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Executive Summary

The goal of this research is to gain knowledge about the behaviour of the electricity price in
Norway and Sweden. The gained knowledge is used to support to decision process in originating
and structuring renewable energy projects in these countries. In order to do so, the key factors
influencing the electricity price in these countries are analysed and forecasting models are
developed to predict future electricity prices over a 15-year time period. Due to the long-term
nature of renewable energy project financing, the analysis and forecast of electricity prices is
based on monthly prices.

The different monthly electricity prices in Norway and Sweden are statistically analysed during
2000-2012. First conclusion is that the so-called system price is a good indicator for all other
prices and is therefore the only price to be further analysed and forecasted in this research. The
system price is subject to high volatility, non-normality, daily, weekly and yearly seasonal cycles
and price spikes. Furthermore, the system price is mean-reverting, indicating that the price
reverts back to its mean over time.

To analyse which key factors influence the system price, the research utilises time-series
analysis to construct several models, which try to replicate the historical behaviour of the
system price. Based on literature research and discussions with experts, several external factors
are indicated to have potential influence on the electricity price. The time-series analysis and
examination of the performance of the constructed models leads to the conclusion that the main
external key factors influencing the system price in Norway and Sweden are: 1) Oil; 2) Electricity
demand; and 3) Interconnection of electricity between the Nordic and non-Nordic countries.
Besides these external factors, the historical electricity prices of one and two months in the past
also have a significant influence on the current monthly electricity price.

The time-series analysis develops multiple models replicating the behaviour of the system price.
The best performing model is utilised to construct a 15-year out-of-data forecast for the system
price, i.e. for the years 2013 till 2027. This model is based on an ARMA structure and utilises the
historical electricity price of one month in the past and the external factors oil, demand and
interconnection to construct a 15-year monthly electricity price forecast. The forecast includes
four different scenarios, leading to the conclusion that the electricity price in 2027 will be
between the low scenario (circa €18,- per MWh) and the medium scenario (circa €40,- per
MWHh). Note that these prices are not indexed by inflation. Furthermore, three out of the four
scenarios indicate a stable or declining trend for the system price over the upcoming 15 years.

The analysis and forecast of the electricity prices in Norway and Sweden develop valuable
knowledge for X. The model forms a suitable alternative for simulation forecasting models. The
analysis and forecasting model can support future renewable energy project financing
opportunities in Norway and Sweden by offering in-depth knowledge about the market and the
electricity price in order to make informed decisions. An overview of all conclusions and
recommendations can be found in chapter 9, page 59.
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Samenvatting

Het doel van dit onderzoek is om kennis te vergaren omtrent het gedrag van de
elektriciteitsprijs in Noorwegen en Zweden. Deze kennis kan worden gebruikt ter ondersteuning
van het proces van het ontwikkelen en het financieel structureren van duurzame energie
projecten in deze landen. Om dit te bewerkstelligen wordt er onderzocht welke factoren de
elektriciteitsprijzen in Noorwegen en Zweden beinvloeden en worden er voorspellingsmodellen
ontwikkeld om de toekomstige elektriciteitsprijzen te berekenen over een periode van 15 jaar.
Vanwege het lange-termijn karakter van duurzame energie project financiering zijn de analyse
en voorspelling van elektriciteitsprijzen gebaseerd op maandelijkse prijzen.

De verschillende maandelijkse elektriciteitsprijzen in Noorwegen en Zweden zijn statistisch
geanalyseerd gedurende 2000-2012. De eerste conclusie is dat de zogenoemde ‘system price’
een goede indicator is voor alle andere prijzen en vandaar als enige verder wordt geanalyseerd
en voorspeld in dit onderzoek. De ‘system price’ is erg volatiel, heeft geen normale verdeling, is
onderhevig aan dagelijkse, wekelijkse en jaarlijkse cycli en heeft prijspieken. Ook heeft de
‘system price’ een bepaalde gemiddelde waarde en heeft het de neiging terug te gaan naar deze
gemiddelde waarde.

Dit onderzoek maakt gebruik van tijdreeks analyse om te bepalen welke factoren de ‘system
price’ beinvloeden en om verschillende modellen te ontwikkelen welke het historische gedrag
van de ‘system price’ proberen te benaderen. Gebaseerd op literatuur onderzoek en discussies
met experts zijn er verscheidene externe factoren aangemerkt welke een significante invloed
zouden kunnen hebben op de elektriciteitsprijs. De tijdreeks analyse en het onderzoeken van de
prestaties van de ontwikkelde modellen leiden tot de conclusie dat de volgende externe factoren
een significante invloed op de ‘system price’ in Noorwegen en Zweden hebben: 1) Olie; 2) Vraag
naar elektriciteit; 3) Import en export van elektriciteit tussen Noorse landen en niet-Noorse
landen. Naast deze externe factoren hebben ook de historische elektriciteitsprijzen van één en
twee maanden in het verleden een significante invloed op de huidige maandelijkse
elektriciteitsprijs.

De tijdreeks analyse ontwikkelt meerdere modellen welke het gedrag van de ‘system price’
benaderen. Het best presterende model wordt gebruikt om een voorspelling te doen voor de
‘system price’ over 15 jaar, d.w.z. over een periode van 2013-2027. Dit model is gebaseerd op
een ARMA structuur en maakt gebruikt van de historische elektriciteitsprijs van één maand in
het verleden en de externe factoren olie, elektriciteitsvraag en import / export van elektriciteit.
De voorspelling bestaat uit vier verschillende scenario’s welke leiden tot de conclusie dat de
elektriciteitsprijs in 2027 tussen het lage scenario (circa €18,- per MWh) en het middelste
scenario (circa €40,- per MWh) zal liggen. Deze prijzen zijn niet geindexeerd met inflatie.
Daarnaast vertonen drie van de vier scenario’s een stabiele of dalende trend voor de ‘system
price’ over de aankomende 15 jaar.

De analyse en voorspelling van de elektriciteitsprijzen in Noorwegen en Zweden hebben
waardevolle kennis ontwikkel voor X. Het model vormt een geschikt alternatief voor simulatie
voorspellingsmodellen. De analyse en het voorspellingsmodel kunnen toekomstige kansen voor
het financieren van duurzame energie projecten ondersteunen door het aanbieden van kennis
over de markt en de elektriciteitsprijs zodat geinformeerde beslissingen gemaakt kunnen
worden. Een overzicht van alle conclusies en aanbevelingen is te vinden in hoofdstuk 9, pagina
59.
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Chapter 1 — Introduction

This master thesis is executed on behalf of X, London. X is the leading universal bank in the north
of X. It supports inter alia the public sector in municipal financing and assumes the
responsibilities of a central bank for the savings in this part of X. X’s headquarters are situated
in X and as an internationally operating commercial bank it also has offices in significant
financial and trading centres such as London, New York and Singapore.

The problem this research focuses on is identified by X’'s Structured Finance Energy Europe
department. Structured Finance Energy Europe is a financer of projects in the area of renewable
energy. Their extensive know-how of this market is based upon a large and long existing
renewable energy portfolio. The department provides the following services with a bi-national
team in Hanover and London, with similar units in New York and Singapore:
1. Advisory: Support their customers in diverse issues right from the earliest phases of the
project;
2. Arranging: X is a lead financer in the area of renewable energies and has diverse
mandates as the lead arranger and leader of bank consortiums;
3. Structuring: Specially tailored financing to each customer’s own needs in order to
optimise the entire financing structure under consideration of all aspects.

The aim of this research is to support the Structured Finance Energy department of X to
understand the volatility of the electricity prices in the Nordic market, as further explained in
chapter 3. This will be done by analysing and forecasting the electricity price in the Nordic
markets. An in-depth analysis and long-term forecast of electricity prices give X guidelines to
tackle this problem by offering insight in the behaviour and future development of the price.

The contribution of this research with regard to similar investigations is that it focuses on long-
term analysing and forecasting of an electricity price. Instead on investigating the behaviour of
daily or weekly prices, this research aims to analyse the monthly prices. Based on this analysis
long-term forecast models are presented, predicting the electricity price over a 15-year period.
This is done by a technical and fundamental analysis and corresponding econometric models.
The few other long-term forecasting investigations utilise simulation models to achieve a similar
goal.

The research is organised as follows: Chapter two introduces the Norwegian and Swedish
electricity markets and the business of renewable energy project finance. These topics are
discussed briefly (and by no way comprehensively), but offer a common knowledge to
comprehend the remainder of the research. Chapter three introduces the research problem and
the relevant literature in addressing this problem is discussed in chapter four, focussing on
electricity price behaviour and electricity price forecasting literature. Chapter five explains the
methodology adopted by this research for analysing and forecasting the electricity price. The
technical and fundamental analyses are introduced in chapter 6 and utilised in chapter 7 to
construct multiple forecasting models and to determine the forecasting ability of these models.
In chapter 8 the best performing model will be used to forecast the electricity price over a 15-
year period. Conclusions, a discussion and recommendations are presented in chapter 9.
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Chapter 2 — Theoretical Background

This chapter will provide the necessary background information to understand the research
problem and therefore the remainder of the research. The topics introduced here are renewable
energy project finance and the Norwegian and Swedish electricity market. The introduction in
chapter 1 about X and the aim of this research clarify the inclusion of just the two topics of
renewable energy project finance and the Norwegian and Swedish electricity market.

2.1 Renewable Energy Project Finance

There are two distinctive features of the business of the Structured Finance Energy Origination
department in which this research finds its origination, i.e. Renewable Energy and Project
Finance. In this paragraph both topics will be briefly discussed, thereby developing a common,
basic knowledge of the background of the research problem.

Renewable Energy

Renewable energy generation is electricity generated by making use of infinite, natural
resources, opposite to non-renewable sources such as fossil fuels. These non-renewable sources
are consumed more rapidly than they are created and draw on finite resources that will
eventually seize to exist. Renewable energy generation uses sources such as the sun, wind, rain,
waves and the earth. Since X focuses on wind and solar technologies, only a short summary of
these renewable techniques is provided below.

The sun’s energy can be used for heating but also for generating electricity. The main
technologies for transforming sunlight towards electricity are concentrated solar power (CSP)
and photovoltaic solar cells (PV) integrated in so-called solar panels. These techniques can be
used on a small scale (e.g. several solar panels on rooftops of houses) or on a large scale. Over
the last few years the cost of photovoltaic solar cells has decreased while the efficiency has
increased significantly making the technology more competitive with conventional electricity
sources. PV is seen by X as one of the most mature and proven renewable energy technologies
and is therefore one of the technologies it engages in.

Most projects X finances utilise another renewable energy technology, being wind power. Wind
power makes use of wind turbines to convert the energy of the wind into some other sort of
energy, e.g. kinetic energy. Wind power is in fact also indirectly powered by the sun, i.e. the sun’s
heat drives the wind that produces energy that is captured with wind turbines (Kaygusuz &
Kaygusuz, 2002). The wind power that this research is focused on is on the wind power
technology transforming the wind power into electricity. These turbines can be situated on land
(onshore wind) or in a lake or sea (offshore wind). Whilst onshore wind is a mature and proven
technology, offshore wind is still subject to more risks and obstacles.

In order to stimulate their development and secure their participation in a new restructured
electricity industry, support mechanisms have been created for renewable energy generation
projects (Falconett & Nagasaka, 2010). The two most prominent support mechanisms are: 1)
Feed-in-Tariffs; 2) Renewable Energy Certificates.

Feed-in-Tariffs involve an obligation for electric utility companies to purchase the electricity
produced by renewable energy generators at a tariff determined by the public authorities and
guaranteed for a specific period of time (e.g. 15-20 years) (Menanteau, Finon, & Lamy, 2003).
This scheme is successfully employed in countries such as Germany, France and Denmark.

In a Renewable Energy Certificates scheme a fixed quota of electricity sold by suppliers on the
electricity market has to be generated by renewable energy technologies. The suppliers comply
with this obligation by buying renewable energy certificates. These Renewable Energy
Certificates are issued to the renewable energy generators and since the suppliers are obliged to
meet the quota, there is demand for these certificates. So the renewable energy generator
benefits from generating renewable energy in two ways: By selling the electricity on the
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network at the market price, and by selling certificates on the green certificates market
(Menanteau et al., 2003).

Project Finance

Project financing is, as the term indicates, basically the financing of projects. These projects
could be of any kind, e.g. infrastructure projects such as schools, hospital and bridges or
renewable energy projects, such as wind farms and solar parks. The specific aspect of project
financing is that it is based on non-recourse or semi-recourse financing. This means that the
financing is based upon the projected cash flows of the project rather than the balance sheet of
underlying sponsors. In other words, the cash flows of the project should be able to repay the
loan and accompanying interest on itself. It is called non-recourse because the loan is only
secured by the project itself and in case of a default the lender’s recovery is limited to that
collateral. To protect the other assets of a sponsor from a default of the project, it is common in
project finance to create a special purpose vehicle (SPV) for each project.

Stable cash flows form the basis for project finance and are formed by the operational revenues
and costs of a renewable energy project. Revenues basically consist of the price paid per
megawatt hour (MWh) times the produced electricity, plus additional revenues generated by the
support mechanisms explained earlier. The costs vary per project and consist among others of
operation and maintenance (0O&M) contracts, land leases and insurance costs. It is common in
renewable energy project finance that several costs are fixed for multiple years, e.g. by a 10 or
15-year O&M contract and long-term land lease contracts. To secure revenues, Power Purchase
Agreements! (PPA) are used to guarantee that produced electricity will be sold. Since lenders
are not keen on market price risk, the tenor of provided loans usually depends on the tenor of
the underlying contracts, which determine the cash flows for the future years. It is common in
project finance that the tenor of the loan is shorter than the lifetime of the project and the
applicable support mechanism in order to include a buffer. In general, the cash flows of the
projects should be predictable in order for lenders to provide the financing.

2.2 Swedish & Norwegian market

The main markets of interest for this research are the Swedish and Norwegian market. Both
electricity markets are part of the Nordic electricity market, along with the Danish and Finnish
electricity market. The electricity price is determined using a Nordic wide exchange market
called Nord Pool. Since these markets are all combined, the remainder of this paragraph will
mainly deal with the Nordic market in general instead of the Norwegian and Swedish markets on
its own. When it is deemed necessary, additional information about the distinctive markets is
provided.

2.2.1 Nordic Electricity market

Norway and Sweden participate in the Nordic electricity market. This market was set up
between 1991 and 2000 when the electricity markets of Denmark, Finland, Norway and Sweden
were opened for competition in generation and retailing. One of the reasons for this was the
widely held believe that increased competition would raise power industry efficiency to the
benefit of the customers, provided that there are sufficient competitors in the market.

The Nordic electricity consumption is relatively high compared to other countries. This is due to
the high level of electric heating in combination with cold winters and a relatively high
proportion of energy intensive industry (NordREG, 2012). This is especially the case for the
Swedish, Norwegian and Finnish markets. The Nordic electricity grid has multiple connections
to other countries. It is part of the transmission network in North-Western Europe and it
combines the whole Nordic market to one synchronous power system (NordREG, 2012). The
interconnection links run to Germany, Poland, Estonia, Russia and the Netherlands.

1 Contracts between generator and off taker including a certain price paid per MWh supplied for a fixed number of years.
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Nord Pool

The Nord Pool power exchange is the key trading institution in the Nordic electricity market. It
is an ‘energy only’ spot market at which hourly electricity prices are determined in single price
auctions (Amundsen & Bergman, 2006). The Nord Pool was the first international power market
in the world and was established by Norway in 1993. In 1996 the Swedish and Norwegian
markets merged into one market, while Finland, West Denmark and East Denmark joined the
market in 1998, 1999 and 2000 respectively (Torghaban, Zareipour, & Le, 2010).

Trading at Nord Pool is voluntary. Despite this voluntary character, the trade volumes at the
Nord Pool have increased steadily over the past years and the total volume at Nord Pool traded
in 2011 was about 78% of the total Nordic electricity consumption (NordREG, 2012). The other
partis traded on a bilateral basis between generators and suppliers.

