
 1

Incorporating Functional Design Patterns

In Software Development

Master Thesis

Business Information Technology

Yoran Maxim Bosman

31.08.2007

Under supervision of

University of Twente

Maria Laura Ponisio

Jos van Hillegersberg

Quinity B.V.

Jeroen Snijders

Robert Guitink

 2

Revision History

Date Description

28.03.2007 - Basic template

16.05.2007 - Concept/work in progress for review by Quinity supervisor

24.05.2007 - Concept/work in progress for review by University supervisors

01.06.2007 - Completely rewritten structure

- Shortened introduction

- Processed other comments and suggestions.

15.06.2007 - First step to incorporate Laura’s feedback, making the thesis

more scientific instead of a tutorial

20.06.2007 - Textual improvements

- Started with conclusion

- Removed some literature appendices

02.07.2007 - Laura’s comments on the method.

- Quinity’s comments on the thesis.

- Moved several steps from requirements to functional design

phase

12.07.2007 - Lots of textual improvements (spelling, grammar)

- Added case studies

23.08.2007 - Method in dependency graph form

- Case studies revamped

- Designer opinions

- Discussion on case studies

- Removed figure “distribute functional design document

31.08.2007 - Textual improvements (spelling, grammar)

- Fixed errors in figures

- Restructured and shortened some sections

- Combined the example in one paragraph

- Revamped validation and conclusion

 3

Summary

When developing software, clients often ask for the same kind of functionality

which solves a certain problem they are faced with. Reuse of solutions for recurring

problems is possible at many levels. The functional level has not been given as much

attention as the technical level. It is wasteful to engineer similar functionality from

scratch every time it is required. Therefore the concept of Functional Design Patterns

was identified to describe recurring problems and solutions of applications.

From interviews it became clear that currently there is no unified way in which

the Functional Design Patterns are applied during the software development process.

Although a small library of Functional Design Patterns exist, it is not clear how to

integrate them in the development process. Every functional designer decides for

himself how and when the pattern repository is consulted and which parts to use.

This thesis proposes a method for the incorporation of Functional Design Patterns

in the software development process. The goal of the method is to enable functional

and technical designers to make more efficient use of Functional Design Patterns at

different phases of development. The method does not focus solely on functional

design but ranges from acquisition all the way to maintenance.

The method was developed by combining the state of the practice with an

analysis of the state of the literature regarding the integration of design patterns. It

provides guidelines for recognizing the applicability of patterns using conceptual

decomposition, pattern selection, the combination of multiple patterns in a functional

design, the transition to technical design and defines the responsible persons. The

result is a systematic method that clarifies the when, where, how and what questions

regarding Functional Design Patterns and software development for all parties

involved.

This systematic approach to develop software using Functional Design Patterns is

explored and demonstrated with an example.

Application of the method in real world projects was not feasible during the

execution of this research, therefore empirical evaluation of the presented method

remains future work. The method is validated by matching it against the functional

reuse approaches of other organisations and a review by designers which showed their

support for the method.

We believe that the use of the presented method to incorporate Functional Design

Patterns in software development will lead to an improved and more efficient use of

Functional Design Patterns in particular at Quinity. Novice designers will know when,

where and how to use Functional Design Patterns in the development process thereby

bridging a large gap between them and more experienced designers.

 4

Acknowledgements

“and times move so fast, now there does not seem to be any

and once it felt that there was more than plenty”
I Am Kloot – Astray

First and foremost I would like to express my gratitude to my parents who made

it possible to attend University and always stood behind me and my decisions.

I would like to thank all my supervisors, especially Laura who very patiently

spent hours answering questions and giving feedback.

 My sincere appreciation goes to Quinity for providing a very pleasant work

environment and all the great colleagues I have had the opportunity to meet, in

particular Fleur, Jacob and Wouter; I wish you all the best. Huge thanks to all my

friends, in no particular order... Tom, Hugo, Stephan, Jos, Rutger, Mike, Sjoerd, Dian,

Frank, Ron and the ones I forgot. We always have a great time whatever we do.

A special thanks goes to the organisations who allowed a peek into their software

development kitchen. Last but not least special thanks fly out to all musicians who

provided me with listening pleasure, deprived from which I would certainly have

gone insane.

 5

Table Of Contents

Revision History .. 2

Summary .. 3

Acknowledgements .. 4

Table Of Contents .. 5

1. Introduction ... 7

1.1 Background ... 7

1.2 Problem Statement .. 8

1.3 Research Questions ... 8

1.4 Contribution .. 9

1.5 Approach ... 9

1.6 Thesis Structure ... 10

2. State Of The Practice ... 11

2.1 Software Development At Quinity .. 11

2.1.1 Requirements .. 12

2.1.2 Functional Design ... 12

2.1.3 Realisation .. 12

2.1.4 Acceptance Testing .. 13

2.1.5 Usage And Maintenance ... 13

2.2 Functional Design Patterns .. 13

2.3 Link Between Process And Patterns ... 17

2.4 Conclusion .. 19

3. Existing Pattern Integration Methods .. 21

3.1 Pattern Oriented Analysis And Design ... 21

3.2 Software Reuse With Analysis Patterns .. 23

3.3 Pattern Driven Analysis And Design .. 23

3.4 Building Software With Patterns ... 24

3.5 Discussion ... 26

3.6 Criteria .. 28

4. Systematic Reuse Of Functional Design Patterns 30

4.1 Prerequisites .. 30

4.2 Outline ... 31

4.3 Visualising The Method .. 32

4.4 Acquisition .. 36

4.4.1 Gather Requirements .. 37

4.4.2 Establish A Common Vocabulary .. 38

4.4.3 Create A Conceptual Architecture .. 38

4.4.4 Find Solutions For Conceptual Architecture 39

4.5 Functional Design ... 40

4.5.1 Decide Between Candidates And Variants 41

4.5.2 Copy And Refine Core Concepts ... 41

4.5.3 Use Prescribed Diagram Style .. 41

4.5.4 Copy, Combine And Refine Information Function Segments 42

4.5.5 Develop Data Model... 43

4.5.6 Mock-up Development ... 44

4.6 Realisation ... 45

 6

4.6.1 Divide Functional Design ... 46

4.6.2 Write Technical Design .. 46

4.6.3 Develop Software Using Implementation Details 47

4.6.4 Merge Technical Design Parts .. 47

4.7 Acceptance Testing ... 47

4.8 Usage And Maintenance ... 48

4.8.1 Update the pattern repository with project experience 48

4.9 Example Of An Online Banking System... 49

4.9.1 Acquisition ... 49

4.9.2 Requirements .. 50

4.9.3 Functional Design ... 54

4.9.4 Realisation .. 56

5. Validation .. 57

5.1 Approach ... 57

5.2 Case Studies .. 58

5.2.1 Case Study One .. 58

5.2.2 Case Study Two .. 61

5.2.3 Case Study Three .. 63

5.2.4 Case Study Four ... 64

5.3 Designer Opinions ... 66

5.4 Comparison With Criteria ... 67

5.5 Discussion ... 69

5.5.1 The Risks Of Tacit Knowledge .. 69

5.5.2 Service Specifications Are Similar Functional Design Patterns ... 70

5.5.3 Possible Additions .. 70

5.5.4 Problems With Functional Reuse ... 70

5.5.5 Expected Organisational Characteristics 71

6. Conclusion ... 75

6.1 Research Questions ... 75

6.2 Main Conclusion ... 77

6.3 Implications ... 78

6.4 General Observations .. 78

6.5 Future Work .. 80

6.5.1 Quinity .. 80

6.5.2 General Research Community .. 81

6.6 Final Remarks ... 82

Bibliography .. 83

7. Appendices .. 85

7.1 Case Study Interview .. 85

7.2 POAD Pattern Diagram Examples .. 86

7.3 Visual Composition Of Functional Design Patterns.............................. 87

 7

1. Introduction

1.1 Background

“A pattern is an idea that has been useful in one practical context and will

probably be useful in others” [11]
 1

Patterns make it easier to reuse successful designs and expressing these

techniques allows other developers to make use of proven solutions [12].

Reuse of solutions is possible at different levels of abstraction and many different

types of patterns have emerged in the past [2] [12] [13] [41] [11]. The technical level

gained a lot of popularity through the book of Gamma et al. [12]. Reuse of

functionality on the other hand has not been given as much attention.

Recurring problems can be identified when developing custom software systems.

Clients often demand similar types of functionality. Until recently there were no

patterns that allowed the description of recurring functionality in applications.

Administrative software for banking and insurance organisations for example share

many of the same functions for working with personal records and time dependent

loans and insurance policies [17] This is the reason Functional Design Patterns were

introduced by Guitink [17] and described in detail by Snijders [37].

Functional Design Patterns describe recurring functionality of applications where

functionality is defined as:

“All behaviour of an information system concerning the storage, manipulation

and display of data”

In previous studies the foundation for Functional Design Patterns were laid out.

The reasoning behind Functional Design Patterns, their notation and relation were all

explored [37][34][26]. The most important reasons behind Functional Design Patterns

are the improvement of the predictability of the software development process and the

delivery of high quality software [34]. Because patterns are proven solutions, quality

can be improved. The risk of creating something new and forgetting a critical

component is lower. Predictability increases because the complexity of the

functionality and the time it takes to implement are already known due to past

experience. In [26] an approach to implementing the patterns in technical design

documents and programming code is presented.

The research is conducted at Quinity B.V. located in Utrecht, The Netherlands.

Quinity is a supplier of custom software applications based on internet technology.

Quinity’s focus lies with applications in the insurance and banking domain. The

software Quinity designs and builds is partly based on a framework. The framework

is extended with custom parts and components, which are developed for each client

separately. The design process is streamlined by using their own development method

1 Numbers in brackets refer to entries in the bibliography at the end

 8

which amongst other techniques includes reuse of software and automatic code

generation.

The development method is a combination of Linear Application development

(LAD) [10] and Dynamic Systems Development Method (DSDM) [38]. Quinity uses

the clearly phased structure of LAD but also design and build iterations as proposed

by DSDM.

1.2 Problem Statement

Although patterns in essence already capture reusable solutions and have been

around for years, less devotion has been given to develop methods to truly integrate

(functional) design patterns throughout the software development life cycle.

After Snijders [37] there have been a handful of other researchers [34][26][27]

who attempted to broaden the knowledge of Functional Design Patterns. As for the

reuse of Functional Design Patterns in software development the work of Van Helden

en Reyngoud [34] further specified introduced specialisation and generalisation of

similar patterns. Next to this, they also made a head start with describing the use of

Functional Design Patterns in the functional design phase and a possible method to

combine multiple patterns.

They noted that one of the most important questions left unanswered is how to

allow the use of Functional Design Patterns in software development.

Even though a catalogue of smaller Functional Design Patterns has been

described in [32] and well-documented domain level Functional Design Patterns exist

in various internal Quinity documents, the fundamental problem Quinity is

experiencing lies in the fact that at this moment there is no structured way of reusing

the developed Functional Design Patterns. Both designers and application developers

do not know how to make optimal use of Functional Design Patterns during software

development.

1.3 Research Questions

In the context of making the best use of Functional Design Patterns, the problem

statement leads to the following main question:

“How can reuse of Functional Design Patterns be incorporated in the software

development process?”

To discover a satisfying answer to the research subject the following research

questions were developed:

• What is the current way Quinity uses Functional Design Patterns in software

development?

 9

To be able to define what should be improved, it is a requisite to find out the

current state of the practice.

• To what extent and in which way is pattern reuse implemented in current

software development methods?

• How can the current Quinity Method be extended with Functional Design

Patterns?

• When should the patterns be applied?

• Which elements should be used?

• How do we recognise the possibilities for reuse of Functional Design Patterns?

• How can we combine multiple patterns?

• In which context can Functional Design Patterns be used?

1.4 Contribution

The contribution of this thesis can be summarised as follows:

• An analysis of existing methods to integrate design patterns in software

development.

• A systematic and practical method for the incorporation of Functional Design

Patterns in the software development process.

• A survey of the state of the practice regarding functional reuse at external

organisations.

1.5 Approach

To engineer a method for the incorporation of Functional Design Patterns in the

software development process the following steps were taken.

To fully understand Functional Design Patterns we attend review sessions for the

pattern “time dependence of data” [6] and create new Functional Design Pattern for

Authorisation ourselves [3].

The desired state of the practice is found by enquiring functional designers at

Quinity on their expectations and experiences with Functional Design Patterns and by

means of a thorough literature study on current pattern integration methods. These

will lead to criteria the method for incorporating Functional Design Patterns should

meet.

The results from the interviews and the literature study are merged to establish a

theoretical method for making more efficient use of Functional Design Patterns in

software development.

After developing the method, it is validated by matching it against structural

reuse methods at external companies, designer opinions and the original criteria.

 10

1.6 Thesis Structure

The structure of the thesis is as follows:

Chapter 2 (p. 11) provides an extensive overview of the development method at

Quinity. It describes Functional Design Patterns in detail, the process and the link

between these two. It lists the criteria a development method for the incorporation of

Functional Design Patterns in the development process needs to adhere to.

Chapter 3 (p. 21) analyses existing methods that attempt to systematically reuse

patterns in the software development process. To the best of our knowledge no earlier

research exists in this area.

Chapter 4 (p. 30) contains a specifically engineered development method with

guidelines to incorporate Functional Design Patterns in software development.

Chapter 5 (p. 57) validates the developed method in various ways.

Chapter 6 (p. 75) contains the conclusion of the thesis. It presents the results,

practical implications and ends with new research questions that are currently left

unanswered.

The Appendices (p. 85) contain examples of Pattern Oriented Analysis And

Design’s diagrams, the case study interviews and an example of visual Functional

Design Pattern composition 0

Fig. 1 Thesis structure

 11

2. State Of The Practice

This chapter introduces the state of the practice concerning Quinity’s current

view on software development, Functional Design Patterns and the link between

them. First Quinity’s development method and phased approach is described. After

that, Functional Design Patterns are explored and in the last part the current link

between Functional Design Patterns and software development is discussed, which

leads to criteria for a new method.

2.1 Software Development At Quinity

A myriad of different software development methods exists. Quinity’s

development method is based on a combination of the Linear Application

Development [10] and iterative Dynamic Systems Development Method [38].

Linear Application Development is a methodology based on the System

Development Method. LAD is a method very suitable for the development of

complex administrative systems. It is essentially a waterfall model consisting of five

phases; definition study, basic design, detailed design, realisation and implementation.

In all these phases there are linear and parallel tracks which together result in the

completed information system. LAD does not feature iteration. The next phase only

begins after the preceding phase is completed.

Fig. 2 LAD overview

The Dynamic Systems Development Method is an agile development method

originally based on Rapid Application Development. DSDM is meant to iteratively

and incrementally develop interactive information systems that meet the business

needs. It makes use of continuous user involvement and allows requirements to

change over time. DSDM works with time boxes to prevent projects going over

budget and exceeding their expected development time. DSDM stresses that nothing

is built perfectly the first time, but states that early delivery to end-users can improve

the quality in the end [38].

Fig. 3 DSDM overview

 12

Quinity uses the clear phases from LAD, but also adds business analysis,

functional and technical design iteration and implementation from DSDM. The

process is depicted Fig. 3.

Fig. 4 Quinity development process

2.1.1 Requirements
In this phase all requirements are gathered from and with clients. The client also

prioritises the requirements according to the MoSCoW rules from DSDM. (Must

have, should have, Could have and Won’t have) [38]. This phase also includes

business analysis as specified by DSDM, which gives insight in business processes

that have to be automated. The requirements documented states what an information

system will deliver.

