrix (Appendix B: Problem bundle traceability matrix) we created a chain of 

evidence, thus allowing researchers to find what problem was discovered in which source(s) of 

evidence. We do think that mentioning more explicit what we searched for in what databases would 



 132 

make the chapter on literature (chapter 3) more useable by others, so we feel that the construct 

validity of the literature part could have been higher. 

Thirdly, we gave each interviewee the opportunity to comment on the results and we provided the 

managers the opportunity to comment on the overall report. 

8.2.3 Internal validity 

Internal validity is mostly dealt with during data analysis. To improve internal validity, Yin (2009, p. 

41) suggests doing pattern matching, doing explanation building, addressing rival explanations, and 

using logic models. Yin (2009, p. 42–43) writes that internal validity is mainly a concern in 

explanatory case studies, and is of less importance in descriptive or exploratory studies. As our 

research is largely exploratory, we do not consider internal validity equally high important compared 

to other validity threats. 

We consider patterns matching and logic models largely irrelevant for this research.  

Yin (2009, p. 141) suggests using a parallel procedure to explanation building for exploratory case 

studies based on The discovery of grounded theory: Strategies for qualitative research by Glaser and 

Strauss (1967). The procedure is part of a hypothesis-generating process aimed at developing ideas 

for further studies. We have not used this procedure, but do recommend evaluating its use in future 

research. 

We consider time-series analysis also largely irrelevant for this research, but note that in chapter 4 

we did not include the period in which the projects were executed as a dimension. We believe 

including the timeframe in future use of these dimensions may lead to different results, for example 

due to the availability of new technology. 

8.2.4 Reliability 

To improve the reliability of the research, Yin (2009) suggests using a case study protocol and 



 133 

developing a case study database. 

We did not explicitly use a case study protocol; instead we used the protocol for a research as 

suggested by Verschuren and Doorewaard (1998), as we are more familiar with its layout. We do 

believe that using the case study protocol as suggested by Yin (2009) may have improved the 

reliability of our research. 

We did not develop an explicit case study database, so we could have improved our research on that 

matter. However we did include all data regarding the context of the company’s projects (Appendix 

A: Project dimensions); we also explicitly listed what documents we found (chapter 5) and how we 

collected these documents (paragraph 5.1); and we recorded all interviews allowing other 

researchers to listen to those interviews as well. 

We think keeping track of all documents and having all interviews on paper would improve the 

reliability of our research. 

8.3 Contributions 

The contribution of our research is two-fold: on the one hand we give managers and practitioners 

deliverables that they can use, while on the other hand we provide a process that allows them to find 

potential solutions to problems they experience. 

8.3.1 Deliverables 

1. A problem bundle allows managers and practitioners to see relationships between problems 

and to identify potential root problems. It gives them a visual insight into which problems to 

tackle. 

2. A table of good practices allows practitioners (in this case developers and managers) to gain 

insight in what practices are used in an organization and in which way. It also shows which 

practices are not (completely) used in the organization. This makes these unused practices at 



 134 

the same time potential solutions to problems experienced in the organization. 

8.3.2 Process 

Besides the deliverables our research also gives practitioners a process, which they can use to 

identify problems in an organization, find deeper causes to these problems, identify practices used in 

the organization, and identify practices that can serve as potential solutions to these problems: 

1. Use documents, project dimensions and interviews with stakeholders to identify problems in 

the organization. 

2. Use a problem bundle to find deeper problems that may cause the problems that are 

experienced. 

3. Identify practices used in the organization based on the documents, project dimensions and 

interviews. 

4. Identify practices that can be used as potential solutions to counter the problems 

experienced. 

5. Apply useful practices. 

6. Evaluate the use of the practices. 

After the evaluation, the practitioner can continue the process by identifying new problems. In Figure 

15 below, we give a visualization of the process. 



 135 

1. Identify 

problems

2. Find root 

causes to 

problems

3. Identify 

practices used

4. Identify 

unused practices 

that can solve 

the problems

5. Apply useful 

practices 

6. Evaluate the 

use of the 

practices 

 

Figure 15: A process for countering identified problems with good practices 

8.4 Future research 

Based on our research we recommend the future research into the following aspects. 

