
FCScan : A New Lightweight and
Effective Approach for Detecting
Malicious Content in Electronic

Documents

Master Thesis

June 11, 2013

Christiaan Leonard Schade
MSc Computer Science
Specialization Computer Security

Graduation committee:
Dr. D. Bolzoni
Prof dr. P.H. Hartel
Prof dr. F.E. Kargl

Distributed and Embedded Security
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente, The Netherlands

Contents

1 Introduction 5
1.1 Terms . 6
1.2 Problem . 6
1.3 Contribution . 6
1.4 Research Questions . 7
1.5 Thesis Outline . 8

2 General exploitation techniques 9
2.1 Shellcode . 9
2.2 Buffer Overflows . 10

2.2.1 Integer overflow . 11
2.3 Return Oriented Programming (ROP) 14
2.4 Heap Spraying . 15

3 Existing detection approaches 17
3.1 Shellcode . 17
3.2 Use-after-free . 19
3.3 Return Oriented Programming 19
3.4 Heap Spraying . 20
3.5 Other general detection techniques 21

4 Related Work 22

5 Challenges in malicious PDF detection 27

6 Proposed detection technique 31
6.1 Case: Adobe Reader’s Javascript interpreter 32
6.2 Approach . 37

7 Proof-Of-Concept implementation 43
7.1 Static vs. Dynamic . 43
7.2 Stand-alone vs. Native . 44

7.2.1 Implementation . 45
7.3 Automated training of the model 48

1

8 Evaluation 50
8.0.1 False positive rates . 51
8.0.2 Detection rates . 52
8.0.3 Performance . 53
8.0.4 Comparison to existing tools 54

9 Conclusion and future work 56
9.1 Future work . 56

2

List of Figures

2.1 Buffer overflow with integer overflow prerequisite 11
2.2 Overwriting function pointer to divert execution flow 12
2.3 Overwriting SEH-chain entry to divert execution flow 12
2.4 Artificial example of use-after-free attack 13
2.5 Heap littered with shellcode . 15

3.1 Memory block being scanned by Nozzle 20

4.1 Heap-Spraying attack in Javascript by Debasis Mohanty 23
4.2 Detecting non-standard behavior of Adobe’s Javascript interpreter 25
4.3 Anatomy of PDF exploits and detection techniques 26

6.1 CVE-2009-0927, collab.getIcon malicious example 34
6.2 CVE-2009-1492, doc.getAnnots malicious example 34
6.3 CVE-2009-1493, spell.customDictionaryOpen malicious example 34
6.4 CVE-2009-4324, media.newPlayer malicious example 35
6.5 CVE-2008-2992, util.printf malicious example 35
6.6 CVE-2007-5659, collab.collectEmailInfo malicious example . . . 36
6.7 Phases of the proposed technique 37
6.8 Example functions calls, and the resulting model 40
6.9 Integer underflow example . 42

7.1 Adobe Reader execution flow when parsing Javascript function
calls . 46

7.2 PDF with input fields automatically filled 49

8.1 Screen shot of an ’exceptional’, benign PDF 52

9.1 Scenario of updating model after a false positive alert. 58
9.2 Using IDA Pro to identify functions 59
9.3 Hooked LoadLibrary function 60

3

List of Tables

2.1 School board example of a stack-based buffer overflow 10

5.1 Filters supported by the PDF specification and their intended use 30

6.1 Existing vulnerabilities inside Adobe Reader 33

7.1 Comparison of native vs stand-alone proof-of-concept implemen-
tation . 44

8.1 K-fold Cross Validation results for different K 51
8.2 Average loading time of PDF document with and without detection 53
8.3 Summary of PDF detection tools 54
8.4 Scenario to bypass PDF detection tools 55
8.5 Comparison of PDF detection tools 55

4

Chapter 1

Introduction

According to Stone-Gross et al. [58], malware has shifted from being a “hobby”
to becoming a business tool for cyber criminals. So-called Advanced Persis-
tent Threats (APTs) often make use of custom-made malware for penetrating
highly confidential computer networks and steal sensitive information, or dis-
rupt critical processes. Unlike “regular” threats, APTs have access to skillful
resources thanks to the financial support provided either by criminal organiza-
tions or state-sponsored agencies, and can be active for years before actually
conducting an attack, in order to collect intelligence information about their
targets. This intelligence enables APTs to successfully conduct social engineer-
ing attacks which often go together with malicious electronic documents as an
attack vector.

There are two main reasons why electronic documents are a good carrier of
malicious payload. First, the large installed base of software packages such as
Microsoft Office or Adobe Reader, make them a safe bet for attackers. Second,
victims exchange electronic documents with their colleagues on a daily basis,
it is only natural for a victim to open an electronic document from a seem-
ingly trustworthy source, referring to a relevant topic such as “notes from a
yesterday’s meeting” or “2011 Recruitment plan” (used in the 2011 RSA hack).
Examples of APT attacks include DuQu [11, 12] where a Microsoft Office Word
document was used, the 2011 RSA hack [51] using a malicious Microsoft Of-
fice Excel spreadsheet and recently a 0-day vulnerability 1 (CVE-2013-0640 and
CVE-2013-0641) in Adobe Reader being used against governmental institutions
around the world.

Because of the way APTs operate, current security countermeasures are
seldom effective at detecting, let alone preventing, the majority of such cyber
attacks. Three factors make an APT cyber attack difficult to counter, namely
the exploitation of 0-day vulnerabilities, the use of electronic documents as at-
tack vectors and the use of social engineering. In particular, by leveraging 0-day
vulnerabilities, attackers are able to evade mainstream security countermeasures

1http://www.fireeye.com/blog/technical/cyber-exploits/2013/02/the-number-of-

the-beast.html

5

like those based on signatures.
In this thesis we focus on detecting malicious electronic documents. We pro-

vide a proof of concept implementation of our new detection method in Adobe
Reader to show how effective it is at detecting malicious Javascript bearing PDF
documents.

1.1 Terms

Exploitation technique The method by which an attacker attempts to gain
control over a targeted application. Examples include buffer overflows, format
strings, use-after-free, etc.

Vulnerability Instance of an exploitation technique in an application, attack-
ers aim to find vulnerabilities and use them to gain control of the application.

Exploitation attempt Attempt by an attacker to exploit a particular vul-
nerability in an application. The attempt does not need to be successful.

1.2 Problem

Current detection approaches for malicious documents are unable to perform
host-based detection at a targeted victim as they suffer from computational
penalties often too high for a regular user’s workstation [20, 49, 56]. Secondly,
novel attack vectors may remain undetected as current approaches do not use
the same components as the official document reader. For example, detection
tools aimed at malicious PDFs all adopt third-party PDF parsers for their de-
tection logic. Differences in these parsers compared to mainstream PDF readers
such as Adobe Reader are used by attackers to evade detection. Further, existing
detection techniques focus on detecting a single or a small subset of exploitation
techniques. Consequently, attackers have put a lot of effort in designing obfus-
cation techniques that make identification by these existing tools more difficult,
and small variations of the same exploitation technique could remain undetected
by these specific detection techniques.

1.3 Contribution

The aim of this research is to find the root cause of exploitation techniques
used in Javascript bearing PDFs, and to design a technique to detect this root
cause, independent of exploitation technique. We propose to detect malicious
Javascript bearing PDFs by observing the Javascript function calls and the func-
tion parameter values. Calls to rarely used functions, or calls with exceptional
function parameter values may indicate an attempt to exploit a vulnerability in
the PDF reader.

6

Our contribution is threefold. First, we propose an effective detection tech-
nique for the detection of malicious Javascript bearing PDFs. The detection
technique is general in nature and can in all likelihood be applied to similar
domains, such as detection of drive-by-download attempts using Javascript in
browsers. Second, our proof-of-concept implementation in the closed source
Adobe Reader serves as a stepping stone for instrumenting closed source in-
terpreters with the purpose of malware detection. Finally, since our imple-
mentation uses the same components as Adobe Reader it can be modified to
extract the embedded Javascript from PDF documents. Since existing detec-
tion approaches require Javascript to be extracted from PDF documents prior
to analysis, our implementation can either be used as a Javascript extractor for
these tools, or to verify the Javascript extracted by third-party PDF parsers.

1.4 Research Questions

Generally, detecting exploitation attempts is a difficult problem. A great num-
ber of offensive techniques to exploit applications exist, ranging from trivial
buffer overflows to sophisticated multi-stage attacks. Many detection techniques
have been proposed in the literature that target a single or a small subset of
exploitation techniques efficiently. There exist tools aimed at more general de-
tection, but they suffer from computational penalties which limit a wide-spread
adoption.

This research aims to answer the following research question(s), to advance
the field of general detection techniques.

How can we detect exploitation attempts, independent of exploita-
tion technique and at the same time efficient enough to be run on a
targeted victim without affecting its computational performance.

To support answering the main research question, we consider exploitation
techniques used in malicious Javascript bearing PDFs and try to identify their
root case.
We’ve further split the research question into the following sub-questions:

1. What exploitation techniques exist?

2. How are the exploitation techniques applied in malicious PDFs?

3. What is the current state of detecting malicious Javascript bearing PDFs?

4. What detection techniques exist aimed at detecting the above exploitation
techniques?

5. What are the detection challenges specific to PDFs?

6. Do the exploitation techniques share a root cause?

7. If such a root cause exists, what detection and false positive rates can be
achieved by identifying the root cause?

7

1.5 Thesis Outline

Chapters 2 and 3 discuss general exploitation and detection techniques, inde-
pendent of application or domain to introduce the reader to the field of exploit
detection. The focus does however lie on exploitation techniques commonly seen
in malicious documents. Chapter 4 continues with the state of the art concern-
ing detection of malicious Javascript bearing PDFs followed by Chapter 5 on
challenges specific to the detection of malicious Javascript bearing PDFS.
Chapters 6 and 7 introduce our new detection approach and the implementation
of the approach in Adobe Reader. Our approach is evaluated in Chapter 8 and
finally we conclude in Chapter 9.

8

Chapter 2

General exploitation
techniques

In this Chapter we describe current exploitation techniques that apply to any
application. Given the large number of different exploitation techniques, we do
limit the discussion to techniques commonly found in malicious documents.
For a successful exploitation of an application, some conditions must hold. First,
the attacker needs to be able to provide some form of input to the application
(for example, a document to an electronic document reader, font files, images,
data over a network stream, etc.). Second, the application, or any third-party
module involved in processing the user input must contain a vulnerability that
gives the attacker control over the content of the memory, and eventually control
over the execution flow of the application. Once the attacker has control over
the memory, she can change it in such a way that the application executes
instructions of the attacker’s choosing.

2.1 Shellcode

One way of executing malicious instructions is by loading shellcode into the
application’s memory, and diverting the execution flow of the application to
this shellcode (Section 2.2 and 2.2.1). There may be size restrictions on the
memory region that the attacker controls. Therefore, the shellcode is usually
a small piece of code that starts a reverse-shell1 (hence the name, shellcode)
or downloads and executes additional components from the Internet, which is
referred to as dropping.

In some cases, the shellcode can be delivered to the application through
normal user input (such as a network stream). It can even be part of the
input that triggers the vulnerability to divert execution flow to the shellcode.

1When a reverse-shell is started on a victim’s computer, it listens for incoming connections
from the attacker. Once connected, the attacker can execute arbitrary commands on the
victim’s computer

9

As application hardening techniques became more commonly implemented over
time, loading shellcode has shifted towards heap spraying which will be discussed
in Section 2.4.

2.2 Buffer Overflows

Return from main

Return from foo

Buffer

S
ta

ck
G

row

B
u

ff
er

G
ro

w void foo(const char* UserInput)

{

char Buffer[200];

// Copy until null-terminator

strcpy(Buffer, UserInput);

}

Table 2.1: School board example of a stack-based buffer overflow

An easy to exploit, and prevalent type of vulnerability is a (stack-based)
buffer overflow. Buffer overflows occur when the application copies input from
the user into a buffer that is not large enough to hold the input. Figure 2.1
shows a simplified x86 stack. A 200 byte buffer is allocated on foo’s stack
frame and user-input is copied into this buffer without respecting the 200 byte
limit. Since the buffer grows upwards in the Figure (Buffer[0] is at the bot-
tom, Buffer[199] at the top), the attacker can overwrite the return address that
was pushed onto the stack before the buffer (‘Return from foo’) [4]. On x86
architecture, whenever a CALL instruction is executed, the memory address of
the instruction following the CALL instruction is pushed onto the stack. Then,
when the CPU next executes a ‘RET’ instruction, this address, whose value
is now controlled by the attacker, is popped from the stack and execution is
resumed at this address. Since the attacker controls the stack, execution is
resumed at an attacker-controlled memory location, such as previously loaded
shellcode.
In a correct, non-vulnerable version of the example, the ‘strcpy ’ call would need
to be replaced with a call to ‘strncpy(Buffer, UserInput, 200)’. This would
limit the number of bytes copied into Buffer to 200, preventing ‘Return from
foo’ to be overwritten when UserInput is larger than 200 bytes.

One technique to prevent the execution flow from diverting to an attacker
controlled location is by performing sanity checks on the return addresses on
the stack. This is typically done by placing a ‘canary’ value below a return
address on the stack [9]. Each time the CPU executes a RET instruction, it
checks the validity of the canary value before diverting execution flow to the
return address. Clearly, the canary value must be unpredictable.

