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Abstract 
In the flow over a solid surface a boundary layer is formed. In this study this boundary layer is investi-

gated theoretically, numerically and experimentally. The equations governing the incompressible 

laminar flow in thin boundary layers have been derived following Prandtl’s theory. For the case of 

two-dimensional flow over an infinite flat plate at zero incidence, the similarity solution of Blasius is 

formulated. In addition the similarity solution for the flow stagnating on an infinite flat plate has 

been derived. 

Subsequently the Integral Momentum Equation method of von Kármán is derived. This method is 

then used to numerically solve for the flow in the boundary layer along the flat plate and for the 

stagnation-point flow.  

For the experimental part of the investigation a wind-tunnel model of a flat plate, of finite thickness, 

was placed inside the silent wind tunnel. The leading-edge of the wind-tunnel model has a specific 

smooth shape, designed such that the boundary layer develops like the boundary layer along a plate 

of infinitesimal thickness. The pressure distribution along the wind-tunnel model, obtained from a 

CFD calculation has been used as input for the Integral Momentum Equation method to predict the 

boundary layer development along the model and compare it to Blasius’ solution. 

The velocity distribution in the boundary layer has been measured using hot-wire anemometry 

(HWA) at three distances from the leading edge. The data is obtained for three values of the free-

stream velocity: 2 m/s, 5m/s and 10m/s, corresponding to different values of the similarity 

parameter of the boundary layer flow, i.e. the Reynolds number. 

The measured velocity profiles are checked on similarity and are compared with the calculated data.     
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1. Fluid dynamics 

1.1 Boundary layer[1] 
“A very satisfactory explanation of the physical process in the boundary layer between a fluid and a 

solid body could be obtained by the hypothesis of an adhesion of the fluid to the walls, that is, by the 

hypothesis of a zero relative velocity between fluid and wall.” [Ludwig Prandtl, [2]]. So if a fluid flows 

over a solid body, a boundary layer is formed in which the fluid acts different than in the free stream. 

Inside this boundary layer, a reduced form of the Navier-Stokes equations can be used to obtain the 

distribution of the velocity, called the boundary-layer equations. As Ludwig Prandtl stated, inside the 

boundary layer there is adhesion of the fluid to the walls, thus the flow inside a boundary layer needs 

to be a viscous flow. The effect of this is that the boundary layer has much influence on the drag of 

and heat transfer to the body, although the boundary layer is very thin. At the solid surface, the 

velocity of the fluid and that of the wall must be the same, thus the no-slip condition needs to be 

imposed.  This causes a friction force between adjacent layers of the fluid, trying to equalize their 

velocities, thus creating a non-linear velocity profile near the fluid-solid boundary.  

For a flat plate, x is measured along the length of the plate and y is measured normal to the surface 

of the plate. The fluid approaches the plate at zero angle of attack with velocity U. This is practically 

identical to U∞, the velocity of the fluid above the plate outside the boundary layer. Once the fluid 

reaches the plate, it will come to a complete stop at the wall, thus building up a boundary layer with 

a velocity lower than U∞. Normally the thickness δ of this boundary layer is defined as the distance 

from the wall where u=0.99 U∞. 

In order to calculate the thickness of the boundary layer some assumptions need to be made. First of 

all we assume the flow to be 2-dimensional, with coordinates x and y in the 2d plane. We also 

assume the flow to be incompressible, i.e. ρ=ρ∞=constant. Furthermore, we assume the flow to be 

steady, thus no variations in time. Next we assume the fluid to be Newtonian and to have constant 

properties like viscosity. If we then consider the flow outside the boundary layer to have velocity U∞, 

inside the boundary layer the velocity will have 2 components, u is the velocity in x direction and v 

the velocity in y direction. The Navier-Stokes equations, that give the flow inside the boundary layer, 

are based on the conservation of mass and momentum. If volumetric forces are neglected, the  

partial differential equations are: 

Mass: 
 

(1) 

Momentum:  
u

uu
t


 


  


 (2) 

With pI    here  is the viscous stress tensor. For a Newtonian fluid  

 
    

T

u u u I         (3) 

with μ and ν viscosity coefficients. According to Stokes’ hypothesis the trace of  equals zero, which 

yields 3ν+2μ=0. 

  0u
t





 


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A set of equations can be derived that is specific to the problem. The flow is steady, thus 0
t





. 

Furthermore, it is two dimensional, so 

 

,

T

x y

  
   

  
 (4) 

 

And finally, the flow is incompressible, so ρ is constant. This results in the continuity equation 

 
0

u v

x y

 
 

 
 (5) 

 

For the momentum equations, for the case the flow is steady and two dimensional, the x-momentum 

equation becomes 

 2 2

2 2

u u p u u
u v

x y x x y
 

      
      

       
 (6) 

 

In the same way the y-momentum equation is found to be 

 2 2

2 2

v v p v v
u v

x y y x y
 

      
      

       
 (7) 

 

So the governing equations are: 

 Continuity: 0
u v

x y

 
 

 
 (8) 

x-momentum: 
2 2

2 2

u u p u u
u v

x y x x y
 

      
      

       
 (9) 

 y-momentum:  
 

2 2

2 2

v v p v v
u v

x y y x y
 

      
      

       
 (10) 

 

Before usable results can be found with these equations we will make an essential assumption, that 

is, that the boundary layer is very thin: 1
L


. To see the effect of this assumption the three 

equations are written in non-dimensional form. For this we will use reference parameters U,V,L, δ, P 

and the non-dimensional variables u*, v*, x*, y*, p* with 
* * * * *,  ,  ,  and u Uu v Vv x Lx y y p Pp      

The continuity equation then becomes 

 * * * *

* * * *
0 0

Uu Vv U u v

Lx y L V x y





   
    

   
 (11) 

 

Because we require the two terms in the equation to be both of order one, 
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1

U
V U U

L V L

 
    (12) 

 

The same can be done with the x-momentum equation giving  

 2 * * * 2 * 2 *
* *

* * * 2 *2 2 *2

1 1U u u P p u u
u v U

L x y L x L x y
 



        
      

       
 (13) 

 Re-arranging gives 

 

The assumption made leads to 
2

2
1

L


, thus the equation becomes  

 * * * 2 *
* *

* * 2 * 2 *2

u u P p L u
u v

x y U x U y



  

    
  

   
 (15) 

 

Again we need both sides to be of order one. So we need
2

1
P

U
  and 

2 2

2 2

1
1

ReL

L L

UL



  
  , thus 

giving, with ReL

UL


 : 

 2P U  (16) 

 2

2
ReL

L


  (17) 

  

The above equation states that the scaling of the thickness of the boundary layer is  

 
 

1
2ReLO

L


  (18) 

 

 Transforming everything back to the dimensionful form, the x-momentum equation now reads:  

 2

2

u u p u
u v

x y x y
 
    

    
    

 (19) 

 

A comparable analysis can be applied to the y-momentum equation. It then reads:  

 
0 ( )

p
p p x

y


   


 (20) 

 

So the pressure is apparently constant in the boundary layer along lines for which x=constant, i.e. 

