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MANAGEMENT SUMMARY

GoAL

The goal of this paper is to provide a bridge between recent theoretical
developments in the field of risk measurement and daily practice. It
contains an investigation of the newly proposed Foster & Hart measure
of risk, an acclaimed objective -independent of the decision maker-
measure that identifies the critical wealth level for an unknown
sequence of gambles.

FH MEASURE

This critical wealth level is the amount of capital below which it
becomes risky to accept the gamble, if faced with an unknown sequence
of this gamble over a long period of time. This critical wealth can be
seen as the barrier level that anyone investing in a risky asset should
hold in order to avoid bankruptcy in the long term. Investors are able to
avoid this by changing the participation rate of the gamble at every time
step, following the so-called simple shares strategy.

The riskiness of the gamble, R(g), is uniquely determined by the

equation E [log (1 + ﬁg)] =0.

In fact it is the number that offsets the relative gross returns of the
gamble in the long run, implied by a yield factor of 1. See Appendix A for
a brief explanation of the measure and the rationale behind it.

COMPARATIVE STUDY

A comparison between the industry standard, Value-at-Risk (VaR), and
the FH measure shows that both measures depend on the underlying
distribution of the gamble. VaR however does not take into account the
long-term effects of holding a certain capital buffer and does also
depend on an arbitrary confidence level.

MAIN FINDINGS

The FH measure is computationally easy and the equation is solved by
means of a Matlab algorithm. Several simulations with these capital
buffers have been performed and show that the FH measure is
applicable and is indeed the ‘threshold wealth’ below which it becomes
risky to accept a gamble if played for a long period of time.

Some assumptions behind the FH measure are however questionable in
real-life investment settings and require further analysis, for instance
the limitations of the simple shares strategy, the behavior of the FH
measure for distributions with (short-term) negative expectation and
the role of transaction costs.

There is still much to investigate before the FH measure might play an
active role in risk management and regulation, but it seems to be a
concept to take into account.
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1. INTRODUCTION

This paper explores whether a newly proposed risk measure, the Foster
& Hart measure of riskiness, might be applicable in practice within
financial institutions and if so, to what extent. The Foster & Hart (2009)
paper follows a paper by Aumann & Serrano (2008) and the
dissemination is slow. This paper is an attempt to close the gap
between theory and practice and to make the measure comprehensible
for practitioners. In the light of recent developments in the financial
system the rise of an acclaimed objective measure of riskiness,
independent on the decision-maker, seems to be a great promise.

The first signals of an emerging crisis came at the end of 2006 when
many American house-owners faced problems in repaying their
mortgage loans (due to high interest rates and tolerant conditions at
which those loans were provided). Increasingly many of them were
forced to leave their homes (foreclosures) forcing house prices to
decline (Crouhy et al., 2008; Kalse, 2008). The collateral underlying
asset backed securities became of less value than the loan itself, forcing
banks to write down on their assets. Assets write-downs and credit
losses reached $232 billion in April 2008 at which point the
International Monetary Fund (IMF) estimated that financial losses
stemming from the mortgage crisis might cost nearly $1 trillion (NY
Times, 2008). In July 2009 the IMF stated that the global credit crunch
had cost governments over $10 trillion already (Schifferes, 2009).

With large capital injections and bailouts many governments and the
IMF tried to save the financial system. Ultimately this led to a financial
crisis also involving governments. Both the costs of the capital
injections and the increased public and regulatory awareness of
governmental debts led to major budget cuts; the financial crisis had
reached the real economy. Credit rating agencies downgraded
sovereign debts of many countries; on August 5 Standard & Poor’s cut
the U.S. sovereign debt rating for the first time in history (Tabuchi,
2011). It became clear that even traditional safe havens, as U.S.
sovereign bonds are not ‘safe’; in fact they hold some risk. During the
crisis there were times (2008-2009, early August 2011) that the ten-
year U.S. Treasury bond yield dropped below the S&P 500’s dividend
yield (Sommer, 2011).

Risk is not a new concept, as Luhmann (1996) points out: "In the Middle
Ages the term risicum was used in highly specific contexts, above all sea
trade and its ensuing legal problems of loss and damage." In the late
17t century the term ‘risk’ appeared in the English language, around
the time that insurance on cargo and ships rose at Lloyd’s in London.
Chinese and Babylonian traders already practiced the principle of
distributing (diversifying) risk in the third and second millennium
before Christ. With the development of probability theory the notion of
risk changed towards an anticipation of returns, financially elaborated
by Knight (1921) who pointed out the difference between ‘risk’ and



‘uncertainty’ and Hicks (1939) who introduced the allowance for risk in
‘anticipated’ returns (Markowitz, 1952).

In 1974 the Basel Committee on Banking Supervision was formed in
response to the liquidation of the Herstatt Bank. It has to date published
three Accords, the first of which focused on credit risk and required all
affiliated banks to hold a capital buffer of 8% of risk-weighted assets.
Basel II (2004) also included financial risk and operational risk, the
capital buffer was held at 8% (BIS, 2006/2009). Basel III is a response
to the current financial crisis and an attempt to strengthen these capital
buffers (EC, 2009). The Committee had introduced tier-1 capital, as the
amount a bank needs to hold in order to ‘remain a going concern’. In
practice, retained earnings and parts of common equity were used as
tier-1 capital. Nowadays the Committee proposes three changes related
to tier-1 capital: an increase in minimum level, a stricter definition of
common equity and a change in risk-weighted assets (Moody’s, 2010).

The principles behind the measurement of risk remain however
unchanged, which means that the capital requirements are still based
on risk-weighted assets. Banks are allowed to use several approaches in
calculating operational, credit and market risk. The most well known
approach for calculating market risk is the Value-at-Risk (VaR).
Concepts similar to VaR are used in calculating other risk types. From a
mathematical perspective the criticism on VaR is that VaR is not
subadditive as any coherent measure of risk should be (Artzner et al,
1999), a concept that will be discussed in Section 3. Practical remarks
vary from giving false confidence to leading to excessive risk-taking
(e.g., Taleb, 1997; Einhorn, 2008).

Robert Aumann, Nobel Laureate in Economics, has (among others)
explored the field of risk and economics. With Roberto Serrano he
published a paper proposing an economic index of riskiness (Aumann &
Serrano, 2008). Dean Foster and Sergiu Hart (the latter receiving his
Ph.D. under the supervision of Robert Aumann) argued that this index
lacked operational interpretation, leading them to a different measure
of riskiness (Foster & Hart, 2009). Although Homm & Pigorsch (2010)
argue that the AS index can be assigned an operational interpretation
we focus on the Foster & Hart operational measure of riskiness (FH

measure).

The measure identifies for every ‘gamble’ the critical wealth level below
which it becomes "risky" to accept the gamble (Hart, 2009). Since all
portfolios and projects can be seen as a gamble the FH measure could
be applicable in current risk management. Instead of VaR based
regulatory capital the ‘critical wealth level’ could be the minimal barrier
level of capital that institutions should hold. This is only possible if the
FH measure is applicable in practice by both banks and regulators. The
central research question of this paper is therefore whether the FH
measure is applicable in practice and to what extent it can be used as an
alternative to current risk measures.



2. RESEARCH DESIGN

2.1 RESEARCH GOAL

Aumann & Serrano (2008) proposed an economic index of riskiness,
lacking a clear operational interpretation (Foster & Hart, 2009). Foster
& Hart (2009) modified the AS index to a different measure of riskiness,
the FH measure. We are aware of the work of Bali et al. (2011), who
have combined both into one generalized measure of riskiness, which is
“able to rank equity portfolios based on their expected returns per unit
of risk and hence yields a more efficient strategy for maximizing
expected return of the portfolio while minimizing its risk”. Since all
three measures require the same data and can be computed by methods
similar to the ones presented here, we focus on the FH measure.

In the light of these events the explicit research goal of this paper is to
perform an explorative study, investigating whether the Foster & Hart
measure is applicable as an alternative opposed to the current
measures, and if so, to what extent. If a comparative study shows that
the FH measure is applicable in practice, this paper should also address
a list of actions needed before its actual acceptance and usage.

The goals of this paper can be summarized as follows:

Provide a bridge, with two-way traffic, between theory and practice;
Investigate whether the FH measure can be applied in practice;
Compare current risk measures with the FH measure;

Provide a list of actions needed before practical acceptance.

2.2 RESEARCH QUESTIONS

From the research goal the central research question derived is
formulated as follows:

How can the Foster & Hart risk measure be applied by (regulators of)
banks that are member of or under jurisdiction of the Basel Committee on
Banking Supervision?

This research question needs to be divided into sub questions to be able
to answer it to its full extent and as unambiguously as possible (De Vaus,
2010). The first set of questions addresses theoretical concepts and
definitions: risk, (coherent) risk measures and the FH measure in
particular. The subsequent questions address the frame of reference
(current measures and regulation) and a comparison. The last sets of
sub questions cover several practical concepts: actual implications,
(dis)advantages of (applying) the FH measure and computational issues.



10.

THEORETICAL CONCEPTS AND FRAMEWORK
What is risk and risk management?

What risk measures are commonly used?

What are the shortcomings of current risk measures?

The first question is about definitions and historical background of risk
and risk management as an introduction towards risk measures,
leading to Question 2 about current regulation and measures. The last
question addresses their shortcomings and provides a bridge towards
coherent risk measures and the Foster & Hart measure in particular.

THEORETICAL COHERENT RISK MEASURES AND FH

Why the need for coherent risk measures?
What is the Foster & Hart risk measure?

These questions follow logically from the theoretical introduction
ending with the shortcomings of current risk measures. It starts with a
discussion of coherent risk measures and ends with a discussion of the
new risk measure of Foster & Hart, accompanied by a brief discussion
of the work of Aumann & Serrano and Bali et al.

PRACTICAL FRAMEWORK AND APPLICABILITY

What are the practical aspects for banks of the current measures and
regulation?

What are the (dis)advantages of the FH risk measure compared to the
current ones?

Is the FH measure applicable as risk measure in practice?

Before the computational component is addressed, Question 6 to 8
focus on the practical issues. What is the current practical frame of
reference in regulation? What are possible (dis)advantages of the FH
measure over current risk measures and is the FH measure applicable
given this current practical framework?

PRACTICAL IMPLICATIONS

What are the practical implications of using the FH as a risk measure for
(regulators of) banks?

Question 9 answers the ‘how’ of the central research question, whereas
Question 8 answers the ‘whether’. It is directed towards the possible
usage, in terms of computation and acceptance issues, based on both
the theoretical and practical information of the previous sections.

COMPUTATIONS AND APPLICATION

If the FH risk measure is applicable, how does it perform compared to
common alternatives for different distributions?

Question 10 is directed towards the actual practice: computation of risk
for several distributions. This question is a logical consequence of the
practical framework of the previous part.



3. THEORETICAL CONCEPTS AND FRAMEWORK

This section provides a specific insight in the concepts of risk and risk
management in a financial context. It is not a general or philosophical
section on risk, nor is it a discussion of all mathematically relevant
concepts on risk. The goal of this section is to answer Questions 1
through 3 and to set the frame of reference for the remaining questions.

3.1 THE CONCEPTS OF RISK AND RISK MANAGEMENT

WHAT Is Risk?

