

17-06-2013

MASTER THESIS

THE VALUE OF
ONTOLOGIES FOR
DEVELOPING SEMANTIC
STANDARDS

Jeffrey van den Brande

MSC BUSINESS INFORMATION TECHNOLOGY

EXAMINATION COMMITTEE

dr. ir. M.J. (Marten) van Sinderen

dr. ir. M.E. (Maria-Eugenia) Iacob

dr. ir. J.P.C. (Jack) Verhoosel (TNO)

THE VALUE OF ONTOLOGIES FOR

DEVELOPING SEMANTIC STANDARDS

MASTER THESIS

Enschede, 17 June 2013

AUTHOR

Jeffrey van den Brande

Master Business Information Technology

School of Management and Governance

GRADUATION COMMITTEE

dr. ir. M.J. (Marten) van Sinderen

University of Twente, Computer Science

dr. ir. M.E. (Maria-Eugenia) Iacob

University of Twente, School of Management and Governance

dr. ir. J.P.C. (Jack) Verhoosel

TNO, Connected Business

v

MANAGEMENT SUMMARY

A current trending topic in the information modeling discipline is ontologies. An ontology can be seen as

something different from traditional information models. It is a formal, explicit specification of a shared

conceptualization of a real-world domain. TNO developed a methodology to develop semantic standards using

an information model, called MOSES. As in the literature currently no or few development methodologies exist

that use an ontology instead of an information model for developing a semantic standard, one of the goals of

this thesis is to develop such a development method, based on MOSES. By extending this methodology the

benefits an ontology could bring can be examined as well. Therefore the main research question is formulated

as: How can the MOSES methodology be extended with the development and use of an ontology?

For semantic standards interoperability is of great value. Interoperability refers here to the ease of exchange of

information between domain stakeholders. The interoperability between stakeholders in a domain is expected

to be able to be reinforced by making use of an ontology. In the literature specific aspects of ontologies were

denoted to do this and also mindsets from other ontology development methods were found in the literature

that reinforce interoperability. The most important aspects found are that an ontology provides a shared

vocabulary with unambiguous concept descriptions for all stakeholders to improve interoperability. By means

of validity rules an ontology can also rule out any configurations possible that do not square with the real-world

domain and because an ontology can model processes and operation rules, dynamic domain behavior can be

modeled as well.

The extension of the MOSES methodology with the development and use of an ontology means the

information model that is developed is replaced with an ontology. MOSES is designed to explicitly capture all

static and dynamic concepts of a domain. To be able to develop an ontology that at least covers these aspects,

the Resource-Event-Agent (REA) upper ontology is used as ontological foundation for the ontologies to be

developed in the method. This means all domain concepts have to be mapped on the concepts defined by REA.

The main concepts of REA are resources, events, agents and commitments, where commitments correspond to

agreements between two agents to exchange (the information of) one specific resource. The commitment is

executed by at least one event sending the resource and at least one event receiving the resource.

Taking into account the interoperability benefits ontologies can bring, the MOSES methodology has been

adapted to include the development and usage of an ontology. The exact methodology steps, mindsets and

notations are documented well to facilitate practitioners to execute the development methodology. The first

phase of MOSES is hardly changed, so in this phase the resources, events, agents and commitments of the

domain still need to be identified in a MERODE model. To extend the MOSES methodology with an ontology,

the business information modeling phase is replaced by a phase building an ontology base and another to

further specify the ontology model. In the latter phase, the properties of the agents are determined and

resources, but also their constraints. The latter is done by initially capturing the constraints in a semi-informal

way to facilitate domain experts, followed by a formalization step. The final phase of MOSES is hardly altered;

message structures can be generated from the ontology making use of an XML-translation.

To gain hands-on experience with the developed methodology, a case developing a microgrid with flexibility in

energy demand and supply was performed. Using relevant literature sources and knowledge from domain

experts, the extended methodology was applied. Performing the methodology resulted in a multipurpose

ontology that not only can be used for deriving a semantic standard, but also can be used for other purposes.

The case shows an example of an additional application where the congestion impositions on grid participants

are shown in an overview. By having several domain experts and ontology development experts examining the

case and its end products, the extended methodology was iteratively improved to suit the building of domain

ontologies best.

vi

PREFACE

This document contains my master thesis, the final document I produced for the master Business Information

Technology at University of Twente. It contains the results of my research on a development methodology for

semantic standards making use of an ontology, which I carried out at TNO. I sincerely hope that the results of

this research contribute to the knowledge and practices within the company.

During the 6 months I worked on this project I encountered many challenges. Some were harder than others,

but I learned how to cope with them as the project progressed. Especially in the start of the project the scope

was not clear, which was also due to some lack of clarity and setbacks around arranging a real-life case to

evaluate the methodology. After this uncertainty disappeared, a quick regain of focus and slight change of

scope helped me to get up to speed.

Thanks to the excellent support of my TNO supervisor Jack Verhoosel this thesis has come to a good end. My

university supervisors Marten van Sinderen and Maria-Eugenia Iacob also supported me well by posing critical

questions at the right moments, which were highly valuable for my progress. I am very grateful for their help

and support and therefore I want to express them my sincere gratitude.

My colleagues at TNO provided me, next to a nice atmosphere to work in, with a lot of inspiration and help

with parts of my work. Therefore I would like to thank Dennis, Jasper, Michael, Linda, Matthijs and Istvan. In

particular I would like to thank Ad Schrier for the interesting discussions, feedback and help on two core

elements of my thesis; REA and MERODE. Without this help my work could not be as well-founded as it is now.

Finally, I want to thank my parents for their support throughout my studies.

I hope you will enjoy reading this master thesis and can benefit from its content. If you have any questions,

please feel free to contact me.

Jeffrey van den Brande

Enschede, June 2013

vii

TABLE OF CONTENTS

Management summary .. v

Preface .. vi

1 Introduction .. 1

1.1 Motivation and background .. 1

1.1.1 From information model to ontology ... 1

1.1.2 Development methods for ontologies and semantic standards ... 2

1.1.3 Smart grids and microgrids ... 2

1.2 Problem statement .. 3

1.3 Research Questions and goal .. 3

1.4 Research method ... 3

1.5 Document structure .. 5

2 State-of-the-art ... 6

2.1 Information models ... 6

2.2 Ontologies.. 7

2.2.1 Ontology languages ... 9

2.2.2 Ontology editors .. 10

2.3 Interoperability .. 10

2.3.1 Measuring interoperability.. 11

2.4 MOSES ... 11

2.4.1 MERODE .. 12

2.5 Foundational ontologies facilitating business domains ... 13

2.5.1 The ontological foundation of REA enterprise information systems .. 14

2.5.2 e³value ... 15

2.5.3 Unified Foundational Ontology ... 16

2.5.4 Evaluation of alternatives.. 17

3 Interoperability benefits of the use of an ontology .. 19

3.1 Aspects important for the stakeholder ... 19

3.1.1 Vocabulary... 20

viii

3.1.2 Validity rules .. 20

3.1.3 Context .. 20

3.1.4 Sharedness .. 21

3.1.5 Open world assumption .. 21

3.1.6 Descriptive ... 21

3.1.7 Representation .. 22

3.1.8 Understanding ... 22

3.1.9 Formal semantics .. 22

3.1.10 Automated reasoning ... 23

3.1.11 System interoperability potential ... 23

3.1.12 Dynamic modeling .. 24

3.2 Mindsets from ontology development methodologies ... 24

3.2.1 Enterprise ontology ... 25

3.2.2 Methontology .. 25

3.2.3 Cyc ... 26

3.2.4 TOVE .. 27

3.2.5 Ontology Development 101 .. 27

3.2.6 DILIGENT .. 28

4 Development method for ontologies fostering interoperability .. 29

4.1 The methodology steps ... 29

4.2 The methodology mindset ... 33

4.2.1 Determine basic shared domain model .. 33

4.2.2 Build ontology base ... 35

4.2.3 Develop ontology .. 40

4.2.4 Determine technology-specific solution ... 41

4.3 Notations used by the methodology ... 43

4.3.1 Identify agents and resources ... 43

4.3.2 Identify commitments ... 43

4.3.3 Identify events ... 44

ix

4.3.4 Make UML activity diagram .. 45

4.3.5 Sequence diagrams ... 45

5 An ontology for smart grids .. 48

5.1 The microgrid domain ... 48

5.1.1 What is a microgrid? ... 48

5.1.2 Trends .. 49

5.1.3 Overview of actors .. 50

5.1.4 Microgrid interoperability ... 51

5.1.5 Flexibility in energy demand and supply ... 52

5.1.6 Smart grid information models ... 53

5.2 The methodology applied .. 55

5.2.1 Domain experts ... 55

5.2.2 Identify scope .. 56

5.2.3 Determine shared business domain model... 56

5.2.4 Build ontology base ... 62

5.2.5 Develop ontology .. 63

5.2.6 Determine technology-specific solution ... 66

5.3 Discussion .. 70

5.3.1 Domain experts ... 70

5.3.2 Positive properties .. 70

5.3.3 Negative properties ... 71

5.3.4 When to use which means? .. 72

6 Conclusions ... 75

6.1 Limitations ... 76

6.2 Reflection ... 77

6.2.1 Strengths ... 77

6.2.2 Weaknesses ... 78

6.2.3 Lessons learned ... 78

6.3 Future work ... 78

x

6.4 Implications and recommendations for practice ... 79

7 References... 80

Appendix A: Practical guide for practitioners ... 86

1

1 INTRODUCTION

1.1 MOTIVATION AND BACKGROUND

The information modeling discipline is experiencing a shift from the use of information models towards the use

of ontologies for describing and developing software solutions. The use of an ontology appears to provide

several advantages over the use of a more traditional information model. At the same time there are still

discussions going on in the information modeling domain about whether these advantages provide real added

value. As a result of this development, TNO is interested in the added values the use of an ontology could bring

when developing semantic standards.

Next to that, currently no development methodology for developing semantic standards using an ontology as

means exists. As ontologies may provide benefits to the development process, developing a development

methodology using an ontology as means, can show how these benefits can be utilized. Also, development

methodologies for ontologies themselves are currently very diverse in their approaches, as each development

methodology focuses on different properties of ontologies. A more general approach to ontology development

should be determined to cover the development of ontologies for all business domains.

The following two subsections provide some more background information on the information modeling trend

towards the use of ontologies and the diversity of development methods for ontologies and semantic

standards, which both drive this research. Also, to test and validate the methodology that will be designed in

this research, a case from the energy domain is attempted to be treated using this methodology. An

introduction to this case is elaborated in the last subsection.

1.1.1 FROM INFORMATION MODEL TO ONTOLOGY

An information model can be seen as a traditional way of structuring definitions or meanings of things in the

real world and specifying the relationships between these things in static semantics (Aßmann, Zschaler, &

Wagner, 2006; Lee, 1999). An information modeling language is used to express this information model. On the

other hand, ontologies represent a shared understanding of the important concepts in a domain by making

explicit formal descriptions of concepts, instances and relations relevant to this domain (Kalfoglou, 2001;

Nguyen, 2011). These are captured in ontology models, described by an ontology language and are shared

between all domain stakeholders.

The discussion on the differences between information models and ontologies is still going on, but literature on

ontologies points out that there are several differences and advantages of ontologies over (traditional)

information models. For example, ontologies are expected to be able only to describe behavior, while

information models can describe as well as prescribe behavior (Aßmann et al., 2006).

Also, the development of information models usually is focused on the creation of a (computer) system,

whereas the aim of an ontology is to describe and create a shared understanding of the concepts of a domain

(Aßmann et al., 2006). We suspect that in some cases the information models have some shortcomings to

facilitate a perfect information exchange between actors in a domain. For example, Arango & Prieto-Diaz

(1991) identify a need for a reusable infostructure that defines all aspects of a problem domain and its

semantics to fill the gap between the kinds and forms of domain knowledge and the content and form of

software assets for software construction. An advantage of an ontology over an information model postulated

is that an ontology only consists of unambiguous definitions that are directly related to a set of relationships

that hold among these definitions (Kalfoglou, 2001).

2

We suspect that next to these differences there are more differences and advantages of ontologies over

information models. As TNO is interested in how the development of a domain ontology can add value to the

interoperability in this domain, this research will focus on this type of benefits.

1.1.2 DEVELOPMENT METHODS FOR ONTOLOGIES AND SEMANTIC STANDARDS

While there are hardly any development methods for semantic standards available in the literature, the

interest of TNO lies at the improvement of their current method for developing semantic standards: MOSES

(Model gebaseerde ontwikkeling van semantische standaarden; model-based development of semantic

standards). This method currently involves modeling techniques where traditional information models are

highly involved. As a result of the belief ontologies might be the successors of information models that have

more benefits, it is interesting to find out the possible benefits the use of an ontology could bring for the

development of semantic standards.

Furthermore, there is currently no standard for the process of developing an ontology. Many development

methodologies are available in the literature, such as Methontology and Enterprise Ontology (the most

influential methodologies are reviewed in section 3.2). These methodologies all have the goal to create a

description of a domain in an ontology, but each method focuses on different aspects important for ontology

development. To develop a more general approach to ontology development for business domains, the most

important aspects of each of these methodologies should be taken into account.

1.1.3 SMART GRIDS AND MICROGRIDS

In the energy domain a trend is going on to decentralize the energy supply and demand in an energy grid. To be

able to involve all parties on the energy grid and to maintain a balance in energy demand and supply in the

grid, more and new information needs to be exchanged between the involved parties. It is important that this

information is specified unambiguously, so the different parties can easily integrate this information with their

own systems. One solution for this information need could be the use of an ontology on this information

exchange. Another is to use an information model. Therefore we want to get to know the differences between

the two and why and how to use these models in this context.

At the moment there are many projects looking at how to achieve a guaranteed energy network balance by

means of a smart grid, where all parties connected exchange information in order to minimize the imbalance

between energy demand and supply on the energy network. TNO is collaborating with partners in the energy

industry to enable the integration of a higher rate of distributed and renewable energy sources into the

electricity grid by means of incorporating flexibility in electricity demand and supply to mitigate the energy

supply uncertainty. By exchanging certain information between the involved parties, this flexibility can be

achieved.

A specific variant of a smart grid is a microgrid, which is in fact a smart grid on local scale. A lot of information is

exchanged between the involved parties. Think of, for example, microgrids that require the exchange of the

information concerning energy streams in the grid. In most cases the information exchanged is based on

(traditional) information models. For example, two of the commonly used frameworks in the energy sector,

NIST (National Institute of Standards and Technology, 2012a) and OASIS Energy Interoperation (OASIS Open,

2012a), are both based on a traditional information model. How to facilitate interoperation best and to

facilitate for the upcoming trend in renewable energy is an interesting question, for which this research will

have an initial look at.

3

1.2 PROBLEM STATEMENT

Clearly there are differences between ontologies and information models. What these differences are and

what the advantages of an ontology over information models are, is yet unclear. This thesis therefore includes

a review of what benefits ontologies have, with a focus on interoperability benefits in a domain, as this is one

of the important aspects of the methodology to be improved. Secondly, how and why ontologies could be used

in a methodology for developing semantic standards is to be found out to ground the improvements to be

made to the development method.

The established development methodology, once built, needs to be evaluated. By involving the microgrid

problem of the energy domain, this method can be applied to test it. The added values of the development

methodology can be determined by domain experts who can evaluate the end results of the method and

compare with the results of their old implementation. Based on the evaluation, an improved methodology can

be determined for MOSES involving the creation and use of an ontology.

1.3 RESEARCH QUESTIONS AND GOAL

The goal of this research is twofold. The first goal is to extend the MOSES methodology with the development

and use of an ontology. This goal will be achieved by first studying the literature on ontologies, its differences

and advantages for achieving interoperability. Then finding the best additions to MOSES for improving

interoperability in a domain using an ontology and developing the methodology improvement.

The second goal is to treat interoperability issues in a microgrid (of the energy domain) to cope with the

problems of the increasing uncertainty of energy supply and demand of renewable energy sources. This will be

done by applying the improved MOSES methodology.

For achieving these goals, the following main research question has to be answered:

How can the MOSES methodology be extended with the development and use of an ontology?

To answer the main research question, a number of sub-questions have to be answered:

RQ1. What is the state-of-the-art on ontology development methodologies?

RQ2. What are the benefits of the development and use of an ontology for interoperability in a domain?

RQ3. What are good additions to the MOSES methodology for improving interoperability in a domain

using ontologies?

RQ4. How can the extended methodology be applied and evaluated in the energy domain?

1.4 RESEARCH METHOD

To answer the research questions different methods can be applied to reach several outcomes. This research

can be identified as a design-science research (Hevner, March, Park, & Ram, 2004), as one of the main goals is

to produce a “viable artifact” in the form of a methodology (an ontology-development method). To design this

model, the DSRM (design science research methodology) process model of Peffers, Tuunanen, Rothenberger, &

Chatterjee (2007) (Figure 1) is followed. This process model allows to be started at different steps, depending

on the initial approach to the design research (depicted as possible research entry points in Figure 1). This

particular research will follow the nominal process sequence.

4

Figure 1: Design science research methodology process model (Peffers et al., 2007)

The design science research guidelines defined by Hevner et al. (2004) are aimed to support the design process

towards an effective design artifact. Table 1 lists and describes each guideline and shows how these are

satisfied by the methodology of this research.

Guideline Description Application in this research

1: Design as an artifact Design-science research must produce a
viable artifact in the form of a construct, a
model, a method, or an instantiation.

An ontology development method
will be designed.

2: Problem relevance The objective of design-science research is
to develop technology-based solutions to
important and relevant business problems.

The problem will be first
investigated and motivated in the
following chapter to support the
actual methodology design.

3: Design evaluation The utility, quality and efficacy of a design
artifact must be rigorously demonstrated
via well-executed evaluation methods.

The methodology will be applied on
a case in the energy sector, which
will be evaluated by using expert
interviews.

4: Research
contributions

Effective design-science research must
provide clear and verifiable contributions in
the areas of the design artifact, design
foundations, and/or design methodologies.

This research will contribute a
development method for semantic
standards in a domain using
ontologies.

5: Research rigor Design-science research relies upon the
application of rigorous methods in both the
construction and evaluation of the design
artifact.

Existing ontology development
methods will be used as base for
our design methodology. Methods
for design evaluation by expert
interviews will also be used.

6: Design as a search
process

The search for an effective artifact requires
utilizing available means to reach desired
ends while satisfying laws in the problem
environment.

The design process will involve
design iterations.

7: Communication of
research

Design-science research must be presented
effectively both to technology-oriented as
well as management-oriented audiences.

Table 1: Design-science research guidelines (Hevner et al., 2004) and how they are satisfied in this research

5

1.5 DOCUMENT STRUCTURE

The main structure and concrete approach of this thesis is shown in Table 2. This table also maps the research

questions, research methodologies and design-science guidelines to each chapter and describes briefly the

outcomes of each chapter.

In chapter 2 a literature study is performed on ontologies, its relationship with information models,

interoperability and ontology development methods. Chapter 3 performs another literature study, which has

the goal to describe the aspects of ontologies in which it could improve the interoperability in a domain

compared with information models. These first two chapters provide the required foundations for developing

an improved methodology on developing semantic standards making use of ontologies.

The improved development methodology will be designed in chapter 4. This chapter is structured in first

explaining the steps, then the involved mindsets, followed by the notations to be used. The established

development methodology will then be applied on the microgrid case in chapter 5. The chapter contains a

description of the energy domain and an elaboration on the microgrid problem. The chapter ends with an

evaluation of the practices experienced with the methodology and the end result of applying the methodology.

The final conclusions of this research are drawn in chapter 6.

Chapter Design-
science
guidelines

Research
questions

Methodology Outcome

2: State-of-the-art 2, 5 RQ1 Literature study A description of the current state-of-
the-art on ontologies, its relationship
with information models,
interoperability and ontology
development methods.

3: Interoperability
benefits of the use
of an ontology

2 RQ2 Literature study A description of the aspects in which
the use of an ontology improves
interoperability in a domain compared
with information models.

4: Development
method for
ontologies
fostering
interoperability

1, 4, 5, 6 RQ3 Model design The concrete methodology for ontology
development fostering interoperability.
This includes an indication on the steps,
mindset and notation to be used. Also,
an elaborate description and reasoning
on what are good additions to the
original MOSES methodology is given.

5: An ontology for
the energy domain

3 RQ4 Model
evaluation

An overview of the energy sector, a
description of the design process and
the actual design of an ontology
fostering interoperability in the energy
domain. Also, the benefits of this
ontology for the energy sector are
discussed and the ontology
(development method) will be
evaluated using expert interviews.

6: conclusions 7 The final conclusions that can be
extracted from this research.

Table 2: Research outline

6

2 STATE-OF-THE-ART

In this section the necessary theoretical background of the research will be provided. First, information models

and its theoretical background is introduced. This is followed by a study on ontologies, the philosophy behind

them, available design methods and languages and their uses. The chapter ends with an overview of literature

about interoperability and a description of the original MOSES methodology.

2.1 INFORMATION MODELS

Information models have been introduced in order to provide a definition of meanings and interrelationships of

data or information (Lee, 1999). They provide a means for sharing, integrating and managing these data. An

information model can be seen as a representation of concepts, relationships, constraints, rules and operations

to specify data semantics for a given domain. Stahl & Voelter (2006) define a model as “an abstract

representation of a system’s structure, function or behavior”.

One of the main approaches to develop an information model is through the Model Driven Software

Development (MDSD) discipline (Stahl & Voelter, 2006). Central in this discipline is that every information

model should be an instance of elements of a model on a higher abstraction level. The way the information

model is structured and which elements are allowed, is established by a metamodel. In the MDSD discipline a

metamodel is defined as describing the possible structure of models, in other words, a modeling language. To

maintain a certain uniformity in the modeling languages, a metametamodel can be defined describing the

concepts available for metamodeling. These relationships are shown in the 4-metalevel hierarchy of OMG, as

shown in Figure 2. Next to that, Stahl & Voelter (2006) note that the elements of an information model should

be based on elements that reside in the domain where the information model will be applied.

Information models that respect a metamodel are also called MDA

(Model Driven Architecture) models. Because the metamodel

provides for the meaning of the model, it can be stated that MDA

models include semantics (that are defined by the metamodel)

(Stahl & Voelter, 2006). Additionally, Stahl & Voelter (2006) note

that for information models to constitute a correct subset of the

domain, metamodels need to ignore unnecessary and unwanted

properties of elements in the domain. The best way to achieve this is

by using a constraint language on the metamodel. Therefore it can

be deducted that an information model on itself does not provide

enough means to represent a domain of discourse. Additionally,

Shanks, Tansley, & Weber (2003) claim that a good way of evaluating

and validating a conceptual information model is to develop an

ontology with domain experts that can be used as reference for the

evaluation and validation process.

Many information modeling languages exist. The Unified Modeling

Language (UML) is one of the most used languages for specifying

information models by means of a class diagram (Object

Management Group, 2012). A class diagram depicts the static structure of the elements of a system or

structure. Another widely used modeling language is the entity-relationship (ER) modeling grammar (Burton-

Jones & Weber, 1999). Central to this model type is the modeling of relationships between concepts and giving

attributes to these relationships.

M3: Metametamodel

M2: Metamodel

M1: Model

M0: Instances

describes instanceof

describes

describes

describes instanceof

instanceof

instanceof

Figure 2: The four metalevels of OMG

7

2.2 ONTOLOGIES

The idea of bringing explicit domain knowledge into the design of software models originated from artificial

intelligence (AI) research (Kalfoglou, 2001). AI researchers developed knowledge engineering methods that

proved to be powerful tools for transforming knowledge into machine-readable form to enable automated

reasoning about the domain of interest. Ontologies can be used to represent such a form of domain

knowledge.

An ontology can be seen as something different than information models, while there are still some aspects of

ontologies that overlap with aspects of information models. Noy & McGuinness (2001) define that an ontology,

like a (traditional) information model, also contains explicit formal descriptions of concepts in a domain.

Nguyen (2011) also notes that an ontology, like information models, specifies concepts, relations and instances

relevant to a domain.

This conceptualizing property of an ontology (in information

systems) is depicted in Figure 3 of Hesse (2008). In this

figure is shown that an ontology can be used as a referent

to the (real world) domain. Here, an ontology is used to

provide a conceptual model for identifying and

understanding prerequisites, conditions and constraints for

real world domains. An ontology is related to

representation and conception, because information

systems representations (e.g. models) are used by actors to

refer to objects (referents) of a domain. Guizzardi (2007)

clarifies this relation of ontologies even further using Figure

4. The philosophy behind this relationship model is that a model faithfully represents an abstraction by using

the language primitives provided by a modeling language. Both the abstraction itself and the modeling

language rely on conceptualizations. These are immaterial entities only existing in the mind of the user or a

community of users of a language.

Figure 4: Relations between conceptualization, abstraction, modeling language and model (G Guizzardi, 2007)

The components an ontology should comprise of are classes, relations, formal axioms and instances (O Corcho,

Fernandez-Lopez, & Gomez-Perez, 2007). Classes represent concepts or sets of instances, organized in

taxonomies through which inheritance mechanisms can be applied. Relations are a type of association between

concepts of the domain. Binary relationships can also be used to express attributes of a concept. Formal axioms

Figure 3: Semiotic tetrahedron of Hesse (2008)

8

define the assertions that have to be made to ensure the consistency of an ontology. Instances represent

individual things, which are an instance of a specific class.

Ontologies have four main application scenarios for ICT systems (Michael Uschold & Gruninger, 2004): (1)

neural authoring, where a company develops its own neutral ontology for authoring, and then develops

translators of this ontology to other terminologies of other systems that the company is collaborating with. This

results in a high reuse of knowledge. (2) Common access to information introduces one ontology that is used as

neutral interchange format facilitating the translations necessary between the different information formats of

the used legacy software systems. By using one neutral interchange format, no translators are required

between each system, but only between the systems and the ontology. In (3) ontology-based specification an

ontology is used as foundation for the development of software systems, which will allow for high

interoperability among these systems as the information exchanged is based on the same ontology. (4)

Ontology-based search applies ontologies as a structuring device for information repositories; it can classify

information at a high abstraction level. If mappings between ontologies of information repositories can be

made, a search query could even retrieve answers from all linked repositories.

In section 2.1 the 4- metalevel hierarchy of OMG is explained (see also Figure 2). Originally, this hierarchy is

only used for model driven engineering activities to develop information models based on metamodels on a

higher abstraction level (Bezivin & Gerbe, 2001). It is argued by Aßmann et al., (2006) and Henderson-Sellers

(2011) that ontologies can also be mapped to this hierarchy. They argue that ontologies can be classified in two

broad areas: upper level ontologies and domain ontologies. A domain ontology comprises of a hierarchy of

terms in a specific domain. This property has a high correspondence with a traditional model on level M1 of the

OMG meta-levels hierarchy (Giancarlo Guizzardi, 2005). An upper level, or foundational, ontology defines the

representation of an ontology. This can be seen analogous to metamodels in OMG’s hierarchical level M2. An

upper-level ontology can, for example, be an ontology representing language, like the Unified Foundational

Ontology (UFO) of Guizzardi (2005), which in short, defines the foundational concepts for forming an ontology.

Figure 5 visualizes the reasoning of Aßmann et al. (2006) and Henderson-Sellers (2011).

Figure 5: The ontology-aware meta-pyramid (Aßmann et al., 2006)

Henderson-Sellers (2011) identifies additionally that there is a relation between metamodels and upper

ontologies and domain ontologies. These are related to each other in a so-called powertype construct. This

9

construct allows both instance-of and generalization relationships between levels. Upper ontologies are

claimed to be classified by metamodels and domain ontologies are claimed to be instances of metamodels,

while they are also a subtype of an upper ontology.

Ontologies consist of constructs that collectively impose a structure on the domain being represented, which

constrain the interpretations possible of the terms involved (Kalfoglou, 2001). These constructs are often

comprised by definitions of terms in a hierarchy lattice that are directly related to a set of relationships that

hold among these definitions. This relates closely to the property of an ontology Aßmann et al. (2006)

identified. They state that, intuitively, anything that is not explicitly expressed by an ontology is unknown. This

is called the open-world assumption.

2.2.1 ONTOLOGY LANGUAGES

The actual encoding of a formal ontology is done in a specific ontology language. Over the years many different

ontology languages have been developed with different aims. For developing an ontology ourselves, we have

to know which ontology languages there are and what purpose they are optimized for.