 * * * 2 2 * 2 *
* *

* * 2 * 2 2 *2 *2

u u P p L u u
u v

x y U x U L x y

 

  

      
    

     
 (14) 
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p(x) is the pressure specified at the edge of the boundary layer. The final equations for u(x,y) and 

v(x,y) inside the boundary layer then become: 

 
0

u v

x y

 
 

 
 (21) 

 2

2

u u dp u
u v

x y dx y
 
   

    
   

 (22) 

 

1.2 Boundary conditions 
We also need boundary conditions to be able to solve 

these partial differential equations. If we consider the 

boundary layer, we note that for every x, u needs to 

be 0 for y=0 because of the no-slip boundary 

condition. The same is true for v. The third boundary 

condition can be found at the edge of the boundary 

layer. Because we defined δ to be the thickness of the 

boundary layer, uU∞ for every x when    . So the 

boundary conditions are: u(x,0)=0, u(x,∞)=U, v(x,0)=0. 

Furthermore, at the edge of the boundary layer:  0
u

y





,

2

2
0

u

y





, etcetera. 

Note that it follows from Eq.(22) that at the edge of the boundary layer, where u(x,y∞)=U(x), for 

the given boundary conditions 

 dp dU
U

dx dx
   (23) 

 

1.3 Blasius’ Solution[3] 
In order to obtain an exact solution, we introduce a stream function Ψ(x,y), with 

 
( , ) ; ( , )u x y v x y

y x

  
  
 

 (24) 

 

This satisfies the continuity equation, Eq. (21) exactly. In the case of the flat plate boundary layer, 

( ) constantU x  , so that it follows from Eq.(23) that 0
dp

dx
 . If eq. (24) then is substituted in to the 

x-momentum equation, we find:  

 2 2 3

2 3y x y x y y

     



    
 

     
 (25) 

Figure 1.1 The boundary layer according to Blasius[1] 
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Since there is no length scale in the problem, it is to be expected that a similarity solution is a 

possibility for this equation. A similarity solution for this equation can be found if Ψ(x,y) is expressed 

as  

 ( , ) ( )px y Ax f   (26) 

 With ( , ) qx y Byx   (27) 

 

Which should lead to an ordinary differential equation for f(η)not containing coefficients that depend 

on x. Substituting the expression for Ψ(x,y) , the momentum equation then gives the following 

equation 

 
  2 1p qB
p q f pff x f

A





        (28) 

 

This needs to be a similarity solution, a solution independant of x. So we need 

 1 0p q     (29) 

For convenience we choose 

 
1

B
A B

A

 

 
    (30) 

Also the boundary conditions need to be satisfied. For this we use 

 
( , ) p qu x y ABx f

y

 
 


 (31) 

 
 

 

1 1

1

( , ) p p q

p

v x y Apx f ABqyx f
x

Ax pf q f





  




    



  

 (32) 

 

For  ( ,0) 0 0 0u x f    , ( ,0) 0 (0) 0v x f   .The final boundary condition is satisfied 

when 

 
 ( , ) p qu x U ABx f U

y

 




     


 (33) 

 

This will be a similarity solution only if 1 0p qx p q      

Using the two equations for p and q it can be found that  1 1
2 2
;p q     

Also, AB U and '( ) 1f   Using Eq.(30), i.e. A B



 it follows

U
B




 and 

U
A




  

Thus Blasius’ equation is the solution of 

 3 2

3 2
2 0

d f d f
f

d d 
   (34) 
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This is a third-order, nonlinear ordinary differential equation and three boundary conditions are 

needed to solve this. These conditions were derived above: 

(0) 0f   

(0) 0f  

 
( ) 1f     

The third-order ordinary differential equation can be expressed as an initial value problem involving a 

system of three first order ordinary differential equations for f, f’ and f”. 

df
f

d
  With (0) 0f   (35) 

df
f

d


  With (0) 0f    (36) 

1
2

df
ff

d


   with (0) ?f    (37) 

 

 This indicates that a third initial condition is needed, namely ''(0)f . Because instead we know

( ) 1f     the “shooting technique” is used. In this technique a ''(0)f is varied in order to find a 

solution that satisfies ( ) 1f    . It is found that the initial condition ''(0) 0.332f  satisfies this 

condition. 

The solution for ( , ) ( )u x y U f  is shown in figure 1.2 below. It shows a similarity solution which 

tends to 1f   for    

 

Figure 1.2 Blasisus’ solution of velocity profile in boundary layer over flat plate at zero incidence  
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From the numerical solution it is determined that u=0.99U is reached when  =4.91,  

furthermore: ( ) 1.63188f      

The stream function becomes 

 
1 2

1 2
( , ) ( / ) ( ) ( )

Rex

Ux
x y Ux Ux f f       (38) 

 

with 

1/2

1 2( , ) Rex

y Ux y
x y

x x






 
  

 
 (39) 

 

If we then want to find the boundary layer thickness we use that 4.91  and 0.99u Uy    to find 

 1/2

1 2

4.91
( ) 4.91

Rex

xUx
x x






 
  

 
 (40) 

 

Also, two other parameters which are commonly used to measure the properties of a boundary layer 

are the displacement thickness δ*, Eq.(41) and the momentum thickness θ, Eq.(42)  

 
*

0
( ) 1

u
x dy

U




 

  
 

  (41) 

 

0
( ) 1

u u
x dy

U U


  
  

 
  (42) 

For flat plate boundary layer flow, the displacement thickness δ*(x), can be calculated to give 

  1
2

*

0
( ) 1

Rex

x
x f d



    , and the momentum thickness, θ(x), can be calculated to give 

    1
2 0

( ) 1
Rex

x
x f f d   



    

Summarizing the similarity solution of Blasius: 

1 2
( , ) ( )

Rex

Ux
x y f   

 ( , )u x y Uf   

     1
21 2

( , ) ( , ) 0.8659
2Re Rex x

U U
v x y f f v x y  


      

    1 1
2 2

22 1
2

1 2

0

0.664
0 0.664 ( )

Re Re Re
w f

x x x

Uu U
x f C x

y


 

 
     

 
 

  1 1
2 2

*

0
( ) 1 1.7269

Re Rex x

x x
x f d



       

    1 1
2 20

( ) 1 0.6656
Re Rex x

x x
x f f d   



     
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1.4 Stagnation point flow  
The method that Blasius used can also be used to find a 

similarity solution for the stagnation point flow. The same 

stream function as used for Blasius’ solution (Eq. (24)) can 

be used.  If Eq. (24) is substituted in the x-momentum 

equation, using that 
1 dp dU

U
dx dx

   it gives:  

 

 2 2 3

2 3

dU
U

y x y x y y dx

     



    
  

     
 (43) 

Since there is no length scale in the problem, again a similarity solution is expected to be a possibility. 

