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Abstract

Graph Grammars describe system behavior through graphs and graph transformation rules. Graph
Grammars have not been used for Model-Based Testing. However, Graph Grammars have many
structural advantages, which are potential benefits for the model-based testing process. We de-
scribe a model-based testing setup with Graph Grammars. The result is a system for automatic
test generation from Graph Grammars. A graph transformation tool, GROOVE (GRaphs for
Object-Oriented VErification), and a model-based testing tool using Symbolic Transition Sys-
tems, ATM (Axini TestManager), are used as the backbone of the system.

One result of this report is a technique for the generation of a Symbolic Transition System from
a Graph Grammar. This technique is implemented in a tool, GRATIS (GROOVE-Axini Testing
System). This tool allows the user to model systems in Graph Grammars. It generates Symoblic
Transition Systems and performs model-based testing on the modelled system. This tool is shown
to be useful for the model-based testing paradigm, a.o. by showing its effectiveness in five case stud-
ies. Performance measurements on the case studies show the technique implemented in GRATIS
scales well. Another measurements shows a complexity difference between Graph Grammars and
Symbolic Transition Systems: the first uses a bigger vocabulary and the latter uses more repetition
to model the same behavior.
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Chapter 1

Introduction

In this introduction, first the importance of testing and automation of testing is stressed. Then
Model-Based Testing is shown to be a useful tool for automation of testing. Graph Grammars
and graph transformation are argued to be useful as formalism for Model-Based Testing. Some
leading tools for automatic test generation are set out, which include the tools used in this report.
The research goals are given and finally a roadmap explains the basic structure of the rest of this
report.

1.1 Testing

In software development projects, often time and budget costs are exceeded. Laird and Bren-
nan [13] investigated in 2006 that 23% of all software projects are canceled before completion.
Furthermore, of the completed projects, only 28% are delivered on time with the average project
overrunning the budget with 45%. The cause of this often are the unclear ambigious requirements
of the software system to develop.

Testing is an important part of software development, because it decreases future maintainance
costs [19]. Testing is a complex process and should be done often [22]. Therefore, the testing
process should be as efficient as possible in order to save resources.

Test automation allows repeated testing during the development process. The advantage of this is
that bugs are found early and can therefore be fixed early. A widely used practice is maintaining
a test suite, which is a collection of test-cases. However, when the creation of a test suite is done
manually, this still leaves room for human error [16]. The process of deriving tests tends to be
unstructured, barely motivated in the details, not reproducible, not documented, and bound to
the ingenuity of single engineers [31].

1.2 Model-based Testing

The existence of an artifact that explicitly encodes the intended behaviour can help mitigate the
implications of these problems. Creating an abstract representation or a model of the system is
an example of such an artifact. What is meant by a model in this report, is the description of the
behavior of a system. In particular, the term model will be often used to describe transition-based
notations, such as finite state machines, labelled transition systems and I/O automata. Other
notations, such as UML statecharts, are not considered as models in this report.



A model can be used to systematically generate tests for the system. This is referred to as Model-
Based Testing. Generating tests automatically leads to a larger test suite than if done manually.
A large, systematically built test suite is bound to find more bugs than a smaller, manually built
one.

Models are created from the specification documents provided by the end-user. These specification
documents are ‘notoriously error-prone’ [18]. This implies that the model itself needs validation.
Validating the model usually means that the requirements themselves are scrutinised for consis-
tency and completeness [31]. This helps to clear up ambigious requirements early on, which allows
better estimation of the budget and time demands.

The stakeholders evaluate the constructed model to verify its correctness. However, the visual
or textual representation of large models may become troublesome to understand, which is re-
ferred to as the model having a low model transparency or high model complexity. The problem
with transition systems is that a larger number of states and/or transitions decreases the model
transparency. We think that low model transparency make errors harder to detect and that it ob-
structs the feedback process of the stakeholders. Using models with high transparency is therefore
essential.

1.3 Graph Transformation

A formalism that claims to have higher model transparency is Graph Transformation. The system
states are represented by graphs and the transitions between the states are accomplished by
applying graph change rules to those graphs. These rules can be expressed as graphs themselves.
A graph transformation model of a software system is therefore a collection of graphs, each a visual
representation of one aspect of the system. This formalism may therefore provide a more intuitive
approach to system modelling than traditional state machines. Graph Transformation and its
potential benefits have been studied since the early ’70s [23]. The usage of this computational
paradigm is best described by the following quote from Andries et al. [1]:

Graphs are well-known, well-understood, and frequently used means to represent sys-
tem states, complex objects, diagrams, and networks, like flowcharts, entity-relationship
diagrams, Petri nets, and many more. Rules have proved to be extremely useful for de-
scribing computations by local transformations: Arithmetic, syntactic, and deduction
rules are well-known examples.

An informative paper on graph transformations is written by Heckel et al. [10]. A quote from this
paper:

Graphs and diagrams provide a simple and powerful approach to a variety of problems
that are typical to computer science in general, and software engineering in particular.

1.4 Tools

Tools for model-based testing and tools for graph transformation already exist. The leading tools
in these areas are investigated in this section.

The testing tool developed by Axini' is used for the automatic test generation on symbolic models,
which combine a state and data type oriented approach. This tool is referred to as Axini Test
Manager (ATM) and is used in practice by several Dutch companies.

In Utting et al. [31], a taxonomy is done on different Model-Based Testing tools:

Thttp://www.axini.nl/



e TorX [28]: accepts behaviour models such as I/O labelled transition systems. A version of
this tool written in Java under continuous development is JTorX [2]. This version accepts
the same kind of models as ATM.

e Spec Explorer[32]: provides a model editing, composition, exploration and visualization
environment within Visual Studio, and can generate offline .NET test suites or execute tests
as they are generated (online).

e JUMBL[24]: an academic model-based statistical testing that supports the development of
statistical usage-based models using Markov chains, the analysis of models, and the genera-
tion of test cases.

e AETGI5]: implements combinatorial testing, where the number of possible combinations of
input variables are reduced to a few ‘representative’ ones.

e STG tool[4]: implements conformance testing techniques to automatically derive symbolic
test cases from formal operational specifications.

Table 1.1 shows the graph transformation tools that participated at the Transformation Tool
Contest 2011 in Zurich[7]. A comparison based on their strong points is shown taken from [12].

1.5 Research goals

The motivation above is given for using graph grammars as a modelling technique in Model-
Based Testing. The goal of this research is to create a system for automatic test generation on
graph grammars. If the assumptions that graph grammars provide a more intuitive modelling
and testing process hold, this new testing approach will lead to a more efficient testing process
and fewer incorrect models. The system to be designed, once implemented and validated, should
provide a valuable contribution to the testing paradigm.

The backbone of this system consists of two tools: a model-based testing tool for the testing
part and a graph transformation tool for visual editing and state-space exploration of Graph
Grammars. The choice was made to use ATM as the model-based testing tool, because of the
location of Axini, their willingness to support this project and the already available models for
case studies. Another interesting option for our research would have been to use an open-source
MBT tool. In particular JTorX was an interesting candidate due to its maturity and the available
support at the University of Twente. The tools GROOVE and ATM are used to create this system.
The graph transformation tool GROOVE? does state-space exploration, has a visual editor and
has available support at the University of Twente, therefore it is used to model and explore the
graph grammars.

The research goals are split into a design and validation component:

1. Design: Design and implement a system using ATM and GROOVE which performs Model-
Based Testing on graph grammars.

2. Validation: Validate the design and implementation using case studies and performance
measurements.

The result of the design goal is one system called the GROOVE-Axini Testing System (GRATIS).
The validation goal uses case-studies with existing specifications from systems tested by Axini.
Each case-study has a graph grammar and a symbolic model which describe the same system.
GRATIS and ATM are used for the automatic test generation on these models respectively. Both
the models and the test processes are compared as part of the validation.

The solution has to uphold three requirements:

2http://sourceforge.net /projects/groove/



Suitability and strong points of the tool

ATL/EMFTVM: general-purpose model transformation.

ATL is a mature language for mapping input models to output models.

The EMFTVM runtime introduces composition and rewriting.

Edapt: model migration in response to metamodel adaptation.

High automation by reuse of recurring migration specifications.

In-place transformation, seamless metamodel editor integration.

GrGen.NET: general-purpose graph rewriting.

Pattern matching of high performance and expressiveness; highly programmable.
Excellent debugging and documentation. Focus on compilers, computer linguistics.
GROOVE.: state space exploration, general-purpose graph rewriting.

Rapid prototyping, visual debugging, model checking.

Expressive language (nested rules, transactions, control); isomorphism reduction.
Henshin: graph transformations for EMF models with explicit control flow.
Expressive language (nested rules, support for higher-order transformations)
JavaScript support, light-weight model & API, state space analysis

MDELab SDI: graph transformations for EMF models with explicit control flow.
Expressive language, mature graphical editor, support for debugging at model level.
High flexibility, easy integration with other EMF /Java applications.

metatools: general-purpose model transformations.

Seamless integration of hand-written and generated sources, of imperative

and declarative style. Full access to host language, libraries and legacy code.
MOULA: general-purpose model transformations with explicit control flow.
Expressive language, graphical editor with graphical code completion and refactorings,
built-in metamodel editor, EMF support.

QVTR-XSLT: general-purpose model transformations.

Supporting the graphical notation of QVT Relations with a graphical editor

to define transformations, and generate executable XSLT programs for them.
UML-RSDS: general-purpose model transformation with verification support.
Declarative transformation specification using only UML/OCL.

Efficient compiled transformation implementations.

Viatra2: general-purpose multi-domain model transformations.

Model space with arbitrary metalevels, excellent programming API.

Incremental pattern matching.

Table 1.1: Graph transformation tools and their strong points

1. A graph grammar must be used as the model; it must derive from the specification and be
used for the testing.

2. It must be possible to measure the test progress/completion, by means of coverage statistics
(explained in detail in section 2.1.2).

3. The solution must be efficient: it should be usable in practice, therefore the technique should
be scalable and the imposed constraints reasonable from a practical view point.

The implementation described in chapter 4 upholds all three requirements; this is elaborated in
chapter 6.

1.6 Roadmap

This report has five more chapters: first, the concepts described in this chapter are elaborated in
chapter 2. The design of GRATIS is described in chapter 3. The implementation of GRATIS is



covered in chapter 4. The validation of GRATIS is in chapter 5. Finally, conclusions are drawn
and future work suggestions are made in chapter 6.



Chapter 2

Background

The structure of this chapter is as follows: the general model-based testing process is set out in
section 2.1. Some basic concepts from algebra are described in section 2.2. Then the symbolic
models used by ATM are described in section 2.3. Section 2.4 describes the Graph Grammar
formalism. GROOVE and ATM are described in section 2.5.

2.1 Model-based Testing

Model-based testing is a testing technique where a System Under Test (SUT) is tested for con-
formance to a model description of the system. The general setup for this process is depicted
as a UML sequence diagram in Figure 2.1. The specification of a system is provided as a model
to a test derivation component which generates a test suite. The test suite is used by a test
execution component to test the SUT. Tests are executed by providing input/stimuli to the SUT
and monitoring the output/response. The test execution component evaluates whether the correct
responses are given. It gives a 'pass’ or 'fail’ verdict depending on whether the SUT conforms to

the model or not.
S Test
@cnﬁcatmn Derivation

A4

//7 - stimuli
[ Verdict Test >
\_Pass/Fail Execution <— suT

Figure 2.1: A general model-based testing setup

This type of model-based testing is called batch testing or offline testing. Another type of model-
based testing is on-the-fly testing. The main difference is that no test cases are derived, instead a
transition in the model is chosen and tested on the system directly. The general architecture for
this process is shown in Figure 2.2. An example of an on-the-fly testing tool is TorX [28].

Variations of state machines and transition systems have been widely used as the underlying model
for test generation. Other tools use the structure of data types to generate test data.

The stucture of the rest of this section is as follows. First, previous work on model-based testing
is given. Then, Labelled Transition Systems are introduced. This is a basic formalism useful to
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Figure 2.2: A general 'on-the-fly’ model-based testing setup

understand the models in the rest of the paper, namely Graph Grammars and Symbolic Transition
Systems. Next, an adaptation of Labelled Transition Systems, the Input-Output Transition System
is described. This is a useful formalism for Model-Based Testing. Finally, the notion of coverage
is explained.

2.1.1 Previous work

Transition-based formal testing theory was introduced by De Nicola et al. [21]. The input-output
behavior of processes is investigated by series of tests. Two processes are considered equivalent
if they pass exactly the same set of tests. This testing theory was first used in algorithms for
automatic test generation by Brinksma [3]. This led to the so-called canonical tester theory.
Tretmans gives a formal approach to protocol conformance testing (whether a protocol conforms
to its specifications) in [29] and an algorithm for deriving a sound and exhaustive test suite from
a specification in [30]. A good overview of model-based testing theory and past research is given
in "Model-Based Testing of Reactive Systems" [17].

2.1.2 Labelled Transition Systems

A Labelled Transition System (LTS) is a structure consisting of states with labelled transitions
between them.

Definition 2.1.1. Labelled Transition Systems
An LTS is a 4-tuple (@, L, T, qo), where:

e () is a finite, non-empty set of states

e [ is a finite set of labels

e I'CQx(LU{r}) xQ, with 7 ¢ L, is the transition relation
e o € Q is the initial state.

