Gesture recognition in streaming motion data using
offline training with a limited training set

Tim K.C. Franssen

Februari 26th, 2013

Abstract

This Master’s thesis is about the analysis of motion capture data, focussing on
quickly and accurately recognizing arm gestures for use in a virtual infantry training
system. We do a comparative study between the SVM and HMM classification
approaches, different features (coordinates, motion vectors, a combination of both)
and parameters (motion vector offset, cost, gamma, number of states et cetera) that
are specific to the application of a training simulation.

We show that gesture classification can be used in a virtual infantry training
situation. Less than ten minutes of training data from one instructor is sufficient
for classifying nine different gestures from students with an f-measure of 0.65 on
average.

This classification can be used for a plethora of applications including scoring
students relative to each other, allowing the instructor gesture control over the
scenario and as input to artificial intelligent agents.

Foreword

This thesis documents the final project for my Master’s degree in Computer Science
at the University of Twente in the Netherlands. I have very much enjoyed the
Master Human Media Interaction, as it gives a nice overview of a very challenging
and creative field of study. The final project has taken me way too long to complete,
which I regret but which also makes me twice as pleased to present this thesis.

I would like to thank the following people for allowing me to take this step:

My supervisors Job Zwiers, Ronald Poppe and Steven Wijgerse for much wisdom
and patience.

My parents Frits and Irene for their support and for stimulating me to take on
an education.

My bold participants: Nico, Stefan, Michelle, Bjorn, Remco, Remco, Willemijn,
Ron, Brian, Christina, Evelien and Jacob.

Contents

[1.2 Application context|.
1.3 Research question|.

2 Related workl

3.1 Experiment|

3.2.1 Design|.
[3.2.2 Implementation|. . . .

4.2.2 SVM parameters| . . .
4.2.3 HMM parameters|. . .
4.2.4 Final parameters| . . .

6_Results|

00~ ~1

11
11
12
13

15
15
16
16
16
17
18
19
19
20

23
23
23
24
24
24
24
25
25
29

31
31
31
31
32
32
33

CONTENTS

(5.2, Pose versus Motionl. oL 33

[5.2.2 Intra- versus inter-participant|. 36

[(b.2.3 Train size influencel o o oL 37

h24 SVMvwersus HMM| o oL 37

.3 Discussion| 38
[5.3.1 Intra-participant| 39

[0.3.2 Inter-participant| oL 39

b33 Gestures 39

b.3.4 Classifiers| 40

[b.3.5 Tramning size| Lo Lo 40

6 Conclusion| 41
§ R Dl . e e e e e e 41
6.2 INdings| e e e e 41
6.3 Futureworkl. o 42
|A° Reproducing the results| 49
AT Platforml. oo 49
B2 Datal . . . o oo 49
A3 Fast workflow] 49
[A.4 Structure of the softward 49

Chapter 1

Introduction

This Master’s thesis is about the analysis of motion capture data, focussing on
quickly and accurately recognizing arm gestures for use in a virtual infantry training
system. The following text gives an overview of the context for this analysis and
concludes with several research questions.

1.1 Social context

The motion capture driven virtual reality system that Enschede-based company re-
lion has built is mainly intended to be an instructional tool for the military. New
recruits normally train indoor missions in “practice villages” that consist of bare
houses, most of which have no floors, no decorations and no furniture. In these
villages they learn how to safely and quickly traverse an urban area and locate “hos-
tiles”. The SUIT system is intended to partially replace these (expensive) villages
by allowing recruits to train in a virtual reality environment, in a gymnasium.

Within the virtual reality environment there are few limits on the kinds of sce-
narios that can be trained. Unlike in the villages, in virtual reality hostiles can shoot
at you and you can shoot back. The simulation allows soldiers to train missions at
locations where it is not possible to train in real life, for example in a museum
without disturbing any of the real visitors, or abroad before actually flying there.
Decoration and furniture are a matter of map design.

The military, TNO research and re-lion are currently evaluating the effectiveness
of the virtual training compared to the training in the villages. Having been present
at this evaluation we would say that it seems that much of the usability depends
on the ability of the instructor to use the added possibilities that the virtual system
offers without being disoriented by its virtual nature.

1.2 Application context

The SUIT system consists of an Xsens suit with a heads up display, a plastic replica
of a weapon, an ultra wide band positioning system, a central server and one laptop
per user. The user walks around in the suit, which registers his or her movements
and allows the system to show an accurate 3D reproduction in the simulation. Also,
it tracks the movement of the user relative to the lowest point of the body. Keeping
the lowest point in the same position while moving the rest of the body around
it allows the user to walk in the simulation like one would in real life. An ultra
wide band positioning system corrects the drift in the Xsens suit and determines

CHAPTER 1. INTRODUCTION

the directionality of the walking movements. The replica weapon that is part of the
SUIT system also carries an Xsens sensor, allowing the user to aim in the virtual
environment and a working trigger that allows him or her to shoot. The Xsens suit
and weapon together allow the user to move about and respond to enemies as one
would in a real life situation.

On the software side there is a client-server architecture. An almost headless
server is controlled by an operator client (usually on the same machine) with which
one can manipulate the simulation, trigger calibration routines, load worlds and
otherwise control the system. The users of the system carry around laptops that
run another client application which reads the motion capture data from the Xsens
suit and weapon, renders a 3D view of the simulation in the HMD of the user, and
communicates the position and pose of the user back to the server.

Both the client and server software are written mostly in C+4. Much of the
interfacing with the user and the scripting of the game engine however take place in
a Lua[7] environment, which makes the software less prone to unrecoverable errors.
Network communication is being handled by an enterprise service bus.

1.3 Research question

The broader question is whether we can apply existing motion recognition techniques
to virtual infantry training. Our goal is to enable an instructor to train a classifier
with just a few examples of gestures and then classify streaming motion capture
data on-line in near-real time. We could then use this classification to score the
students on how well they communicate non-verbally (for example: relative to each
other), to give feedback to students or as gesture-based commands for the system.

Although the applications are many, for the purpose of this thesis we restrict
ourselves to one scenario. We have conducted a small exploratory experiment where
participants were asked to communicate only through arm gestures and otherwise
take part in a normal training scenario. This experiment taught us that it is very
hard to get participants to restrict themselves to a limited set of gestures, and that
such a highly ecologically valid experiment, because of the high amount of noise
due to all the movement, poses a great challenge for detection, recognition and even
annotation of gestures.

Knowing that, we have focused on a more constrained classification problem:
the recognition of single arm gestures, without gesture detection. That is to say, we
expect all motion to be gestures, and we try to recognize which gesture. This means
that we trade some ecological validity and we move the experiment back to the lab,
but we can still find answers to some very interesting parts of the broader question.

Our use cases add a few restrictions to our classification approach. For example,
we will have to classify mostly inter-participant, that is; between the instructor and
the students. This raises the question how much accuracy we lose by classifying
inter-participant. Also, we wish to limit the effort required to train the classification
system, allowing us to train the system with just a few minutes of gestures performed
by the instructor before a training. This restricts both the amount of training data
and the time to process it. So we have to ask ourselves how much frames of motion
capture data we really need to train our classifiers with and what impact this has
on performance.

This thesis will not focus on the computational complexity of classification. Be-
cause we want to classify on-line we may have to limit ourselves in our requirements,

1.3. RESEARCH QUESTION

for example which features we can use for the sake of processing speed. We will not
investigate this part of the broader question.

Nine different gestures have been selected for this thesis. The gestures come
from the military handbook for field soldiers to keep the ecological validity high.
They were selected from a larger set on the basis that they are large gestures that
can be recognized from a distance if executed with one hand. Also, they provide a
sufficiently large challenge for classification because some gestures are quire similar,
which allows us to draw conclusions for real world applications. We have given each
gesture a number and a nickname, see figure

Acknowledged

Figure 1.1: The nine gestures that this research has focussed on

We will try to answer the following questions with regards to the classification
of 3D motion captured gestures:

e Which type of feature is the most information-rich in this application?
e Which classification approach is most suited for this application?

e What is the loss of accuracy when using only the motion capture data from one
person as training set (the instructor) versus training on multiple participants?

e What is the influence of the size of the training set on the accuracy? How far
can we limit the training effort with minimal performance drop?

CHAPTER 1. INTRODUCTION

10

Chapter 2

Related work

Modern history of motion analysis starts in 1973 with Gunnar Johansson[9], who
showed that humans can recognize human motion from only joint positions, and thus
that joint positions alone contain enough information to be able to infer the original
motion. Since then this has been shown to be the case for computer analysis as
well, in fields ranging from analysing tennis swings using hidden Markov models[24],
transcribing the American Sign Language using neural networks|25] and hidden
Markov models[19] and even applications in gaming with the Xbox Kinect[16].

2.1 Motion capture

The capture and analysis of human motion is a very active field of study. Most
of the research focusses on the capturing part. There are several different ways to
capture human motion in a computer: using one or more (digital) cameras, using
depth cameras like time-of-flight cameras, using tracking markers in a variety of
ways or using inertial sensors.

Digital cameras are popular because they are cheap and readily available, while
allowing for non-invasive interaction[lI2]. The disadvantage of using conventional
cameras is that the image analysis takes a lot of processing power and it is hard
to prevent depth ambiguity. By combining several digital cameras and using stereo
vision for calculating depth cues the accuracy of the detection can be improved, but
the complexity and processing power increase. For a recent survey of vision based
motion recognition, see [14].