The standard definitions of risk focus on the downside of certain events.
Webster’s dictionary defines risk as “the chance of injury, damage or
loss” and Oxford’s dictionary defines it as “a situation involving
exposure to danger”. The latter defines the verb risk as “incur the
chance of unfortunate consequences by engaging in (an action)”.

In finance risk can be defined as “the quantifiable likelihood of loss or
less-than-expected returns” (Investorwords.com) or “The chance that
an investment's actual return will be different than expected.”
(Investopedia.com). Markowitz (1952) also stated that one should
“include allowance for risk in “anticipated” returns”. Risk is thus
divided in losses and expected returns; expectations of returns on
certain portfolios are thus essential in understanding financial risk.

Where risk refers to the probability of a loss, exposure means the
possibility of loss (Horcher, 2005). Or as Oxford’s dictionary states it,
exposure is “the state of having no protection from something harmful”.
In other words risk is associated with quantifiable probabilities of
losses and exposure is the actual state of being in a risky position.

A fundamental distinction is the distinction between risk and
uncertainty, a distinction first described by Knight (1921). In this view
risk is involved if randomness comes with objective probabilities (e.g.,
gambles with roulette or dice). A situation is uncertain if randomness is
presented in alternative possible events (e.g., a horse race or insurance).
Although the two types of randomness differ in the level of
objectiveness, the hypothesis of probabilistic sophistication permits the
application of probability theory in both cases (see Machina &
Rothschild, 2008). Expectations of returns can therefore be analyzed
with probability theory. Two remarks on expected values of portfolios
are of great importance in the understanding of risk measurement.

The expected value of a portfolio means the statistical average and not
the most likely value of a portfolio. The following gamble, for example,
has an expected value of round 9999 euro, even though it is highly
unlikely that it will result in a gain:

B {—1 p = 0.99
9 711,000,000 p =0.01

Following Machina & Rothshild (2008) the first step in the economic
characterization of risk is the shape of individual von Neumann-

10



Morgenstern utility functions representing individual preferences.
Whatever the notion of ‘riskier’ means, it is clear that a certain payoff of
X = E[X] is less risky than a random wealth of %. If an individual always
prefers the first to the latter he is said to be risk averse and has a
concave utility function. A person with a convex utility function is said
to be risk loving (Arrow, 1964 and Pratt, 1964).

Financial risk is involved in all transactions of a financial nature, the
financing of investments, loans, and various other business activities.
The main sources of financial risk are market risk, credit risk and
operational risk (Horcher, 2005). There is however growing interest for
other types of risk like liquidity risk (Hull, 2010). The Basel Accord
defines the three major sources of risk as follows:

Market risk is the risk that the value of an investment will decrease due
to moves in market factors;

Credit risk is the possibility that a bank’s borrower or counterparty will
fail to meet its obligations in accordance with agreed terms;
Operational risk is the risk of loss resulting from inadequate or failed
internal processes, people and systems, or from external events.

WHAT IS RISK MANAGEMENT?

According to Crocker (2003) risk is “endemic in our uncertain world”,
which shows once more the close relationship between risk and
uncertainty. In both our personal and professional lives we need
strategies to deal with risk exposure. Risk management can roughly be
defined as dealing with risk. Financial risk management (subsequently
referred to as risk management) can therefore be defined as dealing
with uncertainties from financial markets (Horcher, 2005), and consists
of three steps:

1. Assessment 2. Mitigation & Control 3. Catastrophe planning

-identification -weighing costs & benefits -loss reduction

-assign probabilities

-quantification K
to alternative events

-minimize long-term effects

Figure 3.1 Consecutive steps in risk management
Sources: Hull, 2010; Horcher, 2005; Crocker, 2003

There are two general approaches to manage risk, risk decomposition
and risk aggregation. Decomposing means that all risks are dealt with
separately whereas risk aggregation involves diversification to reduce
risks (Hull, 2010). Diversification in portfolio theory means that
investors do not maximize discounted return, but select their portfolio
thus that they simultaneously maximize the expected returns and
minimize the variance of the portfolio (Markowitz, 1952).

The goal of risk regulators is “to make bankruptcy a highly unlikely
event” (Hull, 2010). Assumable this goal is the same for risk managers
across companies. Regulators therefore require banks to hold sufficient
capital to absorb losses of very low probabilities. This capital level, the
regulatory framework behind it and the measures involved are the
subject of the next section.
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3.2 CURRENT RISK MEASUREMENT AND REGULATION

REGULATORY FRAMEWORK: BASEL ACCORDS

The Basel Accords require banks to hold a capital of 8% of risk-
weighted assets: all assets and off-balance exposures of banks weighted
according to the risk they carry. The Basel Committee provides banks
with certain methods of weighing the riskiness of certain assets. The
first Basel Accord had significant weaknesses. For example, all loans to
corporations had to carry a risk weight of 100% regardless of the credit
rating of the underlying company. The accord also did not include
default correlation and focused solely on credit risk (Hull, 2010). In
2004 the Basel Committee announced new rules and criteria (Basel 1),
including financial risk and operational risk, based on three so-called
pillars:

Minimum capital requirements (8% of risk-weighted assets);
Supervisory review;

Market discipline.

Since all calculations of risk are part of the first pillar, this article
disregards the other two pillars. These core concepts are unchanged in
the newly adopted regulations of Basel III, although the capital
requirements are enhanced and as a result of the financial crisis the
Basel Committee includes liquidity requirements in the new rules. As of
1 January 2015, banks will be required to meet the following new
minimum requirements in relation to risk-weighted assets (RWA):

4.5% of common equity/RWAs;
6.0% of tier-1 capital/RWAs;
8.0% of total capital/RWAs.

Total capital is 8% of the sum of Credit risk RWA + Market risk RWA +
Operational risk RWA. There are several choices for banks in
calculating their risk-weighted assets. These choices are not discussed
in detail, but will come forward in the practical discussion of current
risk measures versus the Foster & Hart measure.

For credit risk banks can choose either one of:

The standardized approach (supervisor prescribes risk weights);

The foundation internal ratings based (IRB) approach (loss probability
density function based);

The advanced IRB approach.

For market risk the preferred approach is Value-at-Risk or (VaR). For
operational risk banks have again three choices:

The basic indicator approach;
The standardized approach;
The advanced measurement approach.

12



CURRENT RISK MEASURES

Markowitz stated that if the word risk were replaced by variance of
return “little change of apparent meaning would result” (Markowitz,
1952). Risk measures based on standard deviation were historically
widely used (Horcher, 2005). A major drawback is that these measures
are not monotonic (Foster & Hart, 2009), meaning that the risk
measure of a distribution X with all values lower than or equal to that of
a distribution Y should be less than or equal to the risk measure of
distribution Y. It is however an intuitive starting point for the
measurement of risk: a low value indicates a small spread around the
expected value, intuitively comparable to lower risk. However for
describing the risk of events with low probabilities these measures are
inappropriate (Artzner et al., 2004).

Many papers define risk in terms of change of values over time; Artzner
et al. (1999) argue that risk is only related to the (variability of) future
value of a portfolio, thereby introducing a ‘future net worth’ approach.
They define a measure of risk as the minimum extra capital that makes
the future value acceptable. Crucial to this concept is whether the future
value belongs to the subset of acceptable risks, the definition of which is
to be decided by regulators, exchange’s clearing firms or risk managers.
It is apparent from these definitions that risk measures are used to
determine the amount of capital to be kept in reserve.

The most widely used measure of risk is Value at Risk (VaR). This
measure lies at the heart of risk measurement according to the Basel
framework. It is developed to provide a single number that represents
the entire risk of a portfolio. Both the measure and the value are called
VaR, the loss level during a time T that will not be exceeded with a
certainty of level «. The actual result of the computation of VaR
depends on several factors: the probability function of losses (or
profits), the choice of parameter a and the time horizon t.

[ 0.014
[ 0.012

0.01

—Uniform distribution r 0.008

—VaR level
[ 0.006

[ 0.004

[ 0.002

0
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

Figure 4.1 VaRos for uniformly distributed asset
The most straightforward example to illustrate VaR is assuming an
asset with random values uniformly distributed on the interval (-50,50).

The VaR at a 95% confidence level (@ = 0.05) is -45, the loss level that
is exceeded with a probability of 5% (Hull, 2010; Jorion, 2001).
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Since VaR does not pay attention to the distribution in the tail of the
probability function, there were several other methods derived from
VaR focusing on the tail. For example the Expected Shortfall (ES)
method, which measures the average future net worth of a position,
conditional on the fact of a loss greater than the cutoff level @ (Artzner
et al,, 2004; Acerbi & Tasche, 2002; Rockafellar & Uryasev, 2002). ES is
therefore also called Tail/Average/Conditional VaR, or Expected Tail
Loss. It answers the question: ‘what is the expected loss if things go
bad?’ (Hull, 2010).

Banks have developed internal estimates of the capital needed for the
risks they are exposed to besides to these theoretical and regulatory
estimates, called economic capital. Based on this economic capital
banks and investors calculate the risk-adjusted return on capital
(RAROC) or the return on risk-adjusted capital (RORAC), both based on
Value at Risk calculations (Hull, 2010).

3.3 SHORTCOMINGS OF CURRENT RISK MEASURES

Although there has been much criticism lately on the current regulatory
system for focusing primarily on risk of extreme events instead of
consideration of risk in daily operations (e.g., Caballero & Krishnamurty,
2008; Artzner et al, 2004) this paper will to a large extent ignore
regulatory deficiencies. The focus of this paper is primarily on
practicality of risk measures and therefore will the focus of the
discussion be directed towards regulatory-based measures of risk.

Even before the article of Artzner et al. (1999) on coherent measures of
risk there was criticism on VaR for being too simplistic, dependent on
underlying factors, and for being incomparable between companies
(e.g., Beder, 1995). Grootweld & Hallerbach (2000) point out that VaR
was originally intended as a diagnostic variable instead of a decision
parameter. The industry advocated the use of VaR for its simplicity and
flexibility (Hull, 2010). There is however a downside of the flexibility.
Beder (1995) shows for three (real-life) portfolios that VaR results vary
up to 140 percent between eight VaR approaches (different
combinations of historical/Monte Carlo simulation, 100/250 trading
days data set and RiskMetrics/BIS correlations).

Artzner et al. (2004) show that traders can ‘spike’ their position by
taking advantage of the dependence of VaR on the confidence level, by
entering positions with a high probability of a gain and a small
probability of a huge loss. In these cases the relatively small VaR at the
confidence level masks the (however small) probability of the huge loss.
It is questionable whether VaR is a sound measure for portfolios with
such probability distributions. Two simple examples show how
problematic a single value for risk assessment may be if this number
depends on too narrow constraints:

Consider the following asset:

B {1 p = 0.99
9 = 1-1,000,000 p =0.01
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The expected value of this asset is round minus 9999 euro. How much
capital is needed to manage the risk of a portfolio against its exposure?
The VaR of this portfolio depends on the number of «, but even for a
reasonably high value of say 1% the VaR of this specific asset is still 1
euro positive, although the downside risk of the unlikely extreme loss
could mean bankruptcy for any agent entering this deal.

Artzner et al. (2004) show another problem of VaR with a portfolio
consisting of a put and a call option with both 4% probability of a loss.
At @ = 0.05 the VaR of both options is positive, although the combined
portfolio certainly needs capital since both options cannot be in the
money at the same time.