The Nord Pool consists of three sub-markets, being the day-ahead market Elspot, the intra-day
market Elbas and the financial market Eltermin. In the Elspot sub-market electricity is traded for
the next day. In Elbas participants from Norway, Finland, Sweden, Denmark, Germany and
Estonia can trade for the upcoming day after the Elspot market has closed (NordREG, 2012). At
Nord Pool’s Eltermin forwards, futures and options are traded, such that buyers and generators
can hedge the system price risk (Amundsen & Bergman, 2006).

At the Elspot sub-market there is a distinction between the so-called ‘system price’ and ‘area
prices’. At each hour a market-clearing price is determined based on the bids made by sellers
and buyers of the electricity. The market-clearing price is called the system price and is based on
the assumption that interconnection capacities are sufficient and therefore no bottlenecks are
found in the transmission grid (Bergman, 2003). However, when one or several interconnectors
become congested, the equilibrium area prices are computed using information about the
location of the bidding units. These area prices then differ from the system price. In total there
are six different areas in Norway, four areas in Sweden, two in Denmark and one area in Finland.
This research focuses on the system price of the Elspot sub-market. One reason is that the
system price forms the basis for the other area prices and is therefore a good indicator for these
prices. Additional reasons for choosing the system price are discussed in chapter 6. Please keep
in mind that the system price is the price determined by the equilibrium point between demand
and supply independent of potential grid congestions and forms the basis for financial trades in
the market.

2.2.2 Generation Nordic market

The Nordic market has a variety of generation sources, being hydro, wind, nuclear and thermal
power (NordREG, 2012). The figures of the generation capacity in the Nordic market are
summarised in table 1. Hydro plays an important role in the generation of power since it
represents almost all generation capacity in Norway, half of the generation capacity in Sweden,
and more than 50% of the total Nordic generation capacity (NordREG, 2012).

The second largest generation source in the Nordic market is thermal power generation
consisting of Combined Heat and Power (CHP) plants. As the name suggests, these plants
provide as well heat to houses / industries as electricity. It accounts for 31% of the total Nordic
market power generation and acts as a so-called ‘swing-production’. This means that this
capacity is used to balance the total production during the seasons when the level of
hydropower generation in Norway and Sweden is low (NordREG, 2012). The fuels used for the
CHP plants are coal, oil, gas and biofuels.

The third largest power generation source is nuclear power. It has a share of 12% of the total
Nordic generation capacity. Nuclear power plants are only situated in Sweden and Finland. The
final part of 7% of the total generation capacity is provided by wind power, which has increased
continuously during the last couple of years. The capacity in Sweden has grown by almost 34%
in 2011 compared to 2010 and a lot of projects for new wind power generation are planned for
the upcoming years (NordREG, 2012).

The total installed generation capacity in the Nordic market is 98.414 MW and the total power
generated during 2011 was 370 TWh (NordREG, 2012). Compared to 2010, approximately
3TWh was produced less in 2011 due to a decrease in demand. The Nordic Market Report
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(2012) indicates weak economic outlook and warmer weather as reasons for the decrease in
demand.

Denmark Finland Norway Sweden Nordic Region

Installed capacity (total) 13,540 16,713 31,714 36,447 98,414
Nuclear Power - 2,716 - 9,363 12,079
Other Thermal Power 9,582 10,651 1,062 7,988 29,283
Condensing Power 1,590 2,155 - 1,623 5,368
CHP, District Heating 7,118 4,300 - 3,551 14,969
CHP, Industry 674 3,362 - 1,240 5,276
Gas Turbines etc. 200 834 - 1,574 2,608
Hydro Power 9 3,149 30,140 16,197 49,495
Wind Power 3,949 197 512 2,899 7,557

Table 1: Installed Electricity Generation Capacity in the Nordic Region
Source: NordREG (2012)

2.2.3 Renewable Energy projects in Norway and Sweden

Besides high integration of hydro generation in Norway & Sweden, the markets also have
numerous renewable energy projects of interest for X (mainly wind). A short overview of
renewable energy projects financed in the past is provided in this part and the support
mechanism in Norway and Sweden is introduced.

Projects

Market research indicated that 700+ wind farms have been developed or are in the pipeline in
Sweden alone (The Windpower, 2012). They range from small, single turbines (<1mw) to big
wind farms (>100mw). Further research has been conducted to determine underlying
assumptions and financial conditions on which these projects are structured. However, this
specific data is not widely available. A bit of information about six projects has been retrieved
from Project Finance Magazine (2012). Some interesting aspects of these projects are
summarised below, although it should be noted that the information cannot be verified and
validated:

1. Two projects financed in 2010 had a debt : equity ratio of 100 : 0, meaning that there is
no equity invested in the project itself;

2. Several projects were financed by funds that were granted by a government or
governmental institution. Together with low leverages (circa 65%), conservative wind
assumptions (P95), and the inclusion of cash sweeps and high distribution lock-ups
reduced the market risk for the lenders;

3. Itis certain that at least one lender of a project used X as their market consultant.

X has financed one project in Sweden in the past.

The reasons for not having long term PPAs is that utilities also do not know how the price will
develop and they are even more risk-averse than banks. Besides, the Nord Pool is very liquid so
it is easy to trade electricity. The off-takers look at the futures being traded on this liquid market
and since futures do not extend 5 years, they do not want to offer longer PPAs than this period.
This research will develop alternative models for X to forecast the electricity price in Norway
and Sweden.
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Support System

Norway and Sweden have a combined Renewable Energy Certificate Market. The certificates
traded at this market are called Tradable Green Certificates (TGC) and are an example of the
Renewable Energy Certificates introduced in paragraph 2.1. Producers of renewable energy
receive a certificate for each MWh they produce. By selling these certificates, the producers
receive an extra income in addition to the revenue made by selling the electricity itself.
Producers are entitled to electricity certificates for a maximum period of 15 years.

The system aims to promote the development of renewable electricity production and is
technology neutral (Swedish Goverment, 2006). This latter means that cheap hydro generating
technologies get the same amount of green certificates per produced MWh as more expensive
technologies such as wind and solar. The cheaper renewable energy production technologies
therefore have an advantage over the more expensive alternatives, which is also concluded by
Unger and Ahlgren (2005). To create demand for these certificates, the governments have set a
quota obligation. The quota obligation is an annual obligation for electricity suppliers to hold
electricity certificates corresponding to their sale and use of electricity during the year (Swedish
Goverment, 2006).

The receivers of the certificates do not have the obligation to sell their certificates. They are
allowed to ‘bank’ their certificates and sell them in future years. The banking of certificates can
provide the demand elasticity to level out price fluctuations (Kildegaard, 2008). There is
however a risk of oversupply of certificates due to overinvestment in renewable energy projects
and/or a too low quota obligation. Oversupply results in a prolonged depression of certificates
prices until the excess capacity is utilised (Kildegaard, 2008). In the Norwegian and Swedish
market an oversupply of TGCs has been the case over the last few years.

2.3 Conclusion

Opportunities for financing renewable energy projects were and are present in Norway and
Sweden. The regimes are developed to protect the consumers for high electricity prices and are
not developed to support the implementation of renewable energy. This stems from the fact that
there is no floor price? for the wholesale electricity price and for the price of tradable green
certificates. In comparison, the support regime in Germany lets the consumer pay an extra price
for electricity to support the renewable energy development directly.

Based on historic deals the projects in this market already have lower leverage than commonly
seen in renewable energy finance, i.e. 65% vs. 80-85%. Current market situations are expected
to be similar to this lower range. Even though, the short-term PPAs expose the lender to market
price risk. This research aims to analyse the behaviour of the market price and the key factors
influencing the price and to develop a suitable forecast.

2 Minimum price determined by government or market to ensure fixed minimum revenue for projects.
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Chapter 3 — Research Problem

The previous chapter has provided the background information for the problem statement of
this research. The problem X has encountered is stated in this chapter and a short explanation of
how the problem will be tackled is given. The chapter ends with ring fencing and the limitations
of the research.

An important part of grasping the project context of this research is to understand the business
the Structured Finance Energy department is participating in, i.e. project finance of renewable
energy projects. As explained in chapter 2, project finance relies on the cash flows of the project
itself. These cash flows are predicted by financial modelling at X and form the basis for the debt
structuring. Along with the fact that the debt structuring is based on the cash flows, is that the
financing is subject to tight covenants. These tight covenants translate in little room for error.
Changes in cost and revenue assumptions in the financial model of a project have an impact on
the cash flows and therefore the debt structuring of a project. Changes therefore impact the
ability of a project to meet its liabilities with regard to repaying the lenders. The project
financing of renewable energy with its specific characteristics is called ‘the product’ in the
remainder of this research.

The market subject to this research is the other part of the project context, i.e. Norway &
Sweden. There are several specific features of these markets that have a big influence for project
financing. First of all, there is a tradable green certificate system in place in order to support the
development of renewable energy. The price of these certificates is very volatile and there is no
floor price in place. Secondly, the electricity price in the markets is perceived as being very
volatile. While it is common in most markets to have long term PPAs available (e.g. 15-20 years),
that take away the complete or part of the volatility in the prices, in Norway & Sweden only PPAs
for 5 years are available. To conclude, the Swedish & Norwegian markets have volatile electricity
and certificate prices resulting in volatile revenues of renewable energy projects. As a
consequence the cash flows of the projects are volatile.

3.1 Problem Statement

Combining the context of project finance and of the markets, it can be seen that there is a
mismatch: The traditional structure of project finance, with its long tenor, non-recourse, low
margins (i.e. little room for error) does not suite a market in which the revenues are very
volatile, which can result in too low cash flows for the project to meet its liabilities. This leads to
the following problem statement:

The current product (project finance of renewables) is not suitable for the Swedish & Norwegian
market.

Instead of focussing on developing the product itself, the goal of this research is to gain insight in
the electricity price behaviour. This is separated in two goals:
1. Analyse the key factors in Norway and Sweden that determine the electricity price
behaviour;
2. Forecast the electricity price in Norway and Sweden for a long-term period in the future.

Key factors influencing the electricity price provide insight in the volatility of the price. This
developed knowledge will be used to forecast the electricity price in Norway and Sweden by
developing different forecasting models. The data of these models can be used to determine if
the risk of project financing in Sweden and Norway is acceptable and to develop a product that
can be applied in these markets. Since project finance is very project specific it is impossible to
develop a general product suitable for all Norwegian and Swedish projects. The development of
a product itself is not the aim of this research. It merely provides the basic knowledge about the
electricity price for X useful in future decision processes.
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3.2 Ring fencing / Limitations

This research is limited in its focus and its application. Reasons for doing so is to ensure that the
research is relevant for the user and feasible to conduct in the given time period. This paragraph
describes and explains the limitations of the research.

First of all, the focus is only on the electricity price. The electricity price contributes the main
part of the revenues of a project in the specific markets. The Tradable Green certificates have
specific characteristics and their behaviour differs from the electricity price significantly.
Therefore the developed models in this research are not applicable to the certificate prices and
these prices are outside the scope of the research.

This research only focuses on Norway and Sweden, because: 1) Most of the projects offered at X
are situated in Sweden; 2) Norway has just joined the Tradable Green Certificate market of
Sweden (thereby unifying both markets); 3) both governments have high goals with regard to
development of renewable energy and its share in their energy production mix; 4) the countries
have a positive economic outlook; and 5) Risk diversification (which of course is not country
specific). The other markets of the Nordic region are outside the scope of this research.

A criterion of the analysis and forecasting aspect of this research is that it should be
understandable. Understandable in the sense that the developed models should be clearly
defined and easy to use. In order to meet this criterion, the models are limited to simple time
series models such as ARMA and GARCH models (see chapter 5 for model explanation). The
fundamental factors incorporated in the developed models should also be understandable, in the
sense that reasonable assumptions can be made about future values of these external factors.
Based on this criterion, not all factors identified in the literature review in chapter 4 have been
taken into account, such as: Technology development / break-through; Regulatory changes;
Large scale climatic events; Market power manifestation; Media; Political Views and National
Security Measures are left out. For instance, technology development does not satisfy the
criterion of having reasonable future assumptions for this factor, because it could for instance be
the case that fusion technology has a break-through within a couple of years and completely
transforms the market. Or the government decides to stop supporting the renewable energy
projects. Such developments are unpredictable and reasonable assumptions cannot be made,
leading to not including these factors in this research.

There could be many other external factors that influence the electricity price in this market, but
the limitation of this research is that it focuses on understandable, reasonable predictable
factors that are suggested by literature or expected by the researcher to have a significant
impact on the price, the so-called key factors.

Break-downs of the current electricity generators in both markets also impact the electricity
price. For instance, in 2011 the nuclear power plants in Sweden only functioned on 25% of their
capacity for a significant period of time, thereby increasing the prices in the area. However, such
production stops are impossible to model and therefore are not taken into account. Besides, due
to the long-term character of project financing, production stops are less relevant since they
only have an impact to a specific period and not to the whole tenor of the loan.

Finally, only the system price is analysed and forecasted in this research. One of the reasons is
that the system price is a good indicator of the electricity prices in Norway and Sweden. Also,
focussing on the system price reduces the amount of developed models and standardises the
development process. This choice is further enlightened in chapter 6.
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Chapter 4 - Literature review

This chapter provides an overview of literature about the behaviour and analysis of electricity
prices and about forecasting of electricity prices. This literature will provide an overview of the
key factors that influence the electricity prices and the forecasting models that are developed to
forecast electricity prices and thereby provides guidelines for the development of own
forecasting models later on in this research.

In recent years the interest in the behaviour and dynamics of electricity prices has raised
significantly. This is mainly due to deregulation in the electric power markets around the world.
It is widely believed that deregulation and thereby increased competition will raise power
industry efficiency to the benefit of customers (Amundsen & Bergman, 2006). Under regulation,
price variation was minimal and under the strict control of regulators, who determined prices
largely on the basis of average costs. Therefore the focus was mainly on demand forecasting, as
prices were held constant (Knittel & Roberts, 2005). Restructuring removed price controls,
encouraged market entry and as a consequence increased price volatility (Knittel & Roberts,
2005). The electricity markets of Denmark, Finland, Norway and Sweden were opened up for
competition in generation and retailing and integrated into a single Nordic Electricity market,
inspired by this believe of increased competition and induced by the first EU electricity market
directive (Amundsen & Bergman, 2006). Deregulation shifted the focus from demand
forecasting to electricity price and volatility forecasting. To gain insight in these topics, the
literature review is divided into two segments:

1. Electricity Price Behaviour

2. Electricity Price Forecasting

4.1 Electricity Price Behaviour

A list of characteristics of the Nordic electricity prices is presented in this paragraph. This list is
based on an extensive literature review on research conducted to analyse the behaviour of
electricity prices. A summary of this literature review is provided as well in this paragraph. It is
concluded that the Nordic electricity price has the following characteristics:

- High volatility

- Mean-reversion

- Non-normality

- Daily, weekly and yearly seasonal cycles
- Spikes (extreme values)

Eberlein and Stahl (2003) analyse the daily series of 25 different spot prices using Levy models
and develop a generalised hyperbolic model that describes the distribution of the prices quite
precisely, including the specific characteristics of prices, like for example fat tails. Even though
the model is based on daily prices, it is also suitable for different time horizons since the
distribution of the prices is known. Other models have been used to fit a model to the electricity
price series, for instance by analysing the Nord Pool daily spot system price with a focus on the
Hurst exponent and long range correlations (Erzgraber et al, 2008) or by characterizing the
probability density functions of daily electricity log-returns and of the underlying shocks of the
Nord Pool market, with a main focus on price shocks during the day (Bottazzi, Sapio, & Secchi,
2005). Weron, Simonsen, and Wilman (2004) also address the issue of modelling the spot
electricity system price. For the long term they make use of a wavelet decomposition technique
and conclude that the annual cycle can be quite well approximated by a sinusoid with a linear
trend.