8.4.1 The use of good practices in other market sectors 

In our research we only focused on the use of practices in (agile) software development (paragraph 

3.4). It would be interesting to see how other market sectors deal with good practices, how good 

practices are determined, how good practices are shared among practitioners and how good 

practices are shared inside companies. 

8.4.2 Determining the validity of good (or best) practices 



 136 

In paragraph 3.6 we only found one method for determining the validity of good or best practices in 

software development, which we find fairly limited, both in number and in validity of the method 

itself. We recommend doing more research in improving determining the validity of good or best 

practices. By improving the way to determine the validity of good or best practices practitioners can 

rely more on these practices to improve their development process. 

8.4.3 Validation of the problem bundle 

We recommend further research on the validation of the use of problem bundles (paragraph 7.1), in 

the company we did the research, in other companies doing software development, and in 

companies in other market sectors. Validation of the use of problem bundles is important to make it 

a useful tool for practitioners. 

Not only the validity of the use of the problem bundle is important, as well as the validity of the 

relationships between the problems. More research is required to improve the quality of a problem 

bundle for practitioners. 

8.4.4 Improving the dimensions of a project’s context 

In chapter 4 we used 20 dimensions to describe the context of a project. In paragraph 4.2 we wrote 

several suggestions for future research on these dimensions. We believe the list of 20 dimensions 

may not be exhaustive and additional dimensions may be uncovered in future research. We do think 

that some standard way of describing a project’s context would improve the ability to compare 

projects to each other, and thus additional research into this field is important. 

Besides the dimensions it would be interesting to find out if we could use a combination of problems 

found and patterns used in a project to describe its context. This should allow companies with 

projects that have roughly the same context to select the same patterns to improve their chances of 

a successful project. 

8.4.5 Determining the priority of problems in the problem bundle 



 137 

The problem bundle in paragraph 7.1 uses colors to distinguish types of problems, but it does not 

provide practitioners with functionality to prioritize between problems. It would be interesting to 

include the priority of problems in the problem bundle and to allow practitioners to easily calculate 

or see what problems they should focus on first. 

8.4.6 Sharing used patterns 

In paragraph 7.4 we recommend the use of a system, such as a Wiki, to allow developers and 

managers to share and keep track of used good practices in the form of patterns. More research in 

this area is necessary to ensure developers and managers actually use the system and to ensure 

sharing and using patterns doesn’t become cumbersome. 

8.4.7 Internal validation of using practices to solve problems 

We provided several suggestions in paragraph 7.2 for using patterns to solve certain root problems. 

Further research is necessary to see whether these suggestions are correct (and thus if using the 

patterns actually solve the problems). It would also be interesting to see if solving the root problems 

also solves other problems in the problem bundle. 

 



 138 

References 

 Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns, Buildings, 

Construction. USA: Oxford University Press. 

 Alexander, C. (1979). The Timeless Way of Building. USA: Oxford University Press. 

 Alexander, I., & Robertson, S. (2004). Understanding Project Sociology by Modeling 

Stakeholders. IEEE Software, 21(1), 23–27. 

 Amrit, C. (2008). Improving Coordination in Software Development through Social and 

Technical Network Analysis, PhD thesis series number 08-134. Enschede: CTIT 

 Andringa, S. (2008, June 17). Een introductie tot agile softwareontwikkeling en een 

pragmatische evaluatie van de agile ontwikkelmethode Scrum. 

 aTech Media (2010, November 24). Git, Mercurial & Subversion Hosting with project 

management baked in. In Codebase. Retrieved November 24, 2010, from 

http://www.codebasehq.com. 

 Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The Goal Question Metric Approach. 

 Bates, R. (2010, December 9). Free Ruby on Rails Screencasts. In Railscasts. Retrieved 

December 9, 2010, from http://railscasts.com. 

 Baudis, P., & Chacon, S. (2010, November 2). Git is…. In Git - Fast Version Control System. 

Retrieved November 24, 2010, from http://git-scm.com. 

 Beck, K. (1996). Smalltalk Best Practice Patterns Volume 1: Coding, draft. 

 Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley. 



 139 

 Beck, K., & Fowler, M. (2000). Planning Extreme Programming. Addison-Wesley. 

 Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrace Change, Second 

Edition. Addison-Wesley. 

