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Abstract
The rise of service oriented computing as a popular software development paradigm
brings the inability to compose security properties back into the spotlights. Since the
modular nature of services is one of the key concepts within service oriented architec-
tures (SOAs), a lot of security efforts in this field are rendered useless. This is amplified
by the fact that services are built upon an uncoupled architecture.

Additionally, service oriented systems need to be able to bootstrap trust in real time,
as another main feature of service oriented systems is the opaqueness of the services.
As no prior communication or knowledge further than a standardised application
programming interface (API) can be assumed due to the uncoupled nature of ser-
vices, making an informed decision about the honesty of a specific service is very hard.
Therefore, a trust infrastructure or other means of coping with dishonest services is
mandatory.

The present research will tackle both the composition problem and the issue of trust
within a service oriented context. It is aimed at enabling the techniques for proving se-
curity properties within standard SOAs and finding security properties for use within
this architecture while posing only realistic assumptions on the service oriented en-
vironment. Furthermore, a concise and effective model for bootstrapping trust will be
introduced.

A precise model for services and service compositions is built using partially ordered
multisets (pomsets). This model conforms to the characteristics of service oriented
computing, with an emphasis on the uncoupled nature and opaqueness of services.

The secure protocol composition framework of Datta et al. [18] is adapted to a ser-
vice oriented context. This is done by overcoming the differences between service
oriented computing and protocols, and combining the framework with our model of
service oriented computing. The resulting framework solves the problem of secure
service composition.

Finally, certification and reputation-based trust infrastructures are discussed and
proposed to solve the issue of trust raised by opaque services. By using trust infra-
structures to bootstrap trust in the honesty of individual services, it becomes possible
to make informed decisions on which services to trust. As means of mitigating the
issue of trust against a trustworthy majority, the problem of the Byzantine generals
of Lamport, Shostak and Pease [42] is discussed and adapted to our model of service
compositions. This approach minimises the effect of dishonest services by normal-
ising anomalies caused by service poisoning.

In conclusion, the present research proposes a framework for the secure composi-
tion of services. Additionally, trust infrastructures are proposed to decide upon the
honesty of services, and an adaptation of the Byzantine generals problem is used to
mitigate service poisoning.
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1 Introduction
Since its introduction, service oriented computing has become a major technique within
the field of computer science [76]. In a service oriented system, entities, either auto-
mated or human agents, expose themselves as services that can be invoked by other
entities, including other services [54]. Of these types of services, this research mainly
concerns fully automated services, although the research could be extended to in-
clude human agents. In a networked world like the Internet, this results in multitudes
of uncoupled services. In Chapter 2 we will discuss the concept of services and their
characteristics in depth.

Although service oriented computing is popular, the trustworthiness and security
of it are still subject to a lot of questions and require thorough research [55]. The
security aspects of service oriented architectures (SOAs) require full validation to be
able to guarantee entry-point to end-point security.

Services are characterised by several properties, of which their uncoupled nature
and composability stand out [71, 54, 24]. Uncoupled, when referring to services,
means that no prior contact between or prior knowledge about other services can be
assumed. Therefore, for a responsible usage of services, trust needs to be bootstrapped
or security needs to be proven.

Additionally, the uncoupled nature means that services can be opaque, which makes
it virtually impossible to prove security. This is due to the fact that obfuscation is con-
sidered impossible [8], which makes it impossible to check any proof without giving
away the code, and the inability to prove that the code that has been validated is in-
deed the code that is running. This is why a SOA commonly requires a trust architec-
ture to cope with opaque services.

A major problem when trying to prove security of web services is the fact that se-
curity properties generally do not hold under composition or refinement [48, 52, 35,
73], as web services are meant for composition [54]. Composition of services means
that atomic services are used to build larger systems. These small services are com-
posed to larger services by using several standard technologies for the composition of
and the interfacing between services. However, their uncoupled nature makes prov-
ing security properties a difficult or impossible task, as those properties commonly
do not hold under composition or refinement.

Furthermore, common proofs of security properties depend on the model in use
and the possibly implicit assumptions made [57]. In order to advertise provable trust-
worthy web services, it is important to overcome these problems, as otherwise any
security claim would be useless as soon as a web service is chosen to be part of a
system.

The problem of composition has already been subject to research [18, 17]. This res-
ulted in a solution based on annotating protocols using the triples of Hoare [32], which
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1 Introduction

enables secure composition of protocols. In our research, this approach by Datta et al.
[18] will be used as a starting point for solving the stated problem. In Chapter 3, we
will discuss this method for secure composition in depth.

It is important to see why services differ from protocols, as this shows why the
present paper aims at a new goal and does not merely recap the previous work of Datta
et al. [18], which concerns the secure composition of protocols. Most importantly,
where protocols are built for a certain task, services are publicly exposed agents –
either human or software – that may interact. Thus, they have more capabilities than
the participants in a single protocol run. Actually, they go literally beyond protocols,
as the communication between services makes use of standardised protocols.

Given the stated findings, it can be concluded that we are in need of a way to prove
security properties for web services that hold under composition given realistic as-
sumptions. In order to do this, we will combine current standardised service oriented
computing techniques with the knowledge of proving security properties in modular
systems or protocols. Therefore, the problem statement of the present research is:

Problem Statement. How can we guarantee security properties in a service oriented
architecture, thereby taking into account the characteristics of service oriented com-
puting in general and the uncoupled and opaque characteristics specifically?

1.1 Organisation
To find an answer to this problem statement, we will split it up in a number of re-
search questions, which we will discuss and answer in this paper. We will start with
a discussion of service oriented computing in Chapter 2. After discussing services
and their characteristics, we will touch upon the mechanisms and concepts of service
composition in Section 2.1. Furthermore we will discuss modelling the services within
our context by introducing Research Question 1, which is considered in Section 2.3.
This model makes use of so-called partially ordered multisets (pomsets), which are ex-
tensively explained in Section 2.2. Finally, we ask ourselves why past solutions built
around protocols are not directly applicable with Research Question 2 in Section 2.4.

Research Question 1. How can we model services such that their key characteristics,
namely uncoupled, composable, and opaqueness, and their distinction from protocols
and other modular constructs are honoured?

Research Question 2. On what characteristics differ services from protocols such that
the work on secure composition of protocols by Datta et al. [18] is not directly applic-
able to services?

After pursuing the thread of service orientation, we shift our focus to secure com-
position in Chapter 3. Here, we will discuss the groundwork for secure composition
based on the work of Datta et al. [18], which is discussed in Section 3.1. This framework
for secure composition leads to two problems when we try to apply it to service ori-
ented computing. These problems are formulated in the form of Research Question 3
and Research Question 4. Our adaptation of the model of Datta et al. [18] is discussed

2



1.1 Organisation

in Section 3.2 and equipped with additional predicates in Section 3.3. Additionally,
we will discuss example cases of the secure composition of services in Section 3.4.
After discussing this formal model, we lay out an attacker model based on Research
Question 5 in Section 3.5. To security research, the existence of an attacker model is
mandatory, as anything is secure if the attacker is non-existent.

Research Question 3. How can limitations raised by opaque services when applying
the secure composition technique of Datta et al. [17] be solved?

Research Question 4. How can the state explosion when applying the secure com-
position technique of Datta et al. [18] be prevented?

Research Question 5. What attacker model do we need to reflect all the challenges
specific to the secure composition of services?

Finally, we will discuss trust and the need for it in Chapter 4. The issue of trust is
discussed as the security claims concerning opaque services cannot always be valid-
ated first hand, which constitutes a problem, as insecure services cannot be composed
securely. Trust can be used to evaluate whether those security claims should be accep-
ted or not. The central problems in this chapter are formulated by Research Question 6
and Research Question 7. The former question, which is concerned in Section 4.1, dis-
cusses how trust could be incorporated in the proposed model of service oriented
computing. The latter question ask how the issue of trust could be mitigated by rely-
ing on the trustworthiness of the majority. This concept is introduced in Section 4.2
using an example based on high frequency trading and brought to existence in Sec-
tion 4.3 based on the problem of the Byzantine generals – which is also explained in
that section.

Research Question 6. How can we implement trust in our model, thereby keeping in
mind the paradox of trust of Pavlovic [56]?

Research Question 7. How can we apply solutions for the problem of the Byzantine
generals of Lamport, Shostak and Pease [42] to compensate for dishonest participants?

The related work is mentioned in Chapter 5. In Chapter 6, all research questions
will briefly be discussed, thereby giving an easy overview of all the given answers to
these questions including the locations where these answers have been provided. This
results in the main contribution, i.e. the answer to the problem statement. Finally, the
open threads are discussed as pointers for future research in Section 6.1.

3





2 Services and Service Oriented
Computing

The concept of services originates from the field of marketing, but it became later on a
popular concept in the world of computer science [71]. MacKenzie et al. [45] define a
service as “a mechanism to enable access to one or more capabilities, where the access
is provided using a prescribed interface and is exercised consistent with constraints
and policies as specified by the service description”. In other words, services provide
a uniform interface to capabilities exposed by human or automated agents. It should
be noted that a web service is the same thing with the difference that it is accessible
over the Internet, commonly using an uniform resource locator (URL) that points to
the service [54].

To illustrate this, suppose that you have a website that you use to distribute your
scientific papers. Traditionally, someone goes to that website, clicks around and reads
what he finds. Now, if this website were to be converted into a service oriented system,
one would build services for all atomic tasks, such as: searching a paper, retrieving a
paper, and listing all papers. In this case, we consider any task that cannot be cut into
smaller pieces without resembling the original task as an atomic task. Please note that
this differs from atomic operations: listing all papers is an atomic task, although this
may consist of multiple atomic operations, e.g. merely getting a list of all papers from
the database is not a task that can be delivered to an end user.

The services that are built to deliver the atomic tasks will make use of standardised
interfaces such that they are accessible by any person or computer using this interface.
This way, someone could, for example, build another service which uses your services
to create an aggregated list of all scientific papers by all experts on a certain subject.

The services for the discussed paper repository have been illustrated in Figure 2.1.
Services will henceforth be illustrated using the visualizations in this figure, i.e. ser-
vices are drawn as circles and the names of the services are written under these circles.
Additionally, inside the circle, a variable for usage in formulas may be written, e.g.
𝑆1 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑝𝑎𝑝𝑒𝑟𝑠. Please note that these services are not ordered or coupled in any
way.

Characteristics Services are commonly classified as being uncoupled, abstracted,
persistent, autonomous, granular, stateless, discoverable and composable [71]. We
will discuss these characteristics to gain a more detailed view on what services are.
This way, a step further towards a general understanding of service orientation is
made.

In related work, the term loosely coupled is often used instead of the term un-
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...𝑆1

.

.

𝑆2

.. 𝑆3.

search_papers

.

list_papers

.

retrieve_paper

Figure 2.1: Services for a personal scientific papers repository

coupled to describe the coupling properties of services [e.g. 24, 54]. Uncoupled means
that no prior contact between or prior knowledge about other services can be assumed.
Loose coupling hints at the fact that, in practice, there are sometimes dependencies
between services, although these should be minimised [71]. However, as the notion
of loose coupling also allows uncoupled services, it is considered too ambiguous for
the context of this research. This is due to the fact that loose coupling may allow a cer-
tain amount of prior knowledge when this is considered inevitable in the context of
the specific information system at hand. However, given the general level of reason-
ing that we use, it is not possible to formalise this notion without gravely complicating
the model, which would result in an unusable model of service orientation. Therefore,
we will keep strictly to uncoupled services instead of loosely coupled services.

To illustrate the concept of service orientation, we could have a service that gives in-
formation on the weather or one that allows you to search a database of books. These
services would be deployed somewhere, in order to be accessible by other services
or potential users. Services can be regarded as software that can be invoked over a
network. For example, we can define a program that will calculate the sum, e.g. calcu-
late_sum. One can imagine that if this service is invoked with 2 and 4 as parameters,
the result would be 6.

To further discuss the common characteristics of services, we will quickly explain
them. To start, abstraction means that services only advertise essential information
and abstract themselves from any implementation-related or comparable details [71].
For example, a traditional system would mention that it runs on and requires a certain
operating system, e.g. Microsoft Windows, whereas a service oriented system simply
does not care about those details and is abstracted from them. Please note that a ser-
vice provider has to be aware of the details of the implementation for obvious reasons,
but that he does not share those details in the context of the service oriented architec-
ture (SOA). Additionally, the granularity ensures that services are not only abstracted
from the details, but are also placed on the highest level possible, thereby even more
simplifying the development process.

The persistence of services means that they are reusable and will exist for a longer
period of time [71]. Simply put, this means that a service is built with a more long-term
view in mind. In combination with the characteristic of abstraction, this ensures that
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2.1 Service Composition

a service is not built for use in a single system but for use by multiple parties. This
also explains autonomy, as a service should be able to stand on its own feet during
their lifetime.

The previously explained uncoupled nature directly explains why services should
be stateless: no prior contact can be assumed [71]. If no prior knowledge or contact can
be assumed, maintaining state simply does not make sense. This also means that if a
certain service provider would offer multiple services, these still would not share state.
In other words, if a service provider has two services, they should not share a certain
parameter – please note that, although this may occur in practice, those examples
cannot fully be deemed service oriented computing.

Additionally, it should be noted that if a service provider uses techniques for gain-
ing high availability such as load balancing or mirroring, those techniques can be re-
garded as part of the internals of the service. For example, when you go to your local
grocery store, you could regard that grocery store as a service for buying certain art-
icles. However, within the shop, you may be able to choose between several payment
counters. In other words, within the service a certain amount of load balancing is im-
plemented, which requires coordination between the several counters, but not with
other services.

Comparably, the order of invocation of services should not influence the outcome,
except if the output of the first service is indirectly or directly used as input for the
second service. Once again, this has to do with the statelessness of services: if there
is no state, time- or order-based effects cannot be remembered.

Finally, being able to discover and compose services is what makes the system work.
This means that one should be able to find existing services and use them to build
complete systems using these services [71]. In our example of Figure 2.1, one could
already see how this enables others to use those services to create an aggregation of
scientific papers or other innovative applications with minimal effort.

The key characteristics of services that we will focus on in this research are the fact
that they are uncoupled, that they are meant for composition and that services are
generally opaque to other services. The uncoupled nature means that no prior com-
munication between or knowledge about services can be assumed [54]. Services make
use of (open) standards in their communication, which are assumed general know-
ledge and are not of interest for our research. In addition, opaqueness refers to the
inability to look inside a service to see how it works or how it is built. This results in
Research Question 1.

Research Question 1. How can we model services such that their key characteristics,
namely uncoupled, composable, and opaqueness, and their distinction from protocols
and other modular constructs are honoured?

2.1 Service Composition
As noted before, services rely heavily on the concept of composition. The general
idea is that atomic services are aimed at delivering a certain capability. By composing

7



2 Services and Service Oriented Computing

...𝑆1 .. 𝑆3
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national_news

Figure 2.2: Example of a service composition for a news site

all these services a larger system can be built, which performs a complete process.
Furthermore, if requirements change or certain services prove unreliable, the atomic
services can easily be replaced by other services or the complete composition can be
changed.

To illustrate the idea of service compositions, Figure 2.2 displays an example com-
position in which a news site is central. This site makes use of two weather services,
such that either one can be used when the other is unavailable. Please note that, in the
actual run shown in this figure, weather_1 is used. Furthermore, the example shows
that a chain could be built in which a used service also makes use of other services.

In practice, two types of service composition exist [62]. Namely, orchestration,
which describes the way services interact on a message level, and choreography, which
keeps track of the sequence of messages, which may involve multiple parties and
sources [61]. Thus, where orchestration is a centralised approach in which the service
chain is controlled from the viewpoint of one party, choreography is collaborative and
lets all parties describe the part they play in the service composition [71].

Choreography To give a good distinction between the two composition mechan-
isms, imagine a dancing steps diagram. Those diagrams can be bought printed on a
rug, such that one or more persons are able to follow the directions on the diagram.
This means that the dancers place their feet on the printed feet on the rug and move
them as the arrows point. An example of such a diagram for an imagined dance is
shown in Figure 2.3.

Being a term from the world of dancing, one can understand that the diagram of
dancing steps is an excellent example of a choreography. This choreography describes
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2.1 Service Composition

.

Figure 2.3: Example of a dancing steps diagram

how the dancers should move their feet in order to perform the dance together. In
this diagram, the dance is not viewed through the eyes of one of the participants,
but described in a global manner. Additionally, which specific services are used is not
described either, only the roles that are required to perform the dance – e.g. if this were
a tango, the choreography would simply require a leading and a following participant
and does not define which specific persons it has in mind.

The example of the dance shows that a choreography simply happens, without any
orchestrating role. Basically, the dancers enter the dancing floor where they will –
try to – find one or more dancing partners to perform the choreography they have in
mind. The choreography itself is, in this sense, an abstracted overview on how that
dance will go.

To return to services, Figure 2.4 illustrates a choreography for the composition of
Figure 2.2. As can be seen in this figure, the choreography describes how the different
roles in the composition of a news portal website can and should interact. Basically,
for a certain news site, a weather source and a news aggregator for news sources is
required.

A choreography leaves room for alternatives, e.g. a different weather source can be
used when the first choice fails. As we already saw in the composition of Figure 2.2,
it is also possible to have multiple news sources. In the abstraction of Figure 2.4, this
is not reflected. However, any news source would interact using the same rules with
the news aggregation service, i.e. there is only one role for a news source service to
assume.

Orchestration As opposed to choreography, service orchestration looks at to com-
position from a certain viewpoint. Where the metaphor for choreographies can be
found on the dancing floor, we can illustrate orchestration by visiting a concert. Or-
chestration refers to how an orchestra works with a focus on the role of the conductor.
Please note that this conductor is allowed to play an instrument himself.

Every musician in an orchestra knows his instrument and the music he should be
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Figure 2.4: Example of a service choreography for a news site

playing. However, when and how he plays is controlled by the conductor who, from
a central position, instructs all the musicians in the orchestra. Thus, orchestration has
a central orchestrator – in this example the conductor.

To illustrate orchestration in a service oriented context, one could see the example
of Figure 2.5 as a composition orchestrated from a central viewpoint [62] – namely, the
viewpoint of news_site. Thus, in this orchestration, news_site takes the roll of central
composer. Additionally, one could see the part of this figure containing the services
news, local_news and national_news as a sub-composition orchestrated from the view-
point of news.

Please note that, in practice, there are forms of orchestration that are implemented
using a so-called orchestration engine [71]. This engine has the task of controlling
the execution of the service composition. In other words, the service orchestration
is composed and ran from the viewpoint of this engine. If we do not mention an
orchestration engine explicitly, the role of the orchestration engine is also performed
by the service from which viewpoint the orchestration is built.

Projection It should be noted that a choreography can easily be mapped to an or-
chestration by the process of projection [33]. This can be illustrated by the dancing
example as follows: every dancer on the floor will take a certain role of the choreo-
graphy and play his part in the dance from this viewpoint. Thus, an orchestration
could be built by taking the leading roles and change their steps from the global view
of the choreography to those he should perform from his own viewpoint.

To illustrate the act of projection, imagine the service choreography of Figure 2.4.
When performing a run in accordance with this choreography, a number of services
is able to fill in one of the roles in this dance. Those services are: news_site, weather_1,
weather_2, news, local_news and national_news. Those can respectively fulfil the follow-
ing roles in the choreography: news_portal, weather (twice), news_aggregator and news
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Figure 2.5: Example of a service orchestration for a news site

(twice).
Every service can lookup its role in the choreography and make this its viewpoint.

For example, the service news_site sees that it takes the role of news_portal, which re-
quires a weather service and a news_aggregator. With this information, the news_site
service can build an orchestration in which it has both weather_1 and weather_2 as can-
didates for the role of weather and the service news for the position of news_aggregator.
This way, an orchestration from the viewpoint of news_site has been built.

Additionally, the service news can take the central position in the orchestration from
the viewpoint of news_aggregator. He will find that both local_news and national_news
fit the role of news. Please note that this makes those alternatives and not both used
as opposed to the orchestration of Figure 2.5 due to the generalised nature of the pro-
jection algorithm. If we wanted this effect, the original choreography should have
reflected this distinction.

Runs When a service composition is executed, an actual run happens. As we already
learned, compositions may offer alternatives, select based on the input or provide
other control logic. A run reflects what is executed in one particular instance.

For example, Figure 2.2 shows, when one ignores the dashed lines, a run of the or-
chestration of Figure 2.4. In this run, the service weather_1 has specifically been selec-
ted as an alternative over weather_2. However, in the composition both these services
are still regarded as equal.

Specific runs are not of high interest to this research, as they represent unique in-
stances of compositions that can be regarded as a whole. Compositions, on the other
hand, can result in various runs, which makes it impossible to evaluate the security for
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the complete system. Therefore, the security problems raised by composing services
should be regarded from the level of compositions.

2.2 Partially Ordered Multisets
Following Research Question 1, we will build a model for service oriented comput-
ing, that enables us to pursue secure composition of services. In such a model, the un-
coupled nature and the ability to compose services are very important, as they present
the challenges for secure composition. Additionally, we will also note opaqueness as
an important and challenging feature.

Labelled Partial Orders In this research, we will model services using partially
ordered multisets (pomsets) [27, 65]. A pomset, as stated in definition 2.3, is the iso-
morphism class of a labelled partial order, which is defined in definition 2.1. Such
a labelled partial order provides us with a set of vertices 𝑉 that is partially ordered
by ≤. Additionally, the labelling function 𝜇 assigns symbols from the alphabet Σ to
the vertices 𝑣 ∈ 𝑉 . This makes it possible to have multiple occurrences of the same
symbol, which can, for example, be used for multiple parallel executions of the same
task.

Definition 2.1 (Labelled partial order [68, 27, 65]). A labelled partial order is a 4-tuple
(𝑉, Σ, ≤, 𝜇) consisting of: a vertex set 𝑉 ; an alphabet Σ; a partial order ≤ on 𝑉 which is
represented as a binary relation in 𝑉 × 𝑉 ; and a labelling function 𝜇 ∶ 𝑉 → Σ assigning
symbols to vertices.

A labelled partial order is said to be homomorphic with another labelled partial
order if and only if there is a mapping from the set of vertices to the set of vertices of
the other labelled partial order that preserves labelling and order. This is formalised
in definition 2.2. Additionally, following the definition of isomorphism, two labelled
partial orders are said to be isomorphic if and only if there is a mapping between
the two sets of vertices that preserves labelling and order [27]. In other words, two
labelled partial orders are isomorph when either one is homomorphic with the other
one.

Definition 2.2 (Homomorphism of labelled partial orders [27]). If we have two la-
belled partial orders 𝑃 = (𝑉𝑃 , Σ𝑃 , ≤𝑃 , 𝜇𝑃 ) and 𝑄 = (𝑉𝑄, Σ𝑄, ≤𝑄, 𝜇𝑄) and there is a
mapping 𝜏 from 𝑃 to 𝑄 such that Equation 2.1 and Equation 2.2 hold, 𝜏 is a homo-
morphism.

∀𝑣 ∈ 𝑉𝑃 ∶ (𝜇𝑃 (𝑣) = 𝜇𝑄(𝜏(𝑣))) (2.1)
∀𝑣, 𝑤 ∈ 𝑉𝑃 ∶ (𝑣 ≤𝑃 𝑤 ⇒ 𝜏(𝑣) ≤𝑄 𝜏(𝑤)) (2.2)

To give an example, if we have a labelled partial order with 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷}, Σ =
{𝑎, 𝑏, 𝑐}, 𝐴 < 𝐵 < 𝐶 and 𝜇 as shown in Table 2.1, we could draw this as shown in
Figure 2.6. In this figure, the vertexes are names 𝐴, 𝐵, 𝐶 , and 𝐷, which is shown with
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𝑣 𝐴 𝐵 𝐶 𝐷
𝜇(𝑣) 𝑎 𝑐 𝑏 𝑐

Table 2.1: The values for 𝜇 of the labelled partial order of Figure 2.6

...𝐴 .. 𝐵 .. 𝐶

.

.

𝐷

.

𝑎

.

𝑐

.

𝑏

.

𝑐

Figure 2.6: Example of a labelled partial order

the central captions on the nodes. Additionally, the nodes represent certain actions –
namely, 𝑎, 𝑏, and 𝑐 – that are added as caption beneath them and can occur multiple
times, as shown by the double occurrence of 𝑐. Finally, a partial order is introduced
where 𝐴 comes before 𝐵, which comes before 𝐶 , and 𝐷 is executed somewhere in
parallel with the sequence of 𝐴, 𝐵, and 𝐶 .

One can easily see that the labelled partial order of Figure 2.6 is isomorphic with
the one displayed in Figure 2.7 with the map displayed in Table 2.2. Comparably,
Figure 2.8 is a homomorphism of this figure with the map displayed in Table 2.3.

Partially Ordered Multisets As stated before, a pomset is the isomorphism class
of some labelled partial order. In other words, a pomset abstracts from the specific

...𝐷 .. 𝐵 .. 𝐴

.