Depth cameras can feed the computer a 3D video stream. A 3D image contains
more information and depth cues can be used to improve the detection of the human
pose. There are several different types of depth cameras, I will shortly discuss two.
First, time-of-flight cameras calculate the depth of a scene by measuring the time
that the light takes to get from the camera to the scene and back to the camera. This
is accomplished either by modulating the frequency of the light or by flickering the
light with a given frequency and adding a shutter to the camera lens[5]. A second
type of depth camera is the structured-light 3D scanner. A pattern of light (which
may be infra-red) is projected at the target scene. If a camera looks at the same
scene under a slightly different angle it will see distortions in the pattern, which can
be used to calculate the depth of the image[26]. The Kinect sensor employs this
technology[16].

Motion capture using tracking markers requires that marker objects are attached
to the joints of a participant. These markers are then tracked in many different ways.

11

CHAPTER 2. RELATED WORK

One way is using optical tracking with cameras, like the Vicon system uses]20].
These systems combine reflective markers with an array of cameras, either using
visible light or infra-red. The markers can either be identical, requiring the user
or the software to connect the markers to the joints in software, or unique using
different wavelengths (colours) to make the process easier[22]. Other systems use
radio signals to determine the position of the markers, but in general any system
that can locate multiple objects in 3D space can be used[23].

Finally, there are inertial motion capture systems. These do not rely on external
sensors or cameras. Rather the sensors themselves are placed on the joints of the
participants. These sensors use inertial and magnetic cues to detect their movement
relative to their starting positions, which allows a computer to keep track of them.
Such sensors are also used in the Nintendo Wii controller and most smartphones.
Because of the design of an inertial motion capture system the participant always
needs to calibrate the system by assuming a default, known pose. After this calibra-
tion the freedom of movement is unparalleled by the other systems, though. Because
no external sensors are required, participants can walk around freely, even leaving
the room or the building, and still be tracked. One such system is the Xsens motion
capture system[15].

2.2 Features

Motion capture systems can produce their data in a variety of formats, including
joint coordinates, joint rotations, acceleration and others. Having captured the
movements of a participant, the next step in the process is to extract features from
this data that contain the minimum amount of data and the maximum amount of
gesture information. The time to process these features is limited and we also wish
to limit the required processing power to a minimum, so we reduce the amount
of data. Keeping only the relevant information also helps classification algorithms
because there is less noise and more signal in the data.

Campbell et al. give us valuable advice[l][2]. They calculated different feature
vectors to see which one would perform best at classifying different gestures (applied
to T’ai Chi movements and ballet steps). They concluded that proper design of the
features for any gesture recognition system is of great importance. They highlighted
the importance of shift and rotation invariance in features, which make features less
dependent on situational variables. In the case of gesture recognition these variables
also include body shape and size, so shift and rotation invariance are an important
part of feature selection.

Jin and Prabhakaran[§] reduce the data to just the amount of activity per region
of the body. From this amount of activity they produce a semantic representation of
the movement (A for arms, AT for arms and torso, TL for torso and legs, et cetera)
and this representation is then aggregated into a histogram of the movement. This
can then be used as a signature for search or classification. This approach could
be applied to the amount of activity in the shoulder, the elbow and the wrist for
the application of gesture recognition. This would greatly reduce the detail in the
features, allowing for faster recognition with more confusion.

Classifying with different participants brings the challenge of normalizing data
in such a way that similar movement from different participants results in similar
data, dispite differing limb sizes and habits. The NATOPS signals database[I8][17]
uses limb length normalisation to reduce the differences between participants. To

12

2.3. CLASSIFIERS

accomplish this they calculate joint angles and from these angles they calculate
new coordinates with a unit arm length. The resulting coordinates are more easily
compared between participants than the original coordinates.

Having normalized the data the next question is: which data will we feed the
classifier. Obvious choices are the coordinates of the joints of the left arm or the
joint angles of the left shoulder, elbow and wrist. A little less obvious are derivatives
of this data: the velocity of the joints or the angular velocities. The NATOPS
research[I7] has compared these features for gesture recognition. In their application
the derivative features clearly outperformed the original features. Joint coordinates
performed better than joint angles.

2.3 Classifiers

Classifiers form the last step of the process. A classifier is an implementation of a
mathematical model that can label a test data set given a training data set. We
must construct a training set of features in known categories that we can label, and
feed this set to the classifier. The classifier then builds a representation of each label
which makes it possible to apply labels to each new feature and estimate to which
category this unknown piece of data belongs.

There are quite a few classifiers that we can choose from, which have been used
in gesture or action recognition in the literature[I4][21]. However, we can split the
classification in two rough categories: direct classifiers and model based classifiers.

Direct classifiers take the motion capture data one frame at a time and try to
classify the features as belonging to one class. This is very fast and, depending on
the features, can be quite accurate. Model based classifiers operate on sequences of
frames, which enables them to model the patterns that exist in each class. This adds
some complexity to the classification process, generally making it slightly slower, but
allows for accurate detection of more complex patterns.

Direct classifiers discriminate using the feature space. Examples include nearest
neighbour classification, which attempts to find the template that matches the given
features the closest, and support vector machine classification. SVMs partition the
feature space, using a hyperplane that divides the space in a binary way. Values
on one side of the plane are considered matches and values on the other side are
considered mismatches.

The other category holds classification methods which use or generate models.
For example: with hidden Markov models a model is generated from the training
data. This model can then be used to either generate feature data or to calculate
the likelihood that this model generated a given sequence of features. The latter is
used in classification as the likelihood of observed features is calculated for several
different models, allowing the classifier to compare the probabilities and make an
educated guess[I0]. Other classification algorithms that fall in this category include
maximum entropy Markov models and other variations on the Markov model.

13

CHAPTER 2. RELATED WORK

14

Chapter 3

Approach

To find out how to best classify gesture motion we will need to create a sufficiently
large data set to allow us to make assumptions based on the results. Also, we need
to structure the process, the chain if you will, of operations that we perform on the
data set before we even attempt classification. This chapter details this process of
gathering and processing data and should give the reader enough insight to attempt
a reproduction of this research.

The first choice that we need to make — how will we capture human motion for
our experiment — is a very easy one. re-lion owns two Xsens inertial motion capture
suits that are part of the SUIT infantry training system. The quality and flexibility
of this system is very high and it is readily available in the context of this project.

3.1 Experiment

As explained in chapter [I| we have started with a small exploratory experiment and
came to the conclusion that it is very hard to get a good dataset from a highly
ecologically valid experiment. Because of this, for our real experiment we tried to
get more gestures per recording and also eliminate annotation issues at the cost
of some ecological validity. Eight participants (5m, 3f, ages 17-30) were asked to,
individually, perform all nine gestures for one minute each, without running the
training simulation. The gestures were all performed using the left hand because in
the training scenarios students carry a replica of a weapon in the right hand. The
motion data was recorded with an Xsens inertial motion capture suit and using a
compact video camera. The rest of the SUIT system was not used. The recordings
took place in a quiet part of the re-lion office building, either the hangar or the
canteen, one participant at a time. The participants did not discuss the experiment
with one another previous to the experiment.

First, it was shown to the participants how the gestures should be executed.
Participants were then asked to make the gestures continuously for one minute per
gesture, one after another, in the order given. Breaks were allowed during the ex-
periment. In total this experiment generated about one and a half hour of motion
capture data.These experiments resulted in a large dataset of people making con-
tinuous gestures, recorded in spatial coordinates, rotations around axis (rotation
quaternions) and acceleration data, all of which the Xsens motion capture suit gen-
erates.

Annotating this data was a simple matter of finding the beginning and the end
of each sequence of identical gestures and removing the breaks. In case of doubt the

15

CHAPTER 3. APPROACH

video recording could be used to determine if a motion was or was not intended as
gesture.

3.2 Features

As Campbell et al. argue[l]: the design of the features that the actual classification
is going to take place on is of the greatest importance for the applicability of the
classification. In this section we outline the design that we have chosen and how to
reproduce it.

3.2.1 Design

In chapter [2| we discussed the different kinds of features that we can use for classi-
fication. From the NATOPS research we have learned that coordinates work better
than angles and that derivatives can increase performance. Because of this we choose
the direction of the motion and the spatial position in which this motion is executed.
One could also argue that the shape of the motion is important, however this shape
is a function of direction over time. So if we model direction and position — or as
we will name these in the rest of this thesis: motion and pose — we have covered the
discriminating features of our gestures.

You may consider for a moment here that you could probably come up with more
specific features to separate the given gestures. For example: we could check if the
wrist is below the elbow and if so, we classify that gesture as number 5: Enemy.
Note however that we are not trying to find features that separate these particular
gestures. We're trying to find ways to model and classify gestures in general, be it
these gestures or others.

We have also discussed different ways to normalize the data. We will not perform
semantic reduction on our data as proposed by Jin and Prabhakaran[§] for this
research because the dimensionality of our data is not so large that we need it, and
it would reduce the detail in the features. Many of our features are quite similar
so we need the details. However we will normalize for shift and rotation as will be
discussed shortly.

We also do not apply arm length normalisation in this step, even though that
may seem very appropriate for this research. The reason for that is that the Xsens
motion capture system does this for us. We can set the limb sizes in the capturing
software for each participant, but we have kept the same sizes accross participants
in our experiments. The rotations and inertial motions are imposed on a model with
the given limb sizes by the software, resulting in motion capture data with similar
limb sizes.

3.2.2 Implementation

The features that we have chosen to extract from all this data are the spatial coor-
dinates of the elbow and the wrist, relative to the shoulder (that is, Xw,Yw,Zw and
Xe,Ye,Ze; two times three coordinates forming feature pose) and the motion data of
these joints, being their positions relative to the positions d frames ago (again, two
vectors of three values forming feature motion). Figure shows this model.