10

If in the example the buffer would be large enough to contain the shellcode,
the attacker could divert control to the same buffer and the shellcode would be
executed on the stack. With Data Execution Prevention (DEP)[18], regions in
memory where executable code is not expected are marked as Non-Executable.
It is uncommon for a typical application to execute instructions that are located
on the stack, therefore the stack can be marked as Non-Executable in most
typical applications. This does not prevent the attacker from overwriting return
addresses on the stack, but she can no longer execute shellcode that is in the
same buffer as the one used to overwrite the return address.

DEP may cause compatibility problems with existing applications, it is there-
fore possible to programmatically disable DEP which will be discussed in Section
2.4 on Heap Spraying.

2.2.1 Integer overflow

In some cases, a prerequisite to a buffer overflow is that an integer value over-
flows. Computers are natively only able to express numbers up to a certain
value. For example, on 32-bit systems the maximum value of an unsigned in-
teger is 232 − 1 (or ‘4.294.967.295’). Integer overflow [21] vulnerabilities are
particularly difficult to detect [14] as integer overflows cannot (conveniently) be
detected after they have happened.

Integer overflows do not allow for direct modification of the application’s
memory, or for control over the execution flow. A common case where integer
overflows can enable buffer overflow vulnerabilities is when arithmetics cause an
overflow and the result is used to determine the buffer size. Figure 2.1 shows an
example of how an integer overflow can enable a buffer overflow vulnerability.

i n t ∗ copyArray (i n t ∗ input , i n t count)
{

i n t ∗ r e s u l t = (i n t ∗) mal loc (count ∗ s i z e o f (i n t)) ;
i f (NULL == r e s u l t)

re turn NULL;
f o r (i n t i = 0 ; i < count ; ++i)

r e s u l t [i] = input [i] ;

r e turn r e s u l t ;
}

Figure 2.1: Buffer overflow with integer overflow prerequisite

If an attacker controls count, she directly controls how much memory is
allocated for result. By choosing a sufficiently large value for count, the mul-
tiplication ‘count * sizeof(int)’ will overflow and become a different, smaller
number. Since the overflow is undetected, the call to malloc will return success-
fully, but allocate less memory than expected, and the for loop will write past

11

the end of result, resulting in a heap overflow.

Other execution flow diversion techniques

i n t main (i n t argc , const char ∗∗ argv)
{

char Buf f e r [200] ;
void (∗pFoo) (const char ∗) = &foo ;

// Copy u n t i l nu l l−terminator
s t r cpy (Buf fer , argv [1]) ;

pFoo (Buf f e r) ;
r e turn 0 ;

}

Figure 2.2: Overwriting function pointer to divert execution flow

i n t main (i n t argc , const char ∗∗ argv)
{

char Buf f e r [200] ;
t r y {

// Copy u n t i l nu l l−terminator
s t r cpy (Buffer , argv [1]) ;

} e x c e p t (GetExceptionCode () ==
EXCEPTION INT DIVIDE BY ZERO ?
EXCEPTION EXECUTE HANDLER :

EXCEPTION CONTINUE SEARCH) {
// Handle except ion

}
re turn 0 ;

}

Figure 2.3: Overwriting SEH-chain entry to divert execution flow

In the section on buffer overflows, the return addresses present on the stack
was overwritten to divert the execution flow of the application. This is the most
generally applicable technique, but others exist. Consider an artificial applica-
tion as shown in Figure 2.2. A function pointer, pointing to the foo function is
placed on the stack before a buffer overflow vulnerability. After input from the
command line has been copied to the 200 byte buffer, foo is called through the
function pointer pFoo. Exactly as with overwriting the return address in the
previous example, the attacker can now overwrite the value of the pFoo pointer,

12

and thus directly control the execution flow of the application. Note that stack
canaries will not be effective against this type of vulnerability as the attacker
does not need to overwrite the return address. Some compilers implement array
variable reordering [24] which would cause ‘Buffer ’ to be allocated at the top of
the stack frame, in which case overflowing ‘Buffer ’ does not overwrite ‘pFoo’.

A similar but possibly more prevalent method is to overwrite SEH (Struc-
tured Exception Handler) pointers in Windows applications. In short, when a
Windows application uses exceptions as shown in Figure 2.3, a SEH-chain is
pushed onto the stack so that in case of an exception, execution flow can be
diverted to a suitable exception handling routine. Again, by overwriting one of
the SEH-chain entries with attacker controlled values she can divert execution
flow by triggering an exception (such as divide by zero or illegal instruction)
which causes the control flow to divert to the attacker controlled value.

Use-after-free

1 A∗ pA = new A;
2 d e l e t e pA; // pA i s now a ’ dang l ing po inter ’
3
4 B∗ pB = new B; // s i z e o f (A) == s i z e o f (B)
5 // I t i s l i k e l y that pA == pB here
6
7 // Here , B’ s v tab l e i s used f o r the func t i on c a l l .
8 pA−>v i r t u a l f u n c t i o n c a l l () ;

Figure 2.4: Artificial example of use-after-free attack

Use-after-free vulnerabilities are very application-specific, and difficult to
exploit [3, 61]. In general, the structure of the attack is as follows:

1. the application allocates an object ‘A’ on the heap;

2. the object ‘A’ is freed, any pointers to ‘A’ are now considered dangling,
meaning that they refer to an object that no longer exists;

3. the attacker allocates one or more objects ‘B’ of the same size as ‘A’;

4. with a high probability, one of the ‘B’ objects will be allocated in the
previous heap location of ‘A’;

5. the application calls a virtual function on the ‘A’ object, whose memory
location is currently filled be the attacker-controlled ‘B’.

Figure 2.4 shows in pseudo-code what happens in a use-after-free attack.
Since the vtable of ‘B’ is used in the call on line 8, the attacker gains control of
the application’s control flow under the right conditions.

13

In object oriented languages such as C++, the vtable is used to determine the
memory location of a function at run-time. This run-time, as opposed to compile
time dependency allows classes to form a hierarchy, and overload functions of
their base classes. We can think of the vtable as a list of ‘pFoo’ pointers as
seen in Figure 2.2. So naturally, if the attacker control the vtable of an object,
she controls the application’s execution flow whenever a virtual function of this
object is called.

2.3 Return Oriented Programming (ROP)

A technique to circumvent Data Execution Prevention is not to overwrite one
return address, but rather to place a chain of return addresses on the stack in
such a way that each ‘RET’ instruction executes a small portion of the malicious
code. Since the attacker can not execute code on the stack, she needs to find
‘gadgets’2 in the application’s code section and push the addresses of these
gadgets on the stack. It has been shown that in a typical application, ROP can
be used to execute arbitrary code [52]. When the attacker uses gadgets from
the standard-C library, which is present in most applications, this is called a
return-to-libc attack.

Consider that an attacker wishes to increment the EAX and EBX registers.
She needs to find one or more executable locations in memory that effectively
perform inc EAX, inc EBX, followed by a RET instruction, and place the
addresses of these instructions on the stack.

Buffer overflows, ROP, and most offensive techniques in general, require the
attacker to be aware of the location of certain objects in memory. Clearly when
the attacker overwrites a return address to jump to her shellcode, she needs
to know where in memory the shellcode resides. Address Space Layout Ran-
domization (ASLR) [18, 53] is a technique that randomizes an application’s
address-space layout, either at compile time or at each new execution of the
application. ASLR-enabled dynamic libraries will be loaded into memory at
unpredictable offsets each time. Shacham et al.[53] show that ASLR can ef-
fectively be beaten on 32-bit systems by brute-force. The authors show that
any buffer overflow can be modified to beat ASLR in on average 216 seconds of
overhead. More importantly, even in modern operating systems, not all sections
of the address space are randomized, due to executables that have fixed load
addresses [26] or dynamic library incompatibilities with ASLR [19]. Finally, in
some cases the base address of a loaded dynamic library can be brute forced
[53] or calculated through a leaked pointer [64].

ROP attacks are made more difficult by ASLR because the location of the
gadgets will be unpredictable. Though even with a limited number of ASLR-
disabled modules, it is still possible to perform part of an attack using the ROP
technique, such as disabling Data Execution Prevention.

2Small set of instructions ending with a ‘RET’ instruction. Each ‘RET’ pops the address
of the next gadget from the stack and starts executing it

14

2.4 Heap Spraying

Figure 2.5: Heap littered with shellcode

With ASLR enabled, an attacker has much less certainty about where in
memory her shellcode resides. This caused the rise in popularity of using heap
spraying techniques. Heap spraying is a technique to litter the heap of an ap-
plication with instances of the shellcode at predictable address ranges. If an
application supports interpreted languages such as Javascript, then these can
be used to perform the heap spray ‘legitimately’, i.e. without exploiting a vul-
nerability. Otherwise a vulnerability must exist in the application which allows
the attacker to allocate large portions of heap space, and fill it with copies of
the shellcode.
Once the heap spraying stage is complete, a vulnerability such as a buffer over-
flow can be used to divert the execution flow to a semi-random location in the
application’s heap which is now likely to contain the shellcode.

In practice, the shellcode is often prepended with a NOP-slide3 to increase
the likelihood of diverting the execution flow to a location that will eventually
lead to execution of the shellcode. Figure 2.5 shows a heap, littered with in-
stances of the shellcode. Somewhere in the code, a buffer overflow or other type
of exploit is triggered to divert the execution flow. If a memory region marked
other than ‘NOP ’ is hit, the application may crash.

If the heap is marked as Non-Executable by Data Execution Prevention
techniques, a ROP attack is first needed to programmatically disable DEP.
Techniques to disable DEP using Return Oriented Programming are described

3A NOP-slide is a set of instructions that have no effect on the CPU state, e.g. inc EAX,
dec EAX

15

in [55]. While heap sprays in itself are not malicious, they are a crucial part of
modern malware that is able to operate on systems that have been hardened
using ASLR techniques. In fact, we will see in Section 6.1 that all recent exam-
ples of Adobe Reader exploits use the Javascript interpreted language to spray
shellcode into the heap before triggering any vulnerabilities.

16

Chapter 3

Existing detection
approaches

In this chapter we discuss the current state of detection for the exploitation
techniques listed in the previous section. First, shellcode detection is discussed
in Section 3.1 followed by techniques to detect Return Oriented Programming
and heap spraying attack in Section 3.3 and 3.4 respectively.. Finally, general
approaches that do not focus on detecting one particular exploitation technique
are discussed in 3.5.

3.1 Shellcode

Shellcode detection has been a much discussed topic in the literature. Ideally one
would like to scan an application’s input such as a PDF document or a network
stream and be able to detect shellcode without having to execute anything. This
is known as static detection.

The early forms of static detection techniques were signature based, where
input is simply scanned for sequences of bytes, called signatures, used previ-
ously in known attacks. If the signatures are carefully constructed to uniquely
identify certain malware, the false positive rate is low which makes them pre-
ferred in Intrusion Prevention Systems, where false positives mean disruption
to honest users of the system. Clearly, signature based systems require con-
stant updates when new attacks are found in the wild and thus result in large
signature databases.

Toth and Kruegel propose static techniques to search for common shell-
code patterns such as NOP-slides [59] or structural similarities between different
worm instances [32]. These methods have similar advantages as signature based
systems, but due to their static nature they are easily evaded. For example,
shellcode that modifies itself during execution [45] will evade detection as the
static method is only able to scan the initial form of the shellcode, it is unable to
scan the modified, malicious form of the shellcode. Furthermore, the shellcode

17

Positive Negative
Static Speed

Undetectable
Safe (nothing is executed)
All code available, inde-
pendent of whether it is
actually executed often

Prone to obfuscation
Cannot scan run-time de-
pendent input

Dynamic Resistant to obfuscation
Run-time data available

Detectable
May miss rarely executed
parts of code
Prone to time outs

can use indirect jumps to avoid detection, as the jump location depends on data
that is only available at run-time [45].

Dynamic techniques attempt to disassemble input into valid CPU instruc-
tions, and execute them on an (often emulated) CPU. These techniques are
more robust against shellcode whose execution flow depends on run-time data
and self-modifying shellcode, as eventually the underlying malicious shellcode
will be executed and analyzed. A problem with dynamic analysis is that if the
shellcode is executed on an emulated CPU, the shellcode may detect imper-
fections in the emulation and stop execution, or it may unintentionally stop
functioning due to the imperfections. Also, in targeted attacks the attacker
may verify presence of specific characteristics of its target, such as a specific
user name, before showing malicious behavior. Since dynamic techniques at-
tempt to emulate the shellcode, and only a limited time frame is available for
this analysis, an attacker can evade detection by inserting long running loops
to reach the detector’s execution threshold before executing the malicious shell-
code. Finally, emulation based detection techniques may lack a view of the
system’s state such as the complete address space of the target application, or
CPU registers. The implications can be limited by instrumenting the emulator
with commonly used system libraries which the shellcode may use, resulting in
an emulator that more closely resembles a real machine.