VaR ignores the tail of distributions, consider for example the following
graphical representation of an arbitrary distribution and its VaRgg9
level and note that the VaR level does not change if the probability mass
of the tail shifts towards even less desirable loss levels.

~—— Distribution

—VaR level 003

50 45 40 35 30 25 20 45 0 5 0 5 10 15 20 25 30 35 40 45 50

Figure 4.2 VaRo.9 for arbitrary distribution with fat tail

The VaR of portfolios is easily manipulated, which is readily verified
from the table below. Entering a combination with asset 2 offsets the
undesirable VaR of the first asset, -100. The 99% VaR of the
combination has ‘improved’ to 0, although the probability of an
unfavorable event to occur has increased and the possible loss has
increased by a multiple of around 1000.

Asset 1 Asset 2 | Combined asset 1+2
VaRo.99 -100 VaRo.99 100 VaRo.99 0
p x p x p X
0.011 -100 0.009 -100000 0.000099 -100100
0.989 1000 0.991 100 0.008901 -99000
0.010901 0
0.980099 1100

Table 4.3 VaRo.9 for two assets and the combination of the two

Since VaR encourages the accumulation of shortfall risk, several
alternatives for VaR were developed (Follmer & Schied, 2010). These
alternatives are however not present in current regulation and are in
their turn criticized for their complexity (Hull, 2010), and for being
dependent on a specific probability distribution (Artzner et al., 2004).
There is an ongoing search for robust, but convenient risk measures
that are both economically sound and practically operable.
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4. AXIOMATIC RISK MEASURES

Section 3 made clear that within the Basel regulation VaR is the risk
measure that is the corresponding industry standard, although it is
often criticized. Especially the deficiency on shortfall risk has lead to
research on other alternatives. As Follmer & Schied (2010) point out
such a search should start with specifying certain axioms (“a statement
or proposition which is regarded as being established, accepted, or self-
evidently true”, Oxford Dictionary).

This section extends the theoretical framework with a discussion of
coherent risk measures and the axioms underlying them and a
discussion of the recently developed theories of Aumann & Serrano and
Foster & Hart, the main subject of this paper.

4.1 COHERENT RISK MEASURES

Artzner et al. (1999) suggested in their discussion of current risk
measurement four properties that any so-called coherent risk measure
should possess, derived from four axioms on acceptance sets, the set of
acceptable risks according to a certain supervisor. They define these
sets in terms of future net worth as introduced in Section 3.2, arguing
that risk is the investor’s future net worth 2,.;.;e; - 4;(T). This future
net worth approach, based on market risk and therefore dealing with
positions in certain currencies, considers one period of uncertainty
(0, T) for simplicity. The various currencies are numbered by i,1 <i <
I. The factor e; denotes the “random number of units of currency 1
which one unit of currency i buys at date T” (Artzner et al,, 1999). Since
the initial positions are denoted by A4;, this automatically leads to the
future net worth denoted as the sum of all positions providing 4;(T)
units of currency i at date T

The axioms on acceptance sets and risk measures are closely related
since Artzner et al. (1999) defines a measure of risk by “describing how
close or how far from acceptance a [future] position is”. The axioms
need some additional notation, the set of states of nature is called (,
and the final net worth of a position is a random variable denoted by X.
The set of all risks is G, the cone of nonnegative elements of G is
denoted by L, and the negative elements of G are denoted by L_. Finally,
the set of final net worths, expressed in currency i, accepted by
supervisor j is denoted in the generic notation A. The set A is called
the acceptance set. The four axioms on acceptance sets are as follows:

The acceptance set A contains L,

The acceptance set A satisfies A N L_ = {0}

The acceptance set A is convex

The acceptance set A is a positively homogeneous cone

By definition a measure of risk is a mapping from the set of all risks G
into R. The number p(X) is the amount of capital that is needed to make
a position acceptable, invested in a ‘safe’ position. If this number is
negative, the amount can be withdrawn from the position. The axioms
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for risk measures are stated as follows, for all X and Y that are element
of the set G, all real numbers « and all positive values of t:

pX+c)=pX)—c [translation invariance]
pX+Y) < pX)+ p(Y) [sub-additivity]
p(t-X)=t-pX) [positive homogeneity]
p(X) < p(Y) vY,X € GwithY <X [monotonicity]

The four axioms are quite straightforward and are widely accepted as
logical assumptions for measures of risk. Property 1 states that any
‘risk-free’ invested capital that is added to the portfolio reduces the risk
of the portfolio by the same amount. This property is also called the
risk-free property (Artzner et al.,, 2004). The second property is based
on the fact that diversification does not increase risks; the aggregation
of two portfolios should equal or decrease the capital requirements.
Property 3 states that the risk is independent of the unit of
measurement, multiplying the amount invested or the outcomes,
multiplies the risk the same multiplier. The last property, monotonicity,
states that if a portfolio outperforms another portfolio it should always
be considered as less risky and therefore the value of its risk measure
should be smaller (Artzner et al., 1999; Hull, 2010).

A risk measure that satisfies all four axioms presented above is called
coherent by definition. It is easy to show that VaR satisfies only three of
these four conditions, because it is not sub-additive (e.g., Hull, 2010;
Artzner et al,, 1999; Rockafellar & Ursayev, 2002). Shortfall approaches
are coherent, but as mentioned before, some are very dependent on the
underlying probability function. Artzner et al. (1999, 2004) therefore
plead for a generalized scenarios approach. They call it the “most
general form of coherent risk measure” (Artzner et al,, 2004, p. 401)
and formulate the following procedure:

Calculate the average of the negative of the position’s final net worth X,
under each probability function belonging to  (set of probability
distributions of the (finitely man) states of nature);

Calculate the largest of all numbers found in the first step that
corresponds to the formula p(X) = sup {Ep[—X]|P € $}.

There is an ongoing search for coherent measures of risk based on the
four generally accepted axioms of Artzner et al. Recent research is
heading towards so called convex measures of risk, and in particular
entropic risk measures (which are convex, but not coherent, see
Follmer & Schied, 2010). The entropic risk measure, with parameter 6
(risk aversion) is defined as (Foéllmer & Schied, 2010):

per (X) = 5 log(E[e™*¥)).

Convexity means, in terms of the axioms presented by Artzner et al.
(1999), that a measure satisfies both the sub-additivity and the positive
homogeneity property. Entropic risk measurement is based on the
concept of entropy, derived from physics and is out of scope of this

paper.
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4.2 AN OPERATIONAL MEASURE OF RISKINESS

Foster & Hart attempted to find an operational interpretation for the AS
index, but were “led instead to the different measure of riskiness”
(Foster & Hart, 2009). Riskiness is defined as a level of critical wealth
below which it becomes risky to accept a gamble. The critical wealth is
the capital buffer an investor should hold in order to avoid long-term
bankruptcy if faced with an unknown sequence of the gamble.

Foster & Hart (2009) continued the search for a measure of riskiness
with the following desiderata: objective, scale-invariant, monotonic, an
operational interpretation and a simple formula.

FOSTER & HART MEASURE OF RISKINESS

The measure is based on gambles g with finitely many values and
limited liability, for the measure yields infinite riskiness for unbounded
losses. The explanation of the measure requires some notation:

E[g] >0

P(x <0) >0, x being outcomes of g
L(g) = —min;x; >0 is the maximal loss of g
M(g) = max;x; >0 is the maximal gain of g
W, (t=12..) is the wealth at time ¢
We=W,_1+x

For this wealth, in order to have a risk measure that indeed rejects risky
gambles and accepts gambles below a certain threshold, there must be
what Foster & Hart call a critical wealth function Q (g) that gives a real
valued positive number for each gamble g. This critical wealth function
is used in a strategy s, that rejects a gamble g if W < Q(g) and accepts
it if W = Q(g). This strategy yields no bankruptcy if the probability of
wealth converging to zero over time is zero, that is P[lim,,,W, = 0] =
0. Irrespective of the initial wealth and the sequence of gambles offered
in the future, the strategy s, guarantees that future wealth does not

converge to zero (Foster & Hart, 2009).

The first theorem of Foster & Hart (2009) states that there exists a
unique number R(g) > 0 for every gamble g € G such that “a simple
strategy s with critical-wealth function Q(g) guarantees no bankruptcy
if and only if Q(g) = R(g) for every gamble g € G” (Foster & Hart,
2009). This condition states that the gamble is accepted if the critical
wealth is higher or equal to R(g) and gamble g is rejected for all wealth
levels below it. R(g) can therefore be seen as the minimal wealth that is
needed to accept a gamble g and is thus a measure of riskiness of g.
R(g) is uniquely determined by the equation

E[log (1+%g)] =0

Foster & Hart (2009) continue by showing that if only a proportion of a
gamble is accepted this does not affect the riskiness of the gamble. It is
possible in their ‘shares setup’ (where one could accept a fraction
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a =W /Q(g) of a gamble) to ‘stay in the game’ even with wealth below
the critical wealth level by accepting any nonnegative multiple of the
original gamble. They prove that in the end this approach leads to a
very sharp distinction between bankruptcy (which is avoided) and
infinite wealth, where R(g) is the threshold between the two.

The FH measure is thus an intelligible formula depending solely on the
distribution of the gamble. Foster & Hart assume that bankruptcy
means having wealth of zero, the literal sense of bankruptcy instead of
possible regulatory or legal versions where losses may be limited. No
bankruptcy and infinite growth are assumed to be preferred over
bankruptcy. Another important assumption is that of limited liability;
the measure yields infinite riskiness for unbounded losses, since
R(g) > L(g)- Borrowing is not allowed in this setup.

AXIOMATIC APPROACH REGARDING THE FH MEASURE

In 2011 Foster & Hart propose an axiomatic approach to their risk
measure consisting of four axioms, the first two of which are
straightforward and satisfied by many coherent measures of risk:
distribution and scaling. The other two are derived from the concept of
riskiness as wealth requirement: monotonicity and compound gamble:

If g and h have the same distribution then Q(g) = Q(h) [distribution]
Q(Ag) = 2Q(g) for every 1 > 0 [scaling]

Ifg > hand g # hthen Q(g) < Q(h) [monotonicity]
Let f = g+ 1,h be a compound gamble, where g,h € G and 4 is an
event such that g is constant on 4, i.e., g|A = x for somex, and his
independent of A.

IfQ(h) = Q(g9) + xthenQ(f) = Q(9) [compound g]

The first axiom is straightforward and very widely accepted for
measures of risk. The axiom of scaling (or scale-invariance in terms of
the Foster & Hart 2009 paper) is the same as the positive homogeneity
property following from Artzner et al. (1999), it states that the measure
does not depend on the unit of measurement, rescaling the gamble
results in the exact same rescaling of the risk measure. In financial
literature this is referred to as law-invariance. Monotonicity is the same
concept as explained before in Section 3.2 meaning that if a gamble g
and a gamble h have the same distribution but one gamble outperforms
the other, its risk measure should be smaller. The axiom of compound
gamble is based on the wealth requirement and it states that if the
current wealth plus the possible outcomes of the current gamble
satisfies the wealth requirement for all consecutive gambles, then the
current wealth is also appropriate for the compounded gamble (see
Foster & Hart, 2011, pp. 5-7 for an illustration). The FH measure
satisfies the four axioms; in fact it is the minimal function satisfying
these axioms.