If we were to simply take the (world) coordinates that the Xsens suit gives us
and start classifying with those, our accuracy would be terrible because position
and rotation would have an influence on it. The classifiers would not be able to

16

3.2. FEATURES

Figure 3.1: Generating features from motion capture data

detect the subtle patterns in gestures amid the rough patterns of where someone is
standing and in what direction he or she is facing. Even standing up versus sitting
down would be of great consequence to the quality of the system.

Because of this we wish to normalize these vectors. If we normalize vectors we
convert them from world coordinates to local coordinates. We then get vectors that
are relative to some predefined point on the user instead of relative to the world
origin. This way we get comparable pose and motion data for the same gesture,
that we can train our classifiers on.

Pose

So we have to calculate our local model from the raw world coordinates that the
Xsens motion capture data has given us. To get to this model one has to go through
five steps:

1. Get the raw motion capture pose data in a readable format
2. Select the right joints

3. Make the pose data shift invariant

4. Make the pose data rotation invariant

5. Calculate the motion vectors

To convert the motion capture data we have written a simple tool that uses the
Xsens Moven DLL to extract both spatial coordinates and rotation quaternions from
recorded MVN files and outputs them to a file in plain text format. We use Matlab
to import this data.

17

CHAPTER 3. APPROACH

The second step is selecting the right joints. As previously mentioned we have
chosen to select only the joints of the left arm because the users of the SUIT system
are carrying a weapon in the right hand. In the order that the Xsens DLL works
with this data these are the 13th, 14th and 15th triplets of coordinates or quartets
of quaternion data.

To make this data shift invariant, and thus relative to the new shoulder origin,
we subtract the vector (coordinates) of the shoulder (Vipouider) from the vectors of
the elbow (Veipow) and wrist (Vipist)-

Vwristfshiftfinvariant = Vwrist - V;houlder

Vvelbow—shift—invariant = ‘/elbow - Vvshoulder

We also need to make the data rotation invariant by interpreting the vectors (V)
as the vector part of quaternions (P) and rotating these four dimensional vectors
using the original quaternion of the shoulder (Qspouider) sO that the rotation of the
shoulder (and thus the body) gets subtracted from the pose.

Pwrist = (07 Vwrist—shift—invariant)
Pelbow - (07 V:elbow—shift—mvariant)
Qshoulder = (07 V:ehoulder)
1/117“1'51‘, = Q:houlderpwristhhoulder
ellbow = Q:houlderpelbowQshoulder
(0, Vwr’istffinaﬂ = z/urist
(O, V:albowffinal) = élbow

What results are six shift and rotation invariant values (Viyrist— final and Veipow— finat)
for our first feature: arm pose.

Motion

Next and finally, we need to calculate our second feature: the motion vectors. These
are vectors indicating the distance and the direction that the joint has moved since d
frames ago. We take the elbow and wrist vectors that we have calculated previously
(Viwrist—final> Velbow— final) and subtract from these the elbow and wrist vectors that
we calculated d frames ago (Vwrist—previous; ‘/elbowfprevious)'

Vwristfmotion = Vw’rist—final - Vwristfprev'ious

Vvelbow—motion = Vvelbaw—final - Vvelbow—previous

This dependence on a previous measurement means that our classification will
always have a start up time of d frames. Also note that we don’t necessarily need
to make the data shift invariant before we can calculate the motion vectors as the
subtraction does this for us automatically. We do however need to make the data
rotation invariant. The easiest and least computationally intensive way to accom-
plish both, however, is to simply subtract the previously calculated vectors from the
current vectors. In chapter we will try to determine a good value for the motion
offset d.

Finally both features (pose and motion) are scaled independently to the same
scale. This makes them weigh equally heavy for the classification. Finding a good
scaling factor b for these features will also be discussed in chapter

18

3.3. CLASSIFICATION

3.3 Classification

We have chosen to compare one direct discriminative classification algorithm and
one model based generative classifier for this research. In the former category we
use support vector machines and in the latter hidden Markov models. Both have
reports of good classification results from various authors and both have comparable
implementations in both Matlab and C++[3][13].

In this section we will go a bit deeper into the workings of these classification
algorithms.

3.3.1 Support Vector Machine

The first method of classifying the motion capture data is through the use of a
support vector machine (SVM). An SVM calculates a plane that divides the “space”
described by the features of some training dataset in such a way that all or most
instances of one class fall in the same partition of that space. Or in simpler language:
you show it which classes exist and give it examples of each class and it tries to find
some common pattern in the data that it can use to classify future unlabelled data.

For the SVM classifying software we used LIBSVM[3][4] because it is available
in both C and Matlab code and because it is a much used implementation. The
features as discussed in this chapter so far were converted into a format that libsvm
can use as input. There are roughly four types of SVM kernels:

e Linear

e Polynomial

e Radial Basis Function (RBF)
e Sigmoid

All these kernel types have different characteristics and parameters. However
their purpose remains the same; they all partition the feature space to fit the data.
The linear function tries to do this with linear planes, the polynomial with polyno-
mial functions, et cetera. According to Hsu, Chang and Lin[6] the RBF kernel is
a good choice to start with because it is reliable, has a reasonable amount of pa-
rameters and the linear and polynomial kernels are special cases of the radial basis
function.

In figure you can see the difference in behaviour between the four kernels
when applied to a simple two dimensional classification problem. The dots are
(unchanging) samples, the background colours show the partitioning.

Linear RBF Polynomial Sigmoid

Figure 3.2: Partitioning a space using different SVM kernels

19

CHAPTER 3. APPROACH

3.3.2 Hidden Markov Model

Hidden Markov Models are slightly more complex. They assume that the observa-
tions are not telling the full story. They assume that there is a model that cannot
be observed that governs the observed behaviour. So instead of trying to partition
the space in absolutes, as an SVM tries to do, it tries to define the result in terms
of probabilities.

Figure 3.3: An example of a hidden Markov model

For example, let us assume that you have a neighbour who only does one of three
things on a given day: he goes for a walk, he goes shopping or he cleans the house.
And after observing him for a while, you discover a pattern in his actions. When
it’s sunny he goes for a walk 60% of the time, shops 30% of the time and cleans the
remaining 10% of the time. However, when it’s raining he cleans the house 50% of
the time, goes shopping 40% of the time and walks the remaining 10% of the time.

You also have a general idea of the behaviour of the weather where you live. If
it’s a sunny day today, chances are that it will be again tomorrow and rainy days are
a bit more likely than sunny days. All these parameters can be modelled as shown
in figure [3.3

Having observed this behaviour, you go on a holiday to Japan and call your
neighbour every day. He then tells you what he did that day, let’s say he went
for a walk. This will allow you to estimate that the weather is probably sunny at
home. The algorithm you need to make this estimation properly is called the Viterbi
algorithm. With it you can find the most likely sequence of weather events that took
place, or the most likely path through the hidden Markov model, which has lead to
the observation of your neighbour going for a walk that day.

The weather model described above satisfies what is called the Markov property.
This property requires that the chances of going to one state or another in the
model only depend on the current state, and not the entire history of states. In

20

3.3. CLASSIFICATION

our simplistic model the chance that tomorrow will be rainy or sunny only depends
on today’s weather, so the Markov assumption holds and this is a hidden Markov
model instead of just a hidden model.

In classification you take this concept one step further and build hidden Markov
models for each class. Then you try to match the observed output with the hidden
Markov model of each class and see which one gives the highest probability and
thus fits best, like you're searching for Cinderella using only the slipper that she left
behind.

To train the models and find the most likely path we have used the hidden
Markov model Toolbox for Matlab by Kevin Murphy[13].

21

CHAPTER 3. APPROACH

22

Chapter 4

Parameter estimation

As explained we will be comparing support vector machines with hidden Markov
models. Both SVMs and HMMs require some tuning of parameters for this specific
application. The feature extraction also needs some calibration.

4.1 Parameters

We need to make a choice here. Finding good parameters is very computationally
intensive and within the context of this Master’s thesis we cannot simply calculate
every possible combination of parameters, features and classifiers. We have four pa-
rameters, three features and two classifiers. That means that we would have to do
each experiment 24 times. One experiment deals with the data from eight partici-
pants, who have recorded ten minutes of motion capture data each. All participants
are classified on the learning data of all others. One second of motion capture data
equals to 60 frames of poses and motions, after feature extraction.

We can save on time by making some assumptions. For example, we assume
that optimal values for d and b have little dependency on each other and that the
curve for b will remain the same for any value of d. Also, the classifier-specific
parameters are assumed to be independent from the feature parameters b and d.
Another important assumption made is that the results can be generalized over the
different participants. We want to build a system that we can apply to any user
without user-specific training.

We don’t calculate the parameters per gesture (class) to save time, both for
this project and because we want to keep the classification generic. Calculating
the parameters per feature would also require the resulting system to calculate its
parameters per feature after training and before operation, because we do not want
to restrict an instructor to our choice of gestures.

4.1.1 Feature calibration

We have to decide on an offset d for the motion vectors that we discussed in chapter
This variable determines how much motion we consider in our system. Also we
need to set an upper boundary b for the scaling that was also discussed there.

To calculate b and d we take the most basic case for all other properties of the
system. We train the classifier on one participant using all the default parameters
for that classifier and train on all others. We do this for all participants and for both
classifiers. The only variable we change is respectively the offset d or the scaling

23

CHAPTER 4. PARAMETER ESTIMATION

boundary b. We then average the data over all the participants. This gives us two
graphs for both classifiers that we can analyze to determine the optimal values.