2.1.2 Functional Design
Functional design as defined by Quinity [9] is a phase during software

development in which documents are created that elaborate on how the information

system will fulfil its requirements. The functional design phase delivers:

• The functional description

This describes the information functions the system will support.

• Mock-ups

A graphical representation of the user interface which gives an idea how the end

users will interact with the system.

• Data model

Entity Relationship Diagram [7] of the conceptual data structure, which later will

make up the system’s database.

2.1.3 Realisation
The realisation phase consists of creating the technical design document and

implementing this. The technical design document as defined by Quinity [31]

explains the way the functional design should be realised. All design decisions are

made explicit in a technical design. This includes the memory model. Class diagrams,

exception handling, core algorithms which require explanation.

The technical design is realised by software developers. Multiple software

engineers work on different areas of functionality, which are tested using unit tests.

Periodically all parts of the system are integrated. On the integrated product a system

and performance test is run.

 13

2.1.4 Acceptance Testing
After the realisation phase the information system is deployed and the client tests

if all functionality works like it should according to the functional design. The

Acceptance tests provide feedback to the designers and as such the functional design

and realisation phase are repeated.

2.1.5 Usage And Maintenance

When the client approves all functionality, the software will go live. The

development now enters a maintenance state. Maintenance is done via request for

change proposals, which brings development back in the requirements phase.

2.2 Functional Design Patterns

When developing multiple applications for several clients, there is functionality

that is desired by more than one client, this can be captured in a Functional Design

Pattern.

“Functional Design Patterns describe recurring functionality problems in

(domain specific) applications”[37]

Functional Design Patterns capture domain knowledge and define structure on an

abstract level. The main motives of Functional Design Patterns are:

• Transfer knowledge

Functional Design Patterns contain knowledge how to solve functional problems.

The advantage is that new functional designers have a quick way of getting a

grasp on the way functionality problems are solved instead of having to rely on

more experienced designers to help them.

• Increase predictability

It is believed that using Functional Design Patterns makes it possible to improve

the predictability of the software development process. Predictability increases

because the complexity of the functionality and the time it takes to implement are

already known due to past experience.

• Improve quality

Because Functional Design Patterns describe proven solutions for recurring

problems, the risk of developing a new untested solution is lower.

• Save time and cost

Reusing solutions in functional and technical designs is expected to save time and

cost.

• Increase maintainability

Reusing functional and technical designs will ultimately create similar code,

which increases maintainability.

The main difference with Analysis Patterns [11] is mentioned by Reyngoud and

Van Helden [34]. They state that analysis patterns focus on the static representation of

the conceptual data model whereas Functional Design Patterns show how interaction

between entities takes place to attain functionality.

 14

In essence Functional Design Patterns combine analysis patterns with interaction

[41] and data patterns.

A Functional Design pattern consists of a functional design section and a

realisation section. Both sections are explained below. Fig. 5 shows the composition

of a single Functional Design Pattern.

Fig. 5 Sections of a Functional Design Pattern

Functional Design Section

• Core concepts

Core concepts describe the most important constructs and definitions used. The

core concepts allow a common vocabulary to be used amongst designers.

• Information function segments

Information function segments are the building blocks for information functions.

Multiple segments can be combined to form one Information Function but the

can also be used separately. Information functions are functions in an information

system executed by either a human or computer that display and or manipulate

data. [17]. Examples of information functions are “order item”, “print quotation”

and “edit person information”.

• Interaction patterns

Interaction patterns show the way users interact with the system [41]. These

consist of a mock-up with a description of the interaction.

• Data pattern

The data pattern describes the entities and their relations, usually an Entity

Relationship diagram.

 15

Realisation Section

• Technical design details

The patterns feature technical details, such as class diagrams that should be used

when writing a technical design.

• Implementation details

Some patterns have small code snippets that show how to solve a particular

functional problem with code. These code snippets can be used when

implementing the Functional Design Pattern in a project.

Some Functional Design Patterns also define extensions to the basic pattern,

which might only be applicable in certain situations, with certain requirements. Other

patterns may define variants when it is not clear yet which is the superior solution.

Functional Design Patterns can be categorised in aspect level and domain level

patterns. Design Patterns at the aspect level describe functionality which is the same

for all administrative applications independently of their domain, they are domain

transcending.

 Thus, patterns at the aspect level do not capture domain knowledge. They

describe standard implementations for information functions. Examples of aspect

level design patterns include browsing entities and Entity Management [17]. Domain

level Design Patterns describe abstract functionality for a specific domain or problem

area. Examples of domain level design patterns are pension calculations and chain

integration in the insurance field [17].

When Functional Design Patterns are used in a functional design they will be

altered to the project’s context, this is the lowest level. Domain level patterns are used

in projects. When no domain level pattern is available, an aspect level pattern is

directly applied in a project. The design pattern applied at the project level is not

really a pattern, that is why it is greyed out in the figures. The arrows represent can be

used in.

Fig. 6 Top down application of Functional Design Patterns

 16

To create domain patterns, the Functional Design Patterns from the aspect level

are made specific using knowledge from executed projects.

Fig. 7 Bottom up and top-down development of Domain level pattern

When functional problems occur in multiple projects, they are abstracted to either

the domain or the aspect level. It is also possible to further abstract from a domain

level pattern to the aspect level when similar functionality is identified across

domains is discovered later on.

Fig. 8 Bottom up extraction of Functional Design Patterns

 17

2.3 Link Between Process And Patterns

This section describes the current link between Quinity’s software development

method and Functional Design Patterns. To engineer a method for the incorporation

of Functional Design Patterns preliminary interview session were organised to

enquire about the way these patterns are used right now.

These interviews with functional designers at Quinity showed that the overall

feeling is that the usage of Functional Design Patterns is not standardised. Apart from

small Functional Design Patterns which are already embedded in components, the

experience in applying Functional Design Patterns is limited.

Practitioners know the definition and there also appears to be a consensus on the

advantages of Functional Design Patterns. Designers are convinced that Functional

Design Patterns help to comprehend subject matters more rapid, reduce complexity

and improve the overall quality of delivered software.

Following is a list with the most important points extracted from the interviews.

Important Phases

The phases of development in which Functional Design Patterns play an

important role are the requirements, functional design and realisation phase. After the

technical design phase, the usage of Functional Design Patterns decreases. Instead the

effort that goes into creating Functional Design Patterns and updating the repository

increases. Feedback from implementing a pattern in a project is used to update the

pattern documentation and new patterns are derived. This is implicit; it is assumed

people will act on their own. When a Functional Design Pattern at the aspect level

exists without technical details Quinity assumes that developers which implemented

the pattern will have the discipline to update the pattern.

Cost Estimation

Experienced functional designers identified that it would be helpful if Functional

Design Patterns could be used in the acquisition phase to support the creation of more

accurate time and cost estimations. Because the patterns are created from existing

projects it is already known approximately how much time their implementation

takes.

Common Vocabulary

Some designers already use Functional Design Patterns as a structuring

mechanism in interviews and design sessions with clients. The core concepts that are

explained in each Functional Design Pattern give designers and clients a common

vocabulary.

Clients often come up with their own definition of certain words. A Functional

Design Pattern helps the functional designer to recognise the real concept. For

example, users familiar with a different kind of authorisation will frequently call a set

of users with some similarity in their permissions a group, while in Quinity’s

Functional Design Pattern for authorisation this is called a role. Interestingly not all

 18

functional designers agree that the core concepts from a Functional Design Pattern

should be communicated to the client. Quinity also encountered occasions where the

client had already made an analysis of their own product workflow, presenting fifteen

different states the product could be in. Without the guidance of a Functional Design

Pattern they might have thought that the analysis the client came up with was correct,

but due to experience and the core concepts described in the Functional Design

Pattern it could be discovered that there were in fact only three states which carried

along five process dimensions [30].

Some functional designers believe it may cause confusion because the concepts

can be quite difficult to understand and in the end the customer is interested solely in

a working product, how problems are solved is not there concern. Therefore they feel

it would be wise for the designer to just keep the concepts in his head, using the

Functional Design Pattern as a tool.

Guide Technical Design

Furthermore an important role of Functional Design Patterns is defining the

mapping from functional design to technical implementation. When a Functional

Design Pattern is distilled from a successfully executed development project, the

creator of the Functional Design Pattern is already intensely submerged in the subject

matter that it would be wasteful to neglect writing down hints for the actual

implementation of the described functionality. Therefore, current Functional Design

Patterns also contain technical documentation that is used by technical designers in

the creation of a technical design in the implementation phase.

Unclear Usage Of Parts

Which parts of Functional Design Patterns should be transferred to a functional

design document and how this should be done is acknowledged by practitioners to be

ambiguous. Mostly the diagram styles used in the Functional Design Pattern are used.

The text is not directly usable in the functional design document. Thus it is not a

matter of copy and pasting Functional Design Patterns from their document to the

functional design.

Pattern Recognition

Recognizing patterns is not a mechanical task. The knowledge of patterns is

currently located in the designers head. When they encounter requirements which

seem to be very generic they check if members of other projects may have defined

usable patterns. The lack of a knowledgebase or pattern repository which can be

consulted to search for patterns is recognised by the designers. The current tactic is to

come up with a keyword for the problem and search for documents describing these.

Domain level patterns are occasionally fully shown to clients, but no guidelines

exist which parts should explicitly be shown or when a designer should refrain from

showing documentation.

Deciding on the pattern to use is based on the experience of the designer. The

patterns currently do not contain description of situations when it not advised to apply

them.

 19

Pattern Documentation

The way patterns are documented was said to slightly vary between patterns. Not

all patterns use the same structure, which sometimes makes them difficult to read. The

documentation is very extensive which makes it necessary to read the entire pattern to

get a good grasp of the concept.

Pattern Combining

When multiple patterns are found which could possibly be of use in the

functional design, designers admit that a structured way of combining the patterns is

not available. No real order exists in applying the patterns. One designer noted that it

is probably best to start with the pattern which has the most significant impact on the

design.

Pattern Repository Growth

The functional designers identify that in the future a lot more patterns will be

developed and when that growth is achieved it would be beneficial if a structured

approach was available to make optimal reuse of developed patterns. The future as

envisioned by Quinity’s management is the total incorporation of Functional Design

Patterns in software development. This will hopefully allow them to maintain their

competitive edge.

2.4 Conclusion

In this section we showed the software development process at Quinity,

Functional Design Patterns and the current link between the development process and

patterns.

Summarizing, the state of the practice shows that functional designers see a

bright future for Functional Design Patterns but a standardised way of putting them to

use is missing. Not all functional designers agree on the precise incorporation of

Functional Design Patterns in the development process. Fig. 9 represents the current

state of the practice, a semi structured approach with uncertainty and ambiguity. This

is the way a new functional designer would feel when starting at Quinity.

The method that will be described in chapter 4 transforms the semi structured

approach to Functional Design Patterns into a structured one by introducing the

important additions found in literature in the state of the practice.

 20

Fig. 9 Semi structured approach to Functional Design Patterns

Requirements

Functional Design

ImplementationAcceptance Testing

Usage / Maintenance

Pattern combining

Guide technical design

Cost estimation

Pattern recognition

Structured client

sessions

Diagram techniques

Pattern documentation

Common vocabulary

Acquisition

Pattern repository

growth
Pattern searching

 21

3. Existing Pattern Integration Methods

This chapter presents an analysis of the existing methods to integrate the use of

patterns into software development. The purpose of the analysis is to find ideas from

integrating design patterns in development which are also applicable to Functional

Design Patterns.

The methods were chosen because they attempt to integrate patterns in a

systematic way. First off the Pattern Oriented Analysis And Design method from

Yacoub and Ammar [2] is explained. Software reuse with analysis patterns is covered

in 3.2, after which a small extension to POAD is shown [18] that makes use of

analysis patterns as well. An alternative, building software with patterns [4] is

presented in paragraph 3.4.

3.1 Pattern Oriented Analysis And Design

Yacoub and Ammar [2] state that designing applications by deploying technical

design patterns is not a straightforward task. Although several pattern composition

techniques have been proposed, they do not have a systematic process, which is what

POAD proposes. Fig. 10 presents the POAD process overview.

POAD uses so called constructional design patterns. They represent design

components in the application design. Constructional design patterns can be glued

together because they are object oriented patterns, have interfaces for composition

and their solution has a class model of collaborating classes. This thus excludes the

composition of patterns which do not have a class diagram.

Yacoub and Ammar view technical design patterns as building blocks that solve a

particular problem. The requirements of an application are transformed into

conceptual components. Once the problems of the applications have been written

down and assigned to conceptual components the patterns are applied like building

blocks. A system in POAD consists entirely of technical design patterns.

POAD presents pattern diagrams at different levels, allowing tracing back and

forth between diagrams at a higher or lower level. The visual representation is viewed

as essential to understand the role patterns play in development. Examples of these

pattern diagrams can be found in appendix 7.2.

Yacoub states that although they describe their process in a linear fashion,

incremental and iterative development is encouraged. Iteration is made possible

because POAD documents all steps.

After the design process POAD follows a traditional object oriented detailed

design process and implementation.

Two interesting additions are

• the identification of an acquaintance process

during which a developer acquaints himself with available solutions to use, this is

something we can relate to Functional Design Patterns because the existence and

a global idea of what the pattern does should be know by the designer.

 22

• merging similar responsibilities

The initial class diagram is transformed into an optimised diagram. Because all

patterns are selected and instantiated without looking into details, it is probable

that there is some overlap. Designers might implement Observer patterns

multiple times. The abstract Observer class can thus be shared. Next to overlap

there will be classes which are very trivial responsibilities. These can be merged.

Using either pattern documentation, application specific documentation or by

studying pattern relationships the designer finds classes that can be merged.

Fig. 10 Pattern Oriented Analysis And Design overview adapted from [2]

 23

3.2 Software Reuse With Analysis Patterns

Geyer-Schultz and Hahsler [13] suggest using patterns in the analysis phase of

software development because it has the potential to reduce development time

significantly because reuse is introduced early on in the process and the interface

between the analysis and design phase is improved.

Fig. 11 Analysis patterns in the software development process

Fig. 11 shows the main tasks where analysis patterns contribute to software

development.

• Analysis patterns speed up modelling of abstract analysis models by providing

base models with examples and their limitations

• Analysis patterns facilitate the transformation of the analysis model to the design

model.

Geyer-Schulz stresses a consistent format for describing analysis patterns, in

contrast to Fowler’s free form [11].

They also mention that a key challenge is establishing a common vocabulary

between authors and users of patterns. A common vocabulary is important to achieve

efficient communication.

Geyer-Schulz start off with a desire to create a simple application. This

application is turned into an analysis pattern. At the beginning of each new project the

analysis pattern is used as the base. Gradually the analysis pattern is extended because

the bigger projects need more functionality.

The abstraction of an analysis pattern from an executed project so it can be

reused in subsequent projects after which the original pattern is updated is very

similar to Functional Design Patterns. The challenge of a common vocabulary was

also mentioned in the interviews with Quinity designers.

3.3 Pattern Driven Analysis And Design

Hamza and Chen [18] base their design method on POAD but state that it can be

improved upon by using analysis patterns, just like Geyer-Schultz. PAD uses analysis

patterns to develop an analysis model for the problem at hand which is then

 24

transformed into a design model using design patterns. This is the basic idea which

was explained in the previous section.