A similarity solution for this equation can be found if Ψ(x,y) is expressed as  

 ( , ) ( )px y Ax f   (44) 

 With ( , ) qx y Byx   (45) 

 

Substituting the expression for Ψ(x,y)  in the momentum equation, and using that U cx so that 

dU
c

dx
 this then gives the following equation: 

 
 

2
2 1 2 2 2

2 2

p q p qB c
p q f pff x f x

A A B





      
       

 
 (46) 

 

The solution of this ODE needs to be a similarity solution, a solution independent of x. So we need 

 1 0p q     (47) 

 2 2 2 0p q     (48) 

Using the two equations for p and q it can be found that  1; 0p q   resulting in  

( , ) ( )x y Axf     

With ( , )x y By     

 

For convenience we choose 

 
1

B
A B

A

 

 
    (49) 

 

thus the similarity solution for the stagnation point flow will be a solution of the differential equation 

 2
2

2 2

c
f ff f

A B
      (50) 

 

Figure 1.3 Stagnation point type of flow[4] 



9 
 

Also the boundary conditions need to be satisfied. For this we use 

 
( , )u x y ABxf

y


 


 (51) 

 
( , )v x y Af

x


   


 (52) 

 

For  ( ,0) 0 0 0u x f    , ( ,0) 0 (0) 0v x f   .The final boundary condition is satisfied 

when 

  ( , )u x cx ABxf cx      (53) 

 

So that choosing AB c  will satisfy the ODE only if   1f    . 

 

using A B



 it follows

c
B




 and 

c
A




  

Thus the stagnation point similarity solution is the solution of 

 2 1f ff f      (54) 

 

This is a third order, nonlinear ordinary differential equation and three boundary conditions are 

needed to solve this. These conditions were derived above: 

(0) 0f   

(0) 0f  

 
( ) 1f     

The third order ordinary differential equation can be expressed as an initial value problem involving a 

system of three first order ordinary differential equations for f, f’ and f”. 

df
f

d
  With (0) 0f   (55) 

df
f

d


  With (0) 0f    (56) 

2 1
df

f ff
d


     with (0) ?f    (57) 

Again the “shooting technique” is used. It is found that the initial condition ''(0) 1.233f  satisfies 

this condition. 

The solution for ( , ) ( )u x y cx f  is presented in figure 1.4 below. It shows a similarity solution 

which tends to 1f   for    
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Figure 1.4Blasisus’ solution of velocity profile in boundary layer stagnation point flow 

From the numerical solution it is determined that u=0.99cx is reached when  =2.36. Furthermore 

( ) 0.64967f      

The stream function becomes 

 
( , ) ( )

c
x y xf


 


  (58) 

 ( , ) ( )u x y cxf   (59) 

 
( , ) ( ) ( , )

c
v x y f v x y cy





       (60) 

 
with ( , )

c
x y y





  (61) 

Then also the skin friction,  
0

w

y

u
x

y
 



 
  

 
, can be found. Because 2

0

(0)
y

u
AB xf

y


 
 

 
this 

thus gives ( ) (0) (0)w

c c
x c xf c xf

 
  

 
    

If we then want to find the boundary layer thickness we use that 2.36  and 0.99u Uy    to find 

 
( ) 2.36x

c





  (62) 
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This solution is a constant. So the boundary layer thickness in a stagnation type of flow turns out to 

be constant. 

Summarizing the similarity solution of the stagnation point flow: 

( , ) ( )
c

x y xf


 


  

 ( , ) ( , )u x y cxf u x y cx     

 ( , ) ( , ) 0.64967
c

v x y f v x y cy
c

 



        

  1
2 2

0

2 (0) 2.466w f

ref

u c cx c
x cx f C

y U

 
  



 
    

 
 

  *

0
( ) 1 0.64717x f d

c c

 
      

    
0

( ) 1 0.29196x f f d
c c

 
   



     
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2. Numerical technique in solving boundary layer equations 

2.1 Von Kármán momentum integral method[5] 
Exact solutions to the boundary layer equations can only be found in simple cases, such as the steady 

flow over a flat plate at zero angle of attack. For that situation we found Blasius’ solution. For more 

complicated cases a numerical method can be used to give an approximation of the solution of the 

flow in the boundary layer. A much used technique is the Von Kármán integral momentum equation. 

This equation considers the boundary layer equations integrated over the thickness of the boundary 

layer. From the x-momentum equation (Eq. (23)) applied at the edge of the boundary layer it 

followed that 
1dU dp

U
dx dx

  .The Von Kármán integral momentum equation can be found by 

integrating the momentum equation,  

 2

2

u u dU u
u v U

x y dx y


  
  

  
 (63) 

Adding and subtractingu dU dx , we get 

 
 

    2

2

U u U udU u
U u u v v

dx x y y

    
    

  
 (64) 

 

If we integrate then from y=0 to y=h, with h>δ, the right hand side of this equation becomes 

 2

20
0

h
wu u

v dy v
y y





  
   

  
  (65) 

 

Here 0 is the wall shear stress. The first part of the left hand side becomes  

 
    *

0 0

h h
dU dU dU

U u dy U u dy U
dx dx dx

      (66) 

 

With δ*(x), the boundary layer displacement thickness, defined in Eq.(41). 

The third part of the left hand side, upon partial integration and using the continuity equation, 

becomes  

  
   

0
0 0

h h
hU u v

v dy v U u U u dy
y y

  
   

    (67) 

 
 

0

0

h
u

U u dy
x


  

  (68) 

The integral momentum equation is then 

  
 *

0

h
w

U udU u
U u U u dy

dx x x






  
    

  
  (69) 

 

the second part of this equation can be rewritten 
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  
   

0 0

h hU u u
u U u dy u U u dy

x x x

    
          

   (70) 

 
     2

0 0

h hd d
u U u dy u U u dy U

x dx dx


 
       

   (71) 

 

With θ the boundary layer momentum thickness, defined in Eq.(42). Substituting this in the 

integrated momentum equation yields: 

 
 * 2 wdU d

U U
dx dx


 


   (72) 

 

This is called the von Kármán integral momentum equation which is valid for both laminar and 

turbulent boundary layers. However, it is easiest for laminar boundary layers because in that case the 

wall shear stress is equal to the molecular viscosity times the velocity gradient at the wall. 

2.2 Velocity profile 
The von Kármán integral momentum equation can be used employing some choosen velocity profile, 

satisfying as many boundary conditions as possible. In the present study we assume a cubic velocity 

profile 

 2 3

2 3

( , )u x y y y y
a b c d

U   
     (73) 

 

With δ=δ(x), the yet unknown boundary layer thickness at x, and a,b,c and d constants. 