Polychronakis et al. propose a dynamic technique for network-level detec-
tion of self-decrypting polymorphic shellcode [45]. Self-decrypting polymorphic
shellcode is shellcode in encrypted form, prepended with a decryption routine
to make it self-decrypting. The technique combines two heuristics to detect
the decryption routine of the shellcode. First, for the decryption routine to
work it must obtain the current absolute memory address of the shellcode, this
is referred to as Get Program Counter, or GetPC. Three common techniques
of GetPC are described in [45]. Secondly, the decryption routine will perform
many read operations in the small memory region where the encrypted shellcode
resides. Polychronakis et al. combine these two heuristics to effectively detect
polymorphic shellcode. Since the detection technique focuses on detecting the

18

decryption routine present in polymorphic shellcode, it does not detect plain or
metamorphic1 shellcode.

Polychronakis et al. improve on this in [46] by proposing a general purpose
dynamic shellcode detection technique based on heuristics. The heuristics at-
tempt to detect common shellcode behavior such as kernel32.dll base address
resolution, and SEH-based GetPC code.

3.2 Use-after-free

Use-after-free vulnerabilities are difficult to detect efficiently. One way is to
track whether a pointer is ‘dangling’ (referring to a freed object). This results
in a run-time cost at every memory access and is generally unacceptable. More
recently research has shifted towards more secure memory allocation algorithms
[3, 39, 25] with promising results.

3.3 Return Oriented Programming

Detection of Return Oriented Programming attacks have received less attention
in literature, but the number of attacks using ROP is expected to grow with
increasing adoption of Data Execution Prevention techniques. Currently, ROP
attacks as seen in the wild are known only to have been used to disable memory
protection such as DEP, and to divert control to traditional shellcode [47]. This
means that the attack as a whole could still be detected if the ROP stage
goes unnoticed. However, it has been shown that ROP can be used to execute
arbitrary code in a typical application [52]. Such a ROP-only attack would go
unnoticed by shellcode detectors, as there is no shellcode.

ROP attacks can be stopped in two ways, either by reducing the number
of available gadgets in an application or by scanning memory buffers that hold
user input for sequences of gadget addresses. To reduce the number of available
gadgets, compiler extensions [36, 42] have been proposed that specifically limit
the number of usable gadgets emitted by the compiler. While this is an effective
technique, quick and widespread adoption is inhibited by the need to recompile
existing applications. Secondly, run-time solutions as proposed in [16, 20] in-
cur significant run-time overhead which limits their adoption. Finally, Vasilis
Pappes et al [44] introduce a method to reduce the number of available gadgets
on existing binaries using in-place code randomization. As opposed to other
methods [1, 13, 30] that work on existing binaries, the in place code random-
ization does not require debugging symbols to be available. In fact, debugging
symbols are typically not available in commercial software and thus would have
similar drawbacks as the compiler extensions.

A second technique, dubbed ROPScan [47] by Polychronakis and Angelos
takes a similar approach to dynamic shellcode detectors. ROPScan initializes

1Metamorphic shellcode is modified before execution, and thus does not contain a decryp-
tion routine

19

a CPU emulator with a snapshot of the virtual memory of the application it
aims to protect. Next, the input is scanned for valid addresses within the
process’ virtual memory. Existence of valid addresses in an input alone is not
an indication of a ROP payload, as by chance data may contain valid addresses.
Therefore, when a valid address is found ROPScan attempts to start execution
at that address. If the execution flow resembles ROP behavior (chain of short
sequences of instructions followed by ‘RET’), ROPScan marks it as malicious.

3.4 Heap Spraying

Figure 3.1: Memory block being scanned by Nozzle

Ratanaworabhan et al. introduce Nozzle [50]. Nozzle hooks into the fam-
ily of memory allocation functions such as malloc. It keeps track of all cur-
rently allocated memory blocks, and periodically scans these blocks for valid
x86 instructions. Since arbitrary data may contain many valid x86 instructions,
these instructions are first analyzed to determine whether they look like a NOP
slide. This is done by constructing execution flow graphs from arbitrary start-
ing points. It is considered a NOP slide if many execution flows reach the same
basic block, which may indicate the start of the shellcode. Figure 3.1 illustrates
this.

When an application makes many heap allocations, the overhead of Nozzle
is significant, making it impossible to deploy at an end user’s machine.

20

3.5 Other general detection techniques

Besides techniques designed specifically to detect one or a small subset of ex-
ploitation techniques, more general techniques exist. A technique quite different
to the previously discussed is called automated dynamic malware analysis. Here,
the goal is to detect the observable effects of a malware infection, regardless of
the exploitation technique used. Tools implementing this technique either use a
fully emulated environment [10, 27] or instrument an environment [65] in such a
way to monitor security-related events of the sample under analysis. Security-
related events include file system and network activity, registry modifications
and process creation.

Advantage of these tools are that no specific exploitation technique is being
targeted, thus previously unknown malware can be detected as long as it trig-
gers some maliciously looking set of security events.
The listed security events are perfectly legitimate and performed by many legit-
imate applications, so often human interaction is required to determine whether
the sample is malicious or not. Consider an FTP server application. Under
normal circumstances it can read, create and write files, spawn sub-processes
to delegate part of the work load, etc. An attacker may want to do the same
things when she exploits a vulnerability in the FTP server, the only differences
is that she does it without the proper credentials. In the case of electronic doc-
ument readers, this is less of a problem. It is unusual for a document reader
such as Adobe Reader to download and execute a binary file, thus observing
this pattern indicates that the sample is malicious with high probability.

Systems like CWSandbox [65] use API hooking to log the security events,
which is easily detected by the malware, allowing it to terminate or perform
only benign actions in the presence of CWSandbox. TTAnalyze [10] improves
on this by completely emulating a PC in software making detection by the
malware more difficult but still possible through exploiting timing differences
between a real system and the emulated PC.

Techniques similar to malware analysis can be used for prevention. As noted,
it is unusual for document readers to download and execute binary files and as
of such, this action can be prohibited without the explicit consent of the user, to
stop an infection. The process of explicitly allowing what certain applications
can do, as opposed to explicitly disallowing, is called white listing.

21

Chapter 4

Related Work

Some of the early work on detecting malicious PDF documents has focused on N-
gram [54] analysis of the PDF file. W.-J. Li et al. propose [37] a static detection
method that uses N-gram to compare documents to normality-models based on
benign and malicious documents. The scanned document is classified as benign
or malicious depending on a similarity score between the two normality models.
The downside of this technique is that is requires sufficiently large data sets of
both benign and malicious documents. Furthermore, the method requires the
malicious content of the scanned document to be sufficiently large for it to have
a statistical meaning.

Detecting malicious Javascript, or Javascript based heap-spray attack in
PDF documents is a relatively new field. However, we can learn from previous
work done in the field of drive-by-download detection. Drive-by-downloads often
exploit vulnerabilities in the browser’s Javascript interpreter, and use Javascript
to perform a heap-spraying attack, much like in malicious PDF documents.

M. Egele et al. introduce a technique [22] to detect code injection attacks in
browsers through Javascript heap sprays. The authors note that most Javascript
heap sprays are performed through consecutive string allocations as shown in
Figure 4.1. To detect the code injection, Egele et al. instrument Mozilla’s
Javascript interpreter SpiderMonkey[41] to scan each newly allocated string with
shellcode emulator libEmu [8]. LibEmu attempts to disassemble the string buffer
and reports when it finds 32 consecutive valid CPU instructions, or when its
shellcode detection heuristics detects one of the GetPC techniques [45].

As with detection of shellcode, both static and dynamic detection techniques
have been proposed to detect malicious PDF documents. Laskov and Ŝrndić in-
troduce PJScan [35], which is a tool for static detection of malicious PDF
documents that use Javascript. The extracted Javascript is interpreted on Spi-
derMonkey, which is modified to only do lexical analysis of the Javascript code.
The lexical tokens are then classified as benign or malicious by the One-Class
Support Vector Machine(OCSV)[17] learning method. As with n-gram analy-
sis, the OCSV model needs to be trained with a representative set of malicious
documents. An advantage of the system is its high performance, compared to

22

var payload = unescape(”<Ommitted f o r c l a r i t y >”) ;
var nop =””;
f o r (iCnt =128; iCnt>=0;−−iCnt)

nop += unescape(”%u9090%u9090%u9090%u9090%u9090 ”) ;

heapblock = nop + payload ;
b igb lock = unescape(”%u9090%u9090 ”) ;
h e a d e r s i z e = 20 ;
spray = h e a d e r s i z e+heapblock . l ength

whi l e (b igb lock . length<spray)
b igb lock+ = bigb lock ;

f i l l b l o c k = bigb lock . s ub s t r i n g (0 , spray) ;
b lock = bigb lock . s ub s t r i n g (0 , b igb lock . length−spray) ;

whi l e (b lock . l ength+spray < 0x40000)
block = block+block+f i l l b l o c k ;

mem = new Array () ;
f o r (i =0; i <1400; i++)

mem[i] = block + heapblock ;

Figure 4.1: Heap-Spraying attack in Javascript by Debasis Mohanty

23

dynamic methods. The authors note that the system has a high rate of false
positives when analyzing benign documents that contain Javascript resulting in
a tool that is only marginally better than flagging all Javascript bearing docu-
ments as malicious. A proposed solution would be to adopt a similar two-class
model as in N-gram by training a separate model with benign Javascript bearing
documents however at the time of writing, this has not been implemented.

The first step of a dynamic detection technique introduced by Tzermias et
al. is the same as in PJScan. MDScan [60] feeds the extracted Javascript to
SpiderMonkey, which has been extended to include the most often used extended
Javascript API methods found in malicious documents. Next, the technique
scans Javascript string buffers in a similar way to Egele’s method against drive-
by-downloads. MDScan scans the buffers using shellcode detector Nemu [46] and
has later been extended to include ROPScan [47]. In Chapter 8 on evaluation,
we will compare the effectiveness of MDScan with our proposed solution more
thoroughly. The authors note that their technique may be ineffective if the
attacker exploits vulnerabilities in the PDF Reader’s Javascript interpreter that
may not be present in SpiderMonkey or if extended API methods are used that
the authors did not yet include in SpiderMonkey.

Any tool that uses a different Javascript interpreter than Adobe’s suffers
from three drawbacks. First, the different Javascript interpreter needs to be ex-
tended to support Adobe’s extension to the Javascript API for PDF documents,
which is large and difficult to fully implement. Secondly, malware can leverage
non-standard behavior of Adobe’s Javascript interpreter to detect whether it is
being executed on Adobe’s interpreter or a different one. For example, Adobe’s
interpreter does not allow the type of global variables to change after initial-
ization, while the Javascript specification specifically allows this [66, 48]. How
this can be used to detect whether the Javascript code is executed on a differ-
ent Javascript interpreter is shown in Figure 4.2. On line 2, a string literal is
assigned to a variable that was previously of type ‘boolean’. If the Javascript is
interpreted on Adobe’s interpreter, the resulting value of ‘testIfAdobe’ will be
true, as opposed to being “string variable” on a standard complying Javascript
interpreter, such as SpiderMonkey.

Finally, before being able to run the Javascript found in a PDF document
on a different interpreter it needs to be extracted from the PDF document. Due
to the complexity of the PDF standard, this is a non-trivial task that we will
further elaborate on in Chapter 5 on challenges involved in detection malicious
Javascript bearing PDFs.

Automated malware analysis engines have been adopted to accept PDF files
as well. This resulted in an easier combination of static and dynamic tech-
niques. MalOffice [23] first scans the input with certain AntiVirus scanners
and PE-detectors to look for known malware and embedded executable files.
Next the Javascript is extracted from the PDF in a similar way to PJScan and
MDScan, using the pdftoolkit and it looks for suspicious variable names, code
obfuscation techniques and the use of known vulnerable Javascript functions.
Code obfuscation techniques can also be used for legitimate purposes, such as
protection of Intellectual Property and is thus not a definitive sign that the

24

1 te s t I fAdobe = f a l s e ; // boolean type
2 te s t I fAdobe = ” s t r i n g v a r i a b l e ” ; // s t r i n g type
3
4 // type change ’ ignored ’ by Adobe
5 i f (t e s t I fAdobe == true)
6 {
7 // Code i s running under Adobe Reader
8 } e l s e
9 {

10 // Code i s running under custom i n t e r p r e t e r
11 }

Figure 4.2: Detecting non-standard behavior of Adobe’s Javascript interpreter

PDF is malicious. On top of the static analysis, MalOffice submits the sam-
ple to CWSandbox [65] and applies some heuristics to the generated report to
determine if the sample is malicious. The authors have composed a black and
white list of suspicious and benign actions respectively.

Discussion Figure 4.3 shows the flow of typical PDF exploits, either using
Javascript, native vulnerabilities or a combination of the two. For each detec-
tion technique, and applicable general detection techniques it is shown which
stage of the exploit the technique focuses on. In Chapter 8 we compare the de-
tection performance of existing tools with each other and our proposed detection
technique.

25

Figure 4.3: Anatomy of PDF exploits and detection techniques

26

Chapter 5

Challenges in malicious
PDF detection

In addition to detecting exploits such as the ones listed in Chapter 2 there are
additional challenges that need to be overcome when detecting malicious PDFs.

What follows is a short description of the main structure of PDF documents
and how Javascript plays a role in it.
A PDF file’s structure contains the following elements:

1. header with PDF specification version number (%PDF-x.y).

2. body with actual content of the PDF file (PDF Objects).