4.1.2 SVM parameters

Next we have to do the same for the classifier-specific parameters. We start with
the SVM classifier, which has two parameters for the RBF kernel: cost and gamma.
These values are interdependent so we need to determine them together. Again we
train using one participant and classify all others, for each participant. We use the
parameters d and b as determined in the last paragraph. We then average the data
over the participants and we get one graph in the form of a height map in which we
can find the optimal values.

4.1.3 HMM parameters

Finally, the HMM classifier. This classifier has to be applied on sequences of frames
or otherwise it will lose its value, so instead of feeding it each frame individually we
feed it windows of frames. The window size thus becomes an important factor. If
we take a window size that is too large it may encompass multiple gestures and thus
lose its value. If we take a window size that is too small it may not contain enough
frames in the sequence for the hidden model to apply. So again we have to find this
optimal value. For each window size we train the HMM classifier on one participant
and test it on all others. We do this for each participant. We use the values for b
and d that we found before. We average the results over the participants so we can
plot the f-measure as a function of window size and determine a good value.

Two other properties of HMMSs, that are interdependent, are the number of states
in the model and the number of Gaussians that make up a state. To find optimal
values for these variables we have to train the classifier for each combination of values
once more. We train on one participant and test on all others, for each participant.
We use the parameters d and b as determined before. We then average the data
over the participants and analyze the resulting two dimensional height map for the
highest f-measure scores.

4.2 Results

The previous paragraph describes how we have found optimal values for the motion
vector offset d, the scaling maximum of the features b, the SVM parameters cost and
gamma and the HMM parameters window size, number of Gaussians and number
of states. This paragraph will document the results.

4.2.1 Feature calibration

As described, we have plotted the f-measure of the classification against the motion
offset variable d for both types of classifiers. The result, as shown in figure is
surprising. The influence of the motion offset appears to be smaller than expected
on average for either classifier. We also expected to see much worse results for a
small offset. At more than around 36 frames both classifiers show a decline in f-
measure. We see a maximum at around 30 frames for both classifiers, which seems
a good value for our d.

24

4.2. RESULTS

We can explain the good results for small offsets from the fact that the raw data
we receive from the Xsens motion capture suit is not entirely “raw”. We expected
to see jitter in two consecutive frames from inaccuracies in the measuring system.
However, the Xsens suit and software do some pre-processing on the data, smoothing
out such jitter. This means that two consecutive frames can be used to determine
the motion vector with much more accuracy than anticipated.

We move on to parameter b, the scaling maximum. Plotting the f-measure
against the upper scaling boundary as in figure [£.1b] shows much more effect on the
classification than you might expect. Scaling the data on a scale from zero to two
gives a much better result for HMMs than it does for the support vector machine.
Scaling the data from zero to twelve shows the opposite effect. In general we see that
both classifiers get worse for scaling maxima over twelve. We would have expected
that the influence of this parameter would be much smaller.

From these values we have chosen a value of two for the HMM classifier and a
value of eleven for the SVM classifier. However after some experiments these values
turned out to vary greatly with data sets. After several attempts to find optimal
values we resorted to sticking with scaling all data to a scale of zero to one. This
may not give optimal results but it does give reliable results.

4.2.2 SVM parameters

For the classifier using support vector machines we find that the choice of the pa-
rameters cost and gamma does indeed have a significant influence on the f-measure.
This is according to expectations. What is not according to expectations is the large
difference between the graphs for pose (figure , motion (figure and pose
plus motion (figure [4.2d).

Note that the scale in the three graphs is not the same and that the graphs have
been “patched” a bit. Especially the motion only graph in figure which has
been put together from several files, hence the weird bump in the top left (-15,15 to
-3,19).

The pose graph shows a steep decline to the right and a slight decline to the
bottom left. The center, fanning out to the top left, is a plateau with good results.
The best result lies around cost -2 and gamma 2. This highest value lies very close
to both declines, so this introduces a risk for future, unknown data.

In the motion only graph we see a steep decline in f-measure to bottom left, to
the top right appears to be a plateau where the classification results are quite good.
The maximum is in the top center region around cost 21 and gamma -2. Again, we
have to make sure with these kinds of graphs that we do not pick values too close
to the precipice. In this case, because of the unknown “patch”, we pick the slightly
safer values of cost 18 and gamma 1.

Finally, the graph on pose and motion. This graph looks very similar to the pose
graph, only with greater differences. Also, the highest value (at cost -7 and gamma
3) is even more in the “dangerous” corner. Again, we pick the safer values of cost
-3 and gamma, 2.

4.2.3 HMM parameters

Increasing the window size for the classifier results in an increasingly better f-measure
score, as can be seen in figure[4.3] This is surprising because one would expect to see
a maximum after which the result gets worse. Using larger windows may wrongly

25

CHAPTER 4. PARAMETER ESTIMATION

f-measure

f-measure

Figure 4.1: Calibrating the feature extraction procedure

. HMM
° SVM
Interpolation

6 11 16 21 26 31 36 41 46 51 56
Motion offset (in frames)

(a) Finding the right motion offset

08] -
02—
0.1 — P
- ° SWM
s |nterpolation
N L L L L L L L L LD L L LD IO L LD L IO L L L L L B B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Scaling maximum

(b) Finding the right scaling mazimum

26

4.2. RESULTS

Figure 4.2: Finding the cost and gamma optima for SVM

Ig(cost)

Ig(cost)

Ig(cost)

] J | 2
? "5,
15 0457853 RO
1)425,{; ‘3
] 0
'48232
1.0, @? <
10 %95 0.46713 kR O
4 > .
2% Og 2
J N
él o, &3
1o, %,
] ,‘é; o
5— Q
R a3 %, \A
i Ogs, 2. 2
B §7)0
0] .J};ﬁ?
1 o
"
1 35 %
] %
5]
B R e e e e e LA B |
14 -2 -10 -8 -6 -4
Ig(gamma)
(a) Pose
25 .
(il \
2|\ @ o
20/ % S B
S
S
15 ‘5\
_N
:é.wa
5%
10—
112 =
- <
4 2
] s
5
0
e
18
- T
1eg
Ssls s 2 s s
B 5 2 S =
] § @ : 2
o] || | |
r—rr—rr—TrTTr 1T T T T T T T
14 -12 -10 -8 -6 -4 -2 0 2 4 6 8
Ig(gamma)
(b) Motion
15—
10—
5|
0|
5]
-10

Ig(gamma)

(c) Pose & Motion

27

CHAPTER 4. PARAMETER ESTIMATION

generalize data as the window starts to overlap several gestures, wrongly classifying
some of them or most of them. However we can explain this from the fact that in our
data set participants make the same gesture for a minute each. One gesture takes,
on average, a little under a second to perform. This is probably why you see the
curve levelling off at around 50 frames. However, to keep the gesture classification
snappy for our purposes, it would probably suffice to select a window size of 30
frames (half a second).

Figure 4.3: Finding the right classifier window (HMM)

f-measure
o
(&)}
|

0 T I T | T l T I T I T | T I T l T l T I T I T l T l T I T I T I T I T
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86
Classifier window size

Finally, the number of states and Gaussians in the hidden Markov model. Again,
we have had to determine these per feature, so once for pose only, once for motion
only and once for both pose and motion. The differences are not quite as large as
for the support vector machine, but they are relevant nonetheless. The values have
been plotted as height maps in figure [4.4]

For all graphs goes that the classifier performs less at very low numbers of states
and Gaussians. Less than three states or less than two gaussians is not to be rec-
ommended. The motion graph in figure shows that, other than that, it does
not matter much which number we pick. It shows a slight performance increase
for higher numbers of states. We pick the highest value at nine states and four
Gaussians.

The pose graph in figure shows several “holes” in the height map. There
appears to be a safe triangle in the lower left corner with a maximum at eight states
and three Gaussians. The differences are small though so we will choose a value in
the center of the triangle at five states and four Gaussians.

Finally the pose and motion graph in figure shows the same safe triangle,
but again, as with the SVM graphs, the differences are bigger. Within this triangle
we find a high plateau around six states and three Gaussians and we pick this as
our values.

28

4.2. RESULTS

4.2.4 Final parameters

This search has resulted in the optimized parameters shown in table[d.1 With these
parameters we can start the experiments that can answer our research questions
without bias.

Parameter Value

Pose | Motion ‘ Pose&Motion
Motion vector offset d 30 frames
Scaling maximum b 1
SVM: Cost 272 218 273
SVM: Gamma 22 2! 22
HMM: Window size 30 frames
HMM: Number of Gaussians 4 4 3
HMM: Number of states 5 9 6

Table 4.1: Gesture recognition parameters

29

CHAPTER 4. PARAMETER ESTIMATION

Figure 4.4: Finding the states and Gaussians optima for HMM

10— /
i °©
@
TN B
AL
8 —
18
w
s
6|
3
5
@
5 N
/%
oS,
4—
3]
A2
o
8
2V &
1 052384
L o e e |
1 2 3 4 5 6 7 8 9 10
Gaussians
(a) Pose
3
©
&
[B S B R B
1 2 3 4 5 6 7 8 9 10
Gaussians
(b) Motion
10—\
|8
«©
~4O
8|
158
22
72
—Em
9
5—®
3
s 4
&
5
L&
la\g e . :
55 0y : : I !
sy i : LN . :
_%\l . . N N
©\© : : : : \
29 6800 L T gigg 0.69494
- 68991 g9 0 -
0.68488 \/\0.55455\%33991 —
. 0.67985 — : 067985 — 008488 ——
0.67482 5 B 0.67482 —————————————(.67482 d
1 LI L L L N Y L L B L) B
1 2 3 4 5 6 7 8
Gaussians

(c) Pose & Motion

30

Chapter 5

Results

The last step of the process, having constructed usable features and optimized clas-
sifiers, is to use the classification to answer the research questions that we began
with. This chapter will explain in more detail how we have tried to answer these
questions, and then describe the answers that we found and how we came to those
answers.