We write ¢ = ¢/ if there is a transition labelled p from state ¢ to state ¢/, i-e., (q, u, ¢)eT. q,¢

are called the source and target states of the transition respectively. The informal idea of such a

transition is that when the transition system is in state ¢ it may perform action u, and go to state
/

q.

Input-Output Transition Systems A useful type of transition system for model-based testing
is the Input-Output Transition System (IOTS) by Tretmans [30]. Assuming that implementations
communicate with their environment via inputs and outputs, this formalism is useful for describing
system behavior. The system is regarded as a black box and the IOTS specifies the allowed inputs
and outputs.

10



IOTSs have the same definition as LTSs with one addition: each label [ € L has a type ¢ € Y,
where Y = {input, output}. Each label can therefore specify whether the action represented by
the label is a possible input or an expected output of the system under test. An IOTS is formally
defined as:

Definition 2.1.2. Input-Output Transition Systems
An IOTS is a 4-tuple (@, L, Ty, qo), where Tyy C T x Y are the input-output transitions.

When the transition system is in the source state of an input transition, the input can be given
to the SUT. When the transition system is in the source state of an output transition, the output
should be observed from the SUT. In both cases, the transition system advances to the target state
of the transition. The case where a state has both input and output transitions is not considered
in this report.

An example of such an IOTS is shown in Figure 2.3a. This system allows an input of 20 or 50
cents and then outputs tea or coffee accordingly. The inputs are preceded by a ‘?’, the outputs
are preceded by an ‘!". This system is a specification of a coffee machine. A test case can also be
described by an IOTS with special pass and fail states.

A test case for the coffee machine is given in Figure 2.3b. The test case shows that when an input
of ‘50c’ is given, an output of ‘coffee’ is expected from the tested system, as this results in a ‘pass’
verdict. When the system responds with ‘tea’, the test case results in a ‘fail’ verdict. The pass
and fail verdicts are two special states in the test case, which are sink states, i.e., once in either of
those the test case cannot leave that state.

Test cases should always reach a pass or fail state within finite time. This requirement ensures
that the testing process halts.

? | ?coffee
° & ° . 5*06> o J> pass
?20ci l!w/‘j"ee ?teal
o ——>o :
ltea faZl

(a) An IOTS (b) An IOTS test case

Figure 2.3: The specification of a coffee machine and a test case as an IOTS

Coverage The number of tests that can be generated from a model is potentially infinite. There-
fore, there must be a test selection strategy to maximize the quality of the tests while minimizing
the time spent testing. Coverage statistics help with test selection. Coverage statistics are calcu-
lated to indicate how adequately the testing has been performed [33]. These statisics are therefore
useful metrics for communicating how much of a system is tested.

One type of coverage is white-box coverage or code coverage: This coverage statistic measures how
much of the lines of codes in the implementation is tested. A line of code is considered tested
when it is executed during the test run.

When the SUT is a black box, which often is the case, typical coverage metrics for LTSs are state
and transition coverage [15, 20, 9]. This coverage statistic measures how much of the model is
tested. A state in the model is considered tested when the transition system reaches the state
during testing. A transition in the model is considered tested when the transition system is in the
source state of the transition and either:

11



1. the transition is a stimulus and the input represented by the label of the transition is given
to the SUT

2. the transition is a response and the output represented by the label of the transition is
observed from the SUT

State coverage can be measured by dividing the tested states by the total states in the model. The
same process applies to transition coverage. As an example, the coverage metrics of the IOTS test
case example in 2.3b are calculated. The test case tests one path through the specification and
passes through 3 out of 4 states and 2 out of 4 transitions. The state coverage is therefore 75%
and the transition coverage is 50%.

This example shows that the total number of states and transitions in the transition systems has
to be known; coverage statistics cannot be measured on an infinitely large LTS, for example.

2.2 Algebra

Some basic concepts from algebra are described here. For a general introduction into logic we
refer to [11]. This section explains in order: multi-sorted signatures, algebrae, variables & terms
and term-mapping & valuations. The algebra described here will be used in the next sections to
formally define Symbolic Transition Systems and Graph Grammars.

Definition 2.2.1. Multi-sorted Signatures

A multi-sorted signature (S, F') describes the sorts and function symbols of a formal language.
S is a set of sorts. F' is a set of function symbols. Each f € F has an arity n € N, where
a function symbol with arity n = 0 is called a constant symbol. F? denotes the subset of F'
with function symbols of arity n = ¢. The sort of a function symbol f € F with arity n is
given by o(f) = s1...8p4+1, with s; € S for 1 < i < n. s,41 is the return sort. In this report,
S = {int, real, bool, string} denoting the integer, real, boolean and string sorts respectively. F
features the commonly used function symbols, which include, but are not restricted to, ‘int:+’,
‘string:=’, ‘=’, ‘1’, which are the addition of integers, the equality of strings, the negation of a
boolean and the integer ‘one’ respectively. The sorts and arities of these examples are given by:

1. o(int :+) = (int,int, int)

2. o(string : =) = (string, string, bool)
3. a(=) = (bool, bool)

4. o(1) = (int)

Definition 2.2.2. Algebrae

An algebra A = (U, ®) has a non-empty set U of values called a universe, partitioned into U® for
each s € S, and a set ® of functions. A function ¢ 4 is typed U’} x ..U} — Uf‘{"fl, where s1...5,41
is the sort of the function symbol given by the signature. For example, < 4: Up* x Uf* — Uf’f"l

represents the ‘less-than’ comparison of two integers.

Definition 2.2.3. Point algebra
We define a point algebra P to be an algebra with Vs € S.|U%| = 1.

Definition 2.2.4. Variables
We define V = Vit Yreal iy Yool yy Pstring o he the set of variables. Terms over V, denoted
T(V), are built from function symbols F' and variables V' C V. The definition of a term is:

t == f(t1..tn) , wherenisthearityof ¢
| =z , where x is a variable.

12



We write var(t) to denote the set of variables appearing in a term ¢ € 7(V). Terms ¢t € 7(0) are
called ground terms. An example of a term ¢ is (z + (y — 1)), with var(t) = {z,y}. The type of a
term is given by:

o:t— s ift=xeV*
Sny1 i t=f(t1...tn) and o(f) = $1...8p41, provided o(t;) = s;

The set of terms with return type bool, is denoted as B(V). An example is (z < y), where the
result is true or false.

Definition 2.2.5. Term-mapping

A term-mapping is a function p : V — T (V). A valuation v is a function v : ¥V — U that assigns
values to variables. For example, given an algebra, v : {(x — 1), (y — 2)} assigns the values 1 and
2 to the variables x and y respectively. A valuation of a term given A is defined by:

v: x —  v(zr)
fltr.tn) = faw(tr)..v(tn))

When every variable in a term is defined by a valuation, the term can be valuated to a value.
Therefore, when every variable in a term-mapping is defined by a valuation, a new valuation can
be obtained. Formally, this is defined as: _after : (V = U) x (V = T(V)) = (V — U). Given
a valuation v and a term-mapping u, (v after p) : v — v(u(v)).

2.3 Symbolic Transition Systems

Symbolic Transition Systems (STSs) combine a state oriented and data type oriented approach.
This formalism is a specification of system behavior like LTSs. These systems are used in practice
in ATM and will therefore be part of GRATIS. In this section, previous work on STSs is reviewed.
The definitions of STSs and TIOSTSs follow. An example of an IOSTS is then given. Next, the
mapping of an STS to an LTS is explained and illustrated by an example. This mapping is useful
when comparing STSs to Graph Grammars, because both systems can be mapped to an LTS and
then compared. Finally, different coverage metrics on STSs and the relation with LTS coverage
metrics are explained.

2.3.1 Previous work

STSs are introduced by Frantzen et al. [14]. This paper includes a detailed definition, on which the
definition below is based. The authors also give a sound and complete test derivation algorithm
from specifications expressed as STSs. Deriving tests from a symbolic specification, also called
Symbolic test generation, is introduced by Rusu et al. [27]. Here, the authors use Input-Output
Symbolic Transition Systems (IOSTSs). These systems are very similar to the STSs in [14].
However, the definition of IOSTSs we will use in this report is based on the STSs by [14]. A tool
that generates tests based on symbolic specifications is the STG tool, described in Clarke et al. [4].

2.3.2 Definition

An STS has locations and switch relations. If the STS represents a model of a software system, a
location in the STS represents a state of the system, not including data values. A switch relation
defines the transition from one location to another. The location variables are a representation of
the data values in the system. A switch relation has a gate, which is a label representating the
execution steps of the system. Gates have interaction variables, which represent some input or
output data value. Switch relations also have guards and update mappings. A guard is a term
t € B(V). The guard disallows using the switch relation when the valuation of the term results in

13



false. When the valuation results in #rue, the switch relation of the guard is enabled. An update
mapping is a term-mapping of location variables. After the system switches to a new location, the
variables in the update mapping will have the value corresponding to the valuation of the term.

Definition 2.3.1. Symbolic Transition Systems
A Symbolic Transition System is a tuple (W, wq, £,2,Z, A, D), where:

e W is a finite set of locations.

e wy € W is the initial location.

e £ C YV is a finite set of location variables.

e 1 is a term-mapping £ — T (0)), representing the initialisation of the location variables.
e 7 C Vis a set of interaction variables, disjoint from L.

e A is a finite set of gates. The unobservable gate is denoted (7 ¢ A); we write A, for AU{7}.
The arity of a gate A € A, denoted arity()\), is a natural number. The parameters of a gate
A € A;, denoted param(\), are a tuple of length arity(\) of distinct interaction variables.
We fix arity(7) = 0, i.e. the unobservable gate has no interaction variables.

e DCW XA XxB(LUT)x (L — T(LUI))x W, is the switch relation. We write w EA LAY
instead of (w, \,7,p,w’") € D, where v is referred to as the guard and p as the update
mapping. We require (var(y) Uvar(p)) C (LU param(A)). We define out(w) C D to be the
outgoing switch relations from location w.

An IOSTS can now easily be defined. The same difference between the labels in LTSs and IOTSs
apply, namely each gate has a type ¢ € Y. As with labels, each gate is preceded by an ‘?” or ‘I
to indicate whether it is an input or an output respectively. The full definition is as follows:

Definition 2.3.2. Input-Output Symbolic Transition Systems
An IOSTS is a 5-tuple (W, L,1, Ay, D), where Ay C A x Y are the input-output gates.

2.3.3 Example

In Figure 2.4 the IOSTS of a simple board game is shown, where two players consecutively throw
a die and move along four squares, which are situated in a circle. The switch relation without
source location is a graphical representation of the variable initialization 2. The values in the tuple
of the IOSTS are defined as follows:

w = {t,m}

wo = t

£ = {T,P1,P2D}

1+ = {T—0,Pl—~0,P2—2,D~ 0}
Z = {dpl}

A = {?hrow,!move}

D _ {t Tthrow,1<d<6,D+—d m,

Imove, T=1Al=(P14+D)%4,P1—1,T—2

b

t}

The variables T, P1, P2 and D are the location variables symbolizing the player’s turn, the po-
sitions of the players and the number of the die thrown respectively. The output gate !move
has param = (p,l) symbolizing which player moves to which location. The input gate ?throws
has param = (d) symbolizing which number is thrown by the die. The switch relation with gate
?throws has the restriction that the number of the die thrown is between one and six and the

lmove, T=2Al=(P2+D)%4,P2—1,T—1
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update sets the location variable D to the value of interaction variable d. The switch relations
with gate !move have the restriction that it must be the turn of the player moving and that the
new location of the player is the number of steps ahead as thrown by the die. The update mapping
sets the location of the player to the correct value and passes the turn to the next player.

Figure 2.4 shows the example visually. The gates, guards and updates are separated by pipe
symbols ‘|’ respectively. The initialization function is expressed by a switch relation with no
source location, gate and guard.

Imove(p:N,l:N) | T=1 A p=1 N l=(P1+D)%4 | P11, T—2

T—1, P1—0, P2—2, D—0 ?throws(d:N) |1 <=d <=6 | D—d

t m

\/

Imove(p:N,l:N) | T=2 A p=2Al=(P2+D) %4 | P21, T+—1

Figure 2.4: The IOSTS of a board game example

2.3.4 STS to LTS mapping

This section shows the method of mapping an STS to an LTS.

Consider an STS J. We can construct an LTS K from J, such that K is an expansion of J.
There exists a mapping from the location and location variable valuations to the states of K and
from the switch relations and variable valuations of J to the transitions of K. These relations are
defined as follows:

Definition 2.3.3. STS-to-LTS mapping
pg: Wx(L—-1)—Q
pr: (Ax(Z—=1U))—L

Mt <wm>w/7y:((‘CUI)%U))H(MQ(U},Vfﬁ)M)

no(', (v after p) | L))

When the number of possible valuations for £ and Z is finite, the transformation is always possible
to an LTS with finite number of states. This often is the case when the guards of the switch
relations provide bounds to the interaction variables and the update mappings do not infintely
increase of decrease the location variables.

An example of this transformation is shown in Figure 2.5. The label ‘do(1)’ in the LTS is a
textual representation of the gate ‘do’ plus a valuation of the interaction variable ‘d’. The text
on the nodes indicate from which location and valuation the state was created. The node labelled
‘wg, N = 2’ is an example of an unreachable state.