See Appendix A for an intuitive introduction and a short representation
of the FH measure and the rationale behind it.
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AUMANN & SERRANO INDEX

Aumann & Serrano (2008) follow an axiomatic approach in order to
define riskiness. The starting point of Aumann & Serrano is a search for
an objective measure of risk, not depending on the person that is
exposed to it. The theoretical basis is the concept of risk-aversion as
introduced in Section 3.1, since they are considering risk-averse
decision makers, those who prefer less risky portfolios to more risky
ones if all other things are equal.

It is important to note the difference that Aumann & Serrano (2008)
make between desirability and riskiness. Desirability is based upon
preferences of investors, whereas riskiness is objective. A ‘riskier’
investment can still be more desirable for a certain investor, for
example in terms of expected value or maximum loss. A more risk-
averse investor could find that a certain portfolio is too risky, while a
less risk-averse investor may think that the opportunities of the
portfolio outweigh the riskiness. The riskiness of the portfolio is the
same for both investors (Aumann & Serrano, 2008). Although Aumann
& Serrano start by describing their search for a ‘measure’, they continue
by using the word ‘index’, which is more appropriate since the AS index
is based on comparing gambles, opposed to a ‘measure’ that is defined
separately for all gambles (Foster & Hart, 2009; Homm & Pigorsch,
2010).

The AS index is closely related to the concept of constant absolute risk
aversion, that was introduced by Arrow (1965) and Pratt (1964). The
utility function of a decision maker with a constant coefficient of
absolute risk aversion a, is namely given by:

u(w) = —e %,

Aumann & Serrano (2008) try to find the cutoff level for which a gamble
is rejected by every decision maker with smaller @ and accepted by a
decision maker with higher a. This cutoff level is the number R(g) for
which the following equation holds:

Eeg/R(g) = 1

We are aware of the work of Bali et al. (2011), which builds upon the
constant relative risk aversion (CRRA) and the work of Homm &
Pigorsch (2010) who connect the FH measure and the AS index by
taking notion of the fact that the two are related to the adjustment
coefficient (a quantity derived from ruin theory). These new
contributions provide interesting solutions to certain limitations of the
FH measure. These are however additions to the FH measure and do
not change assumptions or variables behind the FH measure. We will
not discuss these additions in this paper, but instead focus on the
computation of the FH measure, since the line of reasoning remains
intact.
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5. PRACTICAL APPLICABILITY

5.1 CURRENT PRACTICE

The assumptions, axioms and variables behind the FH measure should
be clear from the previous section, as is the regulatory framework of
current risk measures within banks. To be able to convert all theoretical
assumptions to a practical discussion it is necessary to understand daily
practice. The information in this section is based on several interviews
within the banking and risk management sector and on annual reports
of major Dutch banks and Basel regulation. As introduced in Section 3.2
several approaches are allowed for banks to measure their risk, the
table sums up the preferred approaches:

Risk | Approach Confidence level Distributions
Market risk 10-day VaR a=0.99 historical data
Credit risk 1-year WCDR «=0.999 PD, EAD, LGD

Operational risk estimation - -

Table 5.1 Preferred regulatory approaches in calculating risk

For market risk the preferred approach is VaR, either derived from
historical or Monte Carlo simulation. Most banks use the historical
simulation approach; an approach that estimates the VaR for a certain
market position based on the empirical distribution of the lastn data
points. The historical movements of an asset (profit and loss shocks)
are used as a probability distribution for the current position. The time
horizon of data depends on the specific asset and is approved by the
regulator. A 10-day VaR with a = 0.99 is required by the regulators for
calculating market risk. The VaR for market risk is back-tested, which
means that the daily VaR estimate is compared with the real-life results.
If the actual loss exceeds VaR too often the regulator undertakes action.

For credit risk the approach is slightly different since it is based on a
combination of models. The standard approach is PD*EAD*LGD, where
PD stands for probability of default, EAD is the exposure at default and
LGD is an abbreviation of loss given default. For each parameter banks
develop models, also based on historical data. The worst credit default
rate (WCDR), a measure that is very similar to VaR, is calculated given
the three parameters described before. A 1-year WCDR with @ = 0.999
is required by the regulators for calculating credit risk. Although there
is much criticism of historical data for lacking predictive properties,
historical data are on the plus side credited for implying correlations:
included in the historical data are the correlations of counterparty’s
default, which need not to be estimated or modeled.

The measurement of operational risk is even more complex, since it is
based on highly infrequent events. The attention has shifted towards
mitigation and control instead of risk measurement; managers need to
estimate material risks of their operations. This is an arbitrary process
with little data available; much is based on management interviews
instead of historical data. Banks are therefore allowed by the regulators

to use their own advanced measurements for operational risk.
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Because of the limitations of statistical risk measurement based on
historical data, there is increasing attention towards stress testing.
Several low probability extreme events are simulated to see whether
the (regulatory) capital of a bank is sufficient to survive. This is
consistent with the findings within the field of operational risk where
attention is heading towards understanding and preventing exposure at
risks instead of purely measuring it. One of the major problems lying at
the heart of the financial crisis is not the measurement of regular risk of
common and well-understood products, but the measurement of highly
complex financial products that have little historical data and are less
understood (J. de Mulder, personal communication, April 19, 2012).

Within the Basel regulation banks are allowed to develop their own risk
measurements, since the regulator understands that banks are much
more aware of the type of products and risks that they are exposed to
than the regulator could ever be. If a bank wants to use a different
measure or an adapted measure it needs to perform parallel simulation
runs of the adapted measure and the regulator imposed measure. The
outcomes are evaluated and if the regulator is convinced that the
internal measure is consistent and sound the regulator might allow it.

5.2 (DIS)ADVANTAGES OF DISCUSSED RISK MEASURES

The main goal of this paper is to investigate whether the FH measure is
applicable. Actual advantages and disadvantages of this measure
compared to other measures (as discussed in Section 3.2 and Section
4.2) should be the subject of a follow-up comparative study that
elaborates on the mathematical soundness and financial implications of
the results. It is, however, easily possible to compare several
characteristics as a result of this study. Sometimes it is questionable
whether a certain characteristic is a limitation or an advantage. This
section first compares the two main measures of risk within this paper;
VaR and the FH measure and concludes with a brief discussion of some
questionable characteristics.

Distribution characteristics VaR FH

1. Distribution free X X

2. Continuous X discr. app.
3. Well-defined for unbounded losses X

4. Based on historical data X X

5. Independent of preferences partly X

6. Independent of arbitrary parameters X

7. Riskiness > maximum loss X

Axiomatic characteristics
I. Distribution axiom X X
II. Translation invariant

[1I. Subadditive X
IV. Positive homogeneous X X
V. Monotonic weakly X

X

VI. Compound gamble

Table 5.2 Theoretical comparison of VaR and FH measure
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DISCUSSION OF DISTRIBUTION CHARACTERISTICS

Both VaR and the FH measure are distribution free and thus applicable
to any distribution; VaR by calculating a percentile of the distribution
and the FH measure by calculating an expectation of ‘log-returns’.

In the basic setup the FH measure is not applicable to continuous
functions. This is however readily solved by discrete approximation.
The main disadvantage of the Foster & Hart measure is that it is not
well defined for unbounded losses, a property that could be very
problematic since many distributions in finance are unbounded from
below (Homm & Pigorsch, 2011; Bali et al., 2011).

Both VaR and the FH measure are dependent of historical data with all
possible limitations thereof as discussed in the previous section.

The most important advantage of the Foster & Hart measure over VaR
is that it is ‘objective’; it does not depend on preferences of users or
arbitrary parameters such as a confidence interval.

The Foster & Hart measure always assumes riskiness greater than the
maximum loss, opposed to VaR, which takes the (1 — @) percentile of
the underlying distribution as measure of risk.

Ad3. Homm & Pigorsch (2011) and Bali et al. (2011) proposed
modifications of the FH measure that suggest that it is possible
to bound the measure from below within a similar setup as the
FH measure.

Another remark is that the FH measure is designed and proven for
gambles with finitely many outcomes. Riedel & Hellmann (2013)
generalized the concept of critical wealth level to continuous
distributions. Important to note here is that Riedel and Hellmann only
study distributions that are bounded from below, actually showing that
the limit for the critical wealth level is given by the maximum loss L(g).

If for a continuous random variable E[log(1+X/L) >0, X
representing the random variable and L representing the maximum loss,
then the limit of the riskiness coefficient should be taken of the
approximating discrete variables, which turns out to be L (Riedel &
Hellmann, 2013). For all other cases (where the expectation is smaller
than zero) the formula of Foster & Hart is applicable, as exemplified
before in this paper.

DISCUSSION OF AXIOMATIC CHARACTERISTICS

Both VaR and the FH measure violate one of the axioms of Artzner et al.
(1999). Value at Risk is often criticized for not being subadditive, which
means that the risk of a combined portfolio should be no greater than
the sum of the individual portfolios (see for a discussion of this
violation for example Hull, 2010). The Foster & Hart measure of risk is
not translation invariant, a property that is logical in the Value at Risk
setup: if a risk-free amount is added to the portfolio, its riskiness should
decrease with the same amount. To see why it is also reasonable that
this axiom should not hold in the Foster & Hart setup consider the
following gamble:
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R(g) = 600, and for any reasonable choice of a the VaR of g is 100. If
one adds 100 to this portfolio it follows immediately that one can lose
nothing and gain 220 with equal probabilities. In this case its riskiness
should be zero and not 500 (Foster & Hart, 2009). Indeed the VaR
becomes zero for the new gamble. The last concept is that of
monotonicity, both VaR and the FH measure are monotonic although
Foster & Hart (2009) point out that VaR is only weakly monotonic with
respect to stochastic dominance. For discussions on the concepts of
stochastic dominance we refer to Hanoch & Levy (1969), Rotschild &
Stiglitz (1970) or Hart (2011).

Besides all these theoretical and practical advantages of the Foster &
Hart measure it is important to be aware of the following facts. The FH
measure provides an idealized benchmark, since the measure might
change if additional information is present for example on the sequence
of gambles (Foster & Hart, 2009). The number R(g) is a single figure
representation of risk with all limitations that a single number can have.
It is well known in the area of risk that it is hard to capture a difficult
concept such as riskiness in a single figure. Finally it is good to mention
that R(g) provides no criteria for when to accept a gamble, only for
when to reject. This is however from the viewpoint of regulators not
problematic since they will be concerned with rejecting (too) risky
projects instead of internal procedures of accepting certain projects.

5.3 APPLICATION OF FOSTER & HART MEASURE

Before answering the question whether the FH measure is applicable,
based on the theoretical and practical framework of previous sections, a
brief comparison of current techniques and the FH measure is needed.
So far this paper addressed axioms, properties, mathematical aspects
and aspects from daily practice, but it did not address the reasoning
behind the different measures of risk. Obviously the axioms of Sections
4.1 and 4.2 can be seen as reasoning behind the measures, but do these
measures share the same objectives? All discussed measures are a
representation of risk in a single value of a certain function, applied on
a set of data or a distribution. But are they interchangeable by means of
their goals?