5.1 Research questions

We have asked four research questions in the introduction to this thesis. In this
section we will briefly cover these four questions and describe the steps we have
taken to answer them.

5.1.1 Pose versus motion

Which feature is more information-rich in this application: pose or motion?

To answer this question we have used the straight-forward approach of training
and classifying all data three times: once with only pose data, once with only motion
data and one final time with both features. We do this twice, once with the SVM
classifier and once with the HMM classifier. We train the classifiers on all the data
of one person, and test it on all other data. We do this for each person. This
results in averaged f-measures and confusion matrices for all three options, for both
classifiers and for each person. Averaging this data over the participants gives us
six f-measures and six confusion matrices for comparison.

For this experiment we expected that motion would be best for some gestures
and pose for others. We expected the combination to work best.

5.1.2 Intra- versus inter-participant

What is the loss of accuracy when using only the mocap data from one person as
training data versus training on multiple participants?

To be able to answer this question we first need to know what the classifica-
tion accuracy would be if we split the data up in the traditional way for an intra-
participant test: from the data of each participant we use a part for training and a
part for testing. If we create a train set from various participants in this way that
is the size of one entire set for one participant and use the rest for testing, we can
compare the two approaches and see what the difference is. Of course we run this
test twice again, once with SVM and once with HMM, for each participant. We can

31

CHAPTER 5. RESULTS

compare this result to the results of the previous test to see what the difference in
accuracy is.

We expected the intra-participant training set to give better results because it
makes the classifiers less specific to a single participant and better able to ignore the
differences between participants.

5.1.3 Train size influence

What is the influence of the size of the training data on the accuracy?

Because we need to be able to answer this question independently of the last we
have kept the training set size equal across the different tests. In this test we’re going
to change that variable. We stick to training with one person again, the variable
being how many frames we use to train each class. We again do this once for both
classifiers. We can also do this with each participant as training set. This generates
many f-measures and confusion matrices, which we can average over the participants.
We can then plot the f-measure of the classifications against the number of frames
used for training.

For this experiment we expected to see an increasing accuracy for both classifiers
with an increasing training set, to a certain maximum.

5.1.4 SVM versus HMM

Which classification approach is best suited for this application: SVM or HMM?

Of the six f-measures and confusion matrices from the pose versus motion exper-
iment, three are generated using SVMs and three using HMMs. This should give us
all the data we need to be able to draw conclusions about which approach is more
suitable in the specific case where we use one person’s data as training data and test
on the others. The second test should give us an idea which classifier is better when
testing within subject. The third test should give us an idea of which classifier is
better at handling small training sets.

We expect to see HMMSs perform better on classes dealing with motion and on the
inter-participant test. SVM could be better in the intra-participant test and perhaps
with static poses. Overall we expect to see HMMs outperform SVMs because of the
nature of the data. Below the motion capture data lie patterns of gestures, that we
expect HMMs to be able to detect. Although we will not be measuring it, it might
be good to mention that SVMs are faster and less CPU-intensive than HMMs, so
there are certainly good reasons to go with SVMs.

32

5.2. RESULTS PER RESEARCH QUESTION

5.2 Results per research question

This section will present the results of the four central questions, using the exper-
iments that we just described. Each answer will be illustrated with graphs and
confusion matrices.

We have used a validation set for the experiments in the chapter on set-up and
parameter estimation. We have conducted these experiments on a (different) test set.
Because of this you may see some apparent inconsistencies in the specific f-measures
between the chapters.

5.2.1 Pose versus Motion

First we will compare the different features that we have used: pose, motion and a
combination of the two. Which gives us the best classification results? As shown in
figure[5.1] our expectation was correct: the combination of pose and motion gives the
best results for both the SVM and HMM classifiers. Motion scores higher than pose
for the support vector machine and pose wins over motion for the hidden Markov
model.

Figure 5.1: Pose versus motion

. HMM
7 | | SVM
SD

0.9 —
0.8 — P

0.7 —

y

f-measure
o
o
1 I 1
—_

0.4 —

0.3 —

0.2 —

0.1 —

0 T T 17T 17T 177 I UL I L L I 1T T T T 1T 1T

Pose only Motion only Both features

We had expected HMMs to outperform SVMs for the motion feature, because
HMMs are better able to model dynamic processes. However, it seems that the
motion feature does a really good job at making our dynamic process easy to model
in a static way. Such a good job in fact that the motion feature alone classifies our
gestures almost as good as the combined features for SVMs. With HMMs you can
clearly see that the static poses and the dynamic motions complement each other
and drive the accuracy up when used in combination.

We would expect that some gestures are recognized better by motion features
and others by pose features. To investigate this we have to look at the six bars in

33

CHAPTER 5. RESULTS

the graph with more detail. In figure you can see the confusion matrices of some
of the bars.

Figure 5.2: Confusion matrices for HMM

Classification
Wave Go Stop Slower Enemy Airplane Ack. Party Repeat
Wave 51,88% 749% 18,84% 591% 0,00% 0,12% 3,04% 1,60% 11,11%
Go 312% 6295% 6,73% 0,06% 0,02% 0,00% 2,82% 12,02% 1227%
Stop 27,50% 14,73% 27,11% 127% 0,00% 0,00% 2,71% 10,13% 16,55%
Slower 213% 034% 0,00% 6054% 2,37% 3457% 0,00% 0,03% 0,02%

Input Enemy 0,00% 001% 000% 063% 9931% 0,02% 0,00% 0,02% 0,00%
Airplane 013% 0,00% 000% 4644% 0,17% 53,20% 0,02% 0,01% 0,03%
Ack. 168% 3.88% 1,38% 0,09% 0,00% 0,03% [4893% 2668% 17,33%
Party 365% 870% 9,13% 000% 0,19% 0,00% 6,05% 5991% 12,38%
Repeat 852% 23,84% 17,12% 000% 0,00% 0,00% 6,64% 2507% 18,80%

(a) Pose feature

Classification
Wave Go Stop Slower Enemy Airplane Ack. Party Repeat
Wave 69,84% 148% 622% 019% 2,22% 4,32% 6,56% 1,63% 7,55%
Go 028% 57,36% 049% 1053% 10,05% 045% 0,45% 247% 17,92%
Stop 0,02% 019% |[2492% 041% 0,01% 1343% [61,00% 0,01% 0,02%
Slower 000% 292% 965% 4956% 3,78% 8,86% 19.20% 6,02% 0,02%

Input Enemy 000% 021% 6,01% 17,76% 64,79% 3,35% 7,88% 0,00% 0,00%
Airplane 0,00% 0,00% 23,45% 008% 0,05% [1342% 63,00% 0,00% 0,00%
Ack. 0,00% 0,01% 22,26% 0,15% 0,00% 12,73% 64,63% 0,22% 0,00%
Party 0,04% 170% 057% 23,14% 0,02% 0,37% 0,35% 73,75% 0,08%
Repeat 12,71% 156% 10,75% 2,05% 040% 7.23% 10,33% 0,63% 54,34%

(b) Motion feature

Classification
Wave Go Stop Slower Enemy Airplane Ack. Party Repeat
Wave 61,26% 1,79% 17,66% 2,27% 0,00% 0,35% 2,64% 051% 1351%
Go 1,03% 76,25% 3,06% 0,06% 008% 000% 074% 367% 1510%
Stop 20,91% 768% 46,32% 0,18% 0,00% 0,03% 635% 7.87% 10,66%
Slower 012% 078% 0,02% 62,03% 2,27% 3473% 0,00% 0,04% 0,01%

Input Enemy 0,00% 0,00% 000% 030% 99,65% 0,05% 0,00% 0,00% 0,00%
Airplane 0,09% 0,00% 000% 3432% 0,20% 6531% 003% 0,03% 0,02%
Ack. 0,09% 367% 846% 008% 0,00% 0,04% 6345% 10,00% 14,20%
Party 053% 091% 9,18% 006% 0,00% 0,00% 3,65% 8321% 245%
Repeat 10,74% 11,87% 19,35% 0,00% 0,00% 0,00% 12,51% 10,08% | 8544%

(c) Both features

From these confusion matrices we can see that some gestures get mixed up when
using only the pose feature and others get mixed up when using the motion feature.
The results for the SVM classification are comparable, see figure [5.3

For pose we clearly see that the gestures Slower and Airplane get mixed up.
This makes sense because these gestures are made in the same general area: with
a stretched arm away to the side. Also, the classifier has great trouble discerning
between the gestures that are made next to the head, and thus have overlapping
features: Wave, Go, Stop, Acknowledge, Party and Repeat. Some of these gestures
perform better than others, like Wave, Go and Party. This is because these gestures
overlap only in a part of their trajectory. For most of their trajectory they are
respectively further away from the head, in front of the body and below the shoulder,
which makes them easy to classify from pose information. The class Enemy, finally,
classifies very well because it is the only gesture executed downwards.