 Beedle, M., Devos, M., Sharon, Y., Schwaber, K., & Sutherland, J. (1999). SCRUM: An 

extension pattern language for hyperproductive software development. 

 BlueTools (2010). De snelste manier om facturen te maken. In MoneyBird. Retrieved January 

13, 2011, from http://www.moneybird.nl. 

 Catlin, H., Weizenbaum, N., Eppstein, C. (2010, December 17). Sass makes CSS fun again. In 

Sass – Syntactically Awesome Stylesheets. Retrieved February 3, 2011, from 

http://www.sass-lang.com. 

 Coplien, J. O., & Harrison, N. B. (2004). Organizational Patterns of Agile Software 

Development. Castleton, NY: Prentice Hall. 

 Daft, R. L. (2001). Organization Theory and Design, Seventh Edition. Cincinnati, OH: South-

Western College. 

 Daneva, M., & Ahituv, N. (2010). What Practitioners Think of Inter-organizational ERP 

Requirements Engineering Practices: Results from a Focus Group. 

 Daneva, M., Hordijk, W., Racheva, Z., & Wieringa, R. (2007, June 15). A Dimensional Analysis 

of Software Projects, draft 10.0. 

 Daneva, M., Wieringa, R. J. (2006, May 5). A requirements engineering framework for cross-

organizational ERP systems. In Requirements Engineering, 11, 194–204. London: Springer-

Verlag. 

 DeGrace, P., & Stahl, L.H. (1990). Wicked Problems, Righteous Solutions: a Catalogue of 



 140 

Modern Software Engineering Principles. Yourdon Press. 

 Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A 

systematic review. Information and Software Technology, 50, 833–859. 

 Edgewall Software. (2010, January 31). Welcome to the Trac Open Source Project. In The 

Track Project. Retrieved February 17, 2010, from http://trac.edgewall.org. 

 Elssamadisy, A. (2009). Agile Adoption Patterns: A Roadmap to Organizational Success. 

Addison-Wesley. 

 Github. (2011, April 19). Secure source code hosting and collaborative development. In 

GitHub. Retrieved April 19, 2011, from http://www.github.com. 

 Gohr, A. (2010, August 29). DokuWiki. In DokuWiki. Retrieved November 24, 2010, from 

http://www.dokuwiki.org/dokuwiki. 

 Hansson, D.H. (2009, October 18). Web development that doesn’t hurt. In Ruby on Rails. 

Retrieved October 18, 2009, from http://rubyonrails.org. 

 Hooimeijer, P., & Weimer, W. (2007, November 5-9). Modeling Bug Report Quality. In 

Proceedings of the twenty-second IEEE/ACM international conference on Automated 

software engineering, 34–43. 

 Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: from journeyman to master. 

Addison Wesley. 

 Jones, C. (2000). Software assessments, benchmarks, and best practices. Harlow: Addison 

Wesley. 

 Jones, C. (2009). Software engineering best practices: lessons from successful projects in top 



 141 

companies. New York, NY: McGraw Hill. 

 Kerievsky, J. (2000). Patterns & XP. Industrial Logic. 

 Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El-Emam, K., & 

Rosenberg, J. (2001, January). Preliminary Guidelines for Empirical Research in Software 

Engineering, National Research Council of Canada. 

 Lang, J.P. (2010, January 20). Redmine - Overview. In Redmine. Retrieved February 17, 2010, 

from http://www.redmine.org. 

 Laudon, K. C., & Laudon, J. P. (2000). Management Information Systems: Organization and 

Technology in the Networked Enterprise, Sixth Edition. Upper Saddle River, NJ: Prentice-Hall. 

 Leffingwell, D., & Widrig, D. (2003). Managing Software Requirements: A Use Case Approach, 

Second Edition. Boston, MA: Addison-Wesley. 

 Martin, R. C. (2000, July/August). eXtreme Programming Development through Dialog. IEEE 

Software, 17, 12–13. 

 Petter, S. (2008). A Process to Reuse Experiences via Written Narratives among Software 

Project Managers: A Design Science Research Proposal. In V. K. Vaishnavi, & W. Kuechler Jr. 

(Eds.), Design Science Research Methods and Patterns: Innovating Information and 

Communication Technology, 41–54. New York, NY: Auerbach. 