Knittel and Roberts (2005) compare characteristics of hourly electricity prices with equities and
other commodities. They conclude that statistical models developed for the purpose of
modelling equity prices fail to provide a reasonable description of the data generation process of
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electricity prices. They develop and test multiple models that try to describe the daily dynamics
of electricity prices and conclude that any modelling effort should take into account the
following characteristics of the price series: 1) mean-reversion; 2) time of day effects; 3)
weekend/weekday effects; 4) seasonal effects.

Robinson and Baniak (2002) investigate the effect of the functioning of the contract market for
electricity on the volatility of spot prices and conclude that the generators are able to influence
the level of prices, while this aspect may not be included in researches on the strategic
behaviour of the UK’s larges electricity generators. Gianfreda (2010) analyses the volatility of
wholesale electricity markets. She concludes price features the following characteristics on a
daily level: mean-reversion, seasonality, volatility clustering, extreme values and inverse
leverage effect. A significant relation between volatility and volume effects has been proved on
empirical basis, while the link can be positive or negative depending on the intrinsic structure of
individual markets. Simonsen, Weron, and Mo (2004) present a detailed empirical study of the
statistical properties of the Nordic Spot market. Dynamics of daily spot system prices are
analysed and they find spikes, fat-tails, seasonality, mean-reverting characteristics and negative
correlation between volatility and spot system price. Simonsen (2005) studies daily dynamics of
Nord pool, measuring 16% daily logarithmic volatility. Other daily features are volatility
clustering, log-normal distribution, long-range correlations, cyclical behaviour in time-
dependent volatility and that volatility depends on the price itself.

Other researches focus on the volatility in electricity markets or the Nord Pool specific. For
instance Y. Li and Flynn (2004) measure price volatility by price velocity, which is the daily
average of the absolute value of price change per hour. This measure is used because they
believe it more closely resembles what consumers consider when they look at power price
markets. Different markets are compared and the Nord Pool is, based on daily price velocities,
stable. Zareipour, Bhattacharya, and Canizares (2007) use intraday, trans-day and weekly
historical volatility and velocity concepts to develop various volatility indices for the Ontario
electricity market and reveal that the Ontario’s electricity market prices are among the most
volatiles in the world. Trans-day and trans-week volatilities are even higher than intraday
volatilities. Other researches measure the volatility and/or stability of the Nord Pool based on
daily prices (Bask, Liu, & Widerberg, 2007; Erzgraber et al., 2008) and it is concluded that the
Nord Pool is quite stable compared to other markets, but still very volatile.

4.2 Key factors

This paragraph presents an overview of the key factors identified in literature that influence the
electricity prices in the Nord Pool. Aggarwal, Saini, and Kumar (2009) provide an extensive
summary of 40 factors that potentially influence electricity prices in markets all over the world.
Not all these factors are necessary to explain the behaviour of the electricity price. Based on
eigenvalues Wolak (2000) concludes that over 75% of the total variation in daily Nord Pool
electricity prices is explained by the first principal component. It only takes three factors to
explain more than 90% of the total variation. The factors that might have a significant impact on
the electricity price in the Nord Pool are summarized below:

1. Hydro reservoir level 9. Network congestion

2. Rainfall / Precipitation 10. Management rules of market
3. Electricity demand 11. Bidding behaviour

4. Temperature 12. Market power

5. Non-working days 13. Regulatory changes

6. Historical electricity prices 14. Large scale climate events

7. Fuel prices 15. Media

8. Availability of generation

One of the most important factors is regarded to be the hydro reservoir level, due to the fact that
over 50% of the Nordic power generation capacity is hydropower (see chapter 2). The high
share of controllable hydropower in the system makes it easy to regulate the generation on
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short notice. Hence, the spot price of Nord Pool varies less over the day than what can be seen in
pure thermal systems. However, the seasonal price fluctuations tend to be higher, due to the
variations in inflow to the reservoirs. The price volatility is therefore high in the Scandinavian
power market (Botterud, Bhattacharyya, & Ilic, 2002). Average summer prices are significantly
below average winter prices within the day and within the week, this also reflects the view that
water scarcity is a major determinant of the prices in Nord Pool (Wolak, 2000). Some researches
indicate that the first derivative (i.e. variations from one period to another period) of the hydro
reservoir level is more correlated with the electricity price than the hydro reservoir level itself
(Torbaghan, 2010; Torghaban et al., 2010). Linked to this is the observation of Strozzi et al.
(2008) who argue that the variation of the prices in the Nord Pool system is more correlated
with the variations in precipitation in Norway and Sweden. However, they conclude that
weather conditions are not able to explain all features in the time series. Also, since there is no
accurate weather forecast for long-term horizons, it would be more convenient to develop
models capable of predicting the price independent of weather data (Torghaban et al., 2010).
The demand for electricity also plays an important role in price formation (Botterud et al,,
2002). The daily and weekly periodicities in demand are caused by human activity (i.e. different
consumption during the day and during the week). Annual periodicity is however a consequence
of the climate (i.e. temperature variation during the year) (Simonsen et al., 2004). The human
activity factor can be translated in the factor of non-working days and weekends (Torbaghan,
2010). The demand for electricity is lower when people are free compared to when people are
working (Duarte, Fidalgo, & Saraiva, 2009).

According to Torbaghan (2010) the most important factor in predicting the price in almost any
market is the price of the previous period. It contains information on market characteristics,
especially regarding to those that vary slowly from one month to the next, such as financial
conditions. Another viewpoint is provided by an analysis of Bask and Widerberg (2009). They
analyse the relationship between the market structure and the stability and volatility of
electricity prices in Nord Pool with an (A, 02)-analysis. It is concluded that volatility most often
has decreased when the market expanded and the degree of competition has increased.

Benini, Marracci, Pelacchi, and Venturini (2002) conclude that fuel prices, availability of
generating units, network congestion and management rules of any specific electricity market
have an impact on the electricity price. A potential other factor is bidding behaviour at different
load levels (Bottazzi et al., 2005). The price spikes are mainly a result of supply shocks. They are
triggered by increased demand and/or the short-term disappearance of major productions
facilities, or transmission lines, due to failure or maintenance, or by central market players
taking advantage of their market power (Simonsen et al.,, 2004). Baquero (n.d.) adds that the
Columbia market (similar to the Nordic market since it is highly reliable on hydro generation)
has been affected by occasional regulatory changes, large scale climatic events, market power
manifestations, media news, political views, fuel prices, and availability, neighbour countries
demand, national security measures and net availability.

4.3 Electricity Price Forecasting Literature

Analysis of the electricity price behaviour and its key factors forms the basis for forecasting the
price. This paragraph provides an overview of the forecasting methodologies developed and/or
described by other researches.

Based on the read literature, a distinction should be made between short-term, medium-term
and long-term forecasting. Short-term forecasting focuses on hourly and daily forecasts.
Medium-term forecasting deals with weekly till 1-year forecast, while long-term forecasting is
for time horizons beyond one year. Besides, the different forecasting models can be divided in
three general types of market models (Sterman, 1988):

1. Optimisation models (game theory models)

2. Econometric models (time series models)

3. Simulation models
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The main models identified in the literature for forecasting electricity prices are econometric or
simulation models. Econometrics means the measurement of economic and it originally involved
statistical analysis of economic data (Sterman, 1988). Econometric modelling includes three
stages, i.e. specification, estimation and forecasting. First the structure of the system is specified
by a set of equations. Then the values of the parameters are estimated based on historical data.
The values of the parameters are also called coefficients that relate changes in one variable to
changes in another. Finally, the output of the estimation is used to make forecasts about the
future performance of the model (Sterman, 1988).

Different forecasting econometric models are assessed by Weron (2008) for short-term
forecasting of electricity prices. GARCH, NIG, alfa-stable and non-parametric innovations models
are assessed but the conclusion is drawn that not one model is outperforming the others. Grossi,
Gianfreda, and Gozzi (n.d.) characterise the dynamics of electricity spot volatility in an ARMA-
GARCH framework using daily information. They perform medium-term (6 months) daily
forecasting based on this model with good forecasting performance. Tashpulatov (2011)
constructs an AR-ARCH model to determine the impact of introduced institutional changes and
regulatory reforms on price and volatility dynamics. Other models used for short-term
forecasting are artificial neural network models (ANN models) and are employed in researches
for forecasting medium-term electricity prices (Baquero, n.d.) or short-term electricity price
forecasting (Lalitha, Sydulu, & Kiran Kumar, 2012). C. Li (n.d.) models the monthly electricity
price of Sweden with different periodic autoregressive models and uses these models to forecast
one year of monthly prices. The best model achieves a Mean Square Error of 178.52. The model
developed in this research in chapter 7 and used to forecast the electricity price in chapter 8
achieves a Mean Square Error of around 95 when forecasting the monthly prices over a period of
5 yearss3.

The purpose of a simulation model is to replicate the real world as much as possible so that its
behaviour can be studied. By creating a representation of the system the model can be used to
perform experiments that are impossible, unethical or too expensive in the real world (Sterman,
1988). Consultancy firms have built extensive simulation models incorporating numerous
external factors to replicate the real world as much as possible and to forecast electricity prices
in different countries around the world . Also Niemeyer (2000) uses a
simulation model (externally provided, called the EPRI model) to estimate the medium and long-
term volatility of electricity prices in order to value real power options.

Hybrid models also exist. Hamm and Borison (2006) conduct long-term forecasting of
electricity prices based on a combination of an econometric and a simulation model and
combine it with expertise information. Torghaban et al. (2010) develop an auto regressive
model that includes stochastic factors as hydro reservoir and non-working days per month and
call it a hybrid model to predict one year future electricity prices. Main key factors they indicate
are weather and financial data including hydro reservoir levels, historical prices and the non-
working days per month. Their model does a good job in predicting the next year’s prices with a
MAPE of 9.67%*. Vehvildinen and Pyykkénen (2005) develop a model for medium-term
forecasting that combines the favourable sides of both econometric and simulation models
where the fundamentals affecting the spot prices are modelled as stochastic factors that follow
statistical processes. Palmgren (2008) develops a model based on technical and fundamental
analysis of daily electricity prices in the Nordic countries. The models consisting of both
technical and fundamental aspects perform the best when forecasting the electricity prices for
two separate weeks.

3 The Mean Square Error is not used as an evaluation measure in this research in ch 7. In order to verify the Mean Square Error of the
developed model, the performance output is provided in Appendix Z.
+ Compared to a MAPE of 18.22% over a 5-year time period of the model developed in chapter 7 and used to forecast in chapter 8.
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4.4 Conclusion

[t is concluded from the literature review that most forecasting research is focussed on short-
term forecasting of electricity prices. Therefore, most models are not relevant for the research
problem described in chapter 3. Table 2 provides an overview of the literature that developed
forecasting models divided by the differences in forecasting periods and model types.

Forecast Period Econometric Model Simulation Model Hybrid Model

Short-term Lalitha, Sydulu & Kiran Kumar ) Palmgren (2008)

(2012); Weron (2008)
Grossi, Gianfreda & Gozzi Torghaban et al. (2010);

Medium-term (n.d.); Baquero (n.d.); Li (n..d) Niemeyer (2000) Vehvildinen and Pyykkonen (2005)
X (2011); :
Long-term Y (2012) Hamm & Borison (2006)

Table 2: Summary of literature that developed forecasting models based on forecasting period and model type

None of the researched literature performs a long-term forecast, except for the X & Y reports and
Hamm and Borison (2006). Based on the limitations of the research discussed in paragraph 3.2
and the indicated models in the literature research, this research will focus on developing
technical, fundamental and merged models based on time-series modelling (i.e. econometric
model). Thereby, this research develops a model that, based on the literature review, is not yet
developed and fills the gap in table 2 for the long-term econometric forecasting model.
Depending on how the external factors are included in the developed merged model, the
research could also wind up constructing a long-term hybrid forecasting model.

As the aim of this research is to develop easy to use and understandable forecasting models, only
a limited amount of key factors that can explain the behaviour of the electricity price will be
taken into account. Based on the literature and on discussions with other parties a selection of
key factors is made, which will be further described in paragraph 6.2. The analysis and forecast
will be based on monthly electricity prices due to the long-term nature of project finance. Due to
its long-term nature the short-term volatility (daily and weekly) are not relevant for the projects
revenues and therefore for the lenders risk assessment. The time-series models provide an own
insight in the volatility and behaviour of the electricity price in order to construct a long-term
forecast. It however remains the question whether long-term forecasting is even feasible. As
Granger and Jeon (2007) conclude it is very difficult to construct reliable long-term forecasts
since the occurrence of future major breaks is the main reason that simple statistical long-term
forecasts are of poor quality.
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Chapter 5 — Model Methodology

The literature review provides the information to construct the forecasting models in this
research. First, the forecast methodology will be explained in this chapter. Thereafter the
foundation of the forecasting models is introduced.

5.1 Forecast Methodology

The forecasting of the electricity price in this research consists of several steps. These steps form
the logical flow through the rest of the research and structure the process of forecasting the
system price. Figure 1 illustrates the process, divided into four different sections. The first
section creates a framework based on the theoretical background provided in chapters 2, 3 and
4 and includes the technical and fundamental analysis of the system price. This framework will
then be used in the second part to forecast the system price over a certain period of time. These
forecasts are separated in technical forecasts, based on technical models, and fundamental
forecasts, based on fundamental models and merged models, which are a combination of both.
This forecasting section is used to determine the ability of the different models to forecast the
system price over a relevant historic period. The third section selects the best forecasting model
of section two and calibrates the inputs so that the model and the inputs can be used to forecast
the system price over a period of time in the future. This third section forecasts an out-of-data
sample instead of forecasting the price during a historic period of time as done in section two.
The final part of the research will reflect on the model application in project finance of
renewable energy by discussing the usability and limitations of the model and includes final
comments in the conclusion and discussion.

Forecast Framework Forecast Application Out-of-data Forecast Reflection
Technical Technical Input f
calibralio“
q Out-of- Project
Theoretical Merged 2
Background sample Finance

Forecast Perspective
Fundamental Fundamental Model
Analysis Forecast Calibration

Figure 1: Forecasting Methodology

5.2 Forecast models
Based on the literature review and limitations of this research two ways of analysing and
forecasting the electricity price are used in this research. The first is to use time series analysis
to specify and estimate the behaviour of prices based on historical prices, which will be used to
forecast the series in the future. This approach is indicated as the technical analysis and forecast.
The Box-Jenkins methodology will be applied to conduct the technical analysis and forecast. This
methodology was developed by Box and Jenkins (1970) and consists of the following steps
(Makridakis & Hibon, 1998):

1. Determine if the series is stationary in both the mean and variance;

2. Use autocorrelation and partial autocorrelation to determine the appropriate

autoregressive and moving average (ARMA) models;
3. Estimate the parameters of the model;
4. Diagnostically check the residuals of the regression to determine if they are white noise.

The stationary assumption is a condition that has to be met in order for the methodology to be
applicable.

The second way of predicting electricity prices is by using time series analysis to determine
which external factors had an influence on the system price in the past. This analysis is referred
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to as fundamental analysis and it is used to forecast the system price based on the expected
behaviour of influential external variables.

Instead of focussing on either one of the suggested models, this research incorporates analyses
and forecasts of both models. Furthermore, the research regards both models not as substitutes
but as compliments and therefore also includes merged models combining the technical and
fundamental aspects, as is also conducted by Palmgren (2008). When applying the time series
tools a two-step approach will be used:

1. Model identification and selection
2. Parameter estimation

The first step identifies the model based on the technical or fundamental time series analysis,
combining the first two steps of the Box-Jenkins methodology. The second step estimates the
models to fit the historical behaviour of the system price as best as possible and evaluates the
regression and the residuals. This step corresponds to the final two steps of the Box-Jenkins
methodology. The technical analysis and fundamental analysis are discussed more extensively
below.

Technical Analysis

The technical analysis is based on the assumption that all information is reflected in the price
itself and that the historic performance of the price can be used to predict the future prices.
Thus, the technical analysis only focuses on the historical system price itself and does not
include any other variable.