First of all VaR answers the question “how bad can things get?’, where
Expected Shortfall answers the question ‘if things go bad, how bad are
they going to get?’. Following this line of reasoning the FH measure
answers the question ‘what total wealth is needed in order to prevent
bankruptcy?’ At first glance there is a difference in the VaR/ES rationale
on the one hand and the FH rationale on the other hand. The connection
between the two lines of questioning lies in the fact that the regulatory
capital that a bank needs to hold is based on its Value-at-Risk. So both
may be used as a measure for regulatory capital and based on their
goals they are interchangeable. The amount of capital that is needed
under both systems is part of the discussion in Sections 6 and 7.
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It is still questionable whether the FH measure is practically applicable.
That depends roughly on two criteria, whether the measure is
mathematically sound and proven right and to what extent the measure
is computationally complex. Since this paper only addresses the
practical aspects, it assumes the FH measure to be mathematically true
and well defined. For some comments on potentially problematic
theoretical issues see Section 5.2. The computational complexity of the
FH measure is not very high as partly pointed out in Section 4.2. It is
distribution independent and depends solely on the values of the
gamble and their respective probability mass:

E(g) = Z pi X;

E [log (1 + %g))] = Z p; log (1 + RJ(C;)>

What is needed in order to solve the above equation is a probability

distribution, comparable to what is needed in current VaR techniques.
This can be achieved by applying historical simulation or Monte Carlo
simulation or by a given distribution. The only difference between VaR
and the FH measure lies in the fact that the FH measure needs a discrete
function. Since it is current practice to estimate continuous functions
underlying VaR by means of discrete simulation techniques this is
hardly a problem. The actual calculation is however of greater concern.
VaR is simply the (1 — a) percentile of a distribution of in the discrete
simulation case the n — an'" th scenario. The FH measure needs implicit
solving of the equation, an iteration process that estimates R(g) and
optimizes it until the expectation equals zero. This might be done using
software packages such as Excel’s Solver or Matlab.

Two important issues must be kept in mind. First of all the FH measure
is not defined for distributions with unbounded losses. An adaptation
needs to be made for these cases (for instance with the findings of
Riedel & Hellmann, 2013). Since these distributions (for example the
normal distribution) are very common in the financial world, this is an
issue to overcome in order to be able to apply the measure in real-life.
Secondly, as pointed out in Section 5.2, the FH measure is developed
and studied for discrete variables only.

Section 6 provides a brief comparison of VaR and the FH measure with
use techniques as Matlab and Solver and an actual calculation of R(g)
with a simple data set. It focuses on the computational issues and issues
for acceptance of any new measure and the FH measure in particular.
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6. PRACTICAL IMPLICATIONS

The previous section has shown that it should be mathematically
possible to apply the Foster & Hart measure at least to data that is
distributed with a discrete probability function. This section builds up
towards the actual simulation and application of the FH measure in
comparison to VaR for several distributions using Matlab simulation.
The practical implications are discussed along two paths: the actual
application in terms of computations or algorithms and the adaptations
that banks and regulators might need.

6.1 COMPUTATION

Especially for the computation of market risk, for which usually
historical data over a given time (a common choice is 501 trading days
(Hull, 2010)) is used, the FH measure seems to be easily applicable
since this sort of data is consistent with its requirements. For this
purpose two computations are performed on 835 closing prices of
Apple Inc. The actual calculations and the Matlab and Solver algorithms
used can be found in the Appendix. Both methods are also tested for
extreme cases and arbitrary and artificial distributions to get a first
impression of the possible problematic situations involved in
computing the FH measure by means of Matlab or Solver. This is used
as input for the actual simulation and application in Section 7.

For the solving of the algorithm the most important part in software
packages is the initial estimate of R(g). For calculations by hand (not
automated processes) it is wise to start with an extremely high value
for R(g)and a value close to |L(g)|. Since the underlying function
approaches zero as it goes to infinity, the Newton method for
approximation is not easily applicable and extremely dependent on the
initial estimates for R(g). Excel Solver is also at first sight extremely
dependent on the initial estimate, for an artificial probability
distribution this is shown in Appendix C. The Matlab script, found in
Appendix B, is a good solution for the problems caused by Excel’s Solver.
It solves the easy and artificial cases easily and the script is not at all
dependent on the initial values. For the lower bound the value
|[L(g)| + e is chosen, the value e being the smallest number available
within Matlab. For the upper bound any reasonable choice might be
applied, for example 2|L(g)| or L(g)?. It is logical to define at least the
lower bound in terms of L(g), since R(g) is always strictly greater than
L(g) for discrete distributions. For the upper bound some tinkering is
needed to fine-tune the most convenient value.

Two explicit cases are discussed here, the data and calculations can be
found in Appendix C and D. The first case is an artificial distribution,
created to find the extreme situations for which the packages used
might experience problems. The artificial distributions of Appendix C
create several problems for Excel Solver (the numbers correspond to
the sections of the appendix):
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For distributions with a large positive expectation the value of R(g) is
very close to L(g), sometimes so close that Excel cannot find a solution;
The first estimate of R(g) is of high importance, a wrong estimate leads
to no solution or an infeasible one;

For normal distributions with a mean close to zero it is hard or
sometimes even impossible to compute the FH measure;

The FH measure cannot deal with distributions with a negative
expectation, under ‘normal’ market conditions this may not cause any
problems; under the current situations this might be problematic.

Appendix D shows the results of applying the methods to the closing
prices of Apple Inc. (AAPL). With Solver the target cell is the
expectation of the FH measure its target value being zero. Changing the
value of R(g) (the initial value of which is set to|L(g)| + 1 in this case)
solves the equation. As can be seen the 10-day VaRog9 is $142337,
opposed to R(g)of $72577. The solution of Excel equals the value of
R(g) found by means of the Matlab script of Appendix B.

The examples show that the FH measure can be applied to both
artificial distributions and a portfolio consisting of stocks. This seems to
imply that the FH measure is at least applicable for market risk. To
verify whether this statement is actually true a more thorough
comparative study of real-life portfolios is conducted in Section 7.

6.2 ACCEPTANCE AND ADAPTATIONS

The Foster & Hart measure is applicable for the same sort of data as
VaR and the computations of the previous section show that the value
of L(g) can be computed by means of readily available software
packages. There are however more aspects of importance for a new
measure in order to be applied and accepted by both banks and
regulators.

Banks are familiar with new and modified measures of risk since they
are allowed under the Basel II/IIl regulation to apply their own
measures if they can prove that these measures are consistent and
sound. There are however technical limitations with respect to software
packages. Since the data are exactly the same as for VaR calculations
there does not seem to be technical problems in computing the FH
measure. This should be verified within a follow-up comparative study.
Besides the system integration of the algorithm two other aspects are of
importance: the impact of the critical wealth level required by the FH
measure and the intelligibility of the measure. The latter case is slightly
more difficult than VaR but seems not overwhelming. The first aspect is
interesting to investigate in further research. It might be the case that
for several portfolios the FH measure requires less capital than current
regulatory capital. The opposite is also possible in which case banks
could refuse to apply the measure if their capital levels are too low or
banks could accept both measures and brand themselves as applying to
regulatory capital and the FH critical wealth if their capital levels are
sufficient.
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7. APPLICATION AND COMPUTATION OF FH

The previous sections reveal two important findings: the FH measure
seems to be applicable in real-world finance, but there are some serious
issues that need to be overcome before it will be used in practice. This
section elaborates on the work done in Section 6.1 where a basic
algorithm was developed for computing the critical wealth level for
discretely distributed random variables and some basic continuous
distributions.

7.1 REQUIREMENTS AND CONDITIONS FOR THE
ALGORITHM AND MATLAB SCRIPT

Specifically the following issues are of importance:

For some distributions (especially unbounded from below, continuous,
but in some cases also the discretely approximated continuous random
variables as shown in Section 6.1) the function for finding the critical
wealth level cannot be solved;

In typical cases where the expectation of the random variable is close to
zero or else if the distribution is extremely skewed it is hard to solve
the function without a good estimate of R(g).

The complete algorithm for computing the critical wealth level should
therefore distinguish several (basic) probability distributions and take
the appropriate action.

To close the gap between highly complex mathematical proofs and
practitioners a hands-on simulation may enhance understanding and
intuition at the same time. In order to be able to convince practitioners
that the ‘magic number’ for the critical wealth level is indeed the
threshold between bankruptcy and an increase in wealth (on the long
run) a simulation is added with this number. The user can fill out the
number of time steps and the number of experiments with the Matlab
script (Appendix E). The output, as shown in Appendix F, compares
several values for the critical wealth, close to the FH theoretical value
and gives the appropriate VaR number for comparison.

As found by computing the FH measure with simple algorithms and by
means of simple techniques like Excel’s Solver the values for the
estimates are of great importance.

7.2 BINOMIAL GAMBLES SIMULATED

At first the code has been written for computing the algorithm for the
FH measure for basic gambles. This extends the understanding of the
algorithm and simultaneously visualizes the theoretical assumptions
and reasoning of Foster & Hart if it shows the same results. If the
simulation yields results likewise to the results presented in the Foster
& Hart paper (2009) this ratifies both the claims of Foster & Hart and
the soundness of the algorithm.
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Besides the basic algorithm, firstly mentioned in Section 6, this code has
been extended with a simulation part. This allows the user to simulate
the effects of applying the simple shares strategy over a given time
horizon (t) and for a given number of experiments (m). The results of
these simulations should be consistent with the findings of Foster &
Hart, claiming that there is in the long run a sharp distinction between
proportions @ = W /Q(g) with Q(g) smaller than R(g) and proportions
with Q(g) greater than R(g). This shows that in fact Q(g) is the critical
wealth level and a ‘threshold’ wealth for such gambles. This is
formalized as follows:

tlim P(W, > W,) =0.5 ifa=1
tlimP(Wt>W0)=0 ifa<1
tlimP(Wt>W0)=1 ifa>1

The core of the algorithm is the FH measure of risk, computed with two
important arrays: the array of chances and the array of corresponding
outcomes of the gamble. For a 50/50 gamble with outcomes -100 and
+200 equally likely the arrays are {0.5, 0.5} and {-100,200} respectively.
The notation of Section 5.3 has been used to shape the algorithm,
creating a find zero function for the expectation with a loop that
computes for all values and respective probability mass the value of the
logarithm.

Two functions are active at the same time to compute the value of R(g):
the standard Matlab function fzero, used to find the zero of the
expectation with estimates for R(g) and the newly created function
FH(Rg). The basic script is not different from the one shown in
Appendix B and mentioned in Section 6. It is extended with code for a
simulation as presented in Appendix E, which allows the user to fill in
values for t and m and which presents the percentage of runs that end
with a wealth at the final period that exceeds the initial wealth for ten
different values for Q(g). The results for basic discrete gambles are
completely consistent with the results presented by Foster & Hart
(2009). For the gamble presented in their paper (2009) the results of
the simulation are presented in Appendix F. There is indeed a sharp
distinction at the threshold wealth, which becomes clearer with more
simulation experiments and runs. The appendix shows results for
1000x1000 and 10000x10000 experiments and runs.