.

𝐶

.

𝑎

.

𝑐

.

𝑏

.

𝑐

Figure 2.7: A labelled partial order that is isomorphic with Figure 2.6
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...𝐷 .. 𝐵 .. 𝐴
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𝐸
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𝑎
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.

𝑏

.

𝑐

.

𝑎

Figure 2.8: A labelled partial order that is homomorphic with Figure 2.6

𝑣 𝐴 𝐵 𝐶 𝐷
𝜏(𝑣) 𝐷 𝐵 𝐴 𝐶

Table 2.2: The map by which the labelled partial order of Figure 2.6 is isomorphic to
Figure 2.7

contents of the set of vertices and focusses on the structure. This has been formalised
in Definition 2.3. Thus, if we were to abstract the pomset out of this labelled partial
order, we would end up with Figure 2.9.

Definition 2.3 (Partially ordered multiset [27, 65]). A partially ordered multiset – or
pomset – 𝑃 is the isomorphism class of a labelled partial order and is denoted as
[𝑉, Σ, ≤, 𝜇].

Pomsets do not require that the tasks are atomic, i.e. it is possible to look inside a task
is to find another pomset [27]. Formally, this is captured by introducing substitution
to the model. For this, we can have a function 𝑔 that maps every 𝑎 in the alphabet Σ
to some pomset, which is captured by Definition 2.4.

Definition 2.4 (Substitution of partially ordered multisets [27]). We have a partially
ordered multiset 𝑃 = [𝑉𝑃 , Σ𝑃 , ≤𝑃 , 𝜇𝑃 ] and a mapping function 𝑔 that maps each 𝑎 in
Σ𝑃 to some pomset denoted by 𝑔(𝑎) = [𝑉𝑔(𝑎), Σ𝑔(𝑎), ≤𝑔(𝑎), 𝜇𝑔(𝑎)]. 𝑃[𝑔] is the substitution
of 𝑃 using mapping function 𝑔 and is a new pomset 𝑃[𝑔] = [𝑉𝑃[𝑔], Σ𝑃[𝑔], ≤𝑃[𝑔], 𝜇𝑃[𝑔]],
in which every instance of 𝑎 is replaced with an instance of its corresponding pomset
𝑔(𝑎). By combining 𝜇𝑃 with mapping function 𝑔, we get a function 𝑓 which maps each

𝑣 𝐴 𝐵 𝐶 𝐷
𝜏(𝑣) 𝐷 𝐵 𝐴 𝐶

Table 2.3: The map by which the labelled partial order of Figure 2.6 is homomorphic
to Figure 2.8
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Figure 2.9: Example of a pomset

vertex of 𝑃 to a pomset. For the resulting pomset 𝑃[𝑔], the following formulas hold:

𝑉𝑃[𝑔] = ⊎𝑣∈𝑉𝑃 𝑉𝑓(𝑣) (2.3)
Σ𝑃[𝑔] = ∪𝑣∈𝑉𝑃 Σ𝑓(𝑣) (2.4)

≤𝑃[𝑔] = ∪𝑣≤𝑃 𝑢𝑉𝑓(𝑣) × 𝑉𝑓(𝑢) ∪ ∪𝑣∈𝑉𝑃 ≤𝑓(𝑣) (2.5)

𝜇𝑃[𝑔] = ⊎𝑣∈𝑉𝑃 𝜇𝑓(𝑣) (2.6)

When creating the substitution 𝑃[𝑔] by applying mapping function 𝑔 on pomset 𝑃 ,
one needs to combine the mapping function 𝜇𝑃 that maps each vertex 𝑣 ∈ 𝑉𝑃 to a
symbol 𝜎 ∈ Σ𝑃 with 𝑔 [27]. This results in a function 𝑓 that maps each vertex 𝑣 ∈ 𝑉𝑃
to a pomset. As shown in Definition 2.4, this results in 𝑉𝑃[𝑔] being the disjoint union
of all 𝑉𝑓(𝑣) and 𝜇𝑃[𝑔] being the disjoint union of all 𝜇𝑓(𝑣) for all 𝑣 ∈ 𝑉𝑃 . Comparable,
Σ𝑃[𝑔] is the union of all Σ𝑓(𝑣) for all 𝑣 ∈ 𝑉𝑃 . Finally, 𝑣 ≤𝑃[𝑔] 𝑢 holds only when 𝑣 ≤𝑓(𝑤) 𝑢
for some 𝑤 ∈ 𝑉𝑃 with 𝑣, 𝑢 ∈ 𝑉𝑓(𝑤) or when 𝑣 ∈ 𝑉𝑓(𝑤), 𝑢 ∈ 𝑉𝑓(𝑧), and 𝑤 ≤𝑃 𝑧.

Suppose that we have a mapping function 𝑔, which maps the symbol 𝑐 to the pomset
shown in Figure 2.10. Furthermore, the mappings of other symbols result in the input,
e.g. 𝑔(𝑎) is equal to a pomset consisting of just a node with the symbol 𝑎. If we apply
this map to the pomset of Figure 2.9, we get the pomset shown in Figure 2.11.

Two pomsets can be composed using either sequential composition – or concaten-
ation – and parallel composition [27]. Sequential composition is formalised in Defini-
tion 2.5, which states that the composition consists of the sum of both pomsets where
all vertices of the first pomset precede those of the second pomset in the partial order-
ing. To illustrate concatenation of two pomsets, Figure 2.12 shows the concatenation
of the pomset of Figure 2.9 with itself.

Definition 2.5 (Sequential composition of partially ordered multisets [27]). The se-
quential composition of two pomsets 𝑃 and 𝑄 is denoted by 𝑃.𝑄 = [𝑉𝑃.𝑄, Σ𝑃.𝑄, ≤𝑃.𝑄
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Figure 2.10: The pomset for 𝑔(𝑐)
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Figure 2.11: The mapping function 𝑔 applied to the pomset of Figure 2.9
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Figure 2.12: The sequential composition of the pomset of Figure 2.9 with itself

, 𝜇𝑃.𝑄]. For sequential composition, the following formulas hold:

𝑉𝑃.𝑄 = 𝑉𝑃 ⊎ 𝑉𝑄 (2.7)
Σ𝑃.𝑄 = Σ𝑃 ∪ Σ𝑄 (2.8)

≤𝑃.𝑄 = ∪𝑣∈𝑉𝑃 ×𝑢∈𝑉𝑄𝑣 ≤ 𝑢 ∪ ≤𝑃 ∪ ≤𝑄 (2.9)

𝜇𝑃.𝑄 = 𝜇𝑃 ⊎ 𝜇𝑄 (2.10)

Parallel composition is explained in Definition 2.6, which simply states that the com-
position consists of the sum of both pomsets. The parallel composition of two pomsets
is shown Figure 2.13 in which the pomset of Figure 2.9 is composed with itself.

Definition 2.6 (Parallel composition of partially ordered multisets [27]). The parallel
composition of two pomsets 𝑃 and 𝑄 is denoted by 𝑃||𝑄 = [𝑉𝑃||𝑄, Σ𝑃||𝑄, ≤𝑃||𝑄, 𝜇𝑃||𝑄].
For sequential composition, the following formulas hold:

𝑉𝑃||𝑄 = 𝑉𝑃 ⊎ 𝑉𝑄 (2.11)
Σ𝑃||𝑄 = Σ𝑃 ∪ Σ𝑄 (2.12)
≤𝑃||𝑄 =≤𝑃 ∪ ≤𝑄 (2.13)
𝜇𝑃||𝑄 = 𝜇𝑃 ⊎ 𝜇𝑄 (2.14)

Advantages of Pomsets Pomsets have one main advantage over graphs when mod-
elling service oriented systems, which lies within the uncoupled property of service
oriented computing. Uncoupledness of services refers to the emphasis on reducing
dependencies between the service contract, its implementation, and its service con-
sumers [71, 24, 54]. Where graphs provide much stronger relations between the nodes,
pomsets adapt much better to this absence of coupling by only providing constraints
on the order of invocation. Furthermore, even the ordering is only partial, which also
allows for completely unordered systems.
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Figure 2.13: The parallel composition of the pomset of Figure 2.9 with itself
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2.3 Modelling Service Oriented Systems

It should be noted that the interaction between services could also be modelled us-
ing techniques from the process calculus, but this suffers from comparable complica-
tions. Although there are implementations of models of service oriented computing
using process calculus [e.g. 72, 66, 13], they are rather strict and specific. Bravetti and
Zavattaro [13] show that implementing loose coupling is possible. However, the strict
definition of uncoupled services in this research does not play well with the models
implemented using process calculi. Additionally, due to their more precise nature,
the process calculi tend to be too specific and detailed than necessary for our research,
which makes it harder to keep an overview of the system. Furthermore, usage of pro-
cess calculus would leave even less room for integrating the security properties of the
atomic services into the bigger picture and making security preserving composition
of services possible.

Processes Pratt [64] defines a process as a set of pomsets [63] – see also defini-
tion 2.7. Thus, as Gischer [27] puts it, one can see a process as being “identical to
the set of its possible behaviours” – which are modelled using pomsets. In this no-
tion, the process adds an element of choice to the pomset, which describes all events
including their partial ordering and possible duplicate execution. Furthermore, the
process existing of all possible pomsets over Σ is denoted as Σ∗.

Definition 2.7 (Process [64]). A process 𝑃 is a set of pomsets 𝑝𝑖 with 0 ≤ 𝑖 < 𝑛.

As we saw with pomsets, it is also possible to compose two processes. The sequen-
tial composition of processes is shown in Definition 2.8 and the parallel composition
in Definition 2.9. Those forms simply compose all the elements of the pomsets cap-
tured by the process. Furthermore, the addition of two processes results in one larger
process that contains the pomsets of both processes, as stated in Definition 2.10.

Definition 2.8 (Sequential composition of processes [27]). The sequential composition
of two processes 𝑃 and 𝑄 is defined as:

𝑃.𝑄 = {𝑝.𝑞|𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑄} (2.15)

Definition 2.9 (Parallel composition of processes [27]). The parallel composition of
two processes 𝑃 and 𝑄 is defined as:

𝑃||𝑄 = {𝑝||𝑞|𝑝 ∈ 𝑃 ∧ 𝑞 ∈ 𝑄} (2.16)

Definition 2.10 (Addition of processes [27]). The addition of two processes 𝑃 and 𝑄
is defined as the union of those two processes, i.e. 𝑃 ∪ 𝑄.

2.3 Modelling Service Oriented Systems
In order to adapt pomsets to service oriented computing, we will see Σ as the set of ser-
vices and 𝑉 as the set of actions on these services, i.e. the possible service invocations.
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The ordering serves to provide minimal orders of invocation of the services – for ex-
ample, an authentication service will have to be invoked before a service that requires
an authenticated user. Nevertheless, given the uncoupled nature of service oriented
systems, in principle there is no ordering. Therefore, all ordering is introduced by the
service compositions that are made.

As already stated in Section 2.1, we do not consider runs in the model, but service
compositions. In other words, pomsets will be used to model compositions and not
individual instances of this composition. As explained, modelling individual runs
would bypass the main problem of the paper, as those are already composed to a
single process and can, thus, be verified as a whole.

For the sake of simplicity, we will not consider composition logic other than se-
quential and parallel composition. This means that, for example, and-compositions
and or-compositions will be considered both as parallel compositions, even though
or-compositions can be mutually exclusive. Although this creates the unnecessary re-
quirement of verifying parallel composability of mutually exclusive or-compositions,
this strongly simplifies the model.

To give an example, we will return to the example service composition for a news
website that was introduced in Figure 2.2. If we were to build a pomset out of this com-
position, we would get the following alphabet shown in Equation 2.17. Furthermore,
we would get a partial ordering similar to the one shown in Equation 2.18 and Equa-
tion 2.19. Please note that, although the order is written as if it concerns the services,
it actually orders the specific invocations. Nevertheless, due to the fact that no service
occurs twice, this notation is used as simplification. This example is also shown in
Figure 2.14, which is similar to the original figure, with omission of the names of the
vertices.

Σ = {𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤𝑠, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑛𝑒𝑤𝑠, 𝑛𝑒𝑤𝑠, 𝑛𝑒𝑤𝑠_𝑠𝑖𝑡𝑒, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟_1, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟_2} (2.17)
𝑛𝑒𝑤𝑠_𝑠𝑖𝑡𝑒 < {𝑤𝑒𝑎𝑡ℎ𝑒𝑟_1, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟_2, 𝑛𝑒𝑤𝑠} (2.18)

𝑛𝑒𝑤𝑠 < {𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤𝑠, 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝑛𝑒𝑤𝑠} (2.19)

Within specific service compositions, the partial order can also be represented using
dependencies. In this case, every service 𝑠 may be dependent on one or more other
services 𝑑𝑖 with 0 ≤ 𝑖 < 𝑛. In the partial ordering ≤, this would give ∀0 ≤ 𝑖 < 𝑛 ∶ 𝑑𝑖 ≤ 𝑠.
Nevertheless, not all partial ordering follows from dependencies, and strictly speaking
dependencies should be minimised – or not exist at all – in service oriented systems.

The process structure, being a set of pomsets, contains all possible compositions
of a certain set of services Σ𝑃 . This set of services is equal to the union of all sets of
services Σ𝑝𝑖 of all the pomsets 𝑝𝑖 contained in the process 𝑃 , as shown in Equation 2.20.
Therefore, a process provides a good model of a SOA.

Σ𝑃 =
𝑛

ෑ
𝑖=0

Σ𝑝𝑖 (2.20)
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Figure 2.14: Pomset for Figure 2.2

2.4 Differences from Protocols
As stated before, we will continue on the previous work by Datta et al. [18] on secure
composition of protocols in Chapter 3. This requires us to ask ourselves what the
novelty of this research is. Therefore, we will discuss Research Question 2.

Research Question 2. On what characteristics differ services from protocols such that
the work on secure composition of protocols by Datta et al. [18] is not directly applic-
able to services?

To answer where the differences lie, we need to see what a protocol really is first.
A protocol defines the format and the order of messages exchanged between two or
more communicating entities, as well as the actions taken on the transmission and/or
receipt of a message or other event [40]. In other words, a protocol can be seen as an
algorithm that performs a certain task that is run between multiple entities over a net-
work. For example, FTP – the file transmission protocol – provides a set of procedures
for sending files over a network.

It can be easily seen that services make use of protocols, in order to communicate
with each other. These protocols form the – commonly open – standards services need
to operate. For example, such protocols enable discovery, composition, and invocation
of services.

This underlines a key difference between protocols and services. Namely, where
services are a means of providing capabilities that can be composed to any number
of larger systems, protocols are designed for performing a predefined task. Where a
networked algorithm seems an apt analogy for a protocol, a networked process covers
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.......

Alice

.

Bob

Figure 2.15: Example of a protocol run

the concept of service oriented computing quite well. Please note that, in this state-
ment, the word process is used to refer to its general meaning, i.e. an instance of a
computer program. Nevertheless, if we were to model the internals of a service also
as a pomset, a service composition would also satisfy Definition 2.7, i.e. it would be a
pomset of pomsets. However, as we are not concerned with the internals of services at
this point, a service composition is modelled as a pomset, as described in Section 2.3.

Algorithms, and, thus, protocols, are usually modelled as sequences of operations –
so-called runs. For example, Datta et al. [18] does this in the form of cord calculus and
Jürjens [35] in the form of stream processing functions. For services, we have decided
to go with pomsets. This underlines quite well the difference between the strictness
of protocols and the looseness of services.

Those protocol runs are commonly presented as shown in Figure 2.15, where two
participants – Alice and Bob – perform the several steps of a protocol run. This figure
shows that, in a protocol, two or more parties exchange messages following a pre-
viously defined format. As stated before, service oriented systems also make use of
protocols for the connection between two services.

Actually, when one looks at service oriented computing from a software architec-
tures point of view, one can state that protocols provide connectors between software.
Service oriented computing provides the ability to use these connections to run a com-
plete software system in a distributed fashion. As we learned, this software system
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is composed of services, which allows for easy replacement, removal and addition of
services. Thus, the services are the modular pieces that allow the building of a sys-
tem, whereas protocols provide infrastructural connectors that can be used to network
these pieces.

Furthermore, as already mentioned, protocols have a certain predefined tasks, as
opposed to services that are uncoupled and freely composable. As we defined this as
the absence of any prior communication between two services or prior knowledge of
the other service, this conflicts with the predefined notion of protocols. In the case
of protocols, there is prior knowledge of how the participants should react and what
they should know. Especially this difference creates extra difficulty when applying
the work of Datta et al. [18] to service oriented computing.

To conclude, we can state that services are the uncoupled building blocks of a dis-
tributed software system, whereas protocols are strictly defined sequences of com-
munications. Services expose access to computing capabilities, and have, thus, po-
tentially much more possibilities, as opposed to the single goal for which a protocol
is defined. Finally, protocols can be seen as infrastructural pieces, whereas services
provide architecture and software itself.
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3 Secure Composition
Datta et al. [18] provide rules for composing security protocols based on the logic of
Hoare [32]. This paper tries to overcome the discussed problems raised by additive
combination and non-destructive combination. Additive combination refers to com-
bining security protocols such that security properties are combined. Non-destructive
combination means combining security protocols in such a way that they do not void
the security properties.

Although additive combination and non-destructive combination sound similar,
there is a distinction [18]. For example, if you have a protocol to establish a shared key
and a protocol to authenticate the other party, you may want to combine those proto-
cols such that you have a protocol to establish an authenticated shared key. For this,
you need additive combination. Namely, you want to combine the security properties
of both protocols by constructing a combined protocol.

With non-destructive combination, you want to make sure that a composition does
not void the security properties guaranteed by the parts [18]. To illustrate this, non-
destructive combination should prevent you from ending up with a protocol that
sends encrypted messages and guarantees the confidentiality of those messages with a
protocol that would broadcast those messages to anyone listening, as that would void
the confidentiality of the first protocol. A typical case for non-destructive combina-
tion in the world of protocols can be found in the parallel usage of different versions
of the same protocol for the convenience of the user.

Very simply put, additive combination mostly concerns sequential composition,
whereas non-destructive combination tends to fit in with parallel composition. To il-
lustrate this, with sequential composition, one commonly wants to combine two pro-
tocols such that their functionalities are appended, whereas parallel composition is
commonly used to allow users to choose different paths, e.g. to run two versions in
parallel. For service oriented systems, this is a bit different, as there the results of ser-
vices ran in parallel may be combined later on for additive functionality. In this case,
the parallel composition is used sequentially with the service that combines those res-
ults.

Additive Combination To capture additive combination, Datta et al. [18] introduce
a so-called before-after formalism, which revolves around the combination of precon-
ditions, postconditions and invariants. A precondition is a certain logical condition
that should hold before the described action. If this precondition is satisfied the logical
condition described by the postcondition will hold afterwards. To give an example,
I have a function for calculating a sum, as shown in Equation 3.1, and I define a pre-
condition that states that 0 ≤ 𝑎 ≤ 𝑏. Now, a postcondition stating 0 ≤ 𝑓(𝑎, 𝑏) will
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hold when the precondition is satisfied, resulting in a correct logical annotation of the
function 𝑓(𝑎, 𝑏).

𝑓(𝑎, 𝑏) = 𝑎 + 𝑏 (3.1)

As our notation, we use [𝑃]𝐴 to denote the actions 𝑃 of a process 𝐴 executed by
principal ̂𝐴, as stated in Definition 3.1. Please note that processes are distinguished
from the principals that control them. In our notation, we will use a hat to refer to
a principal, i.e. ̂𝐴. The separation of the principal means that it is possible that one
entity runs multiple processes. For this reason, the letter used to identify a principal
does not have to be equal to the one used for the identification of the process.

Definition 3.1 (Processes [18]). The construct [𝑃]𝐴 refers to the actions 𝑃 executed in
a process 𝐴 controlled by principal ̂𝐴.

In the logic of Datta et al. [18], the triple 𝜙[𝑃]𝐴𝜓 means that, if the precondition 𝜙
holds before entity ̂𝐴 performs actions 𝑃 , then postcondition 𝜓 will hold afterwards,
as shown in Definition 3.2. For example, the precondition 𝜙 could state that 𝐴 knows a
private key, the actions 𝑃 that 𝐴 receives a certain nonce – a random value – and sends
this nonce signed using the key, and the postcondition 𝜓 that the nonce is indeed
correctly signed using the private key. This triple is in essence a variant of the triple
of Hoare [32].

Definition 3.2 (Process Triple [18, 17]). The triple 𝜙[𝑃]𝐴𝜓 is true if the postcondition
𝜓 holds for the actions 𝑃 executed in a process 𝐴 controlled by principal ̂𝐴 given the
precondition 𝜙.

The logic of the triples enables sequential composition of protocols when the post-
condition of the first protocol matches the precondition of the second protocol [18].
For example, if we have 𝜙[𝑃]𝐴𝜓 and 𝜓[𝑄]𝐴𝜃, we can derive 𝜙[𝑃𝑄]𝐴𝜃. Matching of the
conditions does not mean that those have to be equal, but merely that the postcon-
dition of the first protocol has to be stronger than or equal to the precondition of the
second protocol.

Non-destructive Combination Non-destructive combination is needed to be able
to run parallel processes [18]. In the case of protocols, this can be used to run, for
example, two versions of the same protocol concurrently in order to provide a fall-
back version for older clients. The central assertion in the framework of Datta et al.
[18], Γ ⊢ 𝜙[𝑃]𝐴𝜓 , means that the triple 𝜙[𝑃]𝐴𝜓 is true if the invariant Γ is satisfied,
as formalised in definition 3.3. Thus, in any protocol run that satisfies Γ, 𝜙[𝑃]𝐴𝜓 will
hold, regardless of the actions performed by any possible attacker. This makes parallel
execution possible by ensuring that the invariant Γ holds for all those protocols that
are ran in parallel.

Definition 3.3 (Process Soundness [18, 17]). If we have Γ ⊢ 𝜙[𝑃]𝐴𝜓 , the process triple
𝜙[𝑃]𝐴𝜓 is always true when the environment invariant Γ is satisfied.
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An example of an invariant would be that every participant keeps his private key
secret. If we would consider the nonce-signing protocol mentioned before, Γ ⊢ 𝜙[𝑃]𝐴𝜓 ,
means that when every participant keeps his keys to himself, the postcondition 𝜓 of
every run will be satisfied when the precondition 𝜙 holds in that run. Thus, every run
will result in a perfectly verifiable signed nonce.

Other examples of invariants could be that honest services act in a specific way.
Such an invariant can be used to derive authentication, as it makes it possible to dis-
tinguish between honest and dishonest services, as the former should act as stated in
the invariant, while the latter does not do so. What is specifically meant by honesty
and how such an implementation works is discussed in depth in Section 3.1.

3.1 Secure Composition of Protocols
Given that the work of Datta et al. [18] focusses on protocols, we will start with briefly
discussing their work. Afterwards, we will discuss the secure composition of services
in Section 3.2.

In this section, we will discuss the formalism used to represent protocols by Datta
et al. [18] which is the cord calculus. Additionally, we will discuss their protocol lo-
gic and proof system. Due to the nature of protocols, this framework is more tightly
bound to the traces of the protocols than a service oriented approach would be.

3.1.1 Cord Calculus
The cord calculus is presented by Durgin, Mitchell and Pavlovic [23] and can be used to
represent protocols and their parts. It can be seen as a form of process calculus, which
we discussed in Section 2.2. As already mentioned, it is too strict for easy adaptation
to a service oriented context.

In this section, we will describe syntax using the extended Backus-Naur Form [34],
which has been simplified for readability. In the used notation, a symbol is defined
using ∶∶= by a sequence of symbols, which are either terminating symbols or non-
terminating symbols. The latter sort can be found among the syntactical definitions
itself. If a symbol can occur in different forms, the different options are written on
different lines, as opposed to the general usage of the symbol | to denote alternatives.

Origin As noted before, the cord calculus of Durgin, Mitchell and Pavlovic [23] is
an action calculus based on the 𝜋-calculus of Milner, Parrow and Walker [53] and re-
lated to spi-calculus of Abadi and Gordon [1]. Most notably, the cord calculus inherits
matching and substitution from this family and language. For example, when in such
a language on has a constant 𝑀 and a variable 𝑥, the operation (𝑀/𝑥) is the substitu-
tion of 𝑥 by 𝑀 , i.e. all further occurrences of 𝑥 are replaced by 𝑀 . When one refers
to matching and substitution, the matching means that both sides of the slash in this
operation are of the same form.
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Terms In the cord calculus, terms 𝑡 are built from variables 𝑥 and constants 𝑐 [18].
Additionally, basic terms can contain names, commonly denoted by 𝑁 , and keys, com-
monly denoted by 𝐾 . Those names can be either variables �̂� or constants ̂𝐴, for which
the syntax is shown in Equation 3.2. Please note that the hats fit in with our notation
of principals.