Fig. 12 PAD Design method

The problem the software should solve is decomposed into sub problem using

existing analysis techniques. A solution for every sub problem is sought for in an

Analysis patterns repository. These analysis patterns are integrated to an analysis

model. Details on how this is achieved are not given. The relations between classes in

the analysis model are annotated and based on these relations design patterns groups

are selected from a design pattern repository. Patterns within groups are studied to

select the best suitable ones. From this a so called Analysis-Design diagram is

developed. The design model can be obtained by adding the detailed design of the

design patterns to the model.

Hamza does not elaborate on the proposed method in detail. The essence is that

the transformation from problem decomposition to design model is aided by using

core concepts from analysis patterns. This is a useful idea in the light of Functional

Design Patterns.

3.4 Building Software With Patterns

Buschmann [4] states that next to pattern specific implementation details we need

general guidelines to construct pattern based software. What is lacking in the current

software architecture field is the answer to the question how we can combine

technical design patterns into partial or larger structures.

The application of patterns he says, is not a mechanical task. Experience is

needed to compose them to large structures in a meaningful way. Guidelines to help

us do this cannot be simple two-line answers, they need structure. Every guideline

describes its context, the problem, a solution and a clear example. This structure

makes the guidelines patterns themselves.

Buschmann presents eleven of these patterns of pattern based software

development. Each pattern makes most sense when used in the context of the patterns

 25

that precedes it or the one that it completes and are overall very dependent on each

other. Therefore the eleven patterns together form a pattern language.

Fig. 13 Pattern language of pattern based software development

The most important pattern is Piecemeal growth. This outlines the overall process

for the construction of software using patterns. The software architecture grows by

using top-down refinement and bottom-up refactoring until it is complete and

consistent.

Architectural vision defines the systems baseline architecture, this step uses

analysis- and architectural patterns that help with the specification.

Step-wise refinement describes how to resolve design problems by detailing and

extending a given software architecture. This is the top-down process from piecemeal

growth.

Refactor instead of large lump design elaborates on how to continue when a

design solution does not fit with part of an existing design. This is the bottom-up

process of piecemeal growth.

Stable design center talks about specifying an extensible design with the help of

patterns.

Plan for growth describes how we can prepare a software architecture for its own

evolution.

Component-oriented legacy integration shows how to take advantage of design

patterns when 3
rd
 party components have to be integrated in the software architecture.

Enforce architectural vision supports the application of global design principles

in every part of the software architecture.

One pattern at a time helps with combining several patterns which together

should define the design of a specific part of the system

Design integration precedes implementation introduces a way to implement a

pattern in a given architecture.

Merge similar responsibilities combines multiple patterns which have similar

responsibilities.

As for the actual selection of patterns he refers back to his own work, Buschmann

[5] which presents the basic steps for pattern selection, these are very useful and

applicable to Functional Design Patterns as well.

 26

Buschmann [5] states that patterns can be stabilised further by extending the list

of known uses whenever it is applied successfully. The more known uses, the higher

the chance a functional designer will identify it in the analysis phase of a subsequent

project.

The overall pattern based development process presented by Buschmann is an

evolutionary process and he states that it will not work in a waterfall-like process

model. It is not an entirely new way of development; instead it complements existing

approaches with respect to the use of patterns. The only really new addition to

existing models is the definition of a baseline architecture at the start of development,

even before the specification of the detailed domain model. To integrate this into

software development models we can simply add the creation of a baseline

architecture right after the requirements analysis phase.

Another condition introduced by Buschmann is the need for a software architect.

The Architectural vision cannot be defined by all developers; rather it is to be thought

up by one individual with vision. This has to be an experienced developer with

overview of the entire system as well as insight into specific needs. The defined

baseline architecture and vision need to be communicated to the developers that

develop individual parts and in the end integrate them to a consistent whole.

3.5 Discussion

The presented integration methods all provide valuable insights to reuse patterns

in software development. Although different in their setup there are a few common

elements and features of the methods that we will keep in mind for the design of the

method for incorporating Functional Design Patterns in the software development

process.

Focus On Technical Aspects

The presented methods heavily focus on technical aspects of design. They go

directly to class diagrams from requirements without creating a functional design.

Class diagrams seem to be the desired end result, this only partially holds for

development using Functional Design Patterns.

Acquaintance

Yacoub identified a process in which the designer gains knowledge about

existing patterns and the presented solutions. We feel this is important for Functional

Design Patterns as well.

Visual Representation

The pattern integration is illustrated using UML in most cases. We believe a

visual representation like POAD tries to push is not feasible for large administrative

systems, a larger structure cannot be shown without cluttering. It is known that

humans can only keep 7±2 things in their immediate memory [25]. Therefore a

 27

diagram of the entire system does not seem as useful. Instead, difficult parts of the

system may be elaborated on in more detail.

Another reason why the visual representation of pattern composition is not

applicable to Functional Design Patterns is because these patterns are not black boxes.

It is not possible to accurately define their input and output. We actually tried this

during our research but found that composing Functional Design Patterns is different

from applying multiple patterns. This is demonstrated in Appendix 7.3.

No Influence After Requirements And Design Phase

Most methods stop after the design phase this means that no hints concerning the

rest of the phases can be extracted.

Merge Pattern Responsibilities After Applying

Both POAD and “Building software with pattern” show that patterns can be

merged to reduce overall complexity of class diagrams.

Incremental Design

All approaches reviewed show that reuse is an incremental and iterative process,

nothing is built perfectly in the first attempt and during development unforeseen

requirements will certainly arise.

Common Vocabulary

The importance of a common vocabulary is stressed solely by Geyer-Schultz

[13]. We think this is because technical design is closer to code, where analysis

patterns are closer to natural language.

Minimal Impact On Current Development Methods

Currently existing development methods can largely stay intact in all cases.

Pattern integration although difficult, in essence just introduces a few more steps in

the software development process. This is something we also want to achieve.

Radically changing the current development process is not desired and not feasible.

Conceptual Decomposition

All methods decompose problems into smaller concepts. This helps when

tackling difficult issues and shows where reuse is possible. Hamza and Geyer-Schultz

use analysis patterns to transform the problems into a design model. This idea is

applicable to Functional Design Patterns as it will probably be easier to recognise

patterns when the problems are clearly divided.

Systematic But Not Mechanical

Buschmann describes problems and solutions but does not provide exact

procedures to follow. We believe this way of describing is suitable for Functional

Design Patterns as well. A guideline is something completely different from a rule.

We do not want to restrict freedom; we want to provide useful information without

imposing an extra burden on designers and developers.

 28

A Complementary Process

POAD build software systems from patterns only, they seem to forget that

occasionally patterns are not applicable at all. POAD assumes all the conceptual

problems we decompose the system in can be solved by patterns. We do not think a

system can be built entirely from Functional Design Patterns, especially when the

pattern repository, which at the time of writing is not that extensive, does not cover all

domains. Therefore the method should be complementary to the existing process.

Pattern Selection

Buschmann [4] refers to himself [5] for pattern selection techniques. The general

guideline is to pick the pattern that best matches the problem description with the

least liabilities. A mathematical approach to decide between patterns has been

proposed by McPhail and Deugo [24]. This is a method which uses weighted criteria

to evaluate which pattern deserves preference over another pattern. In a real life

situation however finding criteria to evaluate on is as hard as selecting the right

pattern.

Intrinsic Analysis Patterns

Analysis patterns are already contained in Functional Design Patterns because the

core concepts together with the data model are in fact analysis patterns.

3.6 Criteria

Resulting from the discussion and state of the practice we can state the desired

properties and criteria a method to incorporate Functional Design Patterns in software

development should fulfil.

C1. Clearly phased
Because the method will be integrated into the existing development method,

which is divided in clear phases, the new method should also have this

property. It should be clear which contribution Functional Design Patterns

have in which phase.

C2. Systematic but not mechanical

Although it should be clear which parts of a Functional Design Pattern can

be used; developers should retain a certain amount of design freedom, they

are not robots.

C3. Clear division of tasks
To avoid confusion about responsibilities the new method should clearly

define who is responsible for which activities.

C4. Facilitate communication

The new method should make the communication between designers as well

 29

as designers and clients easier. In this thesis we will solely focus on the

common vocabulary.

C5. Systematic pattern recognition

The method should support systematic pattern recognition. To apply patterns

we first have to be able to recognise them. A systematic way of doing this is

necessary to allow even novice functional designer to recognise them, albeit

somewhat slower.

C6. Pattern combining

A structured approach to combining multiple patterns should be included.

Currently such an approach is identified as lacking by functional designers.

C7. Complementary method

The existing development method should largely stay intact. The new

method should be complementary to the existing method, when no patterns

can be applied it should be possible to follow the normal development

method.

 30

4. Systematic Reuse Of Functional Design Patterns

This chapter defines a systematic approach to reuse Functional Design Patterns in

software development. The method we present is developed with the criteria from

chapter 3 in mind. The first section explains the prerequisites that we assume for the

method to be applied successfully. Next we give a short overview and a graphical

representation of the method. The fourth section describes the process of developing

information systems with the incorporation of Functional Design Patterns in detail.

The process is demonstrated using a fictional case depicting the development of an

online banking system in the last section.

4.1 Prerequisites

For the method to be applied successfully the following assumptions are made.

• A pattern library with Functional Design Patterns is available.

This can be anything from a book with patterns, to a folder with documents. In

the described process any of the above is called a pattern library to keep things

generic.

• It is known how patterns are created and supported. The focus of the method that

is defined in this chapter is on the reuse of patterns. The creating and supporting

activities are thought of as the basic building blocks for the described process to

work.

• A standardised pattern structure. The assumed setup of the structure of a

Functional Design Pattern is the following.

Fig. 14 Assumed Functional Design Pattern Structure

 31

4.2 Outline

The overall process is based on the current Quinity development method, with

the addition of the acquisition phase. Each phase is introduced here briefly.

Functional Design Pattern parts (from Fig. 14) are written in an oblique font.

Acquisition

In the acquisition phase we try to detect Functional Design Patterns as early as

possible so we can adjust the quotation based on Estimation details. The recognition

of patterns in this stage is solely for those with plenty experience in the use of

Functional Design Patterns. When the acquisition phase has been completed the next

step is the requirements phase.

Requirements

This phase is divided in the actual gathering of requirements in client sessions

where we make use of the Core concepts of Functional Design Patterns to streamline

communication with the customer. From the requirements we distil the information

functions the system will support. We group these into conceptual problems which

together make up the conceptual architecture. Each conceptual problem is matched

against the pattern repository to find applicable patterns.

Functional Design

In the Functional Design phase we deliver a document which contains a

description of the information functions, the way end-users will interact with these

and the conceptual data model. We copy the applicable Information function segments

parts of Functional Design Patterns to the functional design document and adjust them

where needed. The data model is obtained by applying the Data patterns from

Functional Design Patterns. Interaction patterns are applied on the mock-up to show

the way users will interact with the system.

Realisation

 The Technical details given in Functional Design Patterns are integrated in the

technical design. When the technical design is completed the system is implemented,

making use of the Implementation details in the patterns.

Usage And Maintenance

When the entire information system is accepted by the customer, the technical

designers report their experience to the functional designers which in turn update the

Functional Design Patterns. New patterns may be found during development as well,

these are documented at this time. This brings us in the stable state in which request

for change take us back to a new requirements phase.

 32

4.3 Visualising The Method

To visualise the process we use the Artefact Dependency Graph notation as

presented by Tekinerdoğan [39]. This model shows the dependencies of the artefacts

developed during the execution of the software development process.

The entire process is graphically represented in Fig. 15. In the graph every node

represents an artefact and every arrow a dependency. Node A� Node B means that B

needs A, or can only be produced after B. Every dependency has an accompanying

rule associated with it. Every rule has one or more persons responsible for the rule.

This is denoted as Person : Rx.

The gray nodes represent the parts from Functional Design Patterns as shown in

Fig. 14.

In addition to the graphical representation of the method we also included a table

for your convenience. The table contains the same information represented in a

different format. The tabular process outline is given in Table 1.

 33

Fig. 15 Activities, responsible roles, and involved FDP parts in the method

 34

Table 1 Process Outline

Involved Roles Activities FDP artefacts

involved

Rules

Acquisition

• Customer

• Experienced

functional

designer

• Deliver system description

• Analyse the system description

for recurring functionality

• Check cost and planning

experience in Functional Design

Patterns

• Create cost and planning

estimates for Quotation

• Communicate basic analysis to

functional designers

• Estimation

details

R1...R5

Requirements

• Customer

• Functional

designer

• Gather Requirements

a. Acquaint with patterns

b. Establish A Common

Vocabulary

• Create A Conceptual

Architecture

a. Derive information

functions

b. Decompose In

Conceptual problems

• Find solutions for conceptual

problems

a. Recognise patterns

b. Select patterns

• Core concepts R6...R10

Functional design

• Functional

Designer

• Decide Between Candidates And

Variants

• Describe the information

functions

a. Copy and refine core

concepts (Optionally

rename to clients

preferred terms)

b. Use Prescribed diagram

style

c. Copy, Combine and

refine information

function segments.

• Develop the data model

a. Create basic model

b. Sort patterns in order of

importance

c. Apply one data pattern

at a time

d. Merge similar

responsibilities

e. Return to information

functions

• Core concepts

• Diagram style

• Information

function

segments

• Data pattern

• Interaction

pattern

R11...R16

 35

f. Extend with pattern

independent entities

• Develop the mock-up

a. List information

functions to be

supported visually

b. Check Functional

Design Patterns for

interaction patterns

c. Apply interaction

patterns during design

• Deal with open issues in patterns.

• Document used patterns for

technical designer

Technical design

• Team leader

• Technical

designer/

Software

engineer

• Divide functional design

• Write the technical design for a

specific part

a. Check technical design

details in patterns

b. Assess advantages of

copying versus

referencing

c. Refine technical design

details in the technical

design

• Develop software using

implementation details

• Merge the technical design parts

• Technical

details

• Implementation

details

R17...R23

Acceptance testing

 Only indirect influence -

Usage and maintenance

• Technical

designer

• Functional

designer

• Evaluate on the use of patterns in

this project

• Update the pattern library

• Modified

sections

R24

 36

4.4 Acquisition

The starting point of any project is its acquisition. Recognition of Functional

Design Patterns is reserved to experienced functional designers who already have the

knowledge and know-how to recognise the patterns from only a basic description of

the systems purpose.

Fig. 16 Dependency graph for acquisition phase

Table 2 Rules and activities in acquisition phase

Rule Person Involved activities

R1 Customer Deliver system description

R2 Experienced functional

designer

Analyse the system description for recurring

functionality

R3 Experienced functional

designer

Check cost and planning experience in

Functional Design Patterns

R4 Experienced functional

designer

Create cost and planning estimates for

quotation

R5 Experienced functional

designer

Communicate basic analysis to functional

designers

For every Functional Design Patterns that is recognised we can view the most

recent cost and planning estimates and accompanying real figures and results.

Comparing the estimates with the results to adjust the new estimate allows for more

accurate cost and planning estimate. This will position the organisation better in the

eyes of the customer.

It is important that this basic analysis is not lost between this phase and the next

when we continue with the next step because obviously we want to optimise

efficiency.

The impact of recognizing relatively small Functional Design Patterns like the

sorting and displaying of entities in a SearchList [33] is lower than the impact of

detecting a Workflow pattern in this phase. The difference is the complexity of the

functionality described. Workflow can be a complex matter, but knowing that it has

been done before and a pattern exists reduces the risk of creating incorrect estimates.

Whereas sorting of entities is not really complex, it is just nice to have a default way

of doing it.