7.3 SIMULATION OF MARKET RISK

Market risk is an intuitive starting point for comparative means. The
shares setup of Foster & Hart (2009) is explicitly mentioned to be
interesting in this situation and the concept of investing in shares is
widespread. Value at Risk is also specifically used in assessing market
risk. If the algorithm can solve market risk distributions it should not be
complex to extend it to credit risk, since the principles behind these two
types of risk are approximately the same.
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The typical distributions used in market risk are however at first sight a
problem for the FH measure. Normal distributions with fat tails (high
probability of extreme events, specifically those including high losses)
and lognormal distributions are commonly used to model market risk.
Some investments in market risk include the theoretical probability of
limitless losses, for instance short calls. Theoretically the FH measure
prescribes the maximum loss as the minimum capital requirement. As
mentioned before Riedell and Hellmann (2013) found that the
maximum loss is also the threshold wealth for continuous variables that
are bounded from below.

Since all simulation packages use discrete approximation for
continuous variables such as the normal distribution the first problem
mentioned in the previous section might be no problem at all. The
algorithm might well be able to find a real value for the critical wealth
level. The same is true for computations based on real-life market data,

which is common practice in historical simulation techniques.

Applying the algorithm to sixteen AEX stocks shows that it is possible
(with 385 trading days of data) to compute the FH measure for these
assets, results are given in the table below. All data were retrieved from
finance.yahoo.com, for four stocks these data were insufficient or not
available for this time horizon, and for five more stocks it is impossible
to compute the critical wealth level in the given period since E(g) < 0.
See Appendix G for all details. The numbers found for the remaining
sixteen stocks are ran over again by hand in Excel, resulting in the same
values, again proving that the algorithm is sound and able to find the
critical wealth level for distributions that are discrete or discretely
approximated.

The results for a simulation with m = 5000, ¢t = 5000 and W, = 1000
(actually irrelevant since the entire outcome is independent of initial
wealth as sh own before and by Foster & Hart (2009)) for the sixteen
AEX funds are shown below (for a list of abbreviations see Appendix G):

AGN AH AKZA APAM ASML BOKA DSM  HEIA INGA PHIA PNL RAND REN  RDSA UNA WKL
Norm 10d VaR 196.72 7877 13877 24020 12432 148.09 106.15 9157 23941 124.88 111814 168.18 80.01 73.48 71.32 100.85
Hist 10d VaR 21293 11452 15793 22517 113.00 167.03 105.77 93.24 251.12 141.81 25558 176.56 7857 93.67 79.44 99.97
FH 21135 7413 133.89 97097 6791 22694 94.07 5422 420.58 92.04 49834 217.17 5283 10831 57.60 120.09
Wt>W0 @0.8 FH 0.10 0.05 0.09 0.40 0.00 0.17 0.06 0.01 0.25 0.03 0.10 0.15 0.01 0.20 0.02 0.13
Wt>W0 @FH 0.49 0.49 0.51 0.52 0.51 0.50 0.49 0.50 0.52 0.51 0.50 0.50 0.50 0.49 0.50 0.49
Wt>W0 @1.2 FH 0.78 0.84 0.81 0.59 0.96 0.73 0.83 0.94 0.70 0.89 0.75 0.74 0.92 0.71 0.88 0.75

Table 7.1 Simulation results for 16 AEX stocks

This table shows that the historical 10-day VaR for investing 1000
euros in Unilever (UNA) is around 90 euros, where the critical wealth
level of Foster & Hart is around 70. The fact that round 50% of the
experiments lead to a situation for which W > W, shows that the
critical wealth level is indeed the threshold value. Values of Q(g) <
R(g) lead to lim, ., P(W, > W,) = 0 and the limit goes to one for
values of Q(g) > R(g), illustrated by the simulation results of
0.8 * R(g) and 1.2 * R(g).

The computation of wealth levels process applied is as follows:
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Daily adjusted-closing prices are derived from finance.yahoo.com;

From the daily closing prices the daily returns are computed;

The daily returns are multiplied by the starting capital (W) to compute
actual cash flows. (Since Q(1g) = 1Q(g) for every A > 0 this could also
be done as final step.);

The algorithm computes the critical wealth level for the assets;

As a comparative number the 10-day VaR with a = 0.99 is computed
both with historical simulation and normal approximation.

Likewise as executed for binomial gambles in Section 7.2 a simulation
has been run with these numbers again showing a sharp distinction at
the threshold wealth Q(g) = R(g). This process follows these steps:

Fill in a number for ¢t (the number of time steps) and m (the number of
experiments), creating a t * m matrix of ones;

Fill each column with a random stream of probable cash flows, derived
from the matrix created in step 3 of the previous process;

Each column is treated as a different experiment, in a loop with initial
wealth W all t steps are followed and for each step the wealth at W, is
calculated by means of the shares strategy as explained in Section 4.2;
The final wealth W, is stored in a results matrix and for all m
experiments the final wealth is compared with the initial wealth;

The percentage of situations in which the final wealth exceeds the
initial wealth is computed and stored as a single number for all m
experiments;

By repeating this process for different values of Q(g) around R(g) the
sharp distinction at Q(g) can easily been shown, especially at relatively
high values for t and m.

7.4 SENSITIVITY ANALYSIS

The FH measure solely depends on the distribution of the gamble. For
market risk these distributions are empirical as discussed in previous
sections. This implies that computing the critical wealth level still
involves a non-objective component, namely the number of days of data.
In the following table the values of the normal 10-day VaR, historical
10-day VaR and the FH critical wealth level for investing €1,000 in the
AEX index are displayed for different days of data.

#Days Norm 10d VaR Hist 10d VaR FH
100 54.25 69.72 72.17
200 63.24 68.17 48.44
300 70.39 79.44 146.25
400 91.59 108.50 151.40
500 91.64 112.03 *
600 87.43 104.21 1201.96
700 86.76 104.21 741.66
800 89.98 104.37 666.24
900 88.99 100.84 342.57

1000 90.74 100.84 166.53
2500 102.05 131.24 697.57

Table 7.2 Sensitivity to amount of data for VaR and FH compared for AEX
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Note that the critical wealth level with 500 days of data is incomputable.
This is due to the fact that E(g) < 0 for that period. The FH measure
only exists if E(g) > 0 and P(x < 0) > 0 (x being outcomes of the
gamble).

Also note that from ¢t = 600 the critical wealth level is strictly greater
than the VaR levels. This period incorporates the highly volatile market
conditions in the credit crisis for which the FH measure accounts. VaR
ignores the extreme events in this period(s), resulting in a stable capital
requirement following VaR calculations. The graph shows the
distribution of the daily returns for the 600-day period; the mean of the
distribution is 7.3579E-05, the standard deviation is 0.011915 (about
162 times the mean).
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Figure 7.3 Distribution of 600 days AEX daily returns

Because VaR ignores the tail of the distribution it is more stable than
the FH measure with respect to the amount of data used in computing it.
It is highly disputable whether this is an advantage of VaR over the
critical wealth level, since this shows the ‘blind spot’ of VaR as
discussed in Sections 3.1, 4.2 and 5.2: it ignores the low-probability
high-impact events in the tails of the distribution.

The table also reveals a problem that has been addressed before in
practical discussion. For assets with unknown distributions (the ones
needing historical data to compute parameters) the critical wealth level
is rather dependent on the length of the data array used in computing it.
It is impossible to say which value of the critical wealth level is the
‘correct one’ for the future. This is however not a shortcoming of the FH
measure alone, but a consequence of the uncertainty involved in stock
trading, and all risk measures suffer from this shortcoming.

For four stocks of the sixteen investigated in the previous Section 7.3 it
is impossible to compute several critical wealth levels, due to the fact
that for some periods E(g) < 0. For the other twelve a sensitivity
analysis has been conducted for separate stocks and different days of
data. In Appendix H the results for all stocks can be found, three
examples are given here.
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Stock: Aegon

#Days Norm 10d VaR Hist 10d VaR FH
100 114.91 137.38 135.10
150 120.10 133.35 109.41
200 140.86 153.19 12391
250 160.32 198.83 567.85
300 164.72 179.36 155.84
350 183.34 202.93 296.17
385 196.72 212.93 211.35

Stock: Heineken

#Days Norm 10d VaR Hist 10d VaR FH
100 78.47 76.32 37.40
150 86.81 76.96 44.24
200 86.66 75.92 37.15
250 89.03 78.76 52.36
300 89.43 81.85 48.08
350 90.61 84.93 54.58
385 91.57 93.25 54.22

Stock:  Wolters Kluwer

#Days Norm 10d VaR Hist 10d VaR FH
100 69.24 87.19 102.15
150 63.44 77.08 60.03
200 83.55 87.19 50.00
250 89.09 97.30 160.96
300 86.23 92.05 94.39
350 95.75 97.30 132.56
385 100.85 99.97 120.09

Table 7.3 Sensitivity to amount of data compared for three stocks

These figures show again that it is impossible to conclude which value

is the ‘correct one’. They may give the reader an impression of the

differences between the critical wealth level and the VaR capital

requirements for market risk. The results also show the dependence of

these measures on the amount of data used as input. Consistent

updating of the measures, as is current standard practice, seems to be

the only logical ‘solution’ to this problem.
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8. CONCLUSIONS

This section first answers the sub questions posed in the research
design. The main findings and answer to the main research question
follows subsequently.

THEORETICAL CONCEPTS AND FRAMEWORK
What is risk and risk management?

What are the current risk measures?

What are the shortcomings of current risk measures?

Financial risk is the quantifiable likelihood of loss or less than expected
returns. The Basel Committee on Banking Supervision recognizes (in
the current framework) three types of risk: market risk, credit risk and
operational risk. Risk management covers the complete field of
assessing and dealing with these risks.

The quantifiable pillar under Basel is the minimum capital requirement
of 8% of risk-weighted assets, for which VaR (or measures closely
related to VaR) is the preferred approach. VaR is advocated by the
industry for its simplicity and intelligibility, but criticized from both
science and practice for its manipulability and undesirable properties.
Traders can create portfolios with acceptable VaR levels, but with low
probability events of giant proportions.

THEORETICAL COHERENT RISK MEASURES AND FH

Why the need for coherent risk measures?
What is the Foster & Hart risk measure?

From a theoretical perspective VaR is criticized for violating an axiom of
Artzner et al. (1999), namely the sub-additivity. It satisfies the other
three axioms: positive homogeneity, monotonicity and translation
invariance. The FH measure, discovered in search of an operational
interpretation of the AS index, also violates one of these four axioms.
This is in no way a major drawback, since this axiom is not relevant in
the FH setup, as shown in Section 5.2.

The FH measure identifies the ‘critical wealth level’ below which it
becomes risky to accept a gamble. It is designed to measure risk with a
single number, based on facing an unknown sequence of the same
gamble. This is consistent with, for instance, trading stocks.

E[log (1 +$g)] =0.

The risk in accepting a gamble g for which it is equally likely to gain
120 or lose 100 clearly depends on the amount of wealth one has. If one
has only 100 or less, it is extremely risky to accept such a gamble. If one
has for instance 1 million, it is not risky at all to accept the gamble.
Foster & Hart show that there is a well-defined critical wealth level that
separates between two situations: one for which it is risky to accept the
gamble and the other for which it is not.
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11.

PRACTICAL FRAMEWORK AND APPLICABILITY

What are the practical aspects of current measures and regulation?
What are the (dis)advantages of the FH risk measure in comparison?
Is the FH measure applicable as risk measure in practice?