Maniraj & Sivakumar (2010) reviewed the major ontology languages developed: CycL, KIF, Gellish, DOGMA,

IDEF5 and OWL. They also identified 3 main categories for ontology languages: (1) logical languages entail first

order predicate logic, rule based logic and description logic. (2) Frame based languages can be compared to

relational databases and (3) graph based languages are aimed at building a semantic network.

The CycL ontology language (Cycorp Language) can represent knowledge from a knowledge base. The main

concept of this language is to group constants in generalization/specialization hierarchies, stating general rules

supporting inference about the concepts and naming constants used to refer to information for represented

concepts. Also, the knowledge base is divided into microtheories, which are concepts and facts touching one

particular realm of knowledge.

KIF, or Knowledge Interchange Format, has declarative semantics. This means expressions in the representation

does not require an interpreter to understand or manipulate them. Also, it represents nonmonotonic reasoning

rules and definitions of objects, functions and relations. The language can contain sets, sequences, numbers

and arithmetics and relations.

Gellish is an open industry standard for defining data models, data language and a knowledge base with a

taxonomy of concepts and a grammar for data exchange messages, supporting data storage and

communication.

One of the most used ontology languages is the Web Ontology Language (OWL). It is a language for making

ontological statements and is intended to be used over the World Wide Web. It includes both a syntax for

describing and exchanging ontologies as well as formally defined semantics. The data described by an OWL

ontology can be interpreted as sets of “individuals” and “property assertions”. The latter relates individuals to

each other. Next to that, constraints can be defined using axioms. These constraints mainly involve sets of

individuals and relations between them. The axioms are also used for providing semantics by allowing systems

to infer additional information to the data explicitly provided.

Next to the languages reviewed by Maniraj & Sivakumar, the Semantic Application Design Language (SADL) is

an interesting ontology language to look at (Crapo, Wang, Lizzi, & Larson, 2009). It has the purpose of making

semantic modeling accessible to domain experts. It provides an authoring environment for building rich formal

models to which domain-specific rules can be added. It is built upon the OWL and also uses rules expressed in

SWRL (Semantic Web Rule Language) or Jena. In fact, this language could additionally be interesting as it was

originally developed for improving the performance of smart grids.

10

Even though the main goal of the anticipated ontology that will be used in the methodology is not to be used

over the World Wide Web, but in a dedicated network of the domain stakeholders, OWL will be used as the

specification language of the ontologies supporting the method. One of the reasons of this choice is that OWL

includes native support for assertions on individuals and properties of classes. Also, the ability of defining and

reasoning with a set or subset of class types can be of benefit for domain modeling.

2.2.2 ONTOLOGY EDITORS

Oscar Corcho, Fernández-López, & Gómez-Pérez (2003) performed an extensive evaluation of the ontology

editors available. Editors as DUET, OILEd, Onto Edit Professional, Ontolingua, Protégé, WebODE and WebOnto

were considered as the most important. These were evaluated on their support for interoperability, general

issues, usability and more.

For this project it was chosen to use Protégé. This ontology editor supports the OWL, SWRL and RDF languages

well and is widely used by other ontology developers as well. It also supports the creation and execution of

constraints and has the ability to merge ontologies via plugins (Oscar Corcho et al., 2003). Next to that, Noy &

McGuinness (2001) provide an elaborated paper on how to use the Protégé editor in the correct manner.

2.3 INTEROPERABILITY

The quality and ease of information exchange activities between actors involves the interoperability of these

actors. While this relation is clear, there are many different interpretations of interoperability. The study of

Kosanke (2006) found up to 22 different definitions of interoperability. One of the most cited definition of

interoperability is “ability for two (or more) systems or components to exchange information and to use the

information that has been exchanged” (IEEE, 1990). Chen and Daclin (2006) extend this definition with the

concept of exchange of functionality to “the ability to (1) communicate and exchange information; (2) use the

information exchanged; (3) access to functionality of a third system”.

Chen and Daclin (2006) identified three main concepts relating to (enterprise) interoperability: interoperability

barriers, concerns and approaches. Interoperability barriers can be seen as fundamental concepts for

interoperability, as most other interoperability issues are application domain specific. The interoperability

barriers can be of conceptual, technological or organizational nature. Conceptual nature involves the syntactic

and semantic differences in the information to be exchanged. Incompatibility of information technologies (e.g.

IT infrastructures or platforms) is the technological barrier and the organizational nature relates to the

definition of responsibility and authority that determine the conditions the conditions of the interoperations.

To remove these barriers, an approach needs to be taken. This approach can use a common format for all

models (integrated), use a common format on meta-level that allows mapping to a specific system (unified) or

use no common format and interoperability is achieved “on the fly”.

Interoperability concerns exist on four viewpoints: the interoperability of data, services, processes and business

(D Chen & Daclin, 2006). The first refers to collaboration using different data models and query languages.

Services interoperability concerns services or applications to be able to function together. This can be achieved

by solving syntactic and semantic differences and finding connections to the varied databases. The

interoperability of processes involves the study on how processes, internal or external, are connected. How the

business functioning of interoperating partners (e.g. decision making or legislation) are understood and shared

without ambiguity is of concern for business interoperability.

11

2.3.1 MEASURING INTEROPERABILITY

To return to the main research question of this thesis, on which factors affect interoperability in a domain,

interoperability needs to be quantified. Ford, Colombi, Graham, & Jacques (2007) give an overview of the

available system interoperability metric frameworks. Many interoperability metrics involve maturity models on

a qualitative basis. Still few quantitative interoperability measures exist. Therefore our interoperability

measures will have to rely on the few existing interoperability quantitative measures.

One of the few frameworks quantifying interoperability in concrete measures is of Chen, Vallespir and Daclin

(2008). They expressed interoperability into measures of three categories: interoperability potentiality,

compatibility and performance. Interoperability potentiality can be measured on each interoperability concern

(i.e. data, services, processes and business interoperability) on five levels (David Chen et al., 2008): “(1)

isolated: total incapacity to interoperate; (2) initial: interoperability requires strong efforts that affect the

partnership; (3) executable: interoperability is possible but the risk of encountering problems is high; (4)

connectable: interoperability is easy even if problems can appear for distant partnership; (5) interoperable:

which considers the evolution of levels of interoperability in the enterprise, and where the risk of meeting

problems is weak”.

To measure interoperability potential, Daclin, Chen, & Vallespir (2006) state four properties of a system that

are listed below. These properties represent the potentiality of a system to adapt in particularly in a federated

environment. If a property is associated with a score of 1, it reinforces interoperability potential. The actual

measures are straightforward, but are never explained by the authors. To avoid possible ambiguity of the

measures, the interpretation used in this research for each property is briefly explained below.

 Open (1) vs. closed (0): an open system contains components that are allowed to be modified or

upgraded, while this is not possible in a closed system.

 Decoupled (1) vs. coupled (0): components of a decoupled system can remain unaware of other

components in the same system. In a coupled system components are aware of each other.

 Decentralized (1) vs. centralized (0): when a system is centralized, there is one central component with

a specific goal that interacts with the rest of the system upon this, whereas a decentralized system

there can be multiple of such components.

 Configurable (1) vs. not-configurable (0): attributes and other properties of a configurable system can

be easily configured, while this is not the case with a not-configurable system.

2.4 MOSES

MOSES (Model gebaseerde ontwikkeling van semantische standaarden; model-based development of semantic

standards) is a model development methodology designed by TNO specifically aimed at the development of

semantic standards (Schrier, Van Bekkum, Krukkert, Verhoosel, & Roes, 2012). It consists of 2 parts: (1)

iteratively design both the GDM (Gedeeld Bedrijfs-Domein Model; shared business domain model) and GIM

(Gedeeld Bedrijfs-Informatie Model; shared business information model), then (2) design the GOM (Gedeeld

Oplossingsmodel; shared solution model), followed by the actual implementation. The methodology takes an

iterative approach, where each next step provides feedback for the step before (see also Figure 6).

The thought behind the development methodology is that parties that collaborate in one domain share a

specific view on reality (i.e. ontology). This method therefore first identifies and explores the concepts present

and the events that are happening in this domain. Only after this is clear, a true information model can be

determined.

The way of notation for this method, supporting the mindset and method, therefore makes use of an Actor-

Object-Event Table (AOE-Table) where all relevant actors and objects identified are connected with events. The

12

events in this table are not only interaction events, but also the

events that create and remove the objects in the domain model. The

relevant actors and objects are identified in a table that shows a short

description and the demands and requests of each actor/object. Then

they are presented in a UML class diagram, which makes clear their

relationships. To make clear the sequence of events happening,

Jackson Sequence Order Diagrams are drawn.

When the business information model is developed in the next step,

the domain model is elaborated by creating elaborate descriptions of

each event. Also, the Jackson Sequence Order Diagrams are extended

by connecting actors and objects to each event. Objects themselves

are also elaborated upon by adding attributes to them and extending

the UML class diagram with object constraints for each object.

The third step, to develop a shared solution model, is achieved by

transforming the business information model in structured messages

facilitating interoperability between each actor. Depending on the

technology chosen for the implementation (e.g. XML), (automatic)

transformations can be performed from the business information model

to standard message structures and dialog specifications. Eventually existing standards could be considered as

reference for these exact implementations.

2.4.1 MERODE

The philosophy behind MOSES is largely based on the MERODE modeling approach (Snoeck, Michiels, &

Dedene, 2003). This approach supports the development of one, consistent, model of formal semantics. The

three main components of MERODE are object types, event types and participations, as shown in Figure 7.

Objects represent all entities in the domain model to be described. Events represent all business events

invoking objects. Participations relate objects to the events they are invoked with. Multiple objects can relate

to each other by existence dependency relationships, meaning the existence of a given object depends on the

existence of the other object it has an existence dependency relationship with (Snoeck et al., 2003). Table 3

gives an overview of and describes the most important concepts of MERODE.

Event Participation Object

Figure 7: Main components of MERODE expressed in UML

MERODE concept Definition

Event Corresponds to something happening in the real world. It occurs at one point in
time and has no duration modeled. An event is considered to be atomic, which
means it cannot be split into several sub-sevents.

Participation Corresponds to the relationship an object has with an event. An object can be
related to an event as “owner” or “acquirer”. If an object owns an event, it is the
most dependent object on this event. If an object acquired an event, it participates
in this event because of the propagation of this event to related objects.

Object Corresponds to a real-world concept. It can be described by a number of properties.

Table 3: Definitions of the MERODE concepts

Business domain modeling

Business information modeling

Shared solution modeling

Implementation

Figure 6: MOSES methodology steps

13

MERODE focuses on the semi-automatic verification of internal correctness of specifications by facilitating

“consistency by construction”. This means the software tool for building a model guarantees semantic

consistency by applying rules during the development of the model. The MERODE model consists of three

subviews: an existence dependency graph (EDG) organizing object types according to existence dependency

and inheritance, an object-event table (OET) identifying event types and relates those to object types and a

behavioral model where finite state machines (FSMs) show the states of each object and the transitions

between the states.

MOSES adopts a large part of MERODE: the EDG and the OET. It even extends the OET with distinguishing

objects from actors, leading to an AOET (actor-object-event table). The EDG is expressed in a UML class

diagram in MOSES. Next to this, the consistency rules of MERODE are adopted (Snoeck, Dedene, Verhelst, &

Depuydt, 1999; Snoeck et al., 2003). The following consistency rules are defined by MERODE relating the EDG

and the (A)OET:

 Alphabet rule: each event can have only one effect on objects of a class: it either creates, modifies or

deletes objects. Also, each object class requires at least one event to create and another one to

destroy a class.

 Propagation rule: when a class is dependent on a master class, the dependent class is automatically

involved in the event types the master class is involved in.

 Type of involvement rule: the creation, modification or ending event of a dependent class is

automatically an event type for the master class.

 Inheritance rule: an object type inherits all event types from its parent object type, either unchanged

or specialized.

 Default life cycle rule: objects must include at least 2 events: its first need to be an object creation

event, its last needs to be an object ending event.

 Restriction rule: existence dependent object types must have a more deterministic life cycle definition

than their master object type.

 Contract rule: when two or more object types participate in the same event, a common existence

dependent object (contract) is required that participates in this event.

2.5 FOUNDATIONAL ONTOLOGIES FACILITATING BUSINESS DOMAINS

The method of MOSES (and MERODE) results in a UML class diagram with an OET to model both the static part

of a domain (actors and objects and their relationships) and the dynamic part (events occurring by actors and

involving objects). The MOSES methodology then continues by elaborating on the actors, objects and events by

adding all required properties and restrictions to result in a satisfying domain model from which a technology-

specific semantic standard can be derived for the domain. To come back to the main goal of this research,

which is the extension of the MOSES methodology making use of an ontology instead of an information model,

an alternative for the use of a UML class diagram in the current method should be found.

To develop an ontology that is well-founded comparable to MOSES, an upper ontology can be used that

facilitates the expression of both the static and dynamic part of business domains. Only a few of these upper

ontologies exist, from which e³value, Resource-Event-Agent (REA), Unified Foundational Ontology (UFO) and

Business Model Ontology (BMO) are most common. The following subsections will elaborate on the e³value,

UFO and REA alternatives. BMO will not be considered, because it focuses on the position and economic ties of

one central actor, while we want to depict the whole business domain (Schuster & Motal, 2009).

14

2.5.1 THE ONTOLOGICAL FOUNDATION OF REA ENTERPRISE INFORMATION SYSTEMS

The focus of the ontological foundation of REA enterprise information systems lies at resources, events and

agents (REA) (Geerts & Mccarthy, 2000). These correspond to objects and events of the MOSES/MERODE

methodology (Figure 14 shows a mapping of the concepts). The REA ontological foundation has the goal to

specify the economic rationale behind business collaborations (Schuster & Motal, 2009). Its origins can be

traced back to business accounting where business transactions were recorded with a technique called double-

entry bookkeeping. Currently REA is used as ontological framework for the ISO Open-edi specification and is

part of the work of the United Nations Center for Trade Facilitation and Electronic Business (UN/CEFACT),

which is an international e-business standardization body. In Figure 8 a UML representation is constructed

based on Geerts & Mccarthy (2000) and Gailly & Poels (2007) in an attempt to gain a clear overview on the

constructs of REA.

StockflowType

SFOutflowType

SFInflowType

ParticipationType

PProvideType

PReceiveType

ResourceType AgentType

EventType

Commitment

1

reserves

2

partner

1..*

1

1

1..*
1..*

1
1..*

1

1..*

1

1..*

1

1..*
1

1..*

1

Incremental
EventType

Decremental
EventType

1

1..*

fulfils

1..*

1

fulfils

11 duality

1 next

Figure 8: UML representation of REA (based on Geerts & Mccarthy (2000) and Gailly & Poels (2007))

In REA every business transaction is recorded as a double entry (a credit and a debit entry) (Andersson et al.,

2006). An (economic) event represents an exchange of (economic) resources between two (economic) actors.

To get a resource, an agent has to give up another resource. This combination of two events is called a duality.

Events often occur as consequences of existing obligations of an actor, i.e. they “fulfil” the commitments

agents bound themselves to. These obligations are therefore called commitments. To clarify the concept of

commitment, Geerts & Mccarthy (2000) defined it as an “agreement to execute an economic event in a well-

defined future that will result in either an increase of resources or a decrease of resources”. By its definition, in

REA, a commitment always exists between exactly two agents and one resource type. The partner relationship

between a commitment and two agents and the reserves relationship between a commitment and a resource

represent these ties.

The inflow or outflow of a resource, related to an event is depicted by a stock-flow relationship of an event

with a resource. This relationship also has a certain kind of duality; it can describe the using, consuming, giving,

taking or producing of a resource, which is either an inflow or outflow of a resource. An event with an inflow

stock-flow should therefore have a duality with an event with an outflow stock-flow.

15

REA also comprises of agents, which have certain commitments in the business domain. This relationship is

called partnership. The events that these commitments fulfil, the agent is related to via participations. Here the

duality principle is also recurs in the form of participations in the form of provision or receiving participations.

Because of the dual nature of the REA ontology, every event has exactly one receiving agent and exactly one

providing agent.

To ensure the internal correctness of a REA model, REA comes with several axioms. These axioms are in

agreement with the consistency rules defined in the MERODE methodology used by MOSES. The enumeration

below shows the REA axioms (adapted from Geerts & Mccarthy (2000)).

Axiom 1. At least one inflow event and one outflow event exist for each economic resource; conversely

inflow and outflow events must affect identifiable resources.

Axiom 2. All events effecting an outflow must be eventually paired in duality relationships with events

effecting an inflow and vice-versa.

Axiom 3. Each exchange needs an instance of both the inside and outside subsets.

2.5.2 E³VALUE

A second upper ontology alternative is e³value

of Gordijn & Akkermans (2003). Its original aim

is to provide a means to analyze the profitability

of business cases by identifying all value

exchanges in a business case (Andersson et al.,

2006). This upper ontology therefore provides

a good means to depict all exchanges of value

objects in a domain as well. Its notation is

relatively simple. Figure 10 shows the e³value

notation and Figure 9 shows a simple example

from Schuster & Motal (2009). The example

shows two actors (Buyer (A) and Seller) having

two value exchanges (money is transferred

from the Buyer to the Seller and goods are

transferred from the Seller to the Buyer; B and

C). These two value exchanges are an inflow

and outflow of value for the actors, indicated

by value ports (D). They are part of one value interface (E), meaning the two exchanges belong to one

combination of exchanges. The sequence of value exchange events is depicted by a start stimulus (G), stop

stimulus (H) and the path in between (F). In the example, the Buyer initiates the value exchange, after which it

stops at the Seller.

For gaining more insights into the e³value ontology and for comparison purposes, the ontology expressed in

UML is restated in Figure 11 below from the work of Gordijn & Akkermans (2003). This diagram clearly shows

how the model components relate to each other. An important aspect of e³value is that every value exchange

connects to exactly 2 value ports (one inflow and one outflow). This construct therefore implies economic

reciprocity (Andersson et al., 2006). Next to this, e³value allows the specification of the value height of a value

object. When a full business case is modeled using e³value and all value heights of value objects are specified,

the business profitability of the business case can be calculated (Gordijn, Osterwalder, & Pigneur, 2005).

Figure 9: Simple example of an e³value exchange (Schuster & Motal, 2009)

Figure 10: e³value notation (Schuster & Motal, 2009)

16

Figure 11: UML representation of e³value (Gordijn & Akkermans, 2003)

2.5.3 UNIFIED FOUNDATIONAL ONTOLOGY

Part of the Unified Foundational Ontology (UFO) of Guizzardi (2005) can also be qualified as alternative. UFO-C

is the part of the UFO that focuses on business process modeling (Giancarlo Guizzardi & Wagner, 2005). It

includes concepts like (physical) agent, (non-agentive object and (action) event, which correspond with the

elements actor, object and event respectively of MERODE/MOSES. Figure 12 shows a UML representation of

UFO-C from the work of Giancarlo Guizzardi & Wagner (2005).

17

Figure 12: UML representation of UFO-C (Giancarlo Guizzardi & Wagner, 2005)

In UFO-C agents create events. For the purposes of supporting the MERODE/MOSES methodology, the

CommunicativeActionEvent (subtype of ActionEvent) can be used, which is related to one agent that takes the

role of sender in the event and to one or more agents that have the role as receiver. Also, relationships

between two or more CommunicatingPhysicalAgents can be specified as a SocialMoment or Commitment.

Therefore, the ties between interacting agents can be modeled explicitly. Non-Agentive Object can fulfil the

role of the objects as specified by MERODE/MOSES. In UFO-C, this component has no predefined relationships

between any of the other defined concepts. Therefore, to get the same relationships an object has in

MERODE/MOSES, all these relationships should be manually added.

2.5.4 EVALUATION OF ALTERNATIVES

Choosing one of the abovementioned upper ontologies as alternative for the UML class diagram used in

MOSES, the most important requirements are that it can be matched with MERODE as best as possible and that

the interactions between actors can be easily derived from its models. The most important pros and cons of

each upper ontology is summarized below, after which the most suitable alternative is chosen.

e³value supports the MERODE components object (e³value: value object), event (e³value: value offering) and

actor. Although these components are related to them in a similar fashion as in MERODE, in e³value some

relationships in MERODE require a chain of relationships, e.g. an event (e³value: value offering) relates to an

actor via a “consists-of” relationship with value interface, which relates to actor. The notation of e³value

models is, on the other hand, highly comprehensive, as value chains can be traced easily (Gordijn et al., 2005).

The constraints and rules of e³value support profitability analysis of the business cases modeled with it. Next to

profitability analysis e³value does not provide for many rules, like the constraints and rules MERODE defines.

Therefore, if e³value would be used, the upper ontology needs to be extended with almost all constraints and

rules defined by MERODE.

18

UFO-C also encompasses the MERODE components object (UFO-C: non-agentive object), event and actor (UFO-

C: physical agent), but does not provide all relationships between them as specified by MERODE. If UFO-C

would be used, the upper ontology needs to be extended with these basic relationships.

REA clearly supports the MERODE components object (REA: resource), event and actor (REA: agent). Also, their

relationships are clearly specified. REA comes with a large predefined set of constraints and axioms the

instances of the upper ontology need to respect. A large part of these constraints correspond with the rules

and constraints entailed by MERODE. For example, in REA each inflow event needs to be related to an outflow

event, which corresponds with the alphabet rule of MERODE (in section 4.2.2 the constraints of REA are

mapped with the constraints of MERODE). If REA would be used, it is expected that only a few constraints

should be needed to be added to the upper ontology. Therefore, REA is considered as most suitable upper

ontology alternative and will be used as upper ontology in the redesigned MOSES methodology.

19

3 INTEROPERABILITY BENEFITS OF THE USE OF AN ONTOLOGY

To find out what aspects of ontologies affect the interoperability in a domain positively, this chapter describes

a literature study enumerating these aspects. In the next chapter these aspects are used as a foundation for

the mindset, method and notation of the development methodology. The literature in this chapter comprises

of authors that directly compare properties of ontologies with those of information models, or only describing

properties of information models or ontologies. Also, the most influential ontology development

methodologies are reviewed in the literature research. This chapter starts with an overview on interoperability

and how an ontology affects it in a domain. After that, an overview of the relevant ontology aspects is given,

followed by a detailed description of each aspect. At the end of the chapter, the ontology development

methodologies are reviewed.

3.1 ASPECTS IMPORTANT FOR THE STAKEHOLDER

The end users of the model are the people and organizations that have to participate in the interactions

happening in the domain the model concerns. What is important for the stakeholders is to have the best

support for interoperability in their domain. Therefore this section describes the literature about aspects of

ontologies that are expected to improve the interoperability. It also describes some literature on other

improvements ontologies bring compared with a (traditional) information model. The aspects are an important

foundation for the philosophy, or mindset, behind the development of the development methodology in the

next chapter. The literature is organized per aspect to generate a clear overview of each aspect. An overview of

the important aspects is shown below in Table 4, followed by a detailed description of each aspect.

No. Aspect Mindset for ontology development

1 Vocabulary Unambiguous concept descriptions and supports set theory on domain
concepts

2 Validity rules Limit instances and concepts to only valid configurations of the domain in
reality

3 Context Describe relevant concepts of the whole domain; not only system specific
concepts.

4 Sharedness Take into account different stakeholders need to work with and understand
the ontology

5 Open world assumption Not everything that is modeled with an ontology will restrict its
interpretation of the domain

6 Descriptive Describe behavior in the domain; do not prescribe it

7 Representation Take the additional ways of representing a domain, like the definition and
reasoning about sets and subsets and the definition of axioms on the
domain, into account

8 Understanding Ensure ontologies can be understood by humans

9 Formal semantics Describe properties and behavior of domain concepts in a concise way

10 Automated reasoning Rules and semantics of all concepts relevant to the stakeholders in the
domain can and should be derived from domain experts and literature

11 System interoperability
potential

Structure the ontology as an open system with decoupled, decentralized
and configurable components

12 Dynamic modeling Include dynamic behavior of the stakeholders by modeling their processes
and operation rules

Table 4: Important ontology aspects

20

3.1.1 VOCABULARY

An ontology, as well as information models, provide a vocabulary for a language (Aßmann et al., 2006). A

vocabulary provides a terminology for the concepts and roles that are being modeled (Gasevic & Djuric, 2006).

For vocabularies it is important to have well-defined, unambiguous, definitions of concepts to prevent

misinterpretations. Concepts are the sets of individuals and roles being binary relationships between these

individuals. These can be either atomic or complex. Atomic concepts are simple and only have names. Complex

concepts have descriptions, which can be expressed in a description logic language. This allows and facilitates

the use of extensive set theories on concepts and of semantic relationships with other concepts.

As a vocabulary entails unambiguous descriptions of concepts and facilitates extensive set theories for

concepts for ontologies, it is an important aspect to consider for improving domain interoperability and thus

should be taken into account in the methodology. Specifically, the steps where the main concepts of the

domain are identified, have to take this into account. These are mainly the step where the domain’s actors and

objects are identified and the step where the domain’s events are identified in the phase where the basic

shared domain model is determined.

3.1.2 VALIDITY RULES

Validity rules limit the modeling possibilities of concepts. Both ontology models and information models

support this, although information models require an extension to do this. The validity rules for ontologies

specifically aim at limiting the instances and concepts of an ontology to only valid configurations of the domain

in reality (Aßmann et al., 2006). The validity rules assert instances to hold this consistency in any system

(Gasevic & Djuric, 2006). By implementing this business logic, situation-specific data can generate document

implications for the current situation, which therefore can improve interoperability in the domain it is applied

on. Therefore, in the methodology interoperability needs to be taken into account as best as possible, so the

instances and concepts modeled in the ontology are limited to configurations of the real world domain.

Therefore in the improved methodology the ontology development phase has to comprise of steps that

determine constraints on the concepts in the ontology to guarantee only domain configurations can occur that

represent valid situations in the real world domain.

3.1.3 CONTEXT

When looking at the context of information models and ontologies, a clear distinction can be noticed.

Information models are targeted towards a specific application and describe the concepts of reality, their

interrelation and their static semantics. The development of these models are usually aimed at the use of them

in a system to realize a system that is as efficient as possible (Henderson-Sellers, 2011). To ensure valid

configurations of the real world are described, information models make use of well-formedness rules, written

in, e.g. a language like Object Constraint Language (OCL), which is commonly used with UML class diagrams

(Aßmann et al., 2006). Ontologies, on the other hand, are not aimed towards one or even more applications;

they are intended to describe a whole, predefined, domain. Jarrar & Meersman (2009) even define ontologies

explicitly as not capturing application requirements. In fact, the more independent the domain model of an

ontology is, the higher its reusability in the domain.

When focusing on interoperability, a model that aims at describing (at least the essential parts of) a domain of

a system would be of better use than a model that is designed for a specific application. Aßmann et al. (2006)

call these two types domain models and system models. Whereas a system model is a description or

specification of a system and its environment for a specific purpose, which is the type of ontologies. A domain

model describes the environment, or domain, of a system, but is not necessarily focused on a system and its

purpose only. This type is of information models. The methodology focuses on interoperability and uses an

21

ontology. Therefore the methodology should focus on describing concepts relevant for the domain and not

only system-specific concepts. When determining the domain’s basic shared model, the steps identifying the

actors, resources, commitments, events and their relationships should take this into account.

3.1.4 SHAREDNESS

In general, information models are used for specifying or describing a specific system. They could be regarded

as “plain artifact models” which can be seen as models that do not involve many other actors that need to

know this model (Aßmann et al., 2006). Therefore information models usually do not have to take into account

that others may want to use or understand it next to the system that it is built for; hence its sharedness is

usually low.

Ontologies actively support a shared understanding between their users about the domain they describe

(Aßmann et al., 2006). By sharing a model that is well-understood by all users in a domain, their interoperability

performance can increase. The ontology itself should therefore take into account that it needs to be

understood and be able to be used by all stakeholders. To embed this mindset in the methodology, the

development of a basic shared domain model, like in the original MOSES methodology, should still be the first

phase of the development methodology, creating a wide, shared model of the business domain. Also, the steps

of this phase, identifying the relevant actors, resources, commitments and events in specific, should ensure

these concepts are relevant and can be well-understood by all stakeholders. Next to that, also when more

specific properties of actors and resources are determined (a step in the phase where the ontology is further

elaborated), the same should be ensured.