For the technical analysis, the Box-Jenkins methodology will be used. The use of the Box-Jenkins
methodology structures the process in developing the forecasting model due to the clear
separation of steps in the methodology and is validated when prices are mean-reverting (which
is already confirmed in the literature review - chapter 4). The Box-Jenkins methodology applies
different autoregressive and moving average processes (ARMA) to find the model that fits the
behaviour of the system price the best. An ARMA model consists of p autoregressive terms and g
moving average terms. The ARMA(p, q¢) model is given by (Alexander, 2001):

Ye=Ct oY1 T QY+t OpYep T & T V1E—1 T "+ Vg€t—g 1)
where g.~i.i.d. (0,0%)

Where C is an intercept, Y is the system price, ¢ is the error term and Y:; and &.;are the AR and
MA processes respectively. The a and y are the coefficients for the AR and MA processes which
are estimated in the second step of the earlier mentioned two-step approach.

Mean-reversion (or stationary) should be complied with when identifying and selecting the
models. Furthermore, the variance of the error terms should also be constant, better known as
homoscedasticity. If the variance is not homoscedastic, it is called heteroscedastic. Hetero means
unequal and scedasticity means spread / variance. Therefore, heteroscedasticity means unequal
variance in the time series that is being analysed. When this is the case, the selected ARMA
models should account for this by modelling the variance using an autoregressive conditional
heteroscedasticity model (ARCH) or by using robust standard errors in the estimation. When an
ARCH model is used to fit the time series of the system price, an extra equation is formulated for
the variance. As will be shown later on, the best model to take heteroscedasticity into account
for the system price is the exponential generalised ARCH model (EGARCH), which transforms
the technical analysis into equation 2 (Eviews, 2010b):
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Note that the variance of the residuals is dependent on the variance and error terms of the
previous periods. A more detailed explanation of the EGARCH model is provided in Appendix A.
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Once it is confirmed that the time series is mean-reverting, the autoregressive and moving
average processes have to be determined, i.e. how many lags impact the current system price. To
determine this, the time series autocorrelation (ACF) and partial autocorrelation (PACF) are
examined. A guideline for distinguishing the processes is given in the table 3:

Time Series ACF PACF
AR(p) Infinite: decays towards zero Finite: disappears after lag p
MA(q) Finite: disappears after lag q Infinite: decays towards zero
ARMA(p,q) Infinite: damps out Infinite: decays towards zero

Table 3: Autocorrelation and Partial Autocorrelation characteristics of AR(p), MA(q) and ARMA(p,q) models
Source: Kozhan (2010)

A difficult process to discover is an ARMA process since not one of the correlation types
disappears after a certain lag. Therefore, the Box-Jenkins methodology suggests that models
above ARMA(3,3) should not be taken into account.

The performance of the different models will be measured by examining each models adjusted
R-squared (adj. R?) statistic, the Akaike criterion (AIC) and the Schwarz criterion (BIC). The
adjusted R2 measures the success of the regression in predicting the values of the dependent
variable within the sample. The statistic ranges from zero to one where one indicates that the
regression fits perfectly (Eviews, 2010b). The AIC and BIC are methods that measure the fit of
the regression where the model with the lowest either AIC or BIC is preferred.

Fundamental Analysis

The fundamental analysis is based on the assumption that external factors, i.e. other than the
historical values of the prices itself, are able to explain the behaviour of the system price. The
literature review indicated an extensive list of external factors that influence electricity prices.
The system price is regressed over external factors selected in paragraph 6.2 separately and
over a combination of them. This regression is denoted by the following equation:

Ve =C+ Bxyct PoXoe + o+ PuXne + & (3)
where g.~i.i.d.(0,0%)

Where Cis an intercept, Y is the system price, € is the error term and X represents the influential
external factors. The 8 are the coefficients to be estimated. In case of an EGARCH specification,
the variance of the error term is also modelled by the following equation:

q 14 r
€tk
log(o?) = w + Z @jlog (of ) + Z 0; + Z I — (4)
= i=1 k=1 Tk

Depending on which model is used, different parameter estimation methods can be used for the
technical and fundamental regressions. For the ARMA models the parameters will be estimated
by Ordinary Least Squares. This method summarises the squared differences between the data
points in the time series and the estimated regression line and estimates the coefficients of the
regression equation in order to minimise the squared differences. When the errors are
heteroscedastic this method is still consistent but inefficient and the standard errors of the
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estimation output are no longer relevant. Instead, so-called robust standard errors should be
applied, such as the Heteroscedasticity Consistent Covariance developed by White (1980). By
doing so the standard errors and therefore the probability of significance of the estimations is
valid. The specification for the ARMA models in equations 1 and 3 do not change when applying
the robust standard errors.

When heteroscedasticity is considered by applying an EGARCH model, the models are estimated
by the log-likelihood function. The function provides a general, open-ended tool for estimating a
wide class of specifications of the models by maximizing the likelihood function with respect to
the parameters (Eviews, 2010b). In other words, it chooses the values for the model parameters
that make that data more likely than any other values of the parameters would make them
(Palmgren, 2008).

When both the technical and fundamental models are combined, the basis for the merged
models arises. The merged model is shown by the following equation:

Ve =CH+ a1Ye1+ Ve g+ o+ QpYi_p + P1X1e + BaXo + 0 P + &+
Yi€t—1 + -+ Vq€t—q, Where g~i.i.d.(0,0%) (5)

or if EGARCH, g,~i.i.d. (0, h?)
The variance of ARMA models is constant and denoted by o2, while the variance of the EGARCH
model is not constant, but is derived by equation 4. When referring to an EGARCH equation, the

remainder of this research will use h? to indicate the variance of an EGARCH model that is
estimated by using equation 4. This method is already applied in the equation above.
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Chapter 6 — Model Framework

The aim of this chapter is to develop the framework for the construction of a forecasting model
for the Nordic electricity price. The framework combines the technical and fundamental
analysis. The technical analysis is discussed first and is followed by the fundamental analysis. In
each analysis, the data used for the analysis is evaluated first to determine which data can be
used. Thereafter the actual analysis takes place.

6.1 Technical Analysis

As discussed in the literature review (chapter 4), several researches have been conducted in
analysing and forecasting (Nordic) electricity prices using technical analysis. In contrast to most
of these researches, this research focuses on monthly electricity prices (see paragraph 4.4 for
reasoning). Therefore the dynamics of electricity prices concluded in the literature review, i.e.
high volatility, price spikes, non-normality, mean-reversion and seasonal cycles, cannot be taken
for granted. This technical analysis aims to analyse and verify the dynamics of the monthly
electricity prices, which will be used for the construction of forecasting models later on.

6.1.1 Data evaluation

Historical prices of the Nordic electricity prices are retrieved from the Nord Pool Spot website
(Nord Pool Spot, 2012). The database reaches back till 1996 for prices in Swedish Krona or
Norwegian Kroner and till 2000 for prices in Euros. Several considerations have to be taken into
account to determine which data should be used. First of all, the Nord Pool as it is today reached
its state in 2000 when East Denmark entered the market as final participant. Even though its
influence based on trading volumes has grown during the last years, the basic components (i.e.
the participants) have remained the same since 2000. Secondly, the settlement prices are
denominated in Euros from 2006 onwards, also being the currency X uses to calculate the
projects in Norway and Sweden. Finally, when the research discusses the fundamental and
merged forecasting models, the fundamental data becomes relevant. Since this data is only
available from 2000 on it does not justify including the years 1996-1999 in the technical
analysis. All in all, this means that prices from the period January 2000 till December 2012 are
most suitable for the technical analysis, totalling to 156 observations.

6.1.2 Statistical Analysis of Prices

There are several different prices for electricity in Norway and Sweden divided over different
areas. These differences are due to potential transportation costs and congestion costs. The
researcher believes that the system price will be a good indicator for prices in Norway and
Sweden. The focus on the system price is in line with literature from the literature review
(chapter 4) focussed on forecasting electricity prices in the Nordic market. Focussing on one
price instead of multiple area prices also simplifies the identification, estimation and selection of
the forecasting models to be constructed later on in this research.

To verify whether the system price is a good indicator for the other area prices, the prices are
analysed statistically. The descriptive statistics for the different prices are given in table 4. The
table indicates that the mean and median values for all the prices are nearly the same. Also it
should be noted that the standard deviation is relatively high for all Nordic prices. Differences
among the prices arise in the maximum and minimum values. These are due to congestions
problems in the grid. Another conclusion that can be drawn is that not one price is normally
distributed, since the probability values are all very low (near zero). Therefore the null
hypothesis of the Jarque-Bera test (see Appendix B) of a normal distribution is rejected at a 1%
significance level.
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SYSTEM BERGEN KR.SAND MOLDE OSLO TR.HEIM TROMSO  SWEDEN’

Mean 34.28 33.23 33.19 35.44 33.52 35.43 35.22 35.52
Median 31.44 30.61 30.61 31.67 30.61 31.67 31.53 31.99
Maximum 81.65 82.50 75.23 96.06 82.83 96.06 93.99 93.99
Minimum 6.35 5.36 5.36 5.14 5.36 5.14 5.14 7.91
Std. Dev. 14.53 14.89 14.58 15.92 15.30 15.92 15.63 15.60
Skewness 0.77 0.75 0.66 1.02 0.83 1.02 0.98 1.08
Kurtosis 3.46 3.55 3.23 4.43 3.67 4.43 4.41 4.44
Jarque-Bera 16.79 16.72 11.73 40.00 20.65 40.03 38.06 43.23
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Descriptive statistics of Nordic Electricity Prices in Norway and Sweden
Source: Nord Pool Spot (2012)

A visualisation of the behaviour of the electricity can help to determine which characteristics are
present. Graph 1 shows the development of the system price during 2000-2012. The hypothesis
of seasonality in prices, price spikes and volatility clustering can be verified in this graph by
looking at the behaviour of the historical prices. Volatility clustering can be seen at e.g. the
period January 2008 - January 2009. Also note that prices tend to be higher in winter than
during the summer, for instance in 2003, 2008, 2010, 2011 and 2012. An explanation could be
that the demand in the winter is higher since, as mentioned in chapter 2, a lot of houses in the
Nordic countries use electric heating to stay warm in the cold winters. Also price spikes can be
found in the graph. Although the price spikes are not as extreme as the daily or weekly spikes
observed by other researches, the prices in some months are clearly higher than others (e.g.
January 2003 & January 2011). Reasons for this could be system outages, over- or under filled
hydro reservoirs, demand, interconnection with non-Nordic countries, increase in prices of gas,
coal and oil etc. Further discussion on these external factors will be presented in the
fundamental analysis (paragraph 6.2). For instance, the high electricity price in December 2002 -
January 2003 was concluded by Bergman (2003) to be due to unusually low precipitation.

System Price 2000-2012
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Graph 1: Historical System Price between 2000 and 2012
Source: Nord Pool Spot (2012)

To construct forecast models it is important to know whether the system price is mean-
reverting. Mean-reverting means that a time series has a tendency to move towards its mean.
Thus, the time series has a tendency to decline when the current value is above the mean and to
rise when the current value is below the mean (CFA, 2009). If this is the case, the Box-Jenkins
methodology can be used.

5 There are 4 different areas in Sweden since 2011. During 2000-2011 there was only 1 area and therefore one price in Sweden,
hence this research uses the historic data of this price.
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To analyse if the system price is in fact mean-reverting a unit-root test is used. More specifically,
a Dickey-Fuller test is used to determine if the system price is mean-reverting or not. The basic
goal of the test is to examine the null hypothesis of @ = 1 (not mean-reverting) in:

Ye = Y1 + & (6)

Against the one-sided alternative hypothesis @ < 1 (mean-reverting). The results of the test
indicate that the system price of the Nordic countries is mean-reverting since the p-value is very
small (see Appendix C). Also a Dickey-Fuller test is performed on the natural logarithm of the
system price. Reason for using the logarithm value is that it could improve the forecasting
results by transforming the residuals of a linear regression into a normal distribution. Since a
normal distribution has a mean of zero, the residuals will lie around zero and thereby decrease
the residual errors and increase the forecasting performance of the model. However, when
performing the Dickey-Fuller test it is indicated that the null hypothesis of not mean-reverting is
not rejected at a significance level of 5% (see Appendix D). A solution to this problem would be
to take the first difference of the logarithm values. However, since the system price itself is
mean-reverting and the implication of using the first difference of the logarithm values would
make the research itself and the application of the forecast model less intuitive and less easy to
work with, the research will use the ‘normal’ electricity prices.

The final step in the technical analysis is to check whether an ARCH model might be suitable for
describing the behaviour of the electricity price. ARCH models can enhance the forecasting
ability of the model when the distribution of electricity prices has fat tails and volatility
clustering is present (Kozhan, 2010). Since the system price exhibits these characteristics, a test
of the presence of heteroscedasticity is justified (as explained in chapter 5). Ignoring
heteroscedasticity in the errors may result in a loss of efficiency (Eviews, 2010b).

In order to check for heteroscedasticity several test are conducted on the residuals of an
auxiliary regression. The first test is a correlogram of squared residuals. If the residuals are
homoscedastic, the autocorrelation and partial autocorrelation should be zero at all lags and the
Q-statistics should be not significant. As can be seen in Appendix E, all autocorrelation and
partial autocorrelation are zero and therefore this test indicates that there is no ARCH in the
residuals.

The second test is the ARCH LM Test. This test was motivated by the observation in many
financial time series that the magnitude of residuals appeared to be related to the magnitude of
the recent residuals (Eviews, 2010b). The test runs the following regression:

q

7

ef = Bo+ Z,Bsetz—s + Ve (7)
s=1

Where e is the residual. From this regression two statistics are returned with the null hypothesis
of homoscedasticity. Since the probability of the test for both statistics is not significant at 5%
the null hypothesis of homoscedasticity is not rejected (see Appendix F).

A third test is White’s Heteroscedasticity Test. It tests the null hypothesis of homoscedasticity
against the alternative hypothesis of heteroscedasticity of an unknown, general form. The test
statistic is computed by an auxiliary regression where the squared residuals are regressed on all
cross products of the regressor. The test is described also as a general test for model
specification, since the null hypothesis assumes that the errors are both homoscedastic and
independent of the regressor, and that the linear specification of the model is correct (Eviews,
2010b). When the test is applied to the system price during 2000-2012, the null hypothesis is
rejected on a 5% significance level (see Appendix G). Therefore, when constructing the models
in chapter 7 they should account for possible heteroscedasticity in the residuals.
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6.1.3 Conclusion

The technical analysis of the electricity prices has led to the focus on the system price only. The
system price experiences volatility clustering, seasonality and price spikes. Furthermore, it is
proven that the system price is mean-reverting, thereby validating the use of the Box-Jenkins
methodology for constructing the models later on in this research. The heteroscedasticity tests
were not conclusive but do indicate that non-constant variance in the errors is potentially
present. This latter should be accounted for in the forecasting models.

6.2 Fundamental Analysis

The fundamental analysis determines which external factors influence the system price. In
general the price is a function of supply and demand in the market. Instead of using these factors
directly this research tries to incorporate underlying factors that determine the supply and
demand in Norway and Sweden. The relationship between the different external factors and the
system price will be investigated separately in this chapter and later on, when constructing the
forecasting models, all factors will be combined.

6.2.1 Data Evaluation

The data that is used for the fundamental analysis is extracted from several sources. While
figures about electricity demand are publically available via the various National Statistics
websites of the different Nordic countries (ENS, 2012; Eurostat, 2012; SCB, 2012; SSB, 2012;
STAT, 2012), data about surrounding electricity markets, prices of oil, gas and coal and the level
of water in the hydro reservoirs had to be extracted from Bloomberg (2012). Nord Pool Spot
(2012) has provided the historical data for the level of electricity interconnection between
Nordic and non-Nordic countries.

All data for the external factors is in monthly figures matching the monthly electricity prices.
Data retrieved from Bloomberg ranges from January 2000 till December 2012, except for the
EEX data that ranges from June 2000 till December 2012. Another limitation to the dataset is
that the data for demand figures ranges from January 2000 till October 2012. Therefore, when
investigating the relationship between the EEX and the electricity price, the dataset shall be set
to June 2000 till December 2012, and for investigating the relationship between the demand
factor and electricity price to January 2000 till October 2012.