𝑁 ∶∶= �̂�
̂𝐴

(3.2)

Comparably, keys can be either variables 𝑦, constants 𝑘 or names 𝑁 [18]. The syntax
of basic keys is shown in Equation 3.3, whereas Equation 3.4 shows the syntax for
a key 𝐾 , which can either be a public key 𝐾0 or a secret key 𝐾−1

0 – note that the 0
in the subscript offers differentiation between keys and basic keys in the syntactical
definition. In other words, a public key 𝐾0 or secret key 𝐾−1

0 is, respectively, either a
variable 𝑦 or 𝑦−1, constant 𝑘 or 𝑘−1, or name 𝑁 or 𝑁−1. Please note that, at this point,
we only consider public key encryption.

𝐾0 ∶∶= 𝑘
𝑦
𝑁

(3.3)

𝐾 ∶∶= 𝐾0

𝐾−1
0

(3.4)

The syntax for basic terms is given by Equation 3.5 [18]. Basic terms consist of the
discussed syntactical components, i.e. a basic term is either a variable 𝑥, constant 𝑐,
name 𝑁 or key 𝐾 .

𝑏 ∶∶= 𝑥
𝑐
𝑁
𝐾

(3.5)

In addition, we have role identifiers. A role identifier 𝜂 can be either a variable
role identifier 𝑠 or a constant role identifier 𝑐າ [18]. The syntax for role identifiers is
given in Equation 3.6. This role identifier is simply used to distinguish roles within
the protocols, i.e. the defined participants in the protocol. Therefore, the syntax for
a process consists of a name 𝑁 and a role identifier 𝜂, as shown in Equation 3.7. In
other words, a process refers to a certain principal – hence the name 𝑁 – executing a
certain role. It should be noted that an attacker does not assume a role, but conforms
to the model of Dolev and Yao [22], which we will discuss in Section 3.5.
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𝜂 ∶∶= 𝑠
𝑐າ (3.6)

𝑃 ∶∶= 𝑁, 𝜂 (3.7)

The language of terms is generated by constructors 𝑝, which include constructing a
tuple, public key encryption and signing [18]. A tuple 𝑡, 𝑡 simply consists of two terms
𝑡 – please note that those terms do not need to be equal, merely of the same type, i.e.
a term 𝑡 as defined in Equation 3.8. Encryption is denoted by {∣ 𝑡 ∣}𝐾 , where term 𝑡 is
encrypted using public key 𝐾 . Finally, signing is written as {∣ 𝑡 ∣}𝐾−1 where term 𝑡 is
signed using secret key 𝐾−1. This leads to the syntax of normal terms being defined
as shown in Equation 3.8.

𝑡 ∶∶= 𝑥
𝑐
𝑁
𝐾
𝜂
𝑡, 𝑡
{∣ 𝑡 ∣}𝐾
{∣ 𝑡 ∣}𝐾−1

(3.8)

Actions The language of actions consist of the null action, sending a term, receiv-
ing something and storing it into a variable, matching a term against a pattern, and
generating a new value [18]. The empty action is written as 𝜖. The action of sending
a term 𝑡 is denoted by ⟨𝑡⟩. With (𝑥) receiving a certain term into variable 𝑥 is meant.
The generation of a new term 𝑥 is written as (𝜈𝑥).

Furthermore, (𝑡/𝑞(𝑥1, … , 𝑥𝑛)) is used to denoted the matching of the term 𝑡 to pattern
𝑞(𝑥1, … , 𝑥𝑛) [18]. As stated before, this means that a term 𝑡 is matched to a term of
the same form 𝑞(𝑥1, … , 𝑥𝑛), whereby the variables 𝑥1 through 𝑥𝑛 are substituted by
constant values from the term 𝑡 accordingly. Please note that 𝑞 is used to refer to the
constructor, e.g. a tupling constructor 𝑥1, … , 𝑥𝑛 as shown in Equation 3.10.

Combined, the discussed actions constitute the syntax as shown in Equation 3.9
[18]. In this syntactical definition 𝑎 is defined to be either one of the stated actions„
i.e. the empty action, the send action, the receive action, the generation action, and the
matching and substitution action.
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𝑎 ∶∶= 𝜖
⟨𝑡⟩
(𝑥)
(𝜈𝑥)
(𝑡/𝑞(𝑥1, … , 𝑥𝑛))

(3.9)

Patterns Patterns can be used in the matching action, which matches a term 𝑡 to some
pattern 𝑞(𝑥1, … , 𝑥𝑛) and substitutes accordingly [18]. As stated before, in this notation
of a pattern, 𝑞 denotes a constructor and 𝑥1 through 𝑥𝑛 variables. There are multiple
patterns possible. Of the available patterns, the only basic pattern is the tuple pattern,
which is shown in Equation 3.10. In the case of the tuple pattern, 𝑞(𝑥1, … , 𝑥𝑛) would
take the form of 𝑥1, … , 𝑥𝑛.

𝑝 ∶∶= 𝑏, … , 𝑏 (3.10)

The set of additional patterns consists of – in extension to the basic pattern of tupling
– the decryption pattern and the signature verification pattern, as shown in Equa-
tion 3.12 [18]. The decryption pattern is denoted by {∣ 𝑝 ∣}𝐾−1 , where pattern 𝑝 is of
the form of a basic pattern and 𝐾−1 denotes the secret key. This pattern could be
matched against a term of the form {∣ 𝑡 ∣}𝐾 , where 𝑡 should be of the same form as 𝑝.
For example, if we have the statement shown in Equation 3.11, the operation is used to
denote the decryption of {∣ 𝑀1, … , 𝑀𝑛 ∣}𝐾 resulting into the substitution of 𝑥1, … , 𝑥𝑛
with 𝑀1, … , 𝑀𝑛.

({∣ 𝑀1, … , 𝑀𝑛 ∣}𝐾 /{∣ 𝑥1, … , 𝑥𝑛 ∣}𝐾−1 ) (3.11)

Comparably, the pattern for signature verification is written as {∣ 𝑝 ∣}𝐾 where 𝑝
is a basic pattern and 𝐾 the public key [18]. The inner workings of this pattern are
equal to those of decryption. Nevertheless, there is no need for substitutions in the
case of signature verification, as the signed variable is directly accessible, whereas an
encrypted value needs to be decrypted first. This is commonly depicted by using the
same variable names on both sides of the matching operation, e.g. ({∣ 𝑚 ∣}𝐾−1 /{∣ 𝑚 ∣}𝐾 ).

𝑞 ∶∶= 𝑝
{∣ 𝑝 ∣}𝐾−1

{∣ 𝑝 ∣}𝐾

(3.12)

Cords Cords build further on Strands, which were defined by Fabrega, Herzog and
Guttman [25]. A strand is a list of actions, which is portrayed by Equation 3.13. Due
to this nature, two strands can have the same observable behaviour, although they are
formally different [23]. For example, to the outside world generating two values and
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sending them as a tuple does not look different depending on the order in which the
values are generated.

𝑆 ∶∶= 𝑎𝑆
𝑎 (3.13)

A cord is an equivalence class of strands that are behaviourally indistinguishable
[23]. To give an example, the two strands (𝑥)⟨𝑡⟩ and ⟨𝑡⟩(𝑥) are obviously different.
However, they represent the same cord, as the observable behaviour of sending and
receiving two independent terms does not require any order. When the strand would
be (𝑥)⟨𝑥⟩, it would differ from ⟨𝑥⟩(𝑥), as the variable that is sent in the first strand is
equal to the one received moments before, whereas this is not possible the other way
round – one cannot send something before receiving it.

Formally, a cord is an equivalence class of strands modulo an equivalence relation
≈𝐶 that allows reordering of actions that do not conflict and renaming of bound vari-
ables [23]. This equivalence relation ≈𝐶 is the transitive and reflective closure of the
relation ∼𝐶 , which is defined on two strands 𝑆 and 𝑇 as shown in Equation 3.14, closed
under 𝛼-equivalence, i.e. bound variables may be renamed as long as this does not res-
ult in clashes with other variables. This relation ensures that 𝑆 and 𝑇 cannot depend
upon each other.

𝑆𝑇 ∼𝐶 𝑇𝑆 ⇔ (𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) ∩ 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑇) = ∅)
∧ (𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑇) ∩ 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) = ∅) (3.14)

In Equation 3.14, the statements 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) and 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) are used
to refer to the sets of, respectively, free and bound variables [23]. A free variable is a
variable that has not be bound to a certain value by the substitution operation. When a
free variable becomes bound to a value, it follows that this variables becomes a bound
variable. Therefore, the relation shown in Equation 3.14 states that 𝑆𝑇 and 𝑇𝑆 are
similar when the set of free variables of 𝑆 and the set of bound variables of 𝑇 , and the
set of free variables of 𝑇 and the set of bound variables of 𝑆 are distinct.

The set of free variables is defined under mathematical induction in Definition 3.4
and the set of bound variables in Definition 3.5 [23]. In these definitions, the 𝑆 denotes
the tail of the strand the statement is concerned with. For the free variables, it can
be seen that for ⟨𝑡⟩𝑆 the set of free variables is equal to the union of the sets of free
variables of 𝑡 and 𝑆. With (𝑥)𝑆 and (𝜈𝑥)𝑆, the variable 𝑥 gets bound, which causes its
removal from the set of free variables. Comparably, (𝑡/𝑝(𝑥))𝑆 substitutes the 𝑥 with the
matching terms in 𝑡 resulting in the set of free variables being equal to the union of
those of 𝑡 and 𝑆 minus the variable 𝑥. Finally, an empty strand contains no variables
and, thus, no free variables. For bound variables, this works the other way around, as
can be seen in Definition 3.5.

Definition 3.4 (Free variables [23]). The set of free variables is written using the oper-
ator 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆). For a term 𝑡, 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) is defined to contain all variables

31



3 Secure Composition

used in the formation of this term. Furthermore, given a strand 𝑆, 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) is
defined under mathematical induction as follows:

𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠() = ∅ (3.15)
𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(⟨𝑡⟩𝑆) = 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) ∪ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) (3.16)
𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝑥)𝑆) = 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆)\{𝑥} (3.17)

𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝑡/𝑝(𝑥))𝑆) = 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) ∪ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆)\{𝑥} (3.18)
𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝜈𝑥)𝑆) = 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆)\{𝑥} (3.19)

Definition 3.5 (Bound variables [23]). The set of bound variables is written using the
operator 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆). Given a strand 𝑆, 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) is defined under
mathematical induction as follows:

𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠() = ∅ (3.20)
𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(⟨𝑡⟩𝑆) = 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) (3.21)
𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝑥)𝑆) = 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) ∪ {𝑥} (3.22)

𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝑡/𝑝(𝑥))𝑆) = 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) ∪ {𝑥} (3.23)
𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠((𝜈𝑥)𝑆) = 𝐵𝑜𝑢𝑛𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) ∪ {𝑥} (3.24)

Besides actions, a cord also contains an input and an output interface [18]. The
former of those contains prior knowledge, such as keys, and the latter contains the
data the becomes known after executing the cord. These interfaces are, thus, to be
used to set up the initial state and returning the data of the final state.

Cord Spaces A cord space can be seen as the multiset of all roles involved with a
certain protocol [23]. More formally, a cord space is a multiset of cords that belong to a
protocol. For example, in a common client-server protocol, one would have two roles
and thus two cords – namely, the client and the server. These two cords combined
form the cord space of that specific client-server protocol.

At this point, it should be noted that a principal may perform multiple roles within
the same protocol [23]. However, it is not allowed that two different roles ran by the
same principal influence each other, which is formalised in Theorem 3.1. Incident-
ally, this emphasises the uncoupled and stateless characteristic of services, which we
discussed in Chapter 2.

Theorem 3.1 (Crosstalk [23]). Given a principal 𝐴 and a role 𝜌, if principal 𝐴 follows role
𝜌, then all data that is sent by 𝐴 in role 𝜌 is either generated or received by 𝐴 in this role.

The runs of a protocol are built using the reaction sequences of cord spaces [18].
Those reaction sequences define how one or more cords interact and which results
this such a reaction yields. The five basic reaction steps are shown in Theorem 3.2. In
these reaction steps, 𝐶 can be regarded as the other cords in the protocol that are left
unaffected by the reaction.

32



3.1 Secure Composition of Protocols

Theorem 3.2 (Basic reaction steps for cord spaces [18]). The following reaction steps define
the basic reactions within a cord space:

[𝑆(𝑥)𝑆າ] ∪ [𝑇⟨𝑡⟩𝑇 າ] ∪ 𝐶 → [𝑆𝑆າ(𝑡/𝑥)] ∪ [𝑇𝑇 າ] ∪ 𝐶 (3.25)
[𝑆(𝑝(𝑡)/𝑝(𝑥))𝑆າ] ∪ 𝐶 → [𝑆𝑆າ(𝑡/𝑥)] ∪ 𝐶 (3.26)

[𝑆({∣ 𝑝(𝑡) ∣}𝑦/{∣ 𝑝(𝑥) ∣}𝑦−1 )𝑆າ] ∪ 𝐶 → [𝑆𝑆າ(𝑡/𝑥)] ∪ 𝐶 (3.27)
[𝑆({∣ 𝑝(𝑡) ∣}𝑦−1 /{∣ 𝑝(𝑡) ∣}𝑦)𝑆າ] ∪ 𝐶 → [𝑆𝑆າ] ∪ 𝐶 (3.28)

[𝑆(𝜈𝑥)𝑆າ] ∪ 𝐶 → [𝑆𝑆າ(𝑚/𝑥)] ∪ 𝐶 (3.29)

The reaction step shown in Equation 3.25 shows how send and receive interact [18].
The second cord sends the term 𝑡, which the first cord receives into variable 𝑥. There-
fore, in the resulting cords, the variable 𝑥 is substituted by the received term 𝑡 in the
tail of the cord 𝑆າ. For this reaction step there must be no free variables in 𝑡, i.e.
𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) = ∅ should hold.

The latter four reaction steps in Theorem 3.2 are all interactions within one cord [18].
Equation 3.26 shows plain pattern matching, where the pattern 𝑝(𝑥) is matched against
𝑝(𝑡), thereby substituting 𝑥 with 𝑡. Also for this reaction step, 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) = ∅
should hold.

Equation 3.27 shows the reaction of the decryption of {∣ 𝑝(𝑡) ∣}𝑦, such that the encryp-
ted term 𝑡 is put into variable 𝑥 [18]. Comparably, Equation 3.28 verifies the signature
on the term {∣ 𝑝(𝑡) ∣}𝑦−1 . As mentioned before, signature verification does not result
in extra substitutions, due to the fact that the value is already accessible. For both of
these reaction steps, 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑡) = ∅ should hold. Additionally, the reaction step
of Equation 3.27 requires 𝑦 to be bound, as this variable represents the used keys.

Finally, Equation 3.29 concerns the fresh generation of a variable 𝑥 and the substitu-
tion of a certain variable 𝑚 with this value [18]. Obviously, this requires 𝑥 to be a new
variable, since it is generated freshly. Additionally, 𝑚 should not be used either, as it
is used to hold this new variable. Therefore, Equation 3.30 should hold. This equation
states that 𝑥 should not be free in 𝑆 and 𝑚 should not be free in 𝑆, 𝑆າ or 𝐶 . In other
words, 𝑥 and 𝑚 should not have occurred as free variable, but only as bound variables
in the context of the fresh value generation.

𝑥 ∉ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆)
∧ 𝑚 ∉ (𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆) ∪ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑆າ) ∪ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝐶)) (3.30)

3.1.2 Protocol Logic
Built upon the cord calculus, Datta et al. [18] use a protocol logic to describe protocols
and the predicates attached to it. In Section 3.3, we will discuss our adaptation of
this logic, where we will alter the logic to fit services. However, at this point, we will
merely discuss the protocol logic as is. This section is divided in a part discussing the
syntax and a part concerning the semantics of the protocol logic.
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Syntax

This section describes which formulas are available in the protocol logic and how they
form a language. Firstly, there are action formulas, which describe the possible actions
that can be performed in the protocol logic. Secondly, there are predicate formulas that
can be used in the logical statements.

As previously discussed, Datta et al. [18] use the formula 𝜙[𝑃]𝑋𝜓 to reason about
a protocol. In this protocol, the actions 𝑃 are executed in process 𝑋, whereby the
precondition 𝜙 is expected to hold before and the postcondition 𝜓 to hold after the
execution. The syntax for these modal forms are shown in Equation 3.31. Please note
that 𝜙 is used to denote logical formulas and 𝜌 to denote the action formulas, i.e. 𝜌 is
where the discussed cord calculus comes in.

Φ ∶∶= 𝜌𝜙
𝜙𝜌𝜙 (3.31)

Actions The syntax for action formulas is described by Equation 3.32 [18]. All the
defined action formulas mean that the respective action is the last action principal

̂𝑃 performed in process 𝑃 . For example, 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑃, 𝑡) states that the last action per-
formed by ̂𝑃 in process 𝑃 was decrypting term 𝑡. Please note that sending and receiv-
ing are concerned with a message 𝑚 and nonce generation, decryption and verifica-
tion are concerned with a term 𝑡. This allows for differentiation between terms that
are used in communication and those that stay within a process.

𝑎 ∶∶= 𝑆𝑒𝑛𝑑(𝑃, 𝑚)
𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑃, 𝑚)
𝑁𝑒𝑤(𝑃, 𝑡)
𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑃, 𝑡)
𝑉𝑒𝑟𝑖𝑓𝑦(𝑃, 𝑡)

(3.32)

Predicates Additionally to the action formulas, the protocol logic uses predicate
formulas [18]. The syntax for those predicate formulas can be found in Equation 3.33.
These predicate formulas make a logical statement that can be used in a logical for-
mula.

34



3.1 Secure Composition of Protocols

𝜙 ∶∶= 𝑎
𝐻𝑎𝑠(𝑃, 𝑡)
𝐹𝑟𝑒𝑠ℎ(𝑃, 𝑡)
𝐻𝑜𝑛𝑒𝑠𝑡(𝑁)
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑡1, 𝑡2)
𝜙 ∧ 𝜙
¬𝜙
∃𝑥 ∶ 𝜙
⟐𝜙
⊙ 𝜙

(3.33)

The predicate 𝐻𝑎𝑠(𝑃, 𝑡) states that principal ̂𝑃 possesses some piece of information
𝑡 in process 𝑃 [18]. In this case, possession means that the principal has access to
this information. The formula 𝐹𝑟𝑒𝑠ℎ(𝑃, 𝑡) means that the term 𝑡 has been generated in
process 𝑃 and is not (yet) known to anyone else. Therefore, this term 𝑡 is fresh. The
formula 𝐻𝑜𝑛𝑒𝑠𝑡(𝑁) states that principal 𝑁 is honest, i.e. this principal acts as defined
by the protocol. We will discuss honesty in depth in Section 3.1.3.

The terms 𝜙∧𝜙 and ¬𝜙 express, respectively, the logical and-relation and the logical
negation [18]. With the formula 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑡1, 𝑡2), it is expressed that 𝑡2 is a subterm of
term 𝑡1. Thus, 𝑡1 contains 𝑡2. Furthermore, ∃𝑥 ∶ 𝜙 means that there exists an 𝑥 such
that 𝜙.

The temporal operator ⟐𝜙 states that somewhere in the past 𝜙 was true [18]. This
operator is called the once-operator. The temporal operator ⊙𝜙, the so-called previously-
operator, states that in the previous state 𝜙 was true.

Definition 3.6 defines the predicate 𝐴𝑓𝑡𝑒𝑟(𝑎, 𝑏) [18]. This predicate states that action
𝑏 happened after action 𝑎. In the logic of Datta et al. [18], this predicate is a transitive
relation for honest principals. This is due to the fact that the messages sent by hon-
est principals are unique – note that this does not necessarily refer to the content of
the message, as the uniqueness may be achieved by introducing sequence counters
on the messages. Additionally, the statement 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑎1, … , 𝑎𝑛), as defined in
Equation 3.34, can be used to refer to a chain of multiple after-predicates [17].

𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑎1, … , 𝑎𝑛) = 𝐴𝑓𝑡𝑒𝑟(𝑎1, 𝑎2) ∧ … ∧ 𝐴𝑓𝑡𝑒𝑟(𝑎𝑛−1, 𝑎𝑛) (3.34)
Definition 3.6 (After [18]). The predicate 𝐴𝑓𝑡𝑒𝑟(𝑎, 𝑏) states that action 𝑏 happened after
action 𝑎. This predicate is formalised as:

𝐴𝑓𝑡𝑒𝑟(𝑎, 𝑏) = ⟐(𝑏 ∧ ⊙⟐𝑎) (3.35)

Semantics
The main semantic relation in the protocol logic of Datta et al. [18] is 𝑄, 𝑅 ⊨ 𝜙, which
states that in run 𝑅 of protocol 𝑄 formula 𝜙 holds. Additionally, �̄� denotes the set of
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all initial configurations of protocol 𝑄 – including possible intruder cords. 𝑅𝑢𝑛𝑠(�̄�)
denotes the set of all runs of protocol 𝑄 with attacker. If 𝜙 has free variables we have
𝑄, 𝑅 ⊨ 𝜙 if we can substitute all free variables in 𝜙 using substitutions 𝜎 such that
𝑄, 𝑅 ⊨ 𝜎𝜙. Additionally, we write 𝑄 ⊨ 𝜙 if 𝑄, 𝑅 ⊨ 𝜙 holds for all runs 𝑅 ∈ 𝑅𝑢𝑛𝑠(�̄�).

To describe the reaction steps of the cord calculus, Datta et al. [18] define the state-
ment 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝑋, 𝑃, 𝑛, �⃗�), as shown in Equation 3.36, to refer to events. This predicate
is used to refer to an event in a certain run 𝑅 in process 𝑋 which executes the ac-
tions in 𝑃 that receive the data of 𝑛 into the variables �⃗�. In a comparable fashion,
𝐿𝑎𝑠𝑡(𝑅, 𝑋, 𝑃, 𝑛, �⃗�) states that 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝑋, 𝑃, 𝑛, �⃗�) is the last event in run 𝑅. In Equa-
tion 3.36, 𝑆 and 𝑆າ represent the head and tail of the cord executed by 𝑋 in which
action 𝑃 is happening. Furthermore, 𝐶 and 𝐶າ represent the other cords in run 𝑅.

𝐸𝑣𝑒𝑛𝑡(𝑅, 𝑋, 𝑃, 𝑛, �⃗�) = (([𝑆𝑃𝑆າ]𝑋 ∪ 𝐶 → [𝑆𝑆າ(𝑛/�⃗�)]𝑋 ∪ 𝐶າ) ∈ 𝑅) (3.36)

The semantic for the first modal form is as follows: let 𝑅 = 𝑅0𝑅1𝑅2 for some 𝑅0,
𝑅1 and 𝑅2 [18]. We have 𝑄, 𝑅 ⊨ 𝜙[𝑃]𝐴𝜓 if 𝑃 does not match [𝑅1]𝐴 or if 𝑃 does match
[𝑅1]𝐴 and 𝑄, 𝑅0 ⊨ 𝜎𝜙 implies 𝑄, 𝑅0𝑅1 ⊨ 𝜎𝜙 with substitution 𝜎 matching 𝑃 to [𝑅1]𝐴.
The definition for the second modal can be reached by setting 𝜙 in the first modal to
true and defining 𝑅0 to be empty. Thus, if we let 𝑅 = 𝑅1𝑅2, we have 𝑄, 𝑅 ⊨ [𝑃]𝐴𝜓 if
𝑃 does not match [𝑅1]𝐴 or if 𝑃 does match [𝑅1]𝐴 and 𝑄, 𝑅1 ⊨ 𝜎𝜙 with substitution 𝜎
matching 𝑃 to [𝑅1]𝐴.

The semantic entailment states that if 𝑄 ⊨ Γ implies 𝑄 ⊨ 𝜙 we have Γ ⊨ 𝜙 [18].
This means that if the set of environment formulas Γ is true in every run of protocol
𝑄, formula 𝜙 is also true.

Actions The semantic formulas for the send, receive and new actions can be respect-
ively found in Equation 3.37, Equation 3.38 and Equation 3.39 [18]. Those formulas
link the events from the cord calculus to the action formulas discussed in Section 3.1.2.
For example, Equation 3.37 states that if the last event in run 𝑅 in process 𝐴 was the
execution of ⟨𝑚⟩, i.e. the sending of variable 𝑚, 𝑄, 𝑅 ⊨ 𝑆𝑒𝑛𝑑(𝐴, 𝑚) will hold. The se-
mantic formulas for receiving and fresh generation also contain an input of 𝑚 and
output of 𝑥. For example, the in Equation 3.39 displayed formula states that, if the last
action in run 𝑅 in process 𝐴 was (𝜈𝑥), i.e. the fresh generation of 𝑥, with input 𝑚 and
output 𝑥, 𝑄, 𝑅 ⊨ 𝑁𝑒𝑤(𝐴, 𝑚) will hold. In this formula, the input is the new value 𝑚
which is bound to variable 𝑥, i.e. the substitution (𝑚/𝑥) as shown in the reaction step
in Equation 3.29 is executed.