When we look at the confusion matrix for the motion feature we see a very
different pattern. The classification is not able to keep the three static gestures
apart: Stop, Airplane and Acknowledge. This makes sense because the motion

34

5.2. RESULTS PER RESEARCH QUESTION

vectors for these classes are all very close to zero. The same goes for the confusion
between Slower, Enemy and Party, which all three have an oscillating motion going
up and down. However, the HMMs can discern these classes relatively well from the
ratio of movement between the elbow and the wrist. Finally, we can see that classes
like Wave and Go, which are executed in the same general area but in opposite
directions, are virtually not mixed up at all, but do both get mapped wrongly to
Repeat, which contains movement in both directions.

The last matrix contains the results of the combined feature. Here we see most
classes being classified quite well. The errors of the pose and motion matrices get
smoothed out by combining the features, which results in a better accuracy overall.
Two classes however consistently give very bad results; Stop and Repeat. This is
probably the case because both their position (left of the participant’s head) and
their motion (either static or small motions in the X and Z direction) are not very
unique. They clearly also reduce the accuracy of the rest of the classifications, as
they both get false positives, so leaving these gestures out would increase the quality
of the whole system.

Figure 5.3: Confusion matrices for SVM

Classification
Wave Go Stop Slower Enemy Airplane Ack. Paty Repeat
Wave 55,90% 6,87% 9,91% 938% 0,00% 0,23% 267% 1,99% 13.07%
Go 6,72% 52,71% 499% 024% 0,23% 0,00% 2,05% 18,45% 14,61%
Stop 31,33% 12,79% [2600%" 1,79% 0,00% 0,00% 2,50% 10,82% 19,77%
Slower 697% 021% 001% 54,24% 3,03% 3546% 0,00% 0,00% 0,08%

Input Enemy 0,00% 000% 000% 148% 9844% 0,00% 000% 0,06% 0,02%
Airplane 047% 000% 000% 39,10% 0,01% 6043% 0,00% 0,00% 0,00%
Ack. 554% 359% 244% 000% 0,00% 0,00% | 44,18% | 2167% 22,59%
Party 10,83% 11,56% 594% 001% 1,38% 0,00% 888% [44,06% 17,35%
Repeat 18,37% 21,67% 943% 006% 014% 0,00% 874% 21,02% |20,56%

(a) Pose feature

Classification
Wave Go Stop Slower Enemy Airplane Ack. Paty Repeat
Wave 60,57% 11,37% 1,88% 058% 2,60% 0,37% 0,24% 2,08% 20,531%
Go 717% 5551% 088% 589% 201% 022% 0,10% 6,04% 22,18%
Stop 313% 1,02% [88)06%" 243% 0,92% 18,61% 3397% 1,79% 0,07%
Slower 248% 18,77% 168% 6240% 3,20% 395% 051% 4,83% 2,19%

Input Enemy 753% 850% 080% 745% 7020% 047% 020% 2,78% 2,07%
Airplane 020% 0,16% 13,01% 642% 022% | 4968% 3026% 005% 0,00%
Ack. 053% 0,15% 13,69% 196% 064% 2149% 6029% 1,26% 0,00%
Party 266% 13,38% 209% 3,72% 090% 0.22% 024% 7509% 1,68%
Repeat 22,02% 24,14% 0,08% 047% 098% 003% 001% 6,85% 4542%

(b) Motion feature

Classification
Wave Go Stop Slower Enemy Airplane Ack. Paty Repeat
Wave 68,14% 6,83% 6,83% 1,91% 0,00% 0,13% 083% 0,78% 14,54%
Go 466% 6514% 3,10% 004% 0,09% 0,00% 127% 7,97% 17,73%
Stop 34.87% 12,01% [28193%" 0,00% 0,00% 0,00% 221% 641% 1556%
Slower 093% 098% 000% 62,18% 256% 33,30% 0,00% 0,05% 0,00%

Input Enemy 0,00% 0,00% 000% 054% 9946% 0,00% 000% 0,00% 0,00%
Airplane 0,00% 0,00% 000% 3968% 0,07% 6025% 000% 0,00% 0,00%
Ack. 0,06% 13,91% 3,50% 000% 0,00% 0,00% 5284% 1848% 11,22%
Party 426% 12,10% 3,87% 002% 0,03% 000% 7,21% 6468% 7,84%
Repeat 17,91% 24,00% 7,08% 000% 0,02% 000% 791% 1558% | 27,50%

(c) Both features

35

CHAPTER 5. RESULTS

5.2.2 Intra- versus inter-participant

Next we try to answer the question how much accuracy is lost because we train our
classifiers on only one instructor and not on all participants. So as a test we have
trained the classifiers on a small part of each participant and then tested on the
rest of the data of the participants (intra-participant). The total amount of training
data remains the same as in the previous experiment. We compare this to the result
from the pose versus motion experiment (inter-participant). This test has only been
done for the combined motion and pose features.

Figure 5.4: Intra- versus inter-participant

I HMM
4 [sw

0.9 —
0.8 —
0.7 —

06— -

0.5 —

f-measure

0.4 —

03—

02— -

01— -

Intra participant Inter participant

As you can see in graph [5.4] for HMMs we lose about 16 percentage points in
our inter-participant experiment compared to if we would have chosen an intra-
participant approach. For SVMs we lose 19 percentage points. This means that we
could clearly gain some accuracy from changing our usage scenario. If we let both
the instructor and the students record a few minutes of motion capture data, we
probably see better results.

When we look at the confusion matrices for the intra-participant experiment in
figure we can see that the classification is less ”chaotic”: the confusion is more
concentrated than in our original experiment. Again we see that the Repeat gesture
scores badly. We can also see more explicitly the confusions from the individual
features pose and motion: Slower and Airplane are mixed up because their motion
features are very similar. Stop and Acknowledge are confused by the HMM because
both their motion and position features are very much alike. The SVM seems to
have little trouble with this though, but it mixes up Wave and Stop which are very
similar in pose but not in motion.

36

5.2. RESULTS PER RESEARCH QUESTION

Figure 5.5: Confusion matrices for intra-participant experiment (pose + motion)

Classification

Wave Go Stop Slower Enemy Airplane Ack. Party Repeat

Wave 56,15% 1,20% 33,18% 0,77% 0,00% 0,00% 1,04% 0,14% 7,52%
Go 0,17% 84,19% 3,50% 0,00% 0,00% 0,00% 0,62% 3,88% 7,65%
Stop 0,05% 038% 7511% 000% 0,00% 0,00% 0,00% 14,20% 1026%
Slower 0,00% 000% 0,00% 77,62% 0,00% 2238% 0,00% 0,00% 0,00%
Input Enemy 0,00% 000% 000% 000% 100,00% 0,00% 0,00% 0,00% 0,00%
Airplane 0,00% 000% 0,00% 2040% 0,00% 79,60% 0,00% 0,00% 0,00%
Ack. 0,00% 190% 000% 000% 000% 000% 98,10% 0,00% 0,00%
Party 029% 217% 436% 004% 0,00% 0,00% 800% 83,20% 1,94%
Repeat 618% 14,82% 929% 000% 000% 000% 4,31% 13,19% 5221%

(a) SVM confusion
Classification

Wave Go Stop Slower Enemy Airplane Ack. Party Repeat

Wave 78,65% 0,10% 11,40% 0,00% 0,00% 0,00% 666% 000% 3,20%
Go 0,02% 93,90% 046% 0,00% 0,00% 0,00% 1,12% 0,00% 4,50%
Stop 1,18% 0,04% 67,95% 017% 000% 0,00% 30,57% 0,00% 0,09%
Slower 0,15% 0,00% 0,00% 5540% 0,21% 4419% 0,05% 0,00% 0,00%
Input Enemy 0,00% 000% 0,00% 031% 9969% 0,01% 0,00% 0,00% 0,00%
Airplane 0,00% 0,00% 0,00% 1,97% 0,14% 97,80% 0,08% 0,00% 0,00%
Ack. 0,00% 000% 000% 002% 0,00% 0,23% 9968% 007% 0,00%
Party 0,00% 0,00% 2,50% 0,00% 0,00% 0,00% 11,85% 8565% 0,00%
Repeat 137% 2,84% 13,42% 0,00% 0,00% 0,00% 30,60% 6,16% | 4562%

(b) HMM confusion

5.2.3 Train size influence

We are also interested to know if the result that we found is greatly influenced by the
limited amount of data of the training set. The data from one participant, which is
nine minutes of motion capture data in total, might just be insufficient for optimal
results.

Graph answers this question. We can clearly see that we don’t need a very
large training set. If we have more than 200 frames for each class the f-measures for
both classification methods are very close to the f-measures for the full data set. 200
frames equals a little over three seconds. However, we do still see a slight increase
in f-measure for increasing numbers of frames. At the far right in the graph is our
full training set of 60 seconds per class times 60 frames per second, which gives 3600
frames per class. At that point the graph is still rising, so having more frames per
class may still increase the classification results, but the influence will not be quite
as large as the influence of testing intra-participant, for example.

5.2.4 SVM versus HMM

If we look at graph and graph where the results have been split in an
f-measure for SVMs and one for HMMs, we can see that, in most cases, the f-
measure for HMMs is higher than for support vector machines. As expected the
SVM classifier performs better in the intra-participant test than in inter-participant
tests, but it still does not outperform the hidden Markov model.

If we compare the classifiers in motion or pose we do not see the expected result
that SVMs are better than HMMs at classifying static poses and HMMs better than
SVMs for motion, quite the opposite. With our features the SVM classifier beats
the HMM classifier for motion and the HMM classifier beats the SVM classifier for
pose. The differences are not very large though.