This profile has four unknown constants, so four boundary conditions are needed. At y=0 we have 

u(x,0)=0 because of the no-slip boundary condition and from the x-momentum equation we derive 

 
 2 2

0

1

y

dp
u y

dx
    (74) 

 

The other two conditions can be found in the free stream. If y  we have u=U and because in y-

direction u is the same everywhere along the line x=constant in the free stream   0u y   . 

imposing these boundary conditions gives the following constants 

 

0 a  
23 1

2 4

dP
b

U dx




   

2

2

dP
c

U dx




  

21 1

2 4

dP
d

U dx




    

 

When these are substituted in the velocity profile, after some rewriting, it follows 

 3 2 2 3

3 2 3

( , ) 3 1 1
2

( ) 2 2 4

u x y y y dP y y y

U x U dx



     

 
      

 
 (75) 
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substituting 
dP dU

U
dx dx

  gives 
3 2 2 3

3 2 3

( , ) 3 1 1
2

( ) 2 2 4

u x y y y dU y y y

U x dx

 

     

 
     

 
 

With δ=δ(x), the quantity that is to be determined from the von Kármán integral momentum 

equation. Substituting the velocity profile in the definitions of δ*, θ and τw gives 

2
* 3 1

8 48

dU

dx


 



 
  

 
 

2
2 239 1 1

280 140 4 105 4

dU dU

dx dx

 
 

 

    
      

     

  

23

2 4
w

U dU

dx

 


 

 
  

 
 

 Then substituting in the von Kármán integral momentum equation and rewriting gives  

2
2 2 3

2

2 2 3 2
4 3 5 5

2

39 3 3 1 113 1

280 560 2 280 560

5 1 41 2 1 2 1

1680 1680 1680 1680

d dU d dU d U
U U U

dx dx dx dx dx

dU d dU dU dU d U
U U

dx dx dx dx dx dx

 
     




   

  

  
      

   
       

        
        

 (76) 

 

Then both sides are multiplied with δ and 
2d

dx


is taken out of the brackets. The equation then reads  

 
   

 

 

2 2
2

1 2

1

fd d
f f

dx dx f

 
 


    (77) 

 
 

2

2 4

1 2

39 3 1 1 1

560 1120 672

dU dU
f U

dx dx
   

 

  
     

  
 (78) 

 

 

22
2 2 4

2

2 3 2
6

2

3 113 1 41

2 280 560 1680

2 1 2 1

1680 1680

dU d U dU
U

dx dx dx
f

dU dU d U
U

dx dx dx

   




 

   
          

  
   

       

 (79) 

 

This equation can then be solved numerically for δ2 using a simple Euler scheme  

  
 

 
 

 
2 22 22

2 22 2 21
12 2

1 1

i ii i
i i

i i

f fd
x O x

dx x f f

  
 

 





       


 (80) 

For i=0,1,…. and given 2

0  

For the flat plate without pressure gradient, this leads to  
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   2 2 2

1 2

39 3
;

560 2
f U f      (81) 

 
2

2

3
3 560 2802

39 2 39 13

560

d

dx U U
U


  



  
 

(82) 

 

With the boundary condition 2 0  for x=0. 

In this case the von Kármán integral momentum equations can be solved analytically 

 
2

1 2 1 2

280 280 280
( ) ( ) 4.64

13 13 13 Re Rex x

x x
x x x x

U Ux

 
       (83) 

 

This is in good agreement with Blasius’ result of 
1 2

( ) 4.91
Rex

x
x   

Furthermore, δ*, θ and Cf can be compared for von Kármán and Blasius giving 

Von Kármán Blasius 

1 2
( ) 4.64

Rex

x
x   

1 2
( ) 4.91

Rex

x
x   

*

1 2
1.74

Rex

x
   *

1 2
1.73

Rex

x
   

1 2
0.643

Rex

x
   

1 2
0.666

Rex

x
   

1 2

1
( ) 0.646

Re
f

x

c x   
1 2

1
( ) 0.664

Re
f

x

c x   

These also show a good agreement of the result predicted by von Karman and Blasius. 
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3. Numerical results of von Kármán integral momentum equation 

3.1 Flat plate 
For a flat plate of infinitesimal thickness inserted into a fluid stream at zero incidence we now have 

two theoretical solutions. The first one is Blasius’ solution 

 
1/2

4.91
Ux

x





 
  

   
(84) 

 

The second one is the analytical solution of the von Kármán integral momentum equation 

1 2
( ) 4.64

Rex

x
x  . The numerical solution follows from 2 2

1

280

13
i i x

U


     

2

1

280

13
i ix

U


 


    for i=0,1,2,......

 
(85) 

 

3.1.1 Stepsize 

If the numerical solution is analyzed, it can be seen that it depends on a step size Δx. This implies that 

taking a different value for Δx will change the accuracy of 
1i 

and thus the accuracy of the numerical 

solution. In this case 
2d

dx


 is evaluated which implies that the Euler scheme yields the exact solution 

of the von Kármán integral momentum equation. Thus the accuracy is independent of Δx. 

3.1.2 Comparison of the numerical solution with Blasius’ solution 

Using the numerical method the boundary layer thickness is obtained. In figure 3.1 this solution is 

compared with Blasius’ solution. 

 

Figure 3.1 Comparison of Blasius’ solution with the numerical solution for Δx=0.01  

0 

0.001 

0.002 

0.003 

0.004 

0.005 

0.006 

0.007 

0 0.2 0.4 0.6 0.8 1 1.2 

δ(x)(m) 

x(m) 

Von Karman 

Blasius 

5 21.4*10 /

10 /

m s

U m s

 






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As we can see in the figure, the two solutions have a similar shape. However, the numerical solution 

does give a smaller thickness of the boundary layer. The difference between Blasius’ solution and the 

solution of the von Kármán integral momentum equation is a constant percentage of Blasius’ 

solution. The difference in thickness according to the von Kármán integral momentum equation and 

Blasius’ solution can be calculated and is 

280
4.91

13
100% 5.47%

4.91



  . Thus the boundary layer 

thickness according to the von Kármán integral momentum equation is 5.5% smaller than the 

thickness found with Blasius’ equation. 

3.2 Stagnation point flow 
As seen in the preceding chapter, the numerical solution is a good approximation to the analytical 

solution. Because of this the numerical solution can be used to approximate solutions for cases for 

which an analytical solution of the von Karman momentum integral equation cannot be found. This is 

the case for another important flow, namely the stagnation point flow. Stagnation point flow occurs 

when an object with a finite thickness is placed in a fluid stream. The easiest case is when a flat 

surface is placed in a fluid stream, with the surface perpendicular to the free stream velocity.   In that 

case the boundary conditions for the von Kármán integral momentum equation are the same for the 

flat plate at zero incidence. However, because now ;
dU

U cx c
dx

  , this time 
dU

dx
is not equal to 

zero and has to be taken into account. The von Kármán integral momentum equation for 

 
 

22
2

2

1

fd

dx f




  is thus  

 

 
2

2 2
2

1

39 3 1

560 1120 672

c c
f cx

 
 

 

  
        

 (86) 

 

 
2 3

2 2 2
2 2

2

3 113 41 1

2 280 1680 840

c c c
f

  
 