3. cross-reference table listing indirectly referenced objects and their location
in the file.

4. trailer with location of the cross-reference table and some objects in the
file’s body.

In the body, the PDF specification allows for eight types of objects: booleans,
integer and real numbers, strings (as a sequence of literal characters, or a se-
quence of hexadecimal numbers), names (used as identifiers), arrays, dictio-
naries, null and streams objects (dictionary objects followed by a sequence of
bytes surrounded by stream and endstream keywords. Streams can be used
to represent large objects, such as images or Javascript code. Streams can be
encoded or uncompressed using filters listed in Table 5.1).

Some notable features [66] of Adobe Reader include, but are not limited to:

• OpenGL Rendering.

• ADBC (Adobe Database Connectivity).

• Execute embedded Flash files.

• Execute embedded Javascript code.

27

• Embed arbitrary files, exportable from the GUI.

• Launch arbitrary programs.

• Play embedded sound and video files.

• Digital signatures, DRM, XML parsing, bar codes

• . . .

As we have seen in Chapter 4 on related work, most of the current detec-
tion tools specific to detecting malicious Javascript bearing PDFs require the
Javascript to be extracted from the PDF document before it can be analyzed.
Tzermias et al. [60] and Laskov et al. [35] describe some of the challenges in-
volved with extracting Javascript from PDF documents. The complexity (over
2500 pages) and ambiguities of the PDF specification [28] make extraction of all
the objects a non-trivial task. Additionally, many PDF readers including the
most widespread Adobe Reader attempt to render non standard compliant doc-
uments to provide a better user experience. In fact, the PDF specification [28]
specifically states that it does not specify “methods for validating the confor-
mance of PDF files or readers”. This gives attackers room to hide their exploit
code in obscure places to make extraction more difficult.

Apply filters A relatively simple obfuscation method, is to apply filters to
the streams that contain Javascript. The PDF format supports adding any
combination of filters, listed in Table 5.1, to streams in the document. Detection
tools need to be able to support all filters in order to reveal the actual contents
of the stream. Also, the specification allows for filter abbreviations, such as /F1
for the /FlatDecode filter that must be supported.

An example of a malicious document hiding with the use of filters is described
in [7], the document uses a JBIG2Decode filter, which is defined in the PDF
specification as a pure image filter. However, in the malicious document it is
used on an arbitrary object stream which existing detection tools did not expect
and thus did not apply the filter, leaving the underlying Javascript invisible.

Encryption Attackers can apply RC4 or AES encryption to object streams,
making static analysis more difficult. The encryption key used can be made
dependent on some content in the PDF, for example by calling ’getPageNth-
WordQuad ’. This function requires the PDF to by graphically rendered to
obtain the coordinates of the word making it very difficult to implement in
custom Javascript interpreters such as SpiderMonkey.

Non-standard PDF Some PDF readers, including Adobe Reader are relaxed
towards parsing non standard compliant documents. For instance keywords
such as endobj and endstream are accepted when written as objend, streamend
respectively. Additionally, PDF documents should contain a cross-reference
table, listing indirectly referenced object and their location in the file. Objects

28

not listed in this table are still parsed by many PDF readers; in fact, most PDFs
are rendered correctly even when the cross-reference table is fully omitted.

In some cases, the size of a PDF object can be described in several ways
such as an explicit size specification or the actual number of bytes between
stream and endstream keywords. It is up to the PDF reader’s implementation
to chose which size specification to respect in case of a mismatch. So even though
detection techniques using third party PDF parsers may claim their technique
can detect exploits targeting any PDF reader, this is not completely true as
a specifically crafted PDF may be parsed differently by different PDF reader
implementations. Many more PDF parsing idiosyncrasies, including object size
ambiguities, are described in [66].

The PDF specification describes extra Javascript methods in the form of
an extension to the Javascript API specifically for PDF documents. The API
provides functionality for document specific objects, properties and methods.
This extension is important in malicious documents. Javascript code or data
on which the exploit depends can be hidden in an object that is only accessible
through the extension API (such as getPageNthWord()). The custom Javascript
interpreters used in existing detection tools only implement those objects of the
API which are currently used in the wild by malicious PDF documents and
which are easy to implement. Functions such as getPageNthWord() require the
complete PDF document to be rendered (correctly!) in order to return the
expected result. The remaining API objects are implemented with an empty
function body, so that if a PDF uses one of the unimplemented functions, no
run-time error occurs. This means that the exploit will remain dormant when
it is executed on a custom Javascript interpreter that does not implement the
necessary PDF-specific API function.

It should be clear that extracting all Javascript code is a non-trivial task and
furthermore, open source Javascript interpreters need to be extended to include
the PDF specific API which has proven difficult [48, 66]. Notable work on PDF
analysis has been performed by Didier Stevens [57], specifically on techniques to
extract embedded Javascript. Stevens released two important tools; PDFiD and
a PDF parser. The first can be used to identify characteristics of a PDF such as
whether it contains any embedded Javascript code. Suspicious documents can
be analyzed further using Stevens’ PDF parser which can for example be used
to extract Javascript and possibly embedded Shellcode.

In conclusion, no matter how well designed custom PDF parsers become,
there is always a risk of interpreting a PDF file differently from “real” PDF
readers such as Adobe Reader that are used by the end user. This may re-
sult in false negatives when Adobe Reader is able to extract certain Javascript
where the custom PDF parser fails. While analysis of Adobe Reader’s parsing
capabilities has come a long way, it remains possible that hiding or obfusca-
tion techniques are being used in the wild that are unknown to the security
community. This problem is similar to detection of 0-day vulnerabilities.

29

ASCIIHexDecode Decodes data encoded in an ASCII hexadecimal rep-
resentation, reproducing the original binary data.

ASCII85Decode Decodes data encoded in an ASCII base-85 represen-
tation, reproducing the original binary data.

LZWDecode Decompresses data encoded using the LZW (Lempel-
Ziv-Welch) adaptive compression method, reproduc-
ing the original text or binary data.

FlateDecode Decompresses data encoded using the zlib/deflate
compression method, reproducing the original text
or binary data.

RunLengthDecode Decompresses data encoded using a byte-oriented
run-length encoding algorithm, reproducing the orig-
inal text or binary data (typically monochrome im-
age data, or any data that contains frequent long
runs of a single byte value).

CCITTFaxDecode Decompresses data encoded using the CCITT fac-
simile standard, reproducing the original data (typ-
ically monochrome image data at 1 bit per pixel).

JBIG2Decode Decompresses data encoded using the JBIG2 stan-
dard, reproducing the original monochrome (1 bit
per pixel) image data (or an approximation of that
data).

DCTDecode Decompresses data encoded using a DCT (discrete
cosine transform) technique based on the JPEG stan-
dard, reproducing image sample data that approxi-
mates the original data.

JPXDecode Decompresses data encoded using the wavelet-based
JPEG2000 standard, reproducing the original image
data.

Crypt Decrypts data encrypted by a security handler, re-
producing the data as it was before encryption.

Table 5.1: Filters supported by the PDF specification and their intended use

30

Chapter 6

Proposed detection
technique

In this Chapter we derive our novel detection technique from a case study of
Javascript vulnerabilities in Adobe Reader.
From the discussion on related work in Chapter 4 we identify 6 problems that
we aim to solve in this Chapter:

1. Existing techniques are vulnerable to unknown Javascript hiding or ob-
fuscation techniques.

2. Exploits depending on a specific Javascript interpreter, such as the one
embedded in Adobe Reader, may fail to run under existing techniques.

3. Exploits depending on the PDF specific Javascript API may fail to run
under existing techniques.

4. Existing dynamic techniques are detectable by the malicious document.

5. Existing dynamic techniques are susceptible to time outs.

6. No existing PDF specific technique is able to do efficient host-based, real-
time detection out of the box.

At the root of most classes of vulnerabilities lies improper or missing valida-
tion of user input. This allows the attacker to control elements of the application
that she is not meant to control, such as the number of bytes to be copied into
a buffer and indirectly the return addresses resident on the stack, or pointers to
(exception handling) routines. To exploit a vulnerability in the implementation
of a function, malware has to supply a parameter that does not comply to the
“function specifications”, and this non-compliance is usually readily observable
if the malware sample is compared to examples of legitimate use of the same
function.
Automated tools exist [29, 34, 62] to find vulnerabilities in source code, such

31

as invalid or missing input validation. However, these tools are cumbersome to
use either because of a high false positive rate, or because they require addi-
tional annotations [34] from the developer to assist in the vulnerability analysis.
Additionally, static analysis tools lack run-time context that a vulnerability
may depend on, while dynamic tools may miss vulnerabilities residing in rarely
executed parts of the application, where vulnerabilities are likely to reside.

It is clear that it is not sufficient to simply educate developers of potential
security problems, the fact is that buffer overflow vulnerabilities still exist, even
though it has been over one and a half decade since Aleph One’s infamous paper
‘Smashing the stack for fun and profit ’ [4]. Even if an application is built from
the ground up with security in mind, it is only natural that rarely used routines
receive less attention from developers compared to commonly used functionality.
We discuss the case of the ‘media.newPlayer (CVE-2009-4324)’ vulnerability in
Adobe Reader. Another function, ‘media.createPlayer ’ exists which is similar
in functionality to ‘media.newPlayer ’, yet only ‘media.newPlayer ’ is vulnerable
to a use-after-free vulnerability. The Adobe PDF API specification [2] reads:

In most cases, it is better to use app.media.createPlayer instead of
doc.media.newPlayer to create a media player.

This suggests that internally at Adobe the ‘media.createPlayer is considered
more important and received more attention from developers.

In the next section, we will analyze known vulnerabilities found in Adobe
Reader’s Javascript interpreter and use the knowledge gained to attempt to
answer the research questions. We have implemented a proof-of-concept imple-
mentation of the proposed technique in Adobe Reader, as discussed in Chapter
7.

6.1 Case: Adobe Reader’s Javascript interpreter

Adobe Reader1 is an application to parse and display Portable Document For-
mat(PDF) documents. The PDF specification is an open standard, therefore
Adobe Reader is not the only application available to parse and display PDF
documents. Other applications include Foxit Reader2, Evince3, Preview for
Mac users 4, and many more. According to Avast! in July 2011, Adobe Reader
was used by over 80% of its user base, compared to 4.8% of the users using
the second most popular Foxit Reader [6]. We chose to analyze Adobe Reader
because of its popularity, especially in corporate environments, and also because
of the wide availability of exploit information.

The PDF specification (ISO 32000-1) [28] is an extremely complex docu-
ment. The specification for the basic PDF functionality counts over 2500 pages
[66]. This includes only the ISO specification, the Javascript API reference for

1http://www.adobe.com/products/reader.html
2http://www.foxitsoftware.com/Secure_PDF_Reader/
3http://projects.gnome.org/evince/
4http://support.apple.com/kb/HT2506

32

CVE Vulnerable Function Anomaly Samples

CVE-2009-0927 Collab.getIcon Unusually large
string argument
‘cName’

85

CVE-2009-1492 doc.getAnnots Large nega-
tive integer
arguments

10

CVE-2009-1493 spell.customDictionaryOpen Unusually large
string argument
‘cName’

0
(linux
only)

CVE-2009-4324 media.newPlayer NULL argument 6
CVE-2008-2992 util.printf Unusually large

floating-point
argument

10

CVE-2007-5659 Collab.collectEmailInfo Unusually large
string argument
‘msg ’

150

Table 6.1: Existing vulnerabilities inside Adobe Reader

version 8.1 and the XML Forms architecture specification. Not included are the
3D Annotation specification, XMP specification nor any of the font specifica-
tions. This complexity makes parsing PDF documents a non-trivial task as we
discussed in more detail in Chapter 5. Many vulnerabilities have been found
in the parsing logic of PDF readers, but these vulnerabilities will not be the
focus of this discussion. Instead, we look at vulnerabilities involving Javascript
in PDF documents.

The PDF specification allows for the use of Javascript to provide dynamic
content in PDF documents, such as automated form validation. Javascript is a
dynamic, weakly typed scripting language commonly used to provide dynamic
content on web sites. We will elaborate further on using the proposed technique
to protect browsers from drive-by-downloads5 in Chapter 9, on future work.

PDFs that contain malicious Javascript attempt to exploit vulnerabilities
in the Javascript interpreter embedded in the PDF reader. In this section,
we will iterate known Adobe Reader exploits that exploit vulnerabilities in the
Javascript interpreter. Table 6.1 gives an overview of the most prominent vul-
nerabilities available today. All the listed vulnerabilities are stack-based buffer
overflows, except the media.newPlayer vulnerability, which is a use-after-free
vulnerability. The column Anomaly refers to what is unusual in a malicious call
to the vulnerable function compared to a benign call. For example, an overly
large buffer passed to ‘Collab.getIcon’ to trigger a buffer overflow.

Figures 6.1 through 6.6 show examples of malicious function calls for each
of the listed vulnerabilities.

5Drive-by-download exploits are often carried out through vulnerabilities in the Javascript
interpreter of the browser.