𝐿𝑎𝑠𝑡(𝑅, 𝐴, ⟨𝑚⟩, ∅, ∅) ⇒ 𝑄, 𝑅 ⊨ 𝑆𝑒𝑛𝑑(𝐴, 𝑚) (3.37)
𝐿𝑎𝑠𝑡(𝑅, 𝐴, (𝑥), 𝑚, 𝑥) ⇒ 𝑄, 𝑅 ⊨ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝐴, 𝑚) (3.38)

𝐿𝑎𝑠𝑡(𝑅, 𝐴, (𝜈𝑥), 𝑚, 𝑥) ⇒ 𝑄, 𝑅 ⊨ 𝑁𝑒𝑤(𝐴, 𝑚) (3.39)

The semantics for the decryption and signature verification actions are a bit more
complex. The semantic for decryption, which is shown in Equation 3.40, does not only
require the last event to be ({∣ 𝑚 ∣}𝐾 /{∣ 𝑥 ∣}𝐾−1 ), but also states that 𝐴 should possess
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{∣ 𝑚 ∣}𝐾 [18]. This requirement is needed, as decrypting {∣ 𝑚 ∣}𝐾 is not possible without
possessing it.

𝐿𝑎𝑠𝑡(𝑅, 𝐴, ({∣ 𝑚 ∣}𝐾 /{∣ 𝑥 ∣}𝐾−1 ), 𝑚, 𝑥) ∧ 𝑄, 𝑅 ⊨ 𝐻𝑎𝑠(𝐴, {∣ 𝑚 ∣}𝐾 )
⇒ 𝑄, 𝑅 ⊨ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐴, {∣ 𝑚 ∣}𝐾 ) (3.40)

Comparable to the semantic definition of decryption, the in Equation 3.41 defined
semantic for the signature verification action additionally requires that 𝐴 possesses
{∣ 𝑚 ∣}𝐾−1 , 𝑚 and 𝐾 . Please note that, due to the nature of signature verification, no
input and output variables are defined on the event.

𝐿𝑎𝑠𝑡(𝑅, 𝐴, ({∣ 𝑚 ∣}𝐾−1 /{∣ 𝑚 ∣}𝐾 ), ∅, ∅)
∧ 𝑄, 𝑅 ⊨ 𝐻𝑎𝑠(𝐴, {∣ 𝑚 ∣}𝐾−1 ) ∧ 𝑄, 𝑅 ⊨ 𝐻𝑎𝑠(𝐴, 𝑚) ∧ 𝑄, 𝑅 ⊨ 𝐻𝑎𝑠(𝐴, 𝐾)

⇒ 𝑄, 𝑅 ⊨ 𝑉𝑒𝑟𝑖𝑓𝑦(𝐴, {∣ 𝑚 ∣}𝐾−1 ) (3.41)

Predicates The predicate of possession is formalised as shown in Equation 3.42
where 𝐻𝑎𝑠𝑖(𝐴, 𝑚) is defined using mathematical induction with the base step shown
in Equation 3.43 and the induction step shown in Equation 3.45 [18].

𝐻𝑎𝑠𝑖(𝐴, 𝑚) ⇒ 𝑄, 𝑅 ⊨ 𝐻𝑎𝑠(𝐴, 𝑚) (3.42)

The base step states shown in Equation 3.43 that 𝐻𝑎𝑠0(𝐴, 𝑚) is true when the term
𝑚 was directly received or generated or when it was a free variable of the role [18]. It
trivially follows that receiving or generating a variable results in possessing it. Addi-
tionally, if 𝑚 is contained in the set of free variables, it is a previously declared free
variable in process 𝐴 and therefore possessed by 𝐴.

(𝑚 ∈ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠([𝑅]𝐴)) ∨ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝜈𝑥), 𝑚, 𝑥) ∨ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝑥), 𝑚, 𝑥)
⇒ 𝐻𝑎𝑠0(𝐴, 𝑚) (3.43)

The induction step defines that 𝐻𝑎𝑠𝑖+1(𝐴, 𝑚) is true if the term 𝑚 was obtained
in 𝑖 steps by either decomposition by decryption, decomposition by normal pattern
matching, composition by pattern matching, composition by construction of a tuple,
composition by encryption, or by computation of a Diffie-Hellman secret [19] and is
displayed in Equation 3.45 [18].

Given the complexity of the formula of the induction step, we will discuss it broken
down in pieces. First of all, both the decompositions are contained in the part dis-
played in Equation 3.44, which is true if 𝐴 has a term 𝑚າ in 𝑖 steps and it satisfies
either of two forms of decomposition [18]. Namely, the first option requires 𝑚າ to be
𝑝(𝑡) encrypted by 𝐾 , i.e. {∣ 𝑝(𝑡) ∣}𝐾 , where 𝑡 is the message 𝑚 we are concerned with,
and that there was a decryption event concerning 𝑚າ. In other words, 𝑚 is possessed
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by 𝐴 when it was obtained in encrypted form and decrypted by 𝐴. The second option
requires 𝑚າ to fit a pattern 𝑝(𝑡), where 𝑡 is once again the message 𝑚 of concern, and a
pattern matching event concerning this 𝑚າ in the past.

(𝐻𝑎𝑠𝑖(𝐴, 𝑚າ)
∧ ((𝑚າ = {∣ 𝑝(𝑡) ∣}𝐾 ∧ 𝑚 = 𝑡 ∧ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝑚າ/{∣ 𝑝(𝑦) ∣}𝐾−1 ), 𝑡, 𝑦))

∨ (𝑚າ = 𝑝(𝑡) ∧ 𝑚 = 𝑡 ∧ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝑚າ/𝑝(𝑦)), 𝑡, 𝑦)))) (3.44)

The compositions are given by the other parts of Equation 3.45 [18]. When 𝐴 has a
term 𝑚າ and a term 𝑚ຳ, he can obtain both possible tuples of these values, i.e. 𝑚າ, 𝑚ຳ

and 𝑚ຳ, 𝑚າ. Additionally, when 𝐴 has a term 𝑚າ and a key 𝐾 , he can obtain the term 𝑚າ

encrypted using 𝐾 , i.e. {∣ 𝑚າ ∣}𝐾 . Finally, when 𝐴 has a value 𝑎 and a Diffie-Hellmann
exponential 𝑔𝑏, he is able to obtain the Diffie-Hellmann secret 𝑔𝑎𝑏, which is equal to
𝑔𝑏𝑎.

(𝐻𝑎𝑠𝑖(𝐴, 𝑚າ) ∧ ((𝑚າ = {∣ 𝑝(𝑡) ∣}𝐾 ∧ 𝑚 = 𝑡 ∧ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝑚າ/{∣ 𝑝(𝑦) ∣}𝐾−1), 𝑡, 𝑦))
∨ (𝑚າ = 𝑝(𝑡) ∧ 𝑚 = 𝑡 ∧ 𝐸𝑣𝑒𝑛𝑡(𝑅, 𝐴, (𝑚າ/𝑝(𝑦)), 𝑡, 𝑦))))

∨ (𝐻𝑎𝑠𝑖(𝐴, 𝑚າ) ∧ 𝐻𝑎𝑠𝑖(𝐴, 𝑚ຳ) ∧ ((𝑚 = 𝑚າ, 𝑚ຳ) ∨ (𝑚 = 𝑚ຳ, 𝑚າ)))
∨ (𝐻𝑎𝑠𝑖(𝐴, 𝑚າ) ∧ 𝐻𝑎𝑠𝑖(𝐴, 𝐾) ∧ 𝑚 = {∣ 𝑚າ ∣}𝐾 )

∨ (𝐻𝑎𝑠𝑖(𝐴, 𝑎) ∧ 𝐻𝑎𝑠𝑖(𝐴, 𝑔𝑏) ∧ 𝑚 = 𝑔𝑎𝑏) ∨ (𝐻𝑎𝑠𝑖(𝐴, 𝑔𝑎𝑏) ∧ 𝑚 = 𝑔𝑏𝑎)
⇒ 𝐻𝑎𝑠𝑖+1(𝐴, 𝑚) (3.45)

Freshness, as shown in Equation 3.46, is defined by the fact that term 𝑚 was gener-
ated by 𝐴 in the past or was the result of a function applied to a term generated by 𝐴
in the past [18]. Furthermore, this term 𝑚 or some term 𝑚າ containing it should not
have been sent. Equation 3.47 states that 𝑄, 𝑅 ⊨ 𝐻𝑜𝑛𝑒𝑠𝑡(𝐴) holds when 𝐴 is contained
in 𝐻𝑜𝑛𝑒𝑠𝑡𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑠(𝐶), where 𝐶 is the initial configuration for 𝑅. In Equation 3.48
defines that a term 𝑡1 contains 𝑡2 when this is a visible subterm, i.e. 𝑡2 ⊆𝑣 𝑡1. A term
𝑡2 is a visible subterm of 𝑡1 when 𝑡2 ⊆ 𝑡1 and one of the occurrences of 𝑡2 in 𝑡1 is not
encapsulated as a parameter of a one-way function. For example, 𝑛 ⊈𝑣 𝑔(𝑛) when 𝑔(𝑛)
is a one-way function.

𝑄, 𝑅 ⊨ (⟐𝑁𝑒𝑤(𝐴, 𝑚) ∨ (⟐𝑁𝑒𝑤(𝐴, 𝑛) ∧ 𝑚 = 𝑔(𝑛)))
∧¬(⟐𝑆𝑒𝑛𝑑(𝐴, 𝑚າ) ∧ 𝑚 ⊆ 𝑚າ) ⇒ 𝑄, 𝑅 ⊨ 𝐹𝑟𝑒𝑠ℎ(𝐴, 𝑚) (3.46)

𝐴 ∈ 𝐻𝑜𝑛𝑒𝑠𝑡𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑠(𝐶) ⇒ 𝑄, 𝑅 ⊨ 𝐻𝑜𝑛𝑒𝑠𝑡(𝐴) (3.47)
𝑡2 ⊆𝑣 𝑡1 ⇒ 𝑄, 𝑅 ⊨ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑡1, 𝑡2) (3.48)

Finally, the logic semantics are defined intuitively. Equation 3.49 defines the and-
composition as the logical and of the two separate statements [18]. The negation of a
statement is defined in Equation 3.50. The exists-operator shown in Equation 3.51 is
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slightly more complex. It defines that 𝑄, 𝑅 ⊨ ∃𝑥 ∶ 𝜙 is true when 𝑄, 𝑅 ⊨ (𝑑/𝑥)𝜙 holds
for some 𝑑, where (𝑑/𝑥)𝜙 denotes the substitution of 𝑥 for 𝑑 in 𝜙.

(𝑄, 𝑅 ⊨ 𝜙1) ∧ (𝑄, 𝑅 ⊨ 𝜙2) ⇒ 𝑄, 𝑅 ⊨ (𝜙1 ∧ 𝜙2) (3.49)
𝑄, 𝑅 ⊭ 𝜙 ⇒ 𝑄, 𝑅 ⊨ ¬𝜙 (3.50)

𝑄, 𝑅 ⊨ (𝑑/𝑥)𝜙 ⇒ 𝑄, 𝑅 ⊨ ∃𝑥 ∶ 𝜙 (3.51)

The temporal logic statement ⟐𝜙 is semantically defined in Equation 3.52 where
𝑅າ is a prefix of 𝑅 [18]. In other words ⟐𝜙 is true, if in some prefix of that run 𝜙 was
true. Comparably, Equation 3.53 defines the previously-operator where 𝑅 = 𝑅ຳ𝑒 for
some event 𝑒. In other words, ⊙𝜙 is true, if 𝜙 was true in the previous state.

𝑄, 𝑅າ ⊨ 𝜙 ⇒ 𝑄, 𝑅 ⊨ ⟐𝜙 (3.52)
𝑄, 𝑅ຳ ⊨ 𝜙 ⇒ 𝑄, 𝑅 ⊨ ⊙𝜙 (3.53)

3.1.3 Proof System
In this section, we will briefly introduce the proof system of Datta et al. [18]. At
this point, we will not yet adapt it to a service oriented context, but only familiar-
ise ourselves with it. We will start with discussing the basic axioms and rules of the
proof system, followed by those for the temporal ordering and the formalisation of
honesty. Finally, we will discuss protocol composition itself.

Protocol Actions In Section 3.1.2, we discussed the protocol actions on a syntactical
and semantic level. At this point, we will consider the axioms for those actions. First
of all, Equation 3.54 states that if a principal �̂� has executed an action 𝑎 in some role,
the predicate 𝑏 stating that this action occurred in the past is true [18]. For example, if
principal �̂� executed ⟨𝑚⟩ in process 𝑋, 𝑆𝑒𝑛𝑑(𝑋, 𝑚) would be true, i.e. we would have
the situation shown in Equation 3.55.

𝜙[𝑎]𝑋⟐(𝑏 ∧ ⊙𝜙) (3.54)
𝜙[⟨𝑚⟩]𝑋⟐(𝑆𝑒𝑛𝑑(𝑋, 𝑚) ∧ ⊙𝜙) (3.55)

Equation 3.56 states that if process 𝑋 generates a new value 𝑛 and does not execute
any other action he possesses this value [18]. Additionally, Equation 3.57 states that
only he has this value and Equation 3.58 states that this value is fresh. The axiom of
Equation 3.59 defines that if one receives a value 𝑚 one also possesses this value.

𝜙[(𝜈𝑛)]𝑋𝐻𝑎𝑠(𝑋, 𝑛) (3.56)
𝜙[(𝜈𝑛)]𝑋 ∧ 𝐻𝑎𝑠(𝑌, 𝑛) ⇒ 𝑌 = 𝑋 (3.57)

𝜙[(𝜈𝑛)]𝑋𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛) (3.58)
𝜙[(𝑚)]𝑋𝐻𝑎𝑠(𝑋, 𝑚) (3.59)
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Protocol Predicates As stated before, Datta et al. [18] use the attacker model of
Dolev and Yao [22]. To capture this, four axioms are included within the proof sys-
tem. Firstly, Equation 3.60 states that if 𝑋 decrypts {∣ 𝑛 ∣}𝐾 , he knows 𝑛. Secondly,
Equation 3.61 states that if 𝑋 possesses the tuple (𝑥, 𝑦), he also possesses 𝑥 and 𝑦.
Thirdly, it is required that one possesses the corresponding secret key in order to de-
crypt an encrypted message, as shown in Equation 3.62. Please note that the secret
key is expected to be possessed only by the owner of this key and that honesty of �̂�
is required, as only honest participants are expected to keep their secret keys out of
the hands of others. Fourthly and finally, the inability to forge signatures is stated in
Equation 3.63. This axiom states that a message signed by a honest principal �̂� has to
be sent by that principal at some point in the past.

⟐𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑋, {∣ 𝑛 ∣}𝐾 ) ⇒ 𝐻𝑎𝑠(𝑋, 𝑛) (3.60)
𝐻𝑎𝑠(𝑋, (𝑥, 𝑦)) ⇒ 𝐻𝑎𝑠(𝑋, 𝑥) ∧ 𝐻𝑎𝑠(𝑋, 𝑦) (3.61)

𝐻𝑜𝑛𝑒𝑠𝑡(�̂�)
∧⟐𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑌, {∣ 𝑛 ∣}𝑋) ⇒ ̂𝑌 = �̂�

(3.62)

𝐻𝑜𝑛𝑒𝑠𝑡(�̂�)
∧⟐𝑉𝑒𝑟𝑖𝑓𝑦(𝑌, {∣ 𝑛 ∣}𝑋−1 ) ⇒ ∃𝑋 ∶ (∃𝑚 ∶ (⟐𝑆𝑒𝑛𝑑(𝑋, 𝑚) ∧ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑚, {∣ 𝑛 ∣}𝑋−1 )))

(3.63)

The uniqueness of nonces is captured in Equation 3.64, which states that a freshly
generated value is distinct from any other freshly generated value [18]. Additionally,
Equation 3.65 states that this value is also distinct from any Diffie-Hellman exponen-
tial [19]. Furthermore, if two processes have fresh values, those two values are also
distinct via Equation 3.66.

⟐𝑁𝑒𝑤(𝑋, 𝑛) ∧ ⟐𝑁𝑒𝑤(𝑌, 𝑛) ⇒ 𝑋 = 𝑌 (3.64)
⟐𝑁𝑒𝑤(𝑋, 𝑝) ⇒ ¬⟐𝑁𝑒𝑤(𝑌, 𝑔𝑝) (3.65)

⟐𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛) ∧ ⟐𝐹𝑟𝑒𝑠ℎ(𝑌, 𝑛) ⇒ 𝑋 = 𝑌 (3.66)

Finally, Equation 3.67 states the subterm relationship of tuples [18]. This equation
defines that the tuple (𝑥, 𝑦) contains 𝑥 and 𝑦 using the predicate 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑡1, 𝑡2).

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠((𝑥, 𝑦), 𝑥) ∧ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠((𝑥, 𝑦), 𝑦) (3.67)

Preservation and Loss The axiom in Equation 3.68 states the persistence of the pre-
dicate 𝐻𝑎𝑠(𝑋, 𝑡) and the axiom in Equation 3.69 does the same for the predicate ⟐𝜙
[18]. For example, if one previously had a certain value, one continues to posses this
value after executing more actions. Equation 3.70 defines that freshness is persistent,
as long as it is not sent. Comparably, Equation 3.71 defines that sole possession of a
value is persistent, as long as it is not sent visibly. It should be noted that the predicate
𝐻𝑎𝑠𝐴𝑙𝑜𝑛𝑒(𝑋, 𝑛), which is used in Equation 3.71, and means that principal 𝑋 is the sole
possessor of value 𝑛, is defined in Equation 3.72 [17].
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𝐻𝑎𝑠(𝑋, 𝑛)[𝑎]𝑋𝐻𝑎𝑠(𝑋, 𝑛) (3.68)
⟐𝜙[𝑎]𝑋⟐𝜙 (3.69)

𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑡)[𝑎]𝑋𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑡) with (𝑡 ⊈ 𝑎) ∨ (𝑎 ≠ ⟨𝑚⟩) (3.70)
𝐻𝑎𝑠𝐴𝑙𝑜𝑛𝑒(𝑋, 𝑛)[𝑎]𝑋𝐻𝑎𝑠𝐴𝑙𝑜𝑛𝑒(𝑋, 𝑛) with (𝑛 ⊈𝑣 𝑎) ∨ (𝑎 ≠ ⟨𝑚⟩) (3.71)

𝐻𝑎𝑠𝐴𝑙𝑜𝑛𝑒(𝑋, 𝑛) = 𝐻𝑎𝑠(𝑋, 𝑛) ∧ (𝐻𝑎𝑠(𝑌, 𝑛) ⇒ 𝑋 = 𝑌) (3.72)

As logically follows from the definition of freshness, it is lost when the term is sent
[18]. This loss of freshness is captured in Equation 3.73.

𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑡)[⟨𝑚⟩]𝑋¬𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑡) with 𝑡 ⊆ 𝑚 (3.73)

Inference Rules The inference rules for the proof system of Datta et al. [18] are
shown in Equation 3.74 through Equation 3.77. The rule in Equation 3.74 states that
if two formulas exist containing the same precondition and actions with two different
postconditions, both those postconditions hold for that prefix. In other words, when
one is able to draw two conclusions from the same statement, he can also draw the
logical and of those two as conclusion.

𝜙[𝑃]𝑋𝜓 𝜙[𝑃]𝑋𝜃
𝜙[𝑃]𝑋(𝜓 ∧ 𝜃)

(3.74)

Equation 3.75 allows the strengthening of the logical precondition and the widening
of the logical postcondition. In this case, strengthening refers to swapping the precon-
dition 𝜙 with a stronger precondition 𝜙າ that is at least false in all cases that 𝜙 is false
and widening refers to swapping the postcondition 𝜓 with a weaker precondition 𝜓າ

that is at least true in all cases that 𝜓 is true.

𝜙[𝑃]𝑋𝜓 𝜙 ⊂ 𝜙າ 𝜓າ ⊂ 𝜓
𝜙າ[𝑃]𝑋𝜓າ (3.75)

Furthermore, Equation 3.76 states that a valid logical statement, i.e. it is true, will
also hold when a certain precondition and accompanying actions are placed in front
of it [18]. In other words, when something is already true, it will also be true when a
precondition is added to it. In essence, this postcondition behaves like an invariant,
as it is true regardless of the precondition. To illustrate this, imagine that a certain
condition 𝜓 is always true. In this case, you can also state that when another condition
𝜙 is satisfied 𝜓 is true, which is correct, as 𝜓 is always true.

𝜓
𝜙[𝑃]𝑋𝜓

(3.76)

Finally, Equation 3.77 describes how the exists-operator can be substituted by a
constant. This inference rule allows the mechanism of matching and substitution to
propagate through the exists-operator.
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∃𝑥 ∶ 𝜙(𝑥)
𝜙(𝑐0)

(3.77)

Temporal Ordering As stated before, the framework of Datta et al. [18] uses tem-
poral ordering. This is required for their authentication property, which is based upon
the notion of matching records of runs of Diffie, Oorschot and Wiener [20]. We will
discuss this authentication property and other notions in depth in Section 3.3.

The temporal ordering of actions within a certain role is defined in Equation 3.78.
In this axiom, it is shown that the actions in the cord of a role are executed in the
order in which they are written. Furthermore, in Equation 3.79, we can see that the
𝐴𝑓𝑡𝑒𝑟(𝑎1, 𝑎2) relation is transitive when dealing with honest principals.

𝜙[𝑎1 … 𝑎𝑛]𝑋𝐴𝑓𝑡𝑒𝑟(𝑎1, 𝑎2 ∧ … ∧ 𝐴𝑓𝑡𝑒𝑟(𝑎𝑛−1, 𝑎𝑛) (3.78)
𝐻𝑜𝑛𝑒𝑠𝑡(�̂�) ∧ 𝐻𝑜𝑛𝑒𝑠𝑡( ̂𝑌 ) ∧ 𝐻𝑜𝑛𝑒𝑠𝑡(�̂�)

⇒ (𝐴𝑓𝑡𝑒𝑟(𝑎1(𝑋), 𝑎2(𝑌)) ∧ 𝐴𝑓𝑡𝑒𝑟(𝑎2(𝑌), 𝑎3(𝑍)) ⇒ 𝐴𝑓𝑡𝑒𝑟(𝑎1(𝑋), 𝑎3(𝑍)))
(3.79)

The temporal axiom in Equation 3.80 states that any action in any other process that
uses a nonce freshly generated by 𝑋 has to happen after this nonce has been sent by
𝑋, i.e. any action 𝑎2 by 𝑖 that involves the term 𝑛 that is freshly generated by 𝑋 has to
happen after the send-action [18]. Equation 3.81 is similar, but has the roles of 𝑋 and
𝑌 reversed. This axiom states that when a process 𝑋 uses a term that was generated
in and sent by some process 𝑌 in some action 𝑎2, this action 𝑎2 has to happen after 𝑌
performed the send-action. The proof of Equation 3.81 can be derived using the same
reasoning as the proof of Equation 3.80, which is as follows.

𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛)[⟨𝑚⟩]𝑃]𝑋(𝜙 ⇒ ⟐𝑎2(𝑌))
𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛)[⟨𝑚⟩]𝑃]𝑋(𝜙 ⇒ 𝐴𝑓𝑡𝑒𝑟(𝑆𝑒𝑛𝑑(𝑋, 𝑚), 𝑎2))

with
(𝑋 ≠ 𝑌)
∧ (𝑛 ⊆ 𝑚, 𝑎2) (3.80)

𝜙[𝑃𝑎2]𝑋(𝜓 ⇒ ⟐(𝑆𝑒𝑛𝑑(𝑌, 𝑚) ∧ ⊙𝐹𝑟𝑒𝑠ℎ(𝑌, 𝑛)))
𝜙[𝑃𝑎2]𝑋(𝜓 ⇒ 𝐴𝑓𝑡𝑒𝑟(𝑆𝑒𝑛𝑑(𝑌, 𝑚), 𝑎2))

with
(𝑋 ≠ 𝑌)
∧ (𝑛 ⊆ 𝑚, 𝑎2) (3.81)

Temporal ordering of fresh values [18]. Given that 𝑋 ≠ 𝑌 and 𝑛 ⊆ 𝑚, 𝑎2 we need to show
that

𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛)[⟨𝑚⟩𝑃]𝑋(𝜙 ⇒ 𝐴𝑓𝑡𝑒𝑟(𝑆𝑒𝑛𝑑(𝑋, 𝑚), 𝑎2)) (3.82)
follows from

𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛)[⟨𝑚⟩𝑃]𝑋(𝜙 ⇒ ⟐𝑎2(𝑌)). (3.83)
Let 𝑅 = 𝑅0𝑅1𝑅2 be a run of 𝑄 where 𝑅1 matches ⟨𝑚⟩𝑃 under substitution 𝜎 with
𝑄, 𝑅0 ⊨ 𝐹𝑟𝑒𝑠ℎ(𝑋, 𝑛). Now, we need to show that

𝑄, 𝑅0𝑅1 ⊨ 𝜎(𝜙 ⇒ 𝐴𝑓𝑡𝑒𝑟(𝑆𝑒𝑛𝑑(𝑋, 𝑚), 𝑎2)). (3.84)

This holds trivially when 𝑄, 𝑅0𝑅1 ⊨ 𝜎(¬𝜙). When 𝑄, 𝑅0𝑅1 ⊨ 𝜎𝜙, it follows that
𝑄, 𝑅0𝑅1 ⊨ ⟐𝑎2(𝑌). Given the semantics defined in Equation 3.46 and Equation 3.52,
it also follows that Equation 3.84 is true.
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The temporal logic relies on a set of basic axioms. The axioms in Equation 3.85 and
Equation 3.86 state that when the once-operator is applied to two formulas combined
with, respectively, an and-operator and an or-operator, this statement can be trans-
formed to, respectively, the logical and and the logical or of the two separate formulas
under the once-operator [18]. Furthermore, Equation 3.87 shows that the previously-
operator and the inverse-operator can be swapped when they occur successively.