 37

Requirements

In the requirements phase the use of Functional Design Patterns is intertwined

with gathering the requirements, analysing these and determining the Functional

Design Patterns that will be used in the functional design. This section explains the

steps to take.

Fig. 17 Dependency graph for requirements phase

Table 3 Rules and activities in requirements phase

Rule Person Involved activities

R6

R7

Customer;

Functional

designer

Gather requirements

• Acquaint with patterns

• Establish a common vocabulary

R8 Functional

designer

Derive desired information functions from requirements

specification

R9 Functional

designer

Decompose in conceptual problems to create a

conceptual architecture

R10 Functional

designer

Find solutions for conceptual architecture

• Recognise patterns

• Select candidate patters

We will now discuss these activities in detail.

4.4.1 Gather Requirements

The first step in the analysis phase is obtaining the requirements from the client.

Acquaint With Patterns

Before diving in to the requirements gathering sessions at a client a functional

designer should at least get himself acquainted with the patterns that:

• were discovered in the acquisition phase

• available patterns in the clients domain

Due to the fact that a pattern library is always under development it would be a

good ideas to revisit the acquaintance process for every new project, just to be sure

the designers are equipped with the latest information. Although a quick grasp of the

pattern library is useful, it is not desirable to study each and every pattern in the entire

library [2].

Keeping the focus on the sections of the Functional Design Pattern that describe the

essential problems they solve and the core concepts that are explained is the best

tactic.

 38

4.4.2 Establish A Common Vocabulary

At this point the functional designer has basic knowledge of the patterns and has

studied the core concepts. It is exactly these concepts that help to structure the

requirements and design sessions at a client. The usage of the core concept section of

Functional Design Patterns gives the functional designer the ability to detect concepts

in the current project and at the same time prevent us from drawing the wrong

conclusions. The result is a better analysis that will result in a better design as well.

There are two options; both with their own trade-offs.

• Option A Explain Functional Design Patterns and the used core concepts

In this case the designer explains the client about the existence of Functional

Design Patterns and the core concepts discovered in previous projects.

At the time of writing it is not clear when to use a term from the client’s

vocabulary and when to use the developers preferred term. In practice a common

vocabulary evolves from combining client terms and developer terms.

• Option B Refrain to tell clients about Functional Design Patterns

In this case the designer adapts to using the preferred terms of the client and later

on in the functional design document create notes and references to the core

concepts of a Functional Design Pattern that were actually meant. This could

possibly result in miscommunication later on in the project.

Option A is the preferred option, because it lowers the risk of miscommunication.

Although there might be times that a client is not willing to cooperate.

4.4.3 Create A Conceptual Architecture

To discover Functional Design Patterns to be applied we first need to define a

conceptual architecture of functional problems the information systems is made up of.

The functional designer should create the conceptual architecture by:

• Derive information functions from requirements

• Decompose the system in conceptual problems

Derive Information Functions

Deriving information functions is done by analysing every requirement for verbs

and nouns which indicate actions to be taken by end-users of the system. Obviously

deriving information functions is not totally straightforward, it takes experience to

find all information functions.

Decompose In Conceptual Problems

Using the information functions as our input we look for functionality problems

that need to be solved. The conceptual functionality problems are identified by

analysing the information functions for similarity and then group them. The

decomposition creates manageable pieces of functionality whose core problems

corresponds to pattern problem descriptions therefore allowing for better recognition

of patterns.

 39

4.4.4 Find Solutions For Conceptual Architecture

At this phase of development we have the conceptual components and want to

select patterns that will solve our functional problems.

Recognise Patterns

Not all conceptual components may correspond to a Functional Design Pattern.

Some components might capture functionality which is encountered very rarely, thus

no pattern is available. Other components might easily be recognizable as suitable for

Functional Design Patterns. Recognizing that a pattern might be applicable is made

easier by translating our requirements into the conceptual architecture. Luckily we

can also systematically query the pattern repository for each conceptual component to

find Functional Design Patterns, although slower it is a sure and safe path to succeed.

Select Candidate Patterns

The steps to select a candidate pattern are the following:

• Specify the problem

We have already done these steps in the previous section where the main

problems were captured in the baseline architecture.

• Select the pattern level and domain

Functional Design Patterns are defined at multiple levels. Determine if the

conceptual component is an aspect or domain level pattern. Ask the questions:

a. What do I want to do? This is the aspect level

b. Where do I want to do this? The answer is the domain

• Select the sub domain

Selecting the problem’s domain narrows the scope and also ensures that the

patterns are made more specific for the current problem. When selecting the

domain “insurance” for example, there may also be sub domain patterns defined

like “car insurance” and “life insurance”. When hesitant about including a pattern

in the candidate set, just add it. It can always be discarded later. Compare

problem descriptions

With the set of candidate patterns, the designer should compare the core concepts

of the Functional Design Pattern with the problem description to determine if the

pattern matches the problem at hand. This process can be sped up if a special tool

is available that supports searching and matching problems descriptions with

problems.

• Expand search domain

When there are no patterns in the selected domain we have to expand our search

area. Some functional problems are not domain specific and some domains do

not have any patterns (yet). These patterns should be searched either at the aspect

level or at a nearby domain.

 40

4.5 Functional Design

The purpose of the functional design phase is to develop a functional design of

the information system. In this step in the design we not only regard the candidate

patterns as black boxes that solve a functional problem but also open it to see the

pattern internals.

The Functional Design section of a Functional Design Pattern, Fig. 5 (p. 14) is

divided in multiple sections itself. These sections will also be reflected in the

functional design. In short the actions to take are shown in Table 4.

Table 4 How elements of a Functional Design Patterns should be used

Element Action

Core concepts Copy & refine

Diagram style Use

Data model Copy & refine

Information function segments Copy, Combine & refine

Interaction diagrams Apply in design, no direct copy

Fig. 18 Dependency graph for functional design phase

Table 5 Rules and activities in requirements phase

Rule Person Involved activities

R11 Functional

designer

Decide between candidates and variants

R12 Functional

designer

• Copy core concepts, refine when needed

• Optionally rename to clients preferred terms

• Use prescribed diagram style

R13 Functional

designer

Copy, combine and refine information function segments

R14 Functional

designer

Develop the data model

• Create basic model

• Sort patterns in order of importance

• Apply one data pattern at a time

• Merge similar responsibilities

 41

• Return to information functions

• Extend with pattern independent entities

R15 Functional

designer

Develop the mock-up

• List information functions to be supported visually

• Check Functional Design Patterns for interaction

patterns

• Apply interaction patterns during design

R16 - Combined result is functional design

- - • Deal with open issues in patterns.

• Document the used patterns for the technical designer

We will now discuss the activities in detail.

4.5.1 Decide Between Candidates And Variants
If multiple patterns are recognised to be applicable to a single functional problem

we have to evaluate each candidate pattern. The general guideline is to pick the

pattern that best solves the problem. By comparing Pick a pattern that has the most

benefits and least liabilities. Obviously if a pattern does not define its liabilities then it

is up to the analytical skills of the functional designer.

Functional Design Patterns may define variants and extensions to the basic

pattern. In particular situations some solution may be more applicable than in others.

The variants are described in the patterns and the functional designer should choose

the one that is most applicable in the current project.

4.5.2 Copy And Refine Core Concepts
A functional design needs to be a complete document that should be readable

without other documents; this is not possible without a clear description of the core

concepts. Therefore the definitions of the core concepts should be copied to the

functional design document.

If we have chosen not to enlighten the client with the core concepts, rename the

core concepts to the clients preferred term.

Not every pattern has core concepts which are “complete”. Some patterns have

core concepts that cannot be applied without defining them further. An example of

this is the workflow pattern at the aspect level [30] that defines the subject of

workflow. The project specific subject of workflow needs to be defined as a new core

concept. Furthermore the new concept might also need to be defined in the data

model.

4.5.3 Use Prescribed Diagram Style
Functional Design Patterns may define a diagram style which shows the relation

between certain core concepts. For example, the Workflow pattern describes how we

draw state transitions. We recommend to use this style in the functional design as well

because it will create uniform functional designs and reduces the workload of trying

 42

to come up with a way of representing the model with while a sufficient way has

already been developed.

4.5.4 Copy, Combine And Refine Information Function Segments
We already have the ingredients to describe our information functions in detail:

• A list of information functions

• Applicable patterns

In the functional design these need to be combined. Because the information

functions needed in the information system may consist of several information

function segments we recommend the following approach.

• Copy the list of information functions to functional design document

• Read the selected patterns to define the mapping them and the information

functions

• Copy, combine and refine information function segments

Every applicable information function provided in the pattern needs to be copied.

Because an information function is built out of information segments, we combine

information function segments from multiple patterns into a single information

function. This is shown schematically in Fig. 19.

Fig. 19 Combining information function segments

Functional DesignFunctional Design Pattern X

Information function AInformation function

segments

Functional Design Pattern Y

Information function

segments

Functional Design Pattern Z

Information function

segments

Information function B

Information function Z

...

R

P

V
S

T

Q

 43

4.5.5 Develop Data Model
An important part of the functional design is the data model. This section

explains step by step how Functional Design Patterns are integrated in the data model.

Create Basic Model

Every information system has a few entities which are the most important. Most

information functions will perform operations on the data of these entities. These

entities make up our basic model. Entities from conceptual problems for which we did

not select a pattern should also be added to the basic model. It is wise to think of

future requirements when developing the data model. Prepare the data model for

extensibility by introducing subtypes for example. A detailed explanation on how to

create the basic data model is not part of this thesis.

Sort Patterns In Order Of Importance

Patterns are applied in order of importance. Starting with the most important

pattern we incrementally refine and complete the design by replacing all conceptual

problems in our conceptual architecture one by one with the data patterns from the

Functional Design Patterns. The “most important” pattern is obviously an ambiguous

statement, open to interpretation. Guidelines for this sorting process are out of the

scope of this thesis and remain future work.

Apply One Data Pattern At A Time

We incrementally apply the Functional Design Patterns that were selected in the

requirements phase. By applying the patterns stepwise to the data model we ensure

that we only deal with one problem at a time and that the design adheres to the most

important structures the best.

Merge Similar Responsibilities

When multiple patterns are applied, overlap might occur in their objects. The

authorisation pattern and the workflow pattern both define “User”. These

responsibilities need to be merged so only one User object remains.

Return To Information Functions

The pattern internals might show concepts we did not address yet. For example,

in the authorisation pattern the users have access to information functions but the

authorisation pattern also defines “restrictions”. Restrictions define that although a

role in principle has access to an information function, there are certain conditions

under which this access does not hold. The same principle applies to the Workflow

pattern which exposes “dimensions” and “process dimensions”.

In our functional design we need to address all these remaining issues. So we

iterate to be sure we covered all issues.

 44

Extend With Pattern Independent Entities

In the previous section we found solutions for our conceptual architecture,

unfortunately there were also problems that could not be solved via Functional Design

Patterns. We should not forget to implement these pattern independent entities.

4.5.6 Mock-up Development

Functional Design Patterns should be applied during the development of a mock-

up. Functional Design Patterns define interaction patterns that should be incorporated

into the design because they give a good example of the way end-users will interact

with the system.

The functional designer should:

• List information functions to be supported visually

• Check Functional Design Patterns for interaction patterns

• Apply interaction patterns during design

List Information Functions To Be Visually Supported

Before applying the interaction patterns from Functional Design Patterns we

decide which information functions should have their information functions supported

visually by basic screen examples.

Check Functional Design Patterns For Interaction Patterns

For every information function selected the Functional Design Patterns should be

checked for interaction patterns.

Apply Interaction Pattern During Design

For every information function for which a mock-up screen is created the defined

interaction pattern is applied.

There are two types of description formats for interaction patterns

• Text

Sometimes the interaction pattern just consists of text. It is the responsibility of

the functional designer that the behaviour described in the interaction pattern is

supported by the mock-up.

• Graphics

When the interaction pattern contains graphics, these graphics probably cannot be

copied directly because a client will wish to see the pattern applied to his specific

project. The solution is to mimic the layout and apply the current project’s data.

Deal With Open Issues

This is a cross section problem which might be encountered in applying a

Functional Design Pattern. Some Functional Design Patterns documents contain open

issues which could not be solved at the time the pattern was written or they might

deliberately leave a particular design choice up to you. This is exactly what should be

done, the designer should make his own design choice. The result of a particular

design choice should be documented in the usage and maintenance phase (4.8).

 45

Document The Used Patterns For The Technical Designer

Because a functional design is used by a technical designer when it is completed

to derive a technical design, used Functional Design Patterns have to be documented.

This ensures that a technical designer will not needlessly re-invent the wheel while

trying to solve functional problems for which a technical guideline was already

created and documented in the Functional Design Pattern.

4.6 Realisation

This phase of development is concerned with the creation of a technical design

document and the actual implementation of the contents of this document. Functional

Design Patterns play an important role in speeding up the translation from functional

design to technical design and the translation from technical design to code.

Fig. 20 Dependency graph for realisation phase

Table 6 Rules and activities in realisation phase

Rule Person Involved activities

R17 Team leader Divide functional design in tasks

R18

R19

Technical

designer

Write the Technical Design for a specific part

• Check technical design details in patterns

• Assess advantages of copying versus referencing

• Refine technical design details in the technical design

R20

R21

Technical

designer

Develop software using implementation details

R22 Team leader Merge technical design parts into technical design

R23 Team leader Merge code parts in code

We will now discuss the activities in detail.

 46

4.6.1 Divide Functional Design

Although there is no strict need for the software engineer to know about

functional requirements when they implement a technical design, Lauesen [22]

showed that engineers who better understand functional requirements make better

decisions when programming software that should fulfil these requirements.

Therefore we propose the team leader should communicate the functional design

as well to the software engineers.

At Quinity this is already in effect because writing the technical design is not

done by a single person. Usually there are a number of software engineers which

create the technical design collectively. A software engineer receives the assignment

from the team leader to build certain functionality and the accompanying functional

design. The developer will write the technical design for this specific part. All these

parts are merged later on.

Functional Design Patterns have impact on the division of the functional design

document. Because we want the software engineer to work on a more or less isolated

part of the design, The team leader should take into account where and if a Functional

Design Patterns can be split and which parts should be left intact.

4.6.2 Write Technical Design

This part applies to every software engineer and is executed in parallel.

Check Technical Design Details In Patterns

As explained in the previous section the used Functional Design Patterns are

documented for the technical designer. For every Functional Design Patterns that is

mentioned in the functional design, the technical designer needs to check the

Functional Design Pattern document if specific technical details are given. These

details may include class diagrams, memory models and code snippets and the

reasoning behind them.

The technical designer should copy or reference the reasoning because they

clarify a lot for developers. These two possibilities are discussed below.

 47

Assess Advantages Of Copying Versus Referencing

There are a number of forces that should be taken into account to decide between

copying the described technical design details and just referring to the Functional

Design Pattern document from within the technical design.

• Pattern changes

If the used pattern is not final and still under heavy modifications because of

pattern design sessions it will be wiser to copy the current documentation to the

technical design.

• Amount of details

When there are only a few technical remarks, it might not be worth the effort to

create a reference. On the other hand when there are a lot of details an external

document may be better to prevent cluttering.

Refine Technical Design Details In The Technical Design

Although technical details are given, applying them in the current project will

demand further refining in most cases. This includes renaming specific attributes from

the class diagram for instance.