33

CVE-2009-0927: ‘Icon collab.getIcon(cName)’

var b u f f e r = unescape(”%%10%%10%%10%%1f ”) ;
whi l e (b u f f e r . l ength < 0x6000)

b u f f e r += b u f f e r ;
app . doc . Col lab . ge t I con (b u f f e r) ;

Figure 6.1: CVE-2009-0927, collab.getIcon malicious example

collab.getIcon is used to return an Icon object associated with the specified
name. Example benign usage of this function is to change the icon of a button,
based on some user interaction like selection from a drop-down list.

The malicious use of the function passes an extremely large buffer of 24 KB
as the cName parameter. This triggers a buffer overflow vulnerability in the
logic of the function.

CVE-2009-1492: ‘Annot[] doc.getAnnots(nPage, nSortBy, bReverse,
nFilterBy)’

t h i s . getAnnots
(−134217728 ,−134217728 ,−134217728 ,−134217728) ;

Figure 6.2: CVE-2009-1492, doc.getAnnots malicious example

doc.getAnnots is used to return an array of Annot objects based on the
optional search parameters. Example usage of this function is to retrieve all
Annot objects on a given page, for example doc.getAnnots(1) retrieves all
Annot objects from the second page in the PDF.

The malicious use of the function passes large negative numbers as all the
search parameters causing memory corruption which may lead to arbitrary code
execution.

CVE-2009-1493: ‘bool spell.customDictionaryOpen(cDIPath, cName,
bShow)’

s p e l l . customDictionaryOpen {cName : repeat (4096 ,
unescape(”%u0909%u0909 ”)) }) ;

Figure 6.3: CVE-2009-1493, spell.customDictionaryOpen malicious example

customDictionaryOpen is used to add a custom dictionary to the list of
available dictionaries.

34

The malicious use of the function involves passing an overly large buffer to
parameter cName, similar to the getIcon vulnerability. This triggers a buffer
overflow vulnerability in the logic of the function. This vulnerability is re-
lated to CVE-2009-1492, doc.getAnnots and is only applicable on Unix systems,
therefore this vulnerability is not included in our tests.

CVE-2009-4324: ‘MediaPlayer media.newPlayer(playerArgs)’

u t i l . p r intd (”1 .000000000 .000000000 .1337 : 3 . 1 3 . 3 7 ” ,
new Date ()) ;

t ry {
media . newPlayer (n u l l) ;

} catch (e) {}
u t i l . p r intd (”1 .000000000 .000000000 .1337 : 3 . 1 3 . 3 7 ” ,

new Date ()) ;

Figure 6.4: CVE-2009-4324, media.newPlayer malicious example

media.newPlayer is used to instantiate a MediaPlayer object. The docu-
mentation on media.newPlayer states that in most cases it is better to call
media.createPlayer which has the same function signature as media.newPlayer
but is not vulnerable to the same vulnerability. This may indicate that more
thought has gone into developing the media.createPlayer function compared to
the vulnerable media.newPlayer.

The malicious use of the function passes a null argument, causing a use-
after-free vulnerability to be triggered. A requirement is that prior to the call
to media.newPlayer an object of the same size is placed on the stack. Samples
in the wild commonly use the Date object, which due to the invalid checking of
null argument will be used instead in the call to media.newPlayer.

CVE-2008-2992: ‘string util.printf(cFormat, . . .)’

var num = // <long number ommited : ∼ 12× 10294>
u t i l . p r i n t f (”%45000 f ” ,num) ;

Figure 6.5: CVE-2008-2992, util.printf malicious example

util.printf is used to format one or more variables as a string according to
a given format. Example usage of this function is to convert a number into its
hexadecimal representation.

The malicious use of the function attempts to parse an overly large number
as a floating point. This triggers a buffer overflow vulnerability in the logic of
the function.

35

CVE-2007-5659: ‘collab.collectEmailInfo(msg, . . .)’

Col lab . c o l l e c t E m a i l I n f o ({msg : repeat (4096 , unescape
(”%u0909%u0909 ”)) }) ;

Figure 6.6: CVE-2007-5659, collab.collectEmailInfo malicious example

collab.collectEmailInfo is an undocumented method in the Collab API, but
its purpose can be guessed from its name. The malicious use of the function
passes an overly large buffer as msg parameter, similarly to the Collab.getIcon
vulnerability. This triggers a buffer overflow vulnerability in the logic of the
function.

36

6.2 Approach

Figure 6.7: Phases of the proposed technique

In this section we propose a novel detection technique dubbed FCScan .
Even though the discussion throughout the thesis is focused on detecting mali-
cious Javascript in PDFs, FCScan can in principle be applied to other domains
such as detection of malicious Actionscript in Adobe Flash objects, malicious
Visual Basic for Applications macros in Microsoft Office documents or detec-
tion of drive-by-download attempts using Javascript in browsers. In Chapter 9
on future work we will discuss the effort involved in porting FCScan to other
domains.

On a high level, FCScan is a technique to detect anomalies in the malicious
use of functions, compared to their benign use. To do this, we model the
characteristics of a benign function call and compare these characteristics to
future uses of the function. In the first of two phases, FCScan is fed with
samples that are known or expected to be malware-free (benign samples). From
these benign samples, FCScan creates a model of the function identifier and
each function parameter, we call this the detection model. The approach is

37

deterministic, meaning that for a given input the resulting model is always the
same.

In the second phase FCScan is fed with samples that are unknown to be
benign or malicious. We compare function identifiers and the function parameter
characteristics from the unknown sample with the previously obtained benign
detection model. Intuitively, the approach is based on self-learning white listing,
as originally introduced in [15, 63], then used for network intrusion detection.
Advantages of this approach include:

Universal This approach can be applied to detect malware in PDF docu-
ments, for both Javascript and Flash bearing documents, as well as any other
kind of electronic document, including Microsoft Office Word and Excel docu-
ments or web pages that exploit vulnerabilities in browsers through Javascript.

Platform and implementation independent The detection is completely
independent of the platform the system is built on. For example, an imple-
mentation of FCScan done by extending Adobe Acrobat Reader could detect
malware that exploits a vulnerability in XPdf, or in previous versions of Adobe
Acrobat Reader itself unless the malicious document specifically checks for a
particular version.

Lightweight The system does not require emulation, OS-based instrumenta-
tion or other computationally expensive analysis. Thanks to its minimal foot-
print, users can run it on their systems without observing any significant degra-
dation in performance. The only overhead is due to the interposition with actual
functions for monitoring (as low as 50 microseconds per Javascript function call
(see Chapter 8)).

Amenable to privacy preserving collaborative malware detection The
underlying detection model is deterministic, meaning that the outcome is easily
predictable and that viewing a legitimate sample for the second time does not
cause any modification in the detection model (notice that this would not be
the case if we had used a machine learning technique like a neural networks).
These characteristics allow the merging of legitimate learning samples, thereby
decreasing the false positive rate. The merging of samples can easily be done in
a privacy preserving way, as we only need to exchange function codes together
with an abstraction of their parameters (length, observed ranges, etc.). This
allows detection models to be shared between different organizations, as will be
further discussed in Chapter 9.

Modular Unlike typical anomaly detection approaches, the learning and the
detection phase do not have to be disjoint, this allows for a modular learning
phase, in which the detection model is improved each time a new legitimate
sample is detected. This can be done without stopping the detection phase.

38

A collaborative detection model, built by multiple trusted clients is envisioned
and discussed further in Chapter 8

FCScan flags a sample as malicious in two cases. Either the unknown sam-
ple contains a function identifier that is not present in the detection model, or
a function is called with arguments that have unusual characteristics compared
to the model.

Figure 6.7 shows the learning and testing phases visually. A model is
built from a certain number of benign samples containing function calls to
Function1(P1 1, P1 2) and Function2(P2 1, P2 2). A parameter model PMx y

is associated with each parameter Px y, modeling the parameter characteristics
(described below). In the testing phase, the model from the unknown sam-
ple is compared to the detection model. In this case there are two anomalies:
Function3 is not present in the detection model, and the parameter model
PM1

1 1 is unusual compared to the parameter detection model. Thus the un-
known sample is flagged as malicious.

In a real situation with a sufficiently large number of benign training samples
this would indicate that the sample flagged as malicious is “out of the ordinary”.
A previously unseen function call could mean a call to an undocumented function
that is normally never called, or a call to a rarely used documented function
such as media.newPlayer. Differences in the function parameter characteristics
indicate an “out of the ordinary” use of a known function, such as an excessively
large buffer passed to collab.getIcon.

What follows is a description of the function parameter characteristics that
we record in the model.
From the discussion on general exploitation techniques in Chapter 2 and the
vulnerable Javascript functions in Section 6.1 the following function parameter
characteristics follow:

• Parameter length (string or buffer length, array size, . . .)

• Numeric value (integer, floating point values, . . .)

• String characteristics (string encoding, printable vs non-printable charac-
ters, . . .)

Parameter length Often, an unusually large buffer is passed to a function to
trigger the exploit, as is the case with the collab.getIcon vulnerability shown in
Figure 6.1. A buffer of roughly 24 kilobytes is being passed containing garbage
data. collab.getIcon is used to retrieve an icon present in the document, based
on its name. It is unreasonable that under normal circumstances, the same
function will be called with such a large parameter. This would mean that the
document contains an icon identified by a name of over 24000 characters.

All the listed malicious Javascript samples use heap spraying to litter the
memory with instances of the shellcode, but it is not uncommon to carry the
shellcode in the same buffer that is used to trigger the exploit, especially in
network-level exploits [5]. Since shellcode is often larger in size than typical

39

// Function d e c l a r a t i o n s
func t i on Function1 (arg1 , arg2 , arg3) ;
f unc t i on Function2 (arg1) ;

// Learning func t i on c a l l s
Function1 (” f i r s t argument ” , ” second argument ” , 3) ;
Function1 (”” , ” second argument ” , 10) ;

Function2 (1024) ;
Function2 (1) ;

// Resu l t ing Model
Function1 (count : 2)
{

arg1 (s t r i n g) [0−14]
arg2 (s t r i n g) [15−15]
arg3 (i n t e g e r) [3−10]

}
Function2 (count : 2)
{

arg1 (i n t e g e r) [1−1024]
}

// Example anomalous func t i on c a l l s :

// Parameter l ength ’ arg2 ’ out o f range
// 0 out s id e o f [15−15]
Function1 (” f i r s t argument ” , ”” , 3) ;

// Numeric va lue ’ arg1 ’ out o f range
// 2147483647 out s id e o f [1−1024]
Function2 (2147483647) ;

Figure 6.8: Example functions calls, and the resulting model

40

string parameters, such as names, this could be detected in the same way. The
above is even more true for ROP payloads as these payloads can not be heap
sprayed and many gadget addresses may be needed to create functioning shell-
code making an unusually large buffer inevitable.

In the learning phase, FCScan records the minimum and maximum pa-
rameter length passed to a function. In testing phase, the parameter length is
compared to the benign detection model.

Numeric value The util.printf vulnerability shows the importance of record-
ing the range of numeric values of parameters. The vulnerability is triggered by
attempting to parse a floating point number and passing an excessively large
integer (∼ 12× 10294). Similarly, in the getAnnots vulnerability, large negative
numbers are used to trigger the exploit. Again, it is clear that both large float-
ing point numbers, and large negative numbers are not commonly found when
using these functions.

In the learning phase, FCScan records the minimum and maximum value
of numeric parameters passed to a function. In testing phase, the numeric value
is compared to the benign detection model.

String characteristics In some exploitations, the shellcode is passed to the
function taking a buffer or string as argument. This case can be detected by
recording characteristics of the string buffer in the model. Characteristics may
include whether or not non-printable characters are allowed, which string en-
codings have been used (ASCII, UTF-8, UTF-16, . . .), etc. As seen in Section
6.1, the majority of Javascript exploits use the heap spraying technique to in-
troduce shellcode into memory, thus limiting the effectiveness of this parameter
characteristic for detection of malicious Javascript bearing PDF documents. For
this reason, we have only implemented the first two detection parameters.

Judging from the known malicious Javascript functions listed in 6.1 one can
question the need for an anomaly-based detection technique such as FCScan .
It seems sufficient to flag function calls with parameter lengths or parameter
values above a certain large value and check for null parameters. Unfortunately
these simple static checks are insufficient. Consider the vulnerable function
shown in 6.9, in this example a parameter value ‘arg1’ of 9 or lower would cause
an integer underflow resulting in the if statement returning true. Secondly, null
arguments are not necessarily incorrect, simply flagging them as such could
therefore result in a large number of false positives.

41

#d e f i n e HEADER LENGTH 10
unsigned ∗ copyBody (packet : unsigned ∗ , pa cke t l en :

unsigned)
{

unsigned bodyLen = packe t l en − HEADER LENGTH;
unsigned ∗ pArr = mal loc (bodyLen) ;
// . . .
r e turn pArr ;

}

Figure 6.9: Integer underflow example

42

Chapter 7

Proof-Of-Concept
implementation

In order to support our thesis we provide a proof-of-concept implementation of
FCScan to detect malicious Javascript-bearing PDF documents. In the first
two sections, high level design is discussed, namely whether to implement a dy-
namic or a static detection technique, and whether to implement the technique
as stand-alone software or natively in the PDF reader. In Section 7.2.1 the de-
tails of how to record the relevant Javascript function calls and their parameters
is discussed and we conclude in Section 7.3 with an automated way of training
the benign models.

