

MASTER THESIS

A SOA-BASED

ARCHITECTURE FOR

DEALING WITH D&D

REQUIREMENTS

IN THE HOMECARE

DOMAIN

DUC BUI VIET

BUSINESS INFORMATION TECHNOLOGY

EXAMINATION COMMITTEE

Dr. Marten van Sinderen
Dr. Maria- Eugenia Iacob
Alireza Zarghami

AUGUST 8, 2011

i

Master thesis

A SOA-based architecture for dealing with D&D requirements

in the homecare domain

Author: DUC BUI VIET

Date:

August 08, 2011

Graduation committee:

Dr. Marten van Sinderen
Department of Computer Science
Email: m.j.vansinderen@utwente.nl

Dr. Maria- Eugenia Iacob
Department of Information Systems and Change Management
Email: m.e.iacob@utwente.nl

Alireza Zarghami
Faculty of Electrical Engineering, Mathematics and Computer
Science (EEMCS)
Email: A.Zarghami@utwente.nl

University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands
Telephone: +31 (0)53-489 9111
Fax: +31 (0)53-489 2000
E-mail: info@utwente.nl
Website: http:/www.utwente.nl

http://www.ewi.utwente.nl/en/index.html
http://www.ewi.utwente.nl/en/index.html

ii

Preface

Until the moment I write this line, my thesis lasted for 6 months. I started my thesis with a

failure. In the first meeting, with uncertainty and a try-and-error mind, I came to my supervisor

and proposed my own ideas. He was so nice to give me chances to decide my own fate: spend

more time to investigate my direction that even can be extended to be a PhD project or follow his

suggestion on another direction. Being afraid of the time limit, I chose the second one: doing the

thing that I did not intend to do. I failed to try and failed to take the risk.

However, on the bright side, another door was opened to greet me. I was assigned in the Ucare

project, performed a research about Service Oriented Architecture (SOA). Having background in

computer science, I got into the topic quite fast and soon discovered the magical capabilities of

SOA. More than any generations of software philosophy, SOA bridges business ideas and

technology closer. It is SOA that opens new horizons for business man by creating the

possibilities to connect, to build and to re-build a system of systems with less time and effort.

Based on that idea, the Ucare project, where I used to be a member, wants to develop a new

framework integrating existing services in homecare domain. As a compensation for the previous

nonsuccess, as mentioned above, I took the most interesting topic in the project, I think, to be my

thesis topic: enabling dynamicity and diversity in the homecare domain. The result is quite

positive: a SOA-based architecture is created and operationalized. I am satisfied with that.

I am indebted to numerous people; without them, I could never have finished my study on time

with an acceptable quality. First, I am particularly grateful to Mr. Van Sinderen for introducing

me to the field and giving me the very important and high-level direction of my thesis. Second, I

would like to thank to Ms. Maria Iacob for her careful feedbacks and valuable advices for each

small section of my thesis. Lastly, there will be never sufficient words to express my obligation to

Shahin for his patience, his friendship, his time and his willing to help me.

For all my Vietnamese and international friends, thank you a lot for the unforgettable memories:

beer parties, BBQ parties and chit-chat sessions. Being with you, I am aware that I am really far

away from my homeland. Being with you, I realize that not only love can a family establish, but

also loneliness.

Duc Bui Viet

August 5, 2011

Enschede

iii

Contents
Chapter 1 Introduction ...1

1.1 A need for change in EU healthcare systems .. 1

1.2 U-care project ... 2

1.3Challenges in the homecare domain ... 3

1.3.1 Social challenges .. 3

1.3.2 Technological challenges ... 3

1.4 D&D requirements .. 3

1.5 Desired abilities for dealing with D&D requirements ... 4

1.6 SOA adoption in U-care ... 4

1.6.1 SOA introduction .. 5

1.6.2 SOA adoption in U-care .. 5

1.7Motivations for the research ... 5

1.8 Research objective .. 5

1.9 Problem statement ... 6

1.10 Research question ... 6

1.11 The thesis boundaries ... 7

1.11.1 Scope .. 7

1.11.2 Assumptions ... 7

1.12 Research approach.. 8

1.13 Report structure .. 8

1.14 Summary ... 9

Chapter 2 Service oriented architecture (SOA) .. 10

2.1 Definitions ... 10

2.2 Key concepts ... 10

2.2.1 Services .. 10

2.2.2 SOA parties ... 12

2.2.3 SOA-based architectures in layers ... 13

2.2.4 Service composition ... 14

2.3 Enterprise Service Bus (ESB) ... 14

iv

2.4 Quality criteria for SOA-based architecture .. 14

2.5 Summary ... 15

Chapter 3 Approaches for handling D&D requirements ... 16

3.1 Context, user context and user-context awareness ... 16

3.2 User-context awareness and D&D requirements ... 17

3.3 Architectures for user-context awareness .. 17

3.3.1 The Context ToolKit architecture ... 17

3.3.2 Socam (Service-Oriented Context-Aware Middleware) architecture .. 18

3.4 Web service composition methods to deal with D&D requirements ... 19

3.4.1 Definition and classification ... 19

3.4.2 Relations between SOA-based architecture and user-context awareness................................ 20

3.4.3 Service composition methods .. 20

3.5 Summary ... 22

Chapter 4 Additional requirements for the homecare domain ... 23

4.1 Sources of D&D requirements .. 23

4.2 Additional requirements for the U-care framework ... 24

4.3 Summary ... 25

Chapter 5 The proposed architecture .. 26

5.1 Web service composition method selection... 26

5.2 Selection of techniques of the dynamic-workflow composition method .. 27

5.2.1 Business rules and problems of integrating business rules in BPEL processes 27

5.2.2 Techniques of the dynamic-workflow composition method ... 29

5.2.3 Why are business rule engines not suitable? .. 30

5.2.4 Technique selection ... 30

5.2.5 Why does crosscutting problem matter in our situation? ... 31

5.2.6 What can an aspect do With regard to D&D requirements? ... 31

5.3 The proposed architecture ... 32

5.3.1 Provided services ... 32

v

5.3.2 Design steps ... 32

5.4 Summary ... 37

Chapter 6 Implementation ... 38

6.1 The scenario .. 38

6.1.1 Scenario description... 38

6.1.2 Additional business rules for the scenario ... 38

6. 1.3 Services required by the scenario ... 39

6.2 Implementation tools ... 39

6.3 Building modules of the architecture ... 40

6.3.1 Context server .. 40

6.3.2 Aspect manager ... 41

6.3.3 Context database ... 43

6.3.4 Adaptors ... 44

6.3.5 Service discoverer .. 44

6.3.6 Process executor .. 44

6.4 Implementation .. 45

6.4.1 The business process ... 45

6.4.2 The behaviors of the system in dealing with user-context dynamicity 46

6.5 Summary ... 51

Chapter 7 Evaluation .. 52

7.1 Easiness for adapting the business process .. 52

7.1.1 Variation 1- Predefined changes .. 54

7.1.2 Variation 2- Ambiguous heath condition information ... 56

7.1.3 Variation 3- Surprise changes ... 56

7.2 Positioning the supported flexibility ... 58

7.2.1 Abstraction level of change.. 58

7.2.2 Subjects of change ... 58

7.2.3 Properties of change .. 59

7.3 Summary ... 59

vi

Chapter 8 Discussion, Recommendation and Conclusion ... 61

8.1 Discussion .. 61

8.1.1 Advantages ... 61

8.1.2 Limitation ... 62

8.2 Recommendations .. 63

8.3 Conclusion ... 63

References ... 65

Appendix A: List of pilot scenarios .. 68

Appendix B: Quality attributes of SOA .. 69

List of Figures ... 72

List of tables .. 73

Glossary... 74

1

Chapter 1 Introduction

This chapter is dedicated to give an overview about the origin of the host project of the thesis– the

Ucare project. An understanding of the root, the obstacles, and the advancement of the host

project will help us to have the fundamental background of the domain in both social and

technological perspectives. Then, being curious about solutions for the current challenges, we

choose one challenge and formulate our motivations based on that challenge. Next, the set of

research questions, the research approach and the thesis boundaries will come, steering research

activities.

1.1 A need for change in EU healthcare systems

In this part, the high level of business problems leading to the need of improving the healthcare

sector will be present. Briefly, as a result of the augmentation of number of elderly people, the

current healthcare system is urged to change. European Union and its members chose ITC

solutions as one primary way to make healthcare systems adapt better with high demands. U-care

project originates from this circumstance.

As the time goes, the 21 century has come. So many problems did the human society successfully

overcome; while some is still unsolvable, some new has arisen. The healthcare domain

experiences the same phenomenon – the increasing number of elderly people in European

countries. Statistical information from European Union’s Health Portal shows that, by 2050 in EU

“the number of people aged 65 and above is expected to grow by 70% and the number of people

aged over 80 by 170%” [1]. This problem, in turn, creates a high pressure on traditional social

support systems like healthcare and pension [2] [1]. In addition to the increasing number of

elderly people, in 25 EU countries, the total number of healthcare professionals has not increased

and tended to go down (Figure 1), weighting the capability of current healthcare systems in

satisfying patients’ demands.

Having been aware those issues, the European Union already set up a number of policies,

programs, and research toward a better health for people in the community. In the field of

research, there are also various directions ranging from fighting cancer, ensuring food quality and

safety, and combating cardiovascular disease, diabetes and rare diseases. As one of the key

research areas, ICTs play an important role on all aspects of healthcare by making healthcare

systems more cost-effective, enabling healthcare to be personalized, offering better instruments

(medical imaging or supercomputers) and providing channels to access health-related

information to everyone [3].

http://cordis.europa.eu/lifescihealth/major/cardio.htm

Chapter 1 Introduction

2

Figure 1: total number of qualified nurses and midwives per 1000 000 of population

However, in a large scale implementation, ITC solutions have their own challenges such as

commitment and leadership of health authorities, interoperability of e-health systems, user

friendliness, confidentiality and security issues, mobility of patients, etc [4]. In 2004, to surmount

those obstacles, an e-Health action plan specifying detailed steps needed to apply e-Health

technology is adopted by the EU commission. In this plan, the commission suggests their

members to develop their national and regional e-Health strategies to respond to their own

specific needs [5].

The Netherlands, in response to the call, already sponsored many research toward ITCs in

healthcare; U-care project backed by Ministry of Economic Affairs of the Netherlands is one of

them. The next part of the document will present the U-care project’s background in more details.

1.2 U-care project

Ucare project is a joint project between CTIT (Centre for Telematics and Information Technology)

of the University of Twente, IBM Nederland, Orbis Medisch, Mobihealth BV, TKH Group, IZIT,

and CAPE Group.

There are various research directions in the homecare environment like quality of services,

privacy and confidentiality of medical data, data management and remote monitoring; however,

the problem domain of the U-care project is narrower. This project is designed to “develop a

services layer for integrated home care systems, referred to as the U-Care platform, which provides

tailorable, evolvable and non-intrusive care services”[6]. There are four research themes focused in

the project, namely, tailorability, service-oriented architecture, context-awareness, autonomic

computing, and E-health and telemedicine services.

Chapter 1 Introduction

3

One remark is that even there exist many solutions having the characteristic of interoperability

and tailorability; this thesis will not compare those solutions to pick SOA and context-awareness

approaches. Only reasons to choose SOA and context-aware are addressed.

1.3 Challenges in the homecare domain

Obviously, when integrating various homecare systems into unique one, besides technical issues,

the new framework also has to handle social challenges, i.e., relating to human interactions with

the new integrated system. The social challenges are focused on dynamicity and diversity while

the technical challenges are about interoperability. Those challenges are motivations to SOA

adoption which will be discussed right after.

1.3.1 Social challenges

In a homecare system, there are two main stakeholders: care-providers and care-receivers. Care-

providers can be professional care-givers from care centers or social care-givers like the neighbors

or house mates. Care-receivers are the ones living at the care home [7]. To successfully supply

services to these two stakeholders, the new platform has to deal with diversity and dynamicity of

continuously changing requirements [8] [9]. First, the new platform needs to manage a huge

number of care-receivers, and each of them has different behaviors or references/needs, e.g., some

prefer to get vibration reminder on PDD instead of voice. Second, even for the same care-receiver,

his/her preferences are not consistent due to his/her evolution in health conditions. For example,

hearing problem of elderly people is normally more and more severe, leading to increasing the

volume of alarms or not to use sound devices as alarms. Third, with regard to the context of care-

receivers, due to the difference in living environments and health problems, there is a diversity of

context. For example, context information of care-receivers with cardiopathy is different from

context information of care-receivers with brain diseases. Lastly, for the same care-receiver, the

system always has to deal with changes of context of user. For example, the care-receiver moves

from one room to another, causing changes of his/her context in terms of location.

1.3.2 Technological challenges

With regard to technology issues, it is useful to recall that the purpose of the U-care is to build a

framework to integrate homecare systems. This properly suggests one of the main problems that

system architects have to pay attention to is how to make sure that those current systems can co-

operate well for the same goal. Agreeing on that, Klooster et al. [10] also determine that merging

home automation, homecare and telemonitoring services is one of challenges for the new

framework. More concretely, Eslami, M.Z and M.V. Sinderen [8] articulate that current home

healthcare systems are generally stand-alone systems (heterogeneous systems), challenging the

framework’s architecture to integrate them.

1.4 D&D requirements

Four social challenges mentioned in 1.3.1 can be grouped into two categories: diversity and

dynamicity. Dynamicity is caused by the changes in the context of care-receivers (context

dynamicity) and the changes in a care-receiver’s preferences/needs (dynamicity of

needs/preferences). Diversity in the homecare domain stems from the different needs/preferences

Chapter 1 Introduction

4

of the care-receivers (diversity of preferences/needs) and the different context for each care-

receiver (diversity of context).

We name the necessities of the system for dealing with diversity and dynamicity as D&D

requirements (D&D is the abbreviation of diversity and dynamicity). These requirements,

arising in the homecare domain, need to be handled by the Ucare framework.

 User’s preferences/needs User’s context

Change Preference/need dynamicity Context dynamicity

Diversity Preference/need diversity Context diversity
Table 1: D&D requirements

1.5 Desired abilities for dealing with D&D requirements

The social and technical challenges raise a set of requirements for the U-care architecture in

particular, and for all integrated systems in general. This part of the thesis will elaborate the

necessary abilities for U-care architecture.

The D&D requirements, in turn, are believed as motivations to tailorable abilities –tailorability-

of the system. In details, having tailorability means that the system is able to provide a set of

patient-neutral health-care functions which can be configured and composed according to the needs

and references of each individual patient [8]. Tailorability, therefore, is an important required

ability arising from the real problems in homecare. In other words, tailorability assures that the

framework can handle the social challenges mentioned in the previous section. In addition, in

term of economics, tailorability is also essential because it is economically impossible to build

various personalized home-care systems for different individual patients [8].

Concerning the technological challenges, solving problems of combining existing heterogeneous

systems means the U-care framework needs to support interoperability because, in definition,

interoperability is considered “the ability of two or more systems or components to exchange

information and to use the information that has been exchanged” (IEEE Glossary). In the scope of

this thesis, the interoperability term is used instead of system integration because the relevant

problems of system integration can range numerously from political issues, contracts, to technical

problems.

Briefly, to reach the goal of providing a services layer for integrated home care systems,

tailorability and interoperability are required properties. In the next part, SOA that promises to

please these two requirements will be presented.

1.6 SOA adoption in U-care

To achieve tailorability and interoperability, Service Oriented Architecture (SOA) and context-

awareness are chosen as solution directions [7]. The decision about context-awareness is based on

the idea that context-awareness allows to get context information automatically without

disturbing patients’ activities, and then change the behaviors of the system according to the

context changes. The details of context-awareness will be presented in chapter 3. For the more

http://en.wikipedia.org/wiki/Information_exchange
http://en.wikipedia.org/wiki/Information_exchange

Chapter 1 Introduction

5

intricate SOA concept, we will present it concisely so that the readers can have the basic to

understand the reasons for SOA adoption and other relevant concepts. In chapter 2, the more

profound knowledge about SOA will be examined.

1.6.1 SOA introduction

According to Service Oriented Architecture tenet, software is modularized into independent,

well-defined, and self-contained modules [11]. Those modules are called services. The

standardized interfaces of services permit communicating then composing different services to

support a business mission.

1.6.2 SOA adoption in U-care

As a new way of designing system architecture, Service Oriented Architecture (SOA) is a

promising solution that can successfully meet the requirements of tailorability and

interoperability. In this section, the ability by which SOA can manage the homecare problems is

presented.

With regard to tailorability, SOA solution offers a very flexible way to dealing with D&D

requirements. We can simply understand that, in SOA, a scenario of a patient is represented by a

workflow which contains connected steps in orders. When there is a change from the patient,

instead of changing hardcode as in traditional software, for SOA, the caregiver can easily modify

the workflow of a patient by rearranging the order of steps in that workflow.