6.2.2 Hypotheses
The literature review (chapter 4) indicated the following external factors that influence the
Nordic electricity price:

1. Hydro reservoir level 9. Network congestion

2. Rainfall / Precipitation 10. Management rules of market
3. Electricity demand 11. Bidding behaviour

4. Temperature 12. Market power

5. Non-working days 13. Regulatory changes

6. Historical electricity prices 14. Large scale climate events

7. Fuel prices 15. Media

8. Availability of generation

Based on the aim and limitations of this research (see chapter 3) only several of these factors
have been chosen to investigate, being fuel prices, demand and hydro reservoir level. The
historical electricity prices are included in the technical analysis and are not included in this
fundamental analysis. The factors numbered from 8 till 15 above are excluded because it is
concluded that it is difficult or impossible to make reasonable assumptions about the future
development of these factors. For instance, regulatory changes and bidding behaviour cannot be
predicted. Due to the unpredictability of weather conditions, rainfall and temperature factors
are also not included in the fundamental analysis but are captured by the hydro reservoir level
and electricity demand factors respectively. The electricity demand factor also captures the non-
working days factor, since there is a linear relation between the two as described in the
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literature review. An external factor not mentioned in the literature review is the exchange of
electricity between the Nordic market with non-Nordic countries. Exchange and interconnection
between markets has the power to balance markets and thereby influence the price, i.e. decrease
the price in the market with high prices and increase the price in markets with low prices. To
capture this factor, the research includes as well neighbouring electricity markets as the net
import of electricity (called interconnection) as final external factors.

Hypotheses are formulated about the impact of the factors on the system price. This will be
helpful when constructing the forecasting models later on. In table 5 the different key factors
and hypotheses have been summarised. Each factor is described and analysed in paragraph 6.2.3
as well as the reasons for including the specific factor. The hypotheses will be tested separately
to see if there is a linear statistical relationship between the factors and the system price.

Factor Hypothesis
Neighbouring Electricity Markets Higher prices in surrounding markets lead to higher electricity
prices

Interconnection between non-Nordic and Higher net import of electricity leads to higher electricity prices
Nordic countries

Marginal Costs Higher marginal costs lead to higher electricity prices
Demand Higher demand leads to higher electricity prices
Hydro reservoir levels Higher reservoir levels lead to lower electricity prices

Table 5: Hypotheses about influence of external factors on system price

6.2.3 Analysis

The linear relationship between each external factor and the system price will be investigated in
this part. Each external factor will be described and it will be explained why the factor has been
included in the research.

Neighbouring Electricity Markets

The inclusion of electricity prices of markets surrounding the Nord Pool market is justified
because of the historical exchange of electricity between these markets and the potential future
increase of this exchange. Exchange of electricity occurs for instance when somewhere is a lack
of supply of electricity. Exchanging electricity between markets balances the markets out. With
the future European Super Gridé in the pipeline this balancing act might increase in power and a
system price for whole Europe could be achieved.

There are only two surrounding electricity markets: The European Energy Exchange (EEX) in
Germany and the Amsterdam Power Exchange - European Energy Derivatives Exchanges (APX-
ENDEX) in Amsterdam. As mentioned, Bloomberg provided the monthly prices for the APX-
ENDEX and EEX for the period of January 2000 till December 2012 and June 2000 till December
2012 respectively. The Nordic countries also exchange electricity with Russia but unfortunately
no suitable power exchange or other useful electricity price indicator is present to investigate.
Both energy markets are separately regressed against the system price. Consequently there are
two equations describing the linear regressions:

System Price = ¢ + YEEX + ¢

where € ~ i.i.d.(0,02) (8)
or if EGARCH, g,~i.i.d. (0, h?)
System Price = ¢ + yAPX ENDEX + ¢ (9)

where € ~ i.i.d.(0,0?)
or if EGARCH, g,~i.i.d. (0, h?)

6 A pan-European electricity grid, which networks the participating countries and renewable energy sources together, allowing
power transmission to be aggregated. So when e.g. the wind is blowing over a farm on the Supergrid, the neighbouring cables will
carry its power where it is most needed (Gordon, 2006).
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The results of the regressions are presented in table 6. The standard errors confirm that there is
a linear relationship between both the EEX and the APX-ENDEX with the system price, as well in
the ARMA as in the EGARCH models. The Beta coefficients are positive thereby confirming the
hypothesis that higher electricity prices in surrounding markets lead to higher electricity prices
in the Nordic market. However, the low adjusted R2indicates that there is a large unexplained
variation. Especially the EGARCH models do a bad job in fitting the behaviour of the system
price, indicated by the negative adj. R2. Thus it is concluded that neighbouring electricity
markets are not able to explain the system price on its own.

ARMA Probability EGARCH Probability

» 0.289 0.065
EEX Beta coefficient (0.073) 0.000 (0.020) 0.001
Adjusted R® 0.128 n/a -0.078 n/a
. 0.219 0.043
APX-ENDEX Beta coefficient io&s) 0.002 low2) 0.000
Adjusted R® 0.072 n/a -0.071 n/a

Table 6: Regression output APX-ENDEX and EEX

Interconnection between Nordic and non-Nordic countries

With interconnection is meant the net import of electricity of the Nordic countries with non-
Nordic countries. As mentioned before electricity is exchanged between Nordic countries and
other markets, which could impact the electricity price in the Nordic countries. The factor
interconnection has a link with the factor neighbouring electricity markets, because both factors
try to capture the concept of interconnectivity between the electricity markets. One solution is
found at looking at surrounding markets, the other solution by looking at the interconnectivity
itself.

To measure interconnectivity the total net amount of electricity that is imported by the Nordic
Countries from non-Nordic Countries is used. This figure fluctuates per month and could be
positive or negative (i.e. in the case of net export). Since all the figures of the separate Nordic
countries are added to one total net import electricity figure, there is only one regression model:

System Price = c + yInterconnection + ¢
where € ~ i.i.d.(0,02) (10)
or if EGARCH, g,~i.i.d. (0, h?)

The standard errors in table 7 indicate that there is a linear relationship between
interconnection and the system price, because the null hypothesis of the Beta coefficient being
zero is rejected for both models. Also the hypothesis that higher net imports of electricity will
increase the electricity price in the Nordic countries is confirmed. For a single factor, the
adjusted R2is quite high in the ARMA model, especially compared to the other external factors.
However, the negative adjusted R2? of the EGARCH model indicates that based on this
specification interconnection is not able to explain the behaviour of the system price. So
although the models contradict, it should be concluded that interconnection on itself cannot fully
explain the behaviour of the system price.

ARMA Probability EGARCH Probability
. .. 0.009 0.004
Interconnection Beta coefficient (0.001) 0.000 (0.0003) 0.000
Adjusted R® 0.310 n/a -0.001 n/a

Table 7: Regression output Interconnection

Marginal Costs

The hypothesis about marginal costs states that higher marginal costs for electricity production
will result in higher electricity prices. To determine the marginal costs it is important to look at
the market itself, which is described in chapter 2. The electricity in the Nordic market is
produced mainly by hydropower, nuclear energy and wind generation. These sources of
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electricity generations however have low marginal costs and above all a good indicator for their
marginal costs is missing. Therefore it is decided to not take the marginal costs of these sources
into account. The second largest power source, being thermal power generation, offers relevant
indicators in the form of the fuel sources it uses. As a consequence, to determine whether there
is a linear relationship between marginal costs and the system price, benchmarks for oil, coal
and gas have to be chosen.

The benchmark for oil is the Brent Crude benchmark, which is one of the major trading
classifications in the world. Reason for including this benchmark is that it is primarily used in
Europe and it sources from different fields in the North Sea, which is geographically close to the
Nordic countries (Palmgren, 2008).

For the coal benchmark the McCloskey North-West Europe Steam Coal Market has been utilised.
This marker reflects the market value for any origin of standard bituminous material that is
delivered into North-West Europe (IHS, 2012).

The benchmark for gas is the National Balancing Point (NBP) in the United Kingdom. It is the
most liquid gas hub in Europe (comparable to the Henry Hub in the United States). The trading
and prices at the NBP have a major influence on price paid for gas in Europe (Fabini, 2012).

One common reason for choosing the benchmarks described above is due to the availability of
historical prices dating back to 2000, ensuring that there are enough observations for the
regressions. There is no relevant benchmark for the price of biofuels, hence this source of fuel
for thermal power is also not taken into account.

Since there are three separate sources that drive the marginal costs, each fuel source is
regressed against the system price. It could for instance be the case that gas prices do impact the
system price but coal prices do not. Based on the above, the regression models are as follows:

System Price = ¢ + yoil + ¢
where € ~ i.i.d.(0,02) (11)
or if EGARCH, g,~i.i.d. (0, h?)

System Price = c¢ + ycoal + ¢
where € ~ i.i.d.(0,02) (12)
or if EGARCH, g,~i.i.d. (0, h?)

System Price = c +ygas + ¢
where € ~ i.i.d.(0,02) (13)
or if EGARCH, g,~i.i.d. (0, h?)

The results of the regressions are shown in table 8. Based on the standard errors all marginal
costs sources are significant in both models. Also note that the hypothesis about increasing
marginal costs leading to increasing electricity prices is confirmed indicated by the positive Beta
coefficients. Again, the ARMA models fit the data of the system price better than the EGARCH
models. However the marginal costs are not able to explain the behaviour of the system price by
itself.

ARMA Probability EGARCH Probability
. . . 0.287 0.234
Oil Beta coefficient (0.054) 0.000 (0.024) 0.000
Adjusted R® 0.163 n/a 0.076 n/a
_ 0.313 0.437
Coal Beta coefficient (0.056) 0.000 (0.023) 0.000
Adjusted R® 0.197 n/a 0.098 n/a
_— 0.253 0.073
Gas Beta coefficient (0.061) 0.000 (0.014) 0.000
Adjusted R® 0.141 n/a -0.022 n/a

Table 8: Regression output Marginal Costs
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Demand

As indicated in the literature review there are factors describing electricity demand in the
Nordic countries, such as weather conditions (i.e. specifically temperature) and non-working
days. However, as indicated by Torghaban et al. (2010) it is preferred not to include weather
conditions in a forecasting model. A reason for not including weather conditions is that it is
impossible to predict the weather. This aspect becomes important in chapter 8 where a long
term forecast will be made based on predicted values of the external factors. Since weather
conditions are not included it also does not make sense to include other external factors
describing the demand in the Nordic countries, since weather is indicated as the main factor in
explaining the electricity demand.

Instead of factors describing demand,
the factor demand itself is included in Demand (in TWh)
this research. It consists of the net 45

demand of all Nordic countries on a

monthly basis from January 2000 till 40

October 2012. The figures for the last

two months of 2012 will only become 35

available in March 2013 and due to

time restrictions will therefore be left

out of the equation. Compared to ,5

weather conditions, the demand

shows pretty predictable behaviour 20

as can be seen in graph 2. The

demand is higher in the winter and
lower during the summer. Graph 2: Historical demand Nordic Countries 2000-2012

30

Since the Nordic market is one market there is no need for distinction between the electricity
demands per country and thus the regression model is as follows:

System Price = c¢ + ydemand + ¢
where € ~ i.i.d.(0,02) (14)
or if EGARCH, g,~i.i.d. (0, h?)

The results of the regression are shown in table 9. The standard errors indicate that electricity
demand is significant in explaining the behaviour of the system price. Also the positive Beta
coefficients confirm the hypothesis that an increase in demand leads to higher electricity prices.
The adjusted R2are however low and thus it is concluded that demand on its own cannot explain
the behaviour or the system price.

ARMA Probability EGARCH Probability
. . 0.690 0.640
Demand Beta coefficient (0.264) 0.010 (0.098) 0.000
Adjusted R’ 0.047 n/a 0.031 n/a

Table 9: Regression output Demand

Hydro Reservoir Levels

The final external factor is the level of water in the hydropower reservoirs in the Nordic market.
Inclusion of this factor is justified since over 50% of electricity is generated by hydropower in
this market (as described in chapter 2). The level of reservoir is measured in MWh, i.e. the
amount of water in the reservoirs expressed in the total amount of electricity it can produce.

As indicated in the literature review the first difference of the hydro reservoir level might
explain the behaviour of electricity prices better than the hydro reservoir level itself. The
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external factor hydro reservoir level can thus be included in the regression in two ways, which
results in two regression models, being:

System Price = ¢ + yhydro level + ¢
where € ~ i.i.d.(0,02)
or if EGARCH, g,~i.i.d. (0, h?)

(15)

System Price = ¢ + yhydro level dif ference + ¢
where € ~ i.i.d.(0,02) (16)
or if EGARCH, g,~i.i.d. (0, h?)

The results of both linear regressions are shown in table 10. The standard errors indicate that
both factors are significant. The adjusted R2 of both factors is low in the ARMA models and even
negative in the EGARCH models, but it should be noted that the first difference of the hydro
reservoir level does a worse job in explaining the behaviour of electricity prices than the hydro
reservoir itself does, thereby contradicting the finding of Torbaghan (2010) and Torghaban et
al. (2010). Final conclusion to draw from these results is that the hypothesis of decreasing
prices with increasing hydro reservoir levels is confirmed indicated by the negative Beta
coefficients.

ARMA Probability ¥ EGARCH Probability
Hydro Reservoir Beta -0.0003 -0.0003

coefficient (0.00007) 0.000 (0.00001) 0.031
Adjusted R® 0.089 n/a -0.043 n/a
Hydro Reservoir Diff. Beta -0.0005 -0.0001

coefficient (0.0001) 0.001 (0.00003) 0.000
Adjusted R’ 0.068 n/a -0.027 n/a

Table 10: Regression output Hydro Reservoir Level and first derivative of Hydro Reservoir Level

6.2.4 Conclusion

The fundamental analysis has indicated that there are linear relationships between the different
external factors and the system price. Overall the ARMA models outperformed the EGARCH
models in explaining the behaviour of the system price based on the various external factors.
This difference in performance is probably due to the fact that the simple, one external factor
regressions result in misspecified models. Misspecification leads to wrong estimates for the
variance and since the EGARCH models are also based on the lagged values of the variance and
error terms (see equation 4) this could lead to worse performance of the EGARCH regressions.
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Chapter 7 — Framework Application

The aim of this chapter is to utilise the knowledge gained in the previous chapter to construct
forecasting models. Three forecasting models are developed, i.e. a technical model, a
fundamental model and a merged model. The development of these models is presented in this
chapter and it is determined which model provides the best forecast over a known period of
time and therefore should be used to perform the out-of-data forecast in chapter 8.

7.1 Approach

To construct the forecasting models it is necessary to align the data and to present evaluation
measures that can measure the forecasting performance of the different models. This is further
discussed below.

Data Evaluation

To determine the performance of the forecasting models it is necessary to compare the
forecasted values of the models with actual values. Therefore, the data should be split into a so-
called training period and a forecasting period. The training period is used to estimate the
models while the forecasting period is used for testing the forecasting ability of the models.
There are two limitations to the forecasting period. First, the period cannot be too long (e.g. 10
years), since then the training period would be too short to estimate the model and approach the
behaviour of the system price correctly. Secondly, the forecasting period should not be too short
since it then would become irrelevant for project financing, dealing with long-term financing (i.e.
10-20 years). To cope with both limitations, the training period is set to 2000-2007 (8 years)
and the forecasting period to 2008-2012 (5 years). A training period of 8 years is regarded to be
sufficient to capture the behaviour of the system price while a forecasting period of 5 years gives
a bit of an insight in the performance of the models and is regarded as long-term forecasting as
mentioned in the literature review (chapter 4).

Due to the limitations of the fundamental dataset, there is a difference between the periods used
in the technical and the fundamental forecast models. The technical forecast model will use the
data from January 2000 till December 2007 for the training period and the data from January
2008 till December 2012 for the forecasting period. Since 5 months of data are missing at the
beginning of 2000 and 2 months of data at the end of 2012 for some external factors, the
fundamental model will use the data from June 2000 till December 2007 for the training period
and the data from January 2008 till October 2012 for the forecasting period. This means that the
fundamental models will be based on fewer observations than the technical model, but since it is
only a difference of 7 observations the impact should be limited.