Even though the proposed detection technique can in principle be applied to
other domains, the Javascript interpreter embedded in Adobe Reader is particu-
larly suitable as the use of malicious Javascript inside PDFs is a well-established
exploitation technique, resulting in many different malicious samples and elabo-
rate techniques used by attackers to hide the Javascript from existing detection
techniques.

7.1 Static vs. Dynamic

In general, to detect the presence of malware one can use either a static, as in
signature-base anti virus, or a dynamic approach that relies on observation of
how the alleged malware actually behaves or monitors certain memory areas for
changes. Static analysis is susceptible to evasion by using obfuscation techniques
or techniques that rely on data that is only available at run-time. Therefore we
focus on dynamic analysis.

Dynamic analysis techniques come in two flavors. First, a specially instru-
mented system [27, 40, 65], can be used which simulates a normal environment
and analyzes the behavior of the sample under analysis. The goal is to trick the
malware into thinking that it is running on a normal victim’s machine, though
replicating a victim’s environment in a precise way, including meaningful user

43

behavior is a complex task. Even though it is more difficult to bypass than static
approaches, it is still possible by using timers or long running loops to reach
the environment’s execution threshold, by using decryption routines based on
information that is unique to the targeted victim (i.e. user names) or by de-
tecting the presence of the simulated environment and only performing benign
actions in that case. The second flavor of dynamic analysis techniques can be
implemented on the victim’s system. In this case the detection takes place while
the malware is trying to infect the system. In the worst case, if the malware de-
tects the presence of the analysis engine, at least the attack is mitigated. While
some researchers have worked in this direction, their approaches either suffer of
computational penalties often too high for the user’s workstation [20, 49, 56],
or require white listing several regular processes, which could be used to evade
detection, in order to suppress false alerts [33].

FCScan is implemented using the second dynamic analysis flavor.

7.2 Stand-alone vs. Native

Native Stand-alone
+ Guaranteed same behavior as tar-
get application

- Prone to parsing errors or differ-
ences

+ Undetectable through Javascript - Leverage implementation differ-
ences to detect analysis engine

+ Can be used for host-based, real-
time detection

- Cannot be used for real-time de-
tection

+ Detects application-specific ex-
ploits

- Misses application-dependent ex-
ploits

- Difficult, custom implementation
required

+ Open Source tools available

- Specific to single application + Independent of application

Table 7.1: Comparison of native vs stand-alone proof-of-concept implementation

The second choice to make is whether to implement FCScan on a third
party Javascript interpreter, or to instrument Adobe Reader natively. The cho-
sen dynamic analysis flavor already biases this choice towards a ‘native’ variant,
but it still makes sense to look at all of the pro’s and con’s.

All existing detection tools for malicious Javascript bearing PDFs use cus-
tom PDF parsers and third-party Javascript interpreters. This simplifies the
implementation, but as discussed in Chapter 4 this comes with certain draw-
backs. Table 7.1 summarizes the pro’s and con’s of implementing a detection
technique natively compared to using a custom, stand-alone approach.

The PDF specification is an immensely complex document and over the
years attackers have become extremely skilled in leveraging these complexities
to hide or obfuscate Javascript objects in PDF documents. Much research has

44

gone into finding these techniques and writing more robust PDF parsers. While
the current state of this problem appears adequate, there is no guarantee that
attackers won’t find another way to hide Javascript objects from these custom
parsers while remaining valid under the Javascript interpreters embedded in
PDF readers. An advantage of using a third party Javascript interpreter and
custom PDF parsers is that the detection technique becomes independent of the
PDF reader. On the other hand, some malicious Javascript may depend on a
specific implementation of the Javascript interpreter and fail to run elsewhere.
Furthermore, specific non-standard behavior of the embedded Javascript inter-
preter can be used to detect whether the Javascript is running on a custom
interpreter and change its behavior accordingly.

We choose to implement FCScan natively by instrumenting Adobe Reader’s
Javascript interpreter:

• Shows technical feasibility of natively instrumenting an arbitrary binary
application.

• The solution can be used for host-based, real time detection.

• Additional contribution by laying bare the inner workings of the Adobe
Reader Javascript interpreter.

• By understanding the embedded Javascript parser, it can be used to ex-
tract Javascript from PDFs for other detection tools, removing the need
for error-prone custom parsers.

• Extracted Javascript can be used to verify third party PDF parsers used
in existing detection tools.

• FCScan observes the exact same behavior as the application it’s instru-
mented in.

7.2.1 Implementation

Figure 7.1 shows the basic steps involved in processing a Javascript function
call inside a PDF document. From the Javascript parser, the function call
information (function name, parameters, etc.) is extracted and passed to the
MethodDispatcher. The MethodDispatcher looks up the function name in a
global table with a {function name; function pointer} relation. It then calls the
function pointer, passing unparsed argument information. All Javascript API
function that take one or more arguments share the same preamble and call to
the ArgumentParser. Functions with zero or a variable number of arguments
do not call the ArgumentParser. Currently, FCScan lacks the supporting of
parsing arguments to functions that take a variable number of arguments, this
is left for future work. Adding this support requires two steps:

1. Identify functions with variable number of arguments.

45

Figure 7.1: Adobe Reader execution flow when parsing Javascript function calls

2. Dissect function’s logic and add hooks just like in the ArgumentParser.

To identify all functions that take a variable number of arguments, we can not
solely rely on the API documentation. Only a fraction of the API is publicly
documented, and we are particularly interested in the APIs that are obscure and
undocumented. However, by leveraging the fact that Adobe Reader contains a
Javascript lookup table (see Figure 7.1) we can write a “crawler” which scans
all of the API functions for a call to the ArgumentParser. If there is no such
call, the function either has zero or a variable number of arguments.
From an initial, quick implementation it seems there are roughly 10 functions
with a variable number of arguments, making a custom implementation for these
functions alone feasible.

All information required for the detection logic can be obtained by hooking
the MethodDispatcher and ArgumentParser. From the MethodDispatcher we
obtain the function name and from the ArgumentParser we obtain the type
of the argument and a pointer to a buffer with the value from which we can
determine the numeric value, or the buffer length.
The logic for different Javascript functionality is split over multiple dynamic
libraries (.api files) that are loaded on demand by the Adobe Reader application.
Each .api library contains a MethodDispatcher and an ArgumentParser. In our
proof of concept we have instrumented the two most common .api libraries:
EScript and Multimedia. The effort involved in instrumenting all .api files is
discussed in Chapter 9.

hooking To implement our detection logic, we need to introduce code in
Adobe Acrobat Reader which gets executed each time the MethodDispatcher
and ArgumentParser are called. This can be achieved in several ways. First,
by attaching a scriptable debugger to the Reader, breakpoints can be placed in
locations where the custom logic needs to be inserted. The debugger’s scripting

46

language can then be used to implement the logic. While this method works
well for developing the solution, it is not suitable for mainstream use due to the
fact that a debugger must be running alongside Adobe Reader, and the perfor-
mance impact of using the debugger is unacceptable. Considering the relative
ease with which the detection logic can be changed, FCScan was developed
using this method.
Much work has been done on creating ‘dynamic binary instrumentation’ tools.
These tools make it easy to instrument a binary without having to worry about
architectural details. One notable example is ‘Pin’ [43, 38], developed by Intel.
Pin would allows us to insert hooks in arbitrary locations in the application,
and run custom code when they are executed. Unfortunately, Pin suffers from
the same drawback as using a debugger in that it needs to run alongside the
application under analysis. We did not investigate the performance impact of
Pin in the context of rendering a PDF document with Adobe Acrobat Reader.
Finally, the more labor intensive, but also the most rewarding technique is to
implement custom hooks ourselves by patching the code of Adobe Reader while
it is running. This method is chosen for FCScan as it will allow FCScan to
run at the end-user without additional third-party dependencies.

To load FCScan automatically when Adobe Reader starts, we implemented
FCScan as a plug-in to Adobe Reader. Plug-ins provide extra functionality
to the Reader at run-time. In fact, most of the Reader’s default functionality
is implemented using plug-ins. Officially, third-party plug-ins need to register
with Adobe to obtain a cryptographic key. This key is used to register with the
Adobe Reader application. Without a valid key, a plug-in should not be loaded
according to the documentation. (Un)fortunately, the implementation of this
logic is flawed.
At start-up, Adobe Reader will load any file from the plug ins directory with
a .api extension. After loading, Adobe Reader calls two plug-in initialization
routines that among other things validate the cryptographic key of the plug-in.
When the second initialization function fails for whatever reason, an error dialog
is shown to the user that an (unauthorized) plug-in failed to load. However,
if the first initialization function fails (simply by returning false), no error is
generated and the plug-in is simply unloaded.
A .api file is simply a dynamic link library (DLL) which is loaded by calling
LoadLibrary and unloaded through FreeLibrary by Adobe Reader. On Win-
dows, LoadLibrary increments a reference count for the DLL, and FreeLibrary
decrements it. The DLL is not actually unloaded by FreeLibrary until the ref-
erence count reaches 0. Since our custom plug-in is not registered with Adobe,
Adobe Reader will call FreeLibrary when the first initialization function fails.
However, our plug-in can call LoadLibrary on itself, incrementing the reference
count to 2. Now when FreeLibrary is called our plug-in is not actually unloaded,
since its reference count is still 1. Since there is no error dialog, there is no ob-
struction to the end-user and our detection logic runs unobtrusively. It is even
still possible to use parts of the Adobe Reader’s API which should normally
only be available to registered plug-ins.

47

7.3 Automated training of the model

Inspection of the training data set, discussed in Section 8, showed that many
PDFs require user interaction to trigger execution of the Javascript. Simply
opening and closing the PDF would not result in an accurate representation of
the Javascript embedded in the PDF.
Most common user interaction required:

• Enter text in field

• Change field (trigger input validation)

• Tick and untick check boxes

• Press buttons (reset, print, email form etc.)

Each of the above actions can potentially open pop-up windows that need to
be closed, such as the print dialog when pressing the print button or windows
shown by calling Javascript’s alert() function, to inform the user of an input
error. To be able to train the model automatically, we designed a best-effort
method to simulate user interaction by using a macro recording and play-back
application. The application is instructed to wait for Adobe Reader’s window
to gain focus, after which it consecutively types ‘<space>abcdef12346,./;’[]̄-’,
followed by TAB (to switch to the next field) and ENTER (in case the next
field is a button or a check box, press it). The combination of alphanumeric
and special characters results in a high chance to trigger input validation errors
which are usually added to date or other numeric input fields. Since pop-ups
can appear at any moment and disrupt the above ‘flow’ of key presses, we’ve
instructed the macro application to close any child window of Adobe Reader as
soon as it opens. The above macro application, together with a python script
to iterate all PDFs in a specific folder, and wait for it to close before opening
the next allows for semi-automatic (and fast) training of the model. Note that
each PDF was still inspected manually for any out of the ordinary user input.
Clearly, this semi-automatic training is far from being perfect, and will affect
the results of the testing phase, in particular the false positive rate.

As any other anomaly-based approach, noise could be incorporated in the
detection model, for example by accidentally learning from an actual malicious
sample. Since the model is easily represented in human readable form, unlike
approaches based on neural networks and n-gram analysis, (expert) users can
review the detection model and discard any well-known malicious functions or
unusual/suspicious parameter characteristics. Similarly, once the training model
is built, functions with a sample count below a certain small threshold could be
discarded automatically.

Figure 7.2 shows a PDF after its form has been automatically filled in. Note
that check boxes are ticked and each field is filled in (some fields are configured
to only accept numeric input, these fields do not show the alpha and special
characters).

48

Figure 7.2: PDF with input fields automatically filled

49

Chapter 8

Evaluation

In this chapter, we will evaluate the proof-of-concept implementation of our
detection technique, and compare it to existing techniques that were discussed
in Chapter 4 aimed at detecting malicious Javascript bearing PDF.
We start with a description of the benign sample set used, followed by the
false positive analysis in Section 8.0.1. The detection rate and performance are
discussed in Section 8.0.2 and 8.0.3 respectively. Finally, Section 8.0.4 compares
FCScan to existing PDF detection tools.

For the detection technique to work, we must obtain a set of benign PDFs
containing Javascript to train the model with. We chose to obtain the data set
through VirusTotal’s Intelligence program1. The following search term gives
us PDFs containing Javascript that haven’t been flagged as malicious by any
scanners:

tag:js-embedded type:pdf positives:0

We obtained 676 PDFs over a period of three months from VirusTotal using
the previously mentioned search query. The downloaded number of samples
was much higher than 676, but after inspecting the sample set it became clear
that many samples were duplicates of each other, even though the SHA-1 hash
was different. It appears that people submit similar PDFs over and over to
Virus Total. One example that stood out was a Chucke Cheese’s discount
ticket2. The ticket contains an expiry date and a unique number, meaning that
the SHA-1 hash of the PDF is different for each ticket. The original sample
set contained dozens of these tickets. We believe that the chance that these
duplicate samples contain different Javascript function calls is small, and thus
leaving the duplicates in the sample set would result in a positively biased false
positive rate.
Out of the 676 unique PDFs, 35 did not contain any Javascript function calls but
simply a table of contents that navigate to a specific page on click by setting

1http://www.virustotal.com/intelligence/
2https://www.virustotal.com/intelligence/search/?query=

2e63921b5ac581600b2abd12f60583d240b2a55a980f663d4e97b67b8d6ef9bd

50

‘this.pagenum = X;’. Again, leaving these PDFs in the sample set the false
positive rate would be lowered unfairly. Removing these PDFs results in an
effective dataset of 640 PDFs containing 140 unique Javascript functions.