Perfectly fitting with SOA principles, interoperability requirements are expected to be handled

completely. A SOA solution bases on the concept of services. A new framework, instead of

working directly with existing systems (legacy systems), will use the standardized services

provided by legacy systems. It is the standardization of services of existing systems that

overcomes the problem of non-interoperability because standardized services do not depend on

operation systems, programming language or vendors. In other words, as long as legacy systems

expose their functions as standardized services over Internet environment, the new framework

can exploit them. An important remark is that a SOA solution also offers tools enabling legacy

systems to export their functions as standardized services.

1.7 Motivations for the research

In the previous parts, based on interoperability and tailorability, the arguments to choose SOA

are clarified. However, for U-care project in particular and for the home-care domain in general,

there is no in depth research about how to choose and design well SOA-based architecture in

combination with other methods to handle tailorability and interoperability. Therefore,

needleless to say, a research about SOA-based architecture for the homecare domain is essential.

Positive outcomes of research about this topic, in the long-term, can provide a firm reference to

develop homecare systems.

1.8 Research objective

The objective of this research is to give a description and an evaluation of an SOA-based

architecture for handling the D&D requirement in the homecare domain.

Chapter 1 Introduction

6

1.9 Problem statement

As one part of the larger U-care project, the problem statement is delivered from the problems of

U-care with a narrow scope – that will be described in thesis boundaries.

First, the unavoidable dynamicity of user-context causes many difficulties to homecare systems,

leading to frequent failures. Especially, in the homecare domain, due to the very strict

requirements in safety and reliability, failures at any level are not acceptable. This requires that

homecare systems need to be developed with scrutiny on dynamicity managing capability.

Second, in the homecare domain, there is a wide range of service providers with diverged

services like services to provide biosigns (blood-pressure, heart-rate, weight, etc) and context

information (location, temperature, etc). Those services, however, are not well connected to

deliver greater benefit for neither care-receivers nor care-providers.

1.10 Research question

Main research question: What are the properties of a SOA-based architecture for dealing with

D&D requirements in the homecare domain?

In order to answer this research question, the following sub-research questions will be examined.

Sub-research questions:

 1. What are the sources of dynamicity and diversity in the homecare domain?

To enable a SOA-based architecture to deal with D&D requirements, we should

know how a care-receiver can cause dynamicity for the system. Having knowledge

about that, we can predict the possible stimulus as inputs for the framework.

2. What are the techniques that can handle D&D requirements?

Answering this question will help us to have an overview about possible ways to

overcome trouble caused by dynamicity. As shown in the 3rd chapter, two

approaches, namely user-context awareness and services composition, with many

their techniques are presented.

3. What are the other domain requirements and constraints that influence architecture

design decisions for dealing with D&D requirements?

Because there are a number of applicable techniques, additional business

requirements and domain constrains are taken into account to help us select the

most suitable one.

4. How should a SOA-based architecture be designed in order to be able to deal with D&D

requirements?

Chapter 1 Introduction

7

Based on selected approaches, a SOA-based architecture will be proposed. This

architecture, then, will be implemented as a prototype.

5. To what extent does the proposed SOA-based architecture satisfy D&D requirements?

Concerning the main purpose of dealing with dynamicity and diversity, the

architecture will be evaluated in terms of the supported flexibilities.

1.11 The thesis boundaries

The previous parts introduces aspects of the U-care project including its motivations, its

challenges, its scope (and assumption), its properties and expected results. Due to the time being,

it is not realistic to cover all problems of the U-care project in this thesis. Therefore, in this part,

the scope of the thesis, in which targeted problems and assumptions, will be explicitly shown.

1.11.1 Scope

For the entire project, as mentioned above, U-care opts to deal with interoperation and

tailorability. However, this thesis is merely focused on tailorability. Tailorability is expected

property to handle D&D requirements.

We exclude the context diversity from our scope.

Concerning technical instruments, the Enterprise Service Bus (ESB) as mediation architecture

pattern will be used.

The targeted context information of dynamicity is run-time changes from care-receivers,

including location, time and status.

Other health-related information like whether the medicine is taken is also considered.

Collecting and analyzing the context information (at low abstraction level) are not in the

scope.

The proposed architecture will be evaluated in terms of flexibility.

1.11.2 Assumptions

The focus of this thesis is homecare domain (a sub-set of healthcare domain).

When mentioning architecture, the thesis refers to software architecture.

The care-givers’ actions are considered accurate and on-time.

The system manages to work with different types of devices properly. In other words, we exclude

the dynamicity and diversity related to hardware devices.

All context information is well collected, analyzed and provided by the third parties.

The infrastructure of the system works properly with no crashes or failures.

Chapter 1 Introduction

8

The infrastructure is robust enough to handle huge amount of data.

1.12 Research approach

The process of conducting the research is depicted in the following graph.

Concerning the theoretical content, we will examine the literature to find the techniques for

dealing with dynamicity and diversity. Those techniques will be investigated to see how each of

them can fulfill the requirements arising from pre-defined scenarios. Then, a SOA-based

architecture will be proposed.

In the practical part, after the implementation of the proposed architecture on a process engine

(WebSphere Lombardi), its quality will be evaluated in terms of flexibility.

1.13 Report structure

The remainder of this report is structured in the following chapters:

Service Oriented Architecture – chapter 2 – gives a short introduction to Service Oriented

Architecture including fundamental concepts like services, service compositions, Enterprise

Service Bus, providing the background of many techniques in chapter 3.

Approaches for handling D&D requirements- chapter 3 – presents two approaches, namely, user-

context awareness and SOA compositions that are exploited to handle D&D requirements. This

chapter answers the sub-question 2.

In order to select the most suitable architecture and technique, chapter 4, titled “Additional

requirements in the homecare domain”, discusses the influential and additional requirements and

constrains like safety criteria, stakeholder ability. This chapter answers the sub-question 1 and 5.

Literature review on SOA

Literature review on

techniques for dealing

with D&D requirements

Literature review on

D&D requirements,

context-awareness

SOA-based

Architecture

proposal

Pilot scenarios

Implementing the

proposed

architecture

Evaluation

Feedback

Conclusion and

recommendation

Chapter 1 Introduction

9

In chapter 5, method selection and the proposed architecture will be specified. Based on chapter 3

and chapter 4, one (or more) composition method(s) will be selected. Then, inspired by reference

architectures of SOA and use-context awareness and the selected composition method(s), we

describe the design steps resulting in an architecture design. This chapter, obviously, is the

answer to the sub-question 4.

Chapter 6 – Implementation of the proposed architecture- discusses the way to develop a prototype

of the proposed architecture. The reminder scenario will be used to illustrate the operation of the

architecture. This chapter is also answer to the sub-question 4.

Chapter 7 is dedicated to the evaluation of the purposed architecture. This chapter can be

considered as the end of the answer to the sub-question 5.

Finally, chapter 8 closes this report by discussing the potentials and drawbacks of the proposed

architecture in the homecare domain. The recommendation for the future architecture of the

Ucare project will be given lastly.

1.14 Summary

This chapter covers the following issues:

- The increasing number of elderly people and the declining trend in the number of healthcare

professionals burden the current healthcare support systems.

- Ucare project aims to develop a platform for integrated homecare systems.

- Ucare project adopts Service Oriented Architecture and context-awareness approaches.

- We define the concept of D&D requirements.

- This thesis is focused on handle the D&D requirements thus supporting tailorability by

developing a SOA architecture design.

10

Chapter 2 Service oriented architecture (SOA)

The Software industry has witnessed a very rapid evolution of enterprise architecture designs that

software engineers apply to develop software systems. Looking back at the history, we can

observe the evolution of enterprise architecture from the oldest single-tier client-server

architecture, two-tier client-server architecture, distributed Internet architecture, hybrid Web

service architecture to the most advanced one - Service Oriented Architecture [12]. This chapter

will clarify the definition of SOA and its key concepts like services, web services, service

composition, Enterprise Service Bus (ESB). Then, criteria to evaluate the quality of SOA-base

architectures will be presented. To have a clear view about the proposed architecture, each

concept is concretized in the context of the homecare domain and our proposed architecture.

2.1 Definitions

From the beginning of this report, the “SOA-based architecture” term is repeated more than one

time. In this report, this term refers to an architecture style that employs and supports service-

oriented components. In other words, a SOA-based architecture is the architecture of SOA-based

applications. To profoundly grasp the insight of this term, it is essential to understand Service

Oriented Architecture.

In literature, there are many definitions of SOA. However, in this report, the one from a project of

The Open Work Group is chosen because this group includes top technology companies such as

HP, IBM, Capgemini, Oracle, and SAP; therefore, it is apparent that this definition is accepted

widely. Service Oriented architecture is defined as follows:

“Service-Oriented Architecture (SOA) is an architectural style that supports service
orientation.” [13]

Then, they also explain the concept of service orientation as “a way of thinking in terms of services

and service-based development and the outcomes of services” and an architecture style as “the

combination of distinctive features in which architecture is performed or expressed” [13].

From this definition, it appears many important concepts concerning a SOA-based architecture,

for example, the concepts of services, service-based development. Understanding these concepts

in SOA context is crucial to understand and then to design a SOA-based architecture.

2.2 Key concepts

As mentioned in the previous part, to understand a SOA-based architecture in depth, we need to

examine the fundamental and related concepts in SOA.

2.2.1 Services

Service orientation stems from a software engineering theory known as “separation of concerns”

[12]. The main idea of this theory is to divide a large problem in to a series of individual concerns,

allowing the logic to solve a problem to be decomposed into smaller pieces. This theory was

Chapter 2 Service Oriented Architecture

11

applied widely; for example, in the object-oriented programming approach, those decomposed

pieces are objects and classes that can deal with individual concerns of a large problem [12].

In service orientation, similarly, a service corresponds to a small piece of a large logic that can

solve/handle the entire problem. This way of analyzing service orientation matches with our

preceding definition that considers service orientation as way of “thinking in term of services”. The

Open Work Group also describes a service in more details as “logical representation of a

repeatable business activity that has a specified outcome”.

In SOA, based on the abstraction levels, it is possible to classify services into three types of

services, namely, application services, business services and process services[12]. These three types

of services, in turn, establish three layers of a SOA application and will be described latter.

-Application services

Application services aim to exploit and reuse the functions from new or legacy application

environment[12]. Therefore, instead of working directly with technology-specific functionalities,

at a higher level, business services will use services provided by application services. In SOA-based

architectures, application services belong to the lowest level (figure 4).

Take the homecare domain for example; we can see many application services such as services to

get the blood pressure, to get the temperature. Those are application services because they

process raw data from technological devices, i.e., sensors, to extract information needed to

business services. Another well-known application service is the communication service that

connects the hardware devices (TVs, tablets, and lamps) to software systems in hospitals. This

kind of service allows the software system to work with hardware devices without knowing

technology-specific details.

-Business services

Business services represent business logic units. A business service can be considered as

“controller to compose available application services to execute their business logic” [12]. Business

services can be categorized as task-centric business services that present task or business process

and entity-centric business services that encapsulate specific business entities [12].

In the reminder scenario (Appendix A), with the purpose to send a message to remind the care-

receiver to take medicine, a business service, so called “sending reminder”, is the composition of

application services like services to convert a remind content to device-targeted format,

communication services and sending messages services. To get care-receivers’ information, one

business service, so called “requiring user-context” service, is built up by various application

services to get information about heart rate, weight, blood pressure.

Chapter 2 Service Oriented Architecture

12

-Process services

Process services involve other business services to execute a business process according to

predefined workflow logic[12]. In the reminder scenario, a business process will be developed to

take charge of the whole procedure to remind the care-receiver to take medicine. This business

service is a process service because by executing this service, a predefined process is deployed.

Concerning the service level, services provided by the U-care framework are in process services

(figure 4) because the framework integrates existing services into pre-defined service building

blocks that can be reused in wellness and care applications [6].

2.2.2 SOA parties

Previously, three types of services concerning SOA are discussed. In this part, different roles of

parties participating in SOA applications will be introduced. Then, we will position the role of the

architecture we intend to develop.

There are four main roles, namely, service providers, service requestors, service aggregators and

service brokers[11-12]. Service providers are organizations (or individuals) who develop and provide

services that obey open protocols and standards[12, 14]. Service requestors have abilities to

discover desired services, to generate request messages and to compose a application from

available services [12, 14]. Service aggregators (intermediaries) have a dual role - the role of service

requesters and the role of service providers. As service providers, service aggregators provide

composite and higher-level services to service clients; as a service requestors, service aggregators

acquire services from other service providers [11]. Service brokers, a special type of service

providers, offer additional services such as registry services, security and authorization services

and supply additional information about reliability, quality, and trust-worthiness of services. The

relationship between these parties is illustrated in the following figures [11].

Figure 2: Service aggregator

Figure 3: Service broker

Chapter 2 Service Oriented Architecture

13

To determine the role(s) of the proposed architecture, it is necessary to recall existing services

and the functionalities of the proposed architecture. Regarding existing services, many legacy

systems provide care-receivers’ data like activity level, heart rate and blood pressure; these

systems play the service provider’s role. The SOA-based framework, on one hand, composes the

services offered by legacy systems. On the other hand, the services provided by the U-care

framework, in turn, are used by other organizations, e.g., a reminder service (appendix A), are

probably used as a service block in a more complex business processes of a healthcare

management system. As a result, the U-care framework is an aggregator.

2.2.3 SOA-based architectures in layers

In the previous section, three services types – application services, business services and process

services- are examined. These three concepts constitute three adjacent layers of SOA architecture.

The whole SOA architecture in layers is depicted in the following figure.

Figure 4: The three primary service layers. [12]

This picture expresses the mechanism for coordinating services of different layers. The lowest

layer, the application layer contains the legacy systems that provide technology-specific

functionalities that are handled by the application service sub-layer in the service interface layer.

The business service sub-layer, one upper level of the application service sub-layer, consumes

various application services of the application service sub-layer to establish business services.

Chapter 2 Service Oriented Architecture

14

2.2.4 Service composition

There exists a principle that a service layer collects services provided by lower abstraction levels

and composes them into one composite service. For example, process services (at orchestration

service layer) use business services (at business service layer). Therefore, logically, it is vital to

have a way to describe the orders of services, to transmit the data from one service to another, or

to specify the condition to perform an activity, i.e., a service. In SOA realm, those responsibilities

are taken charge by a composition language like Web Service Business Process Execution

Language (WS-BPEL). The OASIS (Organization for the Advancement of Structured Information

Standards) consortium defines WS- BPEL as “a model and a grammar for describing the behavior of

a business process based on interactions between the process and its partners” [15]. In other words,

the composer will utilize WS-BPEL to model the behaviors of business processes.

2.3 Enterprise Service Bus (ESB)

In reality, services are provided by different services providers with different technologies. There

are two fundamental ways to handle those technological and semantic mismatches. First, each

service provider has to develop an interface for each connection with other providers, resulting in

a point-to-point topology. For SOA, this approach is not adopted because of its limited scalability

and its complexity. The second approach applies hub-and-spoke integration patterns. In this

approach, Enterprise Service Bus (ESB) is introduced as an integration layer that permits loose

coupling and can separate the integration logic into manageable pieces [11].

Enterprise Service Bus is defined as “open, standards-based message bus designed to enable the

implementation, deployment, and management of SOA-based solutions with a focus on

assembling, deploying, and managing distributed SOA” [11]. With regard to services and service

composition, ESB plays a crucial role because it works as a connectivity layer between services by

controlling message flows, routing and sending messages [16]. Besides that, ESB is responsible to

support security, policy, reliability, remote configuration, and accounting [17].

2.4 Quality criteria for SOA-based architecture

So far, this chapter introduces some fundamental concepts of SOA. However, because the

ultimate purpose of this thesis is to develop a SOA-based architecture, quality criteria of SOA-

based architectures need to be examined. This part gives a basic view about quality attributes of

general SOA-based architecture.

There are a number of quality attributes in the context of SOA. Starting from typical business

goals of an organization for its system (being agile, being first to market, enabling easy and

flexible integration with legacy system), a set of quality attributes in the context of an SOA are

determined. The SOA approach brings positive influences on some attributes while not

supporting others attributes properly. The long list of attributes includes interoperability,

reliability, availability, usability, security, performance, scalability, extensibility, adaptability,

testability, auditability, operability, deployability, and modificability [18]. The detailed

descriptions of these quality attributes and the extent of influence of SOA are given in appendix

B.

Chapter 2 Service Oriented Architecture

15

To design the entire architecture of the homecare domain, each of those quality attributes has to

be considered carefully. However, to reach the final decision, many tradeoffs among the quality

attribute requirements have to be made so that the SOA architecture can meet the business goals

[18]. Therefore, the preceding list will be shortened with regard to the specific requirements of

homecare domain. The way to evaluate the SOA-based architecture With regard to its abilities to

deal with D&D requirements will be presented in chapter 7.