⟐(𝜙 ∧ 𝜓) ⇒ ⟐𝜙 ∧ ⟐𝜓 (3.85)
⟐(𝜙 ∨ 𝜓) ⇒ ⟐𝜙 ∨ ⟐𝜓 (3.86)

⊙¬𝜙 ⇔ ¬ ⊙ 𝜙 (3.87)

Finally, we have the temporal generalisation rule, which is shown in Equation 3.88
[18]. This rule states that when a formula 𝜙 is unconditionally true, the statement
¬⟐¬𝜙 is also true. Basically, this means that if something is always true, it cannot be
that it has been false at some point in the past.

𝜙
¬⟐¬𝜙

(3.88)

Honesty In the proof system of Datta et al. [18], the honesty rule is an essential in-
variant. Basically, it states that a honest principal will act as described by the protocol
and, thus, that properties concerning the protocol can be derived from the assump-
tion of honesty. For example, if Alice communicates with Bob and Bob sends her a
certain message, Alice can use information corresponding with the role Bob plays in
the protocol to deduce how he generated his reply.

As stated before, honest participants are those participants that act as defined by
the protocol [18]. In other words, the honest principals are those that have a role in
the protocol and execute the actions defined by that role. An attacker will try to break
the system and will thus perform unexpected actions in order to reach his intended
goal of unexpected behaviour.

A so-called basic step 𝐵 of a role 𝜌 in a certain protocol 𝑄 is a continuous segment of
actions of this role such that 𝐵 is the empty sequence, 𝐵 starts at the beginning of the
role and continues to the first receive-action, 𝐵 starts at a receive-action and ends at
the next receive-action, or 𝐵 starts at the last receive-action and continues to the end
of the role. We define the statement 𝐵𝑎𝑠𝑖𝑐𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝜌) as the set of all basic steps in 𝜌.

The honesty rule itself states that, if 𝜙 holds at the start of every role of protocol 𝑄
and is preserved by all its atomic sequences, then every honest principal in the pro-
tocol satisfies 𝜙 [18]. If we let 𝜌 ∈ 𝑄 mean role 𝜌 in protocol 𝑄, this can be formalised
as shown in Equation 3.89.

[]𝑋𝜙 ∀𝜌 ∈ 𝑄 ∶ (∀𝑃 ∈ 𝐵𝑎𝑠𝑖𝑐𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝜌) ∶ (𝜙[𝑃]𝑋𝜙))
𝑄 ⊢ 𝐻𝑜𝑛𝑒𝑠𝑡(�̂�) ⇒ 𝜙

(3.89)

43



3 Secure Composition

Composition As stated before, sequential composition is possible when the post-
condition of the first process is stronger than or equal to the precondition of the second
process [18, 17]. Furthermore, the environment invariants need to be weakened, by
combining the assumptions of the separate invariants. Finally, one needs to show that
the invariants of the first process hold for the second and vice versa. In the case of par-
allel composition, the first step can be omitted. These methods of composition can be
derived from the composition rules shown in this paragraph.

Γ ⊢ Θ
Γ ∪ Γາ ⊢ Θ

(3.90)

Equation 3.90, is known as the weakening rule [18]. This rule states that if Θ is
provable from the hypothesis Γ, it is also provable from a larger set of hypotheses that
contains Γ, i.e. Γ ∪ Γາ. The weakening rule is trivially sound, as Γ ⊢ Θ already implies
Γ ∪ Γາ ⊢ Θ.

Γ ⊢ 𝜙[𝑃]𝐴𝜓 Γ ⊢ 𝜓[𝑄]𝑋𝜃
Γ ⊢ 𝜙[𝑃𝑄]𝐴𝜃

(3.91)

Furthermore, Equation 3.91 gives the basis for sequential composition, by stating
that if the postcondition 𝜓 of the first service matches the precondition of the second
service, they can be composed safely, given that the invariant Γ holds in both separate
cases [18]. Please note that, in fact, the postcondition of the first service has to be
stronger than or equal to the precondition of the second service, due to the inference
rule in Equation 3.75. This inference rule can be proved as follows.

Sequential composition rule [18]. To prove the sequential composition rule as displayed
in Equation 3.91, we need to show that Γ ⊨ 𝜙[𝑃𝑄]𝐴𝜃 can be proven from Γ ⊨ 𝜙[𝑃]𝐴𝜓
and Γ ⊨ 𝜓[𝑄]𝐴𝜃 given a set of formulas Γ. If we assume a protocol 𝑇 and we have
𝑇 ⊭ Γ, this is trivially true. When we have 𝑇 ⊨ Γ, we have to show that 𝑇 ⊨ 𝜙[𝑃𝑄]𝐴𝜃
can be proven from 𝑇 ⊨ 𝜙[𝑃]𝐴𝜓 and 𝑇 ⊨ 𝜓[𝑄]𝐴𝜃. Let 𝑅 = 𝑅0𝑅1𝑅2 be a run of 𝑇 such
that 𝑅1 matches [𝑃𝑄]𝐴 under substitution 𝜎 such that formula 𝑇, 𝑅0 ⊨ 𝜎𝜙. Run 𝑅 can
be written as 𝑅 = 𝑅0𝑅າ

1𝑅ຳ
1 𝑅2, where 𝑅າ

1 matches [𝑃]𝐴 under substitution 𝜎 and 𝑅ຳ
1

matches [𝑄]𝐴 under substitution 𝜎. It follows that 𝑇, 𝑅0𝑅າ
1 ⊨ 𝜎𝜓 holds and, thus, that

𝑇, 𝑅0𝑅າ
1𝑅ຳ

1 ⊨ 𝜎𝜃 holds.

𝑃 ⊢ Γ 𝑄 ⊢ Γ
𝑃 ∘ 𝑄 ⊢ Γ

(3.92)

Finally, the last rule, shown in Equation 3.92, expresses that if the invariant Γ holds
for two individual services 𝑃 and 𝑄, it also holds for the parallel composition of those
services 𝑃 ∘ 𝑄. In this formula, the operator ∘ on two protocols 𝑃 and 𝑄 is defined to
return the concatenation of basic sequences of the roles in 𝑃 and 𝑄. The proof for this
inference rule is as follows.

Parallel composition rule [18]. To prove the parallel composition rule as displayed in
Equation 3.92, we need to show that 𝑃 ∘ 𝑄 ⊨ Γ can be proven from 𝑃 ⊨ Γ and 𝑄 ⊨ Γ.
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By definition of the honesty rule, as shown in Equation 3.89, every basic sequence of
a role in 𝑃 ∪ 𝑄 is either a basic sequence 𝐵 of 𝑃 ∪ 𝑄 or a concatenation of two basic
sequences in 𝑃 ∪ 𝑄. In the first case, it trivially follows that 𝑃 ∘ 𝑄 ⊨ 𝜓[𝐵]𝑋𝜙, and in the
second case, the same follows after the application of the sequential composition rule
of Equation 3.91.

From the discussed composition rules, we can deduce a general methodology for
composing two protocols. This methodology is shown in Theorem 3.3. In this meth-
odology, it can be seen that Equation 3.91 is only used in the case of sequential com-
position. Furthermore, Equation 3.92 is always used, as the protocols need to respect
the environment invariants of the other protocol.

Theorem 3.3 (General composition methodology [18]). The composition of two protocols
𝑄1 and 𝑄2 is as follows:

1. prove the security properties of the two separate protocols, i.e. show that 𝑄1 = 𝜙1[𝑃1]𝑋𝜓1
and 𝑄2 = 𝜙2[𝑃2]𝑋𝜓2 are valid;

2. identify the environment invariants Γ1 and Γ2 such that Γ1 ⊢ 𝑄1 and Γ2 ⊢ 𝑄2;

3. apply the weakening rule, as shown in Equation 3.90, such that we have Γາ = Γ1 ∪ Γ2;

4. when concerned with sequential composition, check if the postcondition 𝜓1 of 𝑄1 matches
the precondition 𝜙2 of 𝑄2 – possibly using the axiom in Equation 3.75 – and sequentially
compose 𝑄1 and 𝑄2 to 𝜙1[𝑃1𝑃2]𝑋𝜓2 using the inference rule in Equation 3.91 if they
match; and

5. prove that Γາ holds for both protocols by proving 𝑄1 ⊢ Γ2 and 𝑄2 ⊢ Γ1 and applying
Equation 3.92 afterwards.

Adverse and Insecure Protocols Besides the composition of secure protocols, with
the goal of creating one large protocol that preserves the security properties, insecure
or adverse protocols may be considered. An insecure protocol refers to a protocol that
breaks the security properties it was built for, e.g. an authentication protocol that au-
thenticates principals that are not authorised. On the other hand, an adverse protocol
is a result of a so-called chosen protocol attack [39]. This is a type of attack where a
very powerful attacker writes a protocol using the same key material that breaks the
security properties of the protocol under attack. It should be noted that such a chosen
protocol attack is theoretically possible on every protocol, but that it probably requires
a very powerful attacker and that there are no widely known canonical methods for
deriving such an adverse protocol.

In the context of this research, one can imagine that protocols that do not preserve
security properties on their own cannot be composed with other protocols that re-
quire that those security properties are satisfied. Furthermore, a protocol that intends
to break the security properties of a certain protocol cannot be composed with that
protocol, merely due to the fact that their invariants conflict in an unresolvable man-
ner.
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3.2 Secure Composition of Services
We will adapt the rules for the secure composition of protocols of Datta et al. [18],
which we discussed in Section 3.1, to service orientation, whereby the processes 𝑃
correspond with services 𝑆. Simply put, in a general composition every service 𝑆 can
be seen, in the context of the framework discussed in Section 3.1, as a role 𝜌 of a very
large protocol 𝑄 – please note the differences between services and protocols and the
architectures underneath those two still persist. Thus, we will see the execution of
a service as the execution of a process. It should be noted that such a service will
commonly be an atomic service. Nevertheless, there may be specific conditions under
which a composite service is perceived as if it were an atomic service. For example,
when a provider offers services that are composites in the internal infrastructure of
that provider.

This means that if we have Γ𝑆𝑖 ⊢ 𝜙𝑆𝑖𝑆𝑖𝜓𝑆𝑖 , we know that when the invariant Γ𝑆𝑖 is
satisfied the postcondition 𝜓𝑆𝑖 will hold when the precondition 𝜙𝑆𝑖 is true. Of course,
this is still under the assumptions, and thus the attacker model, of Datta et al. [18].
We will extend our adversarial model in Section 3.5.

Given that services can be seen as interfaces to a remote computing capability, a
service consists of an invocation with a set of parameters, the actual capability and
the result returned. Thus, if we have a service 𝑆 that is invoked using parameters
(𝑝0, … , 𝑝𝑛), runs actions 𝐴 and returns values (𝑟0, … , 𝑟𝑚), we would have [(𝑥)𝑃⟨𝑦⟩]𝑆 ,
where 𝑥 and 𝑦 are tuples used to. respectively receive the parameters and return the
results. In other words, before running the actions 𝑃 , the service receives the para-
meters into 𝑥, and afterwards, the service sends the results in 𝑦.

Service Compositions In order to prove the security of a service composition, we
can start with the proof of the smallest parts of this composition, and extent this proof
to include more elements. Following this technique, eventually we will have a proof of
the complete composition – or not, if the security properties are not satisfied. For this,
we can use the proving techniques for parallel and sequential compositions based on
the composition rules shown in Section 3.1.3.

Now, if we have a certain service composition, consisting of parallel and sequential
composed services. We can prove the security of this composition in several steps.
For a parallel composition we can follow the method of Theorem 3.4 and for sequen-
tial composition the method of Theorem 3.5. It should be noted that these theorems
are based on the general theorem for protocol composition, which can be found in
Theorem 3.3.

Theorem 3.4 (Parallel Composition [17]). To prove the parallel composition of two services
𝑆1 and 𝑆2:

1. prove the security of 𝑆1 and 𝑆2 separately, i.e. prove that 𝜙𝑆1𝑆1𝜓𝑆1 ⊢ Γ𝑆1 and 𝜙𝑆2𝑆2𝜓𝑆2 ⊢
Γ𝑆2 hold;

2. weaken the environment invariant of both services to Γ𝑆1 ∪Γ𝑆2 using the weakening rule
of Equation 3.90; and
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3. prove 𝜙𝑆1𝑆1𝜓𝑆1 ⊢ Γ𝑆1 ∪ Γ𝑆2 and 𝜙𝑆2𝑆2𝜓𝑆2 ⊢ Γ𝑆1 ∪ Γ𝑆2 , which can, following Equa-
tion 3.92, be simplified to proving 𝜙𝑆1 𝑆1𝜓𝑆1 ⊢ Γ𝑆2 and 𝜙𝑆2 𝑆2𝜓𝑆2 ⊢ Γ𝑆1 .

Theorem 3.5 (Sequential Composition [17]). To prove the sequential composition of two
services 𝑆1 and 𝑆2:

1. prove the security of 𝑆1 and 𝑆2 separately, i.e. prove that 𝜙𝑆1𝑆1𝜓𝑆1 ⊢ Γ𝑆1 and 𝜙𝑆2𝑆2𝜓𝑆2 ⊢
Γ𝑆2 hold;

2. weaken the environment invariant of both services to Γ𝑆1 ∪Γ𝑆2 using the weakening rule
of Equation 3.90;

3. prove that 𝜓𝑆1 is stronger than or equal to 𝜙𝑆2 , in order to allow sequential composition
to 𝜙𝑆1 𝑆1𝑆2𝜓𝑆2 ; and

4. prove 𝜙𝑆1𝑆1𝜓𝑆1 ⊢ Γ𝑆1 ∪ Γ𝑆2 and 𝜙𝑆2𝑆2𝜓𝑆2 ⊢ Γ𝑆1 ∪ Γ𝑆2 , which can, following Equa-
tion 3.92, be simplified to proving 𝜙𝑆1 𝑆1𝜓𝑆1 ⊢ Γ𝑆2 and 𝜙𝑆2 𝑆2𝜓𝑆2 ⊢ Γ𝑆1 .

Partially Ordered Multisets As we model service compositions as partially ordered
multisets (pomsets), we will broaden the discussed methods of compositing two ser-
vices to the verification of a complete service composition. Presume that we have a
pomset 𝑃 = [𝑉, Σ, ≤, 𝜇], that represents a service composition with services Σ and 𝑉
as individual invocations. To securely compose this service composition, we need to
show that any two service invocations 𝑣, 𝑤 ∈ 𝑉 can be composed in parallel. Addi-
tionally, for all two service invocations 𝑣, 𝑤 ∈ 𝑉 with 𝑣 ≤ 𝑤, we have to show that
sequential composition is possible. If we formalise this method of verifying a service
composition, we get Theorem 3.6.

Theorem 3.6 (Service Composition). Let pomset 𝑃 = [𝑉, Σ, ≤, 𝜇] be a service composition
consisting of services Σ, individual invocations 𝑉 , and ordering ≤. To prove the security of
this service composition, for every two 𝑣, 𝑤 ∈ 𝑉 :

1. prove that 𝜙𝑣𝑣𝜓𝑣 ⊢ Γ𝑣 and 𝜙𝑤𝑤𝜓𝑤 ⊢ Γ𝑤 hold;

2. apply Equation 3.90 such that Γ = Γ𝑣 ∪ Γ𝑤;

3. if 𝑣 ≤ 𝑤, prove that 𝜓𝑣 is stronger than or equal to 𝜙𝑤, or the other way around; and

4. prove 𝜙𝑣𝑣𝜓𝑣 ⊢ Γ𝑤 and 𝜙𝑤𝑤𝜓𝑤 ⊢ Γ𝑣.

Following the model of Pavlovic [58], we can transform the original cord spaces of
Datta et al. [18] to our pomset-based model. In the theory of Cervesato, Meadows and
Pavlovic [16], the reaction steps of cord spaces, which were discussed in Section 3.1.1,
are left for the introduction of an implicit ordering between send and receive actions.
In other words, in each run, every receive action (𝑥) has a chosen predecessor ⟨𝑡⟩ [59].
More formally, in a run of a service composition, each receive action gets assigned a
send action, such that receive action does not occur before the coupled send action.
This model of ordering originates from the model of Lamport [41].
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Opaque Services If we can assume that a honest service will take care of the first
step of both composition methods, we still have a problem raised by opaque services.
Namely, the fact that the first service needs to be proved to hold under the environ-
ment invariant of the second service. For an opaque service, it is not possible to make
this proof, as it requires looking inside the service – given that the invariants of the
two composed services are not equal. Therefore, we formulate Research Question 3.

Research Question 3. How can limitations raised by opaque services when applying
the secure composition technique of Datta et al. [17] be solved?

State Explosion Following our pomset-based view on services, which we discussed
in section 2.3, a service 𝑆 is an entity that has a precondition 𝜙𝑆 , a postcondition
𝜓𝑆 and an invariant Γ𝑆 , thus, a service forms its own cord 𝜙𝑆𝑆𝜓𝑆 under Γ𝑆 . These
services are partially ordered, such that services dependent on other services come
after their dependencies in a service composition.

Applying the composition proofs to the complete process, the set of pomsets, will
inevitably result in an explosion of states and, thus, in an explosion of proofs. Where
for a plain service composition there already is a set of proofs per part required, the
complete system needs a set of proofs per possible service composition, given the
partial ordering. This raises Research Question 4.

Research Question 4. How can the state explosion when applying the secure com-
position technique of Datta et al. [18] be prevented?

3.3 Security Properties and Predicates
As it is well known that security properties commonly are not preserved under com-
position or refinement [48, 52, 35, 73], we have to make sure that the security proper-
ties that we introduce do survive under composition. This requires that our security
properties are safety properties that can be used to satisfy safety invariants over ser-
vice traces, which we have built using pomsets [18]. Therefore, composition is possible
with these security properties within our framework.

Obviously, in our model, not all invariants will be composable. In these cases, it
should be impossible to derive a proof. For example, if we have an invariant stating 𝜙
and an invariant stating ¬𝜙, these cannot be combined. However, this does not mean
that our security properties cannot be composed in some cases, but merely that they
are used in contradictory manners.

In order to build compositionally safe properties, we will start with unfolding a
predicate based system for our model. In this model, services are annotated with pre-
conditions, postconditions, and invariants, which make use of constructs that enable
us to make claims about the data that is sent, received, or handled by the services.

As we build further upon the framework for secure composition of protocols of
Datta et al. [18], which we discussed in Section 3.1, the predicates that we will discuss
are also based upon the predicates in that framework. Therefore, we will focus on the
differences from and additions to this framework in this section.
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To start, the formula 𝐻𝑎𝑠(𝑆, 𝑥), which is shown in Definition 3.7, expresses that a
certain service 𝑆 has some information 𝑥 [18]. In this formula, possession of a piece
of information means that this service has access to this information, e.g. if 𝑆 can
only access it in encrypted form, it is not accessible. The semantics and proof system
surrounding the has-predicate are left unchanged.

Definition 3.7 (Has [18]). The annotation 𝐻𝑎𝑠(𝑆, 𝑡) states that service 𝑆 possesses term
𝑡, i.e. that service 𝑆 knows term 𝑡.

Freshness, denoted by 𝐹𝑟𝑒𝑠ℎ(𝑆, 𝑑) and defined in definition 3.8, means that the term
𝑑 is generated by service 𝑆 and has not been seen by any other service [43]. In other
words, no other service possesses this term and it is completely new to the service that
generated it. In cryptographic applications, this annotation can be used to describe
nonces and randomisation values. As with the has-predicate, the semantics and proof
system surrounding the fresh-predicate can be found in Section 3.1.

Definition 3.8 (Fresh [18]). The annotation 𝐹𝑟𝑒𝑠ℎ(𝑆, 𝑡) states that service 𝑆 generated
term 𝑡 freshly, i.e. this term has not been shared with any other service 𝑇 with 𝑆 ≠ 𝑇 .

Finally, we have honesty, which we already discussed in Section 3.1.3. As stated in
Definition 3.9, a honest participant acts as prescribed. In other words, if the service
description states which actions a service will perform and which messages it will
send, the service will do so if it is honest. An attacker, on the other hand, may perform
unexpected actions if this aids him in achieving his – probably malicious – goal.

Definition 3.9 (Honesty [18]). The annotation 𝐻𝑜𝑛𝑒𝑠𝑡(𝑆) states that the actions of ser-
vice 𝑆 are equal to those described in its definition.

Please note that a service that is defined to perform an unwanted action, is not dis-
honest. However, it will not be possible to compose this service such that this un-
wanted action is not performed. In such a composition, it is impossible to derive a
proof of security, as the requirement of not performing the unwanted action will con-
flict with the definition of the service that performs this action.

Commonly, security is concerned with the confidentiality, integrity and availabil-
ity of informations systems [7]. Of those terms, confidentiality regards the absence of
disclosure of information to unauthorised principals [71]. Integrity refers to the ab-
sence of improper system alterations. Availability concerns the readiness for correct
service.

In this paper, we will reason about both confidentiality and integrity. Therefore, we
will constitute security properties to capture those two aspects. Confidentiality will
be evaluated in terms of secrecy and integrity using authentication.

We do not concern availability, as we reason within a formalised model that the
non-determinism required to regard availability. Additionally, some availability as-
pects can be regarded out of scope, as they happen within the service. It should be
noted that this is also the reason why confidentiality and integrity have been specified
in terms of, respectively, secrecy and authentication. In practice, there are many scen-
arios thinkable which also influence the confidentiality or integrity of services, but fall
outside of the scope.
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Figure 3.1: Example of a service composition to illustrate non-interference

Secrecy Firstly, we have secrecy annotations. We will define a term to be secret
if only authorised principals have access to it [59]. In this report, we will tighten this
definition to authorised services, which allows for more fine grained control and com-
pliance with the uncoupled characteristic of services.

The well known notion of confidentiality of Smith [67] states that information from
high security variables should never flow into low security variables If we consider
this definition, one can understand that secret information should not leak on insecure
channels.

Please note that we do not use a definition of strong secrecy or non-interference.
Strong secrecy means that an attacker cannot observe any difference when a secret
value changes [11]. Non-interference originates from Goguen and Meseguer [28] and
means that, when two groups of people perform actions, what the second group sees
is not affected by the actions of the first group [7]. Both these security properties
relate to information flow analysis and seek to prevent that any detail about secret
information is leaked.

To illustrate why non-interference is not feasible in our framework, imagine that
we have a service composition consisting of three services: alpha, beta and gamma –
see Figure 3.1 for an illustration. Now, suppose that when running this composition,
based on a secret value, a choice is made to invoke either beta or gamma [71]. This
would break the property of non-interference, as we could deduce information about
the secret value from this run. However, this requires both reasoning about complete
compositions and breaking the uncoupled characteristic of services. Therefore, we
settle for a security property that requires that the actual value stays within authorised
hands.

A real world example of non-interference can be found in Figure 3.2. In this figure,
the dashed arrow represents a conditional invocation where the condition is specified
by the text under the line. This example shows a travel agency that uses a service for
payments. When a payment is successful, it will connect to another service to make
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Figure 3.2: Example of a service composition for a travel agency to illustrate non-
interference

any bookings. However, an outsider is able to observe whether a connection to the
booking service is made and, thus, able to deduce whether the payment was success-
ful. This could disclose information about the amount of money on your banking
account.

It should be noted that, commonly, security properties can be defined into two cat-
egories [35]. The first category considers properties that are based on the idea that if
𝑥 is a secret variable in a process 𝑃 , an adversary should not be able to distinguish
between processes 𝑃[𝑥/𝑑0] and 𝑃[𝑥/𝑑1], where 𝑥 is substituted with 𝑑0 in the first case
and 𝑑1 in the second case. The mentioned strong secrecy and non-interference prop-
erties fall into this category, which provides rather high security. However, as dis-
cussed, this category is very hard to compose, and commonly not composable at all.

The second category of security properties is the category of properties that require
that a secret variable is never leaked to an untrusted channel or variable [35]. More
specifically, no information from which the secret variable could be derived is to be
sent in the clear. Our property and, for example, the property of Smith [67] fall into
this category. This category finds its origin with the attacker model of Dolev and Yao
[22] and allows much easier for composition.