8.0.1 False positive rates

To determine the false positive rate of FCScan , we analyze the 640 benign
PDFs obtained from VirusTotal. To make the best use of the sample set we ap-
ply a K-fold Cross Validation (sometimes called rotation estimation) algorithm.

In K-fold cross validation, the sample set S is split into K mutually exclusive
subsets (the ‘folds’) of the same size. The model is trained and tested K times,
each time t ∈ {1, 2, . . . ,K} it is trained on S \ St and tested on St. In other
words, the model is trained with all folds except one, which is used for testing.
This process is repeated until all folds have been used for testing once.
Using a K equal to the size of the data set implies training the model with all
samples except one, and using that single sample for testing. What this shows
in our case is how many PDFs contain Javascript function calls that are not in
any of the other PDFs in the sample set.
A value of 10 for K is a generally accepted default in literature [31].

Table 8.1 lists the result of applying the algorithm to the sample set using
different values for K. It is worth noting that the above false positive rates
refer only to samples that contain Javascript. In a normal operative situation
however, only a small number of PDFs actually contain Javascript. A PDF that
does not contain Javascript will never be flagged as malicious.

We note that, out of 10 function calls erroneously flagged as malicious,
roughly 8 are flagged because the function is not in the detection model, and 2
are flagged as malicious because of unusual parameter characteristics. In other
words, false positives are mostly due to a benign PDF using Javascript functions
that haven’t been seen before, rather than using known Javascript function calls
in an unusual way.

K Number of alerts False positive rate
Total Avg per fold

2 20 6.3%
5 6 4.6%

10 3 4.3%
50 0.8 4%

640 0.05 4%

Table 8.1: K-fold Cross Validation results for different K

The cause of false positives can be twofold. Either the training set does
not sufficiently represent the real world, or the PDF in question is exceptional
compared to average real world samples. The first case can be addressed by
increasing the number of training samples, and include samples from multiple
different sources over different time periods. Exceptional samples are a problem

51

Figure 8.1: Screen shot of an ’exceptional’, benign PDF

in any learning-based detection technique as by definition we aim to detect
exceptional samples. An example of an exceptional PDF3 is shown in Figure 8.1.
The PDF shows an interactive 3 dimensional model of a 2 bedroom apartment
for sale. Another example allows a user to dynamically add or remove fields
from the input form in the PDF.
The functions that are unseen in these two exceptional PDFs are clearInterval,
setInterval, getAnnot3D and getAnnots3D for the PDF of the apartment and
displayField for the dynamically modifiable PDF.

8.0.2 Detection rates

All of the vulnerabilities listed in Table 6.1 are detected by our approach except
for the util.printf vulnerability since this function is in the detection model,
and the current version of the proof-of-concept implementation is unable to
parse the parameters passed to util.printf since this function takes a variable

3VirusTotal SHA-1 hash: https://www.virustotal.com/intelligence/search/?query=

5ffaa861d892147ef635e73350869aa74551a9e928a129c35500cdfb891a93d3

52

number of parameters and therefore does not use the ArgumentParser but im-
plements its own custom argument parsing logic. The number of functions that
do not use the ArgumentParser are limited, and can be identified by iterating
through the “Javascript Function Lookup Table” as described in Section 7.2.1.
We stress that this is not a limitation of the approach, the argument passed to
util.printf is extraordinarily large and thus would be detected if the proof-of-
concept implementation is extended to include functions with a variable number
of arguments.

All of the other functions are detected because they are not present in the
detection model, but we already discussed in Section 6.2 that even if the func-
tions were present in the detection model, the parameters of the malicious calls
would violate the parameter characteristics each time.

During our experiments we have noticed that using a threshold for setting
the minimum number of anomalous function calls per PDF documents, below
which a sample is considered benign, negatively affects the detection rate. This
is because even a single malicious function call can be sufficient to perform a
successful exploitation.

8.0.3 Performance

The performance overhead of our implementation is limited. For each Javascript
call, we require one hashed table lookup for the function name and one hashed
table lookup for each of its parameters. Table 8.2 shows the average time of
loading a PDF with and without the detection technique loaded, when 10.000
Javascript calls are performed.

Detection ON Detection OFF Impact
No Javascript X X 0.0s
doc.getAnnots(1, 1, 1, 1) 0.6s 0.2s 0.4s
util.printd() 0.4s 0.2s 0.2s

Table 8.2: Average loading time of PDF document with and without detection

Over 10.000 calls to docs.getAnnots, the overhead is shown to be about 50
microseconds per function call. As described in Section 7.3, the average benign
PDF contains small snippets of Javascript that trigger only on user input. The
purpose of Javascript in PDFs is not to perform lengthy computations involving
many function calls, therefore the overhead introduced by our implementation is
not noticeable under normal usage. In real-life, a regular PDF document would
hardly surpass 2000 Javascript calls. This allows for the tool to be deployed
at the end host, rather than using it only to analyze suspicious PDFs. This
means that the tool can be used for prevention. As soon as an unseen or
unusual function call is observed, the Javascript execution can be stopped and
the potential infection mitigated.

53

8.0.4 Comparison to existing tools

Tool Techniques
PJScan Static

Extract embedded Javascript
Look for malicious Javascript

Signature-less (learning)
MDScan Dynamic

Extract embedded Javascript
Interprets Javascript on SpiderMonkey
Look for shellcode and ROP in memory

MalOffice Static and Dynamic
Extract embedded Javascript
Look for malicious Javascript

Signature based detection
Dynamic analysis using CWSandbox

Black & White list applied to CWSandbox report
FCScan Dynamic

Host based, real-time detection
Use Adobe’s internal interpreter

Signature-less (learning)
Detect anomalies in Javascript function calls

Table 8.3: Summary of PDF detection tools

Table 8.3 summarizes the different PDF detection tool, Table 8.4 lists tech-
niques that would cause a false-negative when applied. Finally, Table 8.5 lists
positive and negative points of each of the detection tools.

It is clear that extraction of Javascript from PDF files is a critical point. At-
tackers are actively looking for new methods of hiding Javascript [66, 48] which
may remain unknown for a long time and would require an update of the detec-
tion tools if found. Static detection techniques suffer from run-time dependent
Javascript, while dynamic techniques can by bypassed by using functions from
the Adobe extended Javascript API for PDFs.

None of the techniques (except for MalOffice’s dynamic analysis) detect ma-
licious PDF’s that do not depend on the use of Javascript. For example, a PDF
with an embedded Flash exploit that carries the shellcode in the Flash object
as well will not be detected by most of the discussed tools.

54

Tool Techniques
PJScan Javascript in unknown location

Run-time dependent Javascript
Non-Javascript dependent exploit

MDScan Javascript in unknown location
Reach execution threshold

Javascript dependent on unimplemented extended PDF API
Detect non-Adobe Javascript interpreter

Non-Javascript dependent exploit
MalOffice Javascript in unknown location

Detect CWSandbox
FCScan Vulnerability in function in un-hooked API

Non-Javascript dependent exploit

Table 8.4: Scenario to bypass PDF detection tools

Tool Positive Negative
PJScan Speed Training required, High

false-positive
MDScan Shellcode & ROP, No training Speed, Javascript interpreter

MalOffice Combination of techniques, Black
and white list

Speed, Static heuristics are simple

FCScan Speed, Low false negative, Host
based, real time detection

Training required

Table 8.5: Comparison of PDF detection tools

55

Chapter 9

Conclusion and future work

In this thesis we present a new and effective approach for detecting malicious
content in electronic documents such as PDF and Microsoft Office documents
dubbed FCScan . Our approach is based on two different phases. First, FC-
Scan observes a number of samples and builds a detection model for every func-
tion call that is invoked while processing the document. Then, when enough
samples have been observed, it flags any subsequent document as malicious that
does not match the built model, either because a called function is not present or
because a function’s parameter characteristics do not match the normal learned
values.

In order to test our approach, we develop a prototype for the ubiquitous
Adobe Reader. Our prototype runs at the endpoint and in real-time, while de-
tecting all of the exploitation attempts based on malicious Javascript contained
in PDF documents we collected from a renowned source, VirusTotal. On the
other hand, our prototype shows a low false positive rate of around 4% when
processing benign Javascript-bearing PDF documents. In real-life we believe
this number could be brought down even further by sharing the learned models
across different organizations, thanks to the privacy-preserving and modularity
characteristics of our approach. Since our approach can run at the end-user
without significant loss of computational performance, and because it is imple-
mented natively in Adobe Reader it can be used as a prevention tool just as well
as a detection tool. When FCScan observes a potentially malicious Javascript
function call, it can halt execution of Adobe Reader, effectively mitigating the
attack. Rather than simply terminating, the user can be asked for confirmation.

9.1 Future work

Learning phase using third-part PDF parser When building a model
of the benign Javascript functions, it is important that most, if not all of the
Javascript inside a benign document is analyzed. The current method adopted
by FCScan relies on random input to trigger the execution of Javascript in-

56

side the benign document. This method does not guarantee that all of the
Javascript inside the document is called, and it is time consuming to analyze a
large number of samples. A better approach would be do use the same method
that existing PDF detection tools use, namely using a third party PDF parser
to extract the Javascript, and then run this Javascript on an instrumented ver-
sion of SpiderMonkey which generates the detection model that can be loaded
by FCScan . This way, a large portion of the Javascript will be analyzed and
many samples can be processed in a short amount of time.
FCScan still needs to be implemented natively in Adobe Reader or any other
PDF reader to be most effective at detecting malicious documents, due to the
limitations of third party PDF parsers as discussed in this thesis.

Support util.prinf-like functions The current proof-of-concept implemen-
tation lacks support for functions taking a variable number of arguments, such
as util.printf. This needs to be addressed.

Support more .api files As explained in Section 7.2.1, the Javascript logic
is split over multiple .api files, each containing a MethodDispatcher and an Ar-
gumentParser. The proof of concept version of FCScan only adds hooks to the
EScript and Multimedia api files, as these contain known vulnerable Javascript
functions. In a future version of FCScan , all of the .api files should be sup-
ported to be able to detect previously unknown vulnerabilities in the Javascript
functions implemented in these .api files.
The effort involved in supporting a new .api file is minor, as the MethodDis-
patcher and ArgumentParser work the same way in each .api file. One way to
find the location of the MethodDispatcher is to craft a PDF with a function
implemented in that .api file (e.g. media.newPlayer in Multimedia.api) and
open the PDF while running Adobe Reader under control of a debugger. In
the debugger, a memory read breakpoint should be placed on the “newPlayer”
string in the Javascript Lookup Table as shown in Figure 7.1. The breakpoint
will hit when the MethodDispatcher reads the “newPlayer” string. The Argu-
mentParser can be found by following the pFunc in the Javascript Lookup Table
and finding the function call matching the ArgumentParser’s signature.

Support collaborative detection model In an operative situation, the
model of what is benign can be stored in the cloud where it is updated by an
oracle or trusted clients in case of a false positive alert. Figure 9.1 shows ‘Client
1’ opening a PDF that is flagged as malicious based on the current model. The
alert information together with a copy of the PDF is sent to an oracle where it
is analyzed further. If the oracle determines that the alert was a false positive,
it updates the global model which is then pushed to all connected clients.

Mitigate attacks Since the Adobe Javascript interpreter is mono-thread, and
our detection technique is implemented in-line a future enhancement would be
to block the PDF reader when an alert is raised, asking the user for confirmation

57

Figure 9.1: Scenario of updating model after a false positive alert.

58

whether to continue parsing the PDF or not. Since all arguments are parsed be-
fore the actual Javascript function is called this would mitigate the exploitation
attempt when the user chooses to abort. This can be combined with the above
collaborative model, giving the user the option to merge the violating functions
into the detection model so that in the future the same PDF will not raise more
false alerts.

Support other domains FCScan ’s approach is general in nature, and not
limited to detection of malicious Javascript bearing PDF documents. Given
the similarities between interpreted languages we will investigate the possibil-
ities of extending the implementation of FCScan to include Actionscript in
Flash objects, either stand-alone or embedded in PDF documents, Javascript in
browsers to detect drive-by-download attempts and to the detection of malicious
Microsoft Office documents.

Figure 9.2: Using IDA Pro to identify functions

Support general compiled binaries Currently, FCScan is only imple-
mented in Adobe Reader to detect malicious Javascript bearing PDFs. We
believe that the technique can be applied in the same way to other interpreted
languages such as Actionscript in Adobe Flash files, or Javascript in browsers.
A more interesting question would be whether the technique can be applied to
a compiled binary in general.