 The class diagram is usually a further specification of the data model from the

functional design. When creating the (or a part of) the class diagram the

recommendations from the Functional Design Pattern should be followed

4.6.3 Develop Software Using Implementation Details
The software engineer actually implementing the technical design is usually the

same person who wrote the part of the technical design. The software can be

developed by programming as done normally but the code should be implemented

keeping the implementation details as mentioned in the technical design in mind.

4.6.4 Merge Technical Design Parts
After the implementation of a technical design part, the team leader should merge

the parts into the complete technical design document.

4.7 Acceptance Testing

Functional Design Patterns are of limited use during acceptance testing. Their

influence is indirect. Functional Design Patterns indirectly guide testing because the

way the software should behave when implemented correctly is described in the

Functional Design Patterns which are combined in the functional design. The

incorporation of patterns to develop a functional design will probably reduce the

amount of errors that will be found during testing, because the patterns describe

proven efficacious methods.

 48

4.8 Usage And Maintenance

The last phase of the development cycle of the information system is the actual

usage by the client.

Fig. 21 Dependency graph for usage and maintenance phase

Table 7 Rules and activities in usage and maintenance phase

Rule Person Involved activities

R24 Team leader;

Functional

designer

• Update the pattern repository with project experience

We will now discuss the activities in detail.

4.8.1 Update the pattern repository with project experience
There are a number of possibilities that may have occurred during the execution

of a project:

• Functional Design Patterns were chosen during analysis and design but their

usage did not bring about the intended result.

It is important to document the experience within the pattern

• A perfect fit with chosen patterns was achieved

Next to documenting negative aspects, like when not to use the pattern it is also

vital to note when a pattern can best be applied. The more known uses, the higher

the chance a functional designer will identify it in the analysis phase of a

subsequent project.

• The used patterns were altered

The implementation that was built using Functional Design Patterns may have

altered the pattern to better fit the need of the specific project.

In this case it is wise to update the pattern library, maybe a domain level pattern

can be distilled from the alterations.

• No patterns were implemented. If this is the first time a project was executed in a

particular domain, it is to be expected that no patterns were available to guide

functional design. This is the time to try and extract new generic functionality

and develop a new Functional Design Pattern.

This concludes the software development process using Functional Design Patterns.

After the deployment of the application, the client will definitely come up with

 49

request for changes and new features; these will cause the entire process to be

restarted. A new cycle will begin.

4.9 Example Of An Online Banking System

In this section we demonstrate some phases of the method we just described on a

fictitious example of an online banking system.

4.9.1 Acquisition

For the acquisition phase we describe which functionality can be recognised by

an experienced functional designer.

Suppose we have been given the assignment:

“Develop a very basic online banking system for client X”

The assignment is accompanied by the following case description:

“The banking system should support multiple users: customers, managers and

tellers. Customers can login to view their own accounts. They are able to view the

transaction history and to execute new transactions, like transferring money from one

account to another. Bank tellers can do these transactions for every customer.

Transactions are not executed directly because they need to be approved first. On top

of this bank managers can add new accounts and remove superfluous ones.”

We have to be able to tell the client if we want to accept the assignment. To do

this we have to know which kind of complex requirements we can anticipate and how

much time they will cost to implement.

When we analyse the case description an experienced designer might see the

following concepts:

• Functionality discriminated for multiple users

• A flow of a transaction object.

Using only these statements it is already quite possible to recognise functionality

that has been built before. Functionality discriminated for multiple users is something

which returns in a lot of administrative applications as well as workflow.

An experienced functional designer will recognise this functionality as

Authorisation and Workflow. He should check the latest information regarding the

time it costs to implement this functionality in the respective Functional Design

Patterns.

 50

4.9.2 Requirements
From the requirements phase we demonstrate how gathered requirements are

transformed into a conceptual architecture which in turn results in a set of candidate

patterns.

Gather Requirements

The results from the requirements sessions at clients result in the following

requirements (Table 8). Requirements are denoted as Rx

Table 8 Requirements for the online banking system

Requirement Description

R1 The system is accessible online

R2 The system supports multiple users. Initially the system has three

types of users: customers, tellers and managers.

R3 Every user must login before having access

R4 Each customer can have multiple bank accounts.

R5 Customers are able to view their transaction history

R6 The transactions can be searched and sorted

R7 Customers can transfer money from their own account to another

account. This also includes transfers between their own accounts.

R8 Customers can edit or delete previously declined transactions.

R9 Tellers can do everything a customer can, but for every customer

account.

R10 Tellers can approve or decline transactions.

R11 Managers can do everything a Teller can.

R12 Managers can add new accounts

R13 Managers can delete accounts

R14 No transaction is executed immediately. Transactions need approval

of Tellers.

R15 Cancelled transactions are not deleted, but may be altered by

Customers.

Conceptual Architecture

Next we analyse these requirements and create a conceptual architecture that will

serve as a starting point for the functional design.

The first step is deriving information functions from the requirements. R3, every

user has to login to have access to the system defines the information function

“Login”. Iterating over Table 8 results in Table 9. Recognise that because Tellers can

do the same actions as a Customer although for every Customer, a list of customers

will be needed so a Teller can select a customer (IF12).

Information functions are denoted IFx.

 51

Table 9 Information functions for the online banking system

Information

function

Description

IF1 Login

IF2 View transaction history

IF3 Search transaction history

IF4 Sort transaction history

IF5 Approve transaction

IF6 Transfer money

IF7 Edit declined transaction

IF8 Delete declined transaction

IF9 Add account

IF10 Delete account

IF11 View account overview

IF12 View customer overview

IF13 Search customers

IF14 View transaction

Conceptual problems are found by grouping similar information functions from

Table 9. We see multiple information functions for accounts which can be grouped as

“account management”

Multiple information functions work on transactions as well. Add and deleting

transactions are basic actions that are grouped as “transaction management”

Approve and decline though, are no basic actions on an entity, when we think

about it, they do nothing more than change the state of a transaction, it is either

declined, or accepted. This delivers a new conceptual problem “status tracking”

As can also be seen from Table 8, customers, tellers and manager cannot perform

the same functionality within the system we will also need some kind of functionality

that manages this. Functionality concerning logging in users is not part of this same

group, because authorisation and authentication are two different problems.

Multiple views need to be presented for example account overviews and

transaction history. All views need the same search and sort functionality. This can be

grouped as the conceptual problem “search and sort multiple views”

The different users of the system are not conceptual components themselves

because they are not responsible for actions within the system, the can execute them,

but organisational responsibility is left outside of conceptual components.

We derive the conceptual architecture by creating a diagram of the conceptual

problems

 52

Fig. 22 Conceptual architecture for the online banking system

Online banking

Search and sort

multiple views

Track

transaction

status

Manage rights

of multiple

users

Account

management

Transaction

management

Authentication

To demonstrate the selection of patterns we return to the online banking case.

The domain for this project is banking for every conceptual problems, this might be

different when a project spans multiple domains. We match the conceptual problems

against our pattern library.

• Manage rights

The problem is that we need multiple users who have different relations with

accounts and transaction. The pattern aspect level can be classified as “security”

or “authorisation”. In this area we find the “authorisation” [3] pattern.

Its description reads: “describes the common elements in administrative

applications where not every user is allowed to execute the same functions”

We add this pattern to our candidate set.

• Authentication

The problem is letting users login to the system. The pattern aspect level can be

classified as “security”. Unfortunately there is no pattern yet which describes a

general solution for this problem. The Authorisation pattern does not include

functionality for logging in users. Therefore this conceptual problem will need to

be solved using normal functional design.

• Account management

The problem is creating and deleting accounts. The essence is the creation and

deletion of an entity. Although a functional problem in the domain of banking, is

really an aspect level problem. The current pattern library does not contain a

functional design pattern at the domain level, but does provide an aspect level

pattern: Entity Management [32].

• Transaction management

Similar to account management, the Entity Management pattern applies here.

• Transaction status tracking

The problem identified here is status tracking (where accept and decline

manipulate this status).

The pattern categories might be status tracking or transaction management.

Unfortunately there is no pattern available in this domain and sub domain, that’s

why we look at the aspect level. This is where we find the “workflow” pattern

 53

[30]. Its description reads “An entity in an information system passes through one

or more states while multiple users treat the entity each from their own role (…)”

A perfect match, we add this pattern to our candidate set.

• Search and sort multiple views

The problems to be handled, searching, sorting of multiple entities are not

particularly domain bound. We look at the aspect level for “search” or “display”

or “sort” We can select the Functional Design Pattern “SearchList” [32] which

handles these problems.

In this section we gathered requirements, analysed them and demonstrated the

use of the pattern selection technique. We ended up with a candidate set of Functional

Design Patterns which is passed on to the next phase of developing, the functional

design phase.

Fig. 23 Selected patterns to solve conceptual problems

 54

4.9.3 Functional Design
From the functional design phase we demonstrate how a data model can be

developed by applying the patterns in order of importance and give an example of

mock-up development.

Data Model

First we develop the basic data model. A customer can have multiple accounts

which in turn can be associated with multiple transactions. The arrows denote a

foreign key relationship.

Fig. 24 Basic data model

Now we apply the patterns in order of importance. We feel workflow is the most

important pattern because it is responsible for transaction management. A banking

system is nothing without transaction management. Workflow defines a subject and a

subject status. The subject of workflow is the transaction. The only thing we need to

add here is a transaction status.

Fig. 25 Data model with workflow applied

The next Functional Design Pattern to be applied is the Authorisation pattern.

This pattern has considerable impact on the data model.

 55

Fig. 26 Data model extended with authorisation

pattern

User Role

Role
InformationFunctionGroup

InformationFunction
Group

InformationFunctionGroup
InformationFunction

InformationFunction

ContextRestriction Condition

ContextRestriction

Condition

Customer Account Transaction

Transaction

Status

The third pattern that should be applied is the SearchList. The SearchList pattern

does not contain any implications for the data pattern. The same goes for the Entity

Management pattern.

After applying the patterns we should continue adding remaining entities that

were not solved yet. In our case this was the Authentication part. This does not

require a new entity, because login functionality can be part of the User entity.

Mock-up Development

For our banking system we would like to show an example of the way end-users

will see their accounts history. The information functions from Table 9, Show

transaction history is contained in the conceptual problem “search and sort” multiple

views, which is solved by the SearchList pattern. We apply this pattern by mimicking

the layout provided in the pattern.

Fig. 27 Mock-up example with SearchList applied

 56

4.9.4 Realisation

From the realisation phase we give a short example of writing the technical

design.

Technical Design

The team leader distributes the functional design amongst developers. Suppose

we as a developer, get assigned to the status tracking information functions.

In the functional design it is documented that this functional problem can be

solved using information from the Workflow pattern. When we open this pattern we

see that a class diagram and technical details have already been defined.

We assess between copying and referencing the reasoning about the details by

concluding that the workflow pattern is already quite old and will not be updated or

changed that much, therefore the risk of including outdated information is not that

high. Also the amount of details is quite large, so we choose to reference the details

instead of copying them.

The class diagram is copied and adapted to the online banking case. Please note

we do not have a figure here because the workflow pattern is an internal document

and the class diagram is not available publicly.

 57

5. Validation

This chapter validates the method from the previous chapter by comparing it with

the criteria developed earlier, matching it with experiences of functional reuse at other

software development companies and by evaluating it with the opinion of Quinity

designers.

5.1 Approach

Validating the method we are faced with a dilemma. We want to validate if the

method would work in practice but due to time constraints a real evaluation is not

possible.

Validating the method would require a test and control situation where similar

projects are executed where one of the project teams makes use of the method and the

other does not. Such a test and control validation would show if the method improves

the incorporation of Functional Design Patterns; identifying where the method can be

further improved. Unfortunately to executing such a validation in the context of this

master thesis would demand an unfeasible amount of effort and time.

As an alternative we validate the method by

• Case studies at external companies

The objective of the case studies is to find out how reuse of functionality is

tackled outside of Quinity. We interviewed four external companies and enquire

about their experience with functional reuse. The interview questions can be

found in appendix 7.1.

• Designer opinions

We let a functional and technical designer, who just finished a project using a

Functional Design Pattern, compare their approach with our proposed method to

find possible additions.

• Comparison with the criteria

Lastly we compare the method to our original criteria to determine if the

objectives have been met. This provides a certain validation the case studies

cannot.

 58

5.2 Case Studies

Because the method that was developed in chapter 4 could not be used in real

world projects during the execution of this research we try to validate the method by

comparing it with (structural) reuse methods from other companies
2
.

5.2.1 Case Study One

The first case study was conducted at a large business administration software

developer. The company employs 30.000 people worldwide, 11.000 of which in the

Netherlands. The typical client can be described as bureaucratic governments and

semi governments. Although this is the typical client, the company does not

specifically target one domain.

The company tries to standardise and certify procedures, processes and wherever

possible the people who are responsible for executing them.

At the company new applications are developed but the core competence of the

company is maintaining and extending older administrative information systems. For

the development of new software a development method based on Rational Unified

Process [21] is used.

Reuse plays an important role within the company on all levels. The main reason

for reusing different software assets is they believe it ensures higher quality, less work

and better maintainability. It is not appreciated when a developer builds something

from scratch. Because the company has been involved in an enormous amount of

projects in the past, it is highly likely that certain functionality has been built or

described before.

Sometimes it happens that some functionality is built twice but this will only be

the case if the client had such different requirements that it could not be integrated in

the older package. Determining what kind of documentation should be used, when

two solutions were made for one problem is a matter of checking in which solution

the problem at hand matches best.

Reuse is implicitly embedded in the development process; there is no prescribed

method that says how and when to do it.

Most software is assembled by reusing different documents, models and

diagrams. Experts in cost estimation try to detect large pieces of functionality that has

been built before when they make the time and budget plan.

Essential in the reuse of these documents are the software architects. Each project

team has a software architect who is responsible for the composition of the initial

documentation set that is given to the software developers. He is the one that searches

2 As a disclaimer it should be noted that the views and opinions expressed by the

interviewees are not necessarily representative for the opinion of their entire

organisation.

 59

through the current documentation of older systems to see what kind of analysis,

descriptions and code templates can be reused.

 Although everything is documented, it is hard to find and possibly out of date.

The reason is the amount of releases that are done every year for each piece of

software. One system has different versions. Every version has many different

documents and each document is differentiated for multiple stakeholders.

The vocabulary of the client is used in design sessions with the client and also in

the documents that the client will see. But for the company themselves another

version of the document is created, there is a mapping between

The amount of documents is illustrated in the figure below

Fig. 28 Exponentially growing amount of documents

It should be noted that although no specific tool for searching through

documentation is offered, the architect does not stand alone. A special tool as well as

a spreadsheet with a functionality/project matrix is available. To find out where

certain functionality was used the company uses a spreadsheet. The sheet contains a

matrix that shows what kind of functionality was built in which project. This is a

useful source of information when starting a new project. Unfortunately the updating

of the spreadsheet is sometimes a bit behind because of the busy schedule of project

leaders. They are the ones expected to update this information.

The additional software tool helps the architect to guide the project in the best

way. It uses environment variables like the experience of the proposed project team,

the client and the type of project to determine the conditions the executing of the

project should adhere to. For example when a group of novice developers will work

on the project, the software will tell the architect to limit the complexity of the design

as much as possible. The tool also delivers documentation for a standard process and

recommended default solutions.

As far as the reuse of functionality is concerned we can say that it is mostly

project documentation that is reused. There are no special reuse documents created

after a project is finished, so documentation is not presented as a pattern or as bundled

information as would be the case in a Functional Design Pattern.

Reuse on code level however is done with templates. These templates should be

copied and refined where needed.