2.3.5 Coverage

Coverage metrics do not only apply to LTSs, they can also be used on STSs. The simplest metric
to describe the coverage of an STS is the location and switch-relation coverage, which express the
percentage of locations and switch relations tested. Measuring state and transition coverage of an
STS is possible using the LTS from the STS-to-LTS mapping.
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linit|true|N:_O;
[ ]
sub(i:N)1<—i<—2|N:—Ni< \)do(d:N)|l<—n<—2|N:—n

(a) The STS
'U)O, w07 O
sub(1)
do(1) sub(2)
do(2)
X -
’LU(), N =
(b) The LTS

Figure 2.5: An example of a transformation of an STS to an LTS

2.4 Graph Grammars

A Graph Grammar (GG) is also a specification of system behavior like LTSs and STSs are. A
GG is composed of a set of graph transformation rules. These rules indicate how a graph can
be transformed to a new graph. These graphs are called host graphs. The rules are composed of
graphs themselves, which are called rule graphs.

The rest of this section is ordered as follows: first, graphs, host graphs, rule graphs and graph
transformation rules are explained. Then, the definition of a Graph Transition System (GTS) is
given. An example of a GG and a GTS is then given. Finally, the definition of IOGGs is given.
For a more detailed overview of GGs, we refer to [25, 10, 1].

Definition 2.4.1. Graphs

A graph is composed of nodes and edges. In this report, we assume a universe of nodes V =
WwUw Y w27, where W is the universe of standard graph nodes. The other symbols were
introduced in section 2.2; these are the universe of values, the universe of variables and the power
set of the universe of terms respectively. E CV x L x V is the universe of edges.

Definition 2.4.2. Host graphs
A host graph G is a tuple (Vg, Fg), where:

e Vo C (WwWU) is the node set of G
e Fg C (Ve\U x L x Vi) is the edge set of G

Figure 2.6 shows an example of a host graph. Here, ni,no € W are the identities of the nodes.
The other four nodes are values in U.
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(1]~ ] — =[] - [false
a2 [

Figure 2.6: An example of a host graph

1
d
2

Definition 2.4.3. Rule graphs
A rule graph H is a tuple (Vy, Ex), where:

e Vy C (V\U) is the node set of H
o Ey C (Vg x L x Vp) is the edge set of H
In addition, the following must hold:

o Vz € Vg N27 .war(z) C Vi - The variables used in the terms must be present as nodes in
the rule graph.

eVzeVygnzeV.3( , ,z) € Ey - 1If avariable is used in a rule graph, it needs context.
Therefore, there must be an edge with the variable node as target.

Figure 2.7 shows an example of a rule graph. Here, 71,72 € W are the node identities, x;, 2z € V™
and {z; + 1,22} € 27. The set of terms is mapped as a node to the same value. This mapping
is explained in the next definition. The consequence is that this node implicitly expresses the
relation x1 + 1 = x».

. a
int : x| < z1+ 1,22
|
wnt : xo

Figure 2.7: An example of a rule graph

Definition 2.4.4. Morphisms

A graph g has a morphism to a graph ¢’ if there is a structure-preserving mapping from the nodes
and the edges of g to the nodes and the edges of ¢’ respectively. Elements of this mapping are
called images in ¢’ and pre-images in g. A graph g has a partial morphism to a graph ¢’ if there
are elements in g without an image in ¢’. For morphisms between host graphs and between rule
graphs, the pre-image and image must be the same node. The next definition gives the rule for
morphisms from rule graphs to host graphs.

Definition 2.4.5. Host graph images for rule graphs
A rule graph H to a host graph G morphism is a structure-preserving mapping, such that:

e A node z € W has an image ¢ in G if i = z
e A value x € U has an image i in G if i =z

e A variable v € V*,s € S has an image ¢ in G if ¢« € U®. This gives a valuation v for the
variables in the rule graphs to the value nodes in the host graph.

e A node z € 27 has an image i in G if i is the evaluation of all terms in z under v.
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Definition 2.4.6. Transformation rules
A transformation rule r is a tuple (LHS, NAC, RHS, 1), where:

e LHS is a rule graph representing the left-hand side of the rule

e NAC is a set of rule graphs representing the negative application conditions
e RHS is a rule graph representing the right-hand side of the rule

l € L is the label of the rule

There exist implicit partial morphisms from the LHS to each rule graph in NAC and from the
LHS to the RHS by means of the node identities. These morphisms are rule graph morphisms.

Definition 2.4.7. Creators and erasers
A creator is an edge or node in the RHS of a rule, that is not in the LHS of the rule. An eraser
is an edge or node in the LHS of a rule that is not in the RHS of that rule.

Definition 2.4.8. Rule matches

A rule r has a rule match on a host graph G if its LHS has a morphism to G and none of the
graphs in NAC have a morphism extending the morphism of the LHS to G. The morphism of the
LHS to a host graph is a match morphism m € M.

Definition 2.4.9. Rule transitions

Let r be a rule, G a host graph and m a match morphism. After m is found, all nodes and edges
in LHS that do not have an image in RHS, are removed from G. All elements in RHS that do not
have a pre-image in LHS, are added to G. The result of this process is called a rule transition,
denoted by: G 2 &',

Figure 2.8 shows an example of the initial graph G, one rule of a GG and the corresponding rule
match. Go can be represented by ({nl,n2},{(nl,a,nl), (nl, A,n2),(n2,B,n2)}). The LHS of
the rule has a match in Gg. Neither NAC? and NAC2 have a match in G, because the edge with
label C does not exist in Gg. The new graph after applying the rule is G;. The edge with label
a is removed from the graph and an edge with label b is added with the same source and target
node as the removed edge.

rule graph morphism

match morphism partial morphism

Go Gl

b a b b
nl ——>n2 —>n3 partial morphism nl ——>n2 ——>n3

UU O O

A

Figure 2.8: An example of a graph transformation

Definition 2.4.10. Graph Grammars
A graph grammar is a tuple (R, G), where:

e R is a set of graph transformation rules
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e (3¢ is the initial graph

By repeatedly applying graph transformation rules to the start graph and all its consecutive
graphs, a GG can be explored to reveal a Graph Transition System (GTS). This transition system
consists of graphs connected by rule transitions.

Definition 2.4.11. Graph Transition Systems
A graph transition system is a tuple (G, R, M, U, Gg), where:

e G is a set of graphs
o L C R x M is a set of labels
e U C G x L x @G is the rule transition relation

e GGy € G is the initial graph

Let K = (R,Go). A GTS O = (G,R,M,U,G)) is derived from K by the following. G, M,U are
the smallest sets, such that:

e Gpeg
e if GeGand G2 G then G’ € G, (r,m) e L, (G 25 G e U

In order to specify stimuli and responses with GGs, a definition is given for an Input-Output GG

(I0GG).
Definition 2.4.12. Input-Output Graph Grammars
An IOGG is a tuple (Ry,Gp), where Ry C R x Y are input-output transformation rules.

Exploring an IOGG leads to an Input-Output Graph Transition System (IOGTS).

Definition 2.4.13. Input-Output Graph Transition Systems
An IOGTS is a tuple (G, Ry, M, Uy, Gy), where:

e Ly C Ry x M are the input-output labels

e Uy C G x Ly x G are the input-output rule transitions

Definition 2.4.14. Rule priorities
A graph grammar with rule priorities P assigns a priority p € Nto a r € R, such that r — p € P.
The definition of GTSs is extended with this definition of rule priorities and the following:

ri,re €R, GeG. (G Q) e UAP(ry) > P(ry) — $me,G" - (G 222567 e U

In the graph grammar in Figure 2.9, the ‘add’ rule produces a rule transition to a graph, where
the sub rule produces a rule transition back to the start graph. Suppose P(add) > P(sub), then
the ‘sub’ rule does not have a outgoing rule transition from the start graph.

2.5 Tooling

2.5.1 ATM

ATM is a model-based testing web application, developed in the Ruby on Rails framework. It has
been used to test the software of several big companies in the Netherlands since 2006. It is under
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[A]——

(a) The initial

graph
(3] —* [ 5] A1
(b) The LHS of the add rule (c) The RHS of the
add rule
(] —= [ A1)
(d) The LHS of the sub rule (e) The RHS of the
sub rule

Figure 2.9: Priority rules

continuous development by Axini.

A UML sequence diagram for ATM is shown in Figure 2.10, depicting a test run from start to
end.

UserInterface STSEngine TestManager Adapter

} input(STS) }
| |
r
I
I

R e

T
|
|
|
|
|
|
|
|
L

start(depth)

|
|
|
T
loop l getSwitchRelations()
<

[i < depth && u switchRelations
verdict == ‘pass’]

T
I
|
I
I
I
I
I
|
I
|
I
|
T
|
I
|
I
I
abstractStimulus(instantiatedSwitchRelation) }
|

>

concrete stimulus
. N

|

I

|

|

|

|

|

} concrete response(s)
| A
|

|

|

I

|

1

instantiatedSwitchRelation

update(instantiatedSwitchRelation)
<

u verdict
___________________ N

Figure 2.10: ATM sequence diagram

The tool functions as follows:

1. An STS is given to an STS Engine, which keeps track of the current location and variables.
The user starts the test and gives a ‘depth’; indicating how many stimuli should be tested.
The variable ¢ stands for the current iteration of loop and is initially set to 0. The variable
verdict is initially set to 'pass’.

2. The STS Engine gives the possible switch relations from the current location to the Test
Manager. It chooses an enabled switch relation based on a test strategy, which can be a
random strategy or a strategy designed to obtain a high location/switch relation coverage.
The valuation of the variables in the guard are also chosen by a test strategy, which can be
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a random strategy or a strategy using boundary-value analysis. The choice is represented
by an instantiated switch relation.

3. The instantiated switch relation is given to the Test Execution component as an abstract
stimulus. The term abstract indicates that the instantiated switch relation is an abstract
representation of some computation steps taken in the SUT. For instance, a transition with
label ‘?connect’ is an abstract stimulus of the actual setup of a TCP connection between
two distributed components of the SUT.

4. The translation of an abstract stimulus to a concrete stimulus is done by the Adapter.
This component has to be programmed by the tester such that the abstract stimulus is
correctly translated to a concrete stimulus. This component provides the stimulus to the
SUT. When the SUT responds, the Adapter translates this response to an abstract response.
For instance, the Adapter receives an HTTP response that the TCP connect was succesful.
This is a concrete response, which the Adapter translates to an abstract response, such as
an instantiated switch relation with gate ‘lok’. The SUT can also give multiple responses.
As with the stimuli, the tester has to program the translation from concrete responses to
abstract responses. The Test Manager is notified with these abstract responses.

5. The Test Manager updates the STS engine with the chosen abstract stimuli and received
abstract responses. If this is possible according to the STS, a pass verdict is given, otherwise
a fail verdict is given. The Test Manager updates the verdict variable accordingly. The loop
continues as long as all responses are according to the specification and the required number
of tested stimuli has not been reached. The test is stopped at a fail verdict, because the SUT
has entered an invalid state and the STS engine cannot give possible switch relations any
more. For instance, an error could have occurred, which is an invalid response and makes
continuing impossible.

6. When the Test Manager finishes it gives a pass verdict for this test if all verdicts given by
the STS engine were a pass verdict. Otherwise, the result is a fail verdict. Also a trace is
given of all chosen and observed instantiated switch relations. This can be used to calculate
coverage information for the test and to allow the SUT or the STS to be fixed in case of a
fail verdict.

2.5.2 GROOVE

GROOVE is an open source, graph-based modelling tool, written in Java and in development
at the University of Twente since 2004 [26]. It has been applied to several case studies, such as
model transformations and security and leader election protocols [6]. A UML sequence diagram
for GROOVE is shown in Figure 2.11, depicting a GG exploration to a GTS.

The tool functions as follows:

1. A graph grammar is given as input to a RuleApplier component, which determines the
possible rule transitions.

2. The user selects an ExplorationStrategy from a list of possible strategies. This strategy
explores all possible host graphs and rule transitions. The possible rule transitions from the
initial graph state are obtained from the RuleApplier and a rule transition is chosen, based
on the exploration strategy. The target host graph of the chosen rule transition is again
given to the RuleApplier until no more new host graphs can be explored.

3. The ExplorationStrategy returns the explored GTS to the UserInterface.
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Userlinterface ExplorationStrategy RuleApplier

| |
| |
I I
enter(graphGrammar) :

|

|

|

|

| | AN]

| | |

| | |

| | |

: start() : :

: ' :

| |

| |

| |

! loop getRuleTransitions(hostGraph) I

! [hostGraph . > !

| notin !

| s |

! graphTransitionSystem] ! ruleTransitions

Tyl —

: é :

| |

| |

| |

: graphTransitionSystem U :
|

Figure 2.11: GROOVE sequence diagram

2.5.3 GROOVE visual elements

Labels and flags Nodes in GROOVE have several kinds of labels: regular labels, type labels
and flags. Figure 2.12 shows a node with a type label (bold), two flags (italic) and two regular
labels. Nodes in GROOVE can have one type, indicated by the type label. Typing is not explained
further in this report’. A node can have multiple regular labels and flags.

Figure 2.12: GROOVE labels and flags

Rule node matching Nodes in a rule graph in GROOVE can also match the same host graph
node, by connecting them with an equals ‘=’ labelled edge. This means that any images of both
nodes have to be the same. Figure 2.13a shows an example of this. Nodes in a rule graph in
GROOVE can also explicitly not match each other, by connecting them with an not-equals ‘!=’
labelled edge. This means that any images of both nodes cannot be the same. Figure 2.13b shows
an example of this.