Forecasting methods

There are two different approaches that can be used to forecast the system price during the
forecasting period, i.e. dynamic and static forecasting. Dynamic forecasting calculates dynamic,
multi-step forecasts starting from the first period in the forecast sample. The values used for
forming the forecasts are the previously forecasted values for the lagged dependent variable (i.e.
the system price) (Eviews, 2010b). The choice to use dynamic forecasting is only available when
an ARMA structure is present in the model. Therefore this can only be used for the technical
models and the merged models, as will be discussed later on.

The second method is static forecasting. Static forecasting calculates a sequence of one-step
ahead forecasts using the actual values of the lagged dependent variable instead of the
forecasted values. Static forecasts are more accurate than dynamic forecasts since they use the
actual value in forming the forecast (Eviews, 2010b).

In this research both methods will be applied. The static forecasting is more accurate, while the
dynamic forecasting is more interesting for the purpose of this research. This is because the
constructed model is used in chapter 8 to forecast the system price over a period of time in
which there are no actual values known (out-of-data sample). Therefore it is relevant to
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determine the performance of the different models under dynamic forecasting which calculates
its forecasts on lagged forecasted dependent variables instead of actual values.

Forecast Evaluation
All forecasting models constructed in this chapter are evaluated by several measures in order to
compare their performance. The following measures have been chosen (Eviews, 2010b):

n
MAE: Zlﬁt—ytl/n (17)
t=1
n A~
MAPE: 1002 Ye Ve /n (18)
= Yt

\/Z?=1(3A’t —¥)?/n

Theil Inequality Coef ficient: (19)
\/ t=1 PE/m+ ,/Z?ﬂytz/n
((Z?=1 ?t) _ _')_/)2
n
Bias Proportion: — 20
t=1Fc —¥1)*/n (20)
(53 — 5y)°
Variance Proportion: —
t=10c —¥1)*/n (21)
2(1 —1)sysy
Covariance Proportion: —
Xie1Gc — ye)?/n (22)

MAE and MAPE stand for Mean Absolute Error and Mean Absolute Percentage Error respectively
and are used as relative measures to compare forecasts for the same series across different
models. The smaller the error, the better the ability of the model to forecast. The disadvantage of
both measures is that they do not have an upper limit, which can be a problem due to the high
volatility of electricity prices (Palmgren, 2008). To overcome this problem the Theil Inequality
Coefficient is calculated. This value always lies between zero and one, where zero indicates a
perfect fit.

The bias, variance and covariance proportions are derived from the mean squared forecast
error. The bias proportion tells how far the mean of the forecasts is from the mean of the actual
series. The variance proportion indicates how far the variation of the forecast is from the
variation of the actual series. The covariance proportion finally measures the remaining
unsystematic forecasting errors (Eviews, 2010b). If the forecast of a model is good, the bias and
variance proportions should be small so that most of the bias should be concentrated on the
covariance proportion, because the three proportions always add up to one.

7.2 Technical Forecast Models

In the technical analysis it was shown that the prices are subject to yearly seasonality, that
prices are mean-reverting and that they have quite a high volatility. These characteristics of the
system price will be taken into account in constructing technical forecast models.

7.2.1 Models presentation

As mentioned in chapter 5 this research will use a two-step approach in constructing the
forecasting models. The first step is to identify and select the right model based on an analysis
similar to the technical analysis in chapter 6. The only difference is that the data now runs till
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December 2007 instead of the end of 2012 due to the split in the training period and the
forecasting period described in paragraph 7.1. The second step is to estimate the model.

Models identification and selection
For the Box-Jenkins methodology to be valid, it is necessary that the time series to be analysed is
mean-reverting (Enders, 1994). Since the data used to identify and estimate the models now
ranges from 2000 till 2007, once again a unit-root test has to be applied to the dataset in the
form of an augmented Dickey-Fuller test. The results of the test indicate that the null hypothesis
of not mean-reverting is rejected as can be seen in Appendix H. This means that is it still valid to
use the Box-Jenkins methodology.
Furthermore, it should be tested whether heteroscedastic characteristics are present. Again an
auxiliary regression is used to perform the three residual diagnostic tests described in the
technical analysis (paragraph 6.1). The ARCH LM test indicates that the null hypothesis of
homoscedasticity cannot be rejected. However, the White test and Correlogram of Squared
Residuals do not reject the null hypothesis of homoscedasticity and therefore the models should
account for this (see Appendix I). In order to do so, different ARCH models and ARMA models
with robust standard errors are tested. The added value of these latter models is that they are
easier to understand and to apply, which will enhance its application. Of the different ARCH
models, the EGARCH specification was chosen since it performed the best over two separate
testing periods (see Appendix ]).
Following the Box-Jenkins methodology it is valid to develop a model with AR and MA processes
for the system price, hence the correlogram of the system price is examined. The correlogram
contains information on the autocorrelation and partial correlation and is needed to identify the
ARMA processes (see Appendix K). To identify the best model the Akaike and Schwarz criteria
are used. Models till AR(6) have been included in the analysis since the correlogram indicates
potentially significant lags at that height.
Based on the correlogram and the Akaike and Schwarz criteria in total 14 ARMA models and 15
EGARCH models have been specified, presented in Appendix L. The models with the lowest
Akaike and Schwarz criteria are the AR(1,2) model and EGARCH(1,1) model with an AR(1,2)
process both and intercept. The AR(1,2) model is specified by equation 23 and the EGARCH(1,1)
model by equation 24:

Ye=C+ B1yi-1+ Baye—2 + & (23)

where g.~i.i.d.(0,0%)

Ye=c¢+B1ye1 + ﬁzJ’t—zz + &
where g.~i.i.d. (0, h*) 24
€t-1 €t-1 (24)
+ 9,

and h? is derived by: log(c?) = w + ¢, log(cZ,) + 6, "
t-1

Ot-1
Where Cis an intercept, Y; is the system price, Y+; is the AR(1) process, Y:.; is the AR(2) process,
& is the error term and the f’s are the coefficients of the AR processes that are estimated in the
next part. Note that the EGARCH model has an equation for the variance itself and that the
estimated variance derived from this equation is denoted by h2.

Models estimation

The parameters of the ARMA model are estimated using Ordinary Least Squares (OLS) and the
parameters of the EGARCH model by the Maximum Likelihood function. The estimation outputs
can be found in Appendix M. The adjusted R2 and Akaike and Schwarz criteria are provided in
table 11.

ARMA EGARCH

Adjusted R’ 0.81 0.80
Akaike criterion 6.34 5.92
Schwarz criterion 6.42 6.11

Table 11: Technical models estimation output
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The adjusted R? indicates that the models fit the data reasonably well but that there is also room
for improvement. Based on the Akaike and Scwharz criterion the EGARCH model is preferred
above the ARMA model, due to the lower values for these criteria. The moderate performance of
the models could be caused by the limited amount of observations. Another cause could be
model misspecification. Therefore several residual tests are conducted.

First test is to check the correlogram of the residuals to see whether there is correlation
between the residuals indicating model misspecification. Based on the correlogram of residuals,
not one correlation is indicated as significant and therefore it is concluded that there is no
correlation in the residuals for both models (see Appendix N).

Second test for the residuals is to determine if they are normally distributed. In order to do so
the histograms and Jarque-Bera tests are performed which can be found in Appendix O. The
histograms and the Jarque-Bera tests indicate that the residuals are not normally distributed for
the ARMA model, but are for the EGARCH model. Non-normality of the residuals leads to higher
errors compared to normal distributed residuals (as discussed in chapter 6), leading to the fact
that the ARMA model performs worse than the EGARCH model. To overcome this issue the data
series can be transformed by taking the natural logarithm of the series or the difference of the
natural logarithm but that would make the model specification and forecasting less intuitive
while still not transforming the residuals of the ARMA model into a normal distribution (see
Appendix P).

7.2.2 Models forecast

The identified and estimated technical models are applied in this paragraph to forecast the
system price. As mentioned in paragraph 7.1, the aim is to forecast the system price during the
testing period of January 2008 till December 2012.

Both dynamic and static forecast methods have been used to determine the forecasting
performance of the technical models. The results are presented in table 12 including the forecast
evaluation measures described in paragraph 7.1.

Mean Abs.  Mean abs. Theil Bias Variance Covariance

Error Perc. Error Inequality Proportion Proportion Proportion
ARMA Dynamic 27.988 13.096 0.230 0.406 0.383 0.211
ARMA Static 17.599 6.953 0.105 0.050 0.004 0.946
EGARCH Dynamic 30.048 14.187 0.250 0.464 0.277 0.259
EGARCH Static 16.147 6.432 0.099 0.049 0.016 0.935

Table 12: Forecast Evaluation of technical forecasting models

As expected the dynamic forecasts perform worse than the static forecasts for both models. This
is indicated by a higher MAPE, MAE and Theil Inequality. Also note that the bias, variance and
covariance proportions ad up to one and that the static forecasts errors are mainly due to the
covariance proportion, thereby indicating that they are better forecasts than the dynamic
forecasts. The bias proportion for the dynamic forecasts reveals that the mean of the forecast
series is far from the mean of the actual system price. This is overcome by the static forecast by
using the actual values for the lagged dependent variable used in the forecast. Also note that the
EGARCH model performs better in static forecasting but worse in dynamic forecasting compared
to the ARMA model. This is probably because the EGARCH incorporates more lagged
independent variables (i.e. in the variance equation).

7.3 Fundamental Forecast Models

In the fundamental analysis hypotheses have been identified for various external factors on how
they might impact the system price. It was concluded that all factors on its own did not have a
strong linear relationship with the system price. In this part the research will analyse the
combined effect of multiple fundamental factors on the electricity price and determine which
combined fundamental factors can forecast the price the best.
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7.3.1 Models presentation

For the fundamental forecasting models also the two-step approach is used. The first step is to
identify and select the right model based on analysis of the different regressions. The second
step is to estimate the model and to analyse the model’s performance in fitting the historical
behaviour of the electricity price.

Models identification and selection

The selection of the best fundamental model is done in several steps. First, all external factors
are included in the regression. The only limitation is that the factor hydro and the factor
hydro_diff cannot be in the same regression since the latter is a derivative of the first. Even
though the interconnectivity of the Nordic market is captured by as well the surrounding
electricity markets as the interconnection in MWh, both factors can be included in the same
regression. This is because it is believed there is no relevant correlation between the factors due
to the fact that interconnection in MWh also includes other markets and that prices at the EEX
and APX-ENDEX are also influenced by other factors than the Nord Pool system price.

Based on a first regression, the second step is to examine the standard errors for each variable
leading to the removal of external factors that are not indicated as significant. This is done as
long as there are non-significant factors and as long as by removing them the adjusted R2
increases. The Beta coefficients of the variables are also examined to see whether they confirm
the hypotheses, although this does not lead to the removal of significant factors when their Beta
coefficient does not correspond to the specific hypothesis. This approach has led to two
fundamental forecasting models (ARMA: equation 25; EGARCH: equation 26):

y: = f1Gas + B,0il + fz3Demand + S, Interconnection + fsCoal + &

25
where € ~ i.i.d.(0,0%) (2]
Ye = B1Gas + B,0il + f3Demand + fInterconnection + B¢EEX + &,
where g.~i.i.d. (0, h?) . . (26)
and h? is derived by:log(o2) = w + @1 log(oZ1) + 01 |==2| + 9, Ut_l
t—1 t—1

Both models incorporate the factors gas, oil, demand and interconnection. The difference is that
the first incorporates coal, while the second incorporates the factor EEX. Note that, while it is
believed that the level of hydro reservoirs impacts the system price, both fundamental models
do not incorporate this external factor since both factors turned out to be non-significant in the
regressions.

Models estimation

The estimation of the fundamental models is done similar to the technical analysis. Table 13
presents the Beta coefficients of each external factor for both models and includes the adjusted
R? and Akaike and Schwarz criteria. The Beta coefficients follow the same notation as in
equations 25 and 26, i.e. B1 is the coefficient estimate of gas, B2 for the oil etc.

o 1 B2 B3 B4 B5 B6 A;:lzl. Akaike Scwharz
0.1211 0.5044 0.2823 0.0145 -0.2202
- - 0.745 6.668 6.801
ARMA (0.0394) (0.0715) (0.0916) (0.0015) (0.0804)
0.0692 0.2987 0.2161 0.0092 0.0624
E - - 0.592 6.253 6.501
GARCH (0.0195) (0.0437) (0.0356) (0.0004) (0.0229)

Table 13: Fundamental Models Estimation Output
Note: All estimate coefficients are significant at a 5% significance level.

Notice that most of the signs of the Beta coefficients match the hypotheses stated in the
fundamental analysis (paragraph 6.2.2). For instance, the Beta coefficients for demand are
positive, thereby indicating that when the demand increases the electricity price will increase.
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Notice also that some Beta coefficients are very small (e.g. the interconnection). This is because
the used figures for the interconnection factor are much higher than the electricity price itself.
The Beta coefficient of coal is the opposite of what the hypothesis stated. Because removal of the
coal factor decreases the adj. RZ of the ARMA model, it is decided to keep the coal factor included.
Lastly, note that the ARMA model fits the data better than the EGARCH model, indicated by the
higher adjusted R?, but that the EGARCH model is better specified indicated by the lower Akaike
and Schwarz criteria. In both cases, the adjusted R? has increased significantly compared to the
fundamental analysis of each factor on its own but is lower than the technical analysis. Also the
Akaike and Schwarz criteria are worse than the technical analysis.

7.3.2 Models forecast

The estimated fundamental models will now be used to forecast the system price between
January 2008 and October 2012. The evaluation measures introduced in paragraph 7.1 are used
to determine the performance of the models. Only a static forecast is performed with the
fundamental models, since they do not include lagged independent variables. The results are
presented in table 14. Based on the covariance proportion, the ARMA model is preferred above
the EGARCH model, indicating that the misfit of the forecast is a result of unsystematic errors,
while the MAPE, MAE and Theil Inequality all prefer the EGARCH model.

Mean Abs. Mean abs. Theil Bias Variance Covariance

Error Perc. Error Inequality  Proportion  Proportion Proportion
ARMA 19.743 8.524 0.133 0.160 0.036 0.804
EGARCH 17.208 7.257 0.116 0.353 0.084 0.563

Table 14: Forecast Evaluation of Fundamental Forecast Models

To provide more insight in the performance of the forecasts, graph 3 presents the forecast of the
fundamental EGARCH model compared to the system price over the period January 2008 till
October 2012. From the graph it can be concluded that the fundamental model performs
significantly worse during the period July 2008 and April 2009. After this period, the
fundamental model fits the system price much better. Exclusion of the period between July 2008
and April 2009 would improve the forecast. Even though the period should not be excluded. The
system price does not behave different in this period compared to other periods and therefore
the reason for the misfit in year 2008 is attributable to the fundamental model itself. To exclude
the year 2008 therefore does not improve the knowledge about the forecasting performance of
the fundamental model, but instead might lead to wrong conclusions about the forecasting
performance of the fundamental model.

Forecast performance Fundamental Model
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Graph 3: Forecast Fundamental Model and System Price during 2008-2012

System Price
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7.4 Merged Forecast models

The merged forecasting models incorporate both the technical and fundamental aspects. The
technical forecasting models have so far proven to be superior over the fundamental forecasting
models. This paragraph will investigate the performance of merged forecasting models.

7.4.1 Models presentation

Since the data of fundamental factors is slightly limited due to the missing values for the first five
months in 2000 of the EEX, the dataset from June 2000 till December 2007 is used for the
training period. When the EEX is however indicated as non-significant the dataset is extended to
incorporate the first five months of 2000. The two-step approach will also be used for
developing the merged models.