  

      
         

       

 (87) 

 2 3
2 2 2

2

2
2 2

3 113 41 1

2 280 1680 8401

39 3 1

560 1120 672

c c c

d c

dx x c c

  

  

  

 

      
        

       
  

   
   

 (88) 

  
 

2

22 2

1 2

1

i

i i

i

f
x

f


 


     (89) 

 

This equation can also be solved using the Euler scheme. There is, however, one important difference 

with the numerical solution for a flat plate at zero incidence. For that case the initial condition at x=0 

was chosen as 2

0 0  , which was easy to implement. In the case of stagnation point flow, however, 

we do not know the initial value for 
2c


. However, as we saw from Blasius’ solution, the boundary 
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layer thickness should remain constant, so we want to find 

2

22

2

1

0 0

c
f

d c

dx c
f





 



 
 
   
 
 
 

. This will 

only happen if 
2

2 0
c

f




 
 

 
. We can find that 

2 3
2 2 23 113 41 1

0
2 280 1680 840

c c c
g

  

  

      
          

       

 should give the constant thickness of the 

boundary layer of the stagnation point flow. However, the similarity constant 
2c



 
 
 

in this 

equation, can only have positive values. In figure 3.2 the function g is shown against the similarity 

constant. It can be calculated that g is never equal to zero for positive similarity constants.  

 

Figure 3.2 plot of the function g  

In this plot it can be seen that the function does have a minimum value. This can be calculated to be 

0.2, for 
2

5.8
c



 
 

 
. This would correspond with 2.4

c


  . 

3.3 Conclusion 
Using the numerical solution for the flow over a flat plate at zero incidence it was shown that the 

numerical solution to the von Kármán integral momentum equation has a small error compared to 

the analytical solution of Blasius. However, this is just a small error in the boundary layer thickness 

and the numerical solution gives a good approximation of Blasius’ solution. Because of this we can 

apply the von Kármán integral momentum equation to problems that cannot be solved analytically 

and expect the solution to be close to the exact solution as well. For Blasius’ solution it was shown 

that the boundary layer for stagnation point flow on a flat plate perpendicular to the fluid stream has 

a constant boundary layer thickness. However, for the von Kármán integral momentum equation, no 
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such solution can be found. This means that the von Kármán integral momentum equation for 

stagnation point flow cannot be used to calculate the stagnation point boundary layer thickness for 

blunt objects with the stagnation point surface perpendicular to the free stream. 
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4. The experiment 
The experiment concerns a flat plate with a thickness of 18 mm that is placed in the silent wind 

tunnel at zero degree angle of attack with respect to the free stream. To make sure that the 

boundary layer development is the same as for the flat plate of infinitesimal thickness that is 

considered in theory a specially developed leading edge(the nose) is attached to the plate. Using hot 

wire anemometry the velocity will be measured on the lower side of the plate, at several positions 

along the plate and several distances from the plate. Using these measurements the velocity profile 

can be constructed for different positions along the plate. Using the same free stream conditions in 

the von Kármán integral momentum equation found earlier, a velocity profile can be determined 

numerically. Then the theoretical and measured result can be compared. 

Measurements will be carried out at three different x-positions along the plate. Three different free 

stream velocities have been used so a total of nine measurements have been carried out. 

4.1 The windtunnel 
The wind tunnel in which this experiment will be conducted is the silent wind tunnel of the University 

of Twente. This consists of a rectangular test section of 0.9x0.7 m2, which is placed inside a closed 

anechoic room measuring 6x6 m2 with a height of 4 m. Wind speed is created using a centrifugal fan. 

The speed can be adjusted by varying the input frequency. The tunnel can reach speeds of up to 65 

m/s. 

 

Figure 4.1 The silent wind tunnel of the University of Twente  

 

4.2 The nose 
The nose attached to the flat plate needs to have a specific design. If a round edge with a constant 

radius, i.e. a semi-circle, is used, the second derivative of the contour is discontinuous at the location 

where the nose is attached to the flat plate. This will lead to a disturbance in the velocity and 

pressure distributions. The present design is such that at the location where the specific blunt nose is 

attached to the flat plate, the geometry is continuous in function value, slope, curvature and 

derivative of the curvature with respect to the x-coordinate. This can be accomplished when the 

shape of the nose is designed using cubic Hermite polynomials. Then the nose will look like shown in 

figure 4.2. The nose has been machined by a specialized company. 
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Figure 4.2 geometry of the leading edge of the flat plate 

4.3 Hot wire anemometer 
The velocity will be measured using hot wire anemometry. A  probe with a heating element is placed 

in the fluid stream. This probe is connected to a constant temperature anemometer, or CTA. The CTA 

sends a current to the heating element to keep the temperature constant. Because of the fluid 

flowing past the heating element in the probe it will cool. The amount of current needed is a 

measure for the cooling of the element. Because the element is cooled only by the fluid flow, this is 

also a measure for the velocity of the fluid. The probe that will be used is the Dantec 55P11. This has 

platinum plated tungsten wire with a length of 1.25 mm and a diameter of 5μm. The length of the 

prongs holding the wire is 5 mm. 

 

Figure 4.3 the Dantec 55P11 

This probe is placed in a probe support which is connected to a wing like strut to reduce the 

disturbance of the flow as much as possible. The strut is fitted with a plate which can slide over the 

bottom of the wind tunnel test section so the strut can be translated in x and z direction without 

altering flow properties because of a hole in the bottom of the test section. The strut can translate in 

y direction (i.e. vertical direction) using a precise traversing mechanism, such that translations with a 

resolution of 0.1mm are possible. 
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5. Results of the experiment 
In this chapter the results of the experiment will be discussed. There is a change from the description 

that was made earlier, however. Because of a holiday period during the planning, the special leading 

edge was not ready in time to be used in the experiments. The experiment is thus carried out with 

the rounded nose with a constant radius of curvature. 

The experiment was conducted at a temperature of 23ᴼC. 5 31.81 10  Pas; 1.29 kg/m    . 

Measurements were done for a free stream velocity of 2 m/s, 5 m/s and 10 m/s. For each velocity, 

the velocity profile was measured at three different locations, namely x=18.1 cm; x=19.1 cm and 

x=20.1 cm where x=0 is the start of the flat part of the plate. With a thickness of 18 mm, the radius of 

the round edge is 9 mm so the start of the flat part is 9 mm downstream of the leading edge of the 

plate. The data that is collected in the experiments will be presented using graphs. 

At first the velocity profile was measured for one location, namely x=19.1 cm for al velocities. After 

that, the velocity profile was measured for the other two positions. During the measurements for 

x=18.1 cm second location with a velocity of 5 m/s the probe broke. A new probe was calibrated and 

for accuracy al positions were measured again for the 5 m/s and 10 m/s free stream velocity. 

5.1 Velocity of 2 m/s 
Below the graphs are shown for a free stream velocity of 2 m/s. The dots shown in the graph are the 

measured data, the line which is shown is an approximation of the resulting velocity profile.  