Banks are allowed by regulators to use their own approaches and
models in calculating VaR (for market risk) or WCDR (for credit risk).
Typically for market risk banks compute the 10-day VaR with @ = 0.99
and for credit risk a 1-year WCDR with a = 0.999. There is growing
attention towards stress testing since statistical risk measures have
their limitations.

The advantage of the FH measure over VaR is that it is objective
(independent of the decision maker), scale-invariant, monotonic, and
has an operational interpretation and a simple formula. Besides that the
FH measure incorporates the dynamics of repeated gambles, where VaR
is criticized for being static.

On the downside both measures depend on the historical data for assets
with unknown (or partially known) distributions. From a risk-averse
perspective a major benefit of the FH measure is that it always assumes
a critical wealth level that is greater than the maximum loss. The
simulations show that this sometimes might lead to problematically
large values for the amount of capital a bank needs to hold.

Several theoretical issues are, however, a point of interest. The FH
measure is developed for discretely distributed variables and in this
paper tested for discretely distributed or discretely approximated
variables only. Continuous variables with bounded losses have a critical
wealth level that is equal to the absolute maximum loss. For continuous
variables with unbounded losses, the FH measure has no solution. This
poses hardly any problem at all in practice: most software packages use
discrete approximations and limitless loss is not a realistic assumption.
However it remains an important theoretical issue to overcome.

The FH measure (and thus the AS index also) is applicable as a risk
measure in practice. It is computable by means of a computationally
easy algorithm within a commonly known package (Matlab).

PRACTICAL IMPLICATIONS

What are the practical implications of using the FH as a risk measure?

The data that is needed in computing VaR is the same as needed for the
FH measure, so in computing there are little practical implications. The
FH measure is however slightly more complex than VaR, it is not easy to
understand at first sight what the measure does and where the sharp
distinction between ‘infinite wealth’ and ‘bankruptcy’ comes from.
Appendix A might be a first step in the direction of intelligibility of this
measure. To be accepted in practice banks or regulators should apply
the FH measure for a long period besides current computations.
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12.

COMPUTATIONS AND APPLICATION

If the FH risk measure is applicable, how does it perform compared to
common alternatives for different distributions?

There is no general pattern with respect to the outcomes in comparing
the critical wealth levels of the FH measure with the VaR levels. Both
measures depend on the amount of data put in the computation; the FH
measure reacts more to volatile situations. For some stocks, for
example Heineken, the critical wealth level is less than the 10-day VaR
for all periods of data used. For others the neglect of VaR for the tails of
the distributions leads to an underestimation of the amount of capital
needed in order to remain a going concern.

MAIN FINDINGS

How can the Foster & Hart risk measure be applied by (regulators of)
banks that are member of or under jurisdiction of the Basel Committee on
Banking Supervision?

1. The FH measure is certainly a type of measurement that might play a
role in the future. Probably this will be in a modified form, because
additional contributions still need to crystallize. It has desirable
characteristics and is certainly a measure to take into account.

2. The FH measure is practically applicable and computationally quite
easy. With standard software packages an algorithm can be used (for
instance the one in the Appendix) to compute the critical wealth level.
This requires only small adaptations of the current software and does
not require any additional resources or investments.

3. Actual acceptance will take a long way: there is always skepticism
towards new developments in a conservative world like the financial
world. Besides that current trends shift towards stress testing instead
of steady risk figures.

4. Despite the last statement of the previous conclusion: for as long as
single number representations of risk are still used, the FH measure is
of interest to anyone assessing risk, especially compared to the current
measures used.

5. This paper showed that the FH measure is applicable, can be
computed with little difficulty and the simulations show that indeed the
claim of long-run avoidance of bankruptcy implies a critical wealth level

of R(g).
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10.

9. FURTHER RESEARCH AND PUZZLES

The final section of this paper adds recommendations for further
research and addresses some final puzzles that are still to be solved.
Since the recommendations follow from conclusions and remarks
discussed in this paper, they are simply given here as recommendations
without further explanation (unless explicitly needed).

Conduct an extended research of the initial computation within market

risk, with explicit attention towards the following situations:

e Multiple real-life distributions for financial products;

* Based on actual portfolios;

* Specific attention for ‘special cases’ in computing the FH measure,
for example: distributions with expectation close to zero,
distributions with fat tails, distributions with extremely positive
expectation, situations for which R(g)is very close to L(g).

Compare the behavior of the FH measure and VaR thoroughly within

market risk based on real-life data from a bank;

Conduct an extended comparison with other risk measures that are

computationally easy and attractive for banks (for example Expected

Shortfall, the Aumann-Serrano index);

Broaden the scope of Recommendations 1 through 3 by including other

types of risk, especially credit risk;

From a theoretical point of view there are some puzzles to be solved:

Especially focus on continuous distributions, both with and without
unbounded losses;

At first sight it seems to be counter-intuitive that for two completely
differently distributed continuous variables with the same lower limit,
the critical value is the same: R(g) = L(g);

Also, focus on alternatives or setups with assets that have (sometimes)
E(g) < 0 or P(x < 0) = 0. For many real-life financial assets this might
be (for some time horizons) the case;

Extend the research theoretically by studying the papers of Homm &
Pigorsch (2010) and Bali et al. (2011) in depth;

Investigate the effect of transaction costs on the applicability of the
simple shares strategy (see Appendix I).

The scope of our research was directed towards banks, and although
the regulatory framework for other financial institutions has many
similarities with the regulation for banks there are however differences
between for example Solvency II and Basel IL. It is interesting to
examine the practical implications for other financial institutions in
more depth than we have done. The final recommendation is therefore:

Conduct an investigation that includes the practical framework for
other financial institutions in order to analyze whether the FH measure
or its close relatives are applicable for non-banking financial
institutions as well.
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APPENDIX A — FH MEASURE EXPLAINED

Foster and Hart measure of riskiness

Simple shares strategy

If an investment allows an investor to accept any proportion of the gamble g,
the investor accepts the proportion

a , implying that the wealth at the next time will be

- W
)

_ _ We o _ 1
Wipr = Wetag = Wt+Q(g).9 =W, (1+Q(g)g)




APPENDIX B — MATLAB SCRIPT

¢script to import xls data for Foster & Hart measure computation
$Job Arnold
$University of Twente

clear;
clc;

¢$import xls and declare global variables Pi and Vi
complete=xlsread('../VaR computation.xls', 'FHDATA', 'A2:B835"');
global Pi;
global Vi;
Pi=complete(l:end,1);
Vi=complete(l:end,2);
if ne(size(Pi,l),size(Vi, 1))
warning('The input vectors are of different size!')
end

¢$define lower and upper bound for initial estimation of Rg

$Rglow is based on absolute value of Lg plus allowed error (initial
1E-09)

$Rghigh is based on absolute value of Lg squared

Lg=min(Vi);

Rglow=abs (Lg)+e;

Rghigh=abs(Lg)*10;

¢call function solution Rg
Rgsolution=fzero(@FH, [Rglow,Rghigh]);

FH wealth=Rgsolution;
FH_wealth

$script that calculates the FH measure for estimates of Rg
$Job Arnold
$University of Twente
function y = FH(Rg)
global Pi Vi;
sum = 0;
for i=1l:1:size(Pi, 1)
row=Pi(i)*1loglO(1l+(Vi(i)/Rg));
sum=sum+row;

end

y = sum;
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APPENDIX C — COMPUTATIONS WITH SOLVER
FOR ARBITRARY DISTRIBUTIONS

R(g) laag 1503
g R(g) hoog 1504
p(i) x(i) R(g)laag  R(g) hoog
0.01 -1500 -0.0269984 -0.025751878
0.04 -50 -0.0005877 -0.000587337
0.95 100 0.02657581 0.026558701
E[log(1+g/R(g))]: -0.0010103 0.000219486
E(g) 78
VaR0.95: -100
VaR0.99 50
R(g)
mean 20
stdev 20
Rg 1500
lowbound -100
upperbound 140
n Vi Pi E(g) log
241 0.999999998 19.99999997 0.005714724
1 -100 3.03794E-10 -3.03794E-08 -9.10265E-12
2 -99 4.09567E-10 -4.05471E-08 -1.21449E-11
3 -98 5.50788E-10 -5.39772E-08 -1.61619E-11
4 -97 7.38854E-10 -7.16688E-08 -2.14516E-11
5 -96  9.8866E-10 -9.49113E-08 -2.83984E-11
6 -95 1.31962E-09 -1.25364E-07 -3.7497E-11
7 -94 1.75698E-09 -1.65156E-07 -4.93815E-11
8 -93 2.33344E-09  -2.1701E-07 -6.48631E-11
9 -92 3.09131E-09 -2.84401E-07 -8.49758E-11
10 -91  4.0851E-09 -3.71744E-07 -1.11034E-10
11 -90 5.38488E-09 -4.84639E-07 -1.44703E-10
12 -89  7.0805E-09 -6.30165E-07 -1.88088E-10
13 -88 9.28681E-09 -8.17239E-07 -2.4384E-10
14 -87 1.21502E-08 -1.05707E-06 -3.15287E-10
15 -86 1.58567E-08 -1.36368E-06 -4.06596E-10
16 -85 2.06424E-08  -1.7546E-06  -5.2297E-10
17 -84 2.68052E-08 -2.25163E-06 -6.7088E-10
18 -83  3.4721E-08 -2.88184E-06 -8.58352E-10
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APPENDIX D — COMPARISON VAR AND FH FOR
AAPL

HISTORICAL SIMULATION VAR - AAPL
FH COMPUTATION - AAPL

Data VaR FH
AAPL 142336.92 72576.94
input:
S0 610 Alpha 0.99
Asset value 1000000 T 10
N 834
Lg ¥ 55939.7499
0.99th percentile 45010.8852 Rg 72576.9408
10day VaR0.99 142336.917 E
DATA VaR FH
DAY Date Adj Close | Scenarios Portf. Value Loss Pi Xi FHM
834 4/25/12 610 664.1322196  1088741.344  -88741.34361| 0.001199041  88741.34361  0.000415929
833 4/24/12 560.28| 597.8149379  980024.4884 1997551163 0.001199041  -19975.51163  -0.000167627
832 4/23/12 571.7| 608.6372997  997766.0651  2233.934867 | 0.001199041 -2233.934867  -1.62803E-05
831 4120112 572.98| 594.9846793  975384.7201  24615.27986| 0.001199041  -24615.27986  -0.000215713
830 4/19/112 587.44| 580.0429694  965644.2121  34355.78788| 0.001199041  -34355.78788  -0.000333927
829 4/18/12 608.34| 608.6393308  997769.3948  2230.605216| 0.001199041  -2230.605216  -1.62556E-05
828 4117112 609.7| 641.0925137  1050971.334  -50971.33401| 0.001199041  50971.33401  0.000277024
827 4/16/12 580.13| 584.7021793  958528.1628  41471.83715| 0.001199041  -41471.83715  -0.000441207
826 4/13/12 605.23| 592.8196605  971835.5091 28164.4909| 0.001199041  -28164.4909  -0.000255748
825 412112 622.77| 606.6587352 9945225168  5477.483232| 0.001199041  -5477.483232  -4.08629E-05
824 411112 626.2( 607.8257272  996435.6184  3564.381643| 0.001199041  -3564.381643  -2.62237E-05
823 4/10/12 628.44| 602.5311601  987756.0002  12243.99981 0.001199041  -12243.99981 -9.6216E-05
822 4/9/12 636.23| 612454709  1004024.113  -4024.113117| 0.001199041  4024.113117  2.81008E-05
821 4/5/12 633.68| 619.1552274  1015008.569  -15008.56946| 0.001199041  15008.56946 9.7882E-05
820 414112 624.31 605.143806  992039.0263  7960.973749| 0.001199041  -7960.973749  -6.05022E-05
819 4/3/12 629.32| 620.5408726  1017280.119  -17280.11897| 0.001199041  17280.11897  0.000111215
818 412112 618.63| 629.4125594  1031823.868  -31823.8679| 0.001199041 31823.8679  0.000189335
817 3/30/12 599.55| 599.6876332  983094.4807 169055193  0.001199041  -16905.5193  -0.000138089
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APPENDIX E — SIMULATION CODE MATLAB