Models identification and selection

The merged models are a combination of the ARMA structure of the technical models and the
fundamental factors of the fundamental models. The appropriate ARMA structure is found by
investigating the correlogram and as in the technical analysis AR(1,2) models are the preferred
models. To include the fundamental factors several statistic indicators are used. First of all the
standard error for each factor in the regressions is checked to determine if the variable is
significant or not. When the factor is indicated as non-significant it is removed from the
regression. The adjusted R? is examined before and after the removal of the external factor. This
process is repeated until there is no further increase in the adjusted R2. The Akaike and Schwarz
criteria are also investigated to determine whether exclusion of each non-significant factor
decreases the criteria (thereby increasing the performance of the models). Finally, when
determining which factors to exclude also the Beta coefficients are investigated to see if they
correspond to the hypotheses set up in the fundamental analysis. This approach has led to four
merged forecasting models, being the ARMA models in equation 27 and 28, and the EGARCH
models in equation 29 and 30:

Ve =+ f1YVi-1 + BoYi—p + 301l + fiInterconnection + &

27

where € ~ i.i.d.(0,02) (27)

Vi = B1Ve—1 + B2Yi—2 + B30il + B Interconnection + fsDemand + &; (28)
where € ~ i.i.d.(0,02)

Ve = B1YVi—1 + B2Yi—2 + B30il + By Interconnection + BgHydro_dif f + & (29)

where € ~ i.i.d. (0, h?)

Ve =+ P1Ve—1 + B2Ye—2 + 301l + SiInterconnection + fgsGas + f;Hydro + & (30)
where € ~ i.i.d. (0, h?)

All models incorporate oil and interconnection. The first ARMA model has an intercept, and this
intercept is replaced by the demand factor in the second ARMA model. The EGARCH models
incorporate hydro factors. The differences are explained by the lagged independent variables
applicable in the EGARCH models. For both the ARMA and EGARCH model, models are included
without an intercept, since the believe is that an extra external factor is preferred above an
intercept, because it gives more insight in which factors influence the system price.

Models estimation

Like the previous models, the merged forecasting models are estimated using Ordinary Least
Squares and Maximum Likelihood. Compared to the fundamental models, the merged models
have excluded the factors coal and EEX. This is due to the inclusion of the ARMA structure. The
external factors that are consistently included in all the merged models are oil and
interconnection. The results of the models estimation are depicted in table 15a. The Beta
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coefficients correspond to the equations above, i.e. 1 is the estimate coefficient of the AR(1)
process, 32 for the AR(2) process etc.

o B1 B2 B3 B4 B5 B6 B7 B8
15.7606 1.1790 -0.4273 0.2908 0.0065

ARMA 1 (3.8703) (0.1479) (0.1394) (0.0965) (0.0011) ) : ) )
ARMA 2 ] 1.0918  -0.3508  0.3866  0.0068  0.3484 ] ] ]
(0.1278)  (0.1227) (0.0885) (0.0012) (0.0981)
11939  -0.3137  0.2353  0.0042 -0.0001
EGARCH 1 i (0.1108) (0.1098) (0.0438) (0.0005) ) ) ) (4.1E-05)
EGARCH2 277640 11636  -03217  0.1140  0.0042 ] 0.0357  -0.0001
(3.8641) (0.0852) (0.0967) (0.0550) (0.0003) (0.0090)  (3.3E-05)

Table 15a: Merged Models Estimation Output
Note: All estimate coefficients are significant at a 5% significance level.

Adj.R2  Akaike Scwharz

ARMA 1 0.867 6.010 6.145
ARMA 2 0.865 6.030 6.166
EGARCH 1 0.853 5.491 5.763
EGARCH 2 0.853 5.387 5.685

Table 15b: Merged Models Estimation Output Evaluation Measures

Notice from the results in table 15b that based on the Akaike and Schwarz criteria the merged
models fit the data better than the fundamental and the technical models. Also the Adjusted R2
increased compared to the earlier models, indicating a better performance. Of the four merged
models, the models with an intercept fit the data better than the models without an intercept.
Despite this difference, all four models are included in the forecasting section to determine their
forecasting performance.

To check if the models are not misspecified the same tests as in the technical model analysis are
conducted. The correlograms of the models indicate that there is no correlation between the
residuals (Appendix Q). The homoscedastic null hypothesis of the ARCH LM tests is not rejected
for all models (Appendix R). Based on these findings the models are not misspecified. However,
the residuals of both ARMA models are not normally distributed, based on the histograms and
Jarque-Bera tests (Appendix S). As mentioned in the technical model part this increases the
errors of the model.

7.4.2 Models forecast

The merged models are now used to forecast the system price. The dataset has slightly changed
compared to the fundamental models. Since the EEX is not included in the merged forecasting
models, the starting point of the training period can be set to January 2000. This change does not
affect the ranking of the models based on the Akaike and Schwarz criteria, thus the models
selected earlier remain the best models to forecast with.

Because the forecasts are dependent on the lagged dependent variables both the dynamic and
static forecast are applied. The results of the forecasts can be found in table 16.

Mean Abs. Mean abs. Theil Bias Variance Covariance

Error Perc. Error Inequality Proportion Proportion Proportion
ARMA 1 Dynamic 18.465 7.899 0.130 0.231 0.314 0.455
ARMA 1 Static 16.068 6.256 0.096 0.028 0.008 0.964
ARMA 2 Dynamic 18.218 7.189 0.116 0.100 0.230 0.670
ARMA 2 Static 15.214 5.810 0.092 0.012 0.016 0.971
EGARCH 1 Dynamic 24.777 8.655 0.126 0.031 0.070 0.899
EGARCH 1 Static 15.355 5.757 0.092 0.001 0.005 0.995
EGARCH 2 Dynamic 20.702 9.624 0.161 0.409 0.362 0.229
EGARCH 2 Static 15.077 5.988 0.092 0.032 0.005 0.963

Table 16: Forecast Evaluation of Merged Forecast Models
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Also in these results the static models outperform the dynamic models. The main difference
between the static and the dynamic models is that the errors in the static forecasts are mainly
due to unsystematic forecasting errors while in the dynamic forecasting models they are due to
a mismatch between the means and the variances of the forecasted series and the actual values
of the system price. To visualise the difference in performance, the dynamic and static forecasts
of ARMA model 2 are presented in graph 4 alongside the system price during the forecast
period. What can be seen from the graph is that the static forecast is more volatile, following the
system price, while the dynamic forecast is less volatile and therefore performing less.

Forecast Performance Merged Model
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Graph 4: Static and Dynamic Forecast of Merged Model and System Price during 2008-2012

The results in table 16 finally also indicate that the dynamic ARMA model 2 without an intercept
and with three external factors, being oil, demand and interconnection, outperforms the other
dynamic forecasts based on the MAPE, MAE and Theil Inequality Coefficient. Also the covariance
proportion is quite significant, indicating a good forecast, although it is not as high as the value
for the dynamic EGARCH model 1 and off course the static forecasts.

7.5 Conclusion

The analysis and forecasting models have shown that static models in general are better
performing than the dynamic forecasting models. In chapter 8 a dynamic forecast is developed
for the upcoming 15 years. For choosing the best model to do so, only dynamic forecasting
models are therefore applicable. An overview of the performance of the technical and merged
dynamic forecasting models is provided in table 17. The fundamental forecasting models are
only based on static forecasts so therefore do not comply with the dynamic criterion. However,
they are included in table 17 so that they can be compared to the other models.

Of the dynamic models it is concluded that the merged models outperform the technical models,
especially the ARMA merged models. These models perform better or (almost) equal to the
static fundamental forecast, but since the latter are based on actual values instead of forecasted
values this comparison is not reasonable. It only indicates the robust performance of the merged
ARMA models.
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Mean Abs. Mean abs. Theil Bias Variance Covariance
Error Perc. Error Inequality Proportion Proportion Proportion
MERGED MODELS
ARMA 1 Dynamic 18.465 7.899 0.130 0.231 0.314 0.455
ARMA 2 Dynamic 18.218 7.189 0.116 0.100 0.230 0.670
EGARCH 1 Dynamic 24.777 8.655 0.126 0.031 0.070 0.899
EGARCH 2 Dynamic 20.702 9.624 0.161 0.409 0.362 0.229
FUNDAMENTAL MODELS
ARMA Static 19.743 8.524 0.133 0.160 0.036 0.804
EGARCH Static 17.208 7.257 0.116 0.353 0.084 0.563
TECHNICAL MODELS
ARMA Dynamic 27.988 13.096 0.230 0.406 0.383 0.211
EGARCH Dynamic 30.048 14.187 0.250 0.464 0.277 0.259

Table 17: Forecast Evaluation of Dynamic Merged Forecast Models
Note: The best performing model is highlighted in blue (ARMA 2 Dynamic Model)

Choosing the best dynamic model is objective as well as subjective. Based on the lowest MAPE,
MAE and Theil inequality coefficient the ARMA merged model 2 performs the best, while based
on the covariance proportion the EGARCH merged model 1 is preferred. The ARMA merged
model 2 is however favoured due to the following reasons:
- It has a significant covariance proportion, indicating a good forecast (objective);
- The first 3 evaluation measures (MAPE, MAE and Theil) indicate the model as the best
performing model (objective);
- The model is easier to understand and to implement in chapter 8 than the EGARCH
models, due to the lack of a separate equation for the variance in the error term
(subjective).

So the model that is regarded as the best forecasting model based on the forecasting period
January 2008 - October 2012 and that will be used in chapter 8 is denoted by the following
equation:

Vi = B1Ve—1 + B2Yi—2 + B30il + B Interconnection + fsDemand + &;

where € ~ i.i.d.(0,02) (31)
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Chapter 8 — Project Financing Perspective

In this chapter the best performing model of chapter 7 is used to perform a long-term (15 year)
out-of-data system price forecast. Long-term forecasting is relevant for renewable energy
project finance since the revenues over this period should be determined and forecasted. As
mentioned in chapter 3, the electricity price contributes the main part of the revenues, while
selling the tradable green certificates generates the other small part of the revenues.

Forecasting over a long period is very difficult and is completely dependent on the inputs that
are used in order to perform the forecast. Instead of performing one, fixed forecast, the approach
taken in this research is to establish multiple forecasts based on several scenarios. These
different scenarios represent realistic assumptions and indicate how the system price in the
Nordic countries will develop based on different assumptions. The first paragraph will introduce
the different scenarios while the second paragraph will develop the forecasts of the external
factors. The forecasts of the external factors are needed to forecast the system price in the third
paragraph. The final paragraph will finalise this chapter with a short conclusion.

8.1 Scenarios

The scenarios developed in this paragraph should include feasible assumptions for the three
external factors included in the forecasting model and should provide useful information on how
the system price can develop in the upcoming years. These criteria lead to the development of
four different scenarios: a high, medium, low and alternative scenario, denoted in table 18.

The first scenario assumes an increase in the oil price, an increase in the net import of electricity
of the Nordic countries and an increase in demand. Since all the external factors have a positive
Beta coefficient, these so-called high assumptions will lead to a higher system price. This first
scenario is called the high scenario. The same goes for the second and third scenario where
respectively moderate and low assumptions will be used to determine the future system price.
These scenarios are called the medium and low scenario respectively.

The alternative 4th scenario assumes a medium oil price, a low / negative import of electricity
and a medium development of demand in the Nordic countries over the upcoming years. This
fourth scenario is added since the other three scenarios are not regarded to capture all realistic
future developments. The oil assumption is considered to be conservative, as will be explained
later on. The low interconnection assumption is based on an International Energy Agency
report indicating that the Nordic countries will become a net exporter of electricity in the
upcoming years (IEA, 2013). The moderate demand seems reasonable, since in industrialised
nations the demand is expected to remain unchanged or decrease due to governmental
incentives to increase efficiency and cut CO; emissions (Brown, Bolte, Zunder, & Meibeyer,
2012). The development, forecast and values for the different external factors under the
different scenarios of high, medium and low will be discussed in paragraph 8.2.

Scenario Oil Interconnection Demand
High High High High
Medium Medium Medium Medium
Low Low Low Low
Alternative Medium Low Medium

Table 18: Scenarios for System Price Forecasting

8.2 External Factors forecast

Based on the historical behaviour of the external factors, high, medium and low forecasts are
developed for the different factors. The assumptions made for these forecasts are subjective but
are supported by literature and opinions of experts. The subjective assumptions can be changed
to develop new and/or more realistic scenarios, but are suitable for this research since the goal
is to develop indications of how the system price might develop in the future based on
reasonable assumptions.
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8.2.1 Oil
The underlying value used for oil is the Brent Crude Oil index. The development of the Brent
Cure Oil index is depicted in graph 5. It can be seen that the price is described by a random walk,
since the price follows random steps and does not have a mean or a clear trend. In other words,
it is impossible to determine the future value of the Brent Crude Oil index. A unit-root test
confirms that the index is a random walk by not rejecting the null hypothesis of non-stationary
time series (see Appendix T).
Brent Crude Index

A way of dealing with a random walk is

to generate a simulation model based on €100
historic data and construct a future €80
random walk. But as the name states, a
random walk is random indeed and each €60
simulation will have different predicted
values. Therefore, instead of random €40
values this research assumes different
stable prices for the different scenarios €20
for the oil price, i.e. a high stable price €0

for the high scenario and low / medium
prices for the low / medium scenarios
respectively. These fixed prices are
completely subjective. The low and medium fixed prices are lower than the current price of oil
and it is assumed that in the upcoming years the price will decrease with 10% annually until the
fixed price is reached. This has led to the following future values of the Brent Crude index over
the next 15 years:

Graph 5: Historical Prices Brent Crude Oil Index

2012m12  2013-X X -2027
High 83.82 80 80
Medium 83.82 83.82*0.9" 60
Low 83.82  83.82*0.9" 40

Table 19: Scenarios for Brent Crude Oil Index Forecasting (in Euros)

The X in table 19 denotes the year where the fixed prices of €60 and €40 of respectively the
medium and low scenario are hit. For the medium scenario this is the year 2016 and the low
scenario 2020. Thereafter, the fixed price is assumed to remain stable over the upcoming years.

8.2.2 Interconnection
The interconnection factor denotes the

net import of electricity of the Nordic Interconnection (in MWh)

3000
countries from non-Nordic countries
(such as Russia, the Netherlands and
Germany). A unit-root test indicates 2000
that the time series of this factor during
2000-2012 is stationary (see Appendix 1000
U) and the histogram and Jarque-Bera
test indicates that the null hypothesis of
a normal distribution cannot be 0
rejected (see Appendix V). Therefore,
the mean and standard deviation of the -1000
time series will be used to determine
the different scenarios for the 2000
interconnection values in the future. N N
As denoted in Appendix V, the mean of q,°°° s> '19&'19&09&4906'190‘0096\ q9°%q9°q 09'9 oS '190

the series is 421 MWh and the standard
deviation is 928 MWh. The mean will be

Graph 6: Historical Values of Net Interconnection between Nordic and
non-Nordic Countries
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used for the medium scenario and will be fixed over the forecasting period. For the low scenario,
the mean minus twice the standard deviation is taken for the last year (2027) and for the high
scenario the mean plus twice the standard deviation. This ensures that the ultimate values lie in
the 95% confidence interval of the series of the interconnection values. The difference of both
extreme values and the mean is divided by the total number of periods till December 2027
leading to a linear 11 MWh annual increase / 9 MWh annual decrease value for the high / low
scenario. This is denoted by table 20:

Mean St. Dev 2012m12 2013 - 2026 2027
High 421 927 268 421+(11*(X-2013)) 2277
Medium 421 927 268 421 421
Low 421 927 268 421-(9*(X-2013)) -1434

Table 20: Scenarios for Interconnection Forecasting (in MWh)

8.2.3 Demand
As described in the Fundamental Analysis (paragraph 6.2) the historical demand shows a clear
seasonal cycle. This research uses exponential smoothing which provides an easy way of

determining the seasonal cycles and forecasting the future values of the demand in the Nordic
countries.