3.1.5 OPEN WORLD ASSUMPTION

A property of an ontology defined by Aßmann et al. (2006) is the “open world assumption”. This property

means that anything not explicitly expressed by an ontology is, intuitively, unknown. Therefore ontologies can

be seen as an under-specification of everything in the real world or as a partial model. For modeling purposes,

all relevant concepts should be defined, but because of this property, concepts that exist in the domain but are

not relevant for the reason the ontology is created can be left out. Information models underlie the assumption

that what has not been specified is either implicitly disallowed or implicitly allowed (closed-world assumption)

(Aßmann et al., 2006; Henderson-Sellers, 2011). The open world assumption of ontologies creates some space

for the addition of extra interpretations or constraints to the domain modeled when deemed necessary for

preserving the reality assertion in the ontology. Therefore the things modeled with an ontology should not

cover as much domain information as possible, but should only cover the information and concepts relevant

for the ontology’s purpose. In the ontology development phase of the methodology, therefore it should be

taken into account that only the necessary elements need to be determined when actors and objects and their

properties are determined in the ontology.

3.1.6 DESCRIPTIVE

All ontologies are in fact a descriptive model of a domain. This means ontologies describe the real

conceptualizations of a domain (see also Figure 4). The opposite of descriptive is prescriptive. Many

information models are in the form of templates from which a computer system can be implemented (Aßmann

et al., 2006). In these cases information models are prescriptive; a complete and final description is provided,

indicating that anything not defined is wrong or not true. Aßmann et al. (2006) do note that sometimes

ontologies are used in a prescriptive manner, however they should better not be called ontologies, but

specification models. The methodology to be developed aims at creating an ontology before reaching platform-

specific solutions. Therefore the behavior in a domain should be described; not prescribed.

22

Also, it is possible to distinguish two basic notions of the “is-represented-by” relation between a model and the

corresponding conceptualizations (Aßmann et al., 2006). In a descriptive model (e.g. an ontology) the model

describes the world, i.e. the world’s objects are related with concepts of the model in an “is-described-by”

relation. In a specification model this is an “instance-of” relation.

As developers of a domain model and ontology might be inclined to prescribe the domain behavior instead of

describing, in the improved methodology it should be explicitly noted and taken into account that the dynamic

behavior in the domain should be derived only from the information about the domain. Especially in the

methodology steps where the events happening in the domain are identified, described and linked with actors

and resources, this aspect should be brought to the attention. This includes the steps where events are

identified, the AOET is created and the UML activity diagrams are developed for determining the basic shared

domain model. Also, when determining class instances and defining constraints to the behavior in the ontology

model, this is an important aspect to be considered.

3.1.7 REPRESENTATION

Ontologies cannot be represented in UML or another (traditional) information modelling language, because an

important criterion to evaluate ontology design quality is minimum ontological commitments, i.e. use as few

notation types as possible (Falbo, Guizzardi, & Duarte, 2002). Therefore a graphical language must embody

only notations that are necessary to express ontologies. This is not the case of UML and many other graphical

languages used for expressing traditional information models. Also, because an ontology intends to be a formal

model of a domain, it is important that the language used to describe it supports more functionality than a

traditional modeling language that only describes classes and their properties and relationships. Section 2.2.1

looks at languages specifically aimed for modelling ontologies. A few of the beneficial modeling facilities of

ontologies are the support for (reasoning about) sets and subsets of classes and the definition of axioms on the

domain concepts. As the methodology involves an ontology, these additional ways of representing a domain

should be taken into account. In the methodology, the steps building the base for the ontology, elaborating on

their properties and determining their constraints in the domain need to take along these additional modeling

techniques.

3.1.8 UNDERSTANDING

Henderson-Sellers (2011) states that ontologies can be understood by both humans as well as computers. This

property enables both a good integration with computer systems as well as with the people using it. When

models are well-understandable, they can also be shared and used for communication between different

actors more easily since the model is understood well by all its actors. Therefore understanding is an important

aspect for increasing the interoperability potential.

When comparing with information models, not all of these models are aimed at the understandability of

humans. The focus of information models usually lies at developing an efficient functioning system, where

models essentially only need to be understood by (the model designer and) the IT system. To reach a high

understandability of the methodology, the ontology should be able to be understood by humans. This

especially plays a role when defining the actors and resources of the domain into the basic shared domain

model.

3.1.9 FORMAL SEMANTICS

An ontology is intended to be a formal model of a domain (Falbo et al., 2002). Therefore an ontology needs a

formal method for capturing the semantics of the domain. By using a formal language, the model elements can

be represented in a precise and unambiguous way. Also, the specification of formal axioms on the

23

interpretation of the model structure is supported by the formal semantics. This way misinterpretations can be

prevented and concepts and their properties and behavior in a domain can be precisely described. Therefore

the methodology should also include concise and unambiguous properties and behavior of domain concepts.

The methodology steps that determine the ontology concepts’ properties and formal constraints should

therefore take this into account. Note that because the open world assumption applies for ontology models

(see also section 3.1.5), this does not mean the defined concepts are exhaustive, i.e. concepts could comprise

more properties than are modeled and other concepts could still be added to the model, still having a model

conform the real world.

The majority of traditional modeling methods do not support formal semantics, like UML. At the moment there

are model extensions being developed to also support the capturing of semantics, like pUML (Evans & Kent,

1999). Even though information models can be extended with formal semantics, they are only an addition that

is not part of the core thoughts behind information modeling.

3.1.10 AUTOMATED REASONING

Other aspects of ontologies, like validity rules and formal semantics, described above allow for automated

reasoning about the described conceptualization of a domain (see also Figure 4) (Henderson-Sellers, 2011). In

particular the support for disjoint classes, set intersections and set complements are seen as important

modeling concepts for facilitating automated reasoning. The rules and formal semantics can be derived from

relevant domain knowledge sources, like domain experts and literature about the domain. Because of the rules

and restrictions an ontology also includes, ontologies can also describe the behavior of domain concepts.

Automated reasoning is therefore possible with ontologies. Because of that, ontologies that derive their

knowledge from domain experts and literature can prove powerful automated reasoning tools. When an

ontology is shared between stakeholders, each can reason the same way about the domain and therefore

interoperability between these stakeholders is facilitated (Smith & Welty, 2001). To incorporate this aspect in

the methodology, the step where the properties of the actors and resources are determined in the ontology

need to take into account that the properties are as suitable as possible for automated reasoning about them.

Thereupon the methodology step determining the formal constraints for these actors and resources can

perform automated reasoning to construct ontology constraints.

3.1.11 SYSTEM INTEROPERABILITY POTENTIAL

For achieving a system that has a high potential for interoperability, Daclin et al. (2006) defined four properties

the architecture of a system should comply with. The first property is open, which means components should

be open for modification or upgrading. The architecture should comprise of decoupled components, so they

should be able to continue their functioning independent of other components in their environment. Another

property that improves interoperability potential of a system is the decentralization of the components in the

architecture. This means that there is no central component that organizes the functioning of the whole

system. The fourth property of a system should be to have configurable components, where attributes and

other properties of the system should be able to be configured easily. As the methodology aims for the best

interoperability potential, the ontology involved should comprise of decoupled, decentralized and configurable

components. This plays an important role in the methodology steps where in the basic shared domain model

the components are related to each other, where the base for the domain ontology is built based on the basic

shared domain model and where components of other ontologies are reused and placed in the ontology

model.

24

3.1.12 DYNAMIC MODELING

The collaboration and interoperation of different stakeholders on enterprise level can be supported by a

shared ontology between the stakeholders (Panetto & Molina, 2008). To fully support interoperation, the

stakeholders should be able to have insights in the dynamic behavior (i.e. business processes and operation

rules) of the other stakeholders of the collaboration. The literature study of Panetto & Molina (2008) shows

that on knowledge level of enterprise integration and interoperability, knowledge about business processes

and operation needs to be shared among the involved parties. Therefore the ontology of the method, which

will be shared among the involved parties in the domain, should include the processes and operation rules

derived from the dynamic behavior of the stakeholders in the real world. In the improved methodology, this

needs to be considered in the steps where the events happening in the domain are identified and elaborated

upon in UML activity diagrams, but also at the point where the events are imported from the basic shared

domain model into the ontology model and where class instances are determined, good insights are required in

the domain’s dynamic behavior.

Panetto & Molina (2008) make a distinction between compatibility and full system integration. Compatibility is

something less than interoperability, where systems interfere with each other’s functioning. Full system

integration goes a step further than interoperability, where a certain degree of functional dependence is

involved. Interoperability, as argued, lies in the middle of an integration continuum between compatibility and

full integration.

3.2 MINDSETS FROM ONTOLOGY DEVELOPMENT METHODOLOGIES

As there is not one standard for the development of an ontology, different methodologies exist. Different

authors have different perspectives, mindsets and notation styles for developing an ontology. To gain insight in

how ontologies can be developed and in which ways they can contribute to interoperability in a domain, the

most influential (i.e. most cited and reviewed) methodologies are reviewed. Table 5 gives an overview of the

mindsets important for building the ontology facilitating interoperability deducted from the other ontology

development methodologies.

No. Method Mindset for ontology development

13 Enterprise ontology Capture domain knowledge initially in a semi-informal way using
carefully crafted natural language definitions to prevent loss of
knowledge from e.g. domain experts

14 Methontology Reuse and integrate existing ontologies parallel to the other ontology
development activities

15 To guarantee ontology completeness, all terms should be concise,
partial complete and consistent

16 Domain knowledge can be acquired by interviewing experts and
reviewing literature about the domain

17 TOVE Formulate competency questions based on the main problem and
scope. When the ontology can be used to answer all questions, the
ontology can be considered complete, for its intended purpose

18 Ontology Development
101

When there are viable modeling alternatives, keep the intended
application and anticipated model extensions in mind

19 Ontology development is an iterative process involving interviews with
domain experts or application testing

20 DILIGENT Involve different types of stakeholders: ontology engineers, domain
experts, but also end-users

Table 5: Important mindsets from ontology development methodologies

25

Gasevic and Djuric (2006) looked at several ontology development methodologies and concluded that most

focus on building ontologies, some include methods for merging, reengineering, maintaining and evolving

ontologies, and others build on general software development processes and practices. They note there is no

best methodology, as there is no "correct" way to model a domain and that ontology development is

necessarily an iterative process. Two conclusions are drawn from their survey: (1) many common points

between methodologies exist, usually parts are only named differently or have different granularity, (2) many

principles and practices are analogous to those of software engineering.

3.2.1 ENTERPRISE ONTOLOGY

A simple, yet effective approach to ontology development is the Enterprise Ontology development

methodology coined by Uschold & King in 1995 (Fernández-Lopéz & Gómez-Pérez, 2002). The method involves

4 main steps: (1) identify the purpose of the ontology to clarify why it needs to be built and what its intended

uses are. The second step is (2) building the ontology. This step is broken down into 3 steps: (2.1) capturing,

which means identifying the key concepts and relationships in the domain of discourse, (2.2) coding, which is

the capturing of the concepts and relationships in a formal specification language and (2.3) integrating existing

ontologies, which means reusing eventual existing ontologies in the ontology to be developed.

The idea behind the capturing step (2.1) is that unambiguous text definitions are defined for all concepts and

relationship. These definitions should be defined in a semi-informal way; defined through carefully crafted

natural language definitions that are as precise as possible (Helena Sofia Pinto & Martins, 2004). This facilitates

the formalization of the domain knowledge in the following step for the domain experts (M Uschold &

Gruninger, 1996). Based on these definitions, a formal model can be developed in a more restricted (ontology)

language. Uschold & Gruninger (1996) also see the best way to identify which concepts to capture in the

ontology is by means of a middle-out approach. This approach prevents a level of detail that is either too high

or too low by starting out from the most important concepts, then defining higher level concepts in terms of

these and specializing the concepts when necessary (Fernández-Lopéz & Gómez-Pérez, 2002).

Step (3) is the evaluation of the ontology with requirement specifications, competency questions and/or the

real world. The final step (4) is documentation of the ontology. The approach recommends to take the middle-

out approach when capturing the concepts of the domain, which means that the most important concepts

should be identified first, then generalized and specialized in other concepts.

An important aspect of the Enterprise ontology development methodology is to prevent loss of knowledge

from e.g. domain experts. This is, in any case, an aspect of domain ontology development that should be taken

into account. Therefore the mindset should also be adopted for the improved methodology in the next chapter

to capture knowledge in carefully crafted natural language definitions. This approach should be adopted at

least at the steps where the actors, events and objects are identified for the basic shared domain model, but

also where they are specified further in the phase of ontology development. Also in this phase, domain

constraints should be determined first in a more informal way, to formalize them in a later step.

3.2.2 METHONTOLOGY

Fernández-Lopéz and Gómez-Pérez (2002) compared ontology development methods with the IEEE standard

for developing software life cycle processes. They conclude that no methodology is fully mature compared to

the IEEE standard and that each methodology seems to have different approaches, which makes it difficult to

integrate all into one unifying methodology. METHONTOLOGY seems the most mature of the methods

reviewed. This method can be used for both designing ontologies at the knowledge level from scratch as well

as combining existing ontologies (Oscar Corcho et al., 2003). It is based on the activities defined by the

26

standard software development process of IEEE. Therefore it extensively defines and describes management,

development and support activities.

Project management activities include scheduling, which plans which tasks are to be performed, how they have

to be performed and what resources are required (Fernández-Lopéz & Gómez-Pérez, 2002). Control guarantees

task completion and quality assurance assures the output of each task is sufficient. The development-oriented

activities include specification, where the intended uses and end-users of the ontology are stated.

Conceptualization is the following activity, where the knowledge of the ontology is put in a model. Fernández-

López, Gómez-Pérez, & Juristo (1997) see that total completeness of an ontology specification never can be

proven, so it has to be guaranteed that the ontology specification is sufficient. The authors state that the model

needs to be concise (each term is relevant and there are no duplicate terms), partial complete (the terms cover

the required terms for solving the initial problem) and consistent (the meaning of all terms make sense in the

domain). For acquiring this knowledge, the authors suggest to perform structured and non-structured

interviews with experts and text analysis of books and other literature on the domain.

The next development activity is formalization, which intends to transform this model into a formal model. The

next activity is implementation, where the formal models are transformed into a computable language and the

final activity is maintenance, where the authors see the ontology continuously needs updates and corrections

throughout its life.

Methontology also denotes support activities supporting the development activities. These include knowledge

acquisition, integration, evaluation, documentation and configuration management. Knowledge acquisition and

evaluation are mostly performed at the initial activities, where domain knowledge has to be acquired and the

ontology specification need to be evaluated. Integration of other ontologies is seen as a parallel activity to the

development activities. For controlling the changes to the ontology, documentation on each phase and

generated product is generated, and by configuration management, these changes are controlled.

A mindset relevant for our methodology that is underscored by Methontology is to model domain concepts as

concise and consistent as possible. This strokes with the mindset identified in section 3.1.9 about formal

semantics. The conciseness and consistency of terms is in the improved methodology of highest concern at the

steps where the properties of the actor and resource concepts are specified, as well as where the ontology

constraints are formalized.

Another relevant mindset involves the reuse and integration of other existing ontologies. Like Methontology,

this activity can be seen as a parallel activity to the other development activities. Our methodology therefore

should also include this step in the phase where the actual ontology is developed. Also, additional knowledge

about the domain can be retrieved by interviewing experts and reviewing domain literature to build and extend

the domain ontology. The latter is especially important for the methodology steps where information about the

domain is entered in the domain model and ontology, being the steps that identify the domain’s actors,

resources, commitments, events and their relationships, but also the steps refining them with additional

properties and constraints.

3.2.3 CYC

Specifically for system communication and interoperability the Cyc ontology development method is developed

(Fernández-Lopéz & Gómez-Pérez, 2002). It is mainly oriented to support the acquisition of knowledge, in three

different degrees of automation of knowledge acquisition (O Corcho et al., 2007). The methodology has

therefore three phases: (1) manual extraction of common sense knowledge, (2) computer aided extraction of

common sense knowledge and (3) computer managed extraction of common sense knowledge. Where the first

phase proposes manually coding because of the lack of the ability of learning machines to search for new

common-sense knowledge, the second phase involves a person codifying knowledge that is already present in a

27

(Cyc) knowledge base. In the third phase knowledge sources are automatically fed to a knowledge tool for

automatic knowledge extraction.

3.2.4 TOVE

The TOVE ontology development methodology is more elaborated and focuses on competencies to both

formulate and evaluate the ontology (Fernández-Lopéz & Gómez-Pérez, 2002; Helena Sofia Pinto & Martins,

2004). The first step involves the development of motivating scenarios that set intuitive possible solutions to

the scenario problem. In essence, this step identifies the problem and scope of the ontology to be developed.

Step two is to formulate informal competency questions that are inspired by the first step. The ontology should

be able to give answer to all these questions for it to be considered complete for the intended purpose of the

ontology. Then the terminology of the ontology needs to be specified in a formal language (step 3). After this is

done, the competency questions can be formalized in step 4. In step 5 axioms and definitions for the terms can

be defined. In the 6th step the conditions under which the solutions to the competency questions are checked

on completeness.

The TOVE methodology sets clear goals for the development of an ontology by formulating competency

questions based on the main problem and scope. This mindset is deemed to result in highly effective ontology

models as it touches the real reasons why the ontology is developed and what it should comprise of after its

development. Therefore at the start of the initial phase where a basic shared domain model is determined, the

scope of the model should be identified by posing competency questions.

3.2.5 ONTOLOGY DEVELOPMENT 101

Noy & McGuinness (2001) developed an ontology development method with the notion that there is no one

correct way to model a domain. They notice there are always viable modeling alternatives and the best

alternative depends on its intended application and possible extensions anticipated. Also, to develop an

ontology, for its concepts to reflect the real world in the best possible way, evaluation of the ontology is

required. This can be done by using the ontology in applications, problem-solving methods or by discussing it

with experts in the field. In many cases these evaluations lead to revisions of the initial ontology, which implies

the ontology development should be an iterative process.

The methodology itself consists of 7 steps: (1) determine the ontology domain and scope; Noy & McGuinness

(2001) make use of posing competency questions, as proposed by the TOVE ontology development

methodology. (2) Investigate existing ontologies for reuse. (3) Enumerate important terms in the ontology; the

method does not prescribe a way how to do this, but assumes in some way a list of terms with certain

properties is created. (4) Define the classes and class hierarchy in a modeling tool (e.g. Protégé). (5) Define the

properties of these classes; also performed in the modeling tool. (6) Define the facets of the slots (properties);

in the same modeling tool the value types (e.g. string or Boolean), domains and ranges (i.e. another class that is

able to generalize the property) of each property should be defined. (7) Create instances; based on the classes,

define individual instances that have certain properties defined.

Following these steps leads to a concrete ontology model. Because the methodology is specialized on the use

of a modeling tool (Protégé), the method is very practical. The thoughts behind the steps in the method are

based on the belief that the developer already has an idea of how the concepts should be defined and how

they relate to each other. This might not always be the case, nonetheless steps 4 to 7 clearly describe what

steps to undertake using an ontology modeling tool. After the methodology has been described, (Noy &

McGuinness, 2001) describe how to model special cases in an ontology modeling tool, which is very practical

for ontology developers.

28

In our development methodology modeling alternatives might also come up. Therefore keeping in mind the

intended application and anticipated model extensions is an important mindset to take into account as well. It

is expected that modeling ontology alternatives will come up in the methodology step where the properties of

actors and objects in the ontology are specified, but also where class instances and their restrictions are

determined.

Also, the mindset that many iterations are required in the ontology development is important, because for

domain ontology development many domain experts and a lot of literature need to be consulted and model

evaluations need to be performed. Especially in the development phase where the basic shared domain model

is determined, a lot of information about the domain is retrieved and therefore this phase should be iterated.

3.2.6 DILIGENT

Pinto, Tempich, & Staab (2009) take a slightly different approach than the before-mentioned ontology

development methodologies. The authors developed a methodology for distributed loosely-controlled evolving

ontologies (abbreviated to DILIGENT). Interoperability between all stakeholders plays an important role. The

method reasons that the stakeholders of a domain participate in some form of cooperation-relationship. Even

in the case of competitiveness for the same resources, participants could still collaborate to compete against

external threats.

The core idea behind the method is to start out from a small and useful shared ontology. The stakeholders then

adapt their own version of the shared ontology for their own purposes, in a local variant. A control board of

stakeholders analyze all local ontology variants and develop a new version of the shared ontology. This way an

ontology evolves that is shared by all stakeholders and, in the end, comprises of all relevant domain concepts

entailing the most optimal ontology supporting interoperability among the stakeholders. The board should

have a well-balanced participation of different kinds of actors. It is important to, at least, involve ontology

engineers, domain experts and users of the system.

The ontology development method itself is divided in 5 phases. The first phase is called build; in this phase the

initial, small, ontology is developed from scratch. Although no development method is prescribed, the ontology

needs to focus on usability and usefulness. Phase 2 is called local adaptation. In this phase the ontology is used

and tailored by each stakeholder individually. In phase 3, analysis, the board of stakeholders analyzes incoming

requests and observations of changes for the shared ontology. The board also decides on which changes would

most benefit the users. The fourth phase is revision, where the board makes a revised version of the shared

ontology that includes the changes decided on in the previous phase. This revised shared ontology is released

in phase 5, local update. The users put the new ontology to use in their system. After this phase, the ontology

development iterates and the process is continued from phase 2 on.

An important aspect of this ontology development methodology for our own methodology is to involve

stakeholders of all different types to create a widespread cover that is relevant for all stakeholders. Ontology

engineers, domain experts, but also end users should therefore be considered. In our method this should be

taken into account at the steps where domain information is added to the basic shared domain model, being

the steps where the actors, resources, commitments, events and their relationships are identified, but also

during the whole phase where the ontology model is developed using expert information.

29

4 DEVELOPMENT METHOD FOR ONTOLOGIES FOSTERING INTEROPERABILITY

This chapter describes the proposed improved MOSES methodology. First, the methodology steps are

explained, followed by the reasoning about each modeling choice (i.e. the mindset behind the methodology).

At the end of the chapter, the way of notation is elaborated upon.

4.1 THE METHODOLOGY STEPS

The methodology is a result of many iterations as a result of comment of modeling experts, domain experts,

but also the case study described in the next chapter. Figure 13 shows an overview of the steps to take in the

methodology. Table 6 shows per methodology step a short description, the input for the step and what

deliverable (e.g. a diagram or overview) the step results in. Also, the important methodology mindsets from

Table 4 and Table 5 are mapped to each step. The reasoning behind each step is elaborated in the next

subsection.

The methodology focuses on developing a model on the level of the business and information level of a

business domain. It comprises of 4 main phases; determine basic shared domain model, build ontology base,

develop ontology and determine technology-specific solution. Compared with the original MOSES methodology

the first phase can be compared with the business domain modeling phase, where in both phases a foundation

is laid supporting the actual information modeling activities later in the methodology. Also, like in the MOSES

methodology, this phase requires design iterations to come to a complete initial model. An addition to this first

phase is the initial step where the scope of the domain to be described is determined. Also, throughout the

whole development methodology the REA upper ontology now plays a large role. This can be recognized in the

identification steps, where the domain concepts are mapped to resources, agents, commitments and events of

the REA upper ontology.

The second and third phase can be compared with the business information modeling phase of MOSES. Instead

of building an information model from which a solution can be derived, an ontology is developed from which a

solution can be derived. The reason that two separate phases are chosen to “replace” the old phase is that a

conversion needs to take place from the basic shared domain model to the REA-ontology. After this conversion,

the ontology can be specified further in an iterative fashion.

The final phase of both the old and new version of the MOSES methodology are about the same; derive a

technology-specific solution from the model developed in the previous phase. The difference is that in the new

methodology the solution is derived from an ontology instead of an information model.

30

Determine basic shared domain model

Build ontology base

Determine technology-specific solution

Develop ontology

Identify agents and

resources

Identify

commitments
Identify events

Make UML activity

diagrams
Identify scope

Import and link

agents and

resources to REA-

ontology

Import and link

commitments and

events to REA-

ontology Determine formal

constraints

Determine informal

constraints

Determine

properties of agents

and resources

Reuse and integrate existing ontologies

Determine class

instances

Figure 13: Methodology steps

31

Step Description Mindset Deliverable Input

Determine basic shared domain
model

Identify the main relevant concepts of the domain, their
relationships and the events they are involved in. This is an
iterative process.

4, 19

Identify scope Identify the main scope and determine with the
stakeholders the competency questions the system to be
developed needs to be able to answer

17 Competency questions Interviews domain
experts

Identify agents and resources Identify the actors and objects involved in the
interoperability interactions in the domain

1, 3, 4, 8, 13,
16, 20

Actor and object
descriptions

Interviews domain
experts; domain
literature

Identify commitments Identify the commitments between actors with resources of
the domain. The relationships and classes can then be
visually represented in a UML class diagram

3, 11, 16, 20 Commitment
descriptions and UML
class diagram

Interview domain
experts; domain
literature; actor, event
descriptions

Identify events Describe the events happening in the domain related to the
identified commitments. Based on these events, create an
AOET

1, 3, 4, 6, 12,
13, 16, 20

Event descriptions and
AOET

Interviews domain
experts; domain
literature; actor,
resource, commitment
descriptions

Make UML activity diagrams Based on the identified events, create UML activity
diagrams

6, 12 UML activity diagrams Event descriptions

Build ontology base Create an ontology model based on the basic shared
domain model. From this ontology an interoperability
solution can be derived. It should be clear which ontology
language and editor are used. The created ontology makes
use of the REA upper ontology.

11 Domain ontology base
using the REA upper
ontology

REA-ontology; domain
model

Import and link agents and
resources to REA ontology

Create classes for each object and actor, having either
Resource or Agent as superclass

5, 7 REA-ontology; domain
model;

Import and link commitments
and events to REA-ontology

Create classes for each event, having Event as superclass.
Also create properties for each relationship

7, 12 REA-ontology; domain
model

Develop ontology Extend the ontology base with domain knowledge 11, 20 Domain ontology using
the REA upper
ontology

Domain ontology base

Reuse and integrate existing
ontologies

Parallel to the other activities in this phase, where possible
existing ontologies should be integrated and reused in this
ontology

14 Existing related
ontologies

32

Determine properties of agents
and resources

Give actors, objects and events properties (i.e. attributes)
that are relevant for the domain

4, 5, 6, 7, 9,
10, 13, 15,
16, 18, 20

 Interview domain
experts; domain
literature

Determine informal constraints Create semi-informal constraints for the objects, events and
actors in the model to ensure only realistic domain
configurations of the ontology are possible

2, 13, 16, 20 List of semi-informal
constraints

Interview with domain
experts

Determine formal constraints Formalize the semi-informal constraints in the ontology 2, 7, 9, 10,
15

Ontology constraints List of semi-informal
constraints

Determine class instances Create instances of the class types as they exist in the real
world domain

6, 12, 16, 19 Ontology class
instances

Interview domain
experts; domain
literature

Determine technology-specific
solution

An interoperability solution can be directly derived from the
designed ontology.

 Domain ontology

Table 6: Methodology steps and their description, mindset, input and deliverable

33

4.2 THE METHODOLOGY MINDSET

The steps defined in Figure 13 and Table 6 have been defined and ordered in a thought-out way. The

philosophy, or mindset, behind them is explained in this section. Each step is based on a specific mindset

grounded with the literature reviewed in the previous chapters. Also the main ideas what should be achieved

or done by a step will be elucidated.

4.2.1 DETERMINE BASIC SHARED DOMAIN MODEL

This methodology step, or phase, origins from the original MOSES methodology. As elaborated on in section

2.4, this phase is closely linked to the MERODE methodology where actors, objects and events are central for

the development of a shared business domain model. It is important to develop this domain model in such a

way that all stakeholders involved should be able to do their work with the resulting model (Aßmann et al.,

2006). Interviews with domain experts is therefore a crucial input for this process and also the analysis of

domain literature (e.g. process documentation and workflows) is important.

The phase is adapted towards the use of the REA-ontology in a later stage of the methodology. Because the

concepts in REA are more elaborated, the adaptations are extending the original methodology at this aspect.

MERODE only distinguishes between objects and events, whereas REA distinguishes events and 3 different

types of objects, being resources, agents and commitments. As is explained in section 4.2.2, these object types

can be mapped to these objects, but for the development process a structured approach to identify these 3

objects in the initial phase can support the ontology development in a later phase. Also, because it is expected

for the expressiveness of concepts is higher in an ontology model than in a UML class diagram, the addition of

concept details is moved out of this phase, to the phase where the ontology is developed. Therefore, where the

original approach specifies the identification of concept properties and other details, the new approach does

this in the phase where the ontology will be developed.