 Petter, S. & Vaishnavi, V. K. (2008, April). Facilitating experience reuse among software 

project managers. In Information Sciences: an International Journal, 178(7), 1783–1802. New 

York, NY: Elsevier. 

 Rising, L., & Janoff, N. S. (2000, July/August). The Scrum Software Development Process for 

Small Teams. IEEE Software, 17, 26–32. 



 142 

 Rooney J. J., Vanden Heuvel, L. N. (2004, July). Root Cause Analysis For Beginners. In Quality 

Basics, 45–53. 

 Schwaber, K. (1996). SCRUM Development Process. 

 Schwaber, K. (2004). Agile Project Management with Scrum. Redmond, WA: Microsoft Press. 

 Shore, J., & Warden, S. (2007). The Art of Agile Development. Sebastopol, CA: O’Reilly. 

 Statistics Canada (2010, June 17). North American Industry Classification System (NAICS) 

2007. Retrieved December 8, 2010 from http://www.statcan.gc.ca/subjects-sujets/standard-

norme/naics-scian/2007/list-liste-eng.htm. 

 Sutherland, J. (2001). Agile Can Scale: Inventing and Reinventing SCRUM in Five Companies. 

Cutter IT Journal, 14(12), 5–11. 

 Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Harvard 

Business Review, 137–146. 

 The Apache Software Foundation (2010, November 24). Apache Subversion Features. In 

Apache Subversion. Retrieved November 24, 2010 from 

http://subversion.apache.org/features.html. 

 Van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method: a practical guide 

for quality improvement of software development. London: McGraw-Hill. 

 Verschuren, P., & Doorewaard, H. (1998). Het ontwerpen van een onderzoek, tweede druk. 

Utrecht: LEMMA. 

 Wieringa, R. J. (2011). The Structure of Design Theories, and an Analysis of Their Use in 

Software Engineering Experiments. International Symposium on Empirical Software 



 143 

Engineering (ESEM), accepted for publication. Banff, Canada. 

 White, R. (2006, July 20). SlimTimer launched. In SlimTimer Blog. Retrieved November 24, 

2010, from http://blog.slimtimer.com/2006/07/20/slimtimer-launched. 

 Yin, R. K. (2009). Case Study Research: Design and Methods, Fourth Edition. Thousand Oaks, 

CA: SAGE. 



 144 

Appendix A: Project dimensions 

Below we define the dimensions for each project in the company, based on Daneva et al. (2007). To 

be able to refer to each project individually, we assigned each project a different letter, which is 

given above each table. In the bullet points below we state some recommendations for three of the 

dimensions, so the dimensions can be filled out more easily for the projects. 

 For the dimension Procurement process (7), we use the nominal scale (None, Proprietary, 

Government, and Military) as proposed by Daneva et al. (2007), but added the ‘Unknown’ 

value, if we do not know if there was a procurement process at all. We also try to be as 

specific as possible, so we also list the information below if applicable. Although this 

information may not necessarily influence the requirements engineering process or 

architectural design of the project, we believe it gives an overview how the company gets its 

projects. 

o Tender: the vendor was selected based on a tender 

o Business network: the vendor was selected based on knowing someone in the 

business network (via-via) 

o Previous experience: the vendor was selected based on previous experience 

o Neighborhood: the vendor was selected because of its physical proximity 

 For the dimension Business sector (9), we use the North American Industry Classification 

System (NAICS) 2007 (Statistics Canada, 2010), as recommended by Daneva et al. (2007). If 

multiple business sectors are applicable, we list them in order of relevance to the project. 

 For the dimension Functional area (10), we use the following nominal scale: Administration 



 145 

(Planning), Administration (Organizing), Customer service, Distribution, Finance, Human 

resources, ICT, Marketing, Sales, Production, and Research & Development (Daft, 2001; 

Laudon & Laudon, 2000). If multiple business sectors are applicable, we list them in order of 

relevance to the project. 