A formalisation of our secrecy-statement can be found in Definition 3.10, which
states that a term 𝑡 can be asserted to be secret using the predicate 𝑆𝑒𝑐𝑟𝑒𝑡((𝑆0, … , 𝑆𝑛), 𝑡).
In this predicate the services (𝑆0, … , 𝑆𝑛) constitute the authorised services. Following
the definition of secrecy, it is not allowed for other principals to possess secret values.
Therefore, Equation 3.93 states that if a service knows a secret value, he is one of the
authorised services.

⟐𝑆𝑒𝑐𝑟𝑒𝑡( ̄𝑆, 𝑛) ∧ ⟐𝐻𝑎𝑠(𝑆, 𝑛) ⇒ 𝑆 ∈ ̄𝑆 (3.93)
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Definition 3.10 (Secret terms). A term is secret if only authorised services have access
to it. The assertion 𝑆𝑒𝑐𝑟𝑒𝑡((𝑆0, … , 𝑆𝑛), 𝑡) means that term 𝑡 is secret and that all services
𝑆𝑖 for 0 ≤ 𝑖 ≤ 𝑛 are authorised to access it. Additionally, we have:

𝑆𝑒𝑐𝑟𝑒𝑡((𝑆0, … , 𝑆𝑛), 𝑡) = 𝑆𝑒𝑐𝑟𝑒𝑡(𝑆0, 𝑡) ∧ … ∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑆𝑛, 𝑡) (3.94)

Besides secret terms, we have public terms. As opposed to secret terms, every-
one can access a public term. A piece of data 𝑑 can be annotated to be public using
𝑃𝑢𝑏𝑙𝑖𝑐(𝑑), as described in Definition 3.11. When a term is neither defined secret nor
public, it defaults to being untyped. It should be noted that data may not change state
from secret to public or the other way around.

Definition 3.11 (Public terms). A term is public if all principles are allowed to access
it. The assertion 𝑃𝑢𝑏𝑙𝑖𝑐(𝑡) means that term 𝑡 is public.

It should be noted that both secrecy and being public are preserved over actions.
The preservation of secrecy is shown in Equation 3.95 and the persistence of the public-
assertion is shown in Equation 3.96.

𝑆𝑒𝑐𝑟𝑒𝑡(𝑆, 𝑛)[𝑎]𝑆𝑆𝑒𝑐𝑟𝑒𝑡(𝑆, 𝑛) (3.95)
𝑃𝑢𝑏𝑙𝑖𝑐(𝑛)[𝑎]𝑆𝑃𝑢𝑏𝑙𝑖𝑐(𝑛) (3.96)

All data that is sent over an untrusted channel will be rendered public by definition,
this is formalised in Equation 3.97. Thus, if I have a service that is called over an
untrusted channel with a certain parameter 𝑝, we have 𝑃𝑢𝑏𝑙𝑖𝑐(𝑝). Furthermore, all
public keys are expected to be public knowledge.

𝜙[⟨𝑚⟩]𝑋𝑃𝑢𝑏𝑙𝑖𝑐(𝑚) (3.97)

A secret variable cannot be public and a public value cannot be secret, which is
shown in, respectively, Equation 3.98 and Equation 3.99 . Due to the fact that all sent
variables are rendered public, if a secret variable 𝑠 is published, we will get a conflict,
as 𝑠 cannot be both secret and public. Therefore, this situation would be unprovable,
which is exactly what we want, as we pursue to prove protection of the confidentiality
of this variable.

𝑄, 𝑅 ⊨ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑆, 𝑛) ⇒ 𝑄, 𝑅 ⊨ ¬𝑃𝑢𝑏𝑙𝑖𝑐(𝑛) (3.98)
𝑄, 𝑅 ⊨ 𝑃𝑢𝑏𝑙𝑖𝑐(𝑛) ⇒ 𝑄, 𝑅 ⊨ ¬𝑆𝑒𝑐𝑟𝑒𝑡(𝑆, 𝑛) (3.99)

It should be noted that the predicate 𝐻𝑎𝑠𝐴𝑙𝑜𝑛𝑒(𝑋, 𝑛) defined in Equation 3.72 is
different from the secrecy assertion on two points. Firstly, the former is a predicate,
whereas the latter is an assertion. That means that the former is a logical formula
that can be evaluated, whereas the latter states a condition that may not be violated.
Another important difference is that secrecy may be widened to a group of services,
whereas only one service can be the sole possessor of information 𝑛.

52



3.3 Security Properties and Predicates

Authentication Secondly, we will discuss authentication. We will use the notion of
matching records of runs as notion of authentication [20, 9, 18], which states that two
entities 𝐴 and 𝐵 accept each other’s identities at the end of a run, when their records of
the conversation match. In other words, when every message sent is also received, and
when the records have the sent messages in equal order, the entities accept each other’s
identity. Furthermore, in the original description of this notion, Diffie, Oorschot and
Wiener [20] note that any public key part of the authentication process will be tied to
the accepted identity.

Another possible formalisation of authentication would have been the notion of cor-
responding statements [74, 29], where authentication is specified using a beginning
and an ending statement. The beginning statement marks when the authentication
process is started and the ending statement marks when the authentication is per-
formed. In this system, the entities authenticate each other when for every beginning
statement there has been at least one matching closing statement. Furthermore, if re-
play attacks need to be prevented, every beginning statement has to be matched to
one and only one ending mark. However, this notion does not allow for clean mod-
ularisation, due to the fact that the beginning and ending marks get scattered over
services and are only verifiable over the complete block of services and not the atomic
services. Therefore, this notion is not viable for our research.

Datta et al. [17] use a predicate which states that a certain set of actions happened in
a certain order to provide for the matching records of runs notion of authentication.
In other words, they use temporal logic expressed through the statement 𝐴𝑓𝑡𝑒𝑟(𝐴1, 12)
and the statement 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑎1, … , 𝑎𝑛), which we discussed in Section 3.1.2. If a
principal 𝐴 is sure that a set of actions happened in a certain order, he can be sure of
the authentication of those statements.

The predicate for temporal ordering can also be used in a service oriented system.
As stated before, communication over the network normally happens at two points:
the service invocation and the returning of the results. For example, when we have
a service 𝑆 that invokes a service 𝑇 with parameter 𝑝 which results in the return of
variable 𝑟, we would have the cord shown in Equation 3.100 for 𝑆 and the one shown
in Equation 3.101 for 𝑇 . It can be seen that the service consumer sends the parameters
⟨𝑝⟩ and receives the result (𝑟), whereas the service provider receives the parameters
(𝑝), executes its capabilities 𝑃𝑇 and sends the result ⟨𝑟⟩. This example composition is
shown in Figure 3.3.

[(𝑚𝑆0)𝑃𝑆0⟨𝑝⟩(𝑟)𝑃𝑆1⟨𝑚𝑆1⟩]𝑆 (3.100)
[(𝑝)𝑃𝑇 ⟨𝑟⟩]𝑇 (3.101)

If there was an authentication performed between the services 𝑆 and 𝑇 , the post-
condition for service 𝑆 would be of the form shown in Equation 3.102. Please note that
this postcondition does not constitute a formal authentication, but merely an example
of how the temporal ordering would be asserted.
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... ...

𝑆
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𝑇

Figure 3.3: Example of a service composition to illustrate invocation

𝜓𝑆 = 𝐻𝑜𝑛𝑒𝑠𝑡( ̂𝑇 )
⇒ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑆𝑒𝑛𝑑(𝑆, 𝑝), 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑇, 𝑝), 𝑆𝑒𝑛𝑑(𝑇, 𝑟), 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑆, 𝑟)) (3.102)

Cryptography In our framework, we also use cryptography. This provides one of
the basic building blocks to realising secrecy or authentication within service compos-
itions. Cryptography can be seen as a dependency for the realisation of the security
properties that we discussed.

In their framework, Datta et al. [18] do not really differentiate between public key
and symmetric key cryptography. Although they really only discuss public key cryp-
tography, symmetric key cryptography would be the result of stating that 𝐾 = 𝐾−1 for
some cryptographic key 𝐾 . In other words, by defining the encryption and decryption
key to be equal and, thus, symmetric.

The syntax, semantics and proof system surrounding cryptography can be found
in Section 3.1. This section explicitly discusses public key cryptography and crypto-
graphic signing. As stated before, we have symmetric key cryptography whenever
𝐾 = 𝐾−1 holds. It should be noted that the public key is always expected to be known
by everyone. Additionally, secret keys and symmetric keys are secret, whereby secret
keys are commonly only known by the owner of the key and symmetric keys by the
authorised parties.

3.4 Example Cases
To illustrate the proof system, we will discuss some examples. Specifically, we will
reason about communicating secrets in a service oriented world and authenticating
to a service. The former of those two will be discussed in Section 3.4.1 and the latter
in Section 3.4.2.

In these examples, we will use 𝑝 and 𝑟 to, respectively, describe the ingoing para-
meters and the outgoing results of a service. Thus, if a service 𝑆 consists of actions
𝑃 , we would have [(𝑝)𝑃⟨𝑟⟩]𝑆 . Additionally, we will use the symbols we already intro-
duced to describe services: namely, 𝜙 for preconditions, 𝜓 for postconditions, and Γ
for invariants.
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....

secure_echo

Figure 3.4: A secure echo service

3.4.1 Sending Secrets
Suppose we have a service that securely echoes your message. This service, which is
illustrated in Figure 3.4, retrieves any message encrypted with his public key and re-
turns the same message encrypted with the public key of the sender. If we assume that
this service keeps the secret key 𝐾−1

𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 secret and the original invoker of the ser-
vice does the same, we can prove that this service keeps the message secret. Thus, we
have, where 𝐶 is the service consumer, the expected input shown in Equation 3.103
and the output shown in Equation 3.104, which results in the cord shown in Equa-
tion 3.105. Furthermore, the precondition and the postcondition are defined to be
true, and the invariant as shown in Equation 3.106.

{∣ 𝑚 ∣}𝐾𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 (3.103)

{∣ 𝑚 ∣}𝐾𝐶 (3.104)
[(𝑥)(𝑥/{∣ 𝑚 ∣}𝐾𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 )⟨{∣ 𝑚 ∣}𝐾𝐶 ⟩]𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 (3.105)

Γ𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 = 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝐾−1
𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜) ∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝐶, 𝐾−1

𝐶 )
∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝑚) ∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝐶, 𝑚)

(3.106)

Now, if we add a service that invokes the secure echo service with an encrypted
message, we would have a secure composition. This new composition is shown in
Figure 3.5. This service can be described using the cord shown in Equation 3.107. As
with the service secure_echo, this service does not have any precondition or postcondi-
tion. Furthermore, the invariant is defined as shown in Equation 3.108.

[⟨{∣ 𝑚 ∣}𝐾𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜⟩]𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 (3.107)

Γ𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝐾−1
𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝐾−1
𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝑚) ∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒}, 𝑚)
(3.108)

Showing that this composition still guarantees secrecy can be done using some lo-
gical steps. When we replace 𝐶 in Γ𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 with 𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, we actually get the
same assertion, as shown in Equation 3.110. In addition, since there are no postcondi-
tions or preconditions specified, the sequential composition fits easily. For complete-
ness, the resulting cord for 𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 is shown in Equation 3.109.
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secure_echo

Figure 3.5: The secure echo service of Figure 3.4 in a composition

... .. ...

send_message

.

secure_echo

.

decrypt_message

Figure 3.6: The secure echo service of Figure 3.4 in an insecure composition

[(𝑥)(𝑥/{∣ 𝑚 ∣}𝐾𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 )⟨{∣ 𝑚 ∣}𝐾𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒⟩]𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 (3.109)

Γ𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 = 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝐾−1
𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝐾−1
𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝑚) ∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑚)
(3.110)

To make things interesting, we introduce a decryption service that shares its keypair
with the 𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 service, as illustrated in Figure 3.6 – please note that this should
not be done in most cases. Additionally, we will also extend the secrecy of the mes-
sage 𝑚 to include this service. This service, decrypts any message that it receives and
returns the decrypted message, i.e. it announces the messages.

Intuitively, the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 service breaks the confidentiality of the message 𝑚.
However, to show this formally, we will have to specify the service first. The input
parameter of this service is given in Equation 3.111 and the result is shown in Equa-
tion 3.112. In combination, this gives the cord shown in Equation 3.113. Furthermore,
the invariant for 𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is defined in Equation 3.114.

{∣ 𝑚 ∣}𝐾𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 (3.111)

𝑚 (3.112)
[(𝑥)(𝑥/{∣ 𝑚 ∣}𝐾𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)⟨𝑚⟩]𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 (3.113)

Γ𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝐾−1
𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝐾−1
𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒}, 𝐾−1
𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

(3.114)
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To compose these services, we have to apply the weakening rule of Equation 3.90
first on both sides. Weakening Γ𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜 = Γ𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 using Γ𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is no
problem, as we assumed that 𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 willingly share their
keypair. The other way round, we have to add the assertion of Equation 3.115 to the
invariant of 𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒.

𝑆𝑒𝑐𝑟𝑒𝑡(𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑚) (3.115)

However, this service has an implicit postcondition that makes 𝑚 public, as it ex-
ecutes the action ⟨𝑚⟩ which, when Equation 3.97 is applied to it, yields 𝑃𝑢𝑏𝑙𝑖𝑐(𝑚).
On the other hand, we also have the condition shown in Equation 3.116 that yields
¬𝑃𝑢𝑏𝑙𝑖𝑐(𝑚), when Equation 3.98 is combined with it. This, of course, results in a con-
flict, as illustrated in Equation 3.117, which makes it impossible to derive a proof.
Therefore, this composition does not preserve secrecy.

𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑐𝑢𝑟𝑒_𝑒𝑐ℎ𝑜, 𝑚)
∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑠𝑒𝑛𝑑_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑚)
∧ 𝑆𝑒𝑐𝑟𝑒𝑡(𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒, 𝑚)

(3.116)

𝑃𝑢𝑏𝑙𝑖𝑐(𝑚) ∧ ¬𝑃𝑢𝑏𝑙𝑖𝑐(𝑚) (3.117)

It should be noted that, in this example, we have assumed honest services. By hon-
est, we mean that services act as they are specified. Therefore, the introduction of
dishonest services in the attacker model, as done in Section 3.5, adds a new dimen-
sion of complexity. This calls for the ability to verify the stated proof and assertions
of a service, as the possibility of unexpected behaviour means a deviation from these
statements. If a service keeps to its definition, the specified proof system is sufficient
for secure composition.

3.4.2 Authenticating Services
As we discussed in Section 3.3, for authentication we follow the notion of matching
runs of Diffie, Oorschot and Wiener [20]. This means that, in practice, authentication
always requires multiple steps and, thus, the use of more than one service invocation.
Therefore, authentication in itself will break with the properties of statelessness and
uncoupledness.

To cope with the two-steps requirement of authentication, we will see the service
composition that constitutes authentication as an atomic service after the security has
been proven. This way, the composed service does, once again, comply with the prop-
erties, when observed from the new viewpoint.

Lets assume we have two services that want to authenticate against each other,
namely alpha and beta. For this, they use a service oriented adoption of a simple pro-
tocol, where they sign nonces to prove their identity. This is illustrated in Figure 3.7.
Please note that, in this figure, 𝑎𝑙𝑝ℎ𝑎 invokes 𝑏𝑒𝑡𝑎 two times, but does so sequentially
– hence the extra arrow between 𝑎𝑙𝑝ℎ𝑎 and the second appearance of 𝑏𝑒𝑡𝑎.
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Figure 3.7: A service composition for authentication

The messages sent in the composition start with a nonce 𝑛 as parameter to 𝑏𝑒𝑡𝑎 that
returns this nonce signed with another nonce 𝑚 and both names, i.e. the return mes-
sage of 𝑏𝑒𝑡𝑎 is {∣ (𝑛, 𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1

𝑏𝑒𝑡𝑎
. The second invocation of 𝑏𝑒𝑡𝑎 contains the

nonce generated by 𝑏𝑒𝑡𝑎 and the names signed by 𝑎𝑙𝑝ℎ𝑎 and results in a final signa-
ture on a freshly generated token 𝑎 and the names. Combined, this gives for 𝑎𝑙𝑝ℎ𝑎
the cord shown in Equation 3.118, for the first run of 𝑏𝑒𝑡𝑎 the cord displayed in Equa-
tion 3.119, and for the second run the cord written in Equation 3.120.

[(𝜈𝑛)⟨𝑛⟩(𝑥)(𝑥/{∣ (𝑛, 𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑏𝑒𝑡𝑎

)
⟨{∣ (𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1

𝑎𝑙𝑝ℎ𝑎
⟩(𝑧)(𝑧/{∣ (𝑎, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1

𝑏𝑒𝑡𝑎
)]𝑎𝑙𝑝ℎ𝑎

(3.118)

[(𝑛)(𝜈𝑚)⟨{∣ (𝑛, 𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑏𝑒𝑡𝑎

⟩]𝑏𝑒𝑡𝑎 (3.119)

[(𝑥)(𝑥/{∣ (𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑎𝑙𝑝ℎ𝑎

)(𝜈𝑎)⟨{∣ (𝑎, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑏𝑒𝑡𝑎

⟩]𝑏𝑒𝑡𝑎 (3.120)

As the goal of this service composition is to authenticate 𝑎𝑙𝑝ℎ𝑎 with 𝑏𝑒𝑡𝑎, the post-
condition should reflect this. Given the notion of matching records of runs, this is
done using temporal ordering, as shown by the postcondition for 𝑎𝑙𝑝ℎ𝑎, which is dis-
played in Equation 3.121. To show the correctness of this formula, we will discuss its
proof.

𝜓𝑎𝑙𝑝ℎ𝑎 = 𝐻𝑜𝑛𝑒𝑠𝑡(𝑏𝑒𝑡𝑎) ⇒ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑁𝑒𝑤(𝑎𝑙𝑝ℎ𝑎, 𝑛),
𝑆𝑒𝑛𝑑(𝑎𝑙𝑝ℎ𝑎, 𝑛), 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑏𝑒𝑡𝑎, 𝑛),

𝑁𝑒𝑤(𝑏𝑒𝑡𝑎, 𝑚), 𝑆𝑒𝑛𝑑(𝑏𝑒𝑡𝑎, {∣ (𝑛, 𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑏𝑒𝑡𝑎

),
𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑎𝑙𝑝ℎ𝑎, {∣ (𝑛, 𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1

𝑏𝑒𝑡𝑎
),

𝑆𝑒𝑛𝑑(𝑎𝑙𝑝ℎ𝑎, {∣ (𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑎𝑙𝑝ℎ𝑎

),

𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑏𝑒𝑡𝑎, {∣ (𝑚, 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎) ∣}𝐾−1
𝑎𝑙𝑝ℎ𝑎

)) (3.121)
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Postcondition 𝑎𝑙𝑝ℎ𝑎. We have the cord shown in Equation 3.118. The first action, (𝜈𝑛),
combined with the axioms in Equation 3.54, Equation 3.85 and Equation 3.58 gives us:

[(𝜈𝑛)]𝛼𝐹𝑟𝑒𝑠ℎ(𝛼, 𝑛) ∧ ⟐𝑛𝑒𝑤(𝛼, 𝑛)[⟨𝑛⟩]𝛼⟐𝑆𝑒𝑛𝑑(𝛼, 𝑛)
[({∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1

𝛽
)]𝛼⟐𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1

𝛽
)

[({∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

/{∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

)]𝛼⟐𝑉𝑒𝑟𝑖𝑓𝑦(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

)

[⟨{∣ (𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛼

⟩)]𝛼⟐𝑆𝑒𝑛𝑑(𝛼, {∣ (𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛼

)
[({∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1

𝛽
)]𝛼⟐𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝛼, {∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1

𝛽
)

[({∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1
𝛽

/{∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1
𝛽

)]𝛼⟐𝑉𝑒𝑟𝑖𝑓𝑦(𝛼, {∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1
𝛽

). (3.122)

Please note that 𝛼 and 𝛽 are used to respectively describe 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎. Additionally,
when we apply Equation 3.73 to the first part of this equation, this part becomes:

[(𝜈𝑛)]𝛼𝐹𝑟𝑒𝑠ℎ(𝛼, 𝑛) ∧ ⟐𝑛𝑒𝑤(𝛼, 𝑛)[⟨𝑛⟩]𝛼¬𝐹𝑟𝑒𝑠ℎ(𝛼, 𝑛) ∧ ⟐𝑆𝑒𝑛𝑑(𝛼, 𝑛). (3.123)

After we apply the temporal ordering axioms in Equation 3.78 and Equation 3.79, we
get the following suffix:

𝐻𝑜𝑛𝑒𝑠𝑡(𝛽) ⇒ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑁𝑒𝑤(𝛼, 𝑛), 𝑆𝑒𝑛𝑑(𝛼, 𝑛), 𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

),

𝑉𝑒𝑟𝑖𝑓𝑦(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

), 𝑆𝑒𝑛𝑑(𝛼, {∣ (𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛼

),

𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝛼, {∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1
𝛽

), 𝑉𝑒𝑟𝑖𝑓𝑦(𝛼, {∣ (𝑎, 𝛼, 𝛽) ∣}𝐾−1
𝛽

)). (3.124)

Of course, we are allowed to leave out parts of this, as long as the order is not affected.
Thus, we can get:

𝐻𝑜𝑛𝑒𝑠𝑡(𝛽) ⇒ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐼𝑛𝑂𝑟𝑑𝑒𝑟(𝑁𝑒𝑤(𝛼, 𝑛), 𝑆𝑒𝑛𝑑(𝛼, 𝑛),
𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1

𝛽
), 𝑆𝑒𝑛𝑑(𝛼, {∣ (𝑚, 𝛼, 𝛽) ∣}𝐾−1

𝛼
)). (3.125)

Given Equation 3.69 and Equation 3.75, we can put ¬⟐𝐹𝑟𝑒𝑠ℎ(𝛼, 𝑛) at the end of the
cord. Furthermore, due to the inability to forge signatures, as shown in Equation 3.63,
we know that:

𝐻𝑜𝑛𝑒𝑠𝑡(𝛽) ∧ ⟐𝑉𝑒𝑟𝑖𝑓𝑦(𝛼, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

)

⇒ ∃𝛽 ∶ (∃𝑙 ∶ (⟐𝑆𝑒𝑛𝑑(𝛽, 𝑙) ∧ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑙, {∣ (𝑛, 𝑚, 𝛼, 𝛽) ∣}𝐾−1
𝛽

))) (3.126)

Through the honesty rule, as defined in Equation 3.89 and the inference rules in Equa-
tion 3.74 through Equation 3.75, we can deduced that this signature was sent accord-
ing to the service description. Furthermore, Equation 3.80 and Equation 3.81 show
us that any actions using a freshly generated nonce have to have happened after it
was made public. Thus, any sending by 𝛽 has to have happened in the correct or-
der. Applying this knowledge to the ordering we already found, we can conclude the
postcondition as shown in Equation 3.121.
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3.5 On Adversaries
Although we already discussed our formal model for the secure composition of ser-
vices including properties of the attacker in Section 3.1, Section 3.2 and Section 3.3, we
will discuss the attacker model more elaborately. In addition, we will consider special
cases raised by services that do not occur when securely composing protocols.

In order to prove any security property, a clear, consistent and complete attacker
model is necessary. Otherwise, one does not know against what the system is se-
cured. Even more extreme, without an attacker, anything is secure. This is reflected
in Research Question 5.

Research Question 5. What attacker model do we need to reflect all the challenges
specific to the secure composition of services?

As already noted, services are more complex than protocols, but still make use of
them. Therefore, attackers in a service oriented model have the properties attributed
to the attacker of Dolev and Yao [22], but are also more capable. Those properties are:

1. the attacker can obtain any message send between two services;

2. the attacker is a legitimate node in the network; and

3. the attacker will have the opportunity to be a receiver to any user 𝐴.

In our context, being a legitimate node in the network does not only mean that
the attacker can initiate a conversation with any service in the system, but also that
the attacker can deploy as many services as he likes. Furthermore, following both
property 2 and property 3, he is able to imitate a service and, for example, perform a
man-in-the-middle attack.

An example of a more complex attack would be when a malicious service poisons
other services, by returning different results on the same request depending on where
it originates. This way, scraping services could be fooled such that they will return
wrong results. In other words, services keep state over time and share this state with
the other services deployed by the same agent.

Suppose we have an automated stock trading system that is implemented using
service orientation. An attacker will not be restricted to the standard attacks of eaves-
dropping, altering messages or posing as a legitimate node, but can also try to influ-
ence those services that give information on the stock indexes. Since these services are
active state maintaining nodes in the service oriented architecture (SOA), this could
influence all traders.

Additionally, an attacker may be able to compromise services, through social engin-
eering when it is a human agent or through conventional hacking when it is a software
agent. This could lead to a service leaking information – comparable to property 1,
with the additional possibility to read data encrypted for the compromised service –
or the service redirecting to a rogue service – comparable to property 3. However, this
is out of scope, as it would require modelling the inner workings of the services.
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To return to the example of stock trading, in high frequency trading systems, stock
options are traded rapidly based on automated event watchers. Suppose that such
a system is built from services that scrape news, stock information, and other com-
parable information. In that case, a competing trader has a lot to gain by controlling
several event generating channels, such as those news or stock information channels,
and feeding the trading agents of the competition slightly misleading information.
This would be a novel attack, made possible by the concept of service orientation.