2.5 Summary

In this chapter, we present the following:

- Definitions of Service Oriented Architecture

- Concepts of services including application services, business services, and process services.

- Parties participating in SOA-based architecture

- Service composition

- Enterprise Service Bus

- Some quality attributes to evaluate a SOA-based architecture.

16

Chapter 3 Approaches for handling D&D requirements

This chapter describes two approaches, namely, user-context awareness, web service

compositions to the purpose of handling D&D requirement. The chapter is structured as follows:

first, the concept of user-context awareness and how it relates to our problem, i.e., D&D

requirements, will be introduced. Next, some feature architectures for user context awareness will

be described. Third, a literature review will be conducted toward composition methods in SOA to

handle dynamicity and diversity.

3.1 Context, user context and user-context awareness

In this thesis, the definition from Dey et al [19] is chosen because it gives us a simple and accurate

view toward context to apply in the homecare domain.

“Context: Any information that can be used to characterize the situation of entities (i.e.

whether a person, place or object) that are considered relevant to the interaction between

a user and an application, including the user and the application themselves. Context is

typically the location, identity and state of people, groups and computational and physical

objects”

As stated in this definition, there are three types of context entities, namely, places, people and

things. User context, in this thesis, refers to people entities that can be either individuals or

groups, co-located or distributed [19]. Regarding user context, four attributes of context

information are determined: identity, location, status (activity), and time [19]. Identity is a

unique identifier to an entity. Location can include position, orientation, elevation, co-location,

proximity or containment. Status, for a person, can be physiological factors (vital signs, tiredness)

or current activity (reading, talking). Time characterizes a situation by providing historical

attributes such as a timestamp, or a time span [19].

Respecting the home-care domain and with the focus on the user context, the example of each

preceding concept is given as follows. A care-receiver can be assigned an Identity as a unique

number that allows the system to distinguish two care-receivers. Location information of a care-

receiver from sensors shows where the care-receiver is, for example, “kitchen” or “bedroom”. The

most common statuses of a care-receiver are body temperature, heart rate, blood pressure and

respiratory rate. The value of time attribute, provided by timers, specifies the moment that a care-

receiver performs an action.

Context awareness, context-awareness computing or ubiquitous computing can be defined as

“application’s ability to adapt to changing circumstances and respond according to the

context of use” [20]. User context awareness, therefore, can be considered application’s ability to

adapt and respond to context changes of users.

Chapter 3 Approaches for handling D&D requirements

17

3.2 User-context awareness and D&D requirements

The two concepts – D&D requirements and user-context awareness - have a tight relationship.

D&D requirements have three elements: dynamicity of context, dynamicity of preferences/needs

and diversity of preferences/needs. First, dynamicity of user-context refers to the changes coming

from care-receivers; therefore, to handle user-context dynamicity, we need a method that takes

the information of the context changes (identity, location, status and time) as inputs and, then,

directs the system’s behaviors in accordance with these changes. This ability of the system

matches exactly with the purposes of the context awareness defined in 3.1 – adapting to changing

circumstances and responding accordingly. In other words, we can use user-context awareness as

one feature of systems to support user-context dynamicity. Second, With regard to users’

preferences/needs, there are some preferences that relate to users’ context, e.g., not using lights as

alarms after midnight (time attribute in this case). However, there are some preferences

independent of context, e.g., Jan prefers vibration alarms to sound alarms. Therefore, user-context

awareness is able to dealing with preference diversity and dynamicity affected by user context

while having limitation with independent preferences/needs.

3.3 Architectures for user-context awareness

User-context awareness covers enormous topics ranging from analyzing raw data to get useful

information, extracting and reasoning to get high abstraction levels of information, discovering

suitable services, to changing business processes in according with environmental changes.

However, in this thesis, there are two important assumptions: first, many third parties are

providing context information at high level of abstraction; second, we target to use SOA

composition methods to deal with dynamicity. As a result, in this part, mere the architectures of

user-context awareness systems, which give the ideas about compulsory parts, are considered.

This part presents two prominent conceptual frameworks for handling context. These frameworks

will be used as references inspiring the proposed architecture to make it possible to support

dynamicity through context awareness.

3.3.1 The Context ToolKit architecture

Dey, et al., [19] introduce a conceptual framework that can transform and collect contextual

information. This framework is composed of five components, namely, context widgets,

interpreters, aggregators, services, and discoverers. From the application perspective, the

functions of each component are described briefly as follows:

Context widgets “encapsulate context information and provide methods to access it”[19]. Context

widgets are responsible to notify applications about context changes, and can be queried or polled

by applications.

Interpreters “transform context information by raising its level of abstraction” [19]. For example,

the interpreter can conclude that there is a meeting if it receives information about many people

in a room (from one sensor) and high sound level (from another).

Aggregators collect context information that an application is interested in [19].

Chapter 3 Approaches for handling D&D requirements

18

Services are components that perform actions on behalf of applications [19]. Turning on the light

and sending a message are examples of services.

Discoverers manage information about all components and their capability[19]. Discoverers

support applications by providing usable components, their names and their identities.

The interconnection between these components is depicted the in following example:

Figure 5: An example of Context Toolkit architecture [19]

This example shows a context-aware architecture style with two sensors, two widgets, one

discoverer, one service, two interpreters, one aggregator and two applications. The discoverer

holds a registry containing information about all components and their capability. Based on the

information from the discoverer, the aggregator can find relevant widgets and interpreters that

are interesting for applications. The sensors provide context data to widgets. Widgets store

context information and allow interpreters and applications to access context data. Applications

can query or are notified by aggregators or from interpreters to get the high level abstraction of

data.

3.3.2 Socam (Service-Oriented Context-Aware Middleware) architecture

Suggested by the name, Socam architecture bases on OSGI framework – a lightweight framework

for delivering and executing service oriented applications [21]. In addition, OWL (Web Otology

Language), that enables context sharing and context reasoning, is applied so that context-aware

applications can share and access context information easily.

This architecture has the following components (Figure 6):

Context providers collect context information from external and internal sources, and then

process that information to achieve the level of abstraction and finally represent them in OWL.

A context interpreter consists of a context reasoner and a context knowledge base. The context

reasoner interprets low-level context to provide high-level context, resolves context conflicts, and

Chapter 3 Approaches for handling D&D requirements

19

maintains knowledge base consistency. The context knowledge base allows other components to

add, query, delete or modify context data.

Service-locating service (SLS) provides discovery services including locating context providers,

tracking and adapting changes of physical sensors, and enabling context providers to advertise

their supported contexts.

Context-aware applications change their behaviors based on the context information. They use

the services provided by SLS to locate context providers then to query/listen interested contexts.

In accordance with a context change, specific actions will be decided based on business rules that

are loaded in the context reasoner.

Figure 6: Socam architecture [21]

3.4 Web service composition methods to deal with D&D requirements

Observing the two reference architectures in the previous parts, we can see that, at the core of

those two architectures locate context-aware applications. An application could be considered a

reasoner in the sense that, to make decisions from information supplied by aggregators or

interpreters, it needs reasoning processes. In this part, one of the approaches to enable the

reasoning processes, the web-service composition method, is presented.

3.4.1 Definition and classification

As mentioned in the chapter about SOA architecture, Web service composition methods allow us

to compose applications through combining different sets of distributed components [22]. Web

service compositions can be classified into static web service compositions and dynamic web

service compositions. Static web compositions require developers to compose applications

manually and before requested by users; dynamic web service compositions allow composing

applications autonomously and on the fly [22].

Chapter 3 Approaches for handling D&D requirements

20

According to another taxonomy, there are two approaches to web service compositions namely

workflow-based composition methods and AI1-planning methods [23]. The basic argument of

workflow-based composition methods is that a composite service is similar to a workflow that

involves a collection of services and control and data flow[23]. AI-planning methods, on the other

hand, articulate that by using logical theorem provers or AI planners, a plan or a process can be

generated automatically without knowledge of predefined workflow[23].

It should be noticed that workflow-based compositions are not synonymous with static

composition because a workflow-based generation process can be performed statically or

dynamically. For the former one, a predefined abstract process model has to be built before

planning compositions, restricting automatic composition to only the selection and binding of

web services. Dynamic workflow composition methods, however, generate process models and

select services automatically [23].

3.4.2 Relations between SOA-based architecture and user-context awareness

A service composition, in other words - a process or a service plan, corresponds to a behavior of

application toward an event, or a set of events, in the environment. If an application is able to

adapt the order of services in processes (by AI planning methods and dynamic workflow-based

methods) or its binding services (by static workflow-based methods) according to the changes of

users’ context and users’ references/needs, we can say that this application has user-context

awareness ability in dealing with D&D requirements. Consequently, a SOA-based architecture,

which enables web service re-compositions, offers a promising way to deal with D&D

requirements.

3.4.3 Service composition methods

Each composition method has its advantages and limitation. This part presents a representative

for each composition method so that the features of each one will be revealed. The results of this

chapter, combining with the business requirements from the homecare domain, help us to

determine an appropriate method for the U-care framework.

Static Workflow-based composition methods

EFlow is a platform supporting the specification, enactment and management of composite

services. There are two characteristics of the e-services environment that EFlow aims to handle: a

huge number of services and diverse needs of customers. In EFlow, a static workflow generation

method is adopted [23]. In detail, a composite service is formed by basic or other composite

services and is modeled by a graph containing services, decisions, and event nodes. A service node

symbolizes an invocation of basic or composite services. A decision node represents the

alternatives and rules controlling the execution flow. Event nodes allow service processes to send

and receive [24].

1
 AI stands for Artificial Intelligence.

Chapter 3 Approaches for handling D&D requirements

21

What makes EFlow adaptive is its ability to discover and bind services dynamically. The

composition process can be described in two steps. Since EFlow composition is static, developers

have to compose the graph manually[23]. In this step, a service selection rule is defined in each

node. In the second step, when the service of a node is invoked, the eFlow engine will call a

service broker. After querying services, the service broker will select one appropriate service by

applying the service selection rule of that node. The process engine, then, will deploy that service.

Dynamic Workflow-based composition methods

Schuster et al. [25] introduce Polymorphic Process Model (PPM) that supports multi-enterprise

processes (MEPs). Multi-enterprise processes refer to workflows consisting of a set of activities

provided by different enterprises. Polymorphic Process Model combines both the static and

dynamic service compositions [23]. The static compositions are enabled by reference process-

based MEP. Reference processes-based MEP uses abstract sub-processes which only provide the

functionality description and are implemented at runtime by binding Web services. On the other

hand, concerning the dynamic part, service compositions are dynamically generated by a state

machine that models the possible states of a service and their transitions [23] [25].

AI planning composition methods

Each AI planning method reflects one approach to generate service plans automatically. In details,

initializing with a set of possible states of the world (S), an initial state (S0), a set of possible

actions (A) and the preconditions and effects for each execution of each action, an AI planning

method will select actions from A and arrange them to establish a service plan that make the

world reach the goal state (G) [23].

There are a number of service composition methods based on AI planning. Rao et al. [23] group

them into five categories: the situation calculus, the Planning Domain Definition Language, rule-

based planning, the theorem proving and the others.

The main characteristics of each method are briefly presented in the following table.

AI planning methods Characteristics

Situation calculus

-Based on the logical language for reasoning about action and

change (the first-order language of the situation calculus).

-Precondition and effects of web service actions are encoded in the

language of the situation calculus.

-A deductive machinery uses procedural programming language

constructs, e.g., if-then-else or while, services, and constraints to

create composite services.

PDDL (Planning Domain -Exploiting PDDL -a standardized input for state-of-the art

Chapter 3 Approaches for handling D&D requirements

22

Definition Language) planners[23]. PDLL is used to describe actions, conditional effects,

domain axioms, safety constraints, etc[26].

Rule-based planning -Generating service plans by using composability rules that concern

both the syntactic and semantic properties of web services to decide

whether two web services are composable.

-Syntactic rules are about the rules for operation modes and rules

for binding protocols of interacting services.

-Semantic rules include rules about message composability,

operation semantic composability, qualitative composability, and

composition soundness.

Other AI planning

methods

-SHOP2, an Hierarchical Task Network (HTN) planner, decomposes

tasks into smaller sub-task, until reaching the primary task that can

be performed directly[27]

-Semi-automatic method uses functionalities and non-functional

attributes to select services. If two services satisfy with a requested

functionality, non-functional attributes will be used [28].

Theorem proving -Based on automated deduction and program synthesis.

Table 2: AI planning methods

3.5 Summary

In this chapter, we discussed the following:

- The definitions of context and user-context awareness are given and illustrated by examples in

the homecare domain.

- After showing that relationship between user-context awareness can help to handle D&D

requirements, we introduce two reference architectures of context awareness.

- Web service composition approachs can be the core-part of context awareness architecture due

to its ability to change the order, to insert new services, etc.

- Following by the classification of web service composition methods, we summarize the features

of each method to see the advantages and weaknesses which will be considered in chapter 5-

selecting one of them to the homecare domain.

23

Chapter 4 Additional requirements for the homecare domain

The previous chapter summarizes potential methods of services compositions for dealing with

D&D requirements. Each method has its own advantages and weaknesses. To select the most

suitable one for the SOA-based architecture, additional criteria that can differentiate the utility of

each method is needed. In this chapter, in the homecare context, some additional requirements

are taken into account to find the desired one.

4.1 Sources of D&D requirements

In our definition of D&D requirements, based on literature, we argue that social challenges cause

diversity and dynamicity in terms of user’s preferences/needs and context of users (Table 1). To

connect the elements of D&D requirements to what happens in the scenarios, this part will

present the sources of diversity and dynamicity in the homecare domain. Those sources are

initially extracted from two pilot scenarios (Appendix A). Then, we also conduct a literature

review about this issue in order to compare with requirements observed in the scenarios thus

confirming them.

Scenario Context dynamicity Preference/need
dynamicity

Preference/need
diversity

1 -Jan moves from the
sleeping room to the
kitchen

- Change the reminders over
time according to hearing
impairment development

-Jan prefers to take
medicine from the
closest medicine
dispenser

2 - Saturation level drops
too low
- Care-receivers leave
their homes

-Increasing the default
volume of reminder voice
according to hearing
impairment development for
John

-Tablet for Marie
-Tablet/PDA for John
-John prefers vibration
reminders

Table 3: Sources of D&D requirements from scenarios

Clearly, from the table, the emergence of dynamicity and diversity proves that D&D requirements

are required in the two scenarios. From a different viewpoint, D&D requirements can be classified

into three groups as follows:

The first group arises from inconsistent but predictable changes in preferences/needs and

context of users, e.g., Jan’s moving from the sleeping room to the kitchen is anticipated.

The second group is the changes of health condition which are in the knowledge of care-givers

but un-interpretable by the system. Therefore, before giving a decision to this kind of change,

consulting care-givers is necessary. For example, the vibration of the blood saturation level is

difficult to be analyzed by the system, but it is obviously understandable by care-givers.

The last group is all kinds of exception which refer to users’ activities or health condition

changes that are unexpected by the system and also problematic for care-givers.

Chapter 4 Additional requirements

24

When designing the U-care system for D&D requirements, it is necessary to consider these three

groups because the way that the system behaves to each source changes fundamentally. For

example, for the first source, inconsistent but predictable changes of users, it is easy to be

managed because the system knows what the correspondent reactions have to be done. For the

second source, with the interferences of care-givers the system will know the responses. The last

one, exceptions, is unknown to the system and care-givers; the system does not how to react (in

both static ways and dynamic ways).

This observation from the two scenarios is accordant with literature in the field. Concerning user-

related changes, McBryan et al [9] state that needs for changes may be as result of “what people

believe and the way they prefer to or are able to behave and interact with the home care system”.

In sum, there are two different viewpoints about the sources of dynamicity: the first one, based on

the characteristic of change, leads to three types of changes; the second one, based on how the

change is created, leads to diversity and dynamicity. However, we can map those sources as

follows:

How is the change created Characteristics of changes

Reference/need diversity Group 1 (predefined)

Reference/need dynamicity Group 1 (predefined), Group 2
(need assistance)

Context dynamicity Group 1 (predefined), group 2
(need assistance), group 3
(exception)

Table 4: Mapping between two viewpoints of sources of D&D requirements

Here, with regard to diversity and dynamicity of references/needs which are configured by care-

givers with profound knowledge about each care-receiver, an exception is hard to happen. The

exception is likely to occur during the daily life of care-receivers where a totally strange activity is

performed (changes in user-context).

4.2 Additional requirements for the U-care framework

For the U-care Framework, besides supporting D&D requirements, it also has to satisfy various

typical requirements of the home-care domain. This part presents supplementary requirements

for information systems in the home-care domain. These requirements, then, will influence the

architecture design decisions.