When developing the shared business domain model, it can become complicated to maintain consistency

between all the events, resources, commitments and agents related to each other. Therefore, the tool called

MERMAID (or JMERMAID)1 can be used for creating events, resources, commitments and objects linked to each

other. The tool ensures consistency during the development and can output straightforward Object-Event-

Tables and class diagrams. In particular for the generation of a class diagram and OE-Table, this tool proves

useful.

Domain experts and literature not always provide a clear, complete, overview of all actors, objects, events and

processes happening in the domain. Therefore, this process should be iterated until a complete, full, ontology

of the domain is defined (Noy & McGuinness, 2001).

4.2.1.1 IDENTIFY SCOPE

As was identified by Fernández-Lopéz & Gómez-Pérez (2002), the reasons why an interoperability solution

needs to be made should drive the whole process and its methodology. Therefore, the methodology should

start by identifying the purpose and scope of the project. Also, competency questions should be developed

together with the stakeholders. These questions should comprise all the things the solution should be able to

fulfil. The set scope and competency questions can be referred to throughout the whole development process

to ensure a tight link with the scope and the actual problem to be solved.

1 MERMAID can be found at http://merode.econ.kuleuven.ac.be/mermaid.aspx

34

4.2.1.2 IDENTIFY AGENTS AND RESOURCES

An agent is a party involved in the interactions in a domain. A resource supports the business activities of the

involved agents. When identifying them, it is important to define the resources and agents as unambiguous as

possible to prevent misinterpretations of data and to facilitate reasoning about specific versions of a resource

type (Gasevic & Djuric, 2006). Also, the resources and agents defined need to be described in the way they are

in the domain; not how you want to specify them in a system to be built using this model (Jarrar & Meersman,

2009). The descriptions and names should be understandable by computers as well as human readers

(Henderson-Sellers, 2011).

The thought behind this step is to specify semi-informal descriptions of agents and resources here, which are

expressed by and highly comprehensible for humans to ensure no essential information is lost when domain

experts are interviewed (Helena Sofia Pinto & Martins, 2004). The domain experts should comprise of a variety

of stakeholder types, so not only domain specialists, but also system end-users, system engineers and others

(H.Sofia Pinto et al., 2009).

4.2.1.3 IDENTIFY COMMITMENTS

Agents and resources relate to each other. In the perspective of REA, one resource type (often physical

resources, but also other types such as information) is exchanged between two agents. In cases where more

than 2 agents are involved and/or more than 1 resource type is involved in one commitment, it should be

possible to split this commitment in multiple commitments. When developing an ontology in a later stage, the

information commitments contain can be used for reasoning purposes.

Using the identified information on resources, agents and commitments, an existence dependency class

diagram can be drawn that summarizes this information. For each commitment a short description can be

made to give insights in the context and meaning of the commitment. The information on the relationships can

be based on interviews with domain experts and domain literature. As with all identification steps in this

methodology, it is important to create descriptions as unambiguous as possible (Gasevic & Djuric, 2006). This

gives an overview of the domain concepts, which will also be used as input for the ontology development in the

next phase. In this step it is important to keep in mind that the interoperability potential of the domain model

can be capitalized by ensuring the model structure is open with decoupled, decentralized and configurable

components (David Chen et al., 2008).

4.2.1.4 IDENTIFY EVENTS

When actors are performing business activities to fulfil their commitments, events are triggered that induce

cooperation between different agents. These events occur at a specific moment in time and may involve

interaction with other objects. As noted by Panetto & Molina (2008), the dynamic behavior of the stakeholders

involved should also be taken into account. This means business processes and operation rules of the parties

involved should be included in the model. The original MOSES methodology also takes this into account, where

this methodology widens this to ontologies in the steps following.

Like with the previous step, the identification of events should also take into account the ambiguity of terms

and the understandability of humans. Events should also be described as they happen in the domain (and not

in a future information system) and in a semi-informal way ensuring no essential domain knowledge is lost.

Now the actors, resources, commitments and events of the domain are identified, the events can be linked to

the actors, commitments and resources involved. As the MERODE methodology prescribes, the creation of an

Object-Event Table (OET) facilitates the understanding of each event and creates overview on how the events,

35

actors and objects are connected. As described in section 2.4 the MERODE methodology sets several

requirements to the lifecycle of objects in an instantiated model, the definition of the type of participation an

object has and the definition of the type of responsibility an actor has in an event. As with the previous steps,

also in this step it is important to keep in mind to describe the behavior and relations of an event as it is in the

domain, and not in a contemplated information system.

4.2.1.5 MAKE UML ACTIVITY DIAGRAMS

Also part of the original MOSES methodology is the creation of insights in event sequences. As an alternative to

clarify the event sequences, UML activity diagrams can be used. This type of diagram is more frequently used

and supports the modeling of parallel events and events influencing other events. Therefore in this

methodology event sequences will be expressed in UML activity diagrams. The mindset behind expressing

event sequences is that this generates a clear overview on the order of execution of events, which facilitates

the sequencing of events in the ontology later on. Also, modeling the dynamic behavior of a domain is argued

to increase interoperability (Panetto & Molina, 2008).

4.2.2 BUILD ONTOLOGY BASE

This next step clearly distinguishes itself from the original MOSES methodology. By developing an ontology

instead of an information model, this new methodology distinguishes itself. As described in section 2.5, the

REA-ontology will be used as ontological base where all actors, objects and events can be related to. The

philosophy behind this is that when the ontology is completed, it is very easy to reason about it, extend or

adapt the ontology and to generate the technology-specific solution from it. When performing this step, it

should be clear which ontology language and editor will be used.

To building an ontology, this step comprises of a transformation of the basic shared domain model to an

ontology using the REA ontology foundation. Two steps are involved importing the actors, objects and events

to the ontology base. It should be taken into account that the concepts imported should be structured as an

open system to enhance the ontology’s interoperability potential. This means the components need to be

decoupled, decentralized and configurable (Daclin et al., 2006).

To build this ontology base, the links should be defined between the REA ontological foundation with MERODE

and the exact definitions of the used concepts should be stated. Therefore, Table 7 gives an overview of the

definitions of the REA concepts. An overview of the definitions of the MERODE concepts can be found in Table

3. Table 8 maps the elements of the REA ontological foundation with the elements of MERODE. Even though

the REA ontological foundation does not precisely match all rules of MERODE, the overlap is large (Geerts &

Mccarthy, 2000; Snoeck et al., 1999, 2003). The REA upper ontology, in combination with OWL, does not fully

cover all aspects of MERODE. Therefore, to close this gap, a few OWL restrictions need to be defined. Table 9

shows which restrictions are added to which REA class. Figure 14 shows the REA ontology in UML to be used in

the method, mapped with the elements of MERODE.

REA concept Definition

Resource Corresponds to a real-world economic resource. It has certain properties, an identity and
value. A resource is the subject of the economic exchanges in the domain.

Event Corresponds to something that happens in the real world. As REA focuses on economic
exchanges, an event in REA corresponds with a business transaction where exactly two
agents exchange resources. Events are atomic, meaning it cannot be split in sub-events.
Economic exchanges are by nature a duality relationship, where both an economic inflow
and outflow are involved. Therefore, an event always has a duality relationship with
another event that is either an inflow or outflow event. This also means that an event has

36

exactly one stockflow that describes a resource inflow and exactly one stockflow that
describes an outflow of this same resource.

Agent Corresponds to a real-world stakeholder participating in events in the domain of discourse,
for which it made certain commitments.

Stockflow Describes the connection of event with resource. The event can lead to a stockflow that is
using, consuming, giving, taking or producing exactly one resource, which this relationship
is representing. Stockflows also have a nature of duality. A transformation can have a use
or consume stockflow leading to a produce stockflow. An exchange should include both a
give and take stockflow. When resources are used, sometimes they disappear from the
domain of discourse. When resources are consumed, they always disappear. At a
production stockflow, a new instance of resource is created.

Commitment The agreement between (exactly) two agents to execute at least one incremental event
and at least one decremental event of the same resource. A commitment has a reserves
relationship with resource to describe the inflow and outflow resource type scheduled by
the commitment. It also has a partner relationship with agent to describe the agents
involved.

Participation Describes an agent involved in an event. An agent can either be participating as receiver or
provider in an event.

Table 7: Definitions of the REA concepts

MERODE REA & OWL

Alphabet rule: each event has only one effect on
objects of a class (either creates, modifies or deletes
objects)

Definition stockflow: an event relates to exactly one
resource via a stockflow-relation.

Alphabet rule: each object class needs at least one
event for its creation and deletion

Axiom 1: At least one inflow event and one outflow
event exists for each economic resource; conversely
inflow and outflow events must affect identifiable
resources

Alphabet rule: the behavior of an object type P must
contain all and only the event types for which there
is a C, M or E in the column of P in the OET

Axiom 2: All events effecting an outflow must be
eventually paired in duality relationships with events
effecting an inflow and vice-versa

Propagation rule: when object type D is existence
dependent of an object type M, the latter is by
default also involved in all event types D is involved
in

OWL inheritance of classes: subclasses inherit
properties (including associated event types) from
their superclasses

Type of involvement rule: an existence dependent
object type cannot start to exist before its master

Not natively supported. By using an OWL restriction
(1) this rule can be asserted.

Inheritance rule: an object type inherits all event
types and properties from its parent object type,
either unchanged or specialized

OWL inheritance of classes: subclasses inherit
properties (including associated event types) from
their superclasses.

Default life cycle rule: objects must include at least 2
events: its first needs to be an object creation event,
its last needs to be an object ending event

Not natively supported. By using two OWL
restrictions (2 and 3) this rule can be asserted.

Default life cycle rule: events need to have a
determined sequence order

Not natively supported. This rule can be asserted by
adding a “next” association between commitments
to indicate the sequence of commitments and
therefore events.

Restriction rule: existence dependent object types
must have a more deterministic life cycle definition
than their master object type

OWL inheritance of classes: subclasses inherit
properties (including associated event types) from
their superclasses.

Contract rule: when two or more object types
participate in the same event, a common existence
dependent object (contract) is required that
participates in this event.

A commitment (incremental or decremental) relates
exactly one agent to exactly one resource. (note that
a reciprocal pair of an incremental and decremental
commitment is equal to a full commitment or

37

contract between two agents to exchange one
resource)

In the OET, propagated participations are marked as
“Acquired”, else as “Owned”

Inherited properties in OWL are explicitly indicated
as inherited.

A creating event type for a dependent class is a
creating or a modifying event type for the master
class

When in OWL an instance of a class with
associations to other instances (dependencies) is
created, by the inverse property of such
dependencies, the other instances automatically
also are modified to relate to this new instance.

A modifying event type for a dependent class is also
a modifying event type for its master class

In exceptional cases a class can influence another
class making use of a SWRL rule

An ending event type for a dependent is an ending
or modifying event type for its master

In exceptional cases a class can influence another
class making use of a SWRL rule

All object types are only related through associations
that express existence dependency

A commitment (incremental or decremental) relates
an agent with a resource (both called objects in
MERODE). This is the only type of existence
dependency to be modeled in MERODE.

The cardinality of existence dependency
relationships is defined (how many occurrences of
the dependent object type can be dependent of one
master object at one point in time)

OWL natively includes existential and universal
restrictions in associations. Also, an exact number,
or range of numbers, can be specified as association
restriction.

An event is defined as an atomic unit of action that
represents something that happens in the real
world.

An event is either an incremental or decremental
event, which corresponds with exactly one in- or
outflow of a resource to or from exactly one agent.
This is also defined as an atomic unit of action. In
practice, every event defined with the MOSES
technique maps to two REA events (one incremental
and one decremental event).

An event reflects how domain objects come into
existence (creating events), are modified (modifying
events) and disappear from the universe of
discourse (ending events).

An event is either an incremental event that can
create a resource (an object in MERODE) (comes
into existence) or receives an existing resource from
another agent (modifies the owner of the resource),
or it is a decremental event that can delete a
resource (e.g. by consuming the resource) or sends
an existing resource to another agent (modifies the
owner of the resource).

Object-event participations An (inflow or outflow) stockflow defines the
relationship between a resource (an object in
MERODE) and an event. A (provide or receive)
participation defines the relationship between an
agent (an object in MERODE) and an event.
Stockflow and participation cover all object-event
participations possible in MERODE.

Participating objects are assumed to concurrently
execute all their methods when an event is triggered

When agents have a partner relationship with
commitment, the events related to this commitment
(fulfil relationship) need to be executed concurrently

Table 8: Mapping of MERODE elements to REA and OWL elements

38

No. Class Restriction

1 REA-element If a REA-element is associated with one or more REA-elements, all these
elements need to exist before this first element can be created.

2 ResourceType If an instance of this class exists, then also at least one incremental event should
exist that has a stock-inflow with this class and also at least one decremental
event should exist that has a stock-outflow with this class.

3 AgentType If an instance of this class exists, then also at least one incremental event should
exist that has a receive participation with this class and also at least one
decremental event should exist that has a provide participation with this class.

Table 9: Overview of additional OWL restrictions supporting MERODE

Event

Participation

Object

{disjoint}

{disjoint}

1

1

MERODE
element

REA
element

1

1

StockflowType

SFOutflowType

SFInflowType

ParticipationType

PProvideType

PReceiveType

ResourceType AgentType

EventType

Commitment

1

reserves

2

partner

1..*

1

1

1..*
1..*

1
1..*

1

1..*

1

1..*

1

1..*
1

1..*

1

Incremental
EventType

Decremental
EventType

1

1..*

fulfil

1..*

1

fulfil

11 duality

1 next

Figure 14: Mapping REA elements to MERODE elements

4.2.2.1 IMPORT AND LINK AGENTS AND RESOURCES TO REA-ONTOLOGY

By transforming the objects from the business domain model to the (REA) ontology model, the base for further

specifying the properties and behavior of things in the domain is created. This allows more functionality

compared with the specification of a traditional information model (Falbo et al., 2002). It should be noted that

the ontology adopts the open world assumption, which means the modeled concepts do not restrict its

interpretation of the domain (Aßmann et al., 2006).

As shown in Figure 14, the resources, agents and commitments can be extracted from the MERODE objects.

The participations between these MERODE objects can be derived to REA stockflows (either an inflow or

outflow of a resource) and participations (either a providing or receiving participation of an actor). An event in

39

MERODE itself has to be mapped on two separate REA events, as REA distinguishes between the incremental

and decremental part of a (transaction) event in MERODE. Table 10 shows this mapping in an overview table.

MERODE element REA element

Object Resource or
Agent or
Commitment

Participation Stockflow inflow or
Stockflow outflow or
Provide participation or
Receive participation

Event Incremental event and
Decremental event

Table 10: Table overview of MERODE elements mapping to REA elements

4.2.2.2 IMPORT AND LINK COMMITMENTS AND EVENTS TO REA-ONTOLOGY

The same goes for the transformation of commitments and events to the (REA) ontology model. Figure 14

shows commitments can be extracted from the MERODE objects and event types need to be extracted from

MERODE events. For the latter it is important to pay attention to the ontology class relationship properties and

the relationship cardinality. Events in MERODE need to be expressed in incremental and decremental events,

linking to the commitments they fulfil. We are only interested in the modification events of the commitment,

as the starting and ending of a commitment is not covered by the REA ontology.

In the OE-Table an event has modification methods relating the event to the involved actors and resources. In

the REA ontology stockflow types need to be defined for the related resource (an inflow stockflow type relating

the resource with the incremental event type and an outflow stockflow type relating the resource with the

decremental event type). Participation types need to be defined for the related agents; a provide participation

type for the providing agent in the related event and a receive participation type for the receiving agent of the

event. Figure 15 shows a sample OE-Table, where agents “Agent1” and “Agent2” have a commitment

“Commitment1” to exchange resource “Resource1”. On the figure is indicated which method leads to which

concept in REA.

Figure 15: Sample OE-Table indicating relationships with event

40

4.2.3 DEVELOP ONTOLOGY

Elaborating on the ontology base, this phase adds more detail and other domain knowledge to the ontology.

Also in this phase it is important to strive for high interoperability potential by modeling the ontology

components in a decoupled, decentralized and configurable way (Daclin et al., 2006). To ensure high

interoperability between all stakeholders, it is important to involve different types of participants from all

stakeholders in the steps of this phase (H.Sofia Pinto et al., 2009).

4.2.3.1 REUSE AND INTEGRATE EXISTING ONTOLOGIES

In this phase the domain model is more or less formalized and elaborated upon. When this happens, it should

be taken into careful consideration to check whether parts of the ontology to be formalized already are

specified in another related existing ontology (Oscar Corcho et al., 2003; Fernández-López et al., 1997). This

way unnecessary work is avoided and the ontology will be consistent with other systems also using this existing

ontology. This way the ambiguity of concepts is further reduced in favor of interoperability. The reusing and

integrating of existing ontologies should happen in parallel with the other development steps in this phase.

4.2.3.2 DETERMINE PROPERTIES OF AGENTS AND RESOURCES

The agents and resources of the ontology only have names and relations to events specified after the

transformation in the previous two steps. Therefore, to add specifications to the agents and resources,

properties need to be created in the ontology model. When performing this step, only the currently relevant

relationships add properties should be included, as the ontology model falls under the open world assumption

(Aßmann et al., 2006). To distinguish between properties used for reasoning purposes only and properties that

also need to be included in the information to be exchanged, the latter category of properties needs to be

added as sub-properties of the general “message” property of the REA upper ontology.

Additional information on the domain can be acquired from domain experts and literature, but also from the

domain model specified in the first phase. According to Noy & McGuinness (2001) it may occur that multiple

modeling options can be applied. In this case, Noy & McGuinness (2001) advise to choose the modeling option

that facilitates anticipated model extensions.

For the development of the properties, it is recommended to formulate these in the best way facilitating

reasoning about classes and sets and subsets of classes and their instances (Henderson-Sellers, 2011), which is

something that can improve interoperability communication. Next to that it is important to have the concepts

describing the domain instead of prescribing behavior of a computer system to ensure the ontology remains

solution-independent (Aßmann et al., 2006). The descriptions need to be as concise and unambiguous as

possible to prevent misinterpretations (Falbo et al., 2002). Also eminent is to ensure all terms specified to be

partial complete (i.e. coverage of the terms and the right level of granularity of each term), concise and

consistent (Fernández-López et al., 1997). Furthermore it needs to be taken into account that all the

stakeholders need to be able to work with and understand the concepts of the ontology (Aßmann et al., 2006).

4.2.3.3 DETERMINE INFORMAL CONSTRAINTS

Constraints, either formal or informal, have the task to limit the instantiations of the developed ontology

model only to configurations that are realistic for the represented concepts of the domain concerned (Gasevic

& Djuric, 2006). This step lists all these constraints. By first defining all constraints in a semi-informal language,

the chance of loss of domain knowledge during the constraint elicitation from domain experts becomes smaller

(Helena Sofia Pinto & Martins, 2004).

41

4.2.3.4 DETERMINE FORMAL CONSTRAINTS

After all informal constraints have been recorded for domain knowledge preservation reasons (Gasevic &

Djuric, 2006), these are formalized in the ontology. This way the ontology can automatically reason what

configurations are valid and invalid. This step cannot be automatized, as semi-informal constraints can be

formalized in many different ways; it needs to be done manually.

The ontology development tool we use supports the restriction language SWRL (Semantic Web Rule Language)

well and is very intuitive in its use (Nguyen, 2011). Also, SWRL is designed as the standard restriction language

for ontologies in the semantic web. Therefore it is used as language to formalize the constraints. Although its

syntax is easy to understand, the rest of this thesis it is assumed the reader knows about the SWRL syntax.

More information about SWRL and its syntax can be found in (Horrocks et al., 2004).

4.2.3.5 DETERMINE CLASS INSTANCES

At this point in the process the ontology should comprise of all types of classes possible in the domain. This

should be enough information to develop a general semantic standard for all general types of the concepts

defined. To add some more specific information of special cases, this step creates instances of the class types in

the ontology that are present in the real world domain. For each instance individual properties need to be set,

as predefined in the class types. Also, subsets of individuals can be created as another instance. For example, a

select number of persons belong to one group of friends, where the group of friends is a subset of persons.

Specific constraints for certain instances can also be determined. These can be included in the iteration cycles

of this development phase.

In this step it is important to take into account that the instances modeled are only describing the real world

domain and do not prescribe it (Aßmann et al., 2006). Like with the class types, the instances describe dynamic

behavior in the domain. Instances need to specialize on the exact events of specific agents, so each stakeholder

is aware of the specific dynamic behavior and the corresponding operation rules of each domain instance

(Panetto & Molina, 2008).

4.2.4 DETERMINE TECHNOLOGY-SPECIFIC SOLUTION

As the ontology includes both the dynamic and static elements of the domain concepts, it facilitates the

transformation from the model to a technology-specific solution. The final result of this last methodology step

is a semantic standard, which in most cases is no more than a set of message structures in a specified

sequential order that is used as a standard for the exchange of domain information (Schrier et al., 2012).

As the used ontology language, OWL, is fully XML-based, the information queried can be transformed into a

technology-specific solution and/or message diagrams using an XML translation. Languages like XSLT or XPath

proved very useful for this type of translations (W3C, 1999a, 1999b). The events determine the sequence of

messages to be sent and received, while all sub-properties of “message” are the information that needs to be

exchanged. Because of time limitations this thesis will not go into detail in this step.

Using a query language, such as SPARQL (W3C, 2013), the REA-based ontology can be queried for more specific

information for the message structures. This information is retrieved from the instances defined in the

ontology. Ontology building tool Protégé has built-in support for SPARQL queries.

To get a clear overview of the messages to be sent and received by which agents, sequence diagrams are a

good way of visualizing this (Lethbridge & Laganière, 2005). Section 4.3.5 and Figure 18 provide detail in their

notation. The foundations for determining message structures from the ontology using the REA upper ontology

lay at the events. Sending and receiving information is represented in the REA upper ontology by the

42

decremental and incremental event types. Here, the decremental event type is defined as sending information

(i.e. the information of the resource related to this event) and the incremental event type as receiving

information. Because by definition of REA (see also section 2.5.1) incremental and decremental event types

that have a duality relationship, exactly the same resource (i.e. information to be exchanged) is related to both

events (via stockflows).

The sender of a message is identified by the agent that has a provide participation with the decremental event

type involved. The receiver of this message is the agent that has a receive participation with the dual

incremental event type of the decremental event type. To indicate the sequence of event execution according

to the domain restrictions, if modeled, events refer to the next event happening after the execution of the

current event happened. It is possible to have multiple following events. Depending on the situation one of the

events appointed as next event will be executed.

The designed ontology can be queried for this information with a SPARQL query as shown in Query 1. Table 11

shows the structure of the output table of this query. The query retrieves the message field that needs to be

sent based on all data properties of the resources that are exchanged. In case a real-time instantiation of the

domain is maintained in the form of individuals, the actual messages, senders and receivers can also be

retrieved by adding “?message”, “?sender” and “?receiver” to the output table columns in the SELECT line of

the query. While there are much more applications for retrieving information from the developed ontology,

this is the main query that needs to be executed to get the required information for transforming to message

structures for creating a semantic standard. An example of another application of the ontology information is

shown in section 5.2.6.1, where an overview of the congestion impositions on grid participants can be created

by querying the information from an ontology developed with this development methodology.

Query 1: SPARQL-query retrieving the relevant information from the REA-ontology for creating message structures

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX my: <http://www.rea-ontology.com/rea-smartgrid#>

SELECT ?eventtype ?messagefield ?sendertype ?receivertype ?nexteventtype

WHERE {

 ?decrementalevent rdf:type ?eventtype.

 ?eventtype rdfs:subClassOf* my:DecrementalEventType.

 ?allsfs rdfs:subPropertyOf my:eventHasSf.

 ?decrementalevent ?allsfs ?relatedsfs.

 ?allrelatedresources rdfs:subPropertyOf my:sfHasRes.

 ?relatedsfs ?allrelatedresources ?resource.

 ?messagefield rdfs:subPropertyOf* my:message.

 ?resource ?messagefield ?message.

 ?allparticipations rdfs:subPropertyOf my:evHasP.

 ?decrementalevent ?allparticipations ?participations.

 ?allagents rdfs:subPropertyOf my:pHasA.

 ?participations ?allagents ?sender.

 ?sendertype rdfs:subClassOf my:AgentType.

 ?sender a ?sendertype.

 ?allDualities rdfs:subPropertyOf my:dualEvent.

 ?decrementalevent ?allDualities ?dualevent.

 ?dualparticipations rdfs:subPropertyOf my:evHasP.

 ?dualevent ?dualparticipations ?dualparticipation.

 ?alldualagents rdfs:subPropertyOf my:pHasA.

 ?dualparticipation ?alldualagents ?receiver.

 ?receivertype rdfs:subClassOf my:AgentType.

 ?receiver a ?receivertype.

 ?decrementalevent my:nextEvent ?nextevent.

 ?nexteventtype rdfs:subClassOf* my:EventType.

 ?nextevent a ?nexteventtype.

}

43

Decremental event type Message field Sender type Receiver type Next event type

Table 11: Structure of the output table of the SPARQL-query for retrieving message structures

4.3 NOTATIONS USED BY THE METHODOLOGY

Several steps in the methodology require the design of a diagram or an overview table. This section specifies

how exactly these diagrams and tables should be developed. The following subsections each represent a step

that involves the creation of a diagram or table.

4.3.1 IDENTIFY AGENTS AND RESOURCES

To enumerate and give a detailed description of the relevant agents and resources in the business domain, an

overview table can be created. Table 12 is a template overview table. In the left column one simple name of

the type of agent/resource should be specified, with in the right column an elaborate description of its role,

purpose, demands, etc. in natural language.

Agent / resource Description

Agent1

Resource1

Table 12: Template overview table for agents and resources

4.3.2 IDENTIFY COMMITMENTS

The best way to identify commitments is to draw an existence dependency diagram. The identified agents and

resources of the previous step can already be drawn, after which commitments can be added to create links

between 2 actors and 1 resource type. Figure 16 shows a template existence dependency diagram with on the

left 2 agents (“Agent1” and “Agent2”) and on the right 1 resource (“Resource1”). In the center, commitments

can be drawn (in the example “Commitment1”) that connects with the agents and resource with existence

dependencies. To maintain overview on the existence dependency diagram it is recommended to depict all

agents on the left side of the diagram, resources on the right and commitments in the center. For each

commitment a short description should be made, to give context and insights into the meaning of the

commitments. This can be done in a table formatted like Table 13.

Figure 16: Template existence dependency diagram

44

Commitment Description

Commitment1

Table 13: Template overview table for commitments

4.3.3 IDENTIFY EVENTS

Commitments are defined as agreements between 2 agents to exchange a resource type in the near future.

Events occur to fulfil these events. Therefore, for each commitment at least two events should be specified

(one incremental and one decremental). This event needs to be linked to the resource type it is involved with

and to the agent type that participates in this event. By creating an Object-Event-Table (OE-Table), the

identification of events and their related objects is supported.

There are some rules the events have to respect, which are defined by MERODE, enumerated in section 2.4.1.

The relationships that can be specified in an OE-Table are listed in Table 15. Table 14 shows an OE-Table

template. For the ease of explanation, “Event1”, “Agent1”, “Commitment1” and “Resource1” represent the

location of the events, agents, commitments and resources respectively in the table. Commitments that are a

subclass of another commitment are depicted in the way shown as SubComm.1 is subclass of Commitment 2 in

the example. The same goes for events; as depicted in the way shown as SubEvent1 is subclass of Event2 in the

example. When there exists an interaction between an event and an agent or resource, their junctions in the

table should have one or more letters. These relationship types are listed in Table 15. A tool like MERMAID can

be used to facilitate the development of an OE-Table (see also section 4.2.1).

A
g

e
n

t1

 C
o

m
m

it
m

e
n

t1

C
o

m
m

it
m

e
n

t2

S
u

b
C

o
m

m
.1

 R
e

so
u

rc
e

1

Event1

Event2

 SubEvent1

Table 14: Template AOET

Letter Relationship type

I Internal actor

R Responsible actor

P (Only) participating actor

C Object creation

E Object ending

M Object modifying (updating)

O Owned participation in event

A Acquired participation in event from superclass

Table 15: Relationship types for the AOET

45

4.3.4 MAKE UML ACTIVITY DIAGRAM

In a domain events occur only in a predefined order. To ensure these event sequences are respected in the

domain model, MOSES uses Jackson Event Sequence diagrams (Schrier et al., 2012). An alternative to this

notation is a UML activity diagram. This diagram type is more frequently used and has the same functionality as

a Jackson Sequence diagram.