Project B 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Non-existent 

3. Level of integration Stand-alone (initially, but later integrated) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price (some parts have a time and 
materials based price) 

7. Procurement process Unknown 

8. Market focus Custom (for the customer), later Mass market 
(for the customer’s customers) 

9. Business sector 5611. Office Administrative Services 

10. Functional area Finance 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk Low 

14. System risk Medium 

15. Risks to the project Medium: 

 Project was taken over 
16. Project size Small 

17. Duration 3-9 months (initially) 

18. Client experience with IT projects Medium 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project C 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 



 146 

4. Project organization Developers are co-located, customer is 
dispersed from developers at international level 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure Fixed-price 

7. Procurement process Business network 

8. Market focus Mass market 

9. Business sector 81392. Professional Organizations 

10. Functional area Distribution, Marketing 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk High 

14. System risk Low 

15. Risks to the project High: 

 Inadequate budget availability 

 Project was taken over 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (Scrum, XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model Manifesto for Agile Software Development 

 

Project D 

1. Project nature Initially Replacement, later Enhancement and 
Corrective Maintenance 

2. Technology gap Above average 

3. Level of integration Stand-alone (initially, later integrated with 
various other systems and feeds) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure Fixed-price 

7. Procurement process Government, Tender 

8. Market focus Custom (initially only for the customer) 

9. Business sector 913. Local, Municipal and Regional Public 
Administration 

10. Functional area Customer service, Distribution, Marketing 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Medium: 

 Technology that is unknown to the 
project team 

 Integration with other systems 



 147 

16. Project size Large 

17. Duration More than 18 months (including maintenance) 

18. Client experience with IT projects Low 

19. Methodology used 1. Official: Agile (Scrum, XP); In practice: in the 
beginning spiral with agile elements, later agile 
2. Medium amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model Manifesto for Agile Software Development 

 

Project F 

1. Project nature Greenfield 

2. Technology gap Above average 

3. Level of integration Integrated (many XML feeds) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure Time and materials based price 

7. Procurement process Unknown 

8. Market focus Mass market 

9. Business sector 51913. Internet Publishing and Broadcasting, 
and Web Search Portals 

10. Functional area Distribution, Marketing 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk High 

14. System risk Low 

15. Risks to the project High: 

 Inadequate budget availability 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (Scrum, XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model Manifesto for Agile Software Development 

 

Project G 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 



 148 

4. Project organization Developers are co-located, customer is 
dispersed from developers at international level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Unknown 

8. Market focus Custom (customer) 

9. Business sector 54. Professional, Scientific and Technical Services 

10. Functional area Human Resources 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project H 

1. Project nature Greenfield 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Business network 

8. Market focus Mass market 

9. Business sector 8122. Funeral Services 

10. Functional area Sales, Marketing 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low: 

 IT infrastructure of the customer 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 



 149 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project I 

1. Project nature Replacement 

2. Technology gap Non-existent 

3. Level of integration Integrated (Google web services) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price (subcontractor) 

7. Procurement process Neighborhood 

8. Market focus Custom (initially for the customer itself, but later 
the customer wanted to sell it as a SaaS 
application as well) 

9. Business sector 44-45. Retail Trade 

10. Functional area Finance 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Medium 

15. Risks to the project Low 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Medium amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project J 

1. Project nature Initially Greenfield, later Enhancement and 
Corrective Maintenance 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Government, Previous experience (Project D) 

8. Market focus Custom (customer) 

9. Business sector 913. Local, Municipal and Regional Public 
Administration 



 150 

10. Functional area Customer service, Marketing 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project K 

1. Project nature Greenfield 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Co-located 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure In-house 

7. Procurement process None (in-house) 

8. Market focus Custom (customer) 

9. Business sector 5415. Computer Systems Design and Related 
Services 
518. Data Processing, Hosting, and Related 
Services 

10. Functional area Finance 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk Medium 

14. System risk Medium 

15. Risks to the project Low 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Medium 

19. Methodology used 1. Agile (Scrum, XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ diagrams 

20. Project governance model Manifesto for Agile Software Development 

 



 151 

Project L 

1. Project nature Replacement 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Business network, Neighborhood 

8. Market focus Custom (customer) 

9. Business sector 5415. Computer Systems Design and Related 
Services 

10. Functional area Marketing, Sales 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project M 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Unknown 