Up-to-dateness of context information

When giving health services to care-receivers, the system needs to know the current context of

the care-receivers, e.g., location, activity, time. This is important because any changes of user-

context can trigger the reactions of the system. Take the reminder scenario (appendix A) for

Chapter 4 Additional requirements

25

example, if the care-receiver goes to another city, the system could suggest him/her to bring

medicines. Consequently, because of the up-to-dateness of context information, it is a must that

the system can get updated information all the time by being notified or querying actively.

Safety problems

Healthcare systems are required to be 100% error-free [29-30]. This can be explained that

patients’ lives relate so closely to the system reliability that any failure of systems can cause severe

consequences. The safety requirements of homecare systems can be compared with those of

systems in aviation industry[29]. For example, if the system gives an inappropriate decision when

the oxygen saturation level in blood drops too low, this decision can cause a loss of life.

Because of the high safety requirement, it is obliged that care-givers have to know exactly the

responses of the system toward an event from users. This can be realized by covering all possible

users’ interactions when designing, monitoring context information in real-time, and having good

strategies to dealing with exceptions.

Non-intrusiveness
According to Garde, S. and P. Knaup [29], most of stakeholders in the health care domain,

including doctors, nurses, allied health professionals, and administrators are non-technical

professional. Therefore, there is a trend to reject IT applications. In order to overcome this

obstacle, non-intrusive adaptation is desired. Non-intrusive adaptation means that the system will

not ask users for giving opinions or interfering with the system. Every interaction has to be done

transparently and without notices to users. For example, also in the reminder scenario, when the

care-receiver moves to the kitchen, he/she does not need to specify the location of the reminder

that he/she is going to use. This issue, in other words, demands that all interactions between the

system and users should be accomplished automatically or at least with minimum efforts of users.

4.3 Summary

In this chapter, the following content is discussed:

- A classification of the changes that cause D&D requirements based on their characteristics.

- Mapping between the manner of the changes and the types of change (which are classified based

on their characteristics).

- The business requirements to systems in the home-care domain. The list of requirements

includes the up-to-dateness of context information, non-intrusiveness, and safety criteria.

26

Chapter 5 The proposed architecture

The previous chapters provide sufficient information to design the one SOA-based architecture

for D&D requirements. Concretely, we have two reference architectures for user context

awareness, a list of potential web service composition methods and business requirements. In this

chapter, those inputs are examined with regard to two purposes. First, considering business

requirements as criteria, we give the final decision about a method that will be adopted in the

proposed architecture. Second, based on reference architectures and the selected technique, we

present the design steps resulting in a SOA-based architecture for dealing with D&D

requirements.

5.1 Web service composition method selection

From the safety perspective, it can be seen that the static service composition method is more

suitable. The reason is that, for the static composition method, care-givers who have knowledge

about the care-receiver’s health situation can control exactly the reactions and behaviors of the

system in case of unknown events. In the other hand, the dynamic service composition,

theoretically, is able to generate accurately treatment plans if all business rules (constrain rules,

action enabler rules, computation rules and inference rules[31]) including safety rules are

satisfied. However, practically, it is not feasible to generate service plans automatically in all cases

with high accuracy due to the highly complex web service environment and the difficulty in

capturing behavior in sufficient detail[23, 32]. As a result, having complex clinical knowledge,

complex clinical information, and extremely high variability in purposes and interactions[29], the

health care domain is too complicated and not suitable to adopt the dynamic service composition

method.

With regard to speed to adapt, dynamic service composition methods have more advantages. This

is explained by its ability to generate service plans automatically allowing adapting service plans

faster thus satisfying the continuous changes in the environment. However, as mentioned above,

in very complicated scenarios/environments, the generation of service plans can be a challenge.

About non-intrusive criteria, from care-givers’ viewpoint, the static composition method with its

limited adaptability needs to inquire information/helps from care-givers more frequently.

Nevertheless, the dynamic web service composition method has the ability to reason toward a

new event and reproduce a new plan, leading to a high level of non-intrusiveness.

Finally, trade-offs need to be carefully considered. We decided to select the dynamic –workflow

composition method. The explanation of this decision is given as follows:

 A service plan is built on a predefined workflow, so care-givers can control the

main activities.

 A dynamic composition technique is applied partly to the workflow to achieve a

completed service plan, so the dynamically generation and non-intrusiveness are

obtained to some extent.

Chapter 5 The proposed architecture

27

In other words, a dynamic-workflow composition method combines the strength of both static

and dynamic service composition methods.

5.2 Selection of techniques of the dynamic-workflow composition method

The dynamic-workflow composition method indicates to a family of methods based on the same

idea. Therefore, to eliminate the possible confusion between the method and an instance of the

method - a concrete way of implementing, hereafter, we will use the “technique” term to

mention to instances of methods. Therefore, for one method, there are possibly a number of

techniques based on ideas of that method. Knowing that the dynamic-workflow composition

method will be employed, in this part, we zoom in each of its techniques to find the most suitable

one. However, even the dynamic-workflow method has its own difficulties; in the next section,

the challenges of the dynamic workflow composition method will be investigated.

5.2.1 Business rules and problems of integrating business rules in BPEL processes

Starting with an abstract workflow, the dynamic-workflow composition method aims to generate

completed service plans at runtime. However, the current languages for describing service plans,

e.g., WS-BPEL, are not flexible enough to do so. Therefore, all the techniques of the dynamic-

workflow composition method attempt to reach the same goal, namely, controlling the

combination of business rules and business processes. In this part, after introducing the concept

of business rules, those problems of WS-BPEL will be presented.

Business rules

A business rule can be defined as “a statement that defines or constrains some aspect of the

business. It is intended to assert business structure or to control or influence the behaviour of the

business” [33]. An example of business rule is “if the care-receiver does not take medicine after 30

minutes than the scheduled time, an alarm is sent to care-givers”. Business rules change more

frequently than core application functionalities do because they are embedded in business

policies which evolve fast [34].

There are four types of business rules[35-36]:

A constraint rule is “a statement that expresses an unconditional circumstance that must be true

or false”[31]. For example, in the reminder scenario, a device (TVs, alarms, or speakers) that is

nearest the care-receiver is used to send alarm.

An action enabler rule is “a statement that checks conditions and upon finding them true initiates

some actions” ”[31], e.g., if the care-receiver take the wrong pills, an alarm is sent.

A computation rule is “a statement that checks a condition and when the result is true, provides

an algorithm to calculate the value of a term” [31], for instance, if the care-receiver goes away from

home X kilometer, the reminder process has to be started (X/20) hour(s) earlier.

Chapter 5 The proposed architecture

28

An inference rule is “a statement that tests conditions and upon finding them true, establishes the

truth of a new fact” [31], for example, if the care-receiver forgets to take medicine 4 times in a week,

the care-giver have to go to the care-receiver’s home to remind.

Problems of process-oriented languages

When composing several web services into a service plan, the composer has to deal with business

processes and business rules, which have contradicted characteristics. On one hand, business

rules reflecting business policies change very fast; on the other hand, business processes are

consistent[37-38]. Traditionally, business rules are integrated into one business process thus

creating a service plan described by WS-BPEL. For example, in the reminder scenario (appendix

A), if we apply the rule “if the care-receiver’s ID is ‘s1101245x’, the dispenser has to be automatically

opened”, the reminder process is modeled and simplified like the following graph:

Figure 7 Embedded business rules in busines processes

However, using a process-oriented language, e.g., WS-BPEL, to model those two contradicted

entities (business processes and business rules), raises two major problems[31, 34] :

-Lack of Modularity in Modeling Crosscutting concerns[31, 34]. For example, in the homecare

domain, a business rule “after invoking any services, the system measures and logs the response

time” is a crosscutting concern because it is scattered in many service blocks of service plans. This

makes it difficult to maintain and reuse. For example, due to the policy changes, the preceding

rule is modified to “only after completing the service plan, the system measures and logs the

response time”. In order to adjust service plans, the composer has to know exactly where the rule

is placed and when it is implemented in the service plan. In a complex service plan, this task is

very difficult and time-consuming, resulting in difficulties in maintenance (inflexibility to

change).

-Changing the composition at Runtime concerns[31, 34]. A service plan, when modeled by

BPEL, allows merely dynamic partner binding, and there are no supports to evolutionary and on-

the-fly changes. For example, when a web service changes its parameters, there no ways to put

this change in effect immediately. Normally, we have to stop the running process, modify and

Chapter 5 The proposed architecture

29

restart. This procedure leads to negative effects such as a loss of customers or unexpected

exceptions.

5.2.2 Techniques of the dynamic-workflow composition method

As mentioned above, the ultimate goal of the dynamic-workflow composition method is to build a

service plan, based on a predefined abstract workflow and a set of business rules. The following

techniques are classified into the dynamic-workflow composition method because they procedure

the final service plan in runtime, based on a predefined business process and a set of business

rules.

AO4BPEL- Aspect-oriented extension to BPEL

Based on the ideas of aspect-oriented programming, Charfi and Mezini [31] introduce an aspect

entity. This is an XML file, called aspect file, which has two functions:

 Containing a list of joint points which form a pointcut. A joint point is a predefined point

in the business process.

 At each joint point, an advice is specified. An advice is a BPEL activity representing a

behavior that should be executed when the associated joint point is reached.

The authors use pointcut as the way to separate business rules and business processes, removing

the two problems above. An extended BPEL engine (AO4BPEL engine) designed to handle the

execution of pointcut, advices and aspects is also provided.

Service-oriented approach

Rosenberg and Dustdars [38] create a Rule Interceptor Service which intercepts all incoming and

outgoing Web service calls, map to business rules, and then apply associated business rules. A

mapping document is used to map a call to business rules. A Business Rules Broker is introduced

to provide a unified access to different rule engines.

Van Eijndhoven’s technique

Eijndhoven et al. [37] exploit the power of a business process engine (Aqualogic BPM Studio) and

ILOG business rules engine. At the variability points in the process, the process engine sends the

request to the rule engine. Based on the input data from the request and the current context, the

rule engine evaluates its business rules and returns the result to process engine.

Cibrán’s technique

Cibrian and Verheecke [34] also apply the ideas of Aspect Oriented Programming. They use

JAsCo, an AOP language tailored for the component based context, to separate business rules and

business processes. However, this approach does not use BPEL to describe processes.

Chapter 5 The proposed architecture

30

5.2.3 Why are business rule engines not suitable?

Some techniques like the ones proposed by Van Eijndhoven [37] or Beer, T., et al.,[39] use an

Event Condition Action (ECA) rule engine to fire actions when an interested event occurs and

conditions are satisfied. However, we find the two following disadvantages of this approach:

- Since the main purpose of the rule engine is to give decision by applying business rules, the

actions invoked by rule engines is simple, e.g., “when the care-receiver’s blood-pressure is too high,

send a message to care-givers”. However, for more complex actions containing many steps with

transactions between them, rule engines are not powerful enough to compose processes or to

transfer messages between steps of process. An example of complicated action can be “when the

care-receiver forgets to take medicine at the first time, the system logs his user-context information

into databases and send a notice to care-givers“.

- The above reason leads to one alternative in which a rule engine is integrated with the

orchestration engine. However, there are also two concerns in this approach[40]. First, it creates a

paradigm mismatch to BPEL programmers, changing their way of thinking to use a rule-based

language. Second disadvantage refers to inconsistency for process programmers because they

have to work in two service composition environments.

5.2.4 Technique selection

All the techniques listed above belong to the dynamic-workflow composition method. The

technique proposed by Van Eijndhoven, which uses both the process engine and the rule engine,

is a costly solution because rule engines are expensive. In addition, the cost for those solutions

increases because of a high-performance server to host both rule and process engines. Other

reasons are emphasized in 5.2.3.

The technique proposed by Cibrán poses two concerns: first, it does not use BPEL –the standard

for web service composition[31]- to model the process; second, it is not supported by any process

engines.

The technique introduced by Charfi and Mezini is a prominent one in the sense that it merely

utilizes one process engine and has a very clear way to separate business rules and business

processes. However, this technique has two disadvantages. First, it requires modifying the BPEL

engine [31, 37]. Second, in case of managing a set of complicated rules, because of having no

supports for rule management, users have difficulties in checking rule consistency, combining

rules or solving rule conflicts[31].

Taking into account that Lombardi, a process engine, is available for the Ucare Project and, with

regard to the scenarios, the business rule set is not complex, we decide to choose the Aspect-

Oriented Approach. In addition, to avoid the modification of Lombardi process engine which can

be very intricate, we exploit the power of JavaScript API of Lombardi to support interaction with

aspects containers and executing advices. We will present this approach more precisely in the

implementation part.

Chapter 5 The proposed architecture

31

5.2.5 Why does crosscutting problem matter in our situation?

As the reminder scenario will be used as challenge to the proposed architecture, some may

question that why crosscutting problems need to be considered while the scenario description

suggests a simple process to send reminder. If crosscutting problems are not encountered in this

scenario, the reason to method based on Aspect-Oriented Approach[31], which supports

crosscutting problems heavily, can be collapsed or, at least, cannot expose its advantages fully. In

this section, this issue will be clarified.

Not only in the complicated business processes, are the crosscutting concerns also found in the

simple case like reminder scenario. For example, one possible business rule is “after all steps in the

business rules, the context information will be logged into database”. The purpose of this rule is to

make possible to audit the reaction of care-receivers. Another example that will be implemented

in the implementation part is that “after the first context inquisition and after receiving new user-

context information, the system will match the new location to the endpoint of closest device to the

care-receiver”. These two examples present two business rules that scatter in many places of

business processes. It is the evidence that even in the simple scenario, crosscutting problems

appear.

In addition, for a larger scope- the whole project, when dealing with the real homecare

environment, it is very likely that the architecture has to support more complex scenarios. For

instance, for care-receivers with Alzheimer disease at early stages, the scenario to guide them to

go out for physical exercise can be very complicated. The Aspect-Oriented approach has great

potentials for this kind of scenario.

5.2.6 What can an aspect do with regard to D&D requirements?

Above, we mentioned that business rules are materialized in the form of aspect files. However,

coming back to our purpose of dealing with D&D requirements, as definition, we have three main

sources of dynamicity and diversity: diversity of user’s references/needs, dynamicity of or

references/needs and user-context dynamicity. Some can raise the question that about the

relationship between those three sources and business rules in aspect files. Regardless of the

details of an aspect file, in this session, we will clarify what an aspect can do for D&D

requirements.

-There are four types of business rules (5.2.1), and not all those rules are used to model the

reaction of the system in dealing with dynamicity and diversity. For example, for a constraint rule

like “blood-pressure is a positive value”, it does not model any behavior of the system.

-In 3.2, we contend that user-context awareness is limited in supporting diversity and dynamicity

of preferences/needs that are independent of user-context. This disadvantage is overcome by

applying business rules that are flexible to describe any preferences/needs. For example, with a

preference like “the care-receiver with ID ‘s011566’ prefer vibration alarms to sound alarms”, the

business rule for it can be described as “if (ID=s011566) do (select vibration alarms)”. This business

rule can be exploited to regulate the behaviors of the system. Briefly, with the ability to

Chapter 5 The proposed architecture

32

recompose business process according to context changes, and the flexibility of business rules to

model preference/needs that are independent of context, SOA architectures can deal with all

three sources of D&D requirements.

- Business rules modeled in aspects files can be used for all types of dynamicity and diversity

sources by different configurations of the condition statements. The following table will show

examples of sources of dynamicity and how conditional statements represent them.

Sources of D&D requirements Conditional statements in aspect files

Diversity of preferences/needs If (ID=”s110636”) do (action A)

If (ID=”s122525”) do (action B)

Dynamicity of preferences/needs If (hearing problem level > 8/10) do (action B)

Dynamicity of user context If (current location=”kitchen”) do (action C)

If (current location=”sleeping room”) do (action
D)

Table 5: Sources of D&D requirements and aspects' condition statements

5.3 The proposed architecture

This part, a SOA-based architecture which is motivated by context-awareness architectures and

the selected web-service composition technique (AOP) will be elaborated.

5.3.1 Provided services

Before digging into the design process, we recapitulate services that are in and out of the scope of

the U-care framework.

There are many third parties who already master working with healthcare devices, alleviating the

system in processing the context information at low-level of abstraction. They provide various

services such as location services, biosigns measuring services, and healthcare-device monitoring

services.

With regard to scenarios in Appendix A, services controlled by the U-care framework include

services to send alarms to PC tablet, PDA or other types of alarms. Even providing services to

control alarms (TV, wristwatch and mobile-phone) is not the role of the Ucare framework;

however, because there are no providers who support this task, Ucare project will take charges. A

calendar service which triggers a business process, in given time, is also provided by Ucare-

project.

5.3.2 Design steps

The proposed architecture is inspired by two reference architectures (section 3.3) and the selected

web service composition technique (section 5.2.3). The design process has three steps. First,

starting at reference architectures, we select the necessary modules that collect user-context

information and device information. Second, the modules supporting the dynamic workflow

composition technique will be decided. Lastly, we will add some additional modules.