For each sequence of events that happen in the domain, an activity diagram can be drawn (Lethbridge &

Laganière, 2005). Figure 17 shows an example activity diagram with all possible elements. A black circle

represents the start state, which immediately induces the followed activity (in the example Event A). A black

circle with a ring around it represents an end state, which not necessarily is ever reached. If it is reached, the

sequence of events is over. Rectangles represent

the activities or events themselves.

Two events can be performed at the same time

after a fork, which is a horizontal line with one

incoming transition and multiple outgoing

transitions (in the example between Event A, B

and C). A join is the same, but with one outgoing

transition and multiple incoming transitions (in

the example before Event E). The outgoing

transition is triggered only when all incoming

transactions have been triggered. A combination

of both is called a rendezvous. Based on a

decision, a decision node can trigger one of

multiple outgoing transitions (in the example,

after Event B, Event D can be triggered when

case1 is true; if case B is true after Event D, the

sequence ends. Split transitions paths by a

decision node can be merged again by a merge

node.

4.3.5 SEQUENCE DIAGRAMS

Determining the messages, their sender and receiver and their sequence order is essential for the last step of

the methodology, where the message structures of the semantic standard are determined. UML sequence

diagrams prove useful for gaining insights in all this (Bell, 2004; Lethbridge & Laganière, 2005). The notation of

these diagrams are relatively simple.

In Figure 18 an example sequence diagram is shown. The rectangles with sender and receiver in them

represent the agents. In specific, this example depicts an instance of AgentType called sender and another

instance of AgentType called receiver. These instances have a lifeline, depicted by the dashed vertical line

connected to them. The start of the sequence order is defined as the top of this lifeline, where the end of the

sequence order is at the bottom of the lifeline.

When an agent shows activity, a rectangle is drawn around the lifeline. During the activity of an agent,

messages can be sent and received. The arrows drawn between the two lifelines represent the direction in

which messages are sent. For example “message1" is sent from “sender” to “receiver”. After this message has

been received, “receiver” sends “message2” to “sender”; probably a response to “message1”. It is

recommended to draw a separate diagram for each set of interactions between two agents.

Figure 17: Example UML activity diagram

Event B

Event E

[caseB]

[caseA]

[case2]

[case1]

Event C

Event A

Event D

46

A sequence diagram can also model alternative cases. The set of alternatives need to be framed by a box

labeled “alt”. Figure 18 shows an example of this, where “message3” and “message4” are exchanged when the

conditions of “case1” apply and where “message5” and “message6” are exchanged when the conditions of

“case2” apply. While not pictured in the example, loops of message sequences can be modeled by drawing a

similar frame with the label “loop” on it.

sender : AgentType
receiver :

AgentType

message1

message2

alt

message3[case1]

message4

[case2]
message5

message6

Figure 18: Example UML sequence diagram

Because the message sequences to be modeled are deducted from an ontology based on the REA upper

ontology, all sequence diagrams can be deducted using the result of the SPARQL-query as defined in Query 1,

with a result in the form of Table 11. This means all information about the instances of the built domain

ontology is retrieved related to all “DecrementalEventTypes” and their related “message”, “sender”, “receiver”

and “next: EventType”. The last piece of information indicates the next event/message involved with the

current event.

Combining this information, sequence diagrams can be drawn showing the message exchanges. Figure 19 gives

insights in how this information can be translated into a sequence diagram. Currently the translations need to

be done by hand, but this is easily automated by writing several translations from OWL to a document type

supporting the drawing of sequence diagrams.

The “sender” of a “message” has a “DecrementalEventType” that initiates the sending. The “receiver” has an

“IncrementalEventType” connected to this “message”. To indicate what is the next EventType (either receiving

or sending a message), the “next: EventType” plays a role.

47

sender : AgentType
receiver :

AgentType

message

message

DecrementalEventType

IncrementalEventType

next: EventType

Figure 19: Example UML sequence diagram with REA elements

48

5 AN ONTOLOGY FOR SMART GRIDS

To demonstrate the new methodology, it will be applied on a theoretical case about the energy domain. As

shortly introduced in chapter 2, the smart grid operability problem will be taken as a use case. The chapter

elaborates on the philosophy to be used using the method, the methodology steps taken as well as the

notations used to reach the technology-specific solution. This chapter starts with an overview of the energy

sector, focused on the situation of smart grids in this sector. After that the designed methodology will be

applied on the theoretical case of a micro grid. At the end, the application of the methodology will be

discussed.

5.1 THE MICROGRID DOMAIN

Insights in the general structure of the energy sector are required to adequately apply the methodology on

smart grids. This section will first elaborate on the most important recent developments in the energy sector,

followed by an overview of the actors involved in the sector. After that follows an analysis of the concept of

flexibility in the energy sector, which we want to address in particularly in this case. At the end of the section

literature is reviewed about making the energy sector more flexible and what information models already exist

for the energy sector.

5.1.1 WHAT IS A MICROGRID?

In conventional power systems, system status and control signals are exchanged using Supervisory Control and

Data Acquisition (SCADA) systems (Pipattanasomporn, Feroze, & Rahman, 2009). These systems, however,

require continuous monitoring activities by a human to intervene and take actions when necessary (i.e. the

system is reactive). To automatically reason and take actions on power systems, a smart grid can be

introduced. This is an autonomous system, meaning it can operate without human interventions and can even

respond to emerging problems before humans could detect them (proactive system). A microgrid is nothing

more than a smart grid on a local level; what a smart grid can do on high scale, a microgrid can do on a local

level, which makes it easier to implement.

As mentioned earlier, a smart grid (and therefore also a microgrid) can be introduced for maintaining the

balance on energy grids in the future, when more and more intermittent energy sources (especially renewable

energy sources) will be connected to the grid. A smart grid can be defined as an electricity network that

intelligently integrates the actions of all users connected to it (Ardito, Procaccianti, Menga, & Morisio, 2012). It

improves the reliability, security and efficiency of a power grid by using “smart” technologies for intelligent

monitoring, controlling, communicating and self-healing.

The current energy grid is designed and built decades ago and does not facilitate the new developments in the

energy domain, as stated earlier. For example, currently grid operators have to continuously monitor the

energy grid and have to perform changes in the operation of the grid manually (Bakker, 2012). For these

reasons the design and control over the grid should be adapted to this new situation. The grid should make

more use of ICT systems that help better matching energy demand and supply and facilitating more renewable

energy sources while maintaining a dependable grid. Bakker states that a more robust and fault tolerant grid

can be achieved, when a grid can continuously monitor and manage energy flows and energy quality

parameters.

Tabors et al. (2010) define three “pillars”, or properties, a smart grid should have: (1) smart customer: the

technologies enabling consumers to observe and control their consumption, (2) smart utility: the utilities

implementing functionality for monitoring, controlling, pricing and demand-response systems and (3) smart

49

market: a market structure facilitating decision making and information on the energy of the smart grid. Real-

time pricing (RTP) can be seen as a tool to realize this market.

One of the important aspects of a smart grid is to provide a smart metering infrastructure (Ardito et al., 2012).

Information on when and how energy is consumed plays an important role for energy generators in the smart

grid to allow automatic configuration of the network when a fault emerges somewhere in the network, utility

billing and other applications. Also, forecasting is a key aspect of a smart grid system. It is used for ensuring the

balance in energy demand and supply on the grid. Next to (traditional) day-ahead energy use profile

predictions, the amount of power produced by renewable energy sources can also be predicted by using

various parameters, like climate conditions and energy source location.

The need for information integration and communication is stressed by Ardito et al. (2012) for a successful

realization of a smart grid. They argue that energy generators need a constant flow of real-time updates on

energy demands in order to provide the precise amount of energy required. The authors also argue that an

energy storage can substantially improve the efficiency of a smart grid. In cases when energy overproduction

happens, the storage can be used to absorb this production peak . When underproduction occurs, the storage

can fill the energy gap.

An ontology could be of good use in a smart grid. King (2008) states that an ontology “provides the glue to hold

everything together” and that it drives decision support tools for the electric grid by standardizing the

semantics and developing taxonomies.

5.1.2 TRENDS

Not only organizations, but also individuals are increasingly participating in the complex business network of

the energy market. They install renewable energy sources like solar panels on their roof, or wind turbines in

their neighborhood to provide themselves with their own energy supply and, more importantly, sell the

remainder of the generated power to the rest of the power grid. Consumers are turning into so-called

“prosumers”. The use of renewable energy sources currently is a big trend that is also enforced and

encouraged by national and international regulations (Jamasb & Pollitt, 2005). Drivers for these policies include

the mitigation of climate changes due to emission of greenhouse gasses, reducing the dependency on fossil

fuel reserves and liberalizing and improving the energy market (European Commission, 2006).

The energy sector in the Netherlands, as well as other countries of the European Union is undergoing a change

towards more use of renewable energy sources. In the past two decades the production and consumption of

renewable energy rapidly increased. Jacobsson & Bergek (2004) indicate that in the Netherlands, among other

countries in the EU, the diffusion of wind turbines increased (from 49 MW in 1990 to 519 MW in 2001), solar

cells (from 1.3 MW in 1990 to 12.8 MW in 2001) and solar collectors (from 11 GW in 1990 to 226 GW in 2001).

Also, Energie-Nederland & Netbeheer Nederland (2011) indicate an increase of total renewable energy

generation in the Netherlands from around 3,000 GWh in 2001 to over 10,000 GWh in 2010.

The disadvantage of renewable energy sources is that their energy supply is on irregular basis (intermittent).

Energy is only produced when certain meteorological conditions apply, e.g. a windmill only produces energy

when there is sufficient wind. When and how much energy is supplied is therefore uncertain. To keep energy

networks up and running, it is of vital importance to maintain the balance between the amount of energy

consumed and supplied. When this uncertainty of power supply emerges, it becomes difficult to maintain this

balance in energy networks because manually controlled power supplies need to adapt to these, uncertain,

power supply changes. This leads to a need for mitigation possibilities for the supply of energy to guarantee the

essential balance on the energy network.

50

Also, the political push to unbundle the energy market is causing a decentralization of the energy market

(European Commission, 2005; Jamasb & Pollitt, 2005). This enables prosumers (i.e. stakeholders that consume

as well as produce energy) to offer their energy surplus to the rest of the energy grid (Pagani & Aiello, 2011).

Because of this change in the energy market, more and more stakeholders need to have interaction with the

power grid. This results in the need for interfacing capabilities for equipment connected to the power grid

(European Commission, 2006). These interfacing capabilities ensure the interoperability of automation and

control arrangements of the equipment connected to the grid, like power generators, metering systems or

control and automation architectures.

Next to that, Kok et al. (2010) note that there is an

increase of distributed generators (DG, i.e. generation

capacity in the medium- and low-voltage segments of the

power grid). This leads to more power generators that

generate relatively small amounts of energy. This, in turn,

leads to the increased importance of intelligent distributed

coordination of the power grid. The European Commission

(2006) foresees a trend towards microgrids. They define

microgrids as “low voltage networks with DG sources,

together with local storage devices and controllable loads

(e.g. water heaters and air conditioning).” Microgrids can

automatically be set to islanded mode when necessary, for

example in case of a fault in the upstream network, and

can be resynchronized with the rest of the grid after the

fault has been restored. Because microgrids include local

energy storage devices (DGs), the energy network (in the

microgrid) can be balanced by drawing from or storing

small amounts of energy on these devices. Also, a

microgrid can supply energy back to the rest of the energy

grid. Currently, energy grids are not fully prepared to

support this yet. Figure 20 shows an example of how a

microgrid looks like. Houses with solar panels (i.e. the prosumers), some energy storages and a distributed

generator are part of the microgrid. The microgrid shows two connections to the rest of the energy grid, from

where, if necessary, power can be drawn from or supplied to.

5.1.3 OVERVIEW OF ACTORS

Different authors describe actors of the energy sector in more or less detail. This section provides an overview

that integrates as much as possible relevant actors for supporting information exchange between them to

facilitate a microgrid. An overview of the actors and their dependencies is given in Figure 21. The lines between

the actors represent their interactions, which can be either the exchange of information or the physical

exchange of energy in form of electricity. A description of these actors follows (Bakker, 2012; Energie-

Nederland & Netbeheer Nederland, 2011; European Commission, 2006; european network of transmission

system operators for electricity, 2011; J. K. Kok et al., 2010; Pagani & Aiello, 2011; Smart Grid Coordination

Group, 2012). It should be noted that in the current situation of the energy domain more actors are involved,

such as suppliers, traders and an energy trading market, but these are out of scope for the microgrid domain.

Energy producers: responsible for the generation of energy on large scale. Also includes the distributed

generation operators that involve distributed energy generation on smaller scale. Large energy producers are

typically inflexible in adjusting their production output on short term, while smaller energy producers are more

flexible although the production costs are higher.

Figure 20: Example of a microgrid (European Commission,

2006)

51

Transmission System Operator (TSO): represents the infrastructure and organization

which transports electricity over long distances. It controls the high voltage energy

network and facilitates the connection to energy networks abroad and the energy

import. In the Netherlands TenneT is the national transmission system operator,

which is a government-owned organization.

Distribution System Operator (DSO): represents the infrastructure and organization

which distributes electricity to customers. It controls the medium and low voltage

distribution networks. Receives the meter readings from the metering responsibles

and passes these on to the suppliers and balance responsables.

Distributed Electrical Resources (DER): represents small-scale power generation

technologies (typically in the range of 3 - 10.000 kW) directly connected to the

medium and low voltage distribution networks. Typically, DSOs control these

resources.

Customer: the end-user of the energy. The customer can be industrial, commercial or

a home facility. It is expected that in the near future an increasing number of

customers will want a connection to the grid that supports in-house generation and

the ability to sell their surplus energy generation back to the grid. Most authors see

this development only in the future, while we see customers, or prosumers, currently already transporting and

selling their energy surplus to the rest of the energy market.

5.1.4 MICROGRID INTEROPERABILITY

The technology in the energy sector can be divided in three layers (Pagani & Aiello, 2011). The lowest layer is

the physical layer (or, technical layer), which directly interacts with electrical apparatus and other physical

components of power plants and distribution substations. The second layer, called the data layer (or,

informational layer), contains control data that remotely supervises and interacts with physical equipment.

Therefore, this data can control energy production, transmission and distribution in the energy network. The

business layer (or, organizational layer) is the third layer, which uses information from the data layer to form

business information. This information is used for indicating the current performance in the energy network, to

make forecasts and to control the network.

The GridWise Architecture Council (GWAC) extends this model by allocating eight interoperability categories to

these 3 layers, as shown in Figure 22 (Smart Grid Coordination Group, 2012). The emphasis of the first

category, basic connectivity, lies at the physical distribution of all participating components in the smart grid

context. Network interoperability and syntactic

interoperability comprise of protocols and

mechanisms for exchanging information between

smart grid components. The information exchanged

itself resides in GWAC categories 4 and 5. Business

context facilitates interoperability in information on

a high level, where the semantic understanding

category provides a shared understanding of the

information exchanged in the smart grid domain.

Business procedures describe functions and services

in the smart grid and their relationships with the

information defined on the categories below it.

Business objectives and Economic/regulatory policy

Figure 21: Overview of actors

relevant for a microgrid

Customer

Distributed Electrical
Resources

Distribution System
Operator

Transmission System
Operator

Energy producer

7: Business objectives

8: Economic/regulatory policy

Technical

Informational

Organizational

6: Business procedures

5: Business context

4: Semantic understanding

3: Syntactic interoperability

2: Network interoperability

1: Basic connectivity

Figure 22: GWAC interoperability categories (Smart Grid

Coordination Group, 2012)

52

represent the business view on the information exchanges occurring in a smart grid. For example regulatory

markets and policies can be defined on this level.

The improved MOSES methodology to be carried out in this case has the goal to create an interoperability

standard that strives towards semantic understanding between all domain stakeholders. Therefore, the

methodology focuses on GWAC category 4 (semantic understanding), although to completely develop semantic

understanding in the microgrid domain knowledge about the events and other dynamic behavior in the domain

is required (see also section 4.2.1.3 about the mindset behind modeling business events).

5.1.5 FLEXIBILITY IN ENERGY DEMAND AND SUPPLY

The identified trend towards the large use of renewable energy sources increased the need for coping with

flexibility in energy demand and supply. Specifically, flexibility is needed in the amount of energy produced and

consumed and flexibility in the moment of the energy production or consumption. There are several

approaches to achieve this flexibility (Verhoosel, Rothengatter, Rumph, & Konsman, 2012):

One approach is to hand over some control over one or more devices (e.g. a large energy consuming device like

an air conditioner) by a third party in return for some discount for the consumer. When it is better for the

energy network, the device can be switched off or turned to a lower energy consuming mode. A second

approach is to use dynamic pricing to elicit some demand-response behavior, whether or not automated, to

influence the behavior of energy usage of the consumer. Another approach is to enable the trading of energy in

smaller volumes. This can be an effective means to adapt energy demand to the intermittent supply, as shown

by the PowerMatcher concept, which is a multi-agent system that facilitates this energy trading (K. Kok et al.,

2008).

The approach taken by Verhoosel et al. (2012) is called the flex-offer approach. This approach lets participants

explicitly specify the flexibility they are willing to offer other parties on the energy market themselves. This is in

close relation with the three main pillars of smart grids as defined by Tabors et al. (2010) (Smart customer

(demand), smart utility (supply) and smart market (platform provider)). In this case we will also take this

perspective. Flexibilities in energy demand and supply are deemed to be achieved by temporal shifts of energy

consumption, temporary reductions in energy load and the spread of energy load over time. This combines the

possibility for fine grained control by the party buying flexibility with the autonomy of the party selling the

energy that stays unaffected. A disadvantage of this approach is the introduction of extra complexity, because

all flexibility constraints set need to be satisfied.

Next to flexibility in demand, we see possibilities to make use of the flexibility in supply as well. Especially for

renewable energy sources that currently generate electricity when they can (e.g. when the sun is shining, or

when the wind is blowing), in some cases the extra energy produced is not counted on and could potentially

cause an imbalance on the energy network. In these special cases it should also be possible to turn off the

energy generation of renewable energy sources.

The embedding of energy resource flexibility is expected to have several benefits to the microgrid itself and its

other connecting power grids (CEN/CENELEC/SG-CG/M490/E, 2012). A benefit is that the microgrid can be

assured of voltage frequency stability by preventing large voltage deviations between the actual and scheduled

power in a grid. Next to that, resource flexibility results in a higher safety against grid capacity exceeding. Also,

by using available flexibility a network can be restored more easily after a failure, or even facilitate a black start

after a complete blackout.

53

5.1.6 SMART GRID INFORMATION MODELS

In order to achieve flexibility in energy demand and supply in a power grid, information can be exchanged

between the involved parties using energy information models. This section investigates the current state-of-

the-art of these information models used. Table 16 shows an overview of the information models reviewed. It

appears that all, except the MIRABEL model and the upper ontology for power engineering applications, do not

include an ontology.

Information model Author Includes ontology Goal

Common Information Model
(CIM)

IEC No Drive interface and data
exchange design

OASIS Energy Interoperation OASIS Open No Interoperable and standard
exchange of dynamic price,
reliability and emergency
signals, bids, load predictability
and enterprise interaction with
energy markets

Facility Smart Grid
Information Standard

NIST No Enabling energy consuming
devices and control systems to
manage energy loads and
energy sources in response to
communications with the smart
grid

MIRABEL Verhoosel et al.
(2012)

Yes Enabling flexibility in energy
loads in a given timeframe

PowerMatcher J. K. Kok,
Warmer, &
Kamphuis (2005)

No Market-based control of an
energy network by matching
energy supply and demand

Upper ontology for power
engineering applications

Catterson, Baker,
Davidson, &
McArthur (2010)

Yes Monitoring the condition of
power systems

Table 16: Overview of the energy information models reviewed

The Common Information Model (CIM) is a widely accepted energy information model that includes vendors

and customers from around the world (Crapo et al., 2009). It is adopted by the International Electrotechnical

Commission (IEC) for power transmission and distribution (Simmins, 2011). The main objectives of this model is

to develop a platform independent data model for enabling better smart grid interoperability and to define a

set of standards describing a “framework for energy market communications” (Uslar, Specht, Rohjans, Trefke,

& Vasquez González, 2012). These market communications include the exchange of information between

market participants and market operators as well as communication between market operators.

The requirements of data exchanges are documented and maintained in a UML model, which is mapped to

existing other CIM UML models. Simmins (2011), on the other hand, states that next to this UML model the

CIM defines a common vocabulary and basic ontology for aspects of the electric power industry. The CIM is one

of the priority action plans of the Smart Grid Interoperability Panel (SGIP) of the National Institute of Standards

and Technology (NIST) in the United States, which has the goal to support the development of smart grids

(National Institute of Standards and Technology, 2012a).

The CIM is not implemented in an ontology model yet, while several authors attempted to map and transform

the information models of the CIM to ontology models. Majewska, Kryza, & Kitowski (2007) developed a 1-on-

1-mapping of the modeling concepts to OWL concepts. They argue that high simplification of the CIM is

currently required in order to perform this 1-on-1-mapping, which, in fact, removes most of the reasoning

behind the model. Quirolgico, Assis, Westerinen, Baskey, & Stokes (2004) reasoned the CIM classes can be

54

transformed by making use of mappings between the information model classes and ontology classes, but

reasoned the mappings themselves are currently too simplified to map all knowledge from the CIM to an

ontology variant of the CIM. More research on this mapping is therefore required.

OASIS Energy Interoperation (OASIS Open, 2012a) is an information model that enables collaborative and

transactive use of energy in a power network and defines XML vocabularies for the interoperable and standard

exchange of information supporting the functioning of an energy grid. These include information about energy

prices and bids (demand and response), network reliability and emergency signals and the prediction of loads.

This information is derived from the “WS-Calendar” and “EMIX” specification. The first defines how to specify

and communicate the duration and time of a schedule. The Energy market Information Exchange (EMIX)

specifies the semantics of energy markets. It specifies in an information model and an XML vocabulary the

definitions of price and products in transitive energy markets (OASIS Open, 2012b). This model facilitates the

price communications and negotiations in a smart grid market, which include information on prices, bids, time

for use or availability, units, quantity to be traded and characteristics of what is traded (Cox & Considine, 2011).

The WS-Calendar, EMIX and OASIS Energy Interoperation are part of priority action plans set by the SGIP

(National Institute of Standards and Technology, 2012a).

At the moment, the Facility Smart Grid Information Standard is being developed (National Institute of

Standards and Technology, 2012b). The purpose of this standard is to enable energy consuming devices and

control systems in the customer premises to manage electrical loads and energy sources in response to

communications with the smart grid. The information models to be created are intended to provide a common

basis to describe, manage and communicate information on aggregate electrical energy consumption and

forecasts. In the end an abstract, object-oriented information model will be defined supporting a wide range of

energy management applications and electrical service provider interactions. This standard is also part of a

priority action plan (PAP17) set by the SGIP (National Institute of Standards and Technology, 2012a).

Specifically to enable flexibility in an energy grid the MIRABEL system has been developed (Verhoosel et al.,

2012). This system introduces offers on energy supply and demand that incorporate power profile flexibilities.

Consumers as well as producers of energy can use these so-called flex-offers to specify their own flexibility in

energy amount offered or required over a given timeframe. Verhoosel et al. (2012) developed their own

ontology of the energy domain to fit in their flex-offers. The energy domain is expressed in five main classes:

device, actor, energy profile, constraint and flex-offer. Here, a device is an energy consuming or producing

device that has a specific energy load over a certain time span (energy profile). Actors have minimum or

maximum demands (constraints) on their energy load, price and time. These constraints are issued by an actor

for the devices that are owned by the actor. By developing this ontology, the authors try to aid in the

conceptualization of the domain semantics and the development of a shared understanding of the domain.

This adds value for the smart grid domain, because at the moment tools and components are distributed and

their interfaces have to be standardized in order to work in a plug-and-play concept. Also, the use of an

ontology is expected to improve the amount of intelligence, security, maintainability, testability, management

and development in the smart grid domain.

PowerMatcher is a software framework that entails market-based control of an energy network by matching

energy supply and demand (J. K. Kok et al., 2005). The model of the PowerMatcher mainly consists of devices

that can be categorized by their type of controllability and SD-matchers (supply-demand-matchers). Devices

can be stochastic (non-controllable), shiftable (within certain limits; e.g. a domestic washing machine), external

resource buffering (producing a resource that has to keep a certain buffer; e.g. a domestic fridge that needs to

maintain a temperature within set limits) and electricity storage, freely controllable or operated by user

actions. These devices have different possibilities and constraints to control them. SD-matchers control a

specified part of an electricity grid. The SD-matchers are interconnected using a tree-structure, where there is

one root SD-matcher (corresponding with the energy trading market in 5.1.3) that defines the properties of the

energy trading market and other SD-matchers forming a price for matching energy demand and supply and

55

aggregating the demand functions of the devices and other SD-matchers below them (K. Kok et al., 2008).

Based on their flexibilities, devices will produce or consume more or less energy at a given timeframe. This way

fewer imbalances on the energy network occur (K. Kok et al., 2012). The PowerMatcher concept has been

proven by Jötten, Weidlich, Filipova-Neumann, & Schuller (2011) to effectively lower the balancing costs of a

medium sized regional grid.

Based on the Common Information Model, V. M. Catterson, Baker, Davidson, & McArthur (2010) developed the

upper ontology for power engineering applications. This ontology is mainly aimed at one application; the

monitoring of the condition of power systems (i.e. devices in an energy network). Although this ontology is

focused on one application, it remains an ontology of the energy domain. The main concepts of the model are

system resource (devices in the energy network), measurement (e.g. a sensor reading or historical data), data

interpretation (the derived meaning of a measurement; e.g. a measurement indicating a defect), value,

timestamp and agent action (actions an agent can request from another agent; e.g. calculate the fault ratio).

The model supports the exchange of messages between agents, although not explicitly defined. Lower

ontologies could extend this upper ontology in order to, for example, maintain the balance between energy

demand and supply in the energy network.

5.2 THE METHODOLOGY APPLIED

The defined methodology in the previous chapter is applied on the microgrid flexibility case, as described by

section 5.1. The case is a theoretical case, which means the case relies mostly on available domain literature.

To gain practical experience with involving domain experts in the methodology, the development methodology

has been iterated and validated by several domain experts from TNO. The first subsection elaborates on the

domain experts involved in this first application of the developed methodology. Each other subsection

describes one step of the methodology that has been executed.

5.2.1 DOMAIN EXPERTS

To gain some practical experience involving domain experts in the methodology, the development

methodology has been iterated twice by involving the domain knowledge of two domain experts. These

experts were guided through the methodology steps and were asked to provide relevant additional domain

information for each step involving domain knowledge as input. These are the steps from the first phase of the

methodology determining the basic shared domain model, the steps determining the properties of agents and

resources, determining domain constraints and class instances. The basic shared domain model and ontology

were initially developed using relevant literature, after which each domain expert iterated the methodology to

add missing relevant domain knowledge. This way a strong shared domain model and ontology can be built.

After the methodology was applied, the developed domain model and messages defined were reviewed by a

third domain expert on validity and completeness. This expert was therefore asked whether the developed

domain model can represent a microgrid, in its simplified form, and, taking into account the simplifications of

the case, whether the domain concepts modeled are complete. It was initially concluded by this expert that the

presence of the role of the energy supplier was missing. After the addition of the supplier and its commitment

in the microgrid, the domain expert concluded that the defined resources, agents and their commitments were

valid and complete taking into account the simplifications of the case.

The number of domain experts involved is limited due to time limitations on this research. This means the

number of domain experts involved is insufficient for drawing conclusions for the practical usage of the

methodology involving domain experts, but it can still serve the goal to create an initial insight into how

domain experts can be involved in the development methodology.

56

5.2.2 IDENTIFY SCOPE

As mentioned before, the scope of this case is limited to microgrids in energy networks. To prevent

misinterpretations, in this case the term “energy” refers to “electrical energy” only. The role renewable energy

sources play and the required energy demand and supply flexibility that comes with them are also within the

scope of the case. The latter also touches the purpose of the case; building an ontology and providing a base

for an ICT solution that facilitates flexibility in energy demand and supply, but also alleviates interoperability

between the involved stakeholders of the microgrid. In order to realize this, balancing the energy demand and

supply in blocks of 15 minutes. Blocks of 15 minutes are chosen, because these provides enough space for

other actors to maintain the quality of the energy in the grid (well within the 50-60 Hz range), while there is still

a lot of flexibility in energy load over time.