8. Market focus Custom (customer) 

9. Business sector 44229. Other Home Furnishings Stores 

10. Functional area Finance 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk Medium 

14. System risk Medium 



 152 

15. Risks to the project Medium: 

 Project was taken over 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project N 

1. Project nature Replacement + parts used from previous project 

2. Technology gap Moderate 

3. Level of integration Integrated (3 other applications + FTP) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Previous experience (Project L), Neighborhood 

8. Market focus Custom (customer) 

9. Business sector 5415. Computer Systems Design and Related 
Services 

10. Functional area Administration (Planning), Human Resources 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Low 

14. System risk Medium 

15. Risks to the project Medium: 

 Integration with other systems 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project O 

1. Project nature Replacement 

2. Technology gap Non-existent 

3. Level of integration Integrated (XML feed) 



 153 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Government, Business network 

8. Market focus Custom (customer) 

9. Business sector 913. Local, Municipal and Regional Public 
Administration 

10. Functional area Customer service, Distribution, Marketing 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Low: 

 IT infrastructure of the customer 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project P 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Non-existent 

3. Level of integration Integrated 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Time and materials based price 

7. Procurement process Unknown 

8. Market focus Custom (customer) 

9. Business sector 5151. Radio and Television Broadcasting 

10. Functional area Distribution, Marketing 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects High 



 154 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project R 

1. Project nature Greenfield 

2. Technology gap Above average 

3. Level of integration Integrated (various server scripts) 

4. Project organization Co-located 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure In-house 

7. Procurement process None (in-house) 

8. Market focus Mass market 

9. Business sector 518. Data Processing, Hosting, and Related 
Services 
5415. Computer Systems Design and Related 
Services 

10. Functional area Sales, Finance, Production 

11. Development organization Very small 

12. Size of the client organization Very small 

13. Business risk Medium 

14. System risk Medium 

15. Risks to the project Medium: 

 Integration with various server scripts 

16. Project size Medium 

17. Duration 3-9 months 

18. Client experience with IT projects Medium 

19. Methodology used 1. Agile (Scrum, XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ diagrams 

20. Project governance model Manifesto for Agile Software Development 

 

Project S 

1. Project nature Greenfield 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Government, Previous experience (Project D) 



 155 

8. Market focus Custom (customer) 

9. Business sector 913. Local, Municipal and Regional Public 
Administration 

10. Functional area Marketing 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project T 

1. Project nature Greenfield 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Business network 

8. Market focus Custom (customer) 

9. Business sector 611. Educational Services 

10. Functional area Marketing 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low: 

 IT infrastructure of the customer 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Low 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 



 156 

 

Project U 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Moderate 

3. Level of integration Integrated (various XML feeds) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Time and materials based price 

7. Procurement process Previous experience (Project P) 

8. Market focus Mass market 

9. Business sector 5151. Radio and Television Broadcasting 

10. Functional area Distribution 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Medium: 

 Integration with various XML feeds 

 Project was taken over 

16. Project size Small 

17. Duration 3-9 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project V 

1. Project nature Greenfield 

2. Technology gap Non-existent 

3. Level of integration Stand-alone 

4. Project organization Developers are co-located, project manager and 
customer are dispersed from developers and 
each other at national level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Previous experience (Hosting) 

8. Market focus Custom (multiple parties) 

9. Business sector 91. Public Administration 
23. Construction 

10. Functional area Administration (Organizing) 



 157 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Medium: 

 Many different parties involved 

16. Project size Large 

17. Duration 3-9 months 

18. Client experience with IT projects High 

19. Methodology used 1. Waterfall with Agile (XP) elements 
2. High amount of documentation 
3. Implied notations are text in natural language 
+ diagrams 

20. Project governance model Unknown 

 

Project W 

1. Project nature Enhancement and Corrective Maintenance 
(Project was taken over) 

2. Technology gap Moderate 

3. Level of integration Integrated (with 2 web services) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at international level 

5. Availability of project resources Shared 

6. Project relationship structure Fixed-price 

7. Procurement process Unknown 

8. Market focus Mass market 

9. Business sector 8133. Social Advocacy Organizations 

10. Functional area Sales, Marketing, Distribution 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Medium: 

 Project was taken over 

16. Project size Small 

17. Duration Less than 3 months 

18. Client experience with IT projects Medium 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 
+ design mock-ups 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 