$Value of FH critical wealth, used as middle point of simulation
values
Rg=FH_wealth;

$Simulation values for Q (critical wealth) based on Rg

0=[0.8*Rg 0.85*Rg 0.9*Rg 0.95*Rg Rg 1.05*Rg 1.1*Rg 1.15*Rg 1.2*Rg];
0s=[0.95*Rg 0.96*Rg 0.97*Rg 0.98*Rg 0.99*Rg Rg 1.01*Rg 1.02*Rg
1.03*Rg 1.04*Rg 1.05*Rg];

%$Initilization of counters for simulation
num cols = size(P,2);

num rows = size(P,1);

num Q = size(Q,2);

num Qs = size(Qs,2);

$Storage matrix for results
resQ=zeros (num_Q,num_cols);
pctQ=zeros(num Q,1);

resQs=zeros(num_Qs,num _cols);
pctQs=zeros(num Qs,1);

[}

P ———

3¥SIMULATION FOR ALL VALUES OF Q

¢Simulation loop for Q
for k=1l:1:num Q
for i=1:1:num cols
W=WO0;
for j=1:1:num_rows
W=W+(W/Q(k))*P(J,1);
end
resQ(k,i)=W;
end
end

$Loop counting results after final period that exceeds initial wealth

for ii=l:1l:num Q
count=0;
for jj=l:1l:num cols
if resQ(ii,jj)>=wo0
count=count+1;
end
end
pctQ(ii)=count/num cols;
end

$Construct table with summary statistics
X_y=0";

meanQ=mean(resQ,2);
medianQ=median(resQ,2);

summaryQ(:,1)=X y(:,1);
summaryQ(:,2)=pctQ(:,1);
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summaryQ(:,3)=medianQ(:,1);
summaryQ(:,4)=meanQ(:,1);

format shortg
summaryQ
$xlswrite('simulationresults.xls',6summaryQ,Q, 'A2")

[}

P ———

$SIMULATION FOR ALL VALUES OF Q small

$Simulation loop for Q small
for x=1:1:num Qs
for y=1:1:num cols
W=WO0;
for z=1l:1:num_rows
W=W+(W/Qs (X)) *P(Z,y);
end
resQs(x,y)=Ww;
end
end

$Loop counting results after final period that exceeds initial wealth

for xx=1:1:num Qs
count2=0;
for yy=1l:1:num cols
if resQs(xx,yy)>=W0
count2=count2+1;
end
end
pctOs (xx)=count2/num cols;
end

$Construct table with summary statistics
X y=0s';

meanQs=mean(resQs,2);
medianQs=median(resQs,2);

summaryQsmall(:,1)=X y(:,1);
summaryQsmall(:,2)=pctQs(:,1);
summaryQsmall(:,3)=medianQs(:,1);
summaryQsmall(:,4)=meanQs(:,1);

format shortg
summaryQsmall

$xlswrite('simulationresults.xls',summaryQsmall, 'Qsmall’',6 'A2")
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APPENDIX F — RESULTS FOR G: {-120,200}
WITH EQUAL PROBABILITIES

{t, m} = {1000, 1000}
_ & MATLAB

feNeNe)

File Edit Debug Parallel

Desktop Window Help

é"j 4 T A 9 o @& rf B @ CurrentFolder: /Users/abelarnold/Documents/MATL

7 Shortcuts 2] Howto Add (] What's New

Current Folder

X awn

FH_wealth

600

summaryQ =

480
510
540
570
600
630
660
690
720

summaryQsmall

£ |

{t,‘m} ={10000, 10000}

570
576
582
588
594
600
606
612
618
624
630

MATLAB

0.235
0.302
0.382

0.44
0.492
0.543
0.598
0.623
0.657

0.44
0.457
0.457
0.477
0.477
0.492
0.497
0.497
0.519
0.519
0.543

0.67429
4.0411
16.962
54.063
138.89
300.79

568.2
961.22
1486.4

2.9044e+06
4.9976e+06
7.0168e+06
8.4997e+06
9.2431e+06
9.2869e+06
8.8042e+06

7.999e+06

7.046e+06

8.4997e+06
8.7092e+06

8.888e+06
9.0362e+06
9.1544e+06
9.2431e+06
9.3034e+06
9.3366e+06
9.3438e+06
9.3267e+06
9.2869e+06

Command Window

000

File Edit Text

Cell Tools Debug

Parallel Desktop Window Help

B

NS & @ La 9 ™~ u m F] @ Current Folder: /Users/abelarnold/Documents/MAT

BN

FH_wealth

600

summaryQ =

Current Folder

480
510
540
570
600
630
660
690
720

summaryQsmall

fxv>>

570
576
582
588
594
600
606
612
618
624
630

0.0106

0.052
0.1533
0.3061
0.4932
0.6609

0.795
0.8833
0.9376

0.3061
0.3418
0.38
0.417
0.4549
0.4932
0.5303
0.5618
0.5998
0.6278
0.6609

Shortcuts 2] Howto Add (2] What's New

2.3149e-21
1.0833e-13
1.4805e-07
0.013197
138.89
2.6941e+05
1.3518e+08
2.2785e+10
1.5815e+12

0.013197
0.09821
0.67398

4.2811
25.259
138.89
713.99
3441.7
15601
66681
2.6941e+05

X a w0

7.2332e+12
1.9885e+18
2.8691e+22
4.4089e+25

1.211e+28
8.7329e+29

2.209e+31
2.4441e+32
1.4023e+33

4.4089e+25
1.5341e+26
5.0021e+26
1.5332e+27

4.431e+27

1.211e+28
3.1381e+28
7.7305e+28
1.8148e+29

4.069e+29
8.7329e+29

Command Window
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APPENDIX G — MARKET RISK SIMULATION

RESULTS FOR 16 STOCKS
Insufficient data: AF, CORA, DE, ULA
Negative trend: ~ MT, FUR, KPN, SBMO, TNTE

AGN AH AKZA APAM ASML BOKA DSM HEIA INGA PHIA PNL RAND REN RDSA UNA WKL

Norm 10d VaR | 19672 7877 138.77 24020 12432 148.09 10615 9157 23941 124.88 111814 16818 8001 7348 7132 100.85
Hist 10d VaR 21293 11452 157.93 22517 113.00 167.03 10577 93.24 25112 141.81 25558 17656 78.57 93.67 7944 9997
FH 21135 7413 13389 97097 6791 22694 9407 5422 42058 9204 49834 217.17 5283 10831 57.60 120.09
Wt-W0@0.8FH | 010 005 009 040 000 017 006 001 025 003 010 015 001 020 002 013
Wt>W0 @FH 049 049 051 052 051 050 049 050 052 051 050 050 050 049 050 049
We-W0@1.2FH| 078 084 081 059 096 073 083 094 070 089 075 074 092 071 088 075
t=5000
m=5000

List of abbreviations:

AF AirFrance/KLM

AGN  Aegon

AH Ahold

AKZA Akzo Nobel

APAM Aperam

ASML ASML

BOKA Boskalis/Westminster

CORA Corio

DE DE Master Blenders 1753

DSM  DSM

FUR Fugro

HEIA Heineken

INGA ING

KPN KPN

MT Arcelor Mittal

PHIA  Philips

PNL Post NL

RAND Randstad

REN Reed Elsevier

RDSA Royal Dutch Shell

SBMO SBM Offshore

TNTE TNT Express

ULA Unibail/Rodemco

UNA Unilever

WKL  Wolters Kluwer
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APPENDIX H — SENSITIVITY ANALYSIS RESULTS
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APPENDIX | — EFFECT OF TRANSACTION COSTS

In the final discussions of this paper the effect of transaction costs for,
for example stocks, posed some questions on the applicability of the
simple shares strategy for gambles with relative returns (instead of
fixed amounts) and (relative) entering costs. Three situations are
discussed here as a starting point for further discussion and analysis.

FIXED TRANSACTION COSTS

For gambles with fixed outcomes the effect of transaction costs is
limited. Although there is no direct relationship between the
transaction costs and the critical wealth level, the computation of the
FH measure remains computationally easy. The transaction costs (c)
are subtracted from the outcomes of the gamble, thus creating net
results:

E[log(1+R( )| = Zpllog(1+ ol 5)

Since the FH measure is not translation invariant the subtraction of a
fixed amount does not decrease the riskiness by the same amount.
Consider the following gamble:

B {200—c p =050
“1-100-¢  p=050

The following graph and table depict the relationship between the
transaction cost and the critical wealth level for g. Note that E(g) = 0
for ¢ = 50, hence R(g) is non-existent.

2500 -
2000 -
1500 -
1000 -
500 -
4

0 T T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45 50

| 0 5 10 15 20 25 30 35 40 45 50

R(g)| 200 2275 26125 30393 360 4375 5525 7425 1120 22475 .

RELATIVE TRANSACTION COSTS

For gambles with relative costs (a percentage of the outcomes) the
results are straightforward, since R(g) is scale-invariant and thus
Q(1g) = AQ(g) for every positive lambda. Let T represent the relative
transaction cost, then Q((1 —1)g) = (1 — 1) Q(g).
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RETURNS RELATIVE TO TRANSACTION COSTS

The final problem addressed here is that of gambles with transaction
costs and returns that relate to the amount invested (instead of fixed
returns).

Consider the following situation for an investment in a stock:

Sy = 200 transaction cost (spot price)
W, = 1000 initial wealth

_ {0.1 - So p = 0.50

“-0.05-S, p=0.50

The returns for the first period are 20 or -10 with equal probability, and
Q0(g) = 20. This implies, by applying the simple shares strategy, an «
of 50:

W _ Wp _ 1000 _
=4y =5 = =

50.

REMARK I It is impossible to participate for 5000%, since 50
shares of this stock cost 10,000, which is ten times the
wealth att = 0.

The stock price att = 1 has increased (or decreased) by the same
percentage as the payout of the previous period and equals 220 or 190.
Assuming that the maximum proportion a at t = 0 is 5, the wealth I/, is
either 1100 or 950. Since also the critical wealth is changed by the same
percentage it equals either 22 or 19. This means that a is constant for
all t!

W _{1100 S, =220 Q,(g)=22 > a=50
171950 §,=190 Q,(9) =19 » a =50

REMARK I1 With returns relative to the transaction cost (e.g., stock
price) the participation rate is constant over time.

These puzzles are unsolved at this moment and require in-depth
analysis of the simple shares strategy and the implications thereof for
relative returns and transaction costs.
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