[nodel% :4node2] [node1}~ !=<{node2}

(a) Matching rule (b) Non-matching rule
nodes nodes

Figure 2.13: Node matching in GROOVE rule graphs

Colors Rule graphs in GROOVE combine LHS, RHS and NAC into one rule graph. The colors
on the nodes and edges in GROOVE rules represent whether they belong to the LHS, RHS or
NAC of the rule. See Figure 2.14 for an example.

1See the documentation of GROOVE for more information: http://groove.cs.utwente.nl/doc/

22



normal line (black): This node or edge is part of both the LHS and RHS.
dotted line (red): This node or edge is part of the NAC only.
thick line (green): This node or edge is part of the RHS only.

=W o=

dashed line (blue): This node or edge is part of the LHS only.

oo MNACE

baz “bar

BE

Figure 2.14: GROOVE rule graph colors

Variable nodes and terms Variable nodes in GROOVE are represented by their type: ‘int’,
‘bool’, ‘real’ and ‘string’ for integer, boolean, real and string variables respectively. Figure 2.15
shows two integer variable nodes and the constant integer node ‘1’. The diamond shaped node is
a term node. It has two argument edges 7,71 and a result edge ‘int:add’. The term represented
here is the addition of two integers, the first one being an integer variable, the second being the
number 1. When this rule matches a host graph, the target variable node of the result edge is set
to the result of the term; in this case the image of the first variable node plus one.

mE
>j< add

@m0~

Figure 2.15: Terms in GROOVE rule graphs

Term shorthand notation A rule node with an edge to a constant is shortened to a label on
the node. Figure 2.16a shows a node with an edge labelled ‘x’ to the constant ‘1’. Figure 2.16b
shows the shorthand notation of this edge as the label ‘x = 1’ on the source node of the edge.
Terms can also be shortened. The rule graph in Figure 2.15 can be shortened to the rule graph in
Figure 2.17.

Node
(Node|—=—()
(a) edge to constant (b) shorthand notation

Figure 2.16: Constant shorthand notation in GROOVE

Wildcards GROOVE features wildcards that can match any label, or a label from a set of
labels. Figure 2.18 shows an example of this. The edge on the left ‘Node’ matches any edge on a
node typed ‘Node’. The right ‘Node’ matches any node typed ‘Node’ with the flag ‘a’ or ‘b’.

Rule transition parameters Rule transitions can have parameters in GROOVE. Figure 2.19a
shows a rule where the node variables have a number in the top right of the node. These numbers
indicate that the value of the variables are placed as parameters on the rule transition, in the
order indicated by the numbers. This rule matches the host graph in Figure 2.19b. The result of
applying the rule twice is the GTS in Figure 2.19c.

23



Node
Xx:=x4+1

Figure 2.17: Term shorthand notation in GROOVE
?
Figure 2.18: Wildcards in GROOVE rule graphs

Quantification GROOVE supports quantification operations over nodes in rule graphs. Figure
2.20 shows a simple example. The ‘forall’ operator here matches all nodes typed ‘Node’. GROOVE
also supports the ‘exists’ operator and nesting of operators, however this is out of scope for this
report. The ‘forall’ operator will be used in the model examples to perform operations over sets
of nodes, such as in this rule: all self-edges labelled ‘x’ on nodes typed ‘Node’ are deleted from
the host graph.

2.5.4 Example GROOVE graph grammar

The running example from Figure 2.4 is displayed as a graph grammar, as visualized in GROOVE;,
in Figure 2.21. Figures 2.21b, 2.21c and 2.21d show three rules. Figure 2.21a shows the start graph
of the system.

The rules can be described as follows:
1. 2.21b: ‘if a player has the turn and he has not thrown the die yet, he may do so.’

2. 2.21c: ‘if a player has the turn and he has thrown the die and this number is larger than
zero, he may move one place and then it is as if he has thrown one less.’

3. 2.21d: ‘if a player has finished moving (number thrown is zero), the next player receives the
turn.’

The graph is transformed after the rule is applied. The resulting graph after the transformation is
the new state of the system and the rule is the transition from the old state (the graph as it was
before the rule was applied) to the new state. Figure 2.22 shows the IOGTS of one ?throws rule
application on the start graph. Note that the ?throws is an input, as indicated by the ‘?’. State
s1 is a representation of the graph in Figure 2.21a. Figure 2.23 shows the graph represented by
§9.
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(a) Rule graph b) Host (¢) GTS
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graph

Figure 2.19: Rule transition parameters in GROOVE

Figure 2.20: An example of quantification in GROOVE

Die Player
rolls = id=2

t at
)

Location

next next

next next

(a) The start graph

rolls
|

: Player | , _|Player
rolls = rolls — 1 ) [t
0 rolls := rolls — T
> 4 rO”S rolls > 0 l
throws
|

thrqws throws
.

. |

%
Player Y Die
{ Location F next »[ Location ]

(b) The throw rule (c) The move rule (d) The next turn rule

Figure 2.21: The graph grammar of the board game example in Figure 2.4
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?throws(2)

Figure 2.22: The GTS after one rule application on the board game example in Figure 2.21

Player

turn Player

Die

canThrow = 1

canThrow = 2 throws = 2

canThrow = 3
canThrow = 4
canThrow = 5 at

canThrow = 6 at

next next

Location Location

next next

Figure 2.23: The graph of state s2 in Figure 2.22
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Chapter 3

From Graph Grammar to STS

3.1 Requirements considerations

As described in seciton 1.5, the GRATIS tool needs to fulfill three requirements:

1. A graph grammar must be used as the model; it must derive from the specification and be
used for the testing.

2. It must be possible to measure the test progress/completion, by means of coverage statistics.

3. The solution must be efficient: it should be usable in practice, therefore the technique should
be scalable and the imposed constraints reasonable from a practical view point.

IOGGs In order to fulfill the first requirement, stimuli and responses have to be obtained from
a GG. ATM uses an IOSTS, where the instantiated switch relations represent a stimulus to or
a response from the SUT. GGs have no notion of inputs and outputs, therefore IOGGs have to
be used as the model formalism. IOGGs can be explored to IOGTSs and the I/O labels of the
IOGTS can be used to represent abstract stimuli/responses.

On-the-fly vs. offline exploration The exploration of a GG can be done in two ways: on the
fly, rule transitions are explored only when chosen by ATM, or offline, the GG is first completely
explored and then sent to ATM. On-the-fly model exploration works well on large and even infinite
models. However, coverage statistics cannot be calculated with this technique. The number of
states (graphs) and rule transitions the model has when completely explored are not known, so a
percentage cannot be derived. As coverage statistics are an important metric, the offline model
exploration is chosen for GRATIS.

Data values An IOGTS can potentially be infinitely large, due to the range of data values. This
is a potential risk for the validation of the system. A model that is more efficient with data values
is an STS. The setup of GRAT]S is therefore to transform the IOGG directly to an IOSTS. This
transformation should be done efficiently to fulfill the third requirement. Note that the second
requirement is still met, because location and switch relation coverage can be calculated on the

IOSTS.

Steps Taking these requirements into account, the method to achieve the goal of model-based
testing on GGs is the following three steps:
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1. Create an IOGG by assigning I/O types to the graph transformation rules of a GG
2. Create an IOSTS from the IOGG
3. Perform the model-based testing on the IOSTS
The rest of this chapter describes a declaritive definition for creating an IOSTS from an IOGG.

3.2 From IOGG to IOSTS

3.2.1 Variables in GGs

The location variables in an STS represent an aspect of the modelled system. For instance, if a
system keeps track of the number of items in containers, the STS modelling this system could have
integer location variables items;..items,. GGs do not have this kind of variables. The variable
nodes in rule graphs are used to match a value in a host graph, which is only available to that
rule. A definition of persistent variables in GGs is needed in order to define location variables
from an IOGG. We define Vg to be the set of GG variables in a GG.

Definition 3.2.1. GG variables
A GG variable is a tuple (l,,1,) € Vaa, where:

e [, is the variable label, which is part of an edge (24,14, 24), Where z, is called the variable
anchor

e [, is the value label, which is part of a value edge: (zq4,1y, 2), with z € U.

The item/container example modelled in a graph grammar could be a graph node representing
a container with an edge labelled ‘items’ to an integer node. This is shown in Figure 3.1a. The
variable (varl,items) is now represented by this graph. Figure 3.1b shows the same example in
GROOVE. The variable edge is omitted here and the variable label is represented by the flag vari.
This convention for GROOVE is used in the rest of this report.

varl varl

m Container
. items 2 —
Container 135S = 2

(b) GROOVE

(a) Formal

Figure 3.1: Example of a GG variable

3.2.2 Graph exploration with point algebra

The IOGG cannot be directly made into an IOSTS, without using the IOGTS. To avoid the
problem of a potentially infinitely large IOGTS, the point algebra is used. Using the point algebra
when exploring a GG has two effects:

1. The host graphs that differ only in value nodes are collapsed into one
2. The variable nodes in rule graphs can have at most one image in the host graph

The actual values of the value nodes in host graphs and of the variable nodes in rule graphs are
not needed to make the IOSTS, which is explained in the next section. Using the point algebra
for the exploration poses some constraints, which are explained in section 3.4.
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3.2.3 The IOGG to IOSTS definition

First the declaritive definition is given, then each part of the definition is described in more detail.

Definition 3.2.2. IOGG to IOSTS
Let K be an IOGG. From K we define an IOSTS J. The first step is to explore K using the point
algebra P to an IOGTS Op. The elements of J can be obtained as follows:

e W =g

e wy =G

o L.=Vac

e 1 = ¢,, where ¢, is defined below
e A=R

e 7=V

e D =U, where v, p are given by functions defined below

Locations The locations abstract from data values, exactly like host graphs do under the point
algebra. Therefore, the set of locations in J are the set of host graphs in Op. The initial location
in J is also equal to the start graph of Op.

Location variables GG variables were defined to have location variables in GGs. Therefore,
it is no surprise that the set of location variables in J is exactly the set of GG variables in Op.
This poses some constraints on creators/erasers for the variable anchors, variable edges and value
edges. This is explained in detail in section 3.4.

Initialization function The initial value of the location variables is defined by the start graph.
The start graph contains the GG variables and their initial values. This poses a constraint on the
start graph, which is explained in section 3.4.

Definition 3.2.3. Initialization function
¢z : (laalv) =z | (Zaalaaza) € EGQ A (Zaalmz) S EGO

Gates The gate of a switch relation represents the stimulus to or response from the SUT. In an
IOGG, the rules represent the stimuli and responses. Therefore, the set of gates A is equal to the
set of rules R.

Interaction variables Interaction variables are used by the gates to represent a stimulus or
response variable. The variable nodes in rule graphs are this representation. The set of interaction
variables 7 is equal to the set of variable nodes V. The arity of a rule is defined by the variable
nodes in the LHS of the rule:

arity(r) = |V N Vips|

Switch relations A rule transition G - G’ € U is mapped to a switch relation (G MLATLZN

G') € D. Note that the set of locations is the set of host graphs, therefore G and G’ represent the
source and target location of the switch relation. Also, the set of rules is chosen to be the set of
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gates, therefore r represents the gate of the switch relation. The function ¢, obtains the guard as
a term and ¢, replaces the p function. These functions are defined in the next paragraphs.

Guard The guard of a switch relation restricts the use of the switch relation based on the values
of the variables. In a GG, a rule is restricted by the terms. The variables used in the terms are
interaction variables. Therefore, the first part of the guard is constructed by joining the terms for
each term node.

Definition 3.2.4. First guard function

¢1V : /\ZGVLHszTs t1€2, t2€2 b =12

We apply this to the rule graph in Figure 3.2. This rule graph contains one term node, which in
turn contains two terms. Formally, the first part of the guard for this rule graph is:

(x1+l=z1+)A(x1+1=22) A (2 = 22) A(T2 > 3 =23 > 3) A (22 > 3 = true) A (true = true)

When t; = o, the equation for this part is not useful, therefore it is omitted from now on.
. a
;

|

’int:xQ‘ ‘x2>3,true‘

Figure 3.2: a rule graph

This first part of the guard contains only the interaction variables. In an STS, the values for x
and x5 can be chosen such that the guard holds. However, the variable nodes cannot have just any
value; their value is determined by their image in the host graph. This image can be the value of
a GG variable. Therefore we add a second part to the guard to link the interaction and location
variables.

Definition 3.2.5. Second guard function

9271 Nl eVec, 26V0Vins | Garlarza) €EAGalusm(2)eEq (lar o) = 2

We apply this to the rule graph in Figure 3.2 and the host graph in Figure 3.3. The rule has a
match in the host graph. The second part of the guard for this rule is:

(varl,b) = z1 A (varl,d) = x4

varl

(v

(1)<l —">[he]

ld

Figure 3.3: a host graph

Definition 3.2.6. Guard function
The complete guard is created by:

Oy PLy NP2,
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Update mapping When a value edge is erased from a graph and a new value edge is created
with the same label and variable anchor, this inidicates an update for the corresponding GG
variable. The update mapping for the switch relation represented by this rule transition should
map the matched GG variable to the interaction variable represented by the target of the new
value edge.

Definition 3.2.7. Update mapping function
&p: (la,lw) = 2" | (20,1, 20) € Eg A (2,0,2") € Epgs Am(z) = 24

This poses some constraints on the eraser/creator edges for value edges, which are explained in
section 3.4. These constraints ensure that ¢, is bijective.

3.3 Rule priorities

Rule priorities are not taken into account in the definition above. First, we show why the definition
above does not work with rule priorities. Then we show a method of including rule priorities in
the IOSTS.