Chapter 5 The proposed architecture

33

Step 1: Determining modules originated from two reference architectures

The user-context awareness architectures we use as references suggest us the following modules:

1. User-context aggregator (provided by 3rd parties):

Name in SOCAM: context provider

Name in Toolkit: aggregator

Responsibilities:

-contacting periodically to sensors to update new user-context information

(location or blood pressure) users.

-analyzing the raw data from sensors to get interested information.

Since this module is managed by service providers, it is not in our scope. Therefore, in the

proposed architecture, we do not present it. We, instead, show a list of services provided by third

parties to illustrate the output of this module.

2. Device monitor:

Name in ToolKit: discoverers

Name in SOCAM: service-locating service

Responsibilities:

-contacting periodically to devices (or directly by web service form 3rd

parties) to update new context of devices.

3. Device facilitator:

Name in Toolkit: services and actuators

Name in SOCAM: service providers

Responsibilities:

-executing commands by invoking corresponding devices.

In the context of SOA, the concepts of device monitors and device facilitators are equal to the

adaptor concept. An adaptor has ability to “provide connectivity, semantic disambiguation and

transition services between application and collaboration”[11]. Therefore, an adaptor can not only

enable communication in two directions between the devices and the system but also convert the

different interfaces, protocols, data format of different devices into the standardized ones for the

system and vice versus. As a result, in the proposed architecture, adaptors will be used instead of

devices monitors and device facilitators.

4. Discovery management module

Name in SOCAM: service-locating service

Name in ToolKit: discoverers

Chapter 5 The proposed architecture

34

Responsibilities:

 - searching services in Service Repository based on UDDI technology

 - retrieving metadata of services to prioritize services

 - selecting the most suitable services based on rule-based or learning-based

Step 2: Determining modules supporting the dynamic workflow composition technique

5. Aspect database

- Storing business rules written in the form of aspects. One aspect file contains information

of a business rules such as the conditions, the operations and the returns.

6. Advice repository

- Storing a library of predefined advices that will be invoked at certain joint points in the

main process. One advice is a BPEL activity[31].

7. Process executor

-Executing business processes.

8. Aspect manager

-Retrieving aspect information, evaluating conditions and determining advices.

-Calculating new values of variables in business processes.

The aspect manager has the functions of a business rule and more. First, as a business rule engine,

the aspect manager has the ability to take the variables in the business process as inputs, evaluate

and return the output according to the configuration in aspect files (that represent business

rules). This chain of activities, in other words, is the execution of one business rule. Furthermore,

more than a business rule engine, the aspect manager allows us to insert one sub-process or a

service into the business process through invoking advices specified in aspect files. For a simple

activity, a business rule engine can be used; however, to more complicated activities with many

steps inside, business rule engines are not suitable because it is not specialized to compose and

execute business processes (5.2.3). In this sense, aspect managers that insert sub-processes

(advices) into the main business processes which are executed by process engines are better

solution.

The difference between an aspect manager and a rule engine are threefold. First, a rule engine is

not specialized in executing business processes (as actions of business rules) which are possibly

invoked by a process. An aspect manager, however, can insert a business process (as actions of

business rules) in a process, making new one dynamically and then be executed by a process

engine. Second, since rule engines are designed to manage business rules, they support more

tasks concerning rules like, check consistency, conflicts between business rules. Finally, an aspect

manager can overcome the crosscutting problems.

Chapter 5 The proposed architecture

35

Step 3: Determining additional modules

However, if the system wants to store historical information for business rules, e.g., “in a week, if

the care-receiver forgets to take medicine, a care-giver has to go to the care-receiver’s home to

remind”, the preceding modules cannot support. Furthermore, in order to deal with frequent user-

context changes, the system needs a mechanism to receive information from adaptors. Those

reasons stimulate the following module:

9. Context server

- Listening to the user-context changes from adaptors.

- Storing context information of users and devices in a database.

- Allowing querying context information by the aspect manager.

- Informing user-context changes to the aspect manager.

The relationship between modules of the architecture is depicted in the following graph.

Adaptors
Advice repository

Aspect database

Blood pressure

measurement

Heart rate

measurement

Weight

measurement

Location

determination

Controlled devices

Process executor
Service discovery

manager
Aspect manager

Context Server

Figure 8: Relationships between modules of the

Proposed SOA-based Architecture

Chapter 5 The proposed architecture

36

The operation of the architecture is described as follows:

Whenever there is a change of biosigns or user-context, service providers having the updated

users-context information will notify to the system. As a part of the system, the Context Server

module receives the notification. Next, the Context Server performs two tasks: first, updating the

change to the aspect manager; second, registering the change into a context database inside the

context server. Receiving the context-user information, the aspect manager performs calculations

based on business rules in aspect files. The results can be new values for parameters in the process

which will be update into the main process.

When the process executor reaches one joint point in the main process, the aspect manager,

written in JavaScript, is invoked. The main process turns in suspending mode. The aspect

manager parses xml files that describe business rules as aspects. Those xml files are stored in an

aspect database. By doing so, the aspect manager knows that at that joint point, if one condition is

satisfied, one advice will be performed. The advice is modeled by BPEL and kept in an advice

repository. After finishing executing the advices, the process executor resumes the main process

and runs it normally.

 The architecture is modeled in ArchiMate language [41] as shown in Figure 9 below. The

infrastructure including the controlled devices, DB2 database system and IBM Lombardi locates

at the lowest level. Software and devices at the infrastructure provide infrastructure services to

send alarms, to provide information of devices like location and availability, to execute business

processes, to perform file services (read, delete, and save), and to execute query statements of the

database management system. Besides controlled services provided by the infrastructure of Ucare,

many external services provided by third parties can be utilized. For instance, there are services to

provide blood pressure, heart beat rate, and activity level (biosigns), or location; other services are

to control device at home like opening dispensers, or to provide information about whether the

care-receiver takes medicines at the dispenser or not. At the upper level situate application

components those are described above.

Chapter 5 The proposed architecture

37

DB2

database

Controlled

devices

Telecommunicat

ion network or

internet

External infrastructure services

from 3rd parties

Provide

biosignals

Control

device
Medicine

Dispenser

Provide

location

Internal infrastructure services

Send

alarms

Provide device

information
File

services

Application components

Process

executor

Aspect

manager

Service

discoverer

Context

server
Adaptors

Execute

process
DB services

Query

services

IBM Lombardi

Advice

repository

Aspect

repository

Physical Infrastructure

Figure 9 : The propose architecture in ArchiMate language

5.4 Summary

In this chapter, we discuss the following:

- Based on the business requirements in chapter 4, we select the dynamic-workflow service

composition method. We also discuss about the two issues of this method.

- The Aspect-Oriented Approach proposed by Charfi and Mezini [31] is selected as an

technique of the dynamic workflow composition method.

- Based on the two reference architecture for context-awareness and the selected technique,

we propose an SOA-based architecture.

38

Chapter 6 Implementation

In the previous chapter, the proposed architecture shows necessary components in the system

and the relationship between them. In this chapter, that architecture will be implemented so that

we can see that feasibility of developing it with the current technology.

This chapter is structured in five main parts. First, we introduce one scenario as a use-case to

challenge the architecture. Second, based on the scenario, a list of required services for the

scenario is given. Third, the tools and their capabilities applied to implement different parts of the

architecture will be presented briefly. Then, concerning the chosen scenario, architecture

components and mock-up services will be modeled and implemented. After this step, we have a

prototype of Ucare system that has the ability to deal with D&D requirement, which will be

assessed at the next chapter.

 6.1 The scenario

6.1.1 Scenario description

“Jan is an elderly who lives inside an apartment which equipped with homecare applications

on top of our application platform. He should intake his medicine at 11:50 PM. The

application should remind him to intake medicine several times up to 15 minutes later than

the scheduled time. If not taken, the alarm should be sent to the care center. He has hearing

impairment developing over the time. He also uses wheelchair, so the doors inside the

apartment should be opened automatically. He only can speak Dutch and prefers to take

medicine from the closet medicine dispenser (MD) at night. Two MDs, filled with the

required medicine, have been installed, one in the kitchen and the other one in the corridor.

The MD inside the kitchen has embedded light. TV inside the sleeping room, all the lights of

the apartment and a wristwatch can be used as reminder devices for taking medicine. He

prefers not to be reminded by lights after midnight. Nancy, as a care-giver, wants to create a

service plan. Because she knows his requirement and situation better than IT specialists, she

is going to make a service plan in order to assist Jan and remind him to take his medicine on

time. She is going to make the service plan based on Jan’s requirements, abilities and

preferences.”

6.1.2 Additional business rules for the scenario

The scenario above is not complicated, containing no business rules that can lead to major

changes in business processes. For example, if the care-receiver moves from room where the TV is

used as alarm to another room where the lights are alarms, the service plan is still the same. In

this case, the only change is the endpoint (that specifies which device is invoked). Therefore, to

demonstrate the ability of handling also the business rules that, when applied, require additional

services thus changing business processes, we introduce the following business rule:

-R1: if the care-receiver’ ID is “s101hyk”, the medicine dispenser will be opened automatically before

sending reminder to the care-receiver.

Chapter 6 Implementation

39

This business rule cannot be modeled as a fix part in business processes because it is not

applicable for all care-receivers. In addition, if the architecture can handle this rule, it has the

ability to deal with diversity of preferences/needs because this business rule represents a user’s

preference.

6. 1.3 Services required by the scenario

Services Explanation

Inform user context

information

Whenever there is a change from care-receivers, by mobile sensors,

the third parties such as MobileHealth can monitor the change and

inform to the system.

Inquire user context

information

There are some moments when the system needs user-context

information, e.g., when a process is triggered, at the first time, it needs

to inquire user context information actively to initialize its variables.

This service is given by third parties.

Remind a care-

receiver to take

medicine

Controlled by the Ucare system, this service is to send command

signals to reminder devices like TV, lights, and wristwatch in order to

catch the attention of care-receivers so that his/she takes medicine.

Send alarms to care-

givers

Controlled by the Ucare system, this service is to send command

signals to care-givers in hospitals in emergency situations.

Trigger the process Ucare system allows composing and executing service plans; however,

another system of a clinic, for example, has responsibilities to control

those service plans. Therefore, a service to trigger the reminder

process from a clinic is required.

Open a dispenser For business rule R1, this service provided by third parties is to open a

medicine dispenser.

Check medicine

taken

This service provided by third parties is to check whether the care-

receiver take medicine or not.

Table 6 Services in the reminder scenario

6.2 Implementation tools

In this part, the implementation tools which make the prototype of the architecture and third

parties possible will be presented.

Mendix is a model-driven platform enabling us to design, deploy, integrate and share business

applications[42]. Because of this tool’s simplicity to build web services, we use it to develop mock-

up Web services, for example, services to send alarms, to remind, and to open a dispenser.

http://www.mobihealth.com/services/en/monitoring.php

Chapter 6 Implementation

40

IBM-Websphere Lombardi is a business process manager that allows creating process models,

implementing process steps, running and inspecting processes, optimizing and installing process

applications[43]. We use this process engine to compose the services created by Mendix. In

addition, this tool has a very powerful JavaScrip API (Application programming interface),

allowing us to develop the aspect manager of the proposed architecture.

SoapUI is a testing tool to test various standard protocols and technologies like WDSL, SOAP,

and JMS. This software helps us to create the triggering services and services to update user-

context information.

6.3 Building modules of the architecture

In this part, the seven modules of the proposed architecture will be developed with the

implementation tools above. Although this scenario with its process and rules does not require

the supports of all modules, e.g., context database, however, for a general purpose, an

introduction of implementing all those modules is necessary. Before presenting the way to build,

we will give a short summary for each module.

6.3.1 Context server

 As mentioned above, the context server has two main functions: listening to changes informed by

third parties and updating changes to the aspect manager. The listening task of context server,

realized by Lombardi, is implemented as a service.

Task1 Task 2 Task 3 Task 4

EndStart

Update to main process
Context

Server

User-context information

Third parties

Main process

Parallel

process for

listening task

User-context information

Figure 10 : Context Server

First, this service is exposed as a web service to receive user context information from third

parties. By this way, as long as third parties have WDSL of the web service of the listening task,

they can notify about changes by calling that web service. Second, in order to update the changes

Chapter 6 Implementation

41

in user context from third parties without interrupting the main process, the listening task is

integrated in a parallel process of the main process.

6.3.2 Aspect manager

The aspect manager performs three steps: extracting aspect information from aspect files;

evaluating aspect conditions based on the values of variables in main processes; and executing the

advices (processes or services) when the conditions are satisfied. All these tasks are programmed

and placed in a JavaScript files executed by JavaScript Engine of Lombardi. To make these steps

clearer, the following example shows the content of an aspect file, and what the aspect manager

does.

Retrieving the aspect information from aspect files

<aspect name="UcareServiceInvocations"

xmlns:cns="http://localhost:8080/axis/services/CounterService"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partners>

 <partner name="Ucare_openDispenser"/>

</partners>

<variables>

 <variable name="dispenserID" />

 <variable name="timeToOpen" />

</variables>

<pointcut name="openDispenser" contextCollection="true"> Reminder</pointcut>n

<advice type="before">

 <condition type="localvariable">

 <variable1 ucare_variable_name="crId"></variable1>

 <operation ucare_operation= "equal"></operation>

 <variable2 ucare_variable2_name= "s1015923"></variable2>

 </condition>

 <bpws:sequence>

 <bpws:assign>

 <bpws:copy>

 <bpws:from expression="dp21244" type="string" />

 <bpws:to variable="dispenserID" />

 </bpws:copy>

 <bpws:copy>

 <bpws:from expression="10 minutes" type="string"/>

 <bpws:to variable="timeToOpen" />

 </bpws:copy>

 </bpws:assign>

 <bpws:invoke name="invoke" partner="Ucare_openDispenser"

ucare_type="process" />

 </bpws:sequence>

</advice>

</aspect>

Table 7 : An aspect file

This aspect file contains the following information:

-Name of the advice: this is the process/services written in BPEL that will be invoked if aspect

conditions are satisfied.

Chapter 6 Implementation

42

-Type of the advice: there are three types of advices, namely, before, after and around which

indicate that the advice is executed before, after or instead a joint point activity, respectively[31].

In this example, a before type is applied.

-Variables for the advice: those are the inputs for the advice. If an advice is considered a function,

variables for the advices are the parameters of the function. The values of variables can be read

from the business process or can be specified directly in the aspect file.

-Pointcut: as mentioned briefly in 5.2.2, pointcut in aspect files is a list of joint points. A joint

point is pre-defined point in the process execution[31]. In this example, Reminder is a joint point

of pointcut Opendispenser.

-Conditional statement: the conditional statement of aspect files determines whether the advice

will be execute or not. In this example, the conditional statement expresses that “if the care-

receiver’s ID is s1015923, the advice will be executed”. This statement is optional in aspect file.

The aspect manager (JavaScript code) read the aspect files and uses the XML parser to retrieve the

preceding information. In the second step, before executing advices, the aspect manager will

check conditions.

Evaluating aspect conditions

There are two types of condition needed to be checked. First, concerning joint points, the name of

the next task will be executed will be compared with the name of joint points in pointcut. If they

are equal, the second check will be performed. For example, if the name of the next task in service

plan is Reminder, and there is a joint point, titled Reminder, the first check is passed. The second

check is specified in conditional statement mentioned above. If this check is passed, the advice

will be executed.

Executing advice

Lombardi allows executing advices that can be business process and business services. At this

step, the name of advice and the variables as its input will be used so that the advice can be

invoked.

The operation of the aspect manager can be depicted in the following figures.

Chapter 6 Implementation

43

Reminder

Aspect

Pointcut: Reminder, ..

Advice:

OpenDispenser, ..

Advice library

OpenDispenser:

JavaScript

1

2

3

1. Retrieving aspect information 2. Checking conditions 3. Executing the advice

Figure 11 : Aspect manager

Reminder

OpenDispenser

Figure 12 : Result- a service plan

6.3.3 Context database

Context database, as suggested by name, stored the user context information. IBM DB2, a

relational model database server, will be used.

Chapter 6 Implementation

44

6.3.4 Adaptors

Adaptors take the responsibilities of device facilitators and device monitors. In details, exposed as

web services, they receive invocations from the process executor and then translate that

invocation to the format of the targeted device. In another direction, the device send device

information to the aspect manager, e.g., a light in kitchen is broken; the adaptor of that device

will convert device-specific data format to the standard format consumed by the system.

However, due to the time being, in this prototype, we assume that all adaptors are already

available.