 158 

Project X 

1. Project nature Greenfield 

2. Technology gap Moderate 

3. Level of integration Integrated (various web services) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Shared 

6. Project relationship structure Time and materials based price 

7. Procurement process Business network 

8. Market focus Mass market 

9. Business sector 518. Data Processing, Hosting, and Related 
Services 

10. Functional area Sales, Finance, Production 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Medium 

14. System risk Medium 

15. Risks to the project Medium: 

 Integration with various web services 

16. Project size Medium 

17. Duration 3-9 months 

18. Client experience with IT projects Medium 

19. Methodology used 1. Agile (XP) 
2. Low amount of documentation 
3. Implied notations are text in natural language 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project Y 

1. Project nature Greenfield 

2. Technology gap Moderate 

3. Level of integration Integrated (various web services) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure Fixed-price (subcontractor) 

7. Procurement process Unknown 

8. Market focus Mass market 

9. Business sector 519. Other Information Services 

10. Functional area Sales 

11. Development organization Very small 

12. Size of the client organization Large 

13. Business risk Medium 

14. System risk Low 

15. Risks to the project Medium: 

 Integration with various web services 



 159 

16. Project size Small 

17. Duration More than 18 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Medium amount of documentation 
3. Implied notations are text in natural language 
+ diagrams 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 

Project Z 

1. Project nature Greenfield 

2. Technology gap Moderate 

3. Level of integration Integrated (various web services) 

4. Project organization Developers are co-located, customer is 
dispersed from developers at national level 

5. Availability of project resources Some dedicated, some shared 

6. Project relationship structure Fixed-price (subcontractor) 

7. Procurement process Previous experience (Project Y) 

8. Market focus Custom (customer) 

9. Business sector 519. Other Information Services 

10. Functional area Distribution 

11. Development organization Very small 

12. Size of the client organization Small 

13. Business risk Low 

14. System risk Low 

15. Risks to the project Low 

16. Project size Small 

17. Duration More than 18 months 

18. Client experience with IT projects High 

19. Methodology used 1. Agile (XP) 
2. Medium amount of documentation 
3. Implied notations are text in natural language 
+ diagrams 

20. Project governance model In practice: Manifesto for Agile Software 
Development 

 



 160 

Appendix B: Problem bundle traceability matrix 

Below we give a traceability matrix for the relations in the problem bundle (Figure 14). 

The numbers before each problem are used to trace the relations between the problems back to the 

data we collected; so the relations are identified by stating the causality between the problems. For 

example 1.  2. means the relation from problem 1. to problem 2. 

In the data collection column we give the data sources where the relation is based on. This can be a 

project (chapter 4 and more specifically Appendix A: Project dimensions), a document (chapter 5), an 

interview (chapter 6), observations we made, our own experience in the company, or logical 

deduction. 

Relation Data sources 

1.  2. Interview Manager C 

2.  3. Interview Manager C 

2.  5. Interview Manager C; own experience 

3.  4. Interview Manager C; own experience 

4.  6. Own experience 

5.  6. Own experience 

6.  18. E-mail conversation with Manager C 

7.  8. Interview Manager B 

7.  9. Project B, Project C, Project M, Project U, Project W; Interview Manager B; own 
experience 

9.  18. Project B, Project C, Project M, Project U, Project W; Interview Manager B; own 
experience; logical deduction 

10.  11. Interview Manager C; own experience 

10.  12. Logical deduction (Manager C gives 10.  17. in the e-mail conversation) 

12.  17. E-mail conversation with Manager C 

13.  14. Own experience 

14.  17. E-mail conversation with Manager C 

15.  17. E-mail conversation with Manager C; own experience 

16.  17. Own experience 

17.  18. E-mail conversation with Manager C 

18.  19. Logical deduction (Manager C gives 18.  107. in the e-mail conversation) 

19.  20. Observations; own experience 

20.  41. Observations; own experience 

20.  105. Own experience; observations 

20.  107. Logical deduction (Manager C gives 18.  107. in the e-mail conversation) 