 60

There is no top management support for reuse. According to the company this is

not needed per se. Because of reorganisations the management changes, but the need

for reuse stays. Reuse is implicit, it is expected from everyone to reuse as much as

possible. The teams are responsible themselves for making the best use of available

documents.

For the combination of different documents an interesting approach presented in

the IBM book for e-business reuse [1] [19] is used. This is an “outside in” method that

defines a linked system of patterns from the high to the low level. IBM defined

business patterns that identify the interaction between users, business and data.

Selecting a business pattern (for example extended enterprise) drills down to the

application level where an application pattern is selected (for example exposed

broker). The application patterns are linked to runtime patterns which define how the

application pattern can be implemented (for example via service oriented

architecture). The last step offered by IBM is a product mapping from the runtime

pattern to actual IBM software, like Websphere. This idea could be implemented for

Functional Design Patterns as well by linking related patterns.

In the opinion of the company, experience of developers is very important. A

new developer will never be able to achieve the same level of quality by just using

documentation. Reusing a template is not enough. Experience is needed for analysis

and the detection of reuse possibilities. That is why experts are used to create cost

estimates and architects for the assembly of basic project documentation at the start of

a project.

Table 10 Summary of case study one

Factor Quinity Interviewed organisation

Documentation of

functional reuse

Functionality bundled in

pattern form

Project documentation and

templates

Pattern integration in

method

The presented method Implicit reuse, outside in

combination method

Tool support None Software architect tool +

spreadsheet

Team composition Mix of experienced

novice designers

Mix of experienced novice

designers

Client Medium to large sized

Financial organisations

Large (semi)government

organisations

Vocabulary Use developer vocabulary Two or more separate

vocabularies

Company size Small (<100) Enterprise (10.000+)

Management support

for reuse

Top management support No management support

Development

Standardization

Based on DSDM RUP, Standardised processes,

certified employees

 61

5.2.2 Case Study Two

This interview was conducted at a large multinational company which has over

2500 employees in the consulting area and more than 50000 in the IT area. In the

Netherlands these figures are around 1000 and 9000 respectively.

My contact person is an executive business consultant in the unit of public

services. This unit is responsible for giving strategic advice to companies in the public

service sector. He has previously worked closely in the IT area of the company where

software for financial services is developed and recalls how he experienced working

there.

Most projects are done for the banking and insurance companies. The typical

project size is 900 function points, roughly accounting for 9000 development hours,

where gathering requirements is not counted as a development hour.

The company works in standardised ways according to CMMI. Software is

mostly written in .NET or Java for both platforms a standardised iterative software

development process based on Rational Unified Process [21] is used. The process has

the capability maturity level 3: “defined”. The company does not restrict itself to RUP

per se. When a client demands it, from time to time the linear waterfall model is used

or even extreme programming.

Documents delivered during development are all the artefacts as defined by RUP

completed with some company specific documents. The technical design is

sometimes less detailed or skipped completely. This step is more client driven, if the

client would like to see it, it is created. If the requirements specification and

functional design, and global software architecture overview are of a sufficient detail

and the code is documented thoroughly the technical design is seen as superfluous.

The company trusts its developers to be able to develop the software without creating

a technical design first.

Functional reuse in the company is done based on experience from previous

projects. It is tacit knowledge. There are no specific documents for the reuse of

functionality. Reusing functional solutions is left to the analysts and use case

developers. Reuse of technical solutions is the responsibility of the software architect.

The company trusts the employees to recognise previously encountered problems

and expects them to reuse the solutions if they were successful. The intelligence is

located with the employees, not in the documents; therefore documents will never be

able to replace experience.

The management stands behind this intelligence and will allow the creation of a

knowledge repository if one feels it is necessary to be able to finish new projects

quicker. This being said, there is no specific functional reuse incorporated in the

development processes.

My contact admits that some generic patterns like authorisation are helpful but he

claims there are not that many generic patterns. Patterns on the domain or project

level are more useful but it is hard to draw the line, you can describe everything you

encounter as a pattern, but it is not always easy to see when functionality can be

reused again. If it is in three years, why would we want to put in the effort now?

One problem with functional patterns is that combining them is hard. It is all

about a trade-off between different aspects. Using dynamic data structures in a

 62

relation database management system for example make it is possible to add or

remove attributes from an object on the one hand increases maintainability, but it

greatly increases complexity of some other aspects of information systems. For

example high performance management information or authorisation on attribute or

even data level. Composition of functional patterns is a challenge and the trade-off

will have to be made for every system again based on the client’s priorities.

Another problem with the creation of functional pattern documents as identified

by the company is that due to the fact that clients become owners of the source code,

they do not wish for their expensive solution to be sold to another company for a

lower price. They consider their software a key asset in gaining a competitive

advantage and wish to keep this position.

My contact sees a risk in trying to fit the client’s problem in a pattern. Once you

learn about a few patterns, you start to see them everywhere and apply them

excessively.

The usefulness of patterns in general depends on the way they are written and

understood by the architect. If pattern documentation is clear and unambiguous the

architect can apply them faster and in turn they will be used more.

The client’s vocabulary is used in documents and requirements gathering

sessions. When a client renames concepts from authorisation, like group to sector, this

is the vocabulary that will be used in the documents.

The list of requirements is scanned by experienced designers for functionality

that has been built before and the cost and time estimation is adjusted accordingly.

If another organisation or open source community develops a set of functional

patterns that seem useful my contact feels his company will certainly try to use it in

an attempt to gain maximum profit, but as for now they see no real point in

developing it on their own and will continue to use ad-hoc reuse.

Table 11 Summary of case study two

Factor Quinity Interviewed organisation

Documentation of

functional reuse

Functionality bundled in

pattern form

Tacit, Project documentation

and templates

Pattern integration in

method

The presented method Scan requirements list.

Combining based on trade-

offs

Tool support None Software architect tool +

spreadsheet

Team composition Mix of experienced

novice designers

As defined by Rational

Unified Process

Client Medium to large sized

Financial organisations

Mostly large financial service

providers

Vocabulary Use developer vocabulary Always use client vocabulary

Company size Small (<100) Enterprise (9.000+)

Management support

for reuse

Top management support No management support

Development

Standardization

Based on DSDM CMM level 3 for different

methods

 63

5.2.3 Case Study Three
My contact is an experienced solution architect in the field of enterprise

application integration. The company he works for employs approximately 5000

employees. The company does consultancy for the top 40 largest organisations in The

Netherlands in the financial sector, telecom but also for (semi) governments. Most of

the clients can be categorised as standardised and bureaucratic.

The day to day tasks of my contact range from business process consultancy to

the more technical aspects of software architecture.

Although the company develops custom software as well; the business unit my

contact is working in tries to minimise custom development. Instead they recommend

and implement different types of middleware solutions to integrate applications. The

goal is to reuse functionality of entire existing systems while integrating their data

exchange via an Enterprise Service Bus. The systems communicate via exposed

services; therefore this area is called Service Oriented Architecture.

As far as standardization is concerned, the company has developed its own

method to iteratively develop Service Oriented Architectures. This starts at testing if a

SOA is suitable for the organisation and goes on with developing the architecture,

planning, realizing. The method ends in a continuation phase in which the changes

made are kept up and running.

In the standard method for the development of SOA’s, functional reuse is not

integrated as a standard procedure and not enforced by management. It is implicit and

mostly done by reusing solutions seen in other projects.

The company does have some documentation that can be regarded as a reusable

artefact, the service descriptions. Services represent the functionality of the system.

The documentation of a service is reusable when the same service is encountered at

different clients. The documentation is written in a pattern form. Amongst other

things it contains a name, goal, pre- and post conditions, non functional quality

demands and the technical interface definition containing the way the service should

be called and what its return values are.

Next to these service descriptions there is technical documentation to interface

with commercial systems like SAP or Oracle because these systems are encountered

very often. My contact identifies that it is hard to determine when functionality will

be recurring, especially across business units.

The used (implementation) development method depends on the software factory.

The company has multiple software development platforms that are supported. The

functional description of the SOA is largely platform independent and the choice for a

platform is based on what will best fit the client. On the technical level the company

makes use of enterprise integration patterns.

The typical team that does Enterprise Service Bus implementations projects

consists of a project manager, software architect and three to four software

developers. The project manager is responsible for staying on schedule and within

budget; the software architect is responsible for the content and quality of the

 64

solution. In the enterprise architecture field these teams consist mostly of experienced

employees. Different employees from the client organisation are involved as well.

They range from business analysts to IT specialists. These are mostly very

experienced people. The vocabulary of the client is used in all documents.

Table 12 Summary of case study three

Factor Quinity Interviewed organisation

Documentation of

functional reuse

Functionality bundled in

pattern form

Service descriptions in pattern

form

Pattern integration in

method

The presented method Implicit

Tool support None None

Team composition Mix of experienced

novice designers

Mixed team of experienced

people with different

backgrounds

Client Medium to large sized

Financial organisations

Mostly large financial service

providers

Vocabulary Use developer

vocabulary

Always use client vocabulary

Company size Small (<100) Enterprise (5.000+)

Management support

for reuse

Top management support No specific management

support for reuse

Development

Standardization

Based on DSDM Custom standardised SOA

development approach

5.2.4 Case Study Four
My contact is an entrepreneur. She owns a small company that delivers custom

solutions for application integration. Service Oriented Architecture is his main

interest. The company is hired for consultancy to guide and implement integration

projects at clients. Typical clients are financial organisations like banks and insurance

companies, utility and telephone companies as well as other companies that deal with

mergers and fast changing laws.

Because it is not always possible to send the same person to the client

organisations, the consultants need to be exchangeable and versatile. Therefore a

standard development approach is needed. The company is still in the progress of

developing a standard architecture development method, based on The Open Group

Architecture Framework [29]. The framework defines a detailed method and a set of

supporting tools to develop enterprise architectures.

Developing a Service Oriented Architecture is evolutionary. The goal is to

integrate existing systems, and replace them over time. Creating a web service

interface to disclose the legacy system allows the legacy systems to be replaced one

by one at a time that is most convenient.

Every insurance company basically has the same basic steps in their core

processes, for example invoicing and claims handling. Functional reuse is achieved

by:

• Using reference processes.

 65

• Reusing the specification for specific web services.

Good tools are essential to achieve this. All processes are modelled in a tool

which can contain the diagrams as well as implementation details. When starting a

new project, the reference processes also modelled in the tool can be loaded, be

extended and refined. This makes reusing earlier documentation quite efficient and

easy.

Reuse where experience is captured in documents is not seen as useful because

you have to put in a lot of effort in a document which gets easily outdated. If you can

use the documentation in projects immediately that is more useful, that is why the

company chooses for model driven approach.

Employees from the client that participate in the project are experienced in their

own software although mostly inexperienced in the field of SOA. They know the

legacy applications and general information systems well, but are new to Service

Oriented Architecture.

Because the client hires the company for advice on a matter they are not that

familiar with. The company gets to propose the method that is used to solve the

problem at hand.

The company of my contact currently only employs people with years of

experience. Normally the company sends one or two consultants who analyse the

current situation and design the new architecture. Actually building the interfaces is

largely done via generators and by the client themselves. The company will help the

client design the software and make sure it fits with the architecture (SOA) and reuses

services.

The typical project size is not yet known because the company has just started,

but it is assumed that they will be relatively large due to the nature of enterprise

application integration.

When starting a new project, the company first organises a workshop to

determine the exact tools, vocabulary, diagrams to use. The vocabulary is determined

in cooperation with the client.

Table 13 Summary of case study four

Factor Quinity Interviewed organisation

Documentation of

functional reuse

Functionality bundled in

pattern form

Reference processes and

service specifications

Pattern integration in

method

The presented method Integrated through model

driven development

Tool support None Development method based

on tool support

Team composition Mix of experienced novice

designers

Only experienced employees

Client Medium to large sized

Financial organisations

Medium to large sized

Financial organisations

Vocabulary Use developer vocabulary Mixed vocabulary

Company size Small (<100) Small (<100)

Management support

for reuse

Top management support Top management support

Development Based on DSDM Custom model driven

 66

Standardization approach based on TOGAF

5.3 Designer Opinions

Around the time we started researching the possibilities to integrate the

Functional Design Patterns with the software development method at Quinity a new

project was started using a Functional Design Pattern. We enquired the responsible

functional and technical designer about their experience with the use of this

Functional Design Pattern in the execution of a new project. We compare our method

with their approach.

The project is relatively small with about 500 development hours. The goal of the

project is to enable employees of a company to claim expenses.

Early on in the project it was discovered that the workflow pattern was

applicable. Both the functional designer and technical designer do not know exactly

how they discovered that it was applicable.

The diagram style presented in the workflow pattern is not used, rather the

functional designer made his own diagram. He pointed out that this was due to the

fact that he did not know that he was supposed to and thought project documentation

from other projects was the standard instead of the Functional Design Pattern. The

result is that in the functional design of the project, we cannot recognise the workflow

pattern.

The core concepts from the Functional Design Pattern were not copied into the

functional design. Communication with clients was done in the client’s terms because

the clients find this easier. But gradually a vocabulary emerges which contains both

terms from the developers world and the clients world.

The step “Document used patterns for technical designer” was not done. There

was a lot of communication between the functional and the technical designer which

made explicitly mentioning the workflow pattern in the functional design redundant.

The responsible technical designer had never built anything for workflow before.

He was relieved to hear that there was a document available that explained him how

workflow can be implemented. The technical design details were copied and refined

as described in the method.

The designers support our suggestion that Functional Design Patterns should

contain a section with time estimations. The estimation was now taken from other

projects that incorporated workflow functionality.

The technical designer alluded that the effort it takes to read, understand and

refine the patterns is sometimes equal or even more than the time it would take to

build the functionality from scratch. He also identified that the “Usage and

maintenance” phase as defined by us would be a welcome addition. He mentioned the

need for game developers to do good post mortems of their productions, what went

right, what went wrong, so the next time something is built this experience can be

reused. He feels this applies to the usage of patterns as well.

From the designer opinions it becomes clear that: the direction we took is one

appreciated by functional and technical designers. The conclusions we can draw from

the interviews are

 67

• The structure and direction of the method is appreciated by both functional and

technical designers. They did not identify major revision points.

• Technical and functional designers approach Functional Design Patterns

differently

• Some employees need to be convinced of the use of the extra effort using

Functional Design Patterns take.

• The natural way of creating a vocabulary is combining terms from both worlds.

5.4 Comparison With Criteria

In this section we compare the presented method to the criteria from 3.6. We

explain how well the method complies with each criterion; to provide a certain

validation the case studies could not.

C1. Clearly phased
The presented method keeps the clear structure of the current Quinity

development method and as such fulfils this criterion. It does however add the

acquisition phase as a new step in development which was not really recognised

as a phase in the explanation documents of Quinity.

C2. Systematic but not mechanical

The process is explained in a systematic way, but alternative paths are possible

and where Functional Design Patterns falls short it is still up to the functional

designers skill. Therefore this criterion is fulfilled.

C3. Clear division of tasks
For every phase the responsible persons are defined, as a result confusion

regarding the division of tasks is clearly eliminated.

C4. Facilitate communication

In this thesis we solely focused on the common vocabulary to facilitate

communication. We recommended combining the vocabulary of the client and

the developer like we encountered in real world situations. We believe that

guidelines for establishing the common vocabulary might need some more

attention.

C5. Systematic pattern recognition

A systematic way of recognizing patterns has been described by proposing the

deduction method from information functions to conceptual architecture and a

matching process between the conceptual problems and the pattern library.