5.1.1 X=18.1cm 

The Reynolds number for this flow is Rex=25800, which is much lower than the critical Reynolds 

number, so a laminar velocity profile is expected. The approximation which is shown in the graph is 

calculated by taking a  running 5-point average. 

 

Figure 5.1  Velocity profile for x=18.1 cm and U=2 m/s; Rex=25800 
Note that the point at y=0 is indicated for clarity 

This looks like the Blasius’ solution velocity profile for the flow in a laminar boundary layer. 
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5.1.2 X=19.1cm 

The Reynolds number for this flow is Rex=27225, which is again much lower than the critical Reynolds 

number, so again a laminar velocity profile is expected. 

 

Figure 5.2 Velocity profile for x=19.1 cm and U=2 m/s; Rex=27225 
again the point at y=0 is indicated.  

5.1.3 X=20.1cm 

The Reynolds number for this flow is Rex=28650, so a laminar velocity profile is expected for this 

situation as well. 

 

Figure 5.3 Velocity profile for x=20.1 cm and U=2 m/s; Rex=28650 

This also looks very similar to Blasius’ solution for a laminar boundary layer.  If the result of these 3 

situations are plotted against the parameter η, they can be compared. This is done in figure 5.4. If we 

compare the results for these 3 situations, it can be seen that the difference between the results is 

not large. So for the results of the 5 m/s velocity and 10 m/s velocity we will suffice with a single 

graph. 
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Figure 5.4 the approximations for the three velocity profiles for U=1.9 m/s shown in dimensionless parameters 

 

5.2 5 m/s  
Again a graph will be shown with the results of the velocity measurements. This time for a free 

stream velocity of 5 m/s. Only one result will be shown because of assumed similarity. In this case 

the measurement for x=19.1 cm will be used. The Reynolds number for this flow is Rex=61123, so still 

a laminar flow regime is expected. The approximation of the velocity profile is calculated in the same 

way as for the 2 m/s case. 

 

Figure 5.5 the approximation of the velocity profile for x=19.1 cm for U=5 m/s; Rex=61123 

5.3 10 m/s 
For the results of the measurements at a velocity of 10 m/s also one graph will be shown. Again the 

measurement for x=19.1 cm. The Reynolds number for this situation is Re L=122246. Because of this 
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still a laminar boundary layer is expected. In this case, the measured data shows not much scatter, so 

no approximation is added to the graph.  

 

Figure 5.6 the approximation of the velocity profile for x=19.1 cm for U=10 m/s; Rex=122246  
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6. Comparison of theoretical and experimental results 
In this chapter a comparison will be made between the theoretical results and the experimental 

results. Before that can be done, however, the numerical boundary layer needs to be obtained for 

the flat plate with the specially designed leading edge. To do this the pressure distribution along the 

leading edge is used to calculate the tangential velocity along the surface. This can be done using 

Bernoulli’s equation in the form of the pressure coefficient 

 2

2 21
2

1 (tangential) 1p p

p p U
c U U C

U U




  


       (90) 

 

In figure 6.1 the tangential velocity is plotted against the distance from the leading edge. This is for a 

free stream velocity of 2 m/s, the length of the leading edge is 0.054 m. The pressure distribution 

used for these calculations is generated by Hein de Vries and was shared via private communication. 

It can be found in appendix A.  

 

Figure 6.1 Tangential velocity as function of arc lengths along the leading edge and first part of the flat plate. The flat 

plate starts at s=0.057m 

As can be seen in the figure, there is a velocity gradient along the leading edge and along a part of 

the flat plate. This velocity gradient can be calculated. This can then be used in the von Kármán 

integral momentum equation(72). Solving this equation for the boundary layer thickness of a position 

s will give the velocity profile in the boundary layer at that position. The same can be done for 

Blasius’ solution. Both the numerical solution for the boundary layer thickness and Blasius’ solution 

are displayed in figure 6.2. This result is for a free stream velocity of 2 m/s. For higher free stream 

velocities, the same profile was found except for the thickness being smaller, following the rules we 

found from the similarity solution. 
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Figure 6.2 boundary layer thickness along the flat plat with the special leading edge compared to Blasius’ solution  

6.1 Boundary layer velocity profile 
Because of Blasius’s solution being the analytical solution, the measured data will be plotted against 

the velocity profile according to Blasius. Blasius’ solution will be plotted as  f  against  so the 

results can be compared independent of x. 

6.1.1 Velocity profile 2m/s 

First the result for a velocity of 2 m/s will be shown. 

 

Figuur 6.3 The velocity profile according to Blasius’ solution and the measurements at different x-stations for U=2 m/s 
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As can be seen the result of the different measurements are comparable. The velocity profile also 

looks similar to the result of Blasius’ equation. The test results show some scatter. This can be 

explained by the fact that the free stream velocity generated by the wind tunnel is not precisely 

constant at these low speeds. 

6.1.2 Velocity profile 5 m/s 

The next is the velocity profile for a free stream velocity of 5 m/s. 

 

Figure 6.4 The velocity profile according to Blasius’ solution and the measurements at different x-stations for U=5 m/s 

It can be seen that the different measurement results show a nearly similar velocity profile, even the 

results of the two different probes. However, this time the shape of the measured velocity 

distribution looks more like a turbulent boundary layer velocity profile. This might be the effect of 

the blunt leading edge of the plate used in the experiment. 

6.1.3 Velocity profile 10 m/s 

The last test results are for a free stream velocity of 10 m/s.  
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Figure 6.5 The velocity profile according to Blasius’ solution and the measurements at different x -stations for U=10 m/s 

Just as with the measurements for a free stream velocity of 5m/s, the measurements for a free 

stream velocity of 10 m/s show a nearly similar velocity profile, but again it differs from Blasius’ 

velocity profile for a laminar flow.  
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7. Conclusion 
In this study a comparison has been made between analytical and numerical results for the velocity 

profile of a fluid stream over a flat plate. Besides that a comparison is made between the analytical 

result and the measurements with a test set-up in a wind tunnel. The conclusions that can be drawn 

from these experiments will be stated here. 

7.1 Analytical versus numerical results  
It was shown in chapter 3.1 that for the simplest case, the flat plate of infinitesimal thickness, the 

numerical solution is similar to the analytical solution. The difference between the thickness of the 

boundary layer from the numerical solution is 5.5% smaller than that from the analytical solution. In 

chapter 3.2 the analytical and numerical solutions of the stagnation point flow on a flat plate are 

compared. It was found that the numerical solution cannot be similar to the analytical solution. In 

chapter 6, the solution of the von Kármán integral momentum equation and Blasius’ solution were 

compared for the actual test set-up. This again gave comparable results for the boundary layer 

thickness. From this it can be concluded that the von Kármán integral momentum equation does give 

reasonable results for flat plate type of flows, but is not useful for stagnation type of flows.    