20.  110. Observations 

20.  112. Interview Manager C; observations; own experience 



 161 

21.  22. Interview Developer A, interview Manager B, interview Manager C 

22.  26. Interview Manager C; Project D 

23.  25. Interview Manager C 

24.  25. Interview Manager C 

25.  26. Interview Manager C 

26.  34. Observations 

27.  28. Observations; own experience 

28.  29. Interview Manager B, interview Manager C 

28.  30. Observations 

28.  31. Documents: SLAs; interview Manager B 

28.  32. Documents: SLAs & quotes 

29.  34. Observations 

30.  42. Documents: SLAs; interview Manager B 

30.  43. Interview Manager B 

31.  47. Interview Manager B, interview Manager C 

32.  66. Interview Developer A, interview Manager B, interview Manager C; observations 

33.  35. Observations 

34.  35. Observations 

34.  36. Interview Manager C 

35.  37. Logical deduction 

36.  47. Interview Developer A, interview Manager B, interview Manager C 

37.  38. Interview Manager C 

37.  39. Interview Developer A; own experience 

37.  40. Interview Manager C 

37.  41. Interview Manager C 

40.  59. Observations 

41.  59. Observations 

44.  46. Interview Developer A 

45.  47. Interview Developer A, interview Manager B, interview Manager C 

46.  47. Logical deduction 

47.  48. Observations 

48.  49. Logical deduction 

50.  51. Interview Manager B 

50.  52. Interview Manager B 

52.  53. Interview Manager B 

52.  54. Logical deduction 

53.  55. Interview Manager B 

54.  82. Interview Manager B 

55.  57. Interview Manager B 

55.  59. Logical deduction 

56.  57. Interview Manager B 

57.  59. Interview Manager B 

58.  59. Interview Manager B, interview Manager C 

60.  61. Interview Developer A, interview Manager B, interview Manager C 

61.  63. Interview Developer A, interview Manager B, interview Manager C 

61.  64. Observations; own experience 

62.  63. Interview Manager B 

63.  65. Interview Manager B, interview Manager C 

64.  65. Observations; own experience 



 162 

65.  66. Interview Developer A, interview Manager B, interview Manager C; observations; 
own experience 

66.  67. Interview Developer A 

67.  77. Interview Developer A 

68.  69. Interview Manager B 

68.  70. Interview Manager C 

69.  71. Interview Developer A 

70.  69. Interview Manager B 

70.  72. Interview Manager C 

71.  74. Interview Developer A 

73.  74. Interview Developer A 

74.  77. Interview Developer A 

75.  76. Interview Manager B, interview Manager C 

75.  78. Interview Manager B 

76.  77. Interview Developer A 

78.  80. Interview Manager B; logical deduction 

79.  80. Interview Developer A, interview Manager B, interview Manager C 

81.  82. Interview Manager B 

82.  83. Interview Manager B 

84.  85. Interview Developer A, interview Manager B, interview Manager C 

85.  86. Interview Developer A, interview Manager B, interview Manager C 

85.  89. Interview Manager B 

87.  88. Interview Manager B, interview Manager C 

88.  89. Interview Manager B, interview Manager C 

88.  91. Interview Manager B, interview Manager C 

89.  90. Logical deduction 

90.  91. Interview Manager B, interview Manager C 

91.  93. Observations 

91.  99. Interview Manager B 

92.  93. Observations 

94.  95. Documents: quotes; observations 

95.  97. Interview Manager B 

95.  98. Interview Manager B 

96.  97. Observations 

97.  100. Logical deduction 

98.  99. Interview Manager B, interview Manager C 

98.  100. Logical deduction 

100.  101. Logical deduction 

100.  102. Interview Manager C (Manager B gives 97.  102. and 98.  102.) 

102.  103. Interview Manager C 

103.  110. Interview Manager B 

104.  110. Interview Manager B 

106.  107. E-mail conversation with Manager C 

107.  108. Observations 

107.  111. Logical deduction 

108.  109. Logical deduction 

109.  110. Logical deduction; own experience 

110.  118. Observations 

111.  112. Observations 

112.  114. Interview Manager C 



 163 

113.  114. Interview Developer A, interview Manager B, interview Manager C; own 
experience 

114.  115. Interview Developer A, interview Manager C 

115.  116. Observations 

115.  117. Observations 

117.  118. Logical deduction 

118.  119. Logical deduction 

 