The scope of the solution excludes the forecasting of energy demand on longer terms. The microgrid modeled

comprises of enough information the producers themselves can use for their own forecasting activities. This

case assumes energy producers and consumers to make their requests for energy consumption or production

ad-hoc.

Therefore the solution should be able to answer the following competency questions:

1. Can the solution facilitate the exchange of energy between energy consumer and supplier?

2. Can the solution cope with renewable energy sources to influence their energy production?

3. Can the solution influence the energy demand over time of energy consumers?

4. Can the solution influence the energy production of energy producers?

5. Can the solution balance energy demand and supply in blocks of 15 minutes?

6. Can the solution interact with the external power grid of the microgrid?

5.2.3 DETERMINE SHARED BUSINESS DOMAIN MODEL

5.2.3.1 IDENTIFY AGENTS AND RESOURCES

Agent / resource Description

Consumer Consumes energy. The load of energy has a certain flexibility over a given time
period. It wants the best (cheapest) price for energy on the market.
It can also be a hybrid solution such as a short term energy storage that can
consume an amount of energy from the grid that can help balancing the energy
consumption and production on the grid. Also, prosumers who do not produce
enough energy for themselves need to consume additional energy.

Producer Produces energy. The load of energy has a certain flexibility over a given time
period. It wants the best (highest) price for energy on the market.
It can also be a hybrid solution such as a short term energy storage. Some
producers in the microgrid can be identified as DERs (distributed energy
resources), which produce energy on a small or medium scale. Other types
include short term energy storages that can put energy stored earlier back on
the grid and prosumers with e.g. solar panels that have excess energy they can
put in the grid.

FlexMarket Negotiates an energy price between consumers and producers with the goal to
reach an optimal balance in energy production and consumption at any given
point in time. It is the balance responsible party of the grid.
(Future situation:) its (price) negotiations are influenced by the congestion
constrictions imposed by the DSO, leading to energy flows of only the highest
bidder in a specific part of the power grid that certain congestion constrictions
are imposed on. In case matching consumption and production flexibilities leads

57

to an impossible balance, energy import or export to the external power grid is
requested at a supplier.

DSO (Future situation:) based on its own information, it can impose constrictions to
the FlexMarket for specific quantities of energy production and/or consumption
of a specific consumer or producer.

Supplier Imports or exports energy from or to the microgrid based on requests from the
FlexMarket. (The administration on contracts and price agreements is out of
scope for this case.)

EnergyFlexibility Represents the information a consumer and producer share with the FlexMarket
to negotiate about their future energy consumption and production. This
information comprises of the time range the offer is valid for, the total power to
be consumed or produced and the minimum and maximum power load in a
block of 15 minutes.

MarketOfferFlexibility Represents the information the FlexMarket shares with consumers and
producers after an initiated flex offer negotiation. The information comprises of
an indication whether the offer can be accepted at all (in case congestion
restrictions apply), for each block of 15 minutes the exact amount of energy to
be consumed or produced and the energy price it can offer for this offer.

EnergyAcquisition Represents the acquisition of a MarketOffer. The information comprises of an
indication whether the MarketOffer is accepted and also relates to the
MarketOffer itself.

CongestionInformation Represents the information of the DSO about congestion limitations that should
be imposed on the microgrid, which comes down to the FlexMarket having to
take these limitations into account. This information is based on other
information available to the DSO.

EnergyRequest Represents a request to a supplier for energy import or export from or to the
microgrid. The information comprises of the exact amount of energy to be
imported or exported, the block of 15 minutes it should take place and an
indication whether the energy needs to be imported from or exported to the
microgrid.

Table 17: Overview of the actors and objects in the microgrid domain

58

5.2.3.2 IDENTIFY COMMITMENTS

Figure 23: Identified commitments in the basic shared domain model

59

Commitment Description

ConsumptionFlexibilityOffer In the microgrid consumers will send their current flexibility in power
demands for a specific range of time in the future, on which the
FlexMarket will reply a ConsumptionMarketOffer.

ProductionFlexibilityOffer In the microgrid producers will send their current flexibility in power
supply for a specific range of time in the future, on which the
FlexMarket will reply a ProductionMarketOffer.

ConsumptionMarketOffer Based on the current energy availability and congestion information,
the FlexMarket will send a reply to a consumer who sent a
FlexibilityOffer. This reply states the price it costs the consumer to
consume energy and gives a schedule of consumption (i.e. amount of
energy to consume per time interval of 15 minutes). The consumer will
have to reply on this offer with a ConsumptionAcquirement.

ProductionmarketOffer Based on the current energy demand and congestion information, the
FlexMarket will send a reply to a producer who sent a FlexibilityOffer.
This reply states the price it can give the producer to produce energy
and gives a schedule of production (i.e. amount of energy to produce
per time interval of 15 minutes). The producer will have to reply on this
offer with a ProductionAcquirement.

ConsumptionAcquirement Based on the received MarketOffer and reasoning about the stated
price, the consumer will send a reply to the MarketOffer to state it is
willing to acquire the offer. If the consumer declines the offer, the
consumer could issue a new FlexibilityOffer with a higher or lower
flexibility to check how the price varies.

ProductionAcquirement Based on the received MarketOffer and reasoning about the stated
price, the producer will send a reply to the MarketOffer to state it is
willing to acquire the offer. If the producer declines the offer, the
producer could issue a new FlexibilityOffer with a higher or lower
flexibility to check how the price varies.

CongestionImposement In the microgrid congestion limits apply. The DSO will send the
FlexMarket updates about the limitations it should apply on the
production or consumption of energy of a specified consumer or
producer in the grid.

ExternalEnergyRequest When the FlexMarket cannot find a balance in energy demand and
supply utilizing the available flexibility, the FlexMarket can request the
import or export of energy from the external power grid the microgrid
is connected to.

Table 18: Overview of the commitments of the agents in the microgrid domain

60

5.2.3.3 IDENTIFY EVENTS

In MERODE for each commitment in the domain model, at least one event exists, as can be derived from the

object-event table (OET) in Figure 24. Table 19 relates the commitments identified in Table 18 to MERODE

events that fulfil them. In this domain every commitment is fulfilled by only one event.

Figure 24: OET of the microgrid basic shared domain model

Event Commitment

imposeCongestion ConsumptionImposement

requestExternalEnergy ExternalEnergyRequest

negotiateConsumptionFlexibility ConsumptionFlexibilityOffer

negotiateProductionFlexibility ProductionFlexibilityOffer

negotiateConsumptionMarketOffer ConsumptionMarketOffer

negotiatieProductionmarketOffer ProductionMarketOffer

acquireEnergyConsumption ConsumptionAcquirement

acquireEnergyProduction ProductionAcquirement

Table 19: Events identified fulfilling the commitments in the domain model

61

5.2.3.4 MAKE UML ACTIVITY DIAGRAMS

Send consumption
negotiation

Send energy consumption
acquisition

Receive consumption
MarketOffer

Send production
FlexOffer

Send energy production
acquisition

Receive production
MarketOffer

Figure 25: Activity diagram consumer

Send congestion
imposement

[congestion
Updated]

Figure 26: Activity diagram producer

Receive external
energy request

[new external
energy request]

Figure 27: Activity diagram DSO Figure 28: Activity diagram supplier

62

Receive consumption
FlexOffer

Send consumption
MarketOffer

Send production
MarketOffer

[consumer
negotiates]

Receive production
FlexOffer

[producer
negotiates]

Receive congestion
imposement

[DSO imposes
congestion]

Receive consumption
acquisition

Receive production
acquisition

Send external
energy request

[energy import/export
required]

Figure 29: Activity diagram flex market

5.2.4 BUILD ONTOLOGY BASE

All concepts defined in the previous phase have been directly linked to the REA-ontology. The MERODE events

have been redefined in terms of incremental and decremental event types. Table 20 shows how the events are

redefined. Participations and stockflows have been defined to relate the defined events with the relevant

resource and agent types.

63

MERODE events REA events

imposeCongestion SendCongestionImposement

ReceiveCongestionImposement

requestExternalEnergy SendExternalEnergyRequest

ReceiveExternalEnergyRequest

negotiateConsumptionFlexibilityOffer SendConsumptionFlexibilityOffer

ReceiveConsumptionFlexibilityOffer

negotiateProductionFlexibilityOffer SendProductionFlexibilityOffer

ReceiveProductionFlexibilityOffer

negotiateConsumptionMarketOffer SendConsumptionMarketOffer

ReceiveConsumptionMarketOffer

negotiateProductionMarketOffer SendProductionMarketOffer

ReceiveProductionMarketOffer

acquireEnergyConsumption SendConsumptionAcquirement

ReceiveConsumptionAcquirement

acquireEnergyProduction SendProductionAcquirement

ReceiveProductionAcquirement

Table 20: Mapping MERODE events on REA events of the microgrid case

5.2.5 DEVELOP ONTOLOGY

5.2.5.1 REUSE AND INTEGRATE EXISTING ONTOLOGIES

The domain models found in the domain literature either did not comprise of an ontology yet, or did not

provide a published or accessible ontology repository. While some ontology domain models were available of

the energy sector, smart grids or microgrids, these were either in form of a traditional information model or an

unpublished ontology. Therefore this step cannot be demonstrated in this case.

5.2.5.2 DETERMINE PROPERTIES OF AGENTS AND RESOURCES

The following properties were specified:

Concept Property Description

CongestionInformation (min 1) ciHasLoad
Constraint

For each consumer and producer the congestion
constraints can be shown with a (new) concept
“LoadConstraint” (see next row).

 LoadConstraint loadConstraintApplies
ToAgent

The (one) AgentType (either consumer or producer) to
which this constraint applies.

 maximumLoad
Congestion

Indicates the maximum amount of energy that can be
sent or received by the related agent. (this is a non-
negative integer)

EnergyAcquisition relatedMarketOffer Refers to the related MarketOffer to which this
EnergyAcquisition is a reply to.

 acceptMarketOffer Indicates whether the related MarketOffer is accepted
or not (Boolean).

EnergyFlexibility minimumFlexLoad The lower bound of energy load offered per 15
minutes (in Watt). (this is a non-negative integer)

 maximumFlexLoad The upper bound of energy load offered per 15
minutes (in Watt) (this is a non-negative integer)

 totalPower The total amount of energy to be offered in the given
time range (in Watt) (this is a non-negative integer)

64

 startTimeRange The lower bound of the time range the flexibility offer
is valid. (dateTime)

 endTimeRange The uper bound of the time range the flexibility offer
is valid. (dateTime)

MarketOfferFlexibility acceptEnergyFlexibility Indicates whether the related EnergyFlexibility is
accepted or not (Boolean).

 price The price that can be offered for this MarketOffer.
(this is a non-negative number)

 (min 1) mofHasEnergy
Profile

For each block of 15 minutes the exact amount of
energy to consume or produce is indicated by using a
new sub-resource “EnergyProfile” (see next row)

 EnergyProfile epHasTimeBlock The start time of a 15 minute time block for which the
related energy quantity applies (dateTime)

 epHasEnergyQuantity The amount of energy to consume or produce in the
related time block (in Watt) (this is a non-negative
integer)

EnergyRequest energyQuantity The amount of energy requested to either import or
export from or to the microgrid (in Watt) (this is a
non-negative integer)

 energyImportTo
Microgrid

Indicates whether the request is to import the
specified quantity of energy to the microgrid, or if not,
export the specified quantity of energy from the
microgrid to the grid outside the microgrid. (Boolean)

 timeBlock Specifies to which time block of 15 minutes this
request applies. (dateTime)

Table 21: Properties specified of each concept

5.2.5.3 DETERMINE INFORMAL CONSTRAINTS

 A flex offer is declined when the offering AgentType (consumer or producer) has a minimumFlexLoad

that is higher than the maximumLoadCongestion imposed on this AgentType.

 Of a flex offer, the minimumFlexLoad is always smaller than the maximumFlexLoad.

 Of a flex offer, the startTimeRange is always smaller than the endTimeRange.

5.2.5.4 DETERMINE FORMAL CONSTRAINTS

In SWRL:

 EnergyFlexibility(?flexoffer), minimumFlexLoad(?flexoffer, ?minload), maximumFlexLoad(?flexoffer,

?maxload), resHasSfOutflow(?flexoffer, ?fooutflow), sfOutflowHasDecrEvent(?fooutflow, ?decrevent),

decrEventHasPProvide(?decrevent, ?providep), pProvideHasAgent(?providep, ?agent),

LoadConstraint(?lc), loadConstraintAppliesToAgent(?lc, ?agent), maximumLoadCongestion(?lc,

?maxload) -> lessThanOrEqual(?minload, ?maxload)

 EnergyFlexibility(?flexoffer), minimumFlexLoad(?flexoffer, ?minflex), maximumFlexLoad(?flexoffer,

?maxflex) -> lessThanOrEqual(?minflex, ?maxflex)

 EnergyFlexibility(?flexoffer), startTimeRange(?flexoffer, ?starttime), endTimeRange(?flexoffer,

?endtime) -> lessThanOrEqual(?starttime, ?endtime)

65

5.2.5.5 DETERMINE CLASS INSTANCES

In this step instances of the defined domain concepts can be determined based on the situation in the real

domain. As this case is a theoretical case, the instances determined are fictional but should represent a

possible real-world scenario. Table 22 shows the exact instances determined in the ontology.

REA concept Domain concept Individual

AgentType Consumer house1, house2, battery1

 DSO holidayPark1

 FlexMarket flexMarket1

 Producer windTurbine1, battery1

 Supplier Eneco

Commitment CongestionImposement ci1

 ConsumptionAcquirement caHouse1, caHouse2, caBattery1

 ProductionAcquirement paWindTurbine1, paBattery1

 ExternalEnergyRequest eer1

 ConsumptionFlexibilityOffer cfoHouse1, cfoHouse2, cfoBattery1

 ProductionFlexibilityOffer pfoWindTurbine1, pfoBattery1

 ConsumptionMarketOffer cmoHouse1, cmoHouse2, cmoBattery1

 ProductionMarketOffer pmoWindTurbine1, pmoBattery1

(Decremental/Incremental)
EventType

(Send/Receive)
CongestionImposement

sci1
rci1

 (Send/Receive)
ConsumptionMarketOffer

scmoHouse1, scmoHouse2, scmoBattery1,
rcmoHouse1, rcmoHouse2, rcmoBattery1

 (Send/Receive)
ConsumptionNegotiation

scnHouse1, scnHouse2, scnBattery1,
rcnHouse1, rcnHouse2, rcnBattery1

 (Send/Receive)
EnergyConsumptionAcquisition

secaHouse1, secaHouse2, secaBattery1,
recaHouse1, recaHouse2, recaBattery1

 (Send/Receive)
EnergyProductionAcquisition

sepaWindTurbine1, sepaBattery1,
repaWindTurbine1, repaBattery1

 (Send/Receive)
ExternalEnergyRequest

seer1, reer1

 (Send/Receive)
ProductionMarketOffer

spmoWindTurbine1, spmoBattery1,
rpmoWindTurbine1, rpmoBattery1

 (Send/Receive)
ProductionNegotiation

spnWindTurbine1, spnBattery1,
rpnWindTurbine1, rpnBattery1

Participation
(Provide/Receive) Type

(Sends/Receives)
CongestionImposement

provideci1, receiveci1

 (Sends/Receives)
ConsumptionMarketOffer

providecmoHouse1, providecmoHouse2,
providecmoBattery1, receivecmoHouse1,
receivecmoHouse2, receivecmoBattery1

 (Sends/Receives)
ConsumptionNegotiation

providecnHouse1, providecnHouse2,
providecnBattery1, receivecnHouse1,
receivecnHouse2, receivecnBattery1

 (Sends/Receives)
EnergyConsumptionAcquisition

provideecaHouse1, provideecaHouse2,
provideecaBattery1, receiveecaHouse1,
receiveecaHouse2, receiveecaBattery1

 (Sends/Receives)
EnergyProductionAcquisition

provideepaWindTurbine1,
provideepaBattery1,
receiveepaWindTurbine1,
receiveepaBattery1

 (Sends/Receives)
ExternalEnergyRequest

provideeer1, receiveeer1

66

 (Sends/Receives)
ProductionMarketOffer

providepmoWindTurbine1,
providepmoBattery1,
receivepmoWindTurbine1,
receivepmoBattery1

 (Sends/Receives)
ProductionNegotiation

providepnWindTurbine1,
providepnBattery1,
receivepnWindTurbine1, receivepnBattery1

ResourceType CongestionInformation cinfo1

 LoadConstraint lcHouse1, lcHouse2, lcBattery1,
lcWindTurbine1

 EnergyAcquisition eaHouse1, eaHouse2, eaBattery1c,
eaBattery1p, eaWindTurbine1

 EnergyRequest er1

 EnergyFlexibility efHouse1, efHouse2, efBattery1c,
efBattery1p, efWindTurbine1

 MarketOfferFlexibility mofHouse1, mofHouse2, mofBattery1c,
mofBattery1p, mofWindTurbine1

 EnergyProfile epHouse1, epHouse2, epBattery1c,
epBattery1p, epWindTurbine1

Stockflow (Inflow/Outflow)
Type

CongestionInformation
(Inflow/Outflow)

inflowci1, outflowci1

 EnergyAcquisition
(Inflow/Outflow)

infloweaHouse1, infloweaHouse2,
infloweaBattery1c, infloweaBattery1p
infloweaWindTurbine1, outfloweaHouse1,
outfloweaHouse2, outfloweaBattery1c,
outfloweaBattery1p,
outfloweaWindTurbine1

 EnergyFlexibility
(Inflow/Outflow)

inflowefHouse1, inflowefHouse2,
inflowefBattery1c, inflowBattery1p,
inflowefWindTurbine1, outflowefHouse1,
outflowefHouse2, outflowBattery1c,
outflowBattery1p, outflowefWindTurbine1

 EnergyRequest
(Inflow/Outflow)

inflower1, outflower1

 MarketOfferFlexibility
(Inflow/Outflow)

inflowmofHouse1, inflowmofHouse2,
inflowmofBattery1c, inflowmofBattery1p,
inflowmofWindTurbine1,
outflowmofHouse1, outflowmofHouse2,
outflowmofBattery1c,
outflowmofBattery1p,
outflowmofWindTurbine1

Table 22: Instances defined in the ontology of the microgrid case

5.2.6 DETERMINE TECHNOLOGY-SPECIFIC SOLUTION

As stated in section 4.2.4 due to time limitations to this thesis, the transformation of OWL to XML messages is

not covered. A general translation from OWL (XML) to a technology-specific solution (e.g. XML messages)

should be used taking into account the event sequences. In Query 2 is shown a SPARQL-query that can be

executed on the built ontology to retrieve a table that takes into account the instances of concept types.

Executing this query on the built ontology results in Figure 30.

67

Query 2: SPARQL-query to retrieve the relevant information required to develop message structures

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX my: <http://www.rea-ontology.com/rea-smartgrid#>

SELECT ?eventtype ?messagefield ?sendertype ?receivertype ?nexteventtype

WHERE {

 ?decrementalevent rdf:type ?eventtype.

 ?eventtype rdfs:subClassOf* my:DecrementalEventType.

 ?allsfs rdfs:subPropertyOf my:eventHasSf.

 ?decrementalevent ?allsfs ?relatedsfs.

 ?allrelatedresources rdfs:subPropertyOf my:sfHasRes.

 ?relatedsfs ?allrelatedresources ?resource.

 ?messagefield rdfs:subPropertyOf* my:message.

 ?resource ?messagefield ?message.

 ?allparticipations rdfs:subPropertyOf my:evHasP.

 ?decrementalevent ?allparticipations ?participations.

 ?allagents rdfs:subPropertyOf my:pHasA.

 ?participations ?allagents ?sender.

 ?sendertype rdfs:subClassOf my:AgentType.

 ?sender a ?sendertype.

 ?allDualities rdfs:subPropertyOf my:dualEvent.

 ?decrementalevent ?allDualities ?dualevent.

 ?dualparticipations rdfs:subPropertyOf my:evHasP.

 ?dualevent ?dualparticipations ?dualparticipation.

 ?alldualagents rdfs:subPropertyOf my:pHasA.

 ?dualparticipation ?alldualagents ?receiver.

 ?receivertype rdfs:subClassOf my:AgentType.

 ?receiver a ?receivertype.

 ?decrementalevent my:nextEvent ?nextevent.

 ?nexteventtype rdfs:subClassOf* my:EventType.

 ?nextevent a ?nexteventtype.

}

68

Figure 30: Screenshot of the SPARQL message query output in Protégé

5.2.6.1 AN ADDITIONAL APPLICATION

Additional information can be retrieved from the information already present in the ontology developed. One

of many possible applications is creatig an overview of the congestion impositions of the DSO. Query 3 shows

the query that can be asked to the ontology to retrieve the relevant domain information. Figure 31 shows the

output table from this query.

69

Query 3: SPARQL-query to retrieve the relevant information to gain insights into the congestion impositions in the microgrid

Figure 31: Screenshot of the SPARQL congestion query output in Protégé

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX my: <http://www.rea-ontology.com/rea-smartgrid#>

SELECT ?gridparticipant ?participanttype ?maximumload

WHERE {

 ?loadconstraint rdf:type my:LoadConstraint.

 ?loadconstraint my:loadConstraintAppliesToAgent ?gridparticipant.

 ?participanttype rdfs:subClassOf my:AgentType.

 ?gridparticipant rdf:type ?participanttype.

 ?loadconstraint my:maximumLoadCongestion ?maximumload.

}

70

5.3 DISCUSSION

By applying the newly designed methodology to the microgrid domain, some hands-on experience on the

methodology was gained. The application of the methodology in the previous section involved domain experts,

for which their expected and actual contributions to the domain model are discussed in the first following

subsection. After that the applicability of the developed methodology is discussed by looking into the positive

and negative properties of the methodology. Then the useful, and less useful, applications of the methodology

are discussed by answering the question about in which circumstances a methodology using an ontology or an

information model should be used. Based on this discussion, in the next chapter several conclusions can be

drawn and lessons learned can be stated.

5.3.1 DOMAIN EXPERTS

The application of the methodology on a microgrid involved two domain experts who were involved in the

relevant steps of the development methodology. A third domain expert reviewed the domain model and

messages defined after the methodology steps were executed. This low number of domain experts involved is

insufficient for drawing conclusions for the practical usage of the methodology involving domain experts. Yet

the involvement of several domain experts can create initial insights into how domain experts can be involved

in developing a domain model and a semantic standard.

The methodology steps determining the concepts of the basic shared domain model, determining the

properties of agents and resources and determining domain constraints involved the knowledge from domain

experts. As two domain experts were asked to add domain knowledge to the domain model and ontology

throughout the methodology steps, the experts gave a lot of additional knowledge to extend the models with.

In the phase where the basic shared domain model concepts were defined, additional competency questions

were set. These are the competency questions 5 and 6 in section 5.2.2. Furthermore the price negotiation

commitments involving the flex market and producers and consumers was defined in a better way than

previously was defined based on domain literature. Another improvement the domain experts gave the domain

model concepts were the definition of the DSO and the temporary energy storage devices. The properties of an

energy profile that is sent by the flex market were also adjusted to be conform time blocks of 15 minutes. One

domain expert also stated an extra domain constraint that allows the declining of flex offers.

The third domain expert also provided valuable knowledge input. As he was asked to review the domain model,

he came to the conclusion the supplier agent was missing from the domain model, which plays an important

role for the flex market allowing the microgrid to be balanced by importing or exporting energy from or to the

microgrid. After this lack of knowledge was added to the domain, the expert had a second look at the models

and, taking into account the case simplifications, concluded the defined resources, agents and their

commitments were valid and complete.

This involvement of domain experts in the methodology clearly shows benefits as added domain knowledge

and completeness checks of the domain model and properties. Even though this use case can only provide

initial insights into how domain experts can be involved in the development approach, this application of the

methodology in the case of a microgrid gives clear indications domain experts provide additional values to the

domain model, and therefore also the ontology and semantic standard.

5.3.2 POSITIVE PROPERTIES

Actor and object modeling for the basic domain model is limited with MERODE because it does not allow

multiple inheritance. Making use of an ontology allows the reasoning about subsets of classes and therefore

provides a useful addition to the modeling possibilities of MERODE. As an example, a battery is both an energy

71

consumer as well as an energy producer. In MERODE this device should be defined as two separate classes; one

for energy production and another for energy consumption. Reasoning about the battery device also becomes

easier using an ontology, as it allows a battery to be of both the consumer and producer type.

When creating classes and instances of the developed ontology, these are checked on the posed assertions on

the ontology classes before and during any instance is created and on the ontology superclasses before and

during any subclass is created (provided a reasoner is activated). This asserts no incorrect instances can exist at

any time. We think that when traditional information models are used, the assertion of model instances cannot

be as well-guaranteed as this is possible with an ontology, because the instances created for an information

model with constraints are expected to be checked on their correctness after they have been created.

The use of informal knowledge capturing before formalizing knowledge proved to be convenient to prepare for

formal requirements as well as defining model components. Because there were no language boundaries

(expressing requirements in a formal computer language is very limited), it was easy to state domain

requirements and also the actors, resources and their dynamic behavior in the domain. By taking this approach,

the formalization of each requirement and component was only a translation process and therefore simplified.

The use of competency questions proved to be convenient for defining a very specific scope on the domain. The

competency questions also proved useful for evaluating the completeness of the basic domain model as well as

the ontology domain model, during the iterating through the development phases of these models.

Because an ontology can be queried for specific information (Gasevic & Djuric, 2006), a query language like

SPARQL can be used to quickly retrieve very specific parts of the domain ontology to gain extra insights. In the

method it is used to derive the message flows, but it can also be used to design other types of semantic

standards or other insights. For example, with a query the events a given actor is involved in can be found to

gain insights into its doings.

Throughout the development process steps of the designed methodology it was asserted that no concepts can

exist at any time that do not comply with any of the posed rules and restrictions. This was asserted by making

use of both the MERMAID and Protégé tool. Therefore, even in domains where many restrictions are required,

a domain model and ontology can be developed effortless without any concept violating the domain

restrictions.

Ontologies are designed to be reasoned with (Henderson-Sellers, 2011). For example, the Protégé editor comes

with a built-in reasoner. If the ontology for some reason needs to be extended with, e.g., more concepts or

information to be exchanged, old and/or new restrictions on the ontology can automatically include this new

extension and an updated platform-specific solution can be automatically derived.

Because the REA upper ontology is central in the methodology’s approach, during the whole development

methodology the developers and domain experts need to think continuously in terms of resources, events and

agents. This prevents the defining of ambiguous concepts and ambiguous model constructions.

5.3.3 NEGATIVE PROPERTIES

The new methodology adopts the REA ontology foundation. This means the structure of the whole domain

model needs to be fit into this upper ontology, leading to an even higher coupled model structure than would

be necessary in the original MOSES approach. As a high coupling could lead to a low system interoperability

(Daclin et al., 2006), a higher coupling between classes in this new method could result in a lower system

interoperability potential compared with the original MOSES methodology.

Mapping the resources, events, agents and relationships from the basic domain model to the REA ontology

foundation needs to be done by hand. This mapping cannot be automated as extra domain knowledge needs to

72

be added during the transformation. For example relationship cardinalities need to be specified in more detail

and set theories and their constraints need to be added during this transformation.

The REA ontology foundation does not fully match the MERODE methodology. Therefore several extra

assertions need to be created in the ontology models in order to comply fully with the MERODE methodology.

(See also section 4.2.2)

When agents in the domain of discourse make a commitment, a specified resource type is linked to this

commitment, as are an incremental and decremental event type. All these concept types have to be created to

support the modeling of one commitment. A disadvantage of using the (REA-) ontology is therefore that the

model expands very fast, because of the many concepts that are interconnected with each other to describe

the commitments, resources, stockflows, agents, participations and events in the domain. An advantage of an

ontology is that it can be queried to look up specific parts of the ontology. In the situation where an overview

of all domain concepts at once is required, using this (REA-) ontology is not a good option.

5.3.4 WHEN TO USE WHICH MEANS?

An alternative methodology for MOSES has been developed and applied on a case in this thesis. Its advantages

and disadvantages have also been discussed in the sections above. Based on this information an indication can

be given in which situations it is better to develop a semantic standard using the original MOSES methodology

making use of a (traditional) information model, and when to use the newly developed methodology making

use of an ontology.