6.3.5 Service discoverer

When there are many service providers, the service discoverer supports the process composer

(care-givers or IT technicians in hospitals) in composing business processes by giving the most

suitable services according to the service selection rules[24]. However, with intention to

concentrating on dealing with D&D requirements by using the dynamic workflow composition

method, we assume that this module is already existed and the composers have and know the

most suitable services to use.

6.3.6 Process executor

Needless to say, the process executor is the core of the process engine of Lombardi. Process

executor - Process Center Server in Lombardi- is depicted as follows.

Figure 13 : Lombardi's components [44]

Not only does Process Center allow the composer run their process, but it also stores performance

data for the testing purpose.

Chapter 6 Implementation

45

6.4 Implementation

In the previous part, the way to build each module of the architecture prototype is presented. In

this part, in dealing with different sources of dynamicity and diversity, the co-ordination between

those modules will be revealed.

6.4.1 The business process

The main business process contains static tasks that will be executed without being influenced by

business rules. For the reminder scenario, based on the list of services in section 6.2.3, we have the

following business process:

End

Inquire User-

context

Information

Send Reminder

Send Alarm to

care-givers

Waiting in t1

Triggered by

 a third party

Waiting in t2

Listener

Check

medicine taken
taken?

No & n<N

Yes

No & n=N

Unconditional

split

Update user-

context

information

Terminated?

Yes

No

Figure 14 : Reminder Process

Basically, for each care-receiver, the reminder process is triggered by an application of the third

parties, e.g., treatment management system of a hospital. After the first inquisition of user-

context information, the aspect manager check business rules to initialize the local variables of

the process. For example, if the care-receiver is in kitchen, the alarm will be set to “light”. In the

same way, based on calculation rules, the aspect manager calculates t1, t2 and endpoint of the web

service in each task of the process. T1 is the waiting time from the process is triggered until the

first reminder is send. After that, the system waits in t2 before checking whether the medicine is

taken or not. If not, the process goes back to reminder task. This loop is executed until the

number of sent reminder is equal to a predefined number. In this case, one alarm is sent to care-

givers.

In another parallel branch, the context server hears messages from adaptors about changes in the

user-context. When a change happens, the aspect manger does the same task as above to

calculate new values of parameters in the main process. Then, if the main process still runs, a loop

returns to the listening task of context server; the listening task is invoked again.

Chapter 6 Implementation

46

6.4.2 The behaviors of the system in dealing with user-context dynamicity

The reminder process is ignited by a third party who used it as one part of an application, e.g.,

treatment software. Implemented by soapUI, the trigger sends a data structure including the

identity of the care-receiver, type of event, time and date. After being started up, the behavior of

the system, at a specific moment, depends on the updated user-context information. A behavior

can be a static task of the reminder process or an advice which is determined at run-time by

business rules.

To show how dynamically the system reacts to user-context changes, two situations will be

presented. Each situation represents a source of D&D requirements. The first one shows the logic

to alter the alarm according to the location changes of a user (context-user dynamicity). The

second one presents a specific preference for a user with ID “s101353”. This preference show how

the system handles different needs of users (diversity of preferences/needs). Since the behavior of

systems toward dynamicity of preference and dynamicity of user context are quite similar, we do

not present an example of dynamicity of preferences. As mentioned in section 3.1, the user-

context information is described as a complex data structure including the user’s ID, location,

activity and time [19].

Situation 1: dealing with dynamicity of user context

In this situation, the care-receiver does not perform any activities that can cause changes for the

reminder process. The context dynamicity is restricted to changes of location. To handling this

change, the aspect manager will check business rules to match the location to a corresponding

endpoint as follows:

Location Endpoint Device

Kitchen http://130.89.227.130:9090/ws/Ucare_WS_notify

Reminder/

Lights

Bedroom http://130.89.227.132:9090/ws/Ucare_WS_notify

Reminder/

Television

Corridor http://130.89.227.133:9090/ws/Ucare_WS_notify

Reminder/

Telephone

Table 8 Location-endpoint matching services

The cooperation of modules can be depicted in the sequence diagram (see figure 16). The final

service plan with all tasks that needs to be done is generated as follows:

Chapter 6 Implementation

47

End

Inquire User-

context

Information

Send Reminder

Send Alarm to

care-givers

Waiting in t1

Triggered by

 a third party

Waiting in t2

Listener

Check

medicine taken
taken?

No & n<N

Yes

N: maximum times of repetition

n: times of repetition

No & n=N

Unconditional

split

Update user-

context

information

Terminated?

Yes

No

Calculate

parameters

Calculate

parameters

Figure 15: The service plan when dealing with changes in user-context

Handling changes by location-endpoint mapping, however, is merely applicable to support the

changes that do not require altering the order of steps or inserting steps in the business process.

Two steps, called “Calculate parameters”, are executed by the aspect manager.

Chapter 6 Implementation

48

Service

providers
Context Server Device adaptor

Trigger message

Process executor

t1, t2, endpoints

Inquire User Context information

User context Information

Wait t1

Update parameters

Active Reminder

confirmation

waiting t2

Aspect

manager

Trigger

check Medicine taken

confirmation

Par

Loop

Break

[n<N]

n: number of sent reminders

N: maximum number of sent reminders

Send alarm to care-givers

New context info

Active the listener

t1, t2, endpoints

Calculate parameters

Message1

Loop

Figure 16 : The sequence diagram when dealing with changes in user-context

Chapter 6 Implementation

49

Situation 2: dealing with a user’s preference

This situation involves the business rule -R1- which reflects the diversity of users’ preference.

When this business rule is applied, the system reacts by adding a service into the main process.

The way to implement it is already explained in the aspect manager.

We suppose that the ID of the care-receiver in the business process is “s1015923”. His/her

preference is formulated by the business rule R1. Then, when R1 is applied, the final service plan

generated by the business process and aspect manager can be depicted as follows:

End

Inquire User-

context

Information

Send Reminder

Send Alarm to

care-givers

Waiting in t1

Triggered by

 a third party

Waiting in t2

Listener

Check

medicine taken
taken?

No & n<N

Yes

No & n=N

Unconditional

split

Update user-

context

information

Terminated?

Yes

No

Calculate

parameters

Calculate

parameters

Open

Dispenser

Figure 17 : The service plan when dealing with a user’s preference

In this plan, it can be seen that one more task is added due to the preference of the care-receiver.

Chapter 6 Implementation

50

Service

 providers
Context Server Device adaptors

Trigger message

Process executor

t1, t2, endpoints

Inquire User Context information

User context Information

Wait t1

Update parameters

Active Reminder

confirmation

waiting t2

Aspect

manager

Trigger

check Medicine taken

confirmation

Par

Loop

Break

[n<N]

n: number of sent reminders

N: maximum number of sent reminders

Send alarm to care-givers

New context info

Active the listener

t1, t2, endpoints

Trigger

Open Dispenser

confirmation

Calculate parameters

Loop

cal parameters

Figure 18 : The sequence diagram when dealing with a user’s preference

Chapter 6 Implementation

51

6.5 Summary

In this chapter, we explore the following content:

- We introduce a scenario to illustrate the capability of the proposed architecture.

- We determine the associated services with the scenario

- After introducing the tools, we present the way to build each modules of the architecture by

those tools.

- The modules of the architecture are operationalized in the reminder scenario. By the scenario,

we also see how the system works and the coordination between different modules.

Through this chapter, we can conclude about the feasibility of the approach in two senses. First,

the approach has ability to dynamically insert the services/processes in the main business process.

Second, the approach can be implemented by the current tools.

52

Chapter 7 Evaluation

This chapter assesses the proposed architecture (chapter 5) that is already implemented in

chapter 6 with regard to the ability for supporting D&D requirements. As mentioned in 3.2 about

the relationship between user-context awareness and D&D requirements, we argue that D&D

requirements can be handled by user-context awareness that allows a system to adapt its

behaviors according to changes. In 3.4.2 about the relationship between SOA-based architecture

and user-context awareness, we state that a SOA-based architecture, in which a web-service

composition method is exploited, can empower user-context awareness by enabling the re-

composition of web-services thus adapting the system’s behaviors. This line of reasoning refers

that the main goal of the purposed architecture is to support dynamicity and diversity. Therefore,

evaluating the architecture proposed in chapter 5 is refined to evaluating the re-composing web-

services process which supports diversity and dynamicity.

Regarding the ability of adapting to changes in the literature, there is a very close concept:

business process flexibility. Business process flexibility is defined as “the capability of business

process to change”[45]. Therefore, changes in environment like new laws and changes in business

strategy can be managed by the process flexibility [46]. In other words, business process flexibility

and context awareness have the same purpose of supporting changes. Because of the similarity in

the purpose and the abundance of research toward process flexibility evaluation, we apply the

methods for evaluating business process flexibility to evaluate the web-service composition which

enables context awareness in our architecture.

There are many approaches to measure the flexibility of a business process system. Kasi and Tang

[47] propose that process flexibility can be measured in three dimensions: time, cost and ease.

This means that, when a change happens, a process is flexible when it takes less time, less cost

and maximum ease to adjust. Process flexibility can be also evaluated by investigating the extent

of change supported. Following this way, Asuncion, et al [48] employ the taxonomy of criteria

proposed by Regev, et al [49] to position their approach of separation of business rules.

To evaluate the purposed SOA-based architecture, the two previous approaches are used. The

structure of this chapter is organized in two sections. First, to show the ease of enclosing a new

rule, the ‘ease’ dimension will be presented. Time and Cost dimensions are important; however,

due to the time being, those two dimensions are saved to the future work. Second, we will assess

the architecture in terms of its position in the taxonomy of flexibility to see which type and which

extent of change supported by the architecture.

7.1 Easiness for adapting the business process

The ease dimension is not easy to be quantified. The Technology Acceptance Model 3 (TAM3)

[50] shows causal relationships between 6 factors (computer self-efficacy, perception of external

control, computer anxiety, computer playfulness, perceived enjoyment and objective usability)

and Perceived Ease of Use. Some of those relationships are moderated by Experience.

Consequently, a full measurement of the ease dimension is not realistic due to the time being of

Chapter 7 Evaluation

53

this thesis. Therefore, we choose influential factors that are observable in our prototype. Our

attention is focused on Objective Usability and Perception of External Control. The first one,

Objective Usability, is defined as “comparison of systems based on the actual level (rather than

perceptions) of effort required to completing specific tasks”. The second one, Perception of

External Control, refers to organizational and technical resources for supporting the use of

system. Those two factors suggest us to assess the ease in an indirect manner by evaluating how

the system supports the care-givers in case of changes. In other words, if the support from the

system is good, the level of effort (Objective Usability) is lessened and the technical supporting

resources are well designed, leading to increasing ease.

Three sources of D&D requirements, namely, preference/need diversity, context dynamicity, and

preference/need dynamicity can be examined from a different perspective. According to K. Kumar

[45], there are four types of stimulus for business process flexibility, namely, constant, uncertain

but crisply predefined, ambiguous and surprise. With regard to constant stimulus, there are no

variations. To the uncertain but predefined stimulus, a finite set of predefined contingencies are

determined. Ambiguity of stimulus refers to the difficulties in indentifying the stimulus. A

surprise stimulus is not anticipated in the design time. We can map those two classifications as

the following table. The constant stimulus is excluded because its response is the unchangeable

main business process. For example, in the reminder scenario, the constant stimulus is the

triggering message from third parties to start up the reminder process.

 Predefined Ambiguous Surprise

Source 1: Preference/need
diversity

 X X

Source 2: Preference/need
dynamicity

 X

Source 3: User-context
dynamicity

Table 9: Mapping two classifications

This table expresses that predefined changes (stimulus) can be found at all sources of D&D

requirements while ambiguous changes appear in the second and third sources and surprise

changes are ignited by user-context changes. We assume that the care-givers are knowledgeable

enough to specify users’ preferences/needs to avoid ambiguous and surprise changes for this kind

of source. However, with difficulties when interpreting complex health conditions (which cause

preference/need dynamicity), ambiguous stimulus can emerge. User-context changes occur

frequently with contingencies can result in a surprise stimulus.

To demonstrate the extent that the architecture supports the care-givers to update/add business

rules when changes appear, we introduce three variations for the Reminder scenario. Concretely,

the first variation reflects one predefined changes of the care-receivers. The second variation

represents the case in which the system does not know the response due to the ambiguity of

health information; nevertheless, by supporting from care-givers, a suitable response is specified.

Chapter 7 Evaluation

54

The last one involves one surprise change that is unsolvable to the system and also strange to

care-givers.

7.1.1 Variation 1- Predefined changes

As shown in table 8, predefined changes can be found in three sources of dynamicity and

diversity. As the behaviors of the systems towards this kind of change are similar, we give one

representative which relates to the diversity of users’ preferences/needs.

A predefined preference/need and the system’s response are modeled by a business rule in the

design time. Actually, this kind of variation is presented in R1 in the previous chapter. In details,

a preference of a specific care-receiver is transformed into a business rule “if the care-receiver’ ID

is “s101hyk”, the medicine dispenser will be opened automatically before sending reminder to the

care-receiver”. The reaction of the system including reading aspect files, assessing the conditions

and executing the additional services/processes is also mentioned in 6.4.2 about the mechanisms

of aspect manager and 6.5 about the coordination of the whole architecture. In this part, we

merely focus on the necessary steps in order to introduce this business rule (user’s preference)

into the system.

Regardless of the details of implementation tools, the procedure for composing a business rule in

design time consists of three main steps:

Step 1: Transforming the user’s preference into one business rule

This step will be conducted with the assistance of care-givers. The care-giver who understands the

care-receiver’ preference are able to concretize that preference in to a business rule. For example,

in this case, in the design phase, the care-giver knows that the care-receiver with ID “s101hyk”

cannot open the dispenser by himself. Therefore, one business rule can be formulated as R1: “if the

care-receiver’ ID is “s101hyk”, the medicine dispenser will be opened automatically before sending

reminder to the care-receiver”.

Step 2: Writing the business rule in one aspect file

Because of the lack of tools to generate aspect files (XML format), the participation of technical

staff, e.g., programmers in writing the aspect files is a must. However, this step can be facilitated

and accelerated by using templates. For example, the template for the business rule type 1-action

enabler- can be described as follows:

<aspect name="Name_Of_Aspect"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partners>

 <partner name="Name_Of_Advice "/>

</partners>

<variables>

 <variable name="Name_of_variable1" />

 <variable name="Name_of_variable2" />

Chapter 7 Evaluation

55

</variables>

<pointcut name="Name_Of_Pointcut" contextCollection="true">

Name_of_JointPoint</pointcut>

<advice type="Type_Of_Advice">

 <condition type="localvariable">

 <variable1 care_variable_name=”Name_of_Localvariable"></variable1>

 <operation ucare_operation= "Name_of_operation"></operation>

 <variable2 ucare_variable2_name= "Value_to_compare"></variable2>

 </condition>

 <bpws:sequence>

 <bpws:assign>

 <bpws:copy>

 <bpws:from expression="Value" type="string" />

 <bpws:to variable="Name_of_Variable1" />

 </bpws:copy>

 <bpws:copy>

 <bpws:from expression="value" type="string"/>

 <bpws:to variable="Name_of_Variable2" />

 </bpws:copy>

 </bpws:assign>

 <bpws:invoke name="invoke" partner="Name_of_Advice" ucare_type="process" />

 </bpws:sequence>

</advice>

</aspect>

Table 10: A template for aspect files

As can be seen in this template, the way to integrating the business rules in the main process is

quite convenient. Because of the separation between rules and processes, the composer can easily

specify when (the rule’s condition) and where (the list of joint points) the rules are applied

without being distracted by the possibly complexity of business process.

Step 3: Composing the advice

The advices can be considered as sub-processes that will be invoked by the main process when

the business rule’s conditions are satisfied. In other words, the advice of one aspect refers to what

to do. Normally, advices will be textually written in BPEL. However, many applications permit

composting advices in intuitional way. For example, the next figure illustrates the authoring

environment of Lombardi.

Figure 19: Composing an advice

Chapter 7 Evaluation

56

In our proposed architecture, we suggest that all possible advices should be pre-composed and

placed in the advice repository. This way increases the reusability of advice thus saving time to

introduce a business rule into the system.

In runtime, when the system encounters a user-context change whose reactions are already

defined, the care-givers do not have to do anything.

7.1.2 Variation 2- Ambiguous heath condition information

In the first variation, in dealing with the user’s changes, the system knows to react because those

changes are determined in the design time. The second variation, the way to handle a change is

already existed; however, the system has difficulties in interpreting the change to match it into

one rule to fire an advice. In this case, the care-givers can help by clarifying the ambiguous

information so that the system can make a choice. The following example shows what care-givers

have to do to give instructions.

“Daily, based on the hearing condition, the reasoning service decides the volume of sound

devices. However, one day, the care-receiver forgets to update this information. The

reminder process is activated.”