37

CHAPTER 5. RESULTS

Figure 5.6: Train size influence

f-measure

e HMM
- o SVM
= |nterpolation

0 III

7 367 727 1087 1447 1807 2167 2527 2887 3247
Training data size (in frames per class)

Looking at the confusion matrices in figures and we can see that
the SVMs and the HMMs behave in a very similar way, mostly confusing the same
classes. They do however have a different tendency for misclassification, picking
different classes to map gestures to about which they are uncertain. The intra-
participant experiment is a good example of this: both classifiers had trouble keeping
Wave and Stop apart but the SVM classifier mapped unknowns on Stop and the
HMM classifier on Wave and Acknowledge. This makes the difference between Wave
being classified well and Stop only acceptable, or the other way around.

We can only conclude that the difference between SVMs and HMMs is not as
large as we had expected, but we do see HMMs outperform SVMs in most applica-
tions, as expected.

5.3 Discussion

In this section we will be discussing the results and their relevance to the application
of virtual infantry training. We describe several use case scenarios that, given the
results above, could be designed around our gesture recognition approach in future
infantry training systems.

We have seen an acceptable (but not great) classification result for both HMMs
and SVMs, given that we classify inter-participant with little training data from just
one instructor. We have also seen that we can improve this result significantly by
classifying intra-participant.

38

5.3. DISCUSSION

5.3.1 Intra-participant

Whether we are able to classify intra-participant, and if we have a need for this,
depends highly on the application. Our classification system could be used very
well to allow an instructor to control the simulation from within, which makes for
an excellent intra-participant scenario. For example: the instructor could pause the
simulation to explain something to the students, he could control the recording of the
simulation for an after action review when he sees something of interest happening
or he could trigger a scenario change (an ambush, civilians passing by, et cetera).
Such applications are quite realistic with the classification results as they are.

In fact, the intra-participant experiment is based on a training set which consists
of training data from all participants. Then, we classify test data from all partici-
pants and we get classification results in the range of 80%. If we were to train and
classify on only one person, it is very likely that the results would be even better
because the data set would then have less variance and the way in which different
users perform different gestures would no longer be of any importance.

Another use we could make of this knowledge is that we allow students to record
a few of their own gestures under supervision of the instructor before entering the
training simulation. We could then use these gestures (either in combination with
gestures from the instructor, or on their own) to train a classifier specific for their
system. We should however ask ourselves if this is desirable. Students are likely to
make mistakes, which would then influence the classification.

5.3.2 Inter-participant

The classification results for an inter-participant setting may not be as high, but
depending on the use case it could still be very useful. Giving direct feedback
on gestures with these classification accuracies is probably not a very good idea.
However, there are ways of giving indirect feedback that solve this problem.

For example, the system could score students’ gestures relative to other students,
and produce a ranking of who has made their gestures best. This could be added
to the application as a serious mini-game, challenging students to perform best at
making understandable gestures.

Another way to give indirect feedback is to use the recognized gestures as input
for the internal model of artificial agents in the system. People make mistakes, and
so may virtual agents pretending to be people. These agents could be either allies
that the students communicate with through gestures, or enemies that “observe”
the students from a distance and try to gain a strategic advantage from reading
their gestures.

These are all use cases of in-game gesture recognition that do not require a very
high accuracy or reliability but are nevertheless quite useful. These applications
would require no training data from the participants, only from an instructor or a
previously recorded session. The approach described in this thesis could be directly
applied to these scenarios.

5.3.3 Gestures

In section we have seen that some gestures are better classified with motion
features and others with pose features. We have also seen that some gestures are
not classified very well with either pose, motion or combined features. Part of the

39

CHAPTER 5. RESULTS

reason for this is that the nine gestures that this thesis focusses on lie very close
together, which is what they were selected for. If we have control over the gestures
that we choose to allow in our system we can use this knowledge to our advantage.

For example, if we wish to classify three gestures very fast and with high accuracy,
we need to select gestures that lie far apart in the pose plane. We choose the pose
feature because it is slightly faster to calculate. For gestures we could classify Stop,
Enemy and Airplane. These gestures are easy to keep apart in the pose plane by
either HMMs or SVMs because they are very different in execution physically and
they are hardly ever confused.

Note that this way we could classify three gestures with great accuracy and great
speed, even though the classification is inter-participant, with limited training data
from just one instructor. This could be quite useful for all kinds of applications, one
of which could be controlling an in-game menu without a controller. If we use Stop
and Airplane for respectively right and left and Enemy for select, this could provide
a very natural and easy to learn interface.

5.3.4 Classifiers

From our results we can not distinguish a huge difference between support vector
machines and hidden Markov models. The HMMs are slightly better overall but for
some applications, like classifying motion only features, the SVMs outperform the
HMMs. This small difference in classification accuracy enables us to look at other
advantages and disadvantages of both methods and of their implementations.

For example: SVMs are faster than HMMs as shown in [II]. We have not
measured this but if speed is an issue for a real-life application then this could be
an important factor, either concerning the time it takes to train the system or the
speed of classification. Another consideration can be if the classifiers are available
in your programming language of choice.

5.3.5 Training size

We have seen that the classification can work quite well with very little training
data. Because of this, training the classifier could be a very trivial task that is part
of the initialisation of the training simulation, like calibration is now. Users are
currently asked to assume a series of poses to calibrate the motion capture suit. In
the future, each training scenario could use different gestures and ask the user to
make those gestures to initialize the scenario.

To give one example: imagine a scenario where the students have to press a
button to disarm an explosive. Before the scenario starts, the students could be
asked to hit a virtual token twice, which would give the system enough motion
capture data to know what "hitting” looks like. Next, if this hitting motion is
detected close enough to the location of the button, this could trigger the scenario
to disarm the explosive.

In a broader sense, small requirements on the training size open up possibilities
for use case scenarios where we want to recognize repetition. You have made some
gesture in situation A, now we can detect if you are making this gesture again in
situation B.

40

Chapter 6

Conclusion

In this thesis we have shown that classification can be used in a virtual infantry
training situation. Less than ten minutes of training data from one instructor is
sufficient for classifying nine different gestures with an f-measure of 0.65 on average.
This classification can then be used for a plethora of applications including scoring
students relative to each other, allowing the instructor gesture control over the
scenario and as input to artificial intelligent agents.

6.1 Recap

We wanted to know if it is feasible to add gesture recognition capabilities to the SUIT
virtual infantry training simulation system. To answer this broad question we have
looked at different classification approaches, different features and different training
set sizes. Also, we have looked into the consequences of classifying inter-participant
(instructor - student) versus an intra-participant approach.

For this research we conducted an experiment to construct a data set of over
an hour of motion capture data, expressing nine gestures as explained in section
and chapter (3] In the same chapter we have constructed several different features for
later comparison (section . In chapter |4| we determined optimal parameters for
classification algorithms using support vector machines and hidden Markov models.

Finally we have used these features, algorithms and optimized parameters to
conduct several experiments as described in chapter [5to find answers to the questions
that we set out with.

6.2 Findings

Concerning classification performance, hidden Markov models give the best results
for this application, although the difference with support vector machines is not very
large. For our motion-only feature SVMs even outperform HMMs. The combined
motion and pose feature clearly scores best for both classifiers. Hidden Markov
models with the combined feature give the best classification result, with an f-
measure of 0.65.

If we look at the intra-participant score we see that we can classify the instructor’s
gestures with an f-measure of 0.80, which should be more than enough to enable
the instructor to send gesture based commands to the system. As explained in
section the results will probably be even better than that if we train and
classify the system on only one person.

41

CHAPTER 6. CONCLUSION

Finally, we have seen that the system is very forgiving for a small training data
set. Just a few seconds of motion capture data per gesture class allows us to classify
subsequent frames with acceptable accuracy and the quality of the system is only
slightly improved with more training data.

6.3 Future work

One very important aspect for the implementation of this approach in the SUIT
system that has seen no attention at all in this thesis is gesture detection. Our
system expects all input motion capture data to be one of nine gestures, and tries
to recognize which gesture it is. In real training situations, much of the motion
capture data does not contain any gesture and should thus be filtered out before the
classification is applied. Detecting gestures in a stream of motion capture data is a
completely different topic altogether and would be a good starting point for future
work.

Another aspect that has seen little attention in this thesis is the on-line classifica-
tion in near-real time. This has been a concious choice because the implementation
in Matlab is not comparable to the C++ and Lua implementation that would be
implemented in re-lion’s SUIT system. However, based on our results in Matlab it
should be possible to implement this on-line.

As explained in section we have seen that scaling the feature data has
an unexpectedly large impact on the quality of the classification. It also made the
classification unstable because the scaling was very dependent on the data set. We
use scaling to make sure that the classifiers weigh the pose component and the
motion component equally heavy. It may be possible to achieve better results using
optimized scaling bounds for a specific data set. Also, maybe we don’t want the
motion and pose components to weigh equally heavy, perhaps we can improve the
classification by shifting this balance.

Finally, future work into making this gesture recognition system an integrated
part of the training simulation would do good to focus more on a specific application.
For this thesis we have tried to keep the system as generic as possible, allowing an
instructor to record any gestures at the start of a session. This will work, however
if we want to improve the accuracy of the system we will need to focus on a specific
application, select gestures that fit and optimize the features for these gestures.
That way very high accuracies can be achieved.

42

Bibliography

1]

8]

[10]

[11]

[12]

L.W. Campbell, D.A. Becker, A. Azarbayejani, A.F. Bobick, and A. Pentland.
Invariant features for 3-d gesture recognition. In Automatic Face and Ges-
ture Recognition, 1996., Proceedings of the Second International Conference
on, pages 157-162, oct 1996.