7.2 Analytical versus measured results 
In chapter 6 the analytical result of Blasius’ solution is compared to the data measured in a wind 

tunnel under similar conditions. Although the specially designed leading edge was not used in the 

present experiment, the results at low velocity are nearly similar to the analytical result. However, if 

the velocity is increased, the measurement results show a velocity profile  that appears to indicate 

that the boundary layer is turbulent. According to the analytical method a laminar boundary layer is 

still expected. Thus we see a difference in theory and practice at higher velocities. This is expected to 

be partially caused by the leading edge which is different in the theory and practice. Also other 

factors could have influence, such as the turbulence of the flow in the windtunnel, misalignment of 

the plate, etc. It can be concluded from this that a boundary layer that should be laminar according 

to theory can be turbulent in practice, thus giving a thicker boundary layer and a different velocity 

profile.  
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Appendix A: Pressure distribution along the plate 
x y Cp 

6.48E-07 0 1.043979 

2.81E-05 0.000449 1.015285 

0.00011 0.000903 0.935395 

0.000249 0.001357 0.817208 

0.000439 0.001806 0.67428 

0.000681 0.002244 0.519638 

0.00097 0.00267 0.364989 

0.001303 0.003081 0.21874 

0.001677 0.003475 0.085256 

0.002089 0.003853 -0.03332 

0.002538 0.004213 -0.13614 

0.00302 0.004556 -0.22329 

0.003534 0.004881 -0.29559 

0.004078 0.005189 -0.35438 

0.004653 0.005481 -0.40114 

0.005256 0.005756 -0.43742 

0.005887 0.006017 -0.46469 

0.006546 0.006262 -0.48433 

0.007232 0.006494 -0.49752 

0.007945 0.006712 -0.50526 

0.008687 0.006917 -0.50839 

0.009455 0.00711 -0.50764 

0.010253 0.00729 -0.50365 

0.011078 0.007459 -0.49698 

0.011934 0.007616 -0.48809 

0.012819 0.007763 -0.47739 

0.013735 0.007899 -0.46522 

0.014683 0.008025 -0.45192 

0.015664 0.008141 -0.43775 

0.016679 0.008248 -0.42292 

0.017729 0.008346 -0.40763 

0.018816 0.008436 -0.39205 

0.019941 0.008517 -0.37632 

0.021106 0.00859 -0.36056 

0.022313 0.008656 -0.34488 

0.023562 0.008714 -0.32939 

0.024857 0.008765 -0.31414 

0.026199 0.00881 -0.29917 

0.027591 0.008849 -0.28453 

0.029035 0.008883 -0.27025 

0.030534 0.008911 -0.25634 

0.03209 0.008934 -0.24284 

x y Cp 

0.033707 0.008953 -0.22977 

0.035387 0.008968 -0.21716 

0.037135 0.008979 -0.20503 

0.038953 0.008987 -0.19339 

0.040846 0.008992 -0.18227 

0.042819 0.008996 -0.17166 

0.044875 0.008998 -0.16157 

0.04702 0.008999 -0.15198 

0.049259 0.009 -0.14291 

0.051599 0.009 -0.13433 

0.054045 0.009 -0.12625 

0.056604 0.009 -0.11866 

0.059284 0.009 -0.11154 

0.062093 0.009 -0.10489 

0.065041 0.009 -0.09868 

0.068136 0.009 -0.09289 

0.071389 0.009 -0.08751 

0.074813 0.009 -0.0825 

0.078421 0.009 -0.07786 

0.082225 0.009 -0.07357 

0.086244 0.009 -0.06957 

0.090493 0.009 -0.06576 

0.094993 0.009 -0.06222 

0.099493 0.009 -0.05907 

0.103994 0.009 -0.05624 

0.108495 0.009 -0.05368 

0.112999 0.009 -0.05137 

0.117505 0.009 -0.04926 

0.122013 0.009 -0.04733 

0.126525 0.009 -0.04555 

0.131041 0.009 -0.04391 

0.135561 0.009 -0.04239 

0.140086 0.009 -0.04097 

0.144617 0.009 -0.03965 

0.149154 0.009 -0.03841 

0.153698 0.009 -0.03725 

0.158249 0.009 -0.03616 

0.162809 0.009 -0.03513 

0.167376 0.009 -0.03415 

0.171953 0.009 -0.03323 

0.176539 0.009 -0.03235 

0.181136 0.009 -0.03152 

x y Cp 

0.185743 0.009 -0.03073 

0.190361 0.009 -0.02997 

0.194992 0.009 -0.02925 

0.199634 0.009 -0.02857 

0.20429 0.009 -0.02791 

0.20896 0.009 -0.02727 

0.213644 0.009 -0.02666 

0.218342 0.009 -0.02607 

0.223056 0.009 -0.02549 

0.227786 0.009 -0.02494 

0.232533 0.009 -0.02439 

0.237297 0.009 -0.02386 

0.242078 0.009 -0.02335 

0.246878 0.009 -0.02289 

0.251697 0.009 -0.02244 

0.256535 0.009 -0.02201 

0.261394 0.009 -0.02159 

0.266273 0.009 -0.02119 

0.271174 0.009 -0.0208 

0.276096 0.009 -0.02042 

0.281042 0.009 -0.02005 

0.28601 0.009 -0.01969 

0.291002 0.009 -0.01934 

0.296019 0.009 -0.019 

0.301061 0.009 -0.01867 

0.306129 0.009 -0.01835 

0.311223 0.009 -0.01804 

0.316343 0.009 -0.01773 

0.321492 0.009 -0.01743 

0.326669 0.009 -0.01715 

0.331875 0.009 -0.01686 

0.33711 0.009 -0.01659 

0.342375 0.009 -0.01632 

0.347672 0.009 -0.01606 

0.353 0.009 -0.01581 

0.35836 0.009 -0.01556 

0.363753 0.009 -0.01532 

0.369179 0.009 -0.01508 

0.37464 0.009 -0.01485 

0.380136 0.009 -0.01462 

0.385667 0.009 -0.01441 

0.391235 0.009 -0.01419 
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x y Cp 