We apply the definition to the GG in Figure 2.9. We assume the rules both are stimuli, i.e. each
is a I/O transformation rule (r, input), where r is the respective rule. All host graphs explored by
this GG are isomorphic under the point algebra, so they represent the same location. The IOSTS
obtained from this IOGG is in Figure 3.4, with « = {z — 25}. This IOSTS is wrong, because the
‘?sub’ switch relation can be taken from the start, whereas the ‘?sub’ rule in the IOGG cannot
be applied to the start graph, because it has a lower priority than the ‘?add’ rule.

?sublax>10|xz: =z — 10

Yy

N

?add |z <30|z:=x+10

Figure 3.4: A wrong STS transformation of the graph grammar in Figure 2.9

The solution is shown in Figure 3.5. The negated guard of the ‘?add’ switch relation is added to
the ‘7?sub’ switch relation. The optimized guard for this switch relation is ‘x >= 30’ of course,
but this shows the main principle: for a rule transition u and a set of rule transitions U with
higher priority rules and the same source graph as u, the negated guard of the switch relations
represented by U must be added to the guard of the switch relation represented by u. In the
example, the ‘x < 30’ guard is negated to ‘!(x < 30)’ and added to yield the x > 10 && !(x <
30)’ guard.

Psub|x>10 && (z <30)|z:=x — 10

Yy

)

?add|x <30 |z:=xz+10

Figure 3.5: A correct STS transformation of the graph grammar in Figure 2.9

This problem only arises when the switch relation represented by the rule transition has a guard;
if the rule has no constraints on data and if it is applicable on one graph state, it is applicable on
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all isomorphic graph states under the point algebra. Therefore, rule transitions with lower priority
rules do not exist from that graph state and the respective switch relations also do not exist.

3.4 Constraints

In order for the definition in section 3.2 to work, four constraints are made for the IOGGs used in
GRATIS. This section describes those constraints.

GG variable persistency All location variables in an STS are initialized to some value and
no new variables are added. In a GG, it is possible to erase and create new variables in the
transformation rules. Therefore, we pose the following constraints:

e All GG variables must be present in the start graph
e Variable anchors and variable edges cannot be erased or created

e A transformation rule may erase a value edge if and only if it creates a new edge with the
same source node and label as the erased value edge. The target node of the new edge must
be a value node of the same sort as the target node of the erased edge

Unique GG variables The GG variables to location variables mapping has to be bijective.
The previous constraints ensure the GG variables are always present, however they do not ensure
their uniqueness. Therefore, we pose the following constraints:

e The variable labels have to be unique; there cannot be two variable edges with the same
label in the start graph

e The value labels for the value edges with the same source node have to be unique; there
cannot be two edges with the same variable anchor with the same label in the start graph

No GG variables in NACs In graph transformation rules, it is common to create restrictions
on data using a NAC'. For example, the rule graph in Figure 3.6a as a NAC expresses that the rule
cannot be applied when the system is in state ‘done’. When using the point algebra, a problem
occurs when a value edge is part of a NAC. The rule containing such a NAC will never match
any host graph, because:

(a) the value edge is present in every host graph as stated in the previous constraints

(b) the target value node of the value edge will always be an image of the target variable node
of the pre-image of the value edge. This is assuming the variable node in the NAC is of the
same sort as the value node, otherwise the NAC would never have a match, because of the
constraint on the sort of the value node of a value edge. Such a NAC would add nothing to
the rule.

{ 1
%atus %atus

‘ string : ‘ ‘a: = “done”,false‘

(a) GG variable in NAC (b) GG variable in LHS

Figure 3.6: Node creating rule without structural constraint
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Therefore we pose the following constraint: A NAC may never match the value edge and value
node of a GG variable.

The correct way of modelling the example when using the point algebra is shown as the LHS of
a rule in Figure 3.6b. Under the point algebra, both terms z = “done” and false evaluate to the
same boolean value. Therefore, an image for this term node can always be found, when the term
node is in the LHS of the rule.

The guard of the switch relation will be (x = “done”) = false. This leads to a case where the
guard of the switch relation can never be satisfied. The following paragraph describes such a case.

Data constraints in node creating rules A case where a guard can no longer be satisfied
is shown in Figure 3.7. This figure shows the LHS and RHS of a rule in the container-items
example. The rule adds an item to the container unless it is full, i.e. has five items. If an item is
added, a new node labelled ‘new’ is created in the host graph. Under the point algebra, this rule
always matches the host graph and thus this rule creates an infinite number of nodes. Therefore,
the exploration never ends. This means that an IOGG with such a rule has an infinite number
of graphs and the corresponding IOSTS has an infinite number of switch relations. However, the
guards of the switch relations can no longer be satisfied when the location variable corresponding
to the GG variable (varl, items) reaches 5.

The rules in an IOGG which create new nodes or edges and have constraints on data should either:
e crase the same amount of nodes and edges as it creates

e have a constraint on the created node or edge, e.g. the node to create is part of the NAC of
the rule

The first constraint guarantees the exploration halts. The second constraint is only a guarantee if
the node is the only element in the NAC, otherwise it is possible that the NAC does not match
the graph even with the node in it.

varl varl

Yy ("

litems W
(

(a) LHS b) RHS

Figure 3.7: Node creating rule with data constraint
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Chapter 4

Implementation

This chapter covers the general implementation of GRATiIS. GROOVE and ATM, explained in
section 2.5, are used for most of the functionality. Therefore, first a general overview of the
workings of GRATIS and how GROOVE and ATM fit in the picture is explained in section 4.1.
The added functionality is then explained in more detail in section 4.2.

4.1 General setup

Figure 4.1 shows a UML sequence diagram of GRATIS, depicting a general test run. This figure
shows a combination of the UML sequence diagrams of GROOVE in Figure 2.11 and ATM in
Figure 2.10. The interactions between GROOVE components and between ATM components as
described in those figures is omitted where possible. The 'RemoteExploration’ component replaces
the ’ExplorationStrategy’ in Figure 2.11 and the ’ATMInterface’ component is added. These are
briefly included in the step-by-step explanation and explained in more detail later.

Userlnterface RemoteStrategy RuleApplier ATMinterface STSEngine TestManager
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Figure 4.1: GRATIS sequence diagram
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1. The user enters an IOGG in the RuleApplier of the GROOVE tool. The input/output rules
are defined by prefixing the given rule names with ’?” and ’!.

2. In the settings menu of GROOVE, the user sets the algebra family of the IOGG to to the
point algebra, which is used by the RuleApplier.

3. The user selects the RemoteStrategy from the available strategies in GROOVE. This strategy
gives input options to a host name and port number. The strategy is then started by the
user. The communication between the RuleApplier and the strategy is omitted here, this is
the same as in the GROOVE diagram. The result of the exploration is an IOGTS under the
point algebra.

4. The RemoteStrategy creates an IOSTS in Java objects from this IOGTS with the method
described in chapter 3. It then creates a message with the IOSTS and sends this message to
the ATMInterface

5. The ATMInterface receives the message and gives the IOSTS to the STSEngine.

6. The ATMInterface starts the testing with the default ‘depth’ parameter; making this config-
urable is not implemented yet. The communication between the TestManager, STSEngine
and Adapter is omitted here.

7. The TestManager returns the test results to the ATMInterface. The test results are stored
in a database and are viewable by starting the user interface of ATM (ommitted here).

4.2 Description of added functionality

This section covers in detail the added functionality to GROOVE and ATM.

GROOVE exploration strategy Figure 4.2 shows the class diagram of the added exploration
strategy interface. The RemoteStrategy extends a SymbolicStrategy. The SymbolicStrategy has a
closing exploration strategy, which is a strategy that explores all graph states and rule transitions,
such as the BreadthFirstStrategy.

The user starts the RemoteStrategy with a host and port, as described above. This strategy starts
a ClosingStrategy. This strategy explores the IOGG and notifies the remote strategy when there
are no more rule transitions to explore. The SymbolicStrategy implements the method described in
chapter 3 to build the IOSTS in Java objects using the explored IOGTS from the ClosingStrategy.

SymbolicStrategy ClosingStrategy

RemoteStrategy

Figure 4.2: The class diagram of the exploration strategy interface

IOSTS in GROOVE Figure 4.3 shows the class diagram of the IOSTS in GRATIS. The IOSTS
is composed of Location, SwitchRelation, Gate, Interaction- and LocationVariable classes. A Loca-
tion object can be the start and target of any number of SwitchRelation objects. A SwitchRelation
object has two Location objects; the start and target location. It also has one Gate object, which
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can belong to any number of SwitchRelation objects. A Gate object can have any number of
InteractionVariable objects, but an InteractionVariable object belongs to only one Gate object.
The IOSTS class has one singleton object, the Rulelnspector, which contains the functionality
of building guards and updates from rule graphs, i.e. the ¢, and ¢, functions defined in 3.2.6
and 3.2.7 respectively.

LocationVariable InteractionVariable
*
* *
1 1
Rulelnspector 10STS 10Gate
F——<-initializationFunction 1
1 1
¢
1], 1

- SwitchRelation
Location

-guard
-updateMapping

Figure 4.3: The class diagram of the IOSTS in GRATiIS

Figure 4.4 shows the object relations in accordance with the class diagram for the IOSTS in
Figure 2.4. Note that the links between the BoardGame object and the the other objects are
not drawn for the sake of clarity. Note that the created objects, inter-object relations and object
parameters are in accordance with the method described in chapter 3. The IOSTS itself is the
composite object, which also holds the initialization function. The Rulelnspector is not part of
the IOSTS, therefore the Boardgame object does not show the relation with this object.

D : LocationVariable T: LocationVariable P1: LocationVariable P2 : LocationVariable |+ InteractionVariable
BoardGame : I0STS p_: InteractionVariable
initializationFunction = {T-> 1, P1->0, P2 ->2, D -> 0}
d : InteractionVariable
t: Location
m : Location Imove : I0Gate ?throws : I0Gate
m, !move, t) : SwitchRelation m, !move, t) : SwitchRelation (t, ?trhows, m) : SwitchRelation
guard = "T=1 /\ p=1/\ |=(P1+D)%4" guard = "T=2 /\ p=2 /\ |=(P2+D)%4" guard="1<=d<=6"
updateMapping = {P1->1, T->2} updateMapping = {P2 -> 1, T-> 1} updateMapping = {D -> d}

Figure 4.4: The object diagram of the IOSTS in Figure 2.4

GROOVE-ATM Interface The RemoteExplorationStrategy sends a HTTP POST request
with the IOSTS in JSON format to the interface of ATM. The ATM interface is one component
in the Ruby on Rails framework. The interface is a controller in this Model-View-Controller
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framework. Controllers handle the HTTP requests given by the framework. The interface receives
the IOSTS POST request, builds the IOSTS as Ruby objects and initiates the test using this
TIOSTS as model.
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Chapter 5

Validation

This chapter covers the validation of GRATIS. The validation is done through examples and a
case-study. Possible measurements on models and the performance are investigated in section 5.1.
The examples, case-study and models are given in section 5.2.

5.1 Measurements

This section describes possible measurements on the execution of GRATIS and comparisons be-
tween IOSTSs and IOGGs. This is done to compare the effectiveness of both formalisms in
MBT.The comparisons between the models are set out in the next sections, which are:

1. Simulation and redundancy
2. Model complexity
3. Extendability

The measurements on the performance of GRATIS follow these measurements, concluded by the
expectations for each measurement.

5.1.1 Simulation and redundancy

The generated IOSTS and the modelled IOSTS can be compared. It can be observed whether the
generated IOSTS simulates the modelled IOSTS and vice versa. When either is not the case, the
models show a different possible behavior for the SUT.

Simulation between two STSs can be done by creating the LTSs from the STSs first. LTSMin !
is a tool which can check the (bi)simulation on LTSs. However, creating the LTSs from STSs
becomes difficult on large models. Therefore, another solution is chosen.

ATM can be used to find diffrences between two IOSTSs, by using one as the model and the other
as the SUT. The SUT tries to copy the stimuli done by the model and the model tries to copy
responses done by the SUT. ATM can then find differences in behavior between both TOSTSs.
This technique is used to find non-conformance between the generated and modelled IOSTSs. This
is done by letting the test run reach 100% switch relation coverage on both models. For purposes
of the next measurement, we assume then that a bisimulation exists between both models.

thttp://fmt.cs.utwente.nl/tools/ltsmin/
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Definition 5.1.1. Model redundancy

It is possible that a generated IOSTS s is larger than a modelled IOSTS ¢, even if both simulate
each other. If ¢ simulates s, it is measured whether the set of switch relations or location variables
is strictly smaller in ¢ than in s, while the other set is at least as small in ¢ as in s. Formally:

traces(s) C traces(t) A ((|De] < |Ds| ANLe] < |Ls|) V (| D] < |Dg| AN |Le| < |Ls])
This indicates the the IOSTS s has redundancy.

5.1.2 Model complexity

A good way of testing the complexity of the IOSTS and the IOGG is to hold an extensive social
experiment, where groups create and maintain models in either formalism. However, this is out
of the scope for this report. More is written about this social experiment in the Future Work
section 6.3.

Instead of a social experiment, software complexity measurements were investigated in the lit-
erature and tested for their applicability for IOGGs and IOSTSs. The investigated complexity
measurement is Halstead’s Software science [8].