L.W. Campbell and A.F. Bobick. Recognition of human body motion using
phase space constraints. pages 624-630, 1995.

C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

M. Hansard, S. Lee, O. Choi, and R. Horaud. Time-of-flight cameras: Princi-
ples, methods and applications. 2012.

C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support vector
classification, 2003.

R. Ierusalimschy, Celes W., and L.H. De Figueiredo. Lua: a powerful, fast,
lightweight, embeddable scripting language, 1993. Software available at http:
//www.lua.org/.

Y. Jin and B. Prabhakaran. Knowledge discovery from 3d human motion
streams through semantic dimensional reduction. ACM Transactions on Mul-
timedia Computing, Communications, and Applications (TOMCCAP), 7(2):9,
2011.

G. Johansson. Visual perception of biological motion and a model for its anal-
ysis. Attention, Perception, & Psychophysics, 14(2):201-211, 1973.

D. Kuli¢, W. Takano, and Y. Nakamura. Incremental learning, clustering and hi-
erarchy formation of whole body motion patterns using adaptive hidden markov
chains. The International Journal of Robotics Research, 27(7):761-784, 2008.

Q. Miao, H.Z. Huang, and X. Fan. A comparison study of support vector ma-
chines and hidden markov models in machinery condition monitoring. Journal
of Mechanical Science and Technology, 21(4):607-615, 2007.

T.B. Moeslund, A. Hilton, and V. Kriiger. A survey of advances in vision-based
human motion capture and analysis. Computer vision and image understanding,
104(2):90-126, 2006.

43

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.lua.org/
http://www.lua.org/

BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

22]

[23]

[24]

K. Murphy. Hidden markov model (hmm) toolbox for matlab. Online at|http:
//www. at. mit. edu/ ~murphyk/ Software/HMM/ hmm. html | 1998.

R. Poppe. A survey on vision-based human action recognition. Image and
vision computing, 28(6):976-990, 2010.

D. Roetenberg, H. Luinge, and P. Slycke. Xsens mvn: full 6dof human motion
tracking using miniature inertial sensors. Xsens Motion Technologies BV, Tech.
Rep, 2009.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake. Real-time human pose recognition in parts from single depth
images. In CVPR, volume 2, page 7, 2011.

Y. Song, D. Demirdjian, and R. Davis. Multi-signal gesture recognition us-
ing temporal smoothing hidden conditional random fields. In Automatic Face
& Gesture Recognition and Workshops (FG 2011), 2011 IEEE International
Conference on, pages 388-393. IEEE, 2011.

Y. Song, D. Demirdjian, and R. Davis. Tracking body and hands for gesture
recognition: Natops aircraft handling signals database. In Automatic Face
& Gesture Recognition and Workshops (FG 2011), 2011 IEEFE International
Conference on, pages 500-506. IEEE, 2011.

T. Starner and A. Pentland. Real-time american sign language recognition from
video using hidden markov models. In Computer Vision, 1995. Proceedings.,
International Symposium on, pages 265-270. IEEE, 1995.

Vicon Motion Systems. The vicon commercial website. Online at http: //
www. vicon. com, 2013.

J.Y. Wang and H.M. Lee. Recognition of human actions using motion capture
data and support vector machine. In World Congress on Software Engineering,
pages 234-238. TEEE, 2009.

R.Y. Wang and J. Popovi¢. Real-time hand-tracking with a color glove. In
ACM Transactions on Graphics (TOG), volume 28, page 63. ACM, 20009.

G. Welch and E. Foxlin. Motion tracking: No silver bullet, but a respectable
arsenal. Computer Graphics and Applications, IEEE, 22(6):24-38, 2002.

J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential
images using hidden markov model. In Computer Vision and Pattern Recog-
nition, 1992. Proceedings CVPR’92., 1992 IEEE Computer Society Conference
on, pages 379-385. IEEE, 1992.

M.H. Yang and N. Ahuja. Recognizing hand gesture using motion trajectories.
In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on., volume 1. IEEE, 1999.

L. Zhang, B. Curless, and S.M. Seitz. Rapid shape acquisition using color
structured light and multi-pass dynamic programming. In $D Data Processing
Visualization and Transmission, 2002. Proceedings. First International Sympo-
stum on, pages 24-36. IEEE, 2002.

44

http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.html
http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.html
http://www.vicon.com
http://www.vicon.com

List of Figures

[I.1 The nine gestures that this research has focussed on| 9
[3.1 Generating features from motion capture datal. 17
|3.2 Partitioning a space using different SVM kernels| 19
3.3 An example of a hidden Markov modell 20
4.1 Calibrating the feature extraction procedure/. 26
4.2 Finding the cost and gamma optima for SVM| 27
[4.3 Finding the right classifier window (HMM)| 28
4.4 Finding the states and Gaussians optima for HMM| 30
B.1 Pose versus motion| o 33
5.2 Confusion matrices for HMM| 34
0.3 Confusion matrices for SVMI. 35
[5.4 Intra- versus inter-participant| 36
[5.5 Confusion matrices for intra-participant experiment (pose + motion)| 37

45

LIST OF FIGURES

46

List of Tables

[4.1 Gesture recognition parameters|

47

LIST OF TABLES

48

Appendix A

Reproducing the results

It is possible to reproduce the results of the experiments in this thesis by downloading
the software and the data files and running the experiments yourself.

A.1 Platform

The software was written for Matlab 7.12.0 (R2011a) and has been used on Windows
XP and Ubuntu Linux. Most of the software can be run headless to perform the
experiments on a Linux server. The HMI server that most experiments were run on

uses Matlab 7.5.0 (R2007b).

A.2 Data

The motion capture data that this thesis uses was recorded using Moven Studio and
exported to a plain text format using a small export tool of our own making. This
tool basically just dumps the data, using the Xsens DLL to read the data from the
.mvn file. These plain text files, which are quite large, were then imported in Matlab
and stored as a binary .mat file, which is much smaller and faster to load.

A.3 Fast workflow

If you just wish to run all the tests again and generate all the data and graphs again
yourself, follow this procedure. But be warned that this will take many days to
complete and that it may give errors as all experiments were tested individually, not
at once.

init

runTests
runExperiments
renderGraphs

vV V V V

A.4 Structure of the software

The software is structured in five directories. In the root of the project we only find two
initialization scripts and a script to render graphs. The init script will load all the motion
capture data from file and generate features from it. These features are then split up in
training, validation and test sets. These last two steps however are also performed by many

49

APPENDIX A. REPRODUCING THE RESULTS

of the tests and experiments because they have to be tweaked for each one. The init_fast
script will load the motion capture data, the features and the sets straight into memory
from a .mat file, which saves a lot of time. The renderGraphs script does just that; it will
render the selected graphs from data in files at tests/results to graphs which it stores as
EPS files in tests/figures.

The data directory contains all the motion capture data from the experiment, the .mat
file that init_fast utilizes and an initdata script that loads in all the data and cuts it
into classes.

The hmm directory contains the HMM classifier software and some helper scripts. Of
these, most notable are trainhmm and classifyhmm, which both operate on the training,
validation and test sets that are generated by the initialization. Typical operation would
be:

hmmstruct = trainhmm(trainset [, numberofgaussians, numberofstates]);
setwithpredictions = classifyhmm(hmmstruct, testset [, windowsize]);

The svm directory is structured in much the same way. It contains the SVM classification
software and the trainsvm and classifysvm scripts that can be used in the same manner
as the HMM scripts mentioned before. Only the optional parameters differ: trainsvm has
optional parameters cost and gamma and classifysvm has none.

The test directory contains all the experiments. Scripts starting with find are used
to find classification parameters as described in chapter Scripts starting with test
are used to find the answers to the research questions using the experiments described in
chapter [5l You can run all these scripts individually. Each script will calculate the result
for its experiment and store the result as a .mat file in the subdirectory results. The
subdirectory figures contains the output from renderGraphs, which converts the data in
results to good looking graphs.

The util directory, finally, contains all the tools necessary to work with the data and
the features. Some notable scripts:

e The dataToFeatures* series of functions convert the raw motion capture data to the
features described in chapter

e The build*Sets series of functions split the feature data in sets that can easily be
used in experiments, like train, validation and test sets.

e The fancy* series of functions are used to generate good looking graphs and height
maps.

e The functions addToSet, joinSets, makeSet and splitSet can be used to operate
on the sets that the build*Sets series of functions generate.

e Finally, there are several show*, plot* and play* functions. These can be used to
visually display the motion capture data.

50

	Introduction
	Social context
	Application context
	Research question

	Related work
	Motion capture
	Features
	Classifiers

	Approach
	Experiment
	Features
	Design
	Implementation
	Pose
	Motion

	Classification
	Support Vector Machine
	Hidden Markov Model

	Parameter estimation
	Parameters
	Feature calibration
	SVM parameters
	HMM parameters

	Results
	Feature calibration
	SVM parameters
	HMM parameters
	Final parameters

	Results
	Research questions
	Pose versus motion
	Intra- versus inter-participant
	Train size influence
	SVM versus HMM

	Results per research question
	Pose versus Motion
	Intra- versus inter-participant
	Train size influence
	SVM versus HMM

	Discussion
	Intra-participant
	Inter-participant
	Gestures
	Classifiers
	Training size

	Conclusion
	Recap
	Findings
	Future work

	Reproducing the results
	Platform
	Data
	Fast workflow
	Structure of the software