0.396839 0.009 -0.01398 

0.402481 0.009 -0.01378 

0.408162 0.009 -0.01358 

0.413881 0.009 -0.01339 

0.419641 0.009 -0.0132 

0.425441 0.009 -0.01301 

0.431282 0.009 -0.01283 

0.437165 0.009 -0.01265 

0.443091 0.009 -0.01248 

0.44906 0.009 -0.0123 

0.455074 0.009 -0.01213 

0.461132 0.009 -0.01197 

0.467237 0.009 -0.0118 

0.473387 0.009 -0.01164 

0.479585 0.009 -0.01148 

0.485831 0.009 -0.01133 

0.492125 0.009 -0.01117 

0.49847 0.009 -0.01102 

0.504864 0.009 -0.01088 

0.51131 0.009 -0.01073 

0.517807 0.009 -0.01059 

0.524358 0.009 -0.01045 

0.530962 0.009 -0.01031 

0.53762 0.009 -0.01017 

0.544334 0.009 -0.01004 

0.551104 0.009 -0.00991 

0.55793 0.009 -0.00978 

0.564815 0.009 -0.00965 

0.571758 0.009 -0.00952 

0.57876 0.009 -0.00939 

0.585823 0.009 -0.00927 

0.592948 0.009 -0.00915 

0.600134 0.009 -0.00903 

0.607383 0.009 -0.00891 

0.614697 0.009 -0.00879 

0.622075 0.009 -0.00868 

0.629519 0.009 -0.00857 

0.63703 0.009 -0.00846 

0.644608 0.009 -0.00835 

0.652255 0.009 -0.00824 

0.659972 0.009 -0.00813 

0.667759 0.009 -0.00803 

0.675617 0.009 -0.00793 

0.683548 0.009 -0.00782 

x y Cp 

0.691553 0.009 -0.00772 

0.699631 0.009 -0.00763 

0.707786 0.009 -0.00753 

0.716017 0.009 -0.00743 

0.724325 0.009 -0.00734 

0.732712 0.009 -0.00725 

0.741178 0.009 -0.00716 

0.749725 0.009 -0.00707 

0.758354 0.009 -0.00698 

0.767066 0.009 -0.0069 

0.775861 0.009 -0.00681 

0.784742 0.009 -0.00672 

0.793708 0.009 -0.00664 

0.802762 0.009 -0.00655 

0.811904 0.009 -0.00647 

0.821136 0.009 -0.00639 

0.830458 0.009 -0.00631 

0.839872 0.009 -0.00623 

0.849379 0.009 -0.00615 

0.85898 0.009 -0.00607 

0.868677 0.009 -0.00599 

0.87847 0.009 -0.00592 

0.888361 0.009 -0.00584 

0.89835 0.009 -0.00578 

0.908441 0.009 -0.00571 

0.918632 0.009 -0.00564 

0.928927 0.009 -0.00558 

0.939325 0.009 -0.00552 

0.949829 0.009 -0.00546 

0.960439 0.009 -0.0054 

0.971158 0.009 -0.00534 

0.981986 0.009 -0.00529 

0.992925 0.009 -0.00523 

1.003975 0.009 -0.00516 

1.015139 0.009 -0.00509 

1.026418 0.009 -0.00502 

1.037814 0.009 -0.00494 

1.049327 0.009 -0.00485 

1.060959 0.009 -0.00475 

1.072711 0.009 -0.00465 

1.084586 0.009 -0.00454 

1.096584 0.009 -0.00441 

1.108707 0.009 -0.00432 

1.120957 0.009 -0.00427 

x y Cp 

1.133334 0.009 -0.00423 

1.145842 0.009 -0.00419 

1.15848 0.009 -0.00414 

1.171251 0.009 -0.0041 

1.184157 0.009 -0.00405 

1.197198 0.009 -0.00401 

1.210377 0.009 -0.00396 

1.223695 0.009 -0.00391 

1.237154 0.009 -0.00386 

1.250756 0.009 -0.00382 

1.264502 0.009 -0.00377 

1.278394 0.009 -0.00372 

1.292433 0.009 -0.00368 

1.306622 0.009 -0.00363 

1.320962 0.009 -0.00358 

1.335455 0.009 -0.00354 

1.350103 0.009 -0.00349 

1.364908 0.009 -0.00345 

1.379871 0.009 -0.0034 

1.394995 0.009 -0.00335 

1.41028 0.009 -0.00331 

1.42573 0.009 -0.00326 

1.441346 0.009 -0.00322 

1.45713 0.009 -0.00317 

1.473084 0.009 -0.00313 

1.48921 0.009 -0.00308 

1.50551 0.009 -0.00304 

1.521987 0.009 -0.00299 

1.538641 0.009 -0.00295 

1.555475 0.009 -0.0029 

1.572492 0.009 -0.00286 

1.589693 0.009 -0.00281 

1.60708 0.009 -0.00277 

1.624657 0.009 -0.00273 

1.642424 0.009 -0.00269 

1.660384 0.009 -0.00264 

1.67854 0.009 -0.0026 

1.696893 0.009 -0.00256 

1.715446 0.009 -0.00252 

1.734202 0.009 -0.00248 

1.753162 0.009 -0.00243 

1.772329 0.009 -0.00239 

1.791706 0.009 -0.00235 

1.811294 0.009 -0.00231 



37 
 

x y Cp 

1.831096 0.009 -0.00228 

1.851115 0.009 -0.00224 

1.871353 0.009 -0.0022 

1.891813 0.009 -0.00216 

1.912497 0.009 -0.00212 

1.933408 0.009 -0.00208 

1.954549 0.009 -0.00204 

1.975921 0.009 -0.00201 

1.997529 0.009 -0.00197 

2.019373 0.009 -0.00193 

2.041458 0.009 -0.0019 

2.063786 0.009 -0.00186 

2.08636 0.009 -0.00182 

2.109182 0.009 -0.00179 

2.132255 0.009 -0.00175 

2.155583 0.009 -0.00171 

2.179168 0.009 -0.00167 

2.203013 0.009 -0.00163 

2.227121 0.009 -0.00159 

2.251496 0.009 -0.00155 

2.276139 0.009 -0.00152 

2.301055 0.009 -0.00148 

2.326245 0.009 -0.00144 

2.351715 0.009 -0.00141 

2.377466 0.009 -0.00138 

2.403502 0.009 -0.00135 

2.429826 0.009 -0.00132 

2.456441 0.009 -0.00129 

2.483352 0.009 -0.00126 

2.51056 0.009 -0.00123 

2.53807 0.009 -0.0012 

2.565884 0.009 -0.00117 

2.594007 0.009 -0.00114 

2.622442 0.009 -0.0011 

2.651193 0.009 -0.00107 

2.680262 0.009 -0.00104 

2.709654 0.009 -0.001 

2.739373 0.009 -0.00097 

2.769421 0.009 -0.00093 

2.799803 0.009 -0.0009 

2.830523 0.009 -0.00086 

2.861584 0.009 -0.00083 

2.892991 0.009 -0.00079 

2.924746 0.009 -0.00076 

x y Cp 

2.956855 0.009 -0.00073 

2.989321 0.009 -0.0007 

3.022149 0.009 -0.00067 

3.055341 0.009 -0.00064 

3.088903 0.009 -0.00061 

3.122839 0.009 -0.00057 

3.157153 0.009 -0.00054 

3.191849 0.009 -0.0005 

3.226931 0.009 -0.00046 

3.262404 0.009 -0.00042 

3.298273 0.009 -0.00038 

3.334541 0.009 -0.00035 

3.371214 0.009 -0.00034 

3.408295 0.009 -0.00034 

3.44579 0.009 -0.00036 

3.483703 0.009 -0.00044 

3.52204 0.009 -0.00058 

3.560804 0.009 -0.00137 

3.6 0.009 -0.00208 
 