Halstead’s software science The complexity of the generated IOSTS and the IOGG can be
measured using Halstead’s software science. This method is used in measuring software complexity
and the prediction of faults. However, it can also be used in analyzing model complexity. In
Halstead’s software science, the operators and operands in the program code are counted. The
operators are the function symbols, the operands are the identifiers. However, in order to apply
these concepts to our setting, we have to identify what we consider to be operators and operands.

TIOSTSs and IOGGs both have identifiers and function symbols. However, they also have nodes
and edges. In an IOSTS, the locations are counted as nodes, the switch relations as edges. Nodes
and edges are considered to be operands. In GROOVE, colors indicate a restriction or node/edge
removal /creation. The node and edge colors are therefore considered as operators.

The distinct number of operators (n;) and operands (ny) are counted as well as the total number
of operator occurrences (N1) and operand occurrences (N3). These metrics combined lead to the
Volume (V) of the models.

Definition 5.1.2. Halstead’s Volume (V) function
(N1 4+ N2) * logs(ny + ng)

In Halstead’s software science, the volume of a program and a constant for the number of faults
per volume unit are combined to give the expected faults in a program. Therefore, comparing the
volumes of the IOSTS and IOGG gives an indication of the relative model complexity.

5.1.3 Extendability

The models can be extended to include more functionality. In this measurement, a realistic
scenario is introduced where additional functionality is required. It is then measured how much
the complexity increases, using the measurement in section 5.1.2. This should give a relative
estimation of the effort of modelling the extension.
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5.1.4 Performance

The performance on runtime and heap-size on the IOSTS generated by GRAT]S is measured. After
the IOSTS is generated we assume the run-time and heap-size for the testing part are the same
for both the generated IOSTS and the modelled IOSTS. Therefore, only the runtime and heap
size of the IOSTS generation are measured. The results are compared to the model complexity
for each model, showing how the performance measurements scale relative to the increased model
complexity.

5.1.5 Expectations

The runtime of the IOSTS generation is expected to be negligible compared to the testing time;
the latter often takes an hour for large models, because of timeouts and message delays. The
generation of the IOSTS is expected to take less than a minute for most models.

Table 5.1 shows the expectations for the other measurements. It’s expected that the generated
TIOSTS will not be the smallest possible IOSTS, because the best/most intuitive IOGG does not
necessarily have to generate the smallest IOSTS. The assumption is that IOGGs are a more simple
more intuitive formalism, therefore we expect that the model complexity for IOGGs will be lower,
as well as the complexity increase in the extendability measurement.

Model | Simulation and Redundancy | Model complexity | Extendability
I0GG - + +
I0STS + - -

Table 5.1: Measurement expectations

5.2 Models

This section shows the IOGG and IOSTS for each model example and the case study. There are
four examples; the last one shows the example can only modelled by violating the constraints in
section 3.4.

5.2.1 Example 1: boardgame

The boardgame is the running example of which the IOSTS and IOGG are given in Figures 2.4
and 2.21 respectively. In order to be consistent with the GG variable definition, the two Player
and Die nodes receive the flags varl, var2, var3 respectively, representing the variable labels.

5.2.2 Example 2: farmer-wolf-goat-cabbage puzzle

In this puzzle, a farmer, wolf, goat and cabbage are on one side of a river. The farmer can take
upto one item to the other side. If the wolf and goat are on one side of the river without the farmer,
the wolf eats the goat and the puzzle is reset. This also holds for the goat and the cabbage. The
goal is to move all four to the other side of the river. The puzzle is often referred to later by its
acronym ‘FWGC’. The stimuli accepted by the puzzle are:

e 7n Move the farmer to the other river bank

e 7w Move the wolf to the other river bank

40



e 7g Move the goat to the other river bank
e 7c Move the cabbage to the other river bank

The responses given by the puzzle are:
e lretry When 7w, ?g or ?c is given but the farmer is not on the same river bank as the item
e leaten An item eats another item on one river bank, with the farmer on the other river bank
e !done When all four items are on the other river bank

The TOGG of this puzzle is in Figures A.1 and A.2. The response rules ‘lretry’, ‘leaten’ and
‘Idone’ have a higher priority. This ensures that a proper response is given after a move, before
allowing more stimuli.

The IOSTS of this puzzle is given in the formal definition in Figure A.4. It uses boolean location
variables to indicate whether the item is on the other side. These are 7N, W, G, C for the farmer,
wolf, goat and cabbage respectively. These are checked to see if an invalid move is done, an item
is being eaten or the puzzle has been completed.

5.2.3 Example 3: bar tab system

This example models a bar tab system, where customers can order beer, wine and coke, costing
$1.50, $2.10 and $0.80 respectively. The price of the order adds to the customer’s tab. Customers
can pay their tab with money; they receive cash back if the payment exceeds the tab. The models
are abstracted to include three customers. Furthermore, a customer can order only one drink.
Drinks and payments are processed immediately before other drinks or payments can occur. The
stimuli accepted by the system are:

e ?0(i,d) for ordering a drink d on bar tab i
e ?p(i,p) for paying amount p on bar tab 4
The responses given by the system are:
e Ipo(b) for processing an order giving the new bar tab balance b
e Ipp(b,r) for processing a payment giving the new account balance b and the return funds r

The IOGG of the bar tab system is in Figure B.1. The ‘!po’ and ‘!pp‘ rules have a higher priority
than the ‘70’ and ‘7p’ rules, to ensure an order is processed before a new one is made.

The formal definition for the IOSTS of the bar tab system is given in Figure B.3. The IOSTS
uses the variables T7,T5, T3 to keep track of the bar tabs of the three people. It uses the variables
I, P as temporary variables for the id and payment/price respectively. The function maz takes
the maximum value of its parameters.

5.2.4 Example 4: restaurant reservations

In this example, a restaurant with three tables allow customers to reserve tables for a certain
time slot, given by a start and end time. The reserved time should be at least an hour. The
models abstract again from the number of customers, setting it to two. The time span in which
reservations can be made is a week. The maximum number of reservations is therefore bounded
to 7 x 24 = 168.

Figure 5.1a shows the initial graph of three tables at a restaurant and two potential customers.
Figure 5.1b shows part of a rule that allows people to make reservations. The start and end times
are timestamps represented by integers. This rule allows people to make multiple reservations.
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However, The reservations cannot be GG variables or this rule violates the unique GG variables
constraint in section 3.4, because it has to assign a variable label to the Reservation node.

name number
Person Person
name = "Lisa Smith" | |name = "John Doe" has for

Vel
number = 2
start_time 4 time
Table Table -
number = 1 number = 3

(a) The initial graph (b) The make reservation rule

6\
o

Figure 5.1: Part of the IOGG for the restaurant reservation system

Variables can be one of four sorts, as described in section 2.2. Allowing a dynamic amount
of reservations per person means that variables need to be introduced dynamically as well or
variables with more complex sorts have to be used, such as arrays.This also holds for the IOSTS
of this system. This example is to show the limitations on data and the abstractions that both
models are required to make. It is included in the measurements wherever possible.

5.2.5 Case study: Scanflow Cash Register Protocol

The system used for this case study is a self-scan register, which allows customers of a supermarket
to scan and pay for their products without help of an employee. Figure 5.2 shows this self-scan
register. The system contains a scanflow unit, which scans the products, and a cash register, which
handles the payment. The communication protocol between the register and the scanflow unit is
the system which is tested. The register is the SUT, the scanflow unit gives stimuli to and receives
responses from the register. The code of the register is available in a simulator, which is used for
the actual testing.

o
@
S
~ P

Figure 5.2: A self-scan register

Axini has provided an TOSTS and an Adapter component for this case study. These are used for
the testing and measurements.

Stimuli and responses Appendix C gives the most relevant parts of the specification docu-
ment for this communication protocol. The entire specification is downloadable from the Twente
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University website?. From this document, the following stimuli were designed:

?SIGNON (id, password)

Requests the register to sign on with the login and password given
by id and password

?SIGNOFF Requests the register to sign off

?OPEN (account) Opens the account given by account or a new account if account
is not set

?ARTREG (barcode) Requests registration of an article, with barcode representing its
key

7STAMPREG Requests registration of loyalty points

?ARTID (barcode) Requests identification of an article, with barcode representing its
key

?ARTRET (barcode) Returns an article where barcode is the article being returned

?7CLOSE Closes the account

?YENDTOT Requests the end total of the registered articles

?TRANS (trans_id) Inform the register that the payment was made, where
tr _method represents the payment method, e.g. cash, credit

card

?TRECEIPT Requests the register return the receipt.

?PRINT (account) Requests the register to print additional information on the re-
ceipt for account

?7IDLE Requests rounding-up of the account

TRESUME Requests the register to continue operation from an error state

?RHCOPY (account) Requests the register to print a hardcopy of a receipt for account

?TRESETCR Requests the register to execute a reset

?GET (var_name) Requests to get the value of a certain register variable represented

by var _name

The SCRP responses follow a coding scheme, much like the definition for FTP. The responses
are a 3-digit status code, where each digit has a special significance. The first digit denotes the
essence of the related action:

e 2yz Ok - Command has been accepted and the action is successfully completed. A new
command may be issued.

e 4yz Again - Command was not a accepted as a result of a temporary error condition. It is
encouraged to request the same action again.

e 5yz Fail - Command was not accepted as a result of a permanent error condition. It is
discouraged to request the same action again.

The following function categories are encoded in the second digit:

e x0z Syntax - Command contained a syntax error (50z), or default indication if no other
function category applies (10z, 20z, 30z, 40z)

e x1z Information - Response related to access of information.
e x27 Connection - Response related to connection/service.

e x3z Account - Response related to account management.

e x47 Transaction - Response related to (payment) transaction.
e x5z Signing - Response related to sign on/off operations.

e x6z Printing - Response related to receipt printing.

2http://fmt.cs.utwente.nl/education/master/117/
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The third digit gives a finer gradation in each of the function categories, which leads to the
complete list of responses:

1201 Resumed operation

1202 Cash Register restored
1210(cr_wvariable,cr_value) Gives the value of the variable ¢r_variable
1212(description, price) Gives the description and price of a registered article
1213(description, price) Gives the description and price of a registered article
1220 SCRP Service ready

1221 SCRP Service terminating

1230(endtotal) Gives the end total for all registered articles.
1231 Account opened

1232 Article registered

1233 Account idled

1240 Transaction succeeded

1250 Signed Off

1251 Signed On

1260 Data printed

1261 (html_text) Gives the receipt as HTML

1450 Signing rejected

1500 Unknown command

1501 Syntax error

1502 Command failed

1503 Error state

1510 No such variable

1511 No such article

1512 No stable weight

1530 No such account

1531 Invalid account state

1540 No such transaction method

1541 Busy transacting

1542 Transaction failed

1550 Not signed on

1551 Authentication failed

1560 CR-printing inactive

1561 SFU-printing inactive

Database testing The available barcodes of articles are stored in a database. There are no
stimuli to manipulate this database, nor is it feasible to let the model perform SQL statements
to obtain barcodes. However, the model should know if an existing or non-existing barcode is
given. The Adapter component is given access to the database and the stimuli with barcode as
internaction variable are replaced by:

?ARTID EXIST Requests identification of an existing article
?ARTID NEXIST Requests identification of a non-existing article
?TARTRET EXIST Returns an existing article

?PARTRET NEXIST Returns a non-existing article

?PARTREG EXIST Requests the registration of an existing article

?PARTREG NEXIST Requests the registration of a non-existing article
?TARTREG _REFUND Requests registration of a special type of article, the refund
TARTREG LOYALTY Request registeration of a special type of aricle, the loyalty points

A similar abstraction is made for the account interaction variable:
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?TOPEN _EXIST Opens an existing account

?OPEN _NEXIST Opens a non-existing account

?PRINT EXIST Requests the register to print additional information on the receipt for
an existing account

?PRINT NEXIST Requests the register to print additional information on the receipt for
a non-existing account

TRHCOPY EXIST Requests the register to print the receipt for an existing account

TRHCOPY NEXIST Requests the register to print additional information on the receipt for
a non-existing account

And also for the login and password for the signing on:

?SIGNON _EXIST Sign on with a correct login/password
?SIGNON _NEXIST Sign on with an incorrect login/password

IOGG Some selected rules of the IOGG of this communication protocol are shown in Figure 5.3.
In total the IOGG has 93 rules. They are downloadable from the Twente University website?.
Figure 5.3a shows the initial graph. The C'R node is the cash register, the SFU is the scanflow
unit. The first node has the flag SS OFF representing that the register is off. There is one
account which can be in states idle, open, closed and transing. When the customer places items
on the belt, a new account is opened. Figure 5.3b shows the general request structure. As long as
there is no request, a request can be sent. This rule requests the opening of an account. Figure 5.3¢
shows the rule for giving a success response. The request node is deleted such that new request
nodes can be created again. The rule checks if an account is not already opened and opens an idle
account. Figure 5.3d shows the rule for the error message received when an account is already
opened.

For all these rules, the C'R node has to have the flag SS _ ON representing the register to be signed
on. Figure 5.3e shows the response to a request when the register is not signed on. Apart from
the signon request, no other request is allowed in this state. Figure 5.3f shows the rule closing the
account.

IOSTS The IOSTS of the system as created by Axini is shown in a seperate document, also
downloadable from the Twente University website?. It has 907 locations, 1302 switch relations
and 2 location variables.