Information model Ontology

Low coupling between classes is essential for the
interoperability potential

Reasoning about subsets of classes is useful

Domain knowledge is not available throughout the
whole modeling process

Business logic can get complex or changes
frequently

Having an overview of all domain concepts at once is
required

Multiple inheritance of concepts is useful

The only intentions are to generate standard
message structures

It is essential to have no loss of domain knowledge

 Need for fast and easy overviews to gain insight in
certain parts of the domain

 Many and complex rules are required to assert a
consistent model of the domain in reality

 Future extensions to the domain model are to be
expected

 Integration with the “online web of data”: Open
Linked Data

Table 23: Situations when to use either an information model or an ontology

5.3.4.1 INFORMATION MODEL

Building and using an information model for deriving semantic standards, i.e. the original MOSES methodology,

is best suitable in cases where the domain concepts to be described need to be constructed in a loosely

coupled way. This means that when the model architecture gets highly complex or unstructured if it were

mapped on, for example, the REA upper ontology, it should be better to use an information model as means for

deriving a semantic standard instead.

73

Another development situation where the use of information models is preferred over using an ontology as

means is when domain knowledge sources are not available throughout the whole modeling process. In the

original MOSES approach, domain knowledge is only appealed in the first phase, where the shared business

domain is developed. The subsequent phases (deriving an information model and developing a shared solution

model) are dependent on and influence the business domain model. The methodology developed in this thesis

relies on the addition of domain knowledge throughout the development process; in each phase new domain

knowledge is added to reach the final outcome step by step.

When overview on all domain concepts at once is required during the development or maintenance of the

domain model, using an information model is a better alternative than an ontology. An information model

provides an abstract overview of only the information that needs to be exchanged, while an ontology provides

an overview of all domain concepts and their properties. Especially when the REA upper ontology is used, the

number of classes expands very fast, as for one modeled commitment, also stockflows, participations and

events have to be modeled. To mitigate this problem, standard queries can be designed for the ontology in

order to develop specific overviews of the domain modeled.

The first phase of the developed methodology involves all steps necessary to provide a basic shared model of

the domain; agents and resources are identified, but also the commitments between agents and the events

that fulfil these commitments. Also part of this phase is to define the sequence of events happening in the

domain. This basic shared domain model almost already provide enough information to determine all

messages to be exchanged between the agents involved. The only thing missing is the content of the messages

itself. While ontologies provide much more benefits (see also section 5.3.4.2) such as business logic and

restrictions and extensibility, a simpler approach using only traditional information models would suffice and

save effort, if purely the message structures need to be determined.

5.3.4.2 ONTOLOGY

In the case where the domain of discourse includes many different types of concepts and includes many

constraints on subsets of these concepts, the use of an ontology is highly recommended. Both the micro grid

case and theory indicate the usefulness of this ability of ontologies. This use of restrictions can also be applied

on a wider business context; the business logic existing in a domain can already be modeled using this type of

restrictions. Therefore, when the business logic is complex, business logic can already be implemented. Also, if

the business logic changes over time, the modeling of business logic and changing these restrictions can result

without much effort in a new, slightly adapted, semantic standard.

The same can be stated for the ability of ontologies to support multiple inheritance of concepts. Where the

MERODE ontology only supports single inheritance, the microgrid case shows the usefulness of multiple

inheritance for several concepts within the microgrid domain. An example is the temporary energy storage

device, which can act both as an energy producer as well as consumer.

The new methodology is designed in such a way to prevent any loss of domain knowledge. By first stating

informal requirements to the domain before formalizing them ensures no information about the domain is lost

in a translation to formal requirements language before the informal requirements have been described.

It is possible to query ontologies. Therefore, by developing several standard queries for a developed ontology,

very specific overviews of domain information can be created. Because these queries can give different views

on the domain, the use of an ontology in combination with ontology queries can provide fast and highly

relevant insights in the domain.

Many business domains consist of a lot of rules their participating agents, their commitments and resources are

applying to. When modeling a business domain, all these rules have to be taken into account to assert the

74

model to represent the domain in reality well. Ontologies have native support for appending axioms to model

concepts, whereas traditional information models require extensions, of which OCL is the most known. The

most important downside of this is that when an existing constraint is added or a new constraint is added later

to the traditional information model, other constraints or concepts also need to be updated by hand based on

the changes in the model. Ontologies, on the other hand, can process these changes automatically, which gives

it a large advantage over traditional information models. Also other extensions made to the domain model in a

later stage can be processed without much effort.

An important aspect of an ontology is the possibility to integrate with the “online web of data”, also called

Open Linked Data (Bizer, Heath, & Berners-Lee, 2009). The main focus of the methodology developed in this

thesis is creating interoperability standards using an ontology model. While the generation of a technology-

specific solution for interoperability messages can also be generated in almost the same ease using more

traditional information models (see also section 5.3.4.1), ontologies can serve more purposes than generating

semantic standards alone. A lot of domain information is stored in an ontology model, which is created

throughout the developed methodology. Bizer et al. (2009) reason that once an ontology is published on the

internet, other ontology models and other applications crawling the “web of data” can make use of this

information for their own purposes and to form universal consensus on definitions of concepts.

For example, the ontology of a microgrid generated in the case study can be included in a wider ontology about

all possible energy grids, which covers microgrids among other things. An example that could make use of this

information is an application that can visualize flows of energy in power grids. When the application zooms in

on the type of microgrid the ontology that was built in the microgrid use case, the information from this

ontology will be used.

75

6 CONCLUSIONS

To conclude this thesis, this section will answer the main research question of this thesis by answering the sub-

questions supporting the main research question. The main question was “How can the MOSES methodology

be extended with the development and use of an ontology?”. First, the answers on the sub-research questions

are provided. After that, a reflection on the limitations of this research is made, followed by some

recommendations for future work that lies in extension of this research.

RQ1: What is the state-of-the-art on ontology development methodologies?

This research question is aimed at providing an overview of ontology development methodologies. Context

about the properties and possibilities of ontologies and the available ontology languages is given from the

literature in section 2.2 and 3.1. The most important characteristics of ontologies are their conceptualizing

property of all aspects of a real-world domain and their ability to include restrictions on their contents to assert

consistency with concepts of the real-world domains. Other aspects of ontologies include the open-world

assumption, which means it is assumed that not everything modeled with an ontology will restrict its

interpretation of the domain modeled. Also, an ontology always provides concept definitions that are

unambiguous and understandable and interpretable for all stakeholders involved with the ontology, as all

stakeholders share this same ontology to collaborate. Next to that, an ontology can contain rules and

semantics of the domain concepts, facilitating automated reasoning about these concepts.

In section 3.2 the most important ontology development methodologies are discussed. These include the

methods of Enterprise Ontology, Methontology, Cyc, TOVE, Ontology Development 101 and DILIGENT. Each of

these methodologies has a different origin of discipline and take different perspectives. To reach a more

general domain ontology development methodology, the aspect of reusability of existing ontologies has been

taken into account. The notion domain knowledge elicited from domain experts should initially also be

recorded in a semi-informal way to prevent loss of knowledge and by forming competency questions at the

start of development, an indication of the completeness of the ontology can be given.

RQ2: What are the benefits of the development and use of an ontology for interoperability in a domain?

The aim of this research question is to provide an overview of all potential benefits the use of an ontology

offers to achieve interoperability. In this case, interoperability refers to the ease of exchange of information

between domain agents. Section 3.1 lists many aspects of ontologies benefiting domain interoperability. The

most important aspects are that an ontology provides a shared vocabulary with unambiguous concept

descriptions for all stakeholders in the domain. By means of validity rules, the shared ontology can also rule out

any configurations possible that do not square with the real world domain. Next to that, it is possible for

ontologies to include dynamic behavior (e.g. events) of stakeholders by modeling their processes and operation

rules.

RQ3: What are good additions to the MOSES methodology for improving interoperability in a domain using

ontologies?

Taking into account the interoperability benefits ontologies can bring (see section 3), the MOSES methodology

has been adapted to include the development and usage of an ontology. The exact methodology steps,

mindsets and notations can be found in section 4. One of the main additions to the methodology is the use of

the REA upper ontology to which each domain concept has to be mapped. This is an addition throughout the

whole development process, which means the domain ontology developer continuously needs to think about

the domain in terms of resources, events and agents, which leads to a clearer model as no ambiguous

constructions can be modeled.

76

To include an ontology in the methodology, the business information modeling phase is replaced by two

phases building an ontology base from the first phase and another to further specify the ontology model. In the

latter phase, next to determining agent and resource properties, ontology constraints are determined. This is

done by initially capturing the constraints in a semi-informal way to facilitate domain experts, followed by a

constraints formalizing step. Another addition to MOSES is the method’s initial step, where the scope of the

development is identified. This sets clear boundaries of the domain to be described and the level of detail

required. Especially for domain experts sharing their domain knowledge this can be of help.

RQ4: How can the extended methodology be applied and evaluated in the energy domain?

Based on literature and domain experts on microgrids and energy flexibility, the developed methodology was

applied on the future scenario of a generic microgrid supporting flexibility in energy demand and supply. During

the development several positive and negative experience was gained. The use of informal knowledge

capturing proved to be convenient before formalizing the knowledge. Stating competency questions setting the

boundaries and granularity of detail to be described in the case, also provided clarity for the domain experts.

On the downside, the number of concepts in the ontology model expands rapidly per commitment described.

This might pose an inconvenience when overviewing the whole domain model.

Based on all findings, this research concludes with a recommendation whether to use an ontology or

information model based on the requirements. An information model can better be used in scenarios when

low coupling between classes is essential for the interoperability potential of the model, domain knowledge is

not available throughout the whole modeling process, a need exists to be able to overview all domain concepts

at once and when the only purpose is to generate standard message structures. An ontology is a better choice

when reasoning about subsets of concepts is useful, the domain described contains complex or frequently

changing business logic, specific parts of the domain need to be overviewed in fast and easily generated

overviews, future model extensions are to be expected and, perhaps the most important argument, the

ontology has to be able to integrate with the “online web of data”: Open Linked Data. The latter argument is of

high value for semantic standards that want to reach a high level of interoperability in a wider domain scope or

across different domains. The integration of the ontology with other ontologies in the “online web of data”

leads to the usage and use of shared semantics of concepts of the current, but also other domains.

6.1 LIMITATIONS

One of the main focuses of this thesis was the development of a development methodology for semantic

standards using an ontology as means. This methodology includes two transformation steps; one

transformation from a MERODE model to a shared basic ontology model in REA and another from the REA

ontology model to a technology-specific solution. Due to the time restrictions set for this thesis, only the

development methodology steps could be determined. While the technologies used (MERODE domain model,

OWL ontology and XML messages) allow for automatic translation due to their compatibility with XML, no

transformations have been written for both transformations. Currently the transformations have to be done by

hand.

The application of the designed methodology on microgrids gives some hands-on experience with the

methodology. Nonetheless an execution and evaluation of only one use case does not empirically validate the

designed methodology. More use cases should be executed and evaluated to empirically validate the

methodology.

The ontology model and semantic standard developed for the microgrid are developed based on literature on

microgrids, smart grids and interviews with domain experts. Unfortunately the ontology model is not designed

for a real problem or need. The literature as well as the domain experts provided knowledge about microgrids

77

and flex offers in general. Therefore, to use the designed ontology model and semantic standard developed in a

real scenario, they should be revised to meet the exact situation in which they will be applied.

6.2 REFLECTION

This section takes a look at the lessons learned by looking in retrospect to the whole process of developing this

thesis and its final products (i.e. an improved methodology for developing semantic standards using an

ontology as means and a domain ontology and message structures for a microgrid with flexibility in energy

demand and supply). First, the strengths of this research are stated, followed by the weaknesses. The section

concludes with a summarizing list of all lessons learned in this thesis.

6.2.1 STRENGTHS

The structure of this thesis, and the execution of the research involved, is based on the design science research

methodology as prescribed by Peffers et al. (2007) (see also Figure 1). After starting with an elaborate literature

research on ontologies, ontology development methods and foundational ontologies facilitating business

domains, the development methodology was designed and developed. The mindsets and methodologies of the

development methodologies formed the basis of the designed methodology, next to the original MOSES

methodology and mindsets for achieving high interoperability in a domain model. The design of the

methodology was a highly iterative process involving many reviews with experts on developing semantic

standards. The many review sessions with experts were of high value as throughout the development process

the methodology steps became more and more coherent. Also, as new aspects were added to the methodology,

the review iterations helped greatly in embedding these aspects in the steps.

After the choice was made to use REA as upper ontology, developing a version of a REA upper ontology that

perfectly suits the needs involved many iterations and feedback from ontology experts. To grasp the exact

definitions of both the MERODE concepts as well as the REA concepts was difficult, but in the end this resulted

in a highly coherent REA model. Next to that a one-on-one mapping needed to be created with the MERODE

methodology of the first phase, which was derived from MOSES. Also here, a good grasp of the definitions of

MERODE and REA concepts was essential. By developing a mapping table and diagram (see also section 4.2.2),

the concept definitions and concept mappings were elucidated.

The technique in developing the development methodology focused on three main points: the mindset, the

steps and the notation. The technique mainly focuses on the literature on ontologies, ontology development

methods and interoperability aspects. For the mindset it is important to understand the thoughts and

intentions behind the literature and to take or derive the most important aspects for the methodology

developed. For the steps, the steps of the other methodologies and the reasoning why these steps need to be

performed are taken into consideration. The notation mainly relied on the original MOSES methodology with a

few additions of the more recent UML modeling techniques. The goal of developing the methodology was clear

(deriving semantic standards pursuing high interoperability). Because of having a clear goal, the most

important mindsets, steps and notations could be drawn up without much effort.

During the expert sessions developing an ontology for the microgrid case also several lessons were learned.

During the sessions, domain experts sometimes referred back to the scope identified in the first step, which

clarified how much detail they should provide in describing the domain, what simplifications are made in the

domain model and which concepts to include and which not to include. Therefore this step identifying the

domain scope is of high value for the rest of the development process. During the expert sessions is also found

that even the more technical experts had trouble understanding the concept “commitment” and its

“executes”-relationship with the concept “event”. A lesson that can be learned here is that the terms involving

the development methodology should be clarified to the domain experts before starting or during the start of

78

the expert sessions. Possible options to do this include providing clear definitions for each term beforehand or

briefly give an explanation on the most difficult terms at the start of an expert session.

6.2.2 WEAKNESSES

Looking back on the decision to use the MERODE methodology for determining the basic shared domain model

it would have been a better solution to directly determine this basic model in the same upper ontology as the

rest of the methodology is using (REA). This would save the steps building the ontology base in REA, as this base

would be automatically generated when the agents, resources, commitments and events were identified.

The developed methodology comprises of four main phases. The first results in a basic shared domain model in

MERODE. The second transforms this model into a base ontology model (OWL) embedded in the REA upper

ontology. Additional details are added to the ontology in the third phase, after which a technology-specific

solution is derived in the fourth phase. As mentioned earlier, if in the first phase not MERODE, but directly REA

was used for determining the basic shared domain model, the second phase could be removed.

6.2.3 LESSONS LEARNED

Based on the strengths and weaknesses stated above the following lessons can be learned:

 The many review sessions with experts were of high value as throughout the development process the

methodology steps became more and more coherent. By involving domain experts, additional domain

knowledge could be captured over the knowledge derived from relevant domain literature.

 To prevent obscurity in the domain scope, before developing the basic shared domain model and

ontology, competency questions should be a formulated covering as much domain properties and

boundaries as possible, as domain experts would need more detail in order to develop the domain

model. In particular competency questions covering the level of detail the domain should get, what

simplifications can be made and which parts to include or exclude from the domain.

 Domain experts need a thorough understanding of the meaning of the REA-concepts. Therefore, when

performing the methodology, beforehand the REA-concepts (resource, event, agent, commitment,

stockflow and participation) and their relations should be understood by the modeling expert to

develop an adequate ontology model. The terms can, for example, be clarified to the domain experts

before starting or during the start of the expert sessions.

 The conversion steps from MERODE to REA take up a considerable amount of effort. This could have

been prevented if the basic shared domain model would have been developed initially in REA. A lesson

learned for the future development is therefore to directly develop the basic shared domain model in

terms of REA.

6.3 FUTURE WORK

The future work that lies in extension of this thesis should focus mainly on the automation of the developed

methodology and on the validation of the developed methodology. Where the first area of research focuses on

developing automation procedures, the second requires use cases for this method to be applied on and proper

methodology evaluation techniques.

Due to time restriction on this thesis the designed methodology is currently not automated in the sense of

model transformations. Currently transformations from MERODE to REA and from REA to a technology-specific

solution (a common solution is XML messages) are described as “steps”, while these could also be automated

using a transformation. To facilitate this methodology, these transformations could be developed in a language

like XSLT or XPath (W3C, 1999a, 1999b), which can cope well with XML transformations. When these

79

transformations can be embedded in the methodology, the steps involving manual transformations can

therefore be removed as it is automatized.

More future work in automatizing the methodology lies in developing an application that facilitates the whole

development process described in this thesis. The application can be of high practical value for ontology

developers, who can easily perform all steps of the method in this one application. The application

development itself would not require more theoretical knowledge, but would only have to facilitate the

methodology elaborated upon in chapter 4. Eventually, the identification of MERODE elements in the first

methodology phase can be changed to directly identifying REA elements, skipping the MERODE methodology,

as earlier was concluded that this would be a less laborious solution.

The developed methodology is not fully validated in this thesis, due to restrictions in time as well as no

practical use case(s) were available. To fully validate the methodology it should be evaluated with proper

evaluation techniques. It is suggested to apply the methodology on more use cases of different business

domains, as well as the application of methodology evaluation techniques.

6.4 IMPLICATIONS AND RECOMMENDATIONS FOR PRACTICE

One of the goals of this study was to provide a development methodology for TNO to develop semantic

standards making use of an ontology and all the benefits it brings. This study offers a methodology that takes

the advantages of ontologies and embeds it in a development process for semantic standards. The generic

design enables practitioners to develop semantic standards in any domain. While the building of a software

tool supporting the methodology would improve the practical use is future work, the methodology as it is

designed is already of high practical value as it provides detailed descriptions of the steps practitioners have to

take. Appendix A provides a practical guide for practitioners who want to execute the developed methodology.

Executing the methodology steps results in a semantic standard, but also a complete domain ontology. The

semantic standard has a clear purpose; standardizing communication between parties in the domain of

discourse and improving their interoperability. Whether this methodology is easier to use than the original

MOSES methodology was not assessed in this study, but several additions of this methodology to the original

methodology facilitate the development process. The consistency rules embedded in ontologies can at least

facilitate the possible difficulties of maintaining a consistent domain model. The added steps to clearly define

the methodology’s scope and to define semi-informal requirements before formalizing them also helps to

overcome difficulties domain experts can cope with.

The ontology can be of practical use in numerous ways, as it contains a lot of information about both the static

and dynamic parts of the domain, which is shared among all stakeholders. The information can be of use for

management purposes, such as overseeing all activity in the domain, or a part of it. Also for other applications

the ontology can be of interest. The information about agents, their commitments, resources and/or events

can be of use. An example of this can be seen in section 5.2.6.1.

80

7 REFERENCES

Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P., Gordijn, J., Grégoire, B., et al.
(2006). Towards a Reference Ontology for Business Models. (D. Embley, A. Olivé, & S. Ram,
Eds.)Conceptual Modeling - ER 2006 SE - 36, 4215, 482–496. doi:10.1007/11901181_36

Arango, G., & Prieto-Diaz, R. (1991). Domain analysis concepts and research directions. Domain analysis and
software systems modeling, 9–26. Retrieved from http://www.docstoc.com/docs/document-
preview.aspx?doc_id=93912037

Ardito, L., Procaccianti, G., Menga, G., & Morisio, M. (2012). A Survey on Smart Grid Technologies in Europe.
ENERGY 2012 : The Second International Conference on Smart Grids, Green Communications and IT
Energy-aware Technologies (pp. 22–28). St. Maarten, The Netherlands Antilles.

Aßmann, U., Zschaler, S., & Wagner, G. (2006). Ontologies, Meta-models, and the Model- Driven Paradigm. In
C. Calero, F. Ruiz, & M. Piattini (Eds.), Ontologies for Software Engineering and Technologies (pp. 249–
273). Springer-Verlag.

Bakker, V. (2012). Triana: a control strategy for Smart Grids: Forecasting, planning & real-time control.
University of Twente, Enschede.

Bell, D. (2004, February 16). UML basics: The sequence diagram. Retrieved May 4, 2013, from
http://www.ibm.com/developerworks/rational/library/3101.html

Bezivin, J., & Gerbe, O. (2001). Towards a precise definition of the OMG/MDA framework. Automated Software
Engineering, 2001. (ASE 2001). Proceedings. 16th Annual International Conference on (pp. 273–280).
doi:10.1109/ASE.2001.989813

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. International Journal on Semantic ….
Retrieved from http://www.igi-global.com/article/linked-data-story-far/37496

Burton-Jones, A., & Weber, R. (1999). Understanding relationships with attributes in entity-relationship
diagrams. Proceedings of the 20th international conference on Information Systems (pp. 214–228).
Atlanta, GA, USA: Association for Information Systems. Retrieved from
http://dl.acm.org/citation.cfm?id=352925.352946

Catterson, V. M., Baker, P. C., Davidson, E. M., & McArthur, S. D. J. (2010). An upper ontology for power
engineering applications. Retrieved from http://sites.ieee.org/pes-mas/

CEN/CENELEC/SG-CG/M490/E. (2012). SG-CG/M490/E Smart Grid Use Case Management Process.

Chen, D, & Daclin, N. (2006). Framework for enterprise interoperability. Proc. of IFAC Workshop EI2N. Retrieved
from http://chen33.free.fr/M2/Elearning/CIGI2009.Chen.final.pdf

Chen, David, Vallespir, B., & Daclin, N. (2008). An approach for enterprise interoperability measurement.
Proceedings of MoDISE-EUS, 1–12. Retrieved from http://ceur-ws.org/Vol-341/paper1.pdf

Corcho, O, Fernandez-Lopez, M., & Gomez-Perez, A. (2007). Ontological engineering: what are ontologies and
how can we build them? Semantic Web Services (pp. 44–70). Premier Reference Source. Retrieved from
http://oa.upm.es/5456/

Corcho, Oscar, Fernández-López, M., & Gómez-Pérez, A. (2003). Methodologies, tools and languages for
building ontologies. Where is their meeting point? Data & Knowledge Engineering, 46(1), 41–64.
doi:10.1016/S0169-023X(02)00195-7

81

Cox, W., & Considine, T. (2011). Energy , Micromarkets , and Microgrids. Grid-Interop Forum 2011.

Crapo, A., Wang, X., Lizzi, J., & Larson, R. (2009). The semantically enabled smart grid. The Road to an
Interoperable Grid (Grid-Interop). Retrieved from
http://www.gridwiseac.org/pdfs/forum_papers09/crapo.pdf

Daclin, N., Chen, D., & Vallespir, B. (2006). Enterprise interoperability measurement-Basic concepts.
Proceedings of the EMOI, (1), 1–5. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.7162&rep=rep1&type=pdf

Energie-Nederland, & Netbeheer Nederland. (2011). Energy in the Netherlands 2011. Chemistry & ….

European Commission. (2005). Towards Smart Power Networks (pp. 1–40).

European Commission. (2006). European SmartGrids Technology Platform (pp. 1–37).

european network of transmission system operators for electricity. (2011). The harmonised electricity market
role model (pp. 1–28). Brussels.

Evans, A., & Kent, S. (1999). Core Meta-Modelling Semantics of UML: The pUML Approach. In R. France & B.
Rumpe (Eds.), «UML»’99 — The Unified Modeling Language (Vol. 1723, pp. 140–155). Springer Berlin
Heidelberg. doi:10.1007/3-540-46852-8_11

Falbo, R. de A., Guizzardi, G., & Duarte, K. C. (2002). An ontological approach to domain engineering.
Proceedings of the 14th international conference on Software engineering and knowledge engineering
(pp. 351–358). New York, NY, USA: ACM. doi:10.1145/568760.568822

Fernández-Lopéz, M., & Gómez-Pérez, A. (2002). Overview and analysis of methodologies for building
ontologies. The Knowledge Engineering Review, 17(02), 129–156. doi:10.1017/S0269888902000462

Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology: from ontological art towards
ontological engineering. Proceedings of the Ontological Engineering AAAI-97 Spring Symposium Series
(pp. 33–40). Stanford: American Asociation for Artificial Intelligence. Retrieved from
http://oa.upm.es/5484/

Ford, T. C., Colombi, J. M., Graham, S. R., & Jacques, D. R. (2007). A Survey on Interoperability Measurement.
Twelfth International Command and Control Research and Technology Symposium. Newport, RI.

Gailly, F., & Poels, G. (2007). Towards Ontology-Driven Information Systems: Redesign and Formalization of the
REA Ontology. In W. Abramowicz (Ed.), Business Information Systems SE - 19 (Vol. 4439, pp. 245–259).
Springer Berlin Heidelberg. doi:10.1007/978-3-540-72035-5_19

Gasevic, D., & Djuric, D. (2006). Model Driven Architecture and Ontology Development. Berlin Heidelberg:
Springer-Verlag. doi:10.1007/3-540-32182-9

Geerts, G. L., & Mccarthy, W. E. (2000). The Ontological Foundation of REA Enterprise Information Systems.
Annual Meeting of the American Accounting Association (pp. 127–150). Philadelphia, PA.

Gordijn, J., & Akkermans, J. M. (2003). Value-based requirements engineering: exploring innovative e-
commerce ideas. Requirements Engineering, 8(2), 114–134. doi:10.1007/s00766-003-0169-x

Gordijn, J., Osterwalder, A., & Pigneur, Y. (2005). Comparing two business model ontologies for designing e-
business models and value constellations. 18th Bled eConference eIntegration in Action. Bled, Slovenia.

82

Guizzardi, G. (2007). On ontology, ontologies, conceptualizations, modeling languages, and (meta) models.
Frontiers in artificial intelligence and applications, 155, 18.

Guizzardi, Giancarlo. (2005). Ontological foundations for structural conceptual models. CTIT, Centre for
Telematics and Information Technology, Enschede. Retrieved from http://doc.utwente.nl/50826/

Guizzardi, Giancarlo, & Wagner, G. (2005). Towards Ontological Foundations for Agent Modelling Concepts
Using the Unified Fundational Ontology (UFO). In P. Bresciani, P. Giorgini, B. Henderson-Sellers, G. Low, &
M. Winikoff (Eds.), Agent-Oriented Information Systems II (Vol. 3508, pp. 110–124). Berlin Heidelberg:
Springer Berlin Heidelberg. doi:10.1007/11426714_8

Henderson-Sellers, B. (2011). Bridging metamodels and ontologies in software engineering. Journal of Systems
and Software, 84(2), 301–313. doi:10.1016/j.jss.2010.10.025

Hesse, W. (2008). Engineers Discovering the “Real World” — From Model-Driven to Ontology-Based Software
Engineering. In R. Kaschek, C. Kop, C. Steinberger, & G. Fliedl (Eds.), Information Systems and e-Business
Technologies (Vol. 5, pp. 136–147). Springer Berlin Heidelberg. doi:10.1007/978-3-540-78942-0_16

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS
Quarterly, 28(1), pp. 75–105. Retrieved from http://www.jstor.org/stable/25148625

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004). SWRL: A Semantic Web
Rule Language Combining OWL and RuleML. Retrieved April 29, 2013, from
http://www.w3.org/Submission/SWRL/

IEEE. (1990). IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries.

Jacobsson, S., & Bergek, A. (2004). Transforming the energy sector: the evolution of technological systems in
renewable energy technology. Industrial and Corporate Change, 13(5), 815–849. doi:10.1093/icc/dth032

Jamasb, T., & Pollitt, M. (2005). Electricity Market Reform in the European Union : Review of Progress toward
Liberalization & Integration.

Jarrar, M., & Meersman, R. (2009). Ontology Engineering – The DOGMA Approach. In T. Dillon, E. Chang, R.
Meersman, & K. Sycara (Eds.), Advances in Web Semantics I (Vol. 4891, pp. 7–34). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-89784-2_2

Jötten, G., Weidlich, A., Filipova-Neumann, L., & Schuller, A. (2011). Assessment of flexible demand response
business cases in the smart grid. 21 st International Conference on Electricity Distribution Frankfurt (pp.
6–9). Frankfurt.

Kalfoglou, Y. (2001). Exploring Ontologies. Handbook of Software Engineering and Knowledge Engineering: vol.
1: Fundamentals (pp. 863–887). World Scientific Publishing. Retrieved from
http://eprints.soton.ac.uk/260528/

King, R. L. (2008). Information services for smart grids. Power and Energy Society General Meeting-Conversion
and Delivery of Electrical Energy in the 21st Century, 2008 IEEE (pp. 1–5). IEEE.