 68

C6. Pattern combining

The method describes how multiple Functional Design Patterns can be combined

by specifying which parts can be put together and how this should be done.

Especially for combining multiple data patterns, the process of applying one

pattern at a time has been described in detail. It was discovered that visually

combining Functional Design Patterns does not work and does not bring about

the desired effects.

C7. Complementary method

The phases of the current development method can be followed. The existing

method can be applied when no patterns are available or the project does not lend

itself for the use of Functional Design Patterns. The proposed method is an

addition, it describes the contact points between the process and Functional

Design Patterns but these steps can also be left out.

We believe the presented method adheres to all criteria that were developed in

advance.

 69

5.5 Discussion

This section discusses the most important conclusions we can draw from the

validation and the reasons behind them.

Originally we wanted to find out how other companies approach functional reuse.

During our research it became clear that although all case studies show a standardised

development method most do not have a structured approach to functional reuse. We

found that technical design patterns and template reuse are embedded in the

interviewed organisations but functional reuse is not. Thus, the interviews showed the

real state of the practice regarding functional reuse.

This observation does however not validate our method. The only conclusion

regarding our method is that the interviewees can see why functional reuse is useful

and that a structured method as proposed by us would be helpful. Therefore we also

went back to the real experts, designers at Quinity, who did validate the method by

comparing their experience to the described method. Lastly we

The fact that the case studies showed no structured functional reuse approach

makes the validation of our method harder, but does allow us to think about the

reasons why organisations do or do not use Functional Design Patterns.

Fig. 29 Summary of validation

Review method

OK

Inquired on functional

reuse approach

- Tacit reuse

- Expected characteristics

- Method could be useful

Quinity designers External organisations We

Compare with

criteria

OK

Activity

Result

Group

5.5.1 The Risks Of Tacit Knowledge
We observed that at the interviewed companies most functional reuse is based on

experience: tacit knowledge.

Detecting reusable functionality is not standardised and mostly done by

experienced designers. Only one organisation had a spreadsheet with projects offset

against functionality; to quickly determine where functionality had been used.

Unfortunately it went out of date because of the lack of a structured method that

prescribes who should update this and when.

Tacit memory obviously poses a risk; when the experienced designer leaves the

company the teams are left with nothing but the project documentation and no

efficient way of recognizing where certain functionality was used.

 70

Reuse based on project documentation limits the search space of the solution

domain tremendously. In a large enterprise divisions will not know about each other’s

work and will as such miss reuse opportunities.

5.5.2 Service Specifications Are Similar Functional Design Patterns

The results seem to indicate that the functionality created for Service Oriented

Architecture is well suited to document in a pattern form. The two organisations

involved with application integration via web services have documented the services

in a pattern form.

A possible reason is that web services are in essence developed to be reused in

multiple application by different organisations. Designers do not wish to explain the

way they work multiple times. In this sense the patterns are used as tool for

knowledge transfer, just like Functional Design Patterns.

5.5.3 Possible Additions

The case studies showed two additions which might improve Functional Design

Pattern documentation.

• Pattern trade-offs

Adding certain trade-off characteristics to Functional Design Patterns might

prevent implementing a pattern when it is not suitable.

• Pattern linkage

The linking of patterns as hinted by case study one is a good idea and certainly a

direction in which Functional Design Patterns could be evolved. This would

involve adding related patterns to the Functional Design Patterns

5.5.4 Problems With Functional Reuse

Here we discuss the observed issues preventing widespread adoption of

Functional Design Patterns.

• Documenting is time consuming

Several organisations pointed at the problems of the pattern form. Developing

separate documents is time consuming and they can get out of date quickly. The

model driven approach as presented in the last case study ensures that the

documents do not get out of date, because the documents are directly used in

projects and if the projects change, the document changes as well.

Functional Design Patterns are separate documents as well but we believe that we

accurately counter this problem. Our method states that at the end of the project

the team leader should be given the time to reflect on the usage of the patterns

and update the pattern repository.

• Process improvement is not a top priority

Because the development in organisations is going well using ad-hoc reuse there

is no drive for further improvement.

 71

• Identifying when functionality is reusable is complex

The case studies showed organisations have difficulties determining when

functionality will be reusable. This might be due to the fact that most

organisations target multiple domains so functionality might not occur again for

months or even years; estimating the advantage of creating a pattern is heavily

influenced by this.

• Lack of top management support

Management support helps to provide a companywide functional reuse

integration method. At the companies which rely on implicit reuse, every team

can implement reuse in another way, for example by only reusing their own

projects. We saw no evidence of structured functional reuse at these companies as

opposed to case study four which does have top management support.

• Copyright issues

Another problem with the creation of functional pattern documents as identified

by the company is that because clients become owners of the source code, they

do not wish for their expensive solution to be sold to another company for a

lower price. They consider their software a key asset in gaining a competitive

advantage and wish to keep this position. We feel a feasible solution is

introducing financial benefits for clients who do allow reuse.

• A common repository is lacking

We believe the widespread adaptation of Functional Design Patterns suffers from

the “chicken or the egg problem”. When we explained the reasoning behind

Functional Design Patterns and there possible advantages it became clear that

most software companies did in fact thought about it, but were afraid to invest in

it for various reasons but were willing to try them. Unfortunately a repository

with Functional Design Patterns is not publically available.

We can say Quinity is leading the way in Functional Design Patterns and

cooperation with other software companies might be profitable for all involved.

5.5.5 Expected Organisational Characteristics

The fact that functional reuse is not commonly embedded yet gives us the

opportunity to think about the ideal organisational characteristics.

The presented development method cannot be applied in all contexts. There are a

number of inhibiting and enabling factors that determine in what extent a company or

specific project will benefit from the use of Functional Design Patterns. To make

reasoning about the context and the applicability of the method easier we divide these

factors in three groups:

• the developing company

• the client company

• the project they engage together

The factors are displayed in

Fig. 30 and can be both inhibitors and enablers.

 72

Fig. 30 Factors affecting applicability of functional reuse

Project

Developing company Client

Influence Influence

- Size

- Management support

- Standardisation level

- Client involvement

- Team composition

- Size

- Mentality

- Domain

- Experience

Applicability Of

Functional Reuse

Influence

EngageEngage

Developing Company

• Size

The size of the development company affects the applicability of the proposed

method. Small companies have smaller projects in general and might not need a

strong division of labour or can permit themselves to work in a less structured

way. In our case studies the small companies could easily introduce a

companywide policy concerning reuse. The large enterprises showed diversion

between divisions.

• Management support

The results seem to support [15]: Supportive management is essential when using

a systematic reuse development method. Adopting systematic reuse takes upfront

investments and therefore management support to provide the financial backing

that is needed. Case study 4 shows that the organisation with the most structured

approach has specific top management support for reuse.

• Level of standardisation

Companies that have a standardised approach to software development will

probably have more advantage of Functional Design Patterns. Companies with an

ad-hoc approach to software development will most likely execute every project a

bit different. In this case patterns will most likely be superfluous. Every

interviewed organisation had a standardised approach to software development;

therefore no conclusions can be drawn for this factor. No evidence was found that

less standardised development methods can benefit more from Functional Design

 73

Patterns, but the presented method requires a structured approach which will not

work in an ad-hoc environment.

Project

• Team composition

If the team consists of only experienced developers, they will probably already

know how to handle certain functional problems and be more reluctant to adjust

to the method proposed. Whereas new functional designers will have an

advantage when they can make use of the knowledge documented in Functional

Design Patterns. In the case studies as well as at Quinity we saw that a mix of

experienced and novice developers makes effective reuse possible.

• Client involvement

The amount of client involvement has influence of the use of Functional Design

Patterns. The advantage of user participation and user satisfaction was

demonstrated in [23]. Because a large part of Functional Design Patterns is about

preventing common pitfalls and establishing a common vocabulary it would not

be wise to exclude the client. The organisations we interviewed all struggled with

the vocabulary to use; this explains all case studies have a different approach. We

feel the most natural approach is to determine the vocabulary at the start by

combining terms from the client and developer vocabulary so all parties can

understand it. This is also endorsed by the designer opinions. For Functional

Design Patterns this means that although some core concepts have already been

defined they might have to be renamed.

Client Company

• Size

Larger companies have a tendency to be more rigid and with a more strict

hierarchy this influences the flexibility of a client. A small client will easier adapt

to a method proposed by the developing company. The case studies showed that

large clients might sometimes require certain development methods to be used,

the Functional Design Patterns approach should then be adapted to these different

methods. We saw no evidence that the size of projects has any impact on

functional reuse.

• Mentality

Client should be willing to accept outside advice and best practices as presented

by Functional Design Patterns. The client should allow the solutions invented at

their project to be reused at other clients. Case study two showed this as an

inhibiting factor, but a solution to this problem might be to introduce a benefits

scheme for companies who allow solutions to be reused.

• Domain

If the client domain is in a known domain, the chance that functionality has been

built before is higher. When functional designers and client companies have

similar shared experience, this makes it more likely that a common vocabulary is

already established. This makes the use of Functional Design Patterns easier.

 74

“When you have an experience sufficiently in common with another person, all

you need to do is re-evoke that experience within him” [8].

If the client domain is in a known domain, the chance that functionality has been

built before is higher. We saw that case study 4, which has a focus on the

insurance domain could reuse and refine reference processes.

• Expertise

When there is not a lot of expertise on the client side (for example as shown in

case study four regarding Service Oriented Architecture) the developing company

is seen as the expert and Functional Design Patterns will be welcomed because

they are proven solutions.

Summarizing we expect that the following characteristics will be an ideal context

for functional reuse and the application of our method.

Table 14 Ideal characteristics for functional reuse

Factor Ideal

Developer size Small, one division

Developer management

support

Specific top management support for functional reuse

Developer standardisation

level

Highly standardised

Project client involvement Involve client in establishing the vocabulary

Project team composition Mix novice and experienced

Client expertise Less experienced in project area

Client size No guidelines perceived

Client mentality Flexible, willing to reuse solutions and letting them

be reused.

Client domain Known or fixed domain

 75

6. Conclusion

This chapter summarises the findings presented in this thesis. In the first section

(6.1) we revisit the research questions and evaluate their answers. Section 5.2

compares the method with the initially developed criteria from 3.6 .The third section

sums up some observations worth mentioning that were discovered during the

execution of this research. Section 6.3 shows the practical implications for companies

that want to implement the described method. The last part contains future work,

research questions that could not be answered in this master thesis.

6.1 Research Questions

In this section we look back at the research questions from chapter 1 and discuss

their answers. Before we answer the main research question we first provide answers

to the supporting questions:

What Is The Current Way Quinity Uses Functional Design Patterns In

Software Development?

Based on interviews with functional designers at Quinity it became clear that

there was no unified way in which Functional Design Patterns were applied during the

design of an information system. This resulted in the identification of the “semi

structured approach” from Fig. 9; which represents the state of the practice.

To What Extent And In Which Way Is Pattern Reuse Implemented In Current

Software Development Methods?

Using a literature study we learned that there are very few methods described to

fully integrate the use of patterns throughout the software development process, this

being especially true in the functional area. The reviewed methods (Pattern Oriented

Analysis and Design, Pattern Driven Analysis and Design, Software reuse with

analysis patterns and Building software with patterns) lean heavily on the technical

side of software development and we have not been able to find actual documented

cases of their use in case studies. As to their extent, the methods focus on the design

phase and do not mention activities concerning realisation or deployment.

The methods did however provide useful ideas, information and guidelines which

were incorporated in the proposed method.

How Can The Current Quinity Method Be Extended With Functional Design

Patterns?

The current Quinity Method can be extended by incorporating the darker

coloured blocks from Fig. 15. the artefact dependency graph. Only slight

modifications to the existing process are needed. It shows that a software

development method that is mainly based on LAD, with rigid characteristics is

flexible enough to be extended with Functional Design Patterns.

 76

When Should The Patterns Be Applied?

The method we present is clearly phased and shows in which phase and by whom

the Functional Design Patterns should be consulted during software development. The

method defines the interaction points between the pattern repository and the software

process in detail. The most extensive interaction takes place during the phases:

requirements, functional design and realisation. Acceptance testing does not involve

Functional Design Patterns.

Which Elements Should Be Used?

In section 2.2 the overview of Functional Design Patterns was presented. Here we

identified that Functional Design Patterns consist of multiple parts, the core concepts,

information functions and the data model.

These correspond to their respective counterparts in the functional design. We

believe that core concepts, information functions and data model should be copied in

the functional design. This is not to say that no alterations have to be made, core

concepts and information functions need to be refined for project specific details. A

short overview was presented in Table 4.

How Do We Recognise The Possibilities For Reuse Of Functional Design

Patterns?

We proposed the decomposition of problem in conceptual problem components

inspired by the POAD process [2]. The resulting conceptual architecture serves as the

basis for our pattern recognition process. The decomposition creates manageable

pieces of functionality whose core problems correspond to pattern problem

descriptions therefore allowing for better recognition of patterns.

Currently this is a manual process but in the future the process could be

supported using software, which we will elaborate on in section 6.5.1. The fact that it

is a manual process shows that experience cannot be replaced by Functional Design

Patterns because experienced designer will be able to decompose functional problems

easier.

How Can We Combine Multiple Patterns?

There is no real connection between patterns; it is rather the effect of applying

them one at a time that allows multiple Functional Design Patterns to be combined in

one functional design.

In the data model patterns should be applied starting from the most important

pattern. For information functions we saw that combining multiple patterns is done by

merging different information function segments into one information function. This

is illustrated in Fig. 19.

This thesis has shown that combining patterns is something very different from

composing them. Composing builds the entire software system from patterns where

they are connected via interfaces. We tried to visually combine and compose

Functional Design Patterns but this does not add useful information for the functional

designer. The gain of representing Functional Design Patterns as black boxes of in-

and output is questionable.

 77

In Which Context Can Functional Design Patterns Be Used?

Section 5.5.5 revisited inhibiting and enabling factors resulting in Table 14. The

ideal context for our Functional Design Pattern approach is a small company which

has specific top management support for functional reuse to provide the entire

organization with the same view on reuse. The focus should be on a fixed client

domain. The project should be executed with a team consisting of experienced

designers assisted by novice developers. There should be one single vocabulary,

developed in conjunction with the client.

Main Question

“How can reuse of Functional Design Patterns be incorporated in the software

development process?”

This question is answered by chapter 4 which describes a systematic method to

incorporate Functional Design Patterns in the development process.

We believe that by following the presented method:

• It is possible to combine multiple Functional Design Patterns

• We can leave the current development method largely intact

• Reuse of elements described in Functional Design Patterns can be done without

major modification

• It can be clearly pointed out in which phase we should make use of patterns

• Recognition of pattern applicability is possible in a systematic way

6.2 Main Conclusion

We believe that the use of the presented method to incorporate Functional Design

Patterns in software development will lead to an improved and more efficient use of

Functional Design Patterns in particular at Quinity.

The method is a practical guideline which clarifies the when, where, how and

what questions regarding Functional Design Patterns and software development for

all parties involved. Novice designers will gain the knowhow to use Functional

Design Patterns in the development process thereby bridging a large gap between

them and more experienced designers.

 78

6.3 Implications

The method cannot be implemented immediately; we introduce some practical

implications that need to be taken into consideration. For the developing company to

adopt the incorporating of Functional Design Patterns in the development process this

will have the following implications:

Gather Management Support

Without management support any systematic software reuse will fail [15].

Incorporating Functional Design Patterns in the software development process will

need investments for the setup of a pattern repository, the development of patterns

and the training of employees in the use of the presented method. These investments

cannot be made without management support.