5.3 Measurements on examples

5.3.1 Simulation and redundancy

Table 5.2 shows the results for this measurement. It contains all examples in the ‘Example’
column and ‘Model’ contains ‘Generated’ and ‘Modelled’ to indicate which IOSTS counterpart
of the example the measurements are for. The ‘Simulates?’ column contains ‘Yes’ if the model
simulates its counterpart in the same example or ‘No’ otherwise. ‘Switch relations’ and ‘Location
variables’ give the number of these for each model. Using this information for both counterparts,
the model is declared redundant or not in ‘Redundant’; as described in definition 5.1.1. The
results per example are discussed in the next paragraphs, followed by the conclusions for this
measurement.

3http://fmt.cs.utwente.nl/education /master/117/
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Figure 5.3: A few selected rules from the IOGG of the Scanflow Cash Register Protocol

Boardgame The responses used by the IOSTS and by the IOGG are different. Both models,
used as examples to clarify the IOSTS and IOGG formalisms, were built with a different behavior
in mind. Both allow a die to be thrown, after which the IOSTS directly moves the player to the
correct location and passes the turn and the IOGG moves the player by a series of responses ended
with a nextTurn. Therefore, both IOSTSs do not simulate each other.

FWGC The IOGG does not use variables to track the location of each item. Therefore, the
generated IOSTS has a location per state of the puzzle. Since on neither side both the number of
switch relations and location variables are higher, both models are not redundant.

Bar-tab system The modelled IOSTS keeps the name and price of drinks as location variables,
whereas the generated IOSTS hard-codes these into the guards and updates. The generated IOSTS
builds a switch relation with gate 7o for each combination of customer and drink. It also builds a
switch relation with gate 7p for each customer. The target locations of all these switch relations
have one switch relation back to the initial location. Therefore, the number of switch relations is
3%3%x2+3*x1%x2 = 24. This could have been avoided by modelling GG variables for the price
and drinks. However, this would make the IOGG more complex.

SCRP The generated IOSTS allows every stimulus in every location. The modelled IOSTS
is modelled to test a subset of the more interesting behavior. Therefore, the generated IOSTS
simulates the modelled IOSTS, but not vice versa. The modelled IOSTS is also redundant, because
it features many 7 transitions.
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Example Model Simulates? D L | Redundant?
Boardgame Generated No 12 3 -
Modelled No 3 4 -
FWGC Generated Yes 50 0 No
Modelled Yes 11 4 No
Bar tab Generated IOSTS Yes 24 13 Yes
Modelled IOSTS Yes 10 5 No
Reservations | Generated IOSTS - - - -
Modelled IOSTS - - - -
SCRP Generated IOSTS Yes 540 2 No
Modelled IOSTS No 1302 | 2 Yes

Table 5.2: Simulation and redundancy results

Conclusions This measurement shows that IOGGs are good at making a model input-complete.
For the smaller examples, it shows that the modelled IOSTSs often have fewer locations than the
generated IOSTSs. Presumably, when modelling with I0GGs, making rules that create new
locations are preferred over adding GG variables, if possible.

5.3.2 Model complexity

Table 5.3 shows the measurements on the operators and operands of all models. The differences
in complexity differ between the models. However, the no and N7 column jump out: the distinct
number of operands is much higher for the IOGG models, but the total number of operators Ny
is much higher in the IOSTS models. This is based on the last three models, which express the
same behavior.

Example Model | nq | no | Ny Ny Volume
Boardgame I0GG 7 112 | 20 90 467.27
I0STS 6 9 14 27 160.18
FWGC 10GG 3 |12 31 190 863.42
I0STS 6 8 | 103 | 130 887.11
Bar tab I0GG 9 | 31| 40 188 1213.40
I0STS 8 | 15| 66 134 904.7
Reservations | IOGG 1 |19 5 50 237.71
I0STS - - - - -
SCRP 10GG 3 | 69 | 207 | 1506 | 10569.10
I0STS 3 6 | 730 | 2594 | 10536.83

Table 5.3: The Halstead measurements on the models

5.3.3 Extendability

The next paragraphs contain a hypothetical extension to each example. New models are given
which feature the extension. In the last paragraph, the increase in model complexity for each

example is given in a table. The restaurant reservation system is omitted from this measurement,
as is SCRP.

Boardgame The boardgame is extended to include one more player and one more location. For
the IOGG, this means adding new locations and players to the initial graph. The players get a
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fixed order in which they play. This means that the next turn rule also has to be extended. The
rest of the rules stay as they are. The extended rules are in Figure 5.4.

Player

id=2
Player next next -
turn next Player Die
id=1 \ id = rolls = 0

at

at : at
Player next Player
next next — turn + turn

Location Location |

throws

|

next next ;

Die
a) The initial graph b) The next turn rule

g

Figure 5.4: The extended IOGG of the board game example in Figure 2.21

The IOSTS gains a variable and a switch relation for the new player:
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t
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FWGC In another variant of this puzzle, when one of the items is eaten, the puzzle can reset,
but it can also undo the last action. The !eaten rule can have either effect. In Figure A.3 shows
this extension for the IOGG in five rules. The rules keep track of the last moved items. When an
item gets eaten, the last move can be undone.

The IOSTS in Figure A.5 keeps extra variables for the previous positions of the items and adds
one switch relation that restores the items to their previous positions when an item gets eaten.

Bar tab system The system is extended to allow ordering multiple drinks of different types.
Also, a customer can purchase the option of receiving 10% discount on all ordered drinks for 50
euros, which is added to the tab of the customer.

e ?0(i,dy,q1,ds,q2,ds,q3) is used to order a quantity g, of drink d,, on bar tab i.
e 7d(i) is used to order the discount on bar tab .

e Ipd(b) process the discount where b is the new balance.

Figure B.2 shows the extended rules and initial graph. The ?p and !pp rules have remained the
same. The bar tabs track their discount. When processing an order, the discount is applied to
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the total price.

The IOSTS in Figure B.4 gains three location variables to track the discount for each tab. An
order discount and process discount switch relations are added. Like with the IOGG, the discount
is applied to the total price of the ordered drinks.

SCRP An extended version for the IOSTS of SCRP by Axini is not available as there is no
extended version of the SUT. Creating an extended IOSTS for SCRP and a corresponding SUT
is out of scope for this report. Therefore the extension measurement is not done on the models
for SCRP.

Model complexity increase Table 5.4 shows the measurements on the operators and operands
of all extended models and the increase in model complexity. The differences in complexity differ
between the models. The volume increase does not show one trend; it is much higher for the IOSTS
in the farmer-wolf-goat-cabbage puzzle and much higher for the IOGG in the bar tab system.

Example Model | ny | no | N1 | No | Volume | Volume increase
boardgame I0GG 6 | 12 | 20 | 105 | 521.24 53.97
I0STS 6 | 10 | 24 39 252.0 91.82
FWGC 10GG 4 |12 | 38 | 217 | 1020.00 156.58
IOSTS | 6 | 12 | 146 | 247 | 1638.78 751.67
bar-tab system | IOGG 9 | 36 | 65 | 290 | 1949.61 736.21
I0STS 8 | 23 | 8 | 156 | 1208.82 304.12
Reservations I0GG - - - - -
TOSTS - - - - -

Table 5.4: The Halstead measurements on the extended models

5.3.4 Performance

The performance of GRATIS on all models is in Table 5.5.

Example runtime (ms) | heap-size (MB)
Boardgame 300 1.9
FWGC 770 5.2
Bar tab 250 2.1
Reservations - -
SCRP 9530 6.6

Table 5.5: Performance measurements
The algorithm scales reasonably well; the IOGG of SCRP is on average 13 times more complex

than the examples and the runtime is on average 23 times longer. The space usage also shows
very little increase.

5.3.5 Measurement conclusions
Table 5.6 shows the results of the measurements. The generated IOSTS in the bar tab example is

redundant compared to the modelled IOSTS, but the modelled IOSTS in the SCRP case study is
redundant compared to the generated IOSTS. The other examples do not show any redundancy.

49



Therefore it is inconclusive whether the generated IOSTS is often redundant. More case studies
have to be done to draw this conclusion.

Model | Simulation and Redundancy | Model complexity | Extendability
I0GG +/- +/- +/-
I0STS +/- +/- +/-

Table 5.6: Measurement conclusions

Both the model complexity and extendability measurements are inconclusive. However, it is
revealed that IOGGs use more operators and IOSTSs use more operands to express the same
behavior. More larger case studies have to done to draw a conclusion. However, judging from the
effort and time put into modelling and extending the models from both formalisms, the IOGGs
were easier to model, because less operands were needed. The IOGG formalism in itself is more
complex than the IOSTS, because it has more operators. This makes IOGGs harder to understand
initially, but takes less effort to work with when a tester is adept with graph transformations. The
Halstead measurement assumes more faults are generated when the code-base becomes larger and
more complex. A problem indicated in the introduction is that stakeholders should validate the
models for correctness. A large IOSTS is difficult to check and a person not adept in graph
transformation will have an equally hard time checking an IOGG. However, when the stakeholder
becomes more adept at graph transformations, the IOGGs will require less effort to check than
the IOSTSs. In conclusion, the Halstead measurement is possibly not the right measurement to
indicate whether a certain formalism is more usable than the other.
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Chapter 6

Conclusion

This report shows the usability of Graph Grammars (GG) in model-based testing. The motivation
to use GGs is supported by literature, as described in section 1.3, emphasizing the understandibility
of graphs and the usefulness of graphs to express system states. Symbolic Transition Systems
(STS), described in section 2.3, are a useful formalism for computers.

The overall goal of this research was to create a tool that can perform Model-Based Testing on
GGs, using an existing graph transformation tool and a Model-Based Testing tool. The tools
GROOVE and ATM, described in section 2.5, were used for this.

Model-based testing is a useful technique to test large software systems. The resulting tool,
GRATIS, is an asset to the model-based testing paradigm. GROOVE is useful for modelling
systems with Graph Grammars; ATM is used by several Dutch companies to test their software
systems. The combination of the two tools allows Graph Grammars to be used as a model
formalism for Model-Based Testing. The setup of GRATIS also allows other tools, such as JTorX,
to replace ATM and work with the STSs produced by GRATIS.

6.1 Research goals

The research goals were:

1. Design: Design and implement a system using ATM and GROOVE which performs Model-
Based Testing on GGs.

2. Validation: Validate the design and implementation using case studies and performance
measurements.

ATM and GROOVE were used to implement GRATIS. It generates an Input/Output STS (I0STS)
from the Input/Output GG (IOGG) in GROOVE and performs the testing on the IOSTS in ATM,
described in chapter 4. The tool was also validated using four example models and a larger case
study, as described in chapter 5. Each case study featured an IOGG and a modelled IOSTS, each
describing the same system behavior. The measurements done were:

1. Performance: runtime and space requirements of the tool itself

2. Simulation and redundancy: comparing the generated IOSTS to the modelled IOSTS
3. Model complexity: comparing the IOGG to the modelled IOSTS
4

. Extendability: extending the behavior of the system and comparing the new IOGG to the
new I0OSTS
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The performance measurement shows the technique implemented in GRATIS scales well; GRATIS
can be used on large models without problem. The measurements on the generated IOSTS show
that it is not always the smallest IOSTS possible, modelling an IOSTS by hand can often create
smaller models. As these generated IOSTSs are hidden from the tester and only used by GRATIS
to perform the Model-Based Testing, this is not a problem. The model complexity measurements,
also on the extended models, were inconclusive. The measurement for model complexity, based
on Halstead’s software science, is a new concept for GGs and STSs. This measurement is further
discussed below in ‘Contributions’.

The design requirements for GRATIS were:

1. An IOGG must be used as the model; it must derive from the specification and be used for
the testing.

2. It must be possible to measure the test progress/completion, by means of coverage statistics
(explained in detail in section 2.1.2).

3. The solution must be efficient: it should be usable in practice, therefore the technique should
be scalable and the imposed constraints reasonable from a practical view point.

The design requirements are all met, because:

e the technique used in GRATIS proved effective for Model-Based Testing in the example cases
and the case study

e coverage can be measured on the generated IOSTS

e the performance measurements show that the symbolic model can be generated from large
IOGGs in a negligible time and that the technique scales well

6.2 Contributions

The contributions are:
1. A definition for variables in IOGGs in 3.2.1
2. A technique to generate an IOSTS from an IOGG in section 3.2
3. the tool GRATIS which implements the above-mentioned technique in chapter 4
4

. Model complexity measurements based on Halstead’s Software Science for IOGGs and IOSTSs
in section 5.1.2

The next paragraphs describe each contribution listed above.

GG variables Generating the variables in an IOSTS meant creating an extra definition for
IOGGs, which allows persistent variables for GGs. These did not exist, because IOGGS can
delete any node or edge, so also any variable definition in the graph. This gave problems to the
technique, as described next.

IOGG to IOSTS technique In order to generate an IOSTS from the IOGG such that it
describes the same behavior, four constraints, described in section 3.4, had to be defined. IOGGs
can dynamically add or delete these variables; something which was frequently desired to obtain
the smallest and most intuitive models, but which complicates the generation of the IOSTS. Hence,
constraints, on GG transformation rules were defined.

One of the example cases, a restaurant reservation system, suffered from the constraints the most.
This example could not be modelled, because dynamically deleting and creating GG variables is
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not allowed by the constraints. The puzzle example on the other hand shows the strength of GGs
the most: simple, intuitive rules opposed to a complicated transition system. This shows that
some systems are more suitable to be modelled in IOGGs than others.