In addition to the described novel attack case, traditional attacks from the world of
protocols also apply. For example, one may still want to try to eavesdrop on or tamper
with messages, which is a viable attack scenario. Therefore, we can see a combination
of the problems of authentication – integrity – and secrecy – confidentiality – under
composition in an uncoupled world, with other problems, such as the issue of trust.
Furthermore, the described attack of misleading competitors does not only carry a
trust issue, but also contains the problem of the Byzantine generals [42], which comes
down to the problem of having dishonest nodes in your system.
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4 The Need for Trust
Up to this point, most cases we discussed assumed honest services. This, of course,
simplifies the process, and thereby helps us taking small steps instead of one large
jump. Nevertheless, the real world also contains dishonest services, which already
led to Research Question 3.

However, besides looking in the direction of coping with opaque services for solu-
tions to the problem of possible dishonesty, we will also consider trust. In addition,
trust is also needed to cope with the uncoupled nature, due to the lack of prior com-
munication or knowledge. As trust is an ambiguous term that is under lively debate,
we will keep our reasoning on a mathematical and technical level [71].

As we already discussed in Section 3.5, our attacker is more capable than the tradi-
tional attacker of Dolev and Yao [22], which leads to additional attack scenarios. Espe-
cially what Pavlovic [56] calls the paradox of trust becomes apparent in the described
issues, which shows us that if someone has a good reputation it is not necessarily a
good decision to award high trust to that person. This paradox states that trust is not
transferable, but we do need to transfer trust in order to reason about it. For example,
the wife of a Mafioso may trust her husband very much. However, when someone
trusts this woman and trust were transferable, this person would trust the Mafioso,
which is, for obvious reasons, not a very good idea.

The discussed problems of dishonesty and opaque services gives us reason to for-
mulate Research Question 6 and Research Question 7. Please note that the problem
of the Byzantine generals will be explained further in Section 4.3.

Research Question 6. How can we implement trust in our model, thereby keeping in
mind the paradox of trust of Pavlovic [56]?

Research Question 7. How can we apply solutions for the problem of the Byzantine
generals of Lamport, Shostak and Pease [42] to compensate for dishonest participants?

4.1 Implementing Trust
To reason about trust, we will consider the definition of trust from Verberkt [71], which
is shown in definition 4.1. This definition expresses that trust is an unique relation
between two persons, in which one expresses trust in the other concerning a certain
property. For example, an employee could trust his employer to pay out his salary at
the end of every month.

Definition 4.1 (Trust and distrust [71]). Trust is a directed relation between a trustor
𝐴 and trustee 𝐵 concerning some property 𝑃 . It can be expressed as a probabilistic
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value 𝑡, with 0 ≤ 𝑡 ≤ 1, and can be written as a quadruple 𝑇𝑟𝑢𝑠𝑡𝑠(𝐴, 𝐵, 𝑃, 𝑡). Distrust is
defined equally.

In the definition of trust, it can be seen that trust is described using a probabilistic
value. As the degree of trust persons have in other persons varies from very little to a
lot, this enables us to describe the various degrees of trust [46]. Additionally, it enables
us to apply probabilistic reasoning to our model of trust.

In order to embed the notion of trust in our model of services, we can augment our
system with a network of trust. Thus, we add a set of trust relations 𝑇 and a set of
distrust relations 𝐷 over the services Σ concerning the validity of the annotations 𝜙,
𝜓 and Γ. Thus, for two services 𝑆𝑖 and 𝑆𝑗 with 𝑖 ≠ 𝑗, Equation 4.1 shows a logical
annotation of service 𝑆𝑗 . Service 𝑆𝑖 uses this to express a trust of 𝑡 in 𝑆𝑗 , as shown in
Equation 4.2.

Θ𝑆𝑗 = Γ𝑆𝑗 ⊢ 𝜙𝑆𝑗 𝑆𝑗𝜓𝑆𝑗 ) (4.1)

𝑇𝑟𝑢𝑠𝑡𝑠(𝑆𝑖, 𝑆𝑗 , Θ𝑆𝑗 , 𝑡) with 0 ≤ 𝑡 ≤ 1 (4.2)

Since we have defined honesty in our formal model, we can generalise this further
to the statement shown in Equation 4.3. This predicate shows a trust of 𝑆𝑖 in the hon-
esty of 𝑆𝑗 , which means that 𝑆𝑖 has an expectation of 𝑡 that 𝑆𝑗 will act as defined in
its service description. As Θ𝑆𝑗 , as stated in Equation 4.1, is part of this description,
this can be used for generalisation. Therefore, we can define our predicate of trust as
shown in Definition 4.2.

𝑇𝑟𝑢𝑠𝑡𝑠(𝑆𝑖, 𝑆𝑗 , 𝐻𝑜𝑛𝑒𝑠𝑡(𝑆𝑗), 𝑡) with 0 ≤ 𝑡 ≤ 1 (4.3)
Definition 4.2 (Trust predicate). The statement 𝑇𝑟𝑢𝑠𝑡(𝑆, 𝑇, 𝑡) means that service 𝑆 trusts
𝑇 to be honest with a confidence value of 𝑡. In other words, 𝑆 expects 𝐻𝑜𝑛𝑒𝑠𝑡(𝑇) to be
true with a probability of 𝑡.

However, the discussed notion of trust and accompanying predicates only add dir-
ect trust relations, which need to be built separately for every two parties that want
to trust each other. Commonly, this is done using reputation-based infrastructures or
using a certificate-based architecture. In the first case, reputation refers to the com-
mon opinion of the trustworthiness of a certain node in the network. The second type
refers to the use of certification by trusted authorities that have assessed the trustwor-
thiness of a certain party.

4.1.1 Certification
One of the most well known examples of certificates used to generate trust can be
found with X.509 [4, 5]. This refers to the public key infrastructure (PKI) used by,
amongst others, transport layer security (TLS) for secure communication on the Inter-
net. A so-called PKI is an infrastructure that is used to generate and transfer trust in
public keys. In this combination with TLS, it is used to constitute trust in the public
key of the party a certain user is trying to communicate with.
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X.509 and Transport Layer Security Suppose that you want to communicate se-
curely with a certain webshop. To do this, TLS is the designated protocol. This pro-
tocol, which is the most common protocol for secure communication on the Internet,
uses cryptography to encrypt and/or sign the messages that pass between two end-
nodes in a specific communication path. However, as it is built on public key crypto-
graphy, it requires the use of the public key of this webshop.

In order to be able to trust that the public key you have in front of you is in fact the
public key of the digital shop you are trying to communicate with, a PKI is needed.
This infrastructure generates trust using certificates. Your computer uses this trust to
assure itself that the public key is correct and to enable you to check the details.

In the discussed example, a certificate binds an identity to a public key. For example,
it binds a certain webshop that can be found using a certain uniform resource locator
(URL) to a public key. This certificate is issued by a trust authority, which is a trusted
third party that is supposed to check the details and whether the public key indeed
belongs to them. It should be noted that the certification authority makes a certificate
by means of a cryptographic signature using its secret key on the data that needs to
be authenticated, i.e. the details of the webshop and its public key.

Hierarchical Public Key Infrastructures To give more background on the concept
of PKIs, the PKI behind X.509 is a hierarchical one [44]. This means that there is a
root certificate authority, which everyone is supposed to trust. This authority issues
certificates to sub-authorities. Eventually, at the end of this chain, there is a certificate
authority that issues the certificates to certify a public key to be used in, for example,
TLS.

An example of a hierarchical PKI is illustrated in Figure 4.1. In this illustration, the
orange nodes (𝐶𝐴0 through 𝐶𝐴3) represent the certification authorities and the purple
ones (𝐶1 through 𝐶4) depict the certificates. Thus, certificate 𝐶3 is issued by 𝐶𝐴3 who
is certified by 𝐶𝐴1 who is certified by 𝐶𝐴0 who should be trusted by everyone.

The hierarchical system requires any node in the trust-network to trust the root
certificate authority – 𝐶𝐴0 in Figure 4.1. The position of certificate authorities is the
position of a trusted third party. In other words, they pose themselves as an objective
party that makes good decisions about the trustworthiness of nodes after performing
thorough checks.

Service Oriented Applications In our model, we need to ensure the trust in the
honesty of a certain service. A certification-based model would mean that we invent
a trusted third party, which takes it upon itself to assess the honesty of services. After
doing this assessment, the authority is able to publish a certificate that acknowledges
the results. For example, such a certificate could state that the honesty of service 𝑆 is
believed to be verified up to a certain level, which can be expressed using the confid-
ence value 𝑡 that is part of the trust statement.

An infrastructure for the certification of services could be built comparable to how
infrastructures for the auditing of organisations or banks are constructed. However,
instead of issuing formal documentation to the principal that has been audit, e.g. the
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Figure 4.1: A hierarchical public key infrastructure

supervisory board or the directors of the company providing the service under audit,
a cryptographic certificate is issued and used in a PKI.

4.1.2 Reputation
A practical example of a reputation-based system can be found with Google’s PageR-
ank algorithm [56, 14]. This algorithm is used to calculate the reputation of websites
based on the links to that page, which one can see as expressions of trust. Thus, a
reputation score is built, which is commonly used by people to evaluate their trust in
the website.

In a reputation-based trust-network, all nodes in the network are able to make a
statement about the supposed trustworthiness of a certain node. These values are
used to compute the reputation that node has. A common way to do this is using a
weighted average. In this case, the reputation values are weighted based upon the
reputation of those that expressed this statement about the trustworthiness of the
node under assessment.

Toy Example To illustrate a simple reputation infrastructure, suppose the network
shown in Figure 4.2. In this figure, the arrows represent the statements the nodes
made about each others trustworthiness, which is expressed using the probabilistic
value displayed above those arrows. Thus, 𝛼 expressed with a confidence of 0.8 that
𝛽 is trustworthy.

In this example, we will compute the reputation as a weighted average using the
reputation of the expressing nodes as weight. This results in Equation 4.4 for the repu-
tation of 𝛼, Equation 4.5 for the reputation of 𝛽, and Equation 4.6 for the reputation
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Figure 4.2: A reputation infrastructure

of 𝛾 . These formulas show us that 𝑟𝛼 is, in fact, 0.7 and 𝑟𝛾 is 0.4. Therefore, the repu-
tation of 𝛽 is equal to 0.8 ⋅ 0.7 + 0.9 ⋅ 0.4 = 0.92 divided by 0.7 + 0.4 = 1.1, which is
approximately 0.84.

𝑟𝛼 =
0.7 ⋅ 𝑟𝛽

𝑟𝛽
(4.4)

𝑟𝛽 =
0.8 ⋅ 𝑟𝛼 + 0.9 ⋅ 𝑟𝛾

𝑟𝛼 + 𝑟𝛾
(4.5)

𝑟𝛾 = 0.4 ⋅ 𝑟𝛼
𝑟𝛼

(4.6)

Normalisation As this is a very simplistic example of a reputation architecture, one
can understand that it suffers from some deficiencies. Most noteworthy is the fact that
it lacks any normalisation. For example, if a node only gets reputation from one node
and this reputation is fairly high, this node becomes a high reputation score, although
it probably has not earned it. Therefore, scores need to be normalised in a way that
having little arrows means that the reputation value will also stay within a certain
conservative interval.

A possible method for normalisation is adding a value of 0.5 with weight 1 to every
reputation score. This way, reputations will start out around 0.5, i.e. the neutral po-
sition, and get to the extremes only after a lot of nodes have expressed a reputation
score. If we were to implement this in our toy example, we would get Equation 4.7
for the reputation of 𝛼, Equation 4.8 for the reputation of 𝛽, and Equation 4.9 for the
reputation of 𝛾 . If we solve these equations, we get 𝑟𝛼 ≈ 0.58, 𝑟𝛽 ≈ 0.68 and 𝑟𝛾 = 0.46.
As can be seen, nodes with less reputation scores end up closer to the neutral position
of 0.5.

67



4 The Need for Trust

𝑟𝛼 =
0.7 ⋅ 𝑟𝛽 + 0.5

𝑟𝛽 + 1 (4.7)

𝑟𝛽 =
0.8 ⋅ 𝑟𝛼 + 0.9 ⋅ 𝑟𝛾 + 0.5

𝑟𝛼 + 𝑟𝛾 + 1 (4.8)

𝑟𝛾 = 0.4 ⋅ 𝑟𝛼 + 0.5
𝑟𝛼 + 1 (4.9)

Paradox of Trust Another important deficiency of the discussed toy example, is that
it still suffers from the paradox of trust [56]. As this paradox shows, although that trust
is not transferable, we need to do this in reputation-based infrastructures. It is clear
that this paradox is not easily solved, given the obvious contradiction. However, we
can mitigate it in a way that it affects our trust network less.

Pavlovic [56] notes that in a trust relationship 𝑇𝑟𝑢𝑠𝑡𝑠(𝐴, 𝐵, 𝑃, 𝑡), 𝑡 quantifies the trust
and 𝑃 qualifies the trust. This qualification makes it possible to bind the trust quanti-
fication to the property for which it was accumulated. Due to the fact that this makes
the trust value less abstract, a more clear picture about what the trust specifically
means is created. This way, unwanted transfers are easier spotted and prevented.

Service Oriented Applications To build trust using a reputation-based infrastruc-
ture in our model, one needs to collect opinions on the honesty of the service at hand.
Based on this information, a reputation needs to be computed, which should be used
by those wanting to invoke the service to decide whether the service is trustworthy
enough. It should be noted that this requires a full fledged reputation infrastructure.

The first step in the process of reputation to trust is deciding whether the reputa-
tion value can be directly interpreted as trust value, or whether other factors should be
consulted or included. Afterwards, a threshold needs to be used to decide whether
the resulting trust value is high enough to assume that the service is honest. This
threshold may vary between service consumers, based on their security and trust
needs.

4.2 High Frequency Trading
In Section 3.5, we briefly introduced high frequency trading systems. This refers to
automated stock trading, where algorithms sell and buy trade securities on a very
high speed, such that the investments are only held for very brief moments. In order
to do this, the systems make use of all sorts of information they can acquire, such as
statistical data or news events.

Suppose that we have a high frequency trading agent and several news and stock
information services. We could have a service layout as shown in Figure 4.3. In this
example, the trading agent could invoke any of the other services to gain information
that can be used for the trading process.

68



4.2 High Frequency Trading

... .. ..

.

.

.

.

.

.

.

..

hft_agent

.

news_1

.

news_2

.

stocks_1

.

stocks_2

.

stocks_3

.

stocks_4

Figure 4.3: Example of a service layout for a high frequency trading system

In a reputation-based trust infrastructure, a stock information site that normally
provides reliable information will receive very high ratings and, thus, a very good
trust score. When this stock information site gives bogus results when it is accessed
by its largest competitor, this trust score stays high. Nevertheless, the trading agent of
that competitor should actually grand very little trust to this stock information service.
This is due to the fact that trust is, in fact, a very personal relation between two entities
concerning a specific property of the trustee, whereas reputation is global and based
on a combination of weighted opinions. This is exactly the problem articulated by
Pavlovic [56] as the paradox of trust, which we discussed in Section 4.1.

As we already suggested when we formulated Research Question 6 and Research
Question 7, there are two possible directions of solving the trust issue, namely solving
it or making it irrelevant In other words, we either try to find a reliable way to bootstrap
trust or we assume that the majority of the services is trustworthy and find a method
to nullify the attempts to break the system by the dishonest participants.

Solving the trust issue requires that one can be sure that the trust relation between
two specific parties concerning a specific property is justified. For this, we need a
reliable trust infrastructure that can cope with the paradox of trust of Pavlovic [56].
This can be either through an authority, as discussed in Section 4.1.1, or through the
network, i.e. by implementing a reputation infrastructure, as discussed in Section 4.1.2,
or using a comparable trust network. Of course, it is always possible to assess the
service provider yourself, but this is commonly too impractical to be a serious option.
Especially given the volatile nature of the usage of services, where vendors are easily
and often switched, leaving little time for long assessments.

In order to make the trust issue irrelevant, we depend on a reliable majority. This
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direction refers back to the Byzantine generals of Lamport, Shostak and Pease [42],
which we will discuss in Section 4.3. When there are enough services performing a
comparable task, the solution to that problem can be used to nullify to attempts of the
adversarial service to poison another service.

4.3 The Byzantine Generals
The problem of the Byzantine generals tells us about a group of generals that have
surrounded a city [42]. Now, they need to decide what their next step should be:
attacking or retreating. Given that they reside at all sides of the city, they can only
communicate by sending each other messages, which is what they do. For the sending
of messages, the Byzantine generals use trustworthy messengers, i.e. they have tamper
resistant channels. These messages will be sent to the other generals and state whether
this general is intending to attack or to retreat.

However, there may be traitors amongst the generals, that want to lose the battle at
any cost. Those traitors may send a message to one general stating that he is going
to attack and a message to the other general remarking that he wants to retreat. This
could result in half the generals attacking and the other half retreating, giving an easy
battle to the defendants of the city under attack. While part of the armies retreats, a
minority is starting the fight, at only one side of the town, which allows the guards to
focus on that side and lowers the numbers of Byzantine soldiers gravely.

It is clear that the main objective of any traitor is to cause confusion between the
generals and thereby impose an inevitably lost battle. In security terms, the traitors
want to break the integrity of the decision whether to attack or to retreat. The problem
faced by the generals is: how can we unanimously agree upon our next action, given
the possibility of traitors amongst us?

The Byzantine Generals Problem To formalise the problem of the Byzantine gen-
eral, we consider the decision making process of the generals [42]. Suppose that each
general makes an observation of the enemy and decides to attack or retreat. Let 𝑣(𝑖) be
the decision communicated by general 𝑔𝑖, e.g. if general 𝑔𝑖 says attack, we have 𝑣(𝑖) = 1.

Every general needs to combine all the opinions 𝑣(1), … , 𝑣(𝑛) he received from gen-
eral 𝑔1 through 𝑔𝑛 [42]. The combination method needs to be the same for all generals
to make sure that all loyal generals decide upon the same plan. Furthermore, the
method needs to be robust, such that a small number of traitors is not able to cause
the loyal generals to make a bad decision. In the case of a binary decision between
attacking or retreating, this method can be a majority vote, i.e. when the majority of
𝑣(1), … , 𝑣(𝑛) is 1 it will be an attack, otherwise, when the majority is 0, it will be a
retreat.

For the problem to be solved, it is required that the set of opinions every general has,
is the same [42]. However, as a traitor may send a different message to any general, we
can not simply say that every general uses the message 𝑣(𝑖) he received from general 𝑔𝑖.
Thus, opinion 𝑣(𝑖) does not need to be obtained from general 𝑔𝑖. On the other hand, if a
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loyal general 𝑔𝑖 sends an opinion 𝑣(𝑖) we want this opinion to be used by every general
in the combination function. Therefore, we have the following two conditions:

1. any two loyal generals use the same value for 𝑣(𝑖); and

2. if general 𝑔𝑖 is loyal, the value sent by him must be used by every loyal general
as the value for 𝑣(𝑖).

The Commander And His Lieutenants As the conditions that should hold for the
decision the Byzantine generals make are both written such that they concern opinion
𝑣(𝑖) of general 𝑔𝑖, Lamport, Shostak and Pease [42] consider the problem from the
viewpoint of one single general. They do this by stating a smaller problem, in which
one commanding general sends an order to his 𝑛 − 1 lieutenants. In this version of the
problem, the following conditions have to be met:

1. all loyal lieutenants obey the same order; and

2. if the commanding general is loyal, every loyal lieutenant obeys the order he
sent.

4.3.1 Oral Messages
If we consider oral message, i.e. messages that are fully controlled by the sender and
contain either attack or retreat, at most 𝑚 of the 3 ⋅ 𝑚 + 1 generals can be dishonest [42]
– as we will show in this section. In this case, the Byzantine fault tolerance amounts
to one third minus one [15]. This tolerance is the amount of dishonest participants the
system can cope with.

Impossibility for 3 ⋅ 𝑚 or Less Generals The fact that the problem of the Byzantine
commander cannot be solved with 3 participants of which 1 is dishonest can intu-
itively be shown [42, 60]. If we consider the case of Figure 4.4, we can see that the
second lieutenant is a traitor, and sends the wrong message to the first lieutenant. In
Figure 4.5, the commanding general is the traitor and the second lieutenant is loyal.
Nevertheless, in both illustrations, the first lieutenant receives the same two conflict-
ing messages. Intuitively, the problem cannot be solved, as the first lieutenant should
decide to attack in the case of Figure 4.4 and to retreat in the case of Figure 4.5, al-
though the received messages are equal.

If one knows that it is impossible to realise a solution to the problem with 3 nodes,
it is easily deduced that the same holds for 3 ⋅ 𝑚. Suppose that we have 3 ⋅ 𝑚 generals
[42]. We can cluster these generals in three groups of 𝑚 generals. Now, if the three
soldiers of the case with 3 participants each control one of these clusters and send out
the messages as they would have done in the original setting, we have a multiplication
of the number of messages sent, but still the same dynamics underneath it. Namely,
the cluster of disloyal generals sends one message to the first loyal cluster, and the
opposite message to the other cluster, resulting in the same impossibility as before.
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Figure 4.4: Problem of the Byzantine commander with 3 participants and a dishonest
lieutenant [42]
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Figure 4.5: Problem of the Byzantine commander with 3 participants and a dishonest
general [42]
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Oral Message Algorithm To show that this works with 3 ⋅ 𝑚 + 1 or more gener-
als, with 𝑚 traitors, we first have to define oral messages more precisely [42]. We re-
quire for such messages, that every message is delivered correctly, the receiver knows
who sent the message, and that the absence of a message can be detected. This pre-
vents traitors from interfering with other messages than the ones he sends and sending
spoofed messages. Furthermore, the traitor cannot try to obstruct the decision by not
sending any message.

We define the algorithm 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) using mathematical induction for all 𝑚 ∈
ℕ0 in Theorem 4.1 [42]. In this case, the commanding general sends an order to 𝑛 −
1 lieutenants. In the discussed definition of this algorithm, we assume a function
𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣1, … , 𝑣𝑛−1) that returns the value 𝑣 if the majority of 𝑣1, … , 𝑣𝑛−1 is equal to
𝑣, and otherwise 0.

Theorem 4.1 (Oral message algorithm [42]). The algorithm 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) for all 𝑚 ∈
ℕ0 is defined using mathematical induction, with for 𝑚 = 0:

1. the commanding general sends his value to every lieutenant; and

2. each lieutenant uses the value received from the commanding general or uses the value
0 if no value was received.

Furthermore, the algorithm is as follows, when 𝑚 > 0:

1. the commanding general sends his value to every lieutenant;

2. for each 𝑖, let 𝑣𝑖 be the value received by lieutenant 𝑖 from the commanding general or 0 if
no value was received; lieutenant 𝑖 acts as commanding general in 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚 − 1)
to send 𝑣𝑖 to each of the 𝑛 − 2 other lieutenants; and

3. for each 𝑖 and each 𝑗 ≠ 𝑖, let 𝑣𝑗 be the value received by lieutenant 𝑖 from lieutenant 𝑗 or 0
if no value was received; lieutenant 𝑖 uses the value resulting from 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣1, … , 𝑣𝑛−1).

Possibility for 3⋅𝑚+1 or More Generals Figure 4.6 shows the result of the algorithm
𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(1) with 4 participants from the viewpoint of the second lieutenant [42].
In this figure, the third lieutenant is disloyal. Following the algorithm, the loyal com-
manding general sends his value 𝑣0 to all lieutenants. After receiving this value, each
lieutenant sends the received value to all other lieutenants. However, as the third
lieutenant is a traitor, he is expected to send a different value. This results in the
second lieutenant receiving value 𝑣0 from both the general and the first lieutenant,
and value 𝑣3 ≠ 𝑣0 from the third lieutenant. Therefore, the second lieutenant decides
that 𝑣 = 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣0, 𝑣0, 𝑣3) = 𝑣0, which satisfies the conditions of the problem of the
Byzantine commander.

As it is also possible that the commanding general is the traitor, we consider this
case using Figure 4.7 [42]. In the illustrated situation, the disloyal general sends a
different message to each lieutenant. The lieutenants follow the algorithm as they
should, which results in every lieutenant receiving the values 𝑣າ

0, 𝑣ຳ
0 , and 𝑣ິ

0 . This
results in every lieutenant executing 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣າ

0, 𝑣ຳ
0 , 𝑣ິ

0 ). As every lieutenant invokes
the majority function with the same parameters, they all come to the same decision.
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Figure 4.6: The result of 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(1) from the viewpoint of the second lieutenant
with a dishonest lieutenant [42]
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Figure 4.7: The result of 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(1) with a dishonest general [42]

74



4.3 The Byzantine Generals

Correctness As intuitively shown using Figure 4.6 and Figure 4.7, it is possible to
solve the problem of the Byzantine generals for 3 ⋅ 𝑚 + 1 generals for oral messages. In
order to prove that the proposed algorithm 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) is correct, we first show
that, for any 𝑚 and 𝑘, 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) satisfies the condition that, if the commanding
general is loyal, all lieutenants obey the order, if there are more than 2 ⋅ 𝑘 + 𝑚 generals,
with at most 𝑘 traitors [42]. This lemma is shown in Theorem 4.2. Furthermore, the
proof is as follows.

𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) with loyal general [42]. We prove Theorem 4.2 using mathematical in-
duction on 𝑚. We consider the case where the commanding general is loyal. As we
required that every sent message is delivered correctly, 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(0) is trivially
true. For the induction step, we assume that 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚 − 1) satisfies Theorem 4.2
with 𝑚 > 0, and prove this for 𝑚. In the first step of the algorithm, the commanding
general sends a value 𝑣0 to all 𝑛 − 1 lieutenants. In the following step, all lieutenants
apply 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚 − 1) with 𝑛 − 1 generals. As Theorem 4.2 stated that 𝑛 > 2 ⋅ 𝑘 + 𝑚,
we have 𝑛 − 1 > 2 ⋅ 𝑘 + (𝑚 − 1). Therefore, we can apply the induction hypothesis to
conclude that every loyal lieutenant gets 𝑣𝑖 = 𝑣0 for every loyal lieutenant 𝑖. As there
are at most 𝑘 disloyal lieutenants, and we have 𝑛 − 1 > 2 ⋅ 𝑘 + (𝑚 − 1) ≥ 2 ⋅ 𝑘, a majority
of the lieutenants is loyal. Therefore, every lieutenant has 𝑣𝑖 = 𝑣0 for a majority of the
𝑛 − 1 values 𝑖 he received, which results in 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣1, … , 𝑣𝑛−1) evaluating to 𝑣0.

Theorem 4.2 (𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) with loyal general [42]). For any 𝑚 and 𝑘, the algorithm
𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) satisfies the condition that, if the commanding general is loyal, all lieutenants
obey the order he sends, if there are more than 2 ⋅ 𝑘 + 𝑚 generals, with at most 𝑘 traitors.

Now, we will prove that 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) does, in fact, solve the problem of the Byz-
antine generals [42]. Thus, we will show that, for any 𝑚, 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) satisfies both
conditions for the Byzantine commander problem, if there are more than 3⋅𝑚 generals
and at most 𝑚 traitors. This is formalised in Theorem 4.3. Furthermore, the proof is
as follows.

𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) [42]. We prove Theorem 4.3 using mathematical induction on 𝑚. If
there are no traitors, it is trivial to see that 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) satisfies both conditions.
For the induction step, we assume that 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚 − 1) satisfies Theorem 4.3 with
𝑚 > 0, and prove this for 𝑚. Firstly, we consider the case where the commanding gen-
eral is loyal. If we consider 𝑘 to be equal to 𝑚, we can see that the second condition
of Theorem 4.3 is satisfied, following Theorem 4.2. Additionally, the first condition
follows from the second condition when the general is loyal. Secondly, we consider
the case where the commander is disloyal. In this case, the second condition of The-
orem 4.3 is trivially satisfied. As there are at most 𝑚 traitors, and the general is one of
them, we have at most 𝑚 − 1 traitors between the lieutenants. As there are more than
3 ⋅ 𝑚 generals, we have more than 3 ⋅ 𝑚 − 1 lieutenants. Given that 3 ⋅ 𝑚 − 1 > 3 ⋅ (𝑚 − 1),
we may apply the induction hypothesis to conclude that 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚 − 1) satisfies
Theorem 4.3. Thus, for every 𝑗, any two lieutenants get the same value 𝑣𝑗 in the third
step of the algorithm. Therefore, any two lieutenants get the same vector of messages
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𝑣1, … , 𝑣𝑛−1, which results in every lieutenant obtaining the same value 𝑣 by computing
𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣1, … , 𝑣𝑛−1).

Theorem 4.3 (𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) [42]). For any 𝑚, the algorithm 𝑂𝑟𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) satisfies
the following conditions, if there are more than 2 ⋅ 𝑚 generals, with at most 𝑚 traitors:

1. all loyal lieutenants obey the same order; and

2. if the commanding general is loyal, every loyal lieutenant obeys the order he sent.

Non-discrete Values It should be noted that, when there is no discrete value to
be decided upon, the given solution for oral messages still holds [42]. In this case, the
function 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑣1, … , 𝑣𝑛−1) should be implemented differently. For example, to de-
cide upon an approximation of a certain value, this function could return the median
of the values 𝑤1, … , 𝑤𝑛−1, where 𝑤1, … , 𝑤𝑛−1 is obtained by ordering 𝑣1, … , 𝑣𝑛−1.

4.3.2 Signed Messages
When we introduce cryptographic signatures to the problem of the Byzantine gener-
als, we can solve the problem for any number of generals with 𝑚 traitors [42]. In this
case, we extend the notion of oral messages to a notion of signed messages by adding
a third assumption. Namely, we assume that the signature of a loyal general cannot be
forged, that any alteration of a message signed by him will be detected, and that any-
one is able to verify the authenticity of the signature of a general. Please note that this
does not say anything about the signatures of the traitors, e.g. they could cooperate
or forge each others signatures.

Signed Message Algorithm In our algorithm, we will use the notation {∣ 𝑥 ∣}𝑘−1
𝑖

to denote value 𝑥 signed by general – or lieutenant – 𝑖. Additionally, we note that
{∣ {∣ 𝑥 ∣}𝑘−1

𝑖
∣}𝑘−1

𝑗
denotes the construction {∣ 𝑥 ∣}𝑘−1

𝑖
signed by general 𝑗. Furthermore,

each lieutenant 𝑖 maintains a set 𝑉𝑖 of received properly signed orders – not to be
confused with received messages [42].

We will also assume a function 𝐶ℎ𝑜𝑖𝑐𝑒(𝑉) [42]. This function is applied to a set of
orders 𝑉 to obtain one single order. If the set 𝑉 consists of only a single element 𝑣,
we have 𝐶ℎ𝑜𝑖𝑐𝑒(𝑉) = 𝑣. Furthermore, we have that 𝐶ℎ𝑜𝑖𝑐𝑒(∅) = 0. Lamport, Shostak
and Pease [42] mentions the median of the ordered set of arguments 𝑉 as a possible
implementation of 𝐶ℎ𝑜𝑖𝑐𝑒(𝑉).

We define the algorithm 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) in Theorem 4.4 [42]. In this algorithm,
the commanding general sends all lieutenants a signed order. All these lieutenants
sign this message themselves, and pass it on to the other lieutenants, who will do the
same thing, until all lieutenants have signed and received the message.

Theorem 4.4 (Signed message algorithm [42]). The algorithm 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) is defined,
with initially 𝑉𝑖 = ∅, as follows:

1. the commanding general signs and sends his value to every lieutenant;
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2. for each 𝑖,
a) if lieutenant 𝑖 receives a message of the form {∣ 𝑣 ∣}𝑘−1

0
from the commander, and he

has not yet received any order,
i. he lets 𝑉𝑖 equal {𝑣};
ii. he sends the message {∣ {∣ 𝑣 ∣}𝑘−1

0
∣}𝑘−1

𝑖
to every other lieutenant;

b) if lieutenant 𝑖 receives a message of the form {∣ … {∣ {∣ 𝑣 ∣}𝑘−1
0

∣}𝑘−1
𝑗1

… ∣}𝑘−1
𝑗𝑘

and 𝑣
is not in the set 𝑉𝑖,

i. he adds 𝑣 to 𝑉𝑖;
ii. if 𝑘 < 𝑚, he sends the message {∣ {∣ … {∣ {∣ 𝑣 ∣}𝑘−1

0
∣}𝑘−1

𝑗1
… ∣}𝑘−1

𝑗𝑘
∣}𝑘−1

𝑖
to every

lieutenant other than 𝑗1, … , 𝑗𝑘;

3. for each 𝑖, when lieutenant 𝑖 will not receive any more messages, he obeys order 𝐶ℎ𝑜𝑖𝑐𝑒(𝑉𝑖).

As the last step of the algorithm states that the lieutenant will obey the order as
soon as he has received all messages to be received, we should note how he should
know this [42]. First of all, one can easily show, by mathematical induction on 𝑘, that
for each sequence of lieutenants 𝑗1, … , 𝑗𝑘 with 𝑘 ≤ 𝑚, a lieutenant can receive at most
one message with this sequence of signatures, starting with the signature of the com-
mander. Thus, there are at most (𝑚 − 1)2 messages to be received. If we would require
each lieutenant 𝑖 to send a report that he is not going to send a message when 𝑣 is
already in his set 𝑉𝑖, it is easily seen when all messages are received.

Example In Figure 4.8, the result of the 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) algorithm is shown for
three participants with a traitor as general [42]. In the example, the general sends two
different values to the two lieutenants. This results in both lieutenants obtaining the
set 𝑉1 = 𝑉2 = {𝑣າ

0, 𝑣ຳ
0 } and making the decision 𝐶ℎ𝑜𝑖𝑐𝑒({𝑣າ

0, 𝑣ຳ
0 }). Please note that, in

this case, the lieutenants can see that the general is dishonest, as his signature appears
on two conflicting messages.

We do not show an example of dishonest lieutenant, as a message is required to
be signed by the commanding general. Therefore, the only two options a disloyal
lieutenant has are sending a malformed message or sending no message. As both
options would result in his influence in the decision making process to be ignored, he
does not have any effect at all.

Correctness To prove the correctness of the signed messages algorithm, we first
formalise our objective [42]. As stated in Theorem 4.5, the algorithm 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚)
should solve the problem of the Byzantine commander for any 𝑚, given at most 𝑚 trait-
ors. The proof is as follows.

𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) [42]. We prove Theorem 4.5. Firstly, we show that, if the com-
manding general is loyal, all lieutenants obey his order. In this case, he sends his
signed order {∣ 𝑣0 ∣}𝑘−1

0
to every lieutenant. Thus, every loyal lieutenant will receive
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Figure 4.8: The result of 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(1) with a dishonest general [42]

his order 𝑣0. Because no traitor can forge the signature of the general to create a mes-
sage of the form {∣ 𝑣າ

0 ∣}𝑘−1
0

, the loyal lieutenant cannot receive forged messages con-
taining a conflicting order. Therefore, every loyal lieutenant 𝑖 has 𝑉𝑖 = {𝑣0} and will
thus obey the order, as 𝑣0 = 𝐶ℎ𝑜𝑖𝑐𝑒(𝑣0). In the case of a loyal commander, the first
requirement of the Byzantine commander problem follows from the second, which
we just proved. We consider a dishonest general, and show that all loyal lieutenants
will obey the same order. Two loyal lieutenants 𝑖 and 𝑗 will obey the same order,
when the sets of orders 𝑉𝑖 and 𝑉𝑗 are equal. Thus, we need to show that, if 𝑖 adds
an order 𝑣 to 𝑉𝑖, lieutenant 𝑗 will do the same. To do this, we show that 𝑗 receives a
properly signed message containing order 𝑣. If 𝑖 receives order 𝑣 in step 2.a. of the al-
gorithm, he sends it to 𝑗 in step 2.a.ii., resulting in 𝑗 receiving the order. If 𝑖 adds order
𝑣 in step 2.b.i. of the algorithm, he received a message signed by lieutenants 𝑗1, … , 𝑗𝑘,
with 𝑘 ≤ 𝑚. If 𝑗 is in the set 𝑗1, … , 𝑗𝑘, he already received the 𝑣, otherwise, we have
two cases: namely, 𝑘 < 𝑚 and 𝑘 = 𝑚. In the case that 𝑘 < 𝑚, 𝑖 sends the message
{∣ {∣ … {∣ {∣ 𝑣 ∣}𝑘−1

0
∣}𝑘−1

𝑗1
… ∣}𝑘−1

𝑗𝑘
∣}𝑘−1

𝑖
to 𝑗, resulting in him receiving it. In the case that

𝑘 = 𝑚, we know that at least one lieutenant in the set 𝑗1, … , 𝑗𝑚 is loyal, as we have a
disloyal general, and, thus, at most 𝑚 − 1 dishonest lieutenants. This loyal lieutenant
must have sent the order 𝑣 to 𝑗 when receiving it for the first time. Therefore, 𝑗 must
have received this value.

Theorem 4.5 (𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) [42]). For any 𝑚, 𝑆𝑖𝑔𝑛𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚) solves the problem
of the Byzantine commander with at most 𝑚 traitors.

4.3.3 Application to Service Oriented Computing
If we presume the high frequency trading system we presented in Figure 4.3. Now, if
one of the stock information services, say stocks_3, is rogue, we still have three honest
services, as shown in Figure 4.9. This enables us to apply one of the existing solutions
to the problem of the Byzantine generals in order to obtain the correct result.
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Figure 4.9: The example of Figure 4.3 with a rogue service

Following Section 4.3.1, we can at least achieve a Byzantine fault tolerance of less
than one third. As we saw in Section 4.3.2, we can use signatures to recover from an
even larger amount of dishonest services in our service chain. This way, we can easily
mitigate service poisoning, as long as we have a honest majority.

In the example of high frequency trading systems with a rogue stocks information
service, we could impose the algorithm of Theorem 4.4 on the stocks information ser-
vices in the service composition. As we only want to know the correct information
at a single point, we can simplify the algorithm to the viewpoint of a single service,
thereby lowering the amount of messages to be sent, i.e. only the message chains that
will end up at that single service are continued. This way, we can use the knowledge
gained from the Byzantine generals problem to mitigate the need of trust.
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5 Related Work
To place the present report in the context of current research, we will discuss note-
worthy related work on the discussed topics. For the ease of the reader, this section
will divide the topics following the same borders as the report itself does. Therefore,
we will start with a discussion of related work on the security of service oriented sys-
tems in Section 5.1. This is followed by a discussion of the present research on secure
composition in Section 5.2. Finally, we will survey the related work on trust infra-
structures in Section 5.3.

5.1 Security in Service Oriented Computing
Currently, systems that protect the quality of service of a service oriented system make
heavy use of historical data [e.g. 47, 38] or (third party) trust [e.g. 21]. However, an
approach based on historical data is not useful for security for three reasons. Firstly,
security is an ongoing game between adversaries and engineers, where previously
secure approaches are rendered useless and new secure methods arise [57]. Due to
this, historical data shows how well a system could cope with the attacks of yesterday,
but gives no information on the issues of today.

Secondly, historical data does not show how many attacks have happened, but how
many known attacks have happened. Thus, there may have been more breaches of
security than reflected in the measurements. As a lot of attacks make use of exploits of
previously unknown vulnerabilities and a successful attack is characterised by being
unnoticed, this is a serious issue with the use of statistics for security.

Thirdly, security metrics are commonly infeasible [10]. This is due to the fact that the
efforts of an adversary tend to be linear, as opposed to the exponential work needed
to be done by those protecting the system [57].

It should be noted, though, that historical data can be used to detect abnormal –
and possibly suspicious – behaviour [69, 75, 26]. However, these system do suffer
from false positives, when they try to find novel attacks, which results in honest users
getting locked out. Furthermore, this still requires the collection of historical data,
which does not fit in with the uncoupled nature of services, as we cannot assume any
prior contact or knowledge.

In Verberkt [71], an attacker model for service oriented computing was proposed.
This model consisted of several layers where an attacker is to be foiled, namely, an
overall strategic layer, an organisational layer, and an application layer, with the pos-
sibility of extension with an infrastructure layer and a physical layer. The attack sur-
faces of service oriented systems where shown to be the services themselves, the com-
munication between them, and the compositions as a whole.
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5.2 Secure Composition
On the field of secure composition, research started out by showing that certain com-
mon security properties cannot be composed. For example, Jürjens [37] proves that
the applied flow model of McLean [50] and the probabilistic non-interference model
of Gray [30] are not to be composed. On the other hand, some security properties have
been proven to hold under composition, such as the hook-up property of information
flow security of Varadharajan [70] and the strong non-interference property of Mead-
ows [51] [35]. Another example can be found in Abadi and Lamport [2], where the
authors provide a proof method for the composition of security properties. However
this method restricts itself to the framework of Alpern and Schneider [6], which leaves
most security properties behind, according to McLean [49].

There also has been prior research concerned with secure composition frameworks.
A framework for security properties that do hold under composition and refinement
has been proposed by Jürjens [35], which specifically concerns the property of secrecy.
This secrecy property is also preserved under refinement [36]. However, this work is
only a first step on the ladder of modular development of secure software systems as
it only concerns one property.

Datta et al. [18] provide us with a means of composing protocols such that they
preserve their security protocols. The work of Datta et al. [18] is used as important
groundwork in the current research. Nevertheless, due to the fact that, in service ori-
ented computing, we cannot assume any prior communication, we have an additional
issue of trust and honesty. Therefore, we need to extent this work to also cover service
orientation, and not only protocols. The differences between protocols and service ori-
ented computing, and the way in which this affects the present research, are discussed
extensively in Section 2.4.

5.3 Trust Infrastructures
Several trust infrastructures have been discussed and deployed. The most widely
known are the X.509 architecture [4, 5] and the web-of-trust implementation of PGP
[3]. These models represent the hierarchical and the decentralised method of dis-
tributing trust [44]. However, these approaches consider the architecture that could
be used to implement certification-based trust, whereas we are concerned with reas-
onable means to derive trust to cope with the problem of opaque services. In other
words, if a certification-based approach where chosen, these results can be used as a
complement to this approach.

On the field of reputation-based trust, we merely discussed the basic concepts, as
a full discussion of all possibilities is out of scope for the present research. Extensive
models of reputation-based trust have been given by Maurer [46], Gutscher [31], Di-
mitrakos [21]. It should be noted that most of these models suffer from the paradox of
trust, as defined by Pavlovic [56]. In the work posing this problem, Pavlovic [56] pro-
poses a direction to coping with this paradox of trust. Nevertheless, the real solution
of this paradox is still subject to research.
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6 Conclusion and Discussion
To conclude on this research, we will return to the stated research questions and re-
view the answers the research supplied. Afterwards, we will discuss the problem
statement itself.

Research Question 1. How can we model services such that their key characteristics,
namely uncoupled, composable, and opaqueness, and their distinction from protocols
and other modular constructs are honoured?

We model service compositions using partially ordered multisets (pomsets) in Sec-
tion 2.3. In this model, the uncoupled nature of services is emphasised by the loose
structure of a pomset. As there is only a partial order in service compositions, and
no order between services that are not composed, this characteristic is fully satisfied.
Incidentally, this directly shows the ease with which services can be composed in this
model.

Given that the uncoupled nature is one of the characteristics of services that stands
out, as we stated in Chapter 2, the distinction from other modular constructs is hon-
oured by definition. In this case, the fact that we use a model based on pomsets is the
key to this requirement.

Research Question 2. On what characteristics differ services from protocols such that
the work on secure composition of protocols by Datta et al. [18] is not directly applic-
able to services?

In Section 2.4, it is shown that, where protocols are strictly defined sequences of
communications, services constitute uncoupled building blocks for a distributed soft-
ware system. Additionally, services expose access to computing capabilities, which
gives them much more power and possibilities than protocols can offer. Finally, it
should be noted that protocols belong in the network infrastructure, whereas services
can provide capabilities in a broad range from architecture to software.

Research Question 3. How can limitations raised by opaque services when applying
the secure composition technique of Datta et al. [17] be solved?

As shown in Chapter 4, to solve the problem of opaque services, we are in need
of trust or a form of insurance. As trust is a rather abstract concept, we pursue this
by asking ourselves Research Question 6. Another direction discussed is stated in
Research Question 7, where we rely on a majority of honest participants to mitigate
the risk of service poisoning by a dishonest service.

Research Question 4. How can the state explosion when applying the secure com-
position technique of Datta et al. [18] be prevented?
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The risk of state explosion is not solved in depth, which is left for future research.
However, there are general pointers that should mitigate this risk in practical cases.
Most noteworthy, a standardisation of environment invariants ensures that cross-
proving of satisfaction of invariants is often not necessary, as those invariants are
equal.

Research Question 5. What attacker model do we need to reflect all the challenges
specific to the secure composition of services?

The main attacker model is based upon the well-known model of Dolev and Yao
[22], which is discussed in Section 3.5. This means that an attacker can intercept, alter
and send arbitrary messages. However, an attacker is not able to break the crypto-
graphic constructs used.

For service oriented computing, the attacker model is extended by a notion of ser-
vice poisoning. This refers to an attack where a dishonest service gives a wrong result
to one particular service, in order to poison his computations and results. This at-
tack would not exist in traditional cases, as it results from a dishonest service in your
service composition.

Research Question 6. How can we implement trust in our model, thereby keeping in
mind the paradox of trust of Pavlovic [56]?

The notion of trust of Verberkt [71] is used as starting point in Section 4.1. For the
implementation of trust, two directions are discussed: namely, certification, in Sec-
tion 4.1.1, and reputation-based trust, in Section 4.1.2.

Certification requires a trusted third party that is able to perform high quality as-
sessments of the honesty of services. If this party decides that a service is honest, he
issues a certificate that can be used by other services to verify that this third party is
indeed of the opinion that the assessed service is trustworthy. In our model, we would
simply require the existence of such a valid certificate to decide whether we should or
should not trust a service.

A reputation infrastructure works by collecting opinions about the reputation of a
certain service from other nodes in the network. Using some sort of weighing and
combining function, these opinions are combined to a reputation score, that can be
used to base trust upon.

The paradox of trust does not exist in the first solution, as we expect the trusted
third party to perform a thorough assessment, whereby any adversarial tendencies
should be found. Reputation-based trust does suffer from the paradox of trust. The
main mitigation can be found with making the trust less abstract. Thus, by qualifying
the trust and taking into account how it was generated.

Research Question 7. How can we apply solutions for the problem of the Byzantine
generals of Lamport, Shostak and Pease [42] to compensate for dishonest participants?

In Section 4.3.3, it is shown that the problem of the Byzantine generals can be used
as a model for coping with service poisoning. The best solution requires the usage
of cryptographic signatures, as explained in Section 4.3.2, to mitigate the adverse in-
tentions of a dishonest service completely, given a majority of honest services. In this
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case, all services act as if they are Byzantine generals, whereby the goal is to get the
correct result to the service consumer. For this reason, communications that do not
affect the invoking party can be omitted.

Problem Statement. How can we guarantee security properties in a service oriented
architecture, thereby taking into account the characteristics of service oriented com-
puting in general and the uncoupled and opaque characteristics specifically?

Firstly, we model services and service compositions using pomsets, after examining
them thoroughly. This way, the important characteristics of service oriented comput-
ing were identified, and an applicable formalism was identified and put in place. The
model for service compositions allows us to reason about services and continue the
pursuit of securely composed services.

Secondly, the secure composition framework for protocols of Datta et al. [18] was
discussed. This model was, after discussing the important differences, translated to a
framework that can be used in a service oriented context. This resulted in a means of
securely composing services and proving their security.

However, the proposed model for securely composing services is built under the
assumption that the services that are part of the service composition itself are hon-
est. Therefore, we proposed methods for deriving trust in services as one alternative
to solve this problem, and a method to mitigate a dishonest service given a honest
majority as another alternative.

Given these steps, the current research gives a solution to guaranteeing security
properties in a service oriented architecture, by modelling the services fittingly using
pomsets, and proposing a framework for the secure composition of services. In addi-
tion, methods of deriving or mitigating trust are discussed, such that the framework
becomes usable in practical situations.

6.1 Future Research
In future work, a more definitive solution to the state explosion resulting from the
application of the secure composition method to a large number of nodes needs to
be given. Although the current pointers are helpful in practical situations, this does
not suffice as a formal solution to this problem. It is suggested to take non-conflicting
variables into account, e.g. if a certain variable is declared secret and never shared,
another service can never break the secrecy of this variable.

For easier verification using the proposed framework, an automated verification
tool should be developed. An example of such a tool for protocols using process cal-
culus can be found in Blanchet [12], which uses Prolog rules. The introduction of a
tool for our framework makes it possible to automate the verification process, thereby
generating a much faster and more practical applicable technique for the secure com-
position of services. Additionally, this makes it possible to consider the effects of
multiple concurrent runs of a service composition as attack vector.

In our model, public keys are expected to be publicly known and correctly bound
to the corresponding principals, given that those principals are honest. In a practical
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situation, a reasonable framework for key management and distribution is required.
Of course, there exist many solutions that provide such an infrastructure, which could
even be built upon the discussed trust infrastructure. Nevertheless, for practical use,
it is important that a means of key management and distribution is incorporated and
that the framework is revalidated using this new addition.

Current research concerning the security of services is often focussed at access con-
trol. This refers to control over which principals have access to which resources [7].
In our framework, this would concern which principals should have access to secret
variables, or which principals should be allowed to authenticate. For future research,
it is interesting to review whether access control, which is commonly used in practice,
could be considered in the framework, such that the practical implications of current
access control solution are reflected by the model.
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