Develop A Searchable Pattern Database

A searchable database with Functional Design Patterns should be developed

because it is not practical to read all Functional Design Pattern documents when the

pattern repository becomes large. A heuristic based pattern search engine is necessary

to fully leverage the advantages of Functional Design Patterns. Because there is no

guarantee a pattern that matches a keyword in a functional problem.

Standardise And Adjust Pattern Structure

We witnessed that the Functional Design Patterns currently in use do not follow a

very strict template. This makes it hard to correctly index the patterns in a searchable

database. Furthermore a new pattern section “Estimation Details” (see the prerequisite

section of the thesis) should be added to optimally support the acquisition process.

Case studies also showed that adding pattern trade-offs and a related pattern section is

a desired property of a Functional Design Pattern.

Educate And Convince Employees

Employees should be trained in the use of the proposed method to leverage its

maximum potential. When no one is aware of the adaptation of Functional Design

Patterns in the development process, no unity will be achieved. Reuse will not just

happen because a pattern database is available. In addition we saw that some

employees will need to be convinced that the extra effort needed to incorporate

Functional Design Patterns in software development will pay off.

6.4 General Observations

Next to the answers to the research questions we made some secondary

observations that are explained here.

Functional Design Patterns Communicate Knowledge

When looking at the use of Functional Design Patterns from a higher abstraction

point we see that they try to create a more efficient software development process by

 79

allowing functionality to be reused. This increase in efficiency is realised by the fact

that senior designers will not have to explain everything to the novice designer;

functionality is documented in patterns. The patterns are a way of communicating

knowledge between experienced designers and novice developers.

Documentation Does Not Replace Experience

A remark we would like to pose is that Functional Design Patterns do not replace

the need for experienced designers. Analytical skills still remain important, something

also underlined by the interviews. Although the solution for problems is available,

recognizing recurring functionality requires practice, experience and analytical skill.

Novice functional designers will be able to learn the solutions to functional problems

from them but for the recognition of patterns in a manual way experienced designers

will still hold the advantage.

Tacit Reuse Poses A Risk

Tacit reuse as observed in the interviewed organisations poses a risk; when the

experienced designer leaves the company the teams are left with nothing but the

project documentation. It is highly likely that in a large enterprise divisions will not

know about each other’s work and will as such miss reuse opportunities.

Web Services Are Suited For Functional Reuse

The web services in a Service Oriented Architecture are well suited to document

in a pattern form. A possible reason is that web services are in essence developed to

be reused in multiple application by different organisations.

A Common Pattern Repository Is Needed

Functional Design Patterns suffer from the chicken and the egg problem.

Although there is a genuine interest in them outside of Quinity, the lack of a common

repository prevents widespread acceptance.

Visual Composition Of Functional Design Patterns Does Not Work

During out research we found visual composition like proposed by POAD does

not work (see appendix 7.3). Most importantly because Functional Design Patterns

are not blackboxes and not all provide class diagrams.

 80

6.5 Future Work

Even though a number of research questions were answered, as always new ideas

sprung from these. Questions we haven’t answered and interesting ideas that came up

but could not be done within the scope of the thesis are described here. We

distinguish between research specifically for Quinity and research in general.

6.5.1 Quinity

Evaluation In Projects

Unfortunately the validation of the proposed method by using it in real projects

was not within the scope of this master thesis. Empirical research in this area should

prove whether or not the application of the proposed incorporation method for

Functional Design Patterns is successful. A test and control situation could be created

by executing similar projects where the first is executed with designers trained in the

use of the method while the latter is executed without the method. The different

results can provide reliable information regarding the advantage of the method.

Tool Support

We already identified the need for a searchable pattern database. But perhaps the

described method could be supported by a more sophisticated software tool. Possible

areas of use for this tool would be:

• Serve as a pattern repository

All patterns will be stored in a central location

• Heuristic search and evaluation

The tool allows the input of certain problem keywords, or whole case

descriptions and searches matching patterns.

• Create basic data models from selected patterns

The tool tries to combine the data models from the candidate patterns

The goal would be to support functional designers during the design process to

more efficiently create the functional design from multiple Functional Design

Patterns. We believe the development of such a tool might be a challenging but

interesting task for further research.

Influence Of Pattern Order

In the method we discussed applying patterns one pattern at a time as described

by Buschmann in [4]. But “most important” is a very ambiguous and certainly

subjective statement. Therefore it would be interesting to see what the influence of

applying patterns in reversed order actually would be and examine what are the

defining factors that make a pattern “important”.

Pattern Linkage

When a large database of patterns is available the internal linkage between

patterns at a higher level and lower level can be made explicit in a similar way to the

IBM method [19]. This means that when an aspect level pattern is selected,

 81

automatically a number of other patterns will be removed from the list of applicable

domain patterns or vice versa. This kind of behaviour would only be possible after a

number of projects with Functional Design Patterns have been done so meta patterns

will be become visible.

6.5.2 General Research Community

Develop A Common Repository

As identified during the validation of the method, an important reason for

organisations to adapt Functional Design Patterns would be the existence of a

common repository with Functional Design Patterns just like the ones that are

available for technical design patterns. Research in this area might help to spread the

knowledge contained in Functional Design Patterns.

Research Influencing Factors

We identified a number of factors that influence the level of applicability of the

method. More research will be necessary to determine the exact consequences of the

inhibiting and enabling factors mentioned in this thesis. In our method we show there

are a number of options when establishing a common vocabulary, but at the time of

writing it is not clear when to use a term from the clients vocabulary and when to use

the developers preferred term.

Incorporation In Alternative Development Methods

This thesis demonstrated the applicability of Functional Design Patterns in a

development process based on LAD and DSDM. It would be interesting to see if a

“fit” between Functional Design Patterns and even more agile methodologies such as

Extreme Programming can be achieved.

Development Of A Capability Maturity Model

It would be interesting to see if a capability maturity model can be developed for

functional reuse. This maturity model could then be used by organisations to measure

their progress and see which changes are needed to advance to the next level of

maturity.

 82

6.6 Final Remarks

Looking back I can say writing this thesis has been both an intriguing challenge

and a satisfactory way of ending my efforts at the university.

The research model of this thesis can be viewed as “exploratory” [35]. To my

knowledge there were no existing models for incorporating functional reuse. The

outset and direction of the research was not always as strictly outlined as I would have

liked it to be. Engineering the method gradually improved our knowledge of software

development, Functional Design Patterns and executing research in general.

A point of critique and something I will take on in a different way in successive

research is the validation of the engineered method. In my view a test and control

situation could have yielded better conclusions although in the current context we did

everything possible.

Above all I believe we have provided Quinity with a usable guide to use

Functional Design Patterns in software development. The value for the research

community outside of Quinity will have to prove itself in time...

 83

Bibliography

[1] Jonathan Adams, Srinivas Koushik, Guru Vasudeva, George Galambos, “Patterns

for e-business, a strategy for reuse”, McPress, October 2001

[2] Sherif M. Yacoub, Hany H. Ammar, “Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software Systems”, Addison Wesley Professional,

2003

[3] Yoran Bosman, “Functioneel ontwerppatroon voor het aandachtsgebied

‘autorisatie’”, versie 0.8, May 2007. (Internal document)

[4] Frank Buschmann, “Building software with patterns”, European conference on

pattern languages of programs, 1999

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommelad, Michael Stal,

“Pattern-oriented software architecture, a system of patterns”, John Wiley & Sons,

1996.

[6] Maarten Brak, “Functioneel ontwerppatroon voor het aandachtsgebied

'Tijdsafhankelijkheid van gegevens'”, version 0.7, February 2007, (Internal

document)
[7] Peter P. Chen, “The Entity-Relationship Model - Toward a Unified View of Data”.

ACM Transactions on Database Systems 1: 9-36, 1976

[8] Alistair Cockburn, “Agile Software Development”, Addison-Wesley Professional,

2001

[9] Patrick van Driel, “Overzicht projectuitvoering, SDE standards and guidelines”,

Quinity B.V 2005-2007, (Internal Document)

[10] L. Fokkinga, M.H. Glastra, H. Huizinga, “LAD, Het lineair ontwikkelen van

informatiesystemen”, Academic Service Informatica, 2002

[11] Martin Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997

[12] E. Gamma, R.Helm, R. Johnson and J. Vlissides, “Design Patterns , Elements of

Reusable Object-Oriented Software”, Addison-Wesley, 1995
[13] Andreas Geyer-Schulz, Michael Hahsler, “Software reuse with analysis patterns”,

proceedings of AMCIS 2002.

[14] Henk Gommer, “Sense and nonsense: an evolutionary perspective on thesis writing”,

Oxford University Press, 2002

[15] M.L. Griss, “Software reuse from library to factory”, IBM Systems Journal, vol 32,

no 4, 1993
[16] Jonathan Grudin, “The Development Of Interactive Systems: Bridging The Gaps

Between Developers And Users”, Computer 1991

[17] Robert Guitink, “Omschrijving van het gebruik van Functional Design Patterns”,

Quinity B.V. 2006 (Internal document)

[18] Haitham S. Hamza, Yi Chen, “PAD: a pattern-driven analysis and design method”,

Conference on Object Oriented Programming Systems Languages and Applications

Companion to the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, 2005

[19] IBM, “DeveloperWorks patterns for e-business”,

http://www.ibm.com/developerworks/patterns/, 2004 (07.2007)

[20] Jacob Kleerekoper, “Design Of A Pattern Definition Language”, Master’s thesis,
Utrecht University, 2007.

[21] Per Kroll, Philippe Kruchten, “The Rational Unified Process Made Easy: A

Practitioner's Guide to the RUP”, Addison Wesley Professional, 2003

[22] Soren Lauesen, Otto Vinter, “Preventing Requirements Defects: an experiment in

Process Improvement”, Requirements Engineering Journal, Springer-Verlag, London

2001

 84

[23] Winston T. Lin, Benjamin B.M. Shao, "The relationship between user participation

and system success a simultaneous contingency approach", Information &

Management 37, 2000

[24] Jonathan C. McPhail, Dwight Deugo, "Deciding on a Pattern", IEA 20001
[25] George A. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on

Our Capacity for Processing Information", The Psychological Review, 1956, vol. 63,

pp. 81-97

[26] J.J.E. van Montfoort, “Functional Design Patterns, de implementatie van model-

gedreven functionaliteit in een object georiënteerde omgeving”, Technische

Universiteit Eindhoven, 2006

[27] Peter Nagel, “Patterns of model-based functionality in object-oriented software con-

struction”, Master’s thesis, Utrecht University ,2006

[28] Object Management Group, UML 2 specification,

http://www.omg.org/technology/documents/formal/uml.htm

[29] The Open Group Architecture Framework, http://www.opengroup.org/togaf,
(17.08.2007)

[30] Quinity, “Functioneel Ontwerppatroon voor het aandachtsgebied workflow”, versie

1.01, 25 oktober 2006 (Internal document)

[31] Quinity, "Technisch Programmaontwerp Standaarden en richtlijnen", version 1.4.1,

March 2007 (Internal document)

[32] Quinity Research and Development, “Functional Design and Functional Design
Patterns: Theoretical Background”, Quinity B.V. 2003 (Internal document)

[33] Quinity Research And Development, “Functional Design Patterns, User Interface

Patterns, Technical Design Patterns, (Quinity Framework And Reference Application

v 4.3.8)”, Quinity B.V, 2002-2007 (Internal document)

[34] Niels Reyngoud, Jeffrey van Helden, “Functional Design Patterns”, Master’s thesis,

Utrecht University, 2005.
[35] Pentti Routio, “Models in the research process”,

http://www2.uiah.fi/projects/metodi/177.htm (30.08.2007)

[36] M. Shaw, D. Garlan. “Software Architecture: Perspectives on an Emerging

Discipline”. Prentice Hall, 1996.

[37] Jeroen Snijders, “Functional Design Patterns”, Master thesis, Utrecht University,
2004.

[38] Jennifer Stapleton, “DSDM: The method in practice”, Addison Wesley, 1997

[39] Bedir Tekinerdoğan, “Formalizing Agile Software Development Methods”,

Department of Computer Engineering, Bilkent University, Ankara, Turkey

[40] W.S Turner, R.P. Langerhorst, G.F. Hice, H.B. Eilers, A.A. Uijttenbroek, “SDM -

System Development Methodology”, Rijswijk, 1990
[41] Martijn van Welie, Gerrit C. van der Veer, Anton Eliëns, “Patterns as Tools for User

Interface Design”, Workshop on Tools for Working With Guidelines, 2000

[42] Martijn van Welie, Hallvard Trætteberg, “Interaction patterns in user interfaces”,

PLoP 2000 conference

 85

7. Appendices

7.1 Case Study Interview

Company

• Can you give a short introduction to your company and your function? (size,

domain)

• How would you describe your typical client?

• How standardised would you call your company?

Software Development

• What development method you use?

• What is the typical project size? (function points)

• What is the default team composition? (experienced/novice mix)

Documentation

• Which artefacts are normally produced during development?

• How is functional experience documented to be reused?

• Do you use functional reuse documentation for cost estimation?

• Do you feel good documentation of recurring functional problems can replace

experience?

• How do you ensure employees know all documentation with a large pattern

library?

Functional Reuse & Integration

• How does your company attempt to reuse functionality? And why?

• In what manner is functional reuse integrated in the development cycle?

a. When do you apply functional reuse?

b. How do you decide between patterns?

c. How do you combine multiple patterns in a functional design?

d. Do you feel the order in which patterns are applied is of importance?

• In what way is reuse supported by management?

• Does your company provide tool support for the reuse of functionality?

Client Involvement

• How do you involve clients in the software development process?

• In what way do you communicate with the client?

• Which forces and tensions play a role in client communication?

 86

7.2 POAD Pattern Diagram Examples

Fig. 31 Pattern level diagram

Fig. 32 pattern-level with interfaces diagram [2]

Fig. 33 Fragment of Detailed pattern-level model

 87

7.3 Visual Composition Of Functional Design Patterns

This appendix is complementary to paragraph 3.5 where we reason about the

composition of Functional Design Patterns. Functional Design Patterns do not always

offer interfaces for other patterns to use. They do however require other patterns or

components as input to achieve certain functionality.

When looking at a Functional Design Pattern as a black box it provides services

has inputs; core concepts or data; and outputs; for example transformed data and

functionality is achieved by combining the concepts or data. The authorisation pattern

combines users with information functions to check who has permission to do what.

We can view users and operations as input and the permission or obviously

prohibition to execute a (part of) an information function as the result.

We choose to follow the UML2 notation recommendations on composite

structure diagrams [28]. Required interfaces are shown with a socket and provided

interfaces with a lollipop (or ball) icon. As a result the authorisation pattern can be

depicted as follows (Fig. 34)

Fig. 34 Authorisation pattern interfaces

Unfortunately this does not apply for every pattern. There is not necessarily a

relation of input and output between patterns where pattern A is input for pattern B.

Therefore no interfaces can be defined and composition as defined by Pattern

Oriented Analysis And Design offers does not suffice. Also POAD requires class

diagrams for composition, not all Functional Design Patterns define these.

Next to this representing the user interface patterns and authorisation pattern in

one diagram is difficult because in fact they to not function on the same level. The

User interface views entities like Accounts, but every information function on an

entity is checked by the Authorisation pattern, leaving certain options out. Showing

this indirect influence is hard as can be seen in Fig. 35.

 88

Fig. 35 POAD applied to Functional Design Patterns