GRATIS: the case study The case study done in this report on a self-scan register shows a
real life example of a software system, successfully modelled as an IOGG. Here, the strength of
behavioral rules is apparent: instead of state-transition thinking, the graph transformation rules
allow each behavioral aspect of a software system to be modelled by one rule. For example, a ‘cash
register not signed on’ error can be given from any state the cash register is not signed on. In an
TIOGG, this is expressed by one rule, but generates many switch relations in the STS. Restrictions
of where this rule does not apply can be easily added to the rule. In state-transition based models,
many states and transitions are often needed to model the same behavior described by one GG
rule. This shows that IOGGs are very useful when it comes to changing requirements: only few
rules need to be adjusted to accomodate these changes.

Model complexity Model complexity measurements were done on the IOGGs and IOSTSs of
the example cases and case study. This did not reveal a clear difference in overall model complexity.
However, it did show that IOGGs generally have more distinct operands, but less overall operators.
The first part is due to the labels on nodes and edges, which describe the nature of the nodes and
the relation between the nodes; these operands are not present in the IOSTSs. The second part
can be explained by the repetition needed in IOSTSs to describe the same behavior as one IOGG
rule.

6.3 Future work

Better measurements to evaluate model complexity, such as sociological experiments, can be used
to improve the usefulness of GGs in model-based testing. For instance, these measurements can
be used to improve tools such as GROOVE, by making the GGs easier to create and understand.

When STSs are extended to allow more complex data structures, such as sets, maps and arrays,
the definition of GG variables can also be extended. This should allow testers to viably model
TOGGs for more software systems. Alternatively, other strengths of GGs can be explored, such as
combining the consecutive application of the same rule into one, as was shown in the boardgame
example.

More case studies on real-life software systems should be done, in order to establish and improve the
usefulness of GRATIS to the model-based testing paradigm. Also the inconclusive measurements
can be re-evaluated if more case studies are done.

There are a number of possible extenstions to GROOVE that would make modelling with IOGGs
easier. More functions can be added like the ‘max’ and ‘min’ functions. Also, allowing operators
to work with different sorts, for example addition of a real and an integer, would improve clarity
of the model. Furthermore, the created IOSTS in GROOVE is not visible in the user interface of
GROOVE. Viewing the IOSTS in the user interface and exporting it to a file allows the possibility
for GROOVE to work with other tools as well.
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Appendix A

Farmer-Wolf-Goat-Cabbage Models

This appendix contains I0GGs and IOSTSs for the Farmer-Wolf-Goat-Cabbage puzzle. This
puzzle is explained in section 5.2.2. The IOGG for the puzzle is in Figures A.1 and A.2, the
extended IOGG for the puzzle is in Figure A.3, the IOSTS for the puzzle is in Figure A.4 and the
extended IOSTS is in Figure A.5.
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Appendix B

Bar Tab Models

This appendix contains IOGGs and IOSTSs for the bar tab system. This system is explained in
section 5.2.3. The IOGG for the sytem is in Figure B.1, the extended IOGG for the puzzle is in
Figure B.2, the IOSTS for the puzzle is in Figure B.3 and the extended IOSTS is in Figure B.4.
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Appendix C

SCRP Commands & Responses

This appendix gives an overview of the commands and responses in the Scanflow Cash Register
Protocol. It consists of one of the chapters from the ITAB Scanflow specification document,
refactored to be read as a stand-alone documentation.

Registration Accounts

The SCRP protocol incorporates the concept of an account, maintained in the CR on behalf of
the SFU, onto which articles can be registered. Registered articles form the basis for the amount
for which the customer is charged. A registration account can be in state AS IDLE, AS OPEN,
AS CLOSED, AS TRANSING or AS ENDING, see Figure C.1.

When the CR service is started, the account is typically initialized to AS IDLE. An OPEN
command issued by the SFU opens the account for registration. Registration is only possible
in this state. After registration is finished, the CLOSE command must be invoked. In the
AS CLOSED state, a TRANS command initiates a (payment) transaction. This command must
be re-issued until the transaction succeeds. A successful transaction causes the account to enter
the AS ENDING. In this state, the IDLE command makes the account AS IDLE, i.e. available
to be opened for the next session.

General Responses

The following responses can, when appropriate, be generated as a response on any command.

500 Unknown command In case the command is not recognized.

501 Syntax error In case the command contains a syntax error (e.g. mandatory
argument is missing).

502 Command failed As alast resort, when no other appropriate response can be given.

503 Error state In case the CR is in Error state and the requested command

cannot be processed due to that.

504 Weighing not available | This response should be used in the case a Cash register has
a scale configured, but no connection between the Cash register
and the scale is established, the Cash register must go to an error
state and send a 504 error (weighing not available).

550 Not signed on If the CR requires to be signed on for the command involved.
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Figure C.1: Registration Account State Machine

Commands

Initialize SCRP Service

Command:
Description:

Responses:

None; a transport connection suffices.

Initializes the SCRP service on the CR. The SFU must synchronize to the CR
after the connection has been established.

220 SCRP Service ready

Terminate SCRP Service

Command:
Description:

Responses:

QUIT

Requests the CR to smoothly terminate the SCRP service. Although the SFU
should wait for all accounts to be AS IDLE before issuing this request, the CR
must honour it in any state. Any non-IDLE account will be processed by the CR
in an implementation defined manner. The CR remains ready to accept a (new)
SFU connection.

221 SCRP Service terminating

Cash Register Sign On

Command:
Description:

Responses:

SIGNON <SFU_id>[:<password>|

Requests the CR to sign on, making the actual signing state SS_ON. The CR is
allowed to reject the request if the current signing state is SS__HALT.

251 Signed On

450 Signing rejected

551 Authentication failed
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Cash Register Sign Off

Command:
Description:

Responses:

SIGNOFF

Requests the CR to sign off, making the actual signing state SS_OFF or
SS_HALT. The CR is allowed to reject the request if not all accounts are in
AS _IDLE state. Otherwise, any non-IDLE account will be processed by the CR
in an implementation defined manner.

250 Signed Off

450 Signing rejected

Get CR Variable

Command:
Description:

Responses:

GET <cr_ variable>

Requests to get the value of a certain CR Variable. The CR must honour this
request in any state of the system. Possible variables and their values are listed
in Table 3.

210 <cr_variable>:<cr value>

510 No such variable

Open Account

Command:
Description:

Responses:

OPEN [<account>|<barcode>|

Opens an account for subsequent article registrations. The CR is requested to
perform this action before registration of articles commences. If the CR imple-
mentation is such that the account state is “default opened" after the previous
payment sequence, the command may internally have no effect but a positive
response is still required. A positive response must report the identity of the
account opened. If <account> or <barcode> is specified (both may be used al-
ternatively), the command requests to recall the associated stored account. The
format of <barcode> is the same as used by the CR to produce a store/recall
ticket. A preferred implementation of this command returns an account number
that is identical to the requested <account> (or identical to the account number
from which <barcode> was constructed). Returning another account number
is discouraged but allowed. The newly opened account must be put in state
AS OPEN and must inherit all account data from the account that is recalled,
including the state specific context.

231 <account> Account opened

530 No such account

531 Invalid account state

Close Current Account

Command:
Description:

Responses:

CLOSE

Closes the current account for further registration. The CR is requested to per-
form this action before a transaction sequence is initiated. A positive response
must include the total amount involved. The response may be preceeded by a
series of ‘display responses’, explaining the calculation from the previous subtotal
to the current endtotal (e.g. mix-match calculation results).

{ 212 <description>[:<price>[:<amount>]| }

230 <endtotal> Account closed

531 Invalid account state
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Request Article Identification

Command:
Description:

Responses:

ARTID <barcode>

Requests identification of an article, with <barcode> representing its key. This
command is not a request to register the article. The CR must honor this request
in any account state. A positive response must be given by means of a 211
response or a 213 response, their usage is alternative, which means that is up to
the CR to use one or the other to respond to a given ARTID command. However
systems using the certified weighing capability of the Cash Register must use the
213 response. Compared to the 211 response, the 213 response allows the CR
to provide a full-scale specification of the attributes that characterize an article.
A detailed definition of these responses including the error responses, is given
hereunder. The length of the responses may never be larger then 512 characters.
213

Request Article Registration

Command:
Description:

Responses:

ARTREG [<barcode>[:<amount>|]

Requests registration of an article, with <barcode> representing its key and
<amount> representing the amount of articles to register. This request is not
issued before an account has been opened successfully. A positive response must
consist of the following elements: <nr articles> Actual number of articles reg-
istered, <subtotal> Actual subtotal of articles registered. The response must be
preceded by a series of ‘display responses’ with all data related to the registration
of this article (e.g. linked articles, discounts, etc.). If <barcode> is omitted, the
command requests the complete list (as a series of ‘display responses’) of articles
registered in the current account, which might be a recalled account. In case of
a recalled account for which a partial payment was carried out on the originat-
ing (stored) account, the list of ‘display responses’ must include descriptive lines
explaining the results of the partial payment(s) done; all in consistence with the
value and definition of subtotal. If <amount>> is omitted, it will default to 1.

{ 212 <description>[:<price>[:<amount>]| }

232 <nr_articles>:<subtotal> Article registered

511 No such article

531 Invalid account state
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Request Account Transaction

Command:
Description:

Responses:

TRANS <tr_method»[:<amount>|

Requests transaction of the ‘oldest’ account from repository state AS CLOSED.
The account must be closed before the request can be honoured. For details
regarding transaction methods. A negative response (failure) must include an in-
dicator that specifies the cause of the failure. Table 8 lists an overview of possible
failures for each transaction method. Both transaction method and failure indi-
cation must be represented as ASCII strings and interpreted in a case-insensitive
manner. If <amount> is omitted, the actual endtotal is assumed implicitly.
Otherwise, <amount> indicates the requested transaction amount. The format
of the <amount> argument is identical to that of <price>. The semantics of
<amount> in relation to transaction methods TM STORE and TM FLUSH
is undefined; in case <amount> is specified for these transaction methods, the
response must report Failure Indication FI_ AMOUNT (see table below). After a
successful transaction, the remaining endtotal must be updated accordingly and
in correspondence with the applicable exchange calculation rules that reside in
the CR,; this endtotal value is also returned in the (new) “240"-response. The
resulting endtotal is by definition equal to 0 if the transaction was successful and
the <amount> argument was omitted, even for TM STORE and TM FLUSH.
Different from what is specified in the Account State Machine of Figure C.1 the
account state remains AS CLOSED after a successful transaction while the re-
sulting endtotal is unequal to 0. This allows for repeated/split TRANS requests.
240 Transaction succeeded

531 Invalid account state

540 No such transaction method

541 Busy transacting

542 <failure ind> Transaction failed

Print to Receipt (CR-Printing only)

Command:
Description:
Responses:

PRINT <account>:<html text>

Requests the CR to print HTML-style data to the receipt of the specified account.
260 Data printed

530 No such account

531 Invalid account state

560 CR-printing inactive

Query Receipt (SFU-Printing only)

Command:
Description:

Responses:

RECEIPT

Queries the CR to generate a multiline response with the entire receipt of the
account currently in AS ENDING state.

{261 <html text> }

531 Invalid account state

561 SFU-printing inactive
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Round-up Account

Command:
Description:

Responses:

IDLE

Requests rounding-up of the account in AS ENDING state. A successful re-
sponse makes the account state AS _IDLE. In case of CR-printing, this command
may cause he CR to activate the receipt cutter. With SFU-printing, this is the
acknowledge to the CR that the receipt has been correctly printed.

233 Account, idled

531 Invalid account state

Resume Operation

Command:
Description:

Responses:

RESUME

Requests the CR to continue operation from Error state. Once the CR is in Error
state, this command is needed to resume normal operation.

201 Resumed operation

503 Error state

Request Account EndTotal

Command:
Description:

Responses:

ENDTOT

Requests to calculate the actual endtotal for the current account. The request
is only valid in state AS _OPEN. The response must be preceded by a series of
‘display responses’, explaining the difference between the current subtotal and
the calculated endtotal. As such, the responses to this command are similar
to those of the “CLOSE" command. In contrast with the “CLOSE" command,
“ENDTOT" must not affect the account state and may be issued repeatedly.

{ 212 <description>[:<price>[:<amount>]| }

230 <endtotal> Account endtotal

531 Invalid account state

Request print of Receipt Hardcopy

Command:
Description:

Responses:

RHCOPY [<account>|<barcode>]

Requests the CR to print a hardcopy of a receipt. If <account> or <barcode>
is omitted, requests to print a hardcopy of the last printed receipt. This func-
tion is mandatory. A preferred implementation, however, must also support the
arguments <account> or <barcode> (both may be used alternatively), in which
case the command requests to print a hardcopy of the receipt associated to the
specified account. The format of <barcode>> is syntactically the same as used by
the CR to produce a store/recall ticket. It is preferred to accept this command in
all/most account states recognized by the SCRP protocol. Accepting this com-
mand in account state AS IDLE is required, though. The receipt hardcopy must
consist of all CR-generated print data for the designated account, as well as all
data that was PRINT-ed for that account on behalf of the SFU.

260 Data printed

530 No such account

531 Invalid account state

560 CR-printing inactive
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Cash Register Reset

Command: RESETCR

Description: Requests the CR to execute a reset. The function will only be possible to execute
manually from within the SFU.

Responses: 202 Cash Register restored
531 Invalid account state

Certified Weighing

Command: GET CERTDATA <barcode>

Description: This command requests certified weight data from the CR to be presented on the
screen for human verification. The format of <barcode> is missing the embedded
weight or price information. The Command can only be issued during the state
AS OPEN.

Responses: 214
512 No stable weight
531 Invalid account state
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