This is the normal possible event, the care-givers know how to dealing with this and already

prepared the solution in the form of an advice. However, the care-givers, accidentally, forgot to

make clear the solution to this situation by business rules. The out-of-date hearing information

confuses the aspect manager.

In this case, the system recognizes that the event is in hearing problem which is not urgent issue.

For the care-givers, as the advice is already composed, the only step should be completed is

adding a business rule. The details of that step are described in the step 2 (writing business rules)

of the variation 1.

The maintaining task in which the solutions and rules are known also can be classified in this

group.

7.1.3 Variation 3- Surprise changes

In the first and second variation, the change is predefined, and the corresponding reactions are

specified in aspect files in design time. This variation represents the third type of change/stimulus

– changes that are unknown by the system and unforeseen by care-givers.

Due to the safety criteria, the dynamic-workflow composition method cannot generate service

plans that are out of control of the care-givers. As a consequence, when facing with an undefined

change, the system is not able to decide its response by itself. This requires interaction with care-

givers who have sufficient domain knowledge to guide the system. The desired advantage of the

architecture is supporting the care-givers in introducing the response faster. To illustrate that

ability of the architecture, in the Reminder scenario, we create the imaginary event that is

unfamiliar to the system.

Chapter 7 Evaluation

57

“The care-receiver with ID m106ksg has to take his medicine at 10.50 Pm. One day, his has a

birthday party at 10.30 Pm at his friend’s house in another city. He decide to take the

medicine at 10.00 Pm so that his has time to move”

We suppose that by sensors inside the dispenser, the 3rd party is aware about that. The Context

Server receives a message informing the event. As the response for this event is undetermined and

there is no related information about this, a default plan is triggered. Some default plan, so-called

migration strategies, can be taken into account like forward recovery, backward recovery, proceed,

transfer [46]. In this case, due to the critical safety requirements, the backward recovery strategy is

most suitable because the affected process instances are canceled, and restarted. Furthermore, an

emergency action plan needs to be performed to assist the system. For example, the plan will save

the current user-context information into the database for auditing purposes, and send the

emergency signals to the care-givers for asking helps. This emergency action plan can be modeled

as an advice invoked by aspect manger.

In this section, we focus solely on how the system supports the care-givers in introducing new

changes. Therefore, we assume that:

o The affected process is aborted;

o The emergency action plan is triggered;

o One care-giver calls the care-receiver to suggest him to bring the medicine and

take it strictly at 10.50;

o One care-giver is about to create new business rule to dealing with this kind of

event.

The task of the care-giver in this variation is similar to the one in the first variation. They need to

fulfill the three main steps, namely, transforming the user’s preference into business rules, writing

the aspect file and preparing the advice.

It is worth mentioning that the critical level of the change is important to decide the migration

strategy, and not all changes are crucial. For a less critical but still strange user-context change,

for example, the care-receiver cannot open the door, a proceed strategy which ignores the

change[46], is more suitable. However, the problem of deciding which strategy should proceed is

not in the scope of this thesis and not supported by the architecture. The architecture just helps

to facilitate updating new business rules.

In conclusion, the system’s supports which influence Ease of use can be summarized in three

points. First, due to the separation of business processes and business rules, the architecture

allows to compose advices separately in GUI design tools, alleviating the burden in creating new

rules (in the third step). Similarly, this feature allows reusing advices stored in a repository.

Second, because of the aspect approach which overcomes the crosscutting concern, maintaining

business rules in case of change is easy. Lastly, the clear structure of aspect XML files makes it

Chapter 7 Evaluation

58

possible to be generalized in a set of templates, relieving effort in the second step. The following

table summarizes the system’s support.

 Type of changes Supports from the system Assistance
of care-
givers

Assistance
of
technicians

Predefined changes No further efforts needed to be done. No No

Ambiguously
interpreted changes

Simplifying the connection between
advices and problems by aspect views.
Enabling reusability of templates of
aspect files

Yes Yes

Surprise change Simplifying the connection between
advices and problems by aspect views.
Enabling reusability of advices and
aspect files.

Yes Yes

Table 11: summarizing system's supports

7.2 Positioning the supported flexibility

Based on the taxonomy of business flexibility introduced by Regev, et al. [49], we position the our

architecture. By this way, the abstraction level of change, subject of change and properties of

change are determined. From this perspective, positioning can be considered as part of evaluation

because it shows us which extent of flexibility and sources of changes the architecture supports.

Three dimensions of the taxonomy will be discussed in this section.

7.2.1 Abstraction level of change

The abstraction level of change refers to changes of business process and changes of process

instances[49]. According to this differentiation, in our proposed architecture, which business

processes is fixed and business rules are tailored according to preferences of care-receivers, the

changes at the process instance is supported.

7.2.2 Subjects of change

The functional perspective is not supported because the purpose of a business process does not

change. By dynamically changing endpoints and adding/moving business services in aspect files,

the architecture allows altering activities, which are not a part of fixed business processes.

Therefore, the operational perspective is supported. The behavioral perspective specifies the

conditions and the moment to perform activities[49]. Those conditions and moment are modeled

as conditions and joint points in the aspect files, supporting the behavioral perspective. The

architecture does not have dedicated module to handle the incompatibility of messages

transferring between activities, leading to discourage informational perspectives. The participants

keep their roles during the execution of a process; therefore, the organizational perspective is not

a must and not supported by the architecture.

Chapter 7 Evaluation

59

Criteria of Change

Abstraction level Subject Properties

Type

Instance
Functional Perspective

Organizational

Perspective

Behavioral perspective

Informational perspective

Operational perspective

Extent

Incremental

Revolutionary

Duration

Temporary

Permanent

Swiftness

Immediate

Deferred

Anticipation

Ad hoc

Planned

Figure 20: Positioning the architecture’s ability

7.2.3 Properties of change

There are four properties of change: the extent, the duration, the swiftness and the anticipation of

change. It can be seen that, for the extent of change, only incremental changes are supported

because the main purpose of each process is consistent and the care-givers can only modify the

dynamic part. Concerning the duration of change, after applying one rule, that rule is permanently

kept in the rule repository to be called in the next time, supporting the permanent change. About

swiftness of change, when a business rule is created, it is activated for all running instances of the

process. Therefore, the immediate type of change is supported. Changes which are pre-defined in

the design time is fully controllable (variation 1 and 2) while exceptional changes require many

efforts of care-givers to compose then update new plan for dealing with them. In other words, the

architecture can handle planned changes.

7.3 Summary

Through the evaluation this chapter, we can have the following conclusion about the proposed

architecture:

-The architecture supports well the changes that are pre-defined. In the procedure to include a

business rule that represents a change, technicians are necessary to convert the business rule into

Chapter 7 Evaluation

60

an aspect files and compose the advice (at design time). However, as we mentioned, the easiness

of this procedure can be improved much by create a library of advices and templates to reuse.

-For the confusing changes (those needs the interpretation of care-givers) the care-givers just

need to edit the aspect file.

-For the exception, an emergency action plan, modeled as an advice, will be called. The care-

givers have to conduct three steps. This kind of change take time, effort and also difficult to

handle.

-The ability of the architecture for handling D&D requirements is positioned (figure 20).

61

Chapter 8 Discussion, Recommendation and Conclusion

This final chapter ends the report by giving the discussion, the conclusion and some

recommendations for the future research. In the discussion section, based on the evaluation in

chapter 7, we figure out the advantages and the weaknesses of the proposed architecture. Then,

some recommendations will be given to improve the quality of the architecture, making it more

persuadable to bring the architecture into reality. Finally, the conclusion closes the report.

8.1 Discussion

As mentioned above, base on the evaluation of the architecture, in this section, we will discuss

about its advantages and weaknesses.

8.1.1 Advantages

The proposed architecture is the combination of two main ideas: user-context awareness and the

web service composition method. It, therefore, inherits their strength to deal with D&D

requirements.

First, it is worth mentioning that the interoperability is strongly supported by Service Oriented

Architecture (appendix B). Therefore, it is obvious that the interoperability-the technical

requirement for Ucare- is likely backed by our architecture which is able to connect different

services with different specification, technologies from various providers by adapters and

Enterprise Service Bus. However, as also pointed out in [18], the semantic interoperability is sill

problem and need further research.

Second, with regard to with dynamicity and diversity, our solution offers the following features:

 It allows separating business rules and business process, making it possible to

reuse business rules, advices (stored in library) to different individuals. Therefore,

in case of undefined changes, the care-givers can save time by reuse rules and

advices.

 Regarding the maintenance, it is easy for the caregiver to update business rules

and business process. Just based on the logic of joint points and advices, they do

not need to have deep understanding about possibly complex business processes.

This feature is helpful a lot with frequent changes in business rules.

 Regarding the flexibility, although the process, the advices are composed at the

design time; the advices are inserted in the process at run time. The business rules

specify the conditions to insert, and they (business rules) can be modified at run

time. Therefore, the whole composition process is still flexible to some extent and

there are no needs to restart the produced processes when they are started.

Chapter 8 Discussion, recommendations and conclusion

62

 Regarding the safety criteria, the architectures assure that whatever the system

does to handle a change reflects exactly what the care-givers want. There are no

chances for any unexpected reactions. The safety is well supported.

 Regarding the ability to gather context information, with a listening task deploying

in a parallel process, the architecture is able to get the most up-to-dated context

information from third parties.

 In dealing with different type of changes, as evaluated in the evaluation, the web

service composition method support well predefined changes and confused

changes. The three steps needed to be performed for group 1, obviously, make the

impression of difficulties. This is true to compose a totally new rule to dealing with

change of care-receivers. However, a valuable remark is that a totally new change

that requires those three steps is the worst case. The very frequent changes happen

with business rules that only require updating business rules in the aspect files.

This updating process, in other words maintenance, is supported by splitting

business rules and business processes as discussed above.

8.1.2 Limitation

However, the current problems of dynamic workflow web composition method are still existed in

our architecture, causing the following issues.

 About non-intrusiveness criteria, looking at the behaviors of the system in dealing

with three variations (chapter 7), we can observe that there are no interaction

needed to be made between the care-receivers and the system. However, for the

care-givers who manage the business rules, business processes, the repetitiveness

of intervention of care-giver is high. This can be considered the downside of

safety- when care-givers want to control every activity, they are surely got

involved.

 The dynamic web service composition does not support the exceptional changes

(variation 3, chapter 7). Therefore, in case of an exception, there are many works to

do like firing the emergency plan, and composing new business rule according to

the exception.

 Although the externalization of business rules and business processes, the

introduction of library of advices and pre-build templates can accelerate and

facilitate the maintenance and the creation of new advices and rules, many efforts

and long time to respond to one change are unavoidable. Furthermore, due to the

lack of supporting tools to work with aspect files, the assistances of technicians are

vital (but not always available).

Chapter 8 Discussion, recommendations and conclusion

63

 Relating to interoperability, our architecture misses a module (adapter) to

standardize the services from different service providers. However, as mentioned

in the scope, this does not relate to our focus.

 As pointed out Charif et al [31], when there are a number of business rules,

checking rule consistency, combining rules, solving conflict are difficult to

manage manually. Therefore, a business rule engine is necessary. Furthermore,

coming back to four type of business rules (5.2.1), it can be seen that the inference

type of business rules are hard to be modeled by aspects [31].

8.2 Recommendations

From the previous discussion, it appears that there are many rooms to improve the architecture.

The following recommendations target to all related aspects of the architecture:

First, to save time and effort in creating/updating an aspect file, especially for non-technical staff,

instead of working with XML files, a Graphical User Interface (GUI) module is very useful in

helping to create new aspect files, update the existing aspect etc.

Second, we suggested that a library of advices and library of XML template for creating new

aspects file can save much time and efforts. Therefore, to exploit the power of libraries effectively,

the classification of advices and templates is essential. For example, it would be very easy to users

if all advices needed to handle hearing problems are grouped into one set. This could help the

users can find the advices faster. However, this seems to be difficult task, e.g., due to the

complexity of the domain, one advice can be applied to many problems. A further research about

this topic is necessary.

A business rules engine solution is rejected from our architecture due to its complexity to non-

technical staff, its costly price and its limitations in composing and executing business processes.

However, there are some advanced functionalities of business rule engines. For example, it is the

ability of expressing the business rules in the nature language. This could be helpful to build one

software/service that can do that task, and then integrate to the system.

8.3 Conclusion

These few lines of the conclusion will summarize the whole report and also give some ideas about

the contributions of the thesis. Staring with a subset of problems of the Ucare project, we plan

this research carefully by a list of research questions. After that, the reminder of the report is to

find the answers, connect the answers and explore new knowledge. The final and most important

results are a SOA-based architecture design –result of marriage of context awareness and service

composition- and the evaluation of this architecture in terms of its flexibility.

To practical implication, the thesis provides a good architecture which stems from two reference

context-awareness architectures and novel ideas of SOA. Furthermore, the feasibility of this

architecture is proved in the implementation part (chapter 6); its flexibility is assessed in the

evaluation part (chapter 7). In addition, the implementer of this architecture is of benefit from the

Chapter 8 Discussion, recommendations and conclusion

64

discussion part in which the weaknesses, along with the corresponding suggestions, are

addressed.

Regards theoretical contributions, although there are some limitations, the prototype of our

architecture demonstrate the great applicability of service oriented architecture in to the home-

care domain.

65

References

1. Health-EU. Elderly. 2011 08/03/2011; Available from: http://ec.europa.eu/health-

eu/my_health/elderly/index_en.htm.

2. Norbert, M., O. Rukiye, and C.G. MARCELINO, Active Ageing and Independent Living

Services, The Role of Information and Communiation Technology. 2010, Institute for Prospective

Technological Studies.

3. Commission, E. Information Can Save Your Life. 2007 03/2007 17/3/2011]; Available from:

http://ec.europa.eu/information_society/tl/qualif/health/index_en.htm.

4. Commission, E., e-Health - making healthcare better for European citizens: an action plan for a

European e-Health Area 2004.

5. Commission, E. The right prescription for Europe’s eHealth. 2010 25/10/10 [cited 17/3/2011;

Available from: http://ec.europa.eu/information_society/activities/health/policy/index_en.htm.

6. Ucare-Project. Ucare Background. 2008 [cited 2011 16/3]; Available from:

http://www.utwente.nl/ewi/ucare/background/.

7. Alireza, Z., et al., Toward Dynamic Service Provisioning in the Homecare Domain. 2011,

Department of Electrical Engineering Mathematics and Computer Science.

8. Eslami, M.Z. and M.V. Sinderen. Flexible Home Care Automation. in Proceedings of

PervasiveHealth 2009 conference. 2009.

9. McBryan, T., M.R. McGee-Lennon, and P. Gray, An integrated approach to supporting

interaction evolution in home care systems, in Proceedings of the 1st international conference on

PErvasive Technologies Related to Assistive Environments. 2008, ACM: Athens, Greece. p. 1-8.

10. Klooster, J.W.v.t., B.J.F.V. Beijnum, and H.J.Hermens, U-care: requirements elicitation for

ambient assisted living. IEEE-EMBS Benelux chapter symposium, 2009.

11. Papazoglou, M. and W.-J. van den Heuvel, Service oriented architectures: approaches,

technologies and research issues. The VLDB Journal, 2007. 16(3): p. 389-415.

12. Erl, T., Service-Oriented Architecture (SOA): Concepts, Technology, and Design. 2005, Prentice

Hall.

13. Group, T.O.W. The SOA Work Group : Definition of SOA. [cited 2011 06 April].

14. Tsai, W.T., et al., Architecture Classification for SOA-Based Applications, in Proceedings of the

Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed

Computing. 2006, IEEE Computer Society. p. 295-302.

15. OASIS. Web Services Business Process Execution Language Version 2.0. [cited 2011 April 09];

Available from: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html#_Toc164738479.

16. Schmidt, M.-T., et al., The enterprise service bus: making service-oriented architecture real.

IBM Syst. J., 2005. 44(4): p. 781-797.

17. Chappell, D., Characteristics of an ESB, in Enterprise Service Bus: Theory in Practice. 2004,

O'Reilly.

18. O'Brien, L., P. Merson, and L. Bass, Quality Attributes for Service-Oriented Architectures, in

Proceedings of the International Workshop on Systems Development in SOA Environments. 2007,

IEEE Computer Society. p. 3.

19. Dey, A.K., G.D. Abowd, and D. Salber, A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Hum.-Comput. Interact., 2001. 16(2): p. 97-166.

20. Bricon-Souf, N. and C.R. Newman, Context awareness in health care: A review. International

Journal of Medical Informatics, 2007. 76(1): p. 2-12.

21. Gu, T., H.K. Pung, and D.Q. Zhang, Toward an OSGi-Based Infrastructure for Context-Aware

Applications. IEEE Pervasive Computing, 2004. 3(4): p. 66-74.