Kok, J. K., Scheepers, M. J. J., & Kamphuis, I. G. (2010). Intelligence in Electricity Networks for Embedding
Renewables and Distributed Generation. In R. R. Negenborn, Z. Lukszo, & H. Hellendoorn (Eds.),
Intelligent Infrastructures SE - 8 (Vol. 42, pp. 179–209 LA – English). Springer Netherlands.
doi:10.1007/978-90-481-3598-1_8

83

Kok, J. K., Warmer, C. J., & Kamphuis, I. G. (2005). PowerMatcher: multiagent control in the electricity
infrastructure. Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems (pp. 75–82). New York, NY, USA: ACM. doi:10.1145/1082473.1082807

Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer, C., Kamphuis, R., & Akkermans, H. (2008). Agent-
Based Electricity Balancing with Distributed Energy Resources, A Multiperspective Case Study. In R. H.
Sprague (Ed.), Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS
2008) (pp. 173–173). Los Alamitos, CA, USA: IEEE Computer Society. doi:10.1109/HICSS.2008.46

Kok, K., Roossien, B., Macdougall, P., Pruissen, O. Van, Venekamp, G., Kamphuis, I. g., Laarakkers, J. A. W., et al.
(2012). Dynamic Pricing by Scalable Energy Management Systems - Field Experiences and Simulation
Results using PowerMatcher. IEEE Power and Energy Society General Meeting 2012, IEEE.

Kosanke, K. (2006). ISO Standards for Interoperability: a Comparison. In D. Konstantas, J.-P. Bourrières, M.
Léonard, & N. Boudjlida (Eds.), Interoperability of Enterprise Software and Applications SE - 6 (pp. 55–64).
Springer London. doi:10.1007/1-84628-152-0_6

Lee, Y. T. (1999). Information modeling: From design to implementation. Proceedings of the second world
manufacturing congress (pp. 315–321).

Lethbridge, T. C., & Laganière, R. (2005). Object-Oriented Software Engineering (2nd ed.). Berkshire: McGraw-
Hill.

Majewska, M., Kryza, B., & Kitowski, J. (2007). Translation of Common Information Model to Web Ontology
Language. In Y. Shi, G. Albada, J. Dongarra, & P. A. Sloot (Eds.), Computational Science – ICCS 2007 SE - 53
(Vol. 4487, pp. 414–417). Springer Berlin Heidelberg. doi:10.1007/978-3-540-72584-8_53

Maniraj, V., & Sivakumar, D. (2010). Ontology Languages - A Review. International Journal of Computer Theory
and Engineering, 2010, 2(6), 1793–8201.

National Institute of Standards and Technology. (2012a). NIST Framework and Roadmap for Smart Grid
Interoperability Standards.

National Institute of Standards and Technology. (2012b). PAP17: Facility Smart Grid Information Standard.
Retrieved December 12, 2012, from http://collaborate.nist.gov/twiki-
sggrid/bin/view/SmartGrid/PAP17FacilitySmartGridInformationStandard

Nguyen, V. (2011). Ontologies and information systems: a literature survey. Edinburgh, Australia. Retrieved
from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA546186

Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology.
Stanford Medical Informatics. Retrieved from
http://liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/What is an ontology and why we need
it.htm

OASIS Open. (2012a). Energy Interoperation Version 1.0. Retrieved from http://docs.oasis-
open.org/energyinterop/ei/v1.0/energyinterop-v1.0.html

OASIS Open. (2012b). Energy Market Information Exchange (EMIX) Version 1.0. Retrieved from
http://docs.oasis-open.org/emix/emix/v1.0/emix-v1.0.html

Object Management Group. (2012). Introduction to OMG UML. Retrieved November 29, 2012, from
http://www.omg.org/gettingstarted/what_is_uml.htm

84

Pagani, G., & Aiello, M. (2011). Towards a Service-Oriented Energy Market: Current State and Trend. In E. M.
Maximilien, G. Rossi, S.-T. Yuan, H. Ludwig, & M. Fantinato (Eds.), Service-Oriented Computing (Vol. 6568,
pp. 203–209). Springer Berlin Heidelberg. doi:10.1007/978-3-642-19394-1_22

Panetto, H., & Molina, A. (2008). Enterprise integration and interoperability in manufacturing systems: Trends
and issues. Computers in Industry, 59(7), 641–646. doi:10.1016/j.compind.2007.12.010

Peffers, K., Tuunanen, T., Rothenberger, M. a., & Chatterjee, S. (2007). A Design Science Research Methodology
for Information Systems Research. Journal of Management Information Systems, 24(3), 45–77.
doi:10.2753/MIS0742-1222240302

Pinto, H.Sofia, Tempich, C., & Staab, S. (2009). Ontology Engineering and Evolution in a Distributed World Using
DILIGENT. In S. Staab & R. Studer (Eds.), Handbook on Ontologies (pp. 153–176). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-92673-3_7

Pinto, Helena Sofia, & Martins, J. P. (2004). Ontologies: How can They be Built? Knowledge and Information
Systems, 6(4), 441–464. doi:10.1007/s10115-003-0138-1

Pipattanasomporn, M., Feroze, H., & Rahman, S. (2009). Multi-agent systems in a distributed smart grid: Design
and implementation. Power Systems Conference and Exposition, 2009. PSCE ’09. IEEE/PES (pp. 1–8).
doi:10.1109/PSCE.2009.4840087

Quirolgico, S., Assis, P., Westerinen, A., Baskey, M., & Stokes, E. (2004). Toward a Formal Common Information
Model Ontology. In C. Bussler, S. Hong, W. Jun, R. Kaschek, Kinshuk, S. Krishnaswamy, S. Loke, et al.
(Eds.), Web Information Systems – WISE 2004 Workshops SE - 2 (Vol. 3307, pp. 11–21). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-30481-4_2

Schrier, A., Van Bekkum, M., Krukkert, D., Verhoosel, J., & Roes, J. (2012). MOSES : Model gebaseerde
Ontwikkeling van SEmantische Standaarden.

Schuster, R., & Motal, T. (2009). From e3-value to REA: Modeling Multi-party E-business Collaborations.
Commerce and Enterprise Computing, 2009. CEC ’09. IEEE Conference on (pp. 202–208).
doi:10.1109/CEC.2009.58

Shanks, G., Tansley, E., & Weber, R. (2003). Using ontology to validate conceptual models. Commun. ACM,
46(10), 85–89. doi:10.1145/944217.944244

Simmins, J. J. (2011). The impact of PAP 8 on the Common Information Model (CIM). Power Systems Conference
and Exposition (PSCE), 2011 IEEE/PES (pp. 1–2). doi:10.1109/PSCE.2011.5772503

Smart Grid Coordination Group. (2012). SG-CG / M490 / C _ Smart Grid Reference Architecture.

Smith, B., & Welty, C. (2001). Ontology: towards a new synthesis. Proceedings of the international conference
on Formal Ontology in Information Systems - Volume 2001 (pp. 3–9). New York, NY, USA: ACM.
doi:10.1145/505168.505201

Snoeck, M., Dedene, G., Verhelst, M., & Depuydt, A.-M. (1999). Object-Oriented Enterprise Modelling with
MERODE (1st ed.). Leuven, Belgium: Leuven University Press.

Snoeck, M., Michiels, C., & Dedene, G. (2003). Consistency by Construction: The Case of MERODE. In M.
Jeusfeld & Ó. Pastor (Eds.), Conceptual Modeling for Novel Application Domains SE - 11 (Vol. 2814, pp.
105–117). Springer Berlin Heidelberg. doi:10.1007/978-3-540-39597-3_11

Stahl, T., & Voelter, M. (2006). Model-Driven Software Development: Technology, Engineering, Management.
(Wiley, Ed.)John Wiley and Sons ISBN9780470025703 (p. 444). Wiley. Retrieved from

85

http://www.amazon.com/Model-Driven-Software-Development-Technology-
Engineering/dp/0470025700

Tabors, R. D., Parker, G., & Caramanis, M. C. (2010). Development of the Smart Grid: Missing Elements in the
Policy Process. System Sciences (HICSS), 2010 43rd Hawaii International Conference on (pp. 1–7).
doi:10.1109/HICSS.2010.148

Uschold, M, & Gruninger, M. (1996). Ontologies: Principles, methods and applications. Knowledge engineering
review, 11(2), 93–136.

Uschold, Michael, & Gruninger, M. (2004). Ontologies and semantics for seamless connectivity. SIGMOD Rec.,
33(4), 58–64. doi:10.1145/1041410.1041420

Uslar, M., Specht, M., Rohjans, S., Trefke, J., & Vasquez González, J. (2012). The IEC Common Information
Model. The Common Information Model CIM (Vol. 66, pp. 75–106). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-25215-0_3

Verhoosel, J. P. C., Rothengatter, D., Rumph, F. J., & Konsman, M. (2012). An Ontology for Modeling Flexibility
in Smart Grid Energy Management. Proceedings of the 3rd Workshop on Energy Efficient Buildings 2012.
Reykjavik.

W3C. (1999a). XSL Transformations (XSLT). Retrieved May 3, 2013, from http://www.w3.org/TR/xslt

W3C. (1999b). XML Path Language (XPath). Retrieved May 3, 2013, from http://www.w3.org/TR/xpath/

W3C. (2013). SPARQL 1.1 Overview. Retrieved April 9, 2013, from http://www.w3.org/TR/sparql11-overview/

86

APPENDIX A: PRACTICAL GUIDE FOR PRACTITIONERS

This appendix is intended to provide a practical manual for practitioners who want to apply the developed

methodology. The steps should be executed in order and the phases can be approached in an iterative manner.

Before the phases and steps are outlined, the tools and files that support the development process are

described. Some helpful screenshots are added at the end of this appendix.

A.1 USEFUL TOOLS AND FILES

Two pieces of software are highly recommended to be used during the execution of the development

methodology. The first software tool is called MERMAID. This tool can be found at

http://merode.econ.kuleuven.ac.be/mermaid.aspx. It helps developing and drawing the dependency diagram

and supports the building of the Object-Event-Table (OET). Both are part of the first development phase.

Although there are many other ontology (OWL) editor tools, Protégé is one of the most popular. Also, this tool

was used in developing our own version of the REA upper ontology and in developing the microgrid ontology of

chapter 5. In this guide also some screenshots are included from this tool, Protégé version 4.2.

The REA upper ontology as described in section 4.2.2, can be found in the attached file “rea-ontology.owl”. This

ontology is the base of the ontology to be developed in the end. It can be loaded in Protégé to link concepts to

the base concepts defined in this file.

A.2 PHASE 1: DETERMINE BASIC SHARED DOMAIN MODEL

A.2.1 IDENTIFY SCOPE

To limit the scope and to determine the granularity of detail this domain model will describe, first, competency

questions should be posed. These questions should comprise of all the things the solution should be able to

fulfil, and eventually explicitly do not have to be able to fulfil or to what extent concepts have to be defined.

Two example competency questions from the microgrid case are shown in Example 1.

Example 1: Competency questions

A.2.2 IDENTIFY AGENTS AND RESOURCES

All agents and resources involved in the domain of discourse should be identified and described in this step. An

agent is a party involved in the interactions in the domain. A resource supports the business activities of the

involved agents. Try to define the names and descriptions as unambiguous as possible to prevent

misinterpretations. Example 2 shows a table describing some actors and resources identified in the microgrid

case.

1. Can the solution facilitate the exchange of energy between energy consumer and

supplier?

2. Can the solution balance energy demand and supply in blocks of 15 minutes?

http://merode.econ.kuleuven.ac.be/mermaid.aspx

87

Example 2: Descriptions of domain agents and resources

A.2.3 IDENTIFY COMMITMENTS

When the agents and resources have been identified, the commitments agents have in the domain need to be

identified. The commitments should be able to be described in the form of the exchange of information (or

information about an exchange of a physical concept), between exactly 2 agents: a sender and a receiver. In

the cases where more than 2 agents or more than 1 information resource are involved, it is possible to

decompose this commitment into 2 or more sub-commitments.

Example 3 shows a table describing some commitments identified in the microgrid case. After the

commitments have been described, an existence dependency diagram can be drawn, eventually with help of

the MERODE tool (see also Figure 32). Here, on the left side of the diagram the agents are drawn, on the right

side the resources and in between the commitments. The agents, commitments and resources can be drawn in

MERODE by using the “add object-type” tool from the toolbar. The commitments are existence dependent on

two agents and one resource. Existence dependencies can be drawn using the “add dependency” tool from the

toolbar. Example 4 shows an existence dependency diagram of the commitments of Example 3. After drawing

the diagram, don’t close MERODE yet, as it can also be used for the next step.

Example 3: Description of commitments

Agent / resource Description

Consumer Consumes energy. The load of energy has a certain flexibility over a given
time period. It wants the best (cheapest) price for energy on the market.

Producer Produces energy. The load of energy has a certain flexibility over a given
time period. It wants the best (highest) price for energy on the market.

Energy The (physical) energy to be delivered for consumption from producer to
consumer. It can also be routed through a power grid via “energy
transmissions”.

EnergyFlexibility Represents the information a consumer and producer share with the
FlexMarket to negotiate about their (near) future energy consumption and
production. This information comprises of information about the power
load required, the timespan that is required within the power needs to be
produced or consumed and the actual duration the consumption or
production once started.

Commitment Description

ConsumptionFlexibilityOffer In the smart grid consumers will send their current flexibility in power
demands for a specific range of time in the future, on which the
FlexMarket will reply a ConsumptionMarketOffer.

CongestionImposement In the smart grid congestion limits apply. The DSO will send the
FlexMarket updates about the exact congestions per transmission link
in the smart grid.

88

Figure 32: Developing an existence dependency diagram with MERMAID

Example 4: Existence dependency diagram

A.2.4 IDENTIFY EVENTS

To fulfil the commitments identified in the previous step, agents execute events. The events to be identified

include both the sending and receiving of information. In a later step, the events will be further specified into

at least one incremental event and at least one decremental event.

To provide an overview of all events in the domain and to relate them to the previously identified

commitments, in MERODE an Object-Event-Table (OET) can be generated. By clicking on the “OET” tab above

the toolbar, an empty OET will be shown with all entered agents, resources and commitments already in the

right place. For each commitment one event should be created with the “add event” tool from the toolbar (see

also Figure 33. By using the “add method” tool, an owned creation method should be created for the

commitment the event describes. Automatically, methods of the involved agents and resource will appear after

defining the owned creation method. An example OET from the microgrid case is shown in Example 5.

Figure 33: Developing an Object-Event-Table with MERMAID

89

Example 5: Event-Object-Table

A.1.5 MAKE UML ACTIVITY DIAGRAMS

The events identified in the previous step are bound to a specific sequence in the domain of discourse. For

each domain agent an activity diagram should be drawn. It can happen that the same event occurs in more

than one activity diagram. When the occurrence of an event is followed by a choice of one of a few events, the

constraints when an event is executed needs to be defined. Example 6 shows an activity diagram from the

microgrid case, where the consumer negotiates with the flex market the consumption of energy and in the end

the receiving of the energy to be consumed.

90

Example 6: Activity diagram

A.2 BUILD ONTOLOGY BASE

A.2.1 IMPORT AND LINK AGENTS AND RESOURCES TO REA-ONTOLOGY

The agents and resources identified in the previous phase can be specified as subclasses of the rea-ontology

classes AgentType and ResourceType. The easiest way to do this is to open the attached file containing the REA

upper ontology in Protégé and use the “create class hierarchy” tool from the menu (see also Figure 34). In the

tool the class AgentType or ResourceType can be selected as root class to create a class hierarchy. The names

of all agents or resources can be entered in the next screen of the tool.

Please keep in mind that the reasoner (preferably HermiT) should run to ensure no incorrect concepts are

defined. To select HermiT as reasoner, open the menu “Reasoner” and click on “HermiT”. The reasoner can be

started by clicking on “Start reasoner” in the “Reasoner” menu. When incorrect information is entered in the

ontology, this information will be marked red.

Send consumption
negotiation

Send energy consumption
acquisition

[accepted
MarketOffer]

[declined
MarketOffer]

Receive consumption
MarketOffer

Receive transmitted
energy

91

Figure 34: Create class hierarchy in Protégé

A.2.2 IMPORT AND LINK COMMITMENTS AND EVENTS TO REA-ONTOLOGY

The same steps need to be taken to link the commitments and events from the basic shared domain model.

The events identified earlier now need to be “split” into one incremental event (receiving information) and one

decremental event (sending information). Next to Commitments, DecrementalEventTypes and

IncrementalEventTypes, also ParticipationTypes and StockflowTypes need to be specified. Participations

indicate the relationship between agents and the events they participate in. Stockflows indicate the

relationship between resources and the events they are sent or received. Figure 35 shows an example of the

concepts of the microgrid ontology.

92

Figure 35: Example ontology in Protégé

After all concepts are added to the ontology, their properties inherited from the REA upper ontology need to

be specialized to ensure only correct instances of the model can be created in the next phase. To add

specialized properties, go to the “class” tab in Protégé and select a class on the left panel. To add a (specialized)

property to this class press on the plus-sign next to “SubClass Of” in the right panel (see also Figure 36). Go to

the “Object restriction creator” tab in the new window and select one of the properties inherited from the

superclass in the left panel. In the right panel select the specialized concept that is related to the property.

Make sure the right restriction type is set in the bottom panel. Figure 37 shows a screenshot. Repeat this until

all REA-properties are specialized.

93

Figure 36: Specialize properties of a class in Protégé

Figure 37: Add property to concept in Protégé

94

A.3 DEVELOP ONTOLOGY

A.3.1 REUSE AND INTEGRATE EXISTING ONTOLOGIES

In case concepts of another ontology can be used, these can be directly imported in the ontology and then

linked to the REA upper ontology. In Protégé ontologies can be imported in the “Active Ontology” tab and

pressing the plus-sign next to “Direct Imports” (see also Figure 38).

Figure 38: Import ontologies in Protégé

A.3.1.1 DETERMINE PROPERTIES OF AGENTS AND RESOURCES

Agent- and resource-specific properties relevant for the domain model can be specified as data properties.

Based on these data properties rules can be created in the next step. Note that the data properties allocated to

a resource are seen as information that needs to be send when the resource is exchanged.

Every data property has to be first defined in the “Data Properties” tab of Protégé. The overview of the data

properties and the buttons to add or remove a data property are available in the left panel. In the right panel

the Domain to which classes the property applies and the Range which data type the property is can be

specified. The domain can be specified by selecting one or more concepts in the “Class hierarchy” tab of the

selection window. The range can be specified by selecting a data type from the “Built in datatypes” tab.

Eventually the data type can be restricted to certain values by editing the range (see also Figure 39). An

example restriction is “long[>=0]” to restrict all values to be larger than or equal to 0. The defined data

properties can be added in the same way as regular properties are added (see also Figure 36).

95

Figure 39: Data property in Protégé (range edit button highlighted)

A.3.1.2 DETERMINE INFORMAL CONSTRAINTS

To limit the instantiations of the developed ontology model to only configurations valid in the real world,

constraints apply on the domain model. These constraints can be written down to informal constraints, which

can be formalized in the next step. The constraints can be written down in a numbered list, as shown in

Example 7.

Example 7: Informal constraints from the microgrid case

A.3.1.3 DETERMINE FORMAL CONSTRAINTS

The informal constraints from the previous step can be formalized into SWRL rules. The SWRL syntax can be

found in http://www.w3.org/Submission/SWRL/. Example 8 shows the constraints of Example 7 formalized.

Protégé has native support for SWRL. Before rules can be added in the editor, the “Rules” view should be

added to the classes tab of Protégé. This can be done by first selecting the “Rules” view from the menu (see

Figure 40 where to find it), then clicking on the bottom part of the Protégé window to add the view. With the

plus-sign new rules can be added.

1. A flex offer is declined when the offering AgentType (consumer or producer) has a

minimumFlexLoad that is higher than the maximumLoadCongestion imposed on this

AgentType.

2. Of a flex offer, the minimumFlexLoad is always smaller than the maximumFlexLoad.

http://www.w3.org/Submission/SWRL/

96

Example 8: Formal contraints from the microgrid case

Figure 40: The "Rules" view in Protégé

A.3.1.4 DETERMINE CLASS INSTANCES

At this step the domain concepts should be fully specified. In this step instances of the domain concepts can be

created. Instances specify the concrete instances of the class types specified in the ontology, e.g. “House1” is

an instance of Consumer in the domain of discourse of the example in Figure 41. Protégé can work with

individuals in the “Individuals” tab, as shown in Figure 41. For every instance a “Type”, “Object property

assertions” and eventually “Data property assertions” need to be defined, in Protégé this can be done on the

right panel of the “Individuals” tab.

1. EnergyFlexibility(?flexoffer), minimumFlexLoad(?flexoffer, ?minload),

maximumFlexLoad(?flexoffer, ?maxload), resHasSfOutflow(?flexoffer, ?fooutflow),

sfOutflowHasDecrEvent(?fooutflow, ?decrevent), decrEventHasPProvide(?decrevent,

?providep), pProvideHasAgent(?providep, ?agent), LoadConstraint(?lc),

loadConstraintAppliesToAgent(?lc, ?agent), maximumLoadCongestion(?lc, ?maxload) ->

lessThanOrEqual(?minload, ?maxload)

2. EnergyFlexibility(?flexoffer), minimumFlexLoad(?flexoffer, ?minflex),

maximumFlexLoad(?flexoffer, ?maxflex) -> lessThanOrEqual(?minflex, ?maxflex)

97

Figure 41: Individuals in Protégé

A.4 DETERMINE TECHNOLOGY-SPECIFIC SOLUTION

Message structures can be derived from the ontology using the SPARQL-query defined in Query 2, which is

repeated below in Query 4. Protégé supports the execution of SPARQL-queries. To execute the query in

Protégé, first the “SPARQL Query” tab needs to be enabled by selecting the tab from the menu, as shown in

Figure 42.

98

Query 4: SPARQL-query to retrieve the relevant information required to develop message structures

Figure 42: The SPARQL Query tab in Protégé

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX my: <http://www.rea-ontology.com/rea-smartgrid#>

SELECT ?eventtype ?messagefield ?sendertype ?receivertype ?nexteventtype

WHERE {

 ?decrementalevent rdf:type ?eventtype.

 ?eventtype rdfs:subClassOf* my:DecrementalEventType.

 ?allsfs rdfs:subPropertyOf my:eventHasSf.

 ?decrementalevent ?allsfs ?relatedsfs.

 ?allrelatedresources rdfs:subPropertyOf my:sfHasRes.

 ?relatedsfs ?allrelatedresources ?resource.

 ?messagefield rdfs:subPropertyOf* my:message.

 ?resource ?messagefield ?message.

 ?allparticipations rdfs:subPropertyOf my:evHasP.

 ?decrementalevent ?allparticipations ?participations.

 ?allagents rdfs:subPropertyOf my:pHasA.

 ?participations ?allagents ?sender.

 ?sendertype rdfs:subClassOf my:AgentType.

 ?sender a ?sendertype.

 ?allDualities rdfs:subPropertyOf my:dualEvent.

 ?decrementalevent ?allDualities ?dualevent.

 ?dualparticipations rdfs:subPropertyOf my:evHasP.

 ?dualevent ?dualparticipations ?dualparticipation.

 ?alldualagents rdfs:subPropertyOf my:pHasA.

 ?dualparticipation ?alldualagents ?receiver.

 ?receivertype rdfs:subClassOf my:AgentType.

 ?receiver a ?receivertype.

 ?decrementalevent my:nextEvent ?nextevent.

 ?nexteventtype rdfs:subClassOf* my:EventType.

 ?nextevent a ?nexteventtype.

}

	The value of ontologies for developing semantic standards
	Management summary
	Preface
	1 Introduction
	1.1 Motivation and background
	1.1.1 From information model to ontology
	1.1.2 Development methods for ontologies and semantic standards
	1.1.3 Smart grids and microgrids

	1.2 Problem statement
	1.3 Research Questions and goal
	1.4 Research method
	1.5 Document structure

	2 State-of-the-art
	2.1 Information models
	2.2 Ontologies
	2.2.1 Ontology languages
	2.2.2 Ontology editors

	2.3 Interoperability
	2.3.1 Measuring interoperability

	2.4 MOSES
	2.4.1 MERODE

	2.5 Foundational ontologies facilitating business domains
	2.5.1 The ontological foundation of REA enterprise information systems
	2.5.2 e³value
	2.5.3 Unified Foundational Ontology
	2.5.4 Evaluation of alternatives

	3 Interoperability benefits of the use of an ontology
	3.1 Aspects important for the stakeholder
	3.1.1 Vocabulary
	3.1.2 Validity rules
	3.1.3 Context
	3.1.4 Sharedness
	3.1.5 Open world assumption
	3.1.6 Descriptive
	3.1.7 Representation
	3.1.8 Understanding
	3.1.9 Formal semantics
	3.1.10 Automated reasoning
	3.1.11 System interoperability potential
	3.1.12 Dynamic modeling

	3.2 Mindsets from ontology development methodologies
	3.2.1 Enterprise ontology
	3.2.2 Methontology
	3.2.3 Cyc
	3.2.4 TOVE
	3.2.5 Ontology Development 101
	3.2.6 DILIGENT

	4 Development method for ontologies fostering interoperability
	4.1 The methodology steps
	4.2 The methodology mindset
	4.2.1 Determine basic shared domain model
	4.2.1.1 Identify scope
	4.2.1.2 Identify agents and resources
	4.2.1.3 Identify commitments
	4.2.1.4 Identify events
	4.2.1.5 Make UML activity diagrams

	4.2.2 Build ontology base
	4.2.2.1 Import and link agents and resources to REA-ontology
	4.2.2.2 Import and link commitments and events to REA-ontology

	4.2.3 Develop ontology
	4.2.3.1 Reuse and integrate existing ontologies
	4.2.3.2 Determine properties of agents and resources
	4.2.3.3 Determine informal constraints
	4.2.3.4 Determine formal constraints
	4.2.3.5 Determine class instances

	4.2.4 Determine technology-specific solution

	4.3 Notations used by the methodology
	4.3.1 Identify agents and resources
	4.3.2 Identify commitments
	4.3.3 Identify events
	4.3.4 Make UML activity diagram
	4.3.5 Sequence diagrams

	5 An ontology for smart grids
	5.1 The microgrid domain
	5.1.1 What is a microgrid?
	5.1.2 Trends
	5.1.3 Overview of actors
	5.1.4 Microgrid interoperability
	5.1.5 Flexibility in energy demand and supply
	5.1.6 Smart grid information models

	5.2 The methodology applied
	5.2.1 Domain experts
	5.2.2 Identify scope
	5.2.3 Determine shared business domain model
	5.2.3.1 Identify agents and resources
	5.2.3.2 Identify commitments
	5.2.3.3 Identify events
	5.2.3.4 Make UML activity diagrams

	5.2.4 Build ontology base
	5.2.5 Develop ontology
	5.2.5.1 Reuse and integrate existing ontologies
	5.2.5.2 Determine properties of agents and resources
	5.2.5.3 Determine informal constraints
	5.2.5.4 Determine formal constraints
	5.2.5.5 Determine class instances

	5.2.6 Determine technology-specific solution
	5.2.6.1 An additional application

	5.3 Discussion
	5.3.1 Domain experts
	5.3.2 Positive properties
	5.3.3 Negative properties
	5.3.4 When to use which means?
	5.3.4.1 Information model
	5.3.4.2 Ontology

	6 Conclusions
	6.1 Limitations
	6.2 Reflection
	6.2.1 Strengths
	6.2.2 Weaknesses
	6.2.3 Lessons learned

	6.3 Future work
	6.4 Implications and recommendations for practice

	7 References
	Appendix A: Practical guide for practitioners
	A.1 Useful tools and files
	A.2 Phase 1: Determine basic shared domain model
	A.2.1 Identify scope
	A.2.2 Identify agents and resources
	A.2.3 Identify commitments
	A.2.4 Identify events
	A.1.5 Make UML activity diagrams

	A.2 Build ontology base
	A.2.1 Import and link agents and resources to REA-ontology
	A.2.2 Import and link commitments and events to REA-ontology

	A.3 Develop ontology
	A.3.1 Reuse and integrate existing ontologies
	A.3.1.1 Determine properties of agents and resources
	A.3.1.2 Determine informal constraints
	A.3.1.3 Determine formal constraints
	A.3.1.4 Determine class instances

	A.4 Determine technology-specific solution

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