Theoretically, to implement the technique for general compiled binaries,
three problems need to be solved:

• How to uniquely identify functions

• How to identify arguments, and record the parameter characteristics

• How to intercept function calls

Each function in a compiled binary resides in a module, which is loaded at
a certain address in memory. Techniques such as ASLR change the addresses
at which modules are loaded unpredictably. However, the relative offset of the
function compared to the base address of the module remains constant and can

59

ADDRESS LoadLibrary Hooked (St r ing LibraryName)
// Ca l l o r i g i n a l LoadLibrary to obta in module

base address
ADDRESS moduleBase = LoadLibrary Or ig ina l (

LibraryName) ;

i f (”bar . d l l ” == LibraryName)
// Hook the known ’ foo ’ f unc t i on (parameters

read from
// IDA Pro database generated from bar . d l l)
hookFunction (LibraryName , moduleBase , 0

xAABBCC) ;

// Return module base to c a l l e r , j u s t l i k e the
o r i g i n a l f unc t i on

return moduleBase ;

Figure 9.3: Hooked LoadLibrary function

be used to uniquely identify the function once the current base address of the
module is found.

Consider the case of an application calling a function ‘void foo(int)’ that
resides in a module ‘bar.dll ’. To successfully instrument this application, three
things need to happen: we need to find all functions in modules used by the
application, in this case the address of foo. Secondly, we need to find the
base address of the bar module after it has been loaded by the application
and finally execution flow must be redirected to the routine containing the
logic of FCScan . To identify functions in a module, we use IDA Pro. IDA
Pro is an interactive disassembler with advanced heuristics to provide detailed
information about functions, such as types of function parameters. This greatly
simplifies implementing the detection technique in compiled binaries, as IDA Pro
provides a consistent representation of function characteristics across different
architectures. To obtain the base address of the module, we divert control from
a class of functions used to load modules into memory, namely the LoadLibary
family. Whenever a module is loaded, these functions return the base address
of the module and thus allow us to apply hooks to all functions previously
identified using IDA Pro.

Figure 9.3 shows a simplified version of the hooked LoadLibrary Windows
API function. When bar.dll is loaded we know that foo resides at ‘moduleBase
+ 0xAABBCC ’, allowing us to hook foo and identify foo by the module name
(bar.dll) and the relative offset (0xAABBCC). The relative offset is obtained
from the analysis by IDA Pro as depicted in Figure 9.2. Note that while the
authors believe this scenario is possible, it is currently no more than a simplified
theory.

60

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity.
In CCS ’05: Proc. 12th ACM conference on Computer and Communica-
tions Security, pages 340–353. ACM Press, 2005.

[2] Adobe Systems. JavaScript for Acrobat API Reference, 2007.

[3] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers. In
Proceedings of the 19th USENIX conference on Security, USENIX Secu-
rity’10, pages 12–12, Berkeley, CA, USA, 2010. USENIX Association.

[4] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November
1996.

[5] S. Andersson, A. Clark, and G. Mohay. Network based buffer overflow
detection by exploit code analysis. In G. M. Mohay, A. J. Clark, and
K. Kerr, editors, AusCERT Asia Pacific Information Technology Security
Conference: R&D Stream, pages 39–53, Gold Coast, Australia, May 2004.
University of Queensland.

[6] Avast. Six out of every ten users run vulnerable versions of Adobe
Reader. http://www.avast.com/pr-six-out-of-every-ten-users-

run-vulnerable-versions-of-adobe-reader.

[7] Avast. New PDF Exploit hiding technique tricks Antivirus en-
gines. https://blog.avast.com/2011/04/22/another-nasty-trick-

in-malicious-pdf/, 2011.

[8] P. Baecher and M. Koetter. libemu, x86 shellcode emulation. http://

libemu.carnivore.it/, 2007.

[9] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against
stack smashing attacks. In In Proceedings of the USENIX Annual Technical
Conference, pages 251–262, 2000.

[10] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing
Malware. 2006.

61

[11] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi. Duqu: A stuxnet-like
malware found in the wild. Technical report, BME CrySyS Lab., October
2011. First published in cut-down form as appendix to the Duqu report of
Symantec.

[12] B. Bencs’ath, G. P’ek, L. Butty’an, and M. F’elegyh’azi. Duqu: Analysis,
Detection, and Lessons Learned. 2012.

[13] S. Bhatkar, R. R.S̃ekar, and D. DuVarney. Efficient techniques for com-
prehensive protection from memory error exploits. In USENIX Sec: Proc.
14th Conference on USENIX Security Symposium, volume 14 of SSYM ’05,
pages 17–17. USENIX Association, 2005.

[14] blexim. Basic integer overflows. Phrack, (60), December 2002.

[15] D. Bolzoni and S. Etalle. Boosting Web Intrusion Detection Systems by
Inferring Positive Signatures. In OTM ’08: On the Move to Meaningful
Internet Systems Confederated International Conferences, volume 5332 of
LNCS, pages 938–955. Springer-Verlag, 2008.

[16] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. DROP: Detecting
Return-Oriented Programming Malicious Code. In A. Prakash and I. S.
Gupta, editors, Information Systems Security, volume 5905 of LNCS, pages
163–177. Springer-Verlag, 2009.

[17] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[18] C. Cowan, F. Wagle, P. Calton, S. Beattie, and J. Walpole. Buffer over-
flows: attacks and defenses for the vulnerability of the decade. In DISCEX
’00: Proc. DARPA Information Survivability Conference and Exposition,
volume 2, pages 119–129, 2000.

[19] D. Dai Zovi. Practical return-oriented programming. SOURCE, 2010.

[20] L. Davi, A. Sadeghi, and M. Winandy. ROPdefender: a detection tool
to defend against return-oriented programming attacks. In ASIACCS ’11:
Proc. 6th ACM Symposium on Information, Computer and Communica-
tions Security, pages 40–51. ACM Press, 2011.

[21] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in
c/c++. In Proceedings of the 2012 International Conference on Software
Engineering, ICSE 2012, pages 760–770. IEEE Press, 2012.

[22] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers
against drive-by downloads: Mitigating heap-spraying code injection at-
tacks. In DIMVA ’09: Proc. 6th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, LNCS, pages
88–106. Springer-Verlag, 2009.

62

[23] M. Engelberth, C. Willems, and T. Holz. Detecting malicious documents
with combined static and dynamic analysis, 2009.

[24] H. Etoh and K. Yoda. Protecting from stack-smashing at-
tacks. 2000. Published on World-Wide Web at URL
http://www.trl.ibm.com/projects/security/ssp/main.html.

[25] Y. Feng and E. D. Berger. A locality-improving dynamic memory allocator.
In Proceedings of the 2005 workshop on Memory system performance, MSP
’05, pages 68–77. ACM, 2005.

[26] G. R. Fresi, L. Martignoni, R. Paleari, and D. Bruschi. Surgically Returning
to Randomized lib c©. In ACSAC ’09: Proc. 25th Annual Computer Secu-
rity Applications Conference, ACSAC ’09, pages 60–69. IEEE Computer
Society, 2009.

[27] iseclab. Anubis. http://anubis.iseclab.org, 2009.

[28] Document Management - Portable Document Format - Part 1:PDF 1.7,
2008.

[29] A. Iyer and L. Liebrock. Vulnerability scanning for buffer overflow. In
Information Technology: Coding and Computing, 2004. Proceedings. ITCC
2004. International Conference on, volume 2, pages 116–117 Vol.2, 2004.

[30] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address Space Layout
Permutation (ASLP): Towards Fine-Grained Randomization of Commod-
ity Software. In ACSAC ’06: Proc. 22nd Annual Computer Security Ap-
plications Conference, pages 339–348, Washington, DC, USA, 2006. IEEE
Computer Society.

[31] R. Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. pages 1137–1143. Morgan Kaufmann, 1995.

[32] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymor-
phic worm detection using structural information of executables. In RAID
’06: Proc. 8th International Symposium on Recent Advances in Intrusion
Detection, LNCS, pages 207–226. Springer-Verlag, 2006.

[33] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda. Ac-
cessminer: using system-centric models for malware protection. In CCS ’10:
Proc. 17th ACM conference on Computer and Communications Security,
pages 399–412. ACM Press, 2010.

[34] J. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pincus, S. Rajamani,
and R. Venkatapathy. Righting software. Software, IEEE, 21(3):92–100,
2004.

63

[35] P. Laskov and N. Šrndić. Static detection of malicious javascript-bearing
pdf documents. In ACSAC ’11: Proc. 27th Annual Computer Security Ap-
plications ConferenceAnnual Computer Security Applications Conference.
IEEE Computer Society, 2011.

[36] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-
oriented rootkits with “return-less” kernels. In EuroSys ’10: Proc. 5th
European Conference on Computer Systems, pages 195–208. ACM Press,
2010.

[37] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. D. Keromytis. A
Study of Malcode-Bearing Documents. In DIMVA ’07: Proc. 4th interna-
tional conference on Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, LNCS, pages 231–250, Berlin, Heidelberg, 2007. Springer-
Verlag.

[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. SIGPLAN Not., 40(6):190–200, June
2005.

[39] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago: trading
address space for reliability and security. SIGPLAN Not., 43(3):115–124,
Mar. 2008.

[40] Malheur: Automatic Analysis of Malware Behavior. http://www.mlsec.

org/malheur.

[41] Mozilla. https://developer.mozilla.org/en/SpiderMonkey.

[42] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free:
defeating return-oriented programming through gadget-less binaries. In
ACSAC ’10: Proc. 26th Annual Computer Security Applications Confer-
ence, pages 49–58. ACM Press, 2010.

[43] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk. Controlling program exe-
cution through binary instrumentation. SIGARCH Comput. Archit. News,
33(5):45–50, Dec. 2005.

[44] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization.
Security and Privacy, IEEE Symposium on, 0:601–615, 2012.

[45] M. Polychronakis, K. Anagnostakis, and E. Markatos. Network-level poly-
morphic shellcode detection using emulation. In DIMVA ’06: Proc. 3th
international conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, LNCS, pages 54–73. Springer-Verlag, 2006.

64

[46] M. Polychronakis, K. Anagnostakis, and E. Markatos. Comprehensive shell-
code detection using runtime heuristics. In ACSAC ’10: Proc. 26th Annual
Computer Security Applications Conference, pages 287–296. ACM Press,
2010.

[47] M. Polychronakis and A. Keromytis. ROP Payload Detection Using Spec-
ulative Code Execution.

[48] S. Porst. How to really obfuscate your pdf malware. Presented at ReCon,
2010.

[49] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for finger-
printing zero-day attacks for advertised honeypots with automatic signa-
ture generation. SIGOPS Oper. Syst. Rev., 40(4):15–27, 2006.

[50] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZZLE: a defense against
heap-spraying code injection attacks. In USENIX Sec: Proc. 18th confer-
ence on USENIX Security Symposium, pages 169–186. USENIX Associa-
tion, 2009.

[51] RSA. Rsa, anatomy of an attack. http://blogs.rsa.com/rivner/

anatomy-of-an-attack/, 2011.

[52] H. Shacham. The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86). In CCS ’07: Proc. 14th ACM con-
ference on Computer and Communications Security, pages 552–561. ACM
Press, 2007.

[53] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh.
On the effectiveness of address-space randomization. In CCS ’04: Proc.
11th ACM Conference on Computer and Communications Security, pages
298–307. ACM Press, 2004.

[54] M. Shafiq, S. Khayam, and M. Farooq. Embedded malware detection us-
ing markov n-grams. In D. Zamboni, editor, Detection of Intrusions and
Malware, and Vulnerability Assessment, volume 5137 of Lecture Notes in
Computer Science, pages 88–107. Springer Berlin / Heidelberg, 2008.

[55] Skywing and M. Miller. Bypassing windows hardware-enforced data exe-
cution prevention. Uninformed, 2, September 2005.

[56] A. Slowinska, T. Stancescu, and H. J. Bos. Body armor for binaries: pre-
venting buffer overflows without recompilation. In Proceedings of the 2012
USENIX conference on Annual Technical Conference, USENIX ATC’12,
pages 11–11. USENIX Association, 2012.

[57] D. Stevens. D. stevens’ blog, pdf tools. http://blog.didierstevens.

com/programs/pdf-tools/.

65

[58] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kem-
merer, C. Kruegel, and G. Vigna. Your botnet is my botnet: analysis of
a botnet takeover. In CCS ’09: Proc. 16th ACM conference on Computer
and Communications Security, pages 635–647. ACM Press, 2009.

[59] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract
payload execution. In RAID ’02: Proc. 5th Internation Symposium on
Recent Advances in Intrusion Detection, pages 274–291, 2002.

[60] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. Markatos. Combining
static and dynamic analysis for the detection of malicious documents. In
EUROSEC ’11: Proc. 4th European Workshop on System Security, pages
4:1–4:6. ACM Press, 2011.

[61] Use-after-free definition. http://cwe.mitre.org/data/definitions/

416.html.

[62] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. Its4: a static vulnerabil-
ity scanner for c and c++ code. In Computer Security Applications, 2000.
ACSAC ’00. 16th Annual Conference, pages 257–267, 2000.

[63] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based in-
trusion detection signatures using mutant exploits. In Proceedings of the
11th ACM conference on Computer and communications security, CCS ’04,
pages 21–30. ACM, 2004.

[64] P. Vreugdenhil. Pwn2own 2010 windows 7 internet explorer 8
exploit. http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-

InternetExplorer8.pdf.

[65] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware
analysis using cwsandbox. IEEE Security and Privacy, 5:32–39, 2007.

[66] J. Wolf. OMG WTF PDF. 27th Chaos Communication Congress, 2010.

66