22. Fujii, K. and T. Suda, Semantics-based context-aware dynamic service composition. ACM Trans.

Auton. Adapt. Syst., 2009. 4(2): p. 1-31.

http://ec.europa.eu/health-eu/my_health/elderly/index_en.htm
http://ec.europa.eu/health-eu/my_health/elderly/index_en.htm
http://ec.europa.eu/information_society/tl/qualif/health/index_en.htm
http://ec.europa.eu/information_society/activities/health/policy/index_en.htm
http://www.utwente.nl/ewi/ucare/background/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738479
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738479

66

23. Rao, J. and X. Su, A Survey of Automated Web Service Composition Methods, in Semantic Web

Services and Web Process Composition, J. Cardoso and A. Sheth, Editors. 2005, Springer Berlin /

Heidelberg. p. 43-54.

24. Casati, F., et al., Adaptive and Dynamic Service Composition in eFlow, in Advanced Information

Systems Engineering, B. Wangler and L. Bergman, Editors. 2000, Springer Berlin / Heidelberg. p.

13-31.

25. Schuster, H., et al., Modeling and Composing Service-Based and Reference Process-Based Multi-

enterprise Processes, in Advanced Information Systems Engineering, B. Wangler and L.

Bergman, Editors. 2000, Springer Berlin / Heidelberg. p. 247-263.

26. Ghallab, M. and e. al, PDDL-The Planning Domain Denition Language. 1998.

27. Sirin, E., et al., HTN planning for Web Service composition using SHOP2. Web Semantics:

Science, Services and Agents on the World Wide Web, 2004. 1(4): p. 377-396.

28. E. Sirin, J.H., and B. Parsia., Semi-automatic composition of Web services using semantic

descriptions, in Proceedings of Web Services: Modeling, Architecture and Infrastructure

workshop in conjunction with ICEIS2003. 2002.

29. Garde, S. and P. Knaup, Requirements engineering in health care: the example of chemotherapy

planning in paediatric oncology. Requirements Engineering, 2006. 11(4): p. 265-278.

30. Lang, A., N. Edwards, and A. Fleiszer, Safety in home care: a broadened perspective of patient

safety. International Journal for Quality in Health Care, 2008. 20(2): p. 130-135.

31. Charfi, A. and M. Mezini, Hybrid web service composition: business processes meet business

rules, in Proceedings of the 2nd international conference on Service oriented computing. 2004,

ACM: New York, NY, USA. p. 30-38.

32. Hull, R., et al., E-services: a look behind the curtain, in Proceedings of the twenty-second ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 2003, ACM: San

Diego, California. p. 1-14.

33. BRG. Defining business rules- What are they really? 2000; White paper:[Available from:

http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf.

34. Cibrán, M.A. and B. Verheecke, Dynamic business rules for web service composition. In R. E.

Filman, M. Haupt, and R. Hirschfeld (eds), Proc. of the Second Dynamic Aspects Workshop

(DAW05),, 2005: p. 13-18.

35. Halle, B.v., Business Rules Applied: Building Better Systems using the Business Rules Approach.

2001: Wiley.

36. Charfi, A. and M. Mezini, AO4PBEL: an aspect-oriented extention to BPEL. World Wide Web,

2007. 10: p. 309-344.

37. van Eijndhoven, T., M.E. Iacob, and M.L. Ponisio. Achieving Business Process Flexibility with

Business Rules. in Enterprise Distributed Object Computing Conference, 2008. EDOC '08. 12th

International IEEE. 2008.

38. Rosenberg, F. and S. Dustdar, Business Rules Integration in BPEL " A Service-Oriented

Approach, in Proceedings of the Seventh IEEE International Conference on E-Commerce

Technology. 2005, IEEE Computer Society. p. 476-479.

39. Beer, T., et al., Exploiting E-C-A rules for defining and processing context-aware push messages,

in Proceedings of the 2007 international conference on Advances in rule interchange and

applications. 2007, Springer-Verlag: Orlando, Florida. p. 199-206.

40. Charfi, A., Aspect-Oriented Workflow Languages: AO4BPEL and Applications, in Fachbereich

Informatik. 2007, TU Darmstadt: Darmstadt.

41. Group, T.O. [cited 2011 July 11]; Available from: http://www.archimate.nl/en/about_archimate/.

42. Mendix. 2011 [cited 2011 June 01]; Available from: http://www.mendix.com/product/features/.

43. IBM-InfoCentre. Lombardi tasks. 2011 [cited 2011 June 01]; Available from:

http://publib.boulder.ibm.com/infocenter/wle/v7r2/index.jsp.

44. IBM-InfoCentre. Managing the Process Center repository. [cited 2011 June 04]; Available

from: http://publib.boulder.ibm.com/infocenter/wle/v7r2/index.jsp.

http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.archimate.nl/en/about_archimate/
http://www.mendix.com/product/features/
http://publib.boulder.ibm.com/infocenter/wle/v7r2/index.jsp
http://publib.boulder.ibm.com/infocenter/wle/v7r2/index.jsp

67

45. Kumar, K. and M.M. Narasipuram. Defining Requirements for Business Process Flexibility. in

Workshop on Business Process Modeling, Development, and Support (BPMDS'06) Requirements

for flexibility and the ways to achieve it (CAiSE'06). 2006. Luxembourg.

46. Schonenberg, H., et al. Towards a Taxonomy of Process Flexibility. in CAiSE Forum. 2008:

CEUR-WS.org.

47. Kasi, V. and X. Tang. DESIGN ATTRIBUTES AND PERFORMANCE OUTCOMES: A

FRAMEWORK FOR COMPARING BUSINESS PROCESSES. in Proceedings of the 2005

Southern Association of Information Systems Conference. 2005.

48. Asuncion, C.H., M.-E. Iacob, and M.J. Sinderen van, Towards a flexible service integration

through separation of business rules, in 14th IEEE International EDOC Enterprise Computing

Conference, EDOC 2010. 2010, IEEE Computer Society: Vitoria, Brazil. p. 184-193.

49. Regev, G., P. Soffer, and R. Schmidt, Taxonomy of Flexibility in Business Processes, in Pro. 7th

Workshop on Businss Process Modeling, Development and Support. 2006.

50. Venkatesh, V. and H. Bala, Technology Acceptance Model 3 and a Research Agenda on

Interventions. Decision Sciences, 2008. 39(2): p. 273-315.

51. Davenport, T.H., J.E. Short, and R. Sloan School of Management. Center for Information

Systems, The new industrial engineering : information technology and business process redesign.

1990, Cambridge, Mass.: Center for Information Systems Research, Sloan School of

Management, Massachusetts Institute of Technology.

52. Milanovic, N. and M. Malek, Current solutions for Web service composition. Internet

Computing, IEEE, 2004. 8(6): p. 51-59.

68

Appendix A: List of pilot scenarios

Scenario1- Medicine reminder

Jan is an elderly who lives inside an apartment which equipped with homecare applications on

top of our application platform. He should intake his medicine at 11:50 PM. The application

should remind him to intake medicine several times up to 15 minutes later than the scheduled

time. If not taken, the alarm should be sent to the care center. He has hearing impairment

developing over the time. He also uses wheelchair, so the doors inside the apartment should be

opened automatically. He only can speak Dutch and prefers to take medicine from the closest

medicine dispenser (MD) at night. Two MDs, filled with the required medicine, have been

installed, one in the kitchen and the other one in the corridor. The MD inside the kitchen has

embedded light. TV inside the sleeping room, all the lights of the apartment and a wristwatch can

be used as reminder devices for taking medicine. He prefers not to be reminded by lights after

midnight. Nancy, as a care-giver, wants to create a service plan. Because she knows his

requirement and situation better than IT specialists, she is going to make a service plan in order

to assist Jan and remind him to take his medicine on time. She is going to make the service plan

based on Jan’s requirements, abilities and preferences.

Scenario 2-John and Marie are patients with a minor form of COPD (Chronic obstructive

pulmonary disease). Their quality of life is improved when being active and regulating their

weight. However, when being active, for example walking, it is important to preserve their oxygen

saturation for safety reasons. If the saturation level drops too low, exacerbation may occur,

leading to hospitalization and more expensive long-term care. John has hearing disorders while

Marie has vision disorders. Both of them have forgetfulness and need to be reminded for their

tasks. Nancy is the professional care giver and responsible to create and tailor the homecare

services of the U-Care system installed in their care home. The UCare system employs a Tablet

PC, i.e., Tablet, PDA, medicine dispenser and measurement services. MobiHealth, as one of the

project partner, encapsulates measurement devices such as oxygen saturation meter and provides

measurement services which can be used by other homecare services. Nancy creates two reminder

services, (1) to remind them to attach the oxygen saturation meter when they leave their homes to

walk outside and (2) to remind them to take their medicine three times per day. Nancy tailor the

reminder services to use tablet preferably for Marie because of its large screen and to use higher

voice volume either on Tablet or PDA for John due to their vision and hearing disorders,

respectively. The reminder services should also take John and Marie preferences into account. For

instance, John prefers to get vibration reminder on PDA instead of voice, when his family comes

to visit him and he is not alone. If John or Marie does not connect the oxygen saturation meter

when they leave the care home or while the device being connected and the saturation drops

below a predefined threshold, the U-care system trigger a task, for instance, sending an alarm to

the care center. The predefined thresholds and corresponding task are different for John and

Marie and must be comply with the existing medical protocols employed in the care center. In

case of frequently failed reminders, the U-Care system will inform Nancy to talk to the patients

69

and tailor the services, for instance, because of hearing impairment development for John, it’s

needed to increase the default volume of reminder voice. Nancy should visit John and Marie every

day at their care homes and based on their health condition, she might need to drop a particular

medicine intake and thus, its reminder service.

Appendix B: Quality attributes of SOA

SOA Approach’s Impact on Quality Attributes [18]

The status column represents the level of maturity SOA in supporting quality attributes. The color

red means that SOA solutions are immature and significant effort is required. The color green

refers to high maturity of SOA solutions. The color yellow reflects that some SOA solutions

support the quality attribute properly but further research is needed.

Quality

Attribute

Summary Status

Interoperability

Through the use of the underlying standards, an SOA provides

good interoperability technology-wise overall, allowing services

and applications built in different languages and deployed on

different platforms to interact. However, semantic

interoperability is not fully addressed. The standards to support

semantic interoperability are immature and still being

developed.

Reliability

Potentially, problems can occur in many areas, but the use of

the underlying standards (WS-Reliability and WS-

ReliableMessaging) should mean that messages are transmitted

reliably. Service reliability is still an issue as with any element in

an architecture.

Availability

It is up to the service users to negotiate an SLA that can be used

to set an agreed-upon level of availability and to include

penalties for noncompliance with the agreement. Also, if a

service provider can build into its applications contingencies

such as exception handling when an invoked service is not

available (dynamically locating another source for the needed

service), availability would not decrease and could actually be

improved as compared with other architectural approaches.

Usability

Usability may decrease if the services within the application

support human interactions with the system and there are

performance problems with the services. It is up to the services

users and providers to build support for usability into their

systems.

Green

Yellow

Yellow

Yellow

70

Security

The need for encryption, authentication, and trust within an

SOA approach requires detailed attention within the

architecture. Many standards are being developed to support

security, but most are still immature. If these issues are not

dealt with appropriately within the SOA, security could be

negatively impacted.

Performance

An SOA approach can have a negative impact on the

performance of an application due to network delays, the

overhead of looking up services in a directory, and the overhead

caused by intermediaries that handle communication. The

service user must design and evaluate the architecture carefully,

and the service provider must design and evaluate its services

carefully to make sure that the necessary performance

requirements are met.

Scalability

There are ways to deal with an increase in the number of

service users and the increased need to support more requests

for services. However, these solutions require detailed analysis

by the services providers to make sure that other quality

attributes are not negatively impacted.

Extensibility

Extending an SOA by adding new services or incorporating

additional capabilities into existing services is supported within

an SOA. However, the interface/formal contract must be

designed carefully to make sure that it can be extended, if

necessary, without causing a major impact on the service users.

Adaptability

The use of an SOA approach should have a positive impact on

adaptability, as long as the adaptations are managed properly.

However, the management of this quality attribute is left up to

the service users and providers, and no standards exist to

support it. This attribute must be managed in coordination

with other quality attributes including stability, performance,

and availability, and the necessary tradeoffs must be identified

and made.

Testability

Testability can be negatively impacted when using an SOA due

to the complexity of the testing services that are distributed

across a network. Those services might be provided by external

organizations where access to the source code is not available,

and if they implement runtime discovery of services, it may be

impossible to identify which services are used until a system

executes. It is up to the service users and providers to test the

Red

Red

Yellow

Green

Yellow

Red

71

services, and very little support is currently provided for the

end-to-end testing of an SOA.

Auditability

Auditability can be negatively impacted if the right capabilities

for end-to-end auditing are not built into the system by the

service users and if capabilities are not incorporated into the

services by the service providers.

Operability

and

Deployability

Operating and deploying services and systems that use services

need to be managed carefully to avoid problems. The

interactions and tradeoffs among this and other quality

attributes need to be monitored and managed.

Modifiability

Modifiability of services or an application that uses services is

directly supported using an SOA approach. However, a service

interface must be designed carefully because the changes that

impact service users might be difficult to identify if the service

is externally available.

Red

Yellow

Green

72

List of Figures

FIGURE 1: TOTAL NUMBER OF QUALIFIED NURSES AND MIDWIVES PER 1000 000 OF POPULATION ... 2

FIGURE 2: SERVICE AGGREGATOR... 12

FIGURE 3: SERVICE BROKER .. 12

FIGURE 4: THE THREE PRIMARY SERVICE LAYERS. [12] .. 13

FIGURE 5: AN EXAMPLE OF CONTEXT TOOLKIT ARCHITECTURE [19] .. 18

FIGURE 6: SOCAM ARCHITECTURE [21] ... 19

FIGURE 7 EMBEDDED BUSINESS RULES IN BUSINES PROCESSES ... 28

FIGURE 8: RELATIONSHIPS BETWEEN MODULES OF THE .. 35

FIGURE 9 : THE PROPOSE ARCHITECTURE IN ARCHIMATE LANGUAGE... 37

FIGURE 10 : CONTEXT SERVER .. 40

FIGURE 11 : ASPECT MANAGER ... 43

FIGURE 12 : RESULT- A SERVICE PLAN ... 43

FIGURE 13 : LOMBARDI'S COMPONENTS [44] .. 44

FIGURE 14 : REMINDER PROCESS... 45

FIGURE 15: THE SERVICE PLAN WHEN DEALING WITH CHANGES IN USER-CONTEXT ... 47

FIGURE 16 : THE SEQUENCE DIAGRAM WHEN DEALING WITH CHANGES IN USER-CONTEXT ... 48

FIGURE 17 : THE SERVICE PLAN WHEN DEALING WITH A USER’S PREFERENCE... 49

FIGURE 18 : THE SEQUENCE DIAGRAM WHEN DEALING WITH A USER’S PREFERENCE ... 50

FIGURE 19: COMPOSING AN ADVICE ... 55

FIGURE 20: POSITIONING THE ARCHITECTURE’S ABILITY .. 59

73

List of tables

TABLE 1: D&D REQUIREMENTS ... 4

TABLE 2: AI PLANNING METHODS .. 22

TABLE 3: SOURCES OF D&D REQUIREMENTS FROM SCENARIOS ... 23

TABLE 4: MAPPING BETWEEN TWO VIEWPOINTS OF SOURCES OF D&D REQUIREMENTS .. 24

TABLE 5: SOURCES OF D&D REQUIREMENTS AND ASPECTS' CONDITION STATEMENTS .. 32

TABLE 6 SERVICES IN THE REMINDER SCENARIO ... 39

TABLE 7 : AN ASPECT FILE ... 41

TABLE 8 LOCATION-ENDPOINT MATCHING SERVICES .. 46

TABLE 9: MAPPING TWO CLASSIFICATIONS .. 53

TABLE 10: A TEMPLATE FOR ASPECT FILES.. 55

TABLE 11: SUMMARIZING SYSTEM'S SUPPORTS ... 58

74

Glossary

B

Business rule: a statement that defines or constrains some aspect of the business. It is intended to
assert business structure or to control or influence the behaviour of the business.

Business process: a set of logically related task performed to a defined business outcome[51].

Binding port: endpoint

C

Crosscutting concerns: one process addresses several concerns and the implementation of a single
concern appears in many places in the process definition[31]

E

Enterprise service bus: open, standards-based message bus designed to enable the
implementation, deployment, and management of SOA-based solutions with a focus on
assembling, deploying, and managing distributed SOA” [11].

Endpoint: Endpoints in the ESB provide abstraction of physical destination and connection
information (like TCP/IP hostname and port number) [11].

S

Service composition: Web service composition lets developers create applications on top of
service oriented computing’s native description, discovery, and communication capabilities[52].
Service block: a web service

Service plan: is result of the combination of business rules and a business process. Another equal
term is service composition.