For exponential smoothing, this research makes use of the Holt-Winter - Additive method. This
method is appropriate for series with a linear time trend and additive seasonal variation. Since a
trend will be included in the forecast, i.e. to incorporate future decrease or increase of

interconnection depending on the scenario used, this method is chosen. The smoothed series Z;
is given by (Eviews, 2010a):

2t+k =a+ bk + Ct+k (32)

Where a and b are the permanent component and trend respectively and c is the additive
seasonal factor. More information about exponential smoothing and the recursions of the three
coefficients can be found in Appendix W. The historic demand and the smoothed series over the
period January 2000 - October 2012 is given in graph 7 below:

Demand (in TWh)

45
40
35 1
30
25

20
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

= = = « Exp. Smoothing Series Demand (in TWh)

Graph 7: Historical Values of Electricity Demand in Nordic Countries

The smoothed series fits the historic data of demand very well and therefore seems appropriate
to use in forecasting the future values of demand. Forecasts of the exponential smoothed series
are computed by:

Zeyr = a(t) + bk + cepp—12 (33)
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The forecasted smoothed series is used as the medium scenario for the demand. The high
scenario is based on the same series but assumes a 2% annual growth. The low scenario does
the opposite and incorporates a 2% annual decrease in demand. The total reduction in
electricity demand is however limited. Based on a report of the Danish Energy Analyses (n.d.)
ambitious energy saving targets in Nordic countries could lead to a maximum 10% reduction
every 10 years from 2010 onwards. Since the forecast is over 15 years, this leads to a maximum
reduction of 15%. Therefore, the low

scenal.‘i(.) assumes 2% an.nual reduction in Demand (in TWh)

electricity demand until the maximum

reduction is achieved, i.e. in year 2019. 60

Thereafter the mean of the demand will 53

be stable and seasonable fluctuations will i:
still be present. In comparison, a recent 40

study only assumes a total reduction in ¢
electricity demand of 8% until 2050 in the 39
Nordic region (Danish Energy Analyses, 25
2013). 20
Instead of a table, the different scenarios 15
are depicted in graph 8 since this is easier

to understand. Note that the seasonal

fluctuations are also impacted by the High Medium

increase or decrease in the high and low Graph 8: Forecast Scenarios Electricity Demand in Nordic Market
scenarios.
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8.3 Model application

Now that insight in the future values of the external factors that impact the system price is
gained, the system price during the same period of time can be forecasted. In order to do so, the
best performing forecasting model of chapter 7 should be estimated based on the complete
historic data. Because demand is one of the external factors in the model (lacking data of
November and December in 2012), the data used to estimate the model is January 2000 till
October 2012.

The outcome of the estimation concludes that the AR(2) (denoted by f,y;_,in equation 31)
process is no longer significant (see Appendix X). By excluding the AR(2) process, the adj. R2
increases and the Akaike and Schwarz criteria decrease, thereby indicating that the new model
fits the data better than the previous one. The exclusion is a bit controversial since it was
determined in chapter 7 that the model with the AR(2) process performed the best in
forecasting the system price. When the new model is used to forecast the system price during
January 2008 till October 2012, the model performs even slightly better. However, the residual
diagnostics of the estimation of this model during the period January 2000 - December 2007
indicate that there was still correlation in the residuals, hence this model was not chosen in the
previous historic forecast. The new estimation and residual diagnostics do not indicate any
correlation in the residuals and since the forecasting performance of the new model is proven to
be better than the earlier suggested model, the research will use the following model in
forecasting the system price during January 2013 till December 2027:

Vi = B1Ve—1 + B30il + ByInterconnection + fsDemand + &; (34)
where € ~ i.i.d.(0,02)

Note that this model is exactly the same as equation 31, which denotes the best performing
forecasting model of chapter 7, except that the AR(2) process (denoted by B,y,_, in equation 31)
is excluded. In other words, based on the estimation of the model from 2000 till 2012, it is
concluded that the system price of two months in the past no longer has a significant influence
on the current system price. The external factors have remained the same.
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A problem for linear regression can be that the independent factors of the model have a high
degree of correlation between each other. This problem is referred to as multi-collinearity and
can distort the model estimation procedure (Alexander, 2001). To check if the forecasting model
depicted in equation 34 is subject to multi-collinearity, the intercorrelations between the
independent factors is determined and the Variance Inflation Factors are calculated (see
Appendix Y). Both checks indicate that the model does not suffer from multi-collinearity.

Now that the model is calibrated and forecasts of the external factors under different scenarios
are provided, forecasts can be made for the system price in the upcoming 15 years. All four
scenarios are forecasted and depicted in graph 9. The dashed lines in each forecast are the trend
lines for each specific forecast:

System Price Forecasts 2013-2027
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High Medium Low Alternative == « = Poly. (Alternative)

Graph 9: 4 Scenario Forecasts of the System Price during 2013-2027
Note: Prices are not indexed by inflation

The different scenarios show predictable behaviour. The system price in the low scenario drops
during the forecast reaching a low value near €18,- per MWh. The medium scenario stays flat
(except for the seasonal fluctuations) and has a mean near the €40,- per MWh. The high scenario
increases significantly and reaches values near the €65,- per MWh. Finally, the alternative
scenario is a bit below the medium scenario. This is mainly due to the low assumption this
scenario has for the interconnection, indicating that the Nordic countries will have a net export
of electricity in the future.

The alternative scenario is regarded as the most likely scenario while still being conservative.
This because of the following reasons: 1) The medium oil assumption is regarded as quite low,
since it is generally believed that oil prices will go up in the future due to increased scarcity of
this fuel source; 2) Because in the past 12 years there is no trend in the electricity demand, the
medium assumption (also lacking a trend) for the future demand seems to be the most likely; 3)
The low assumption in the alternative scenario for interconnection is supported by the
International Energy Agency as mentioned in paragraph 8.1, indicating that the Nordic market
will be a net exporter of electricity in the future; 4) Furthermore, the correlations between these
three external factors indicate that there is a negative correlation between oil and
interconnection (Appendix Y). In other words, when oil prices go up, the interconnection value
would go down. This is also the case in the alternative scenario where the oil assumption is
higher (i.e. medium) than the interconnection assumption (i.e. low).
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8.4 Conclusion

The best performing model of chapter 7 is utilised in this chapter to forecast the system price
over a period of 15 years in the future. Four different scenarios for future values of the
underlying key factors, being demand, oil and interconnection, are introduced and the analysis
of the key factors led to assumptions for the future values of these key factors. Based on these
scenarios and assumptions, the future system price is determined. The high scenario indicates
that the system price might increase steadily over the next 15 years to a level of circa €65,- per
MWHh. The three other scenarios (i.e. medium, alternative and low) however show a stable or
declining trend for the future system price. The alternative is regarded as being the most likely
scenario with a declining trend over the next 15 years to a level of circa €27,- per MWh in 2027.
All in all, the model is able to predict future system prices based on reasonable assumptions
forming a suitable and useable alternative.
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Chapter 9 — Conclusion, Discussion & Recommendations

The aim of this research was to develop an own view on the electricity prices in Norway and
Sweden by analysing the behaviour of electricity prices. This is achieved by determining the key
factors that influence the price and by forecasting the electricity price over a 15-year period. The
conclusions of the analysis and forecast are presented separately in the first paragraph of this
chapter. The second paragraph provides a discussion about the limitations and use of this
research. Final recommendations can be found in the third paragraph.

9.1 Conclusions
The analysis of the electricity prices in Norway and Sweden was based on the system price of the
Nord Pool market exchange and on the whole Nordic market. The conclusions in this paragraph
are thus only applicable for the system price. The goal of this research was separated in chapter
3 in two separate goals:
1. Analyse the key factors in Norway and Sweden that determine the electricity price
behaviour;
2. Forecast the electricity price in Norway and Sweden for a long-term period in the future.

The conclusions of this research are divided based on these two goals. Part 9.1.1 presents the
conclusions with regard to the goal of analysing the behaviour and determining the key factors
influencing the electricity price. Part 9.1.2 provides conclusions based on the 15-year system
price forecast.

9.1.1 Analysis

The technical analysis led to the conclusion that the system price is not a random walk. Instead,
based on the conducted unit-root tests, the hypothesis of non-mean-reverting is rejected. This
means that when the electricity price is below the mean it has a tendency to revert back to its
mean (thus increase) and vice versa when the price is above its mean. Further research needs to
be conducted to determine the mean of the price and to discover if there is a trend or not.

The fundamental analysis indicated that only a few factors have a significant impact on the
electricity price. The key factors that have a significant impact on the current monthly electricity
price are oil, interconnection, demand and the electricity price of one month and two months in
the past. Hydro reservoir levels do not have a significant impact on the electricity price. Reasons
for this could be that the impact of hydro levels is captured by the other external factors. For
instance, hydropower is part of the supply side of electricity, which is partly captured by
interconnection. Furthermore, it is believed that supply of electricity is not price elastic but
demand elastic. In other words, the supply of electricity depends on the demand, since
generators will only produce when offtakers want to buy the electricity. In contrast, the supply
of electricity does not depend on the price of electricity, because generators will not produce
electricity when there is no demand even if the prices are high, because they are unable to sell
the electricity. A final reason for hydro levels not having a significant impact on the system price
can be found in the role of the thermal power plants in the Nordic market. As mentioned in
paragraph 2.2.2, the thermal power plants act as swing production facilities, meaning that this
capacity is used to balance the total production during the seasons when the level of
hydropower generation in Norway and Sweden is low. Since oil is regarded as having a
significant impact on the system price and is one of the fuels used for the CHP plants, this factor
might indicate the indirect impact hydro levels have on the system price. Furthermore, instead
of having a significant impact on the electricity price, it is expected that the hydro reservoir
levels and generation might have a bigger impact on the certificates price. However, this is
outside the scope of the research.

A final conclusion from the analysis is that interconnection has a positive impact on the
electricity price. That is, when the net import is positive, the price will go up and vice versa. The
reason for this is that the Nordic market will only export more electricity than it imports when
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there is an oversupply of electricity. This oversupply can be created by too much generation in
the market itself or by importing from non-Nordic countries. However, the basic idea still
applies that the market itself should meet its internal electricity demand and will only have a net
export when this demand is met and supply of electricity is left over to export (i.e. oversupply).
Even though this conclusion is straightforward, it is a contradiction to the expectation that
exporting to surrounding markets with higher electricity prices will increase the prices in the
Nordic market (so-called balancing of markets). This might still apply, but only when the there is
a net import, not a net export.

9.1.2 Forecast

The 15-year electricity price forecast in chapter 8 has led to several conclusions. First of all, it is
concluded that a long-term forecast of electricity prices is impossible. It is impossible to say that
for example in 13 years time the price will be €31.60. What is possible instead is to develop
indications of where the price might be going over a long period of time. These indications are
based on assumptions about the key factors influencing the price and therefore rely solely on
these assumptions to be reasonable. To end up with reasonable indications, the research has
based its forecasts on four different scenarios. The results of these forecasts indicate that there
is a big difference in predicted prices between the two most extreme forecasts, i.e. the high and
the low scenario forecasts. Based on this conclusion, it would not be a shock for the electricity
price to almost double or to be halved over a couple of years in time.

[t is furthermore concluded that three out of the four forecasts generated by this research have a
stable (medium scenario) or decreasing trend (low and alternative scenario).

From a conservative perspective, the high scenario is not relevant due to the slightly unlikely
probability of the underlying assumptions and because it is not generally used for structuring
renewable energy projects in the banking industry. Exclusion of this high scenario leads to the
conclusion that structuring of projects should be done on future electricity prices between the
low scenario (+/- €18,- per MWh in 2027) and the medium scenario (+/- €40,- per MWh in
2027). These values are not indexed by inflation.

The alternative scenario is regarded as the most likely structuring scenario, because: 1) The
medium oil assumption is regarded as quite low; 2) The medium assumption for future
electricity demand (lacking a trend) replicates the seasonality and trend of the past 13 years; 3)
The low assumption in the alternative scenario for interconnection is supported by the
International Energy Agency, indicating that the Nordic market will be a net exporter of
electricity in the future; 4) The correlations between these three external factors correspond to
the assumptions that higher oil and demand (i.e. medium assumptions) result in lower
interconnection (i.e. low assumptions).

The developed forecasting model of this research adds a new model to table 2 in the literature
review paragraph 4.4. It fills the gap by developing a long-term econometric forecasting model
for an electricity price. This is denoted in table 21 below:

Forecast Period Econometric Model Simulation Model Hybrid Model

Short-term Lalitha, Sydulu & Kiran Kumar ) Palmgren (2008)

(2012); Weron (2008)
Grossi, Gianfreda & Gozzi Torghaban et al. (2010);

Medium-term (n.d.); Baquero (n.d.); Li (n..d) Niemeyer (2000) Vehvildinen and Pyykkonen (2005)
X (2011); .
- L | (201 ¢
Long-term eeuwendal (2013) Y (2012) Hamm & Borison (2006)
Table 21: Summary of literature developing forecasting models based on forecasting period and model type including
current research

9.2 Discussion

Paragraph 3.2 already described the limitations of this research. These limitations and the
assumptions made in the research are discussed in this chapter and it is reviewed for which
goals this research could be used and more important, for which goals it should not be used.
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Since the research only focuses on the system price, the conclusions about key factors
influencing the electricity price only hold for the system price. The analysis and model of this
research can thus not be used to forecast area prices. Instead of focussing on the system price,
the research could instead have differentiated between the different areas prices in Norway and
Sweden. Analyses based on these different area prices might lead to other conclusions and
forecasting models due to e.g. country specific generation capacity. Specific analyses and
forecasts for electricity prices in certain areas could be valuable assets when project finance
opportunities arise in these areas. However, the focus on the system price was preferred
because the system price forms the basis for the area prices and is thus a reasonable indicator
for the area prices. Furthermore, since it is uncertain where future business opportunities might
arise, all area prices should have been analysed and forecasted, potentially leading to multiple
forecasting models. The focus on the system price limits the analysis to one price and results
into one forecasting model, making the conclusions, forecasting model and recommendations
easier to implement. The limited availability of historical values of the area prices, the unified
Nordic electricity market and single exchange market (Nord Pool) further support the choice of
analysing and forecasting the general system price instead of all area prices.

As discussed in chapter 3 only (sort of) predictable, understandable factors are included in this
research. This leads to the exclusion of factors that might have an impact on the electricity prices
in the future. For instance, technology development: it might be the case that nuclear energy is
dismantled in the Nordic market over the next 10 years and replaced by more expensive
generation sources. Even though the marginal costs do not have a significant impact on the
electricity price based on this research, a change in marginal cost due to this change in
generation capacity might result in marginal costs having a significant impact on prices.
Including less understandable and/or predictable factors in the analysis and forecast of the
system price might improve the knowledge about the market and the electricity price. However,
more research is needed to analyse which other factors influence the system price and how
these factors behave and will behave. Recommendation 4 denotes this suggestion in paragraph
9.3. Even though that this suggestion might improve the forecasting model, reason for not
including these unpredictable factors was that the goal of this research was to develop a
transparent model that is easy to implement.

The assumptions for the 15-year forecasts in chapter 8 are deliberately simple. The dynamics of
the external factors are simplified. For instance, the oil and interconnection assumptions are in
reality much more volatile than the linear assumptions included in the forecast. More insight in
the underlying key factors and their behaviour will improve the knowledge about the electricity
prices in Norway and Sweden and the reliability of the future prices calculated by the
forecasting model. The simple assumptions are a limitation of this research and further research
is needed as suggested in paragraph 9.3. The assumptions in this research for the long-term
forecasts are kept simple in order to develop understandable, indicative forecasts based on
reasonable scenarios, to gain insight in which key factors influence the (future) system price.
Also do the forecasts not include the potential effects of the future electricity price on the price
itself. For instance, when the prices become too low, it could be the case that generators stop
producing electricity because it is no longer economically viable to do so (see Germany during
the summer shutting down coals plants due to the oversupply of solar energy). This might result
in prices to go up again for instance by increased import of electricity. On the other hand, if
prices rise significantly, counter measures in the form of extra demand reductions might occur,
having a negative impact on the electricity price. Not including the potential effects of the future
electricity price on the price itself is again a limitation of this research and is subject to the fact
that the assumptions for the key factors are deliberately simple. More extensive analysis of these
key factors might lead to knowledge about the impact of the future electricity price on the price
itself. Since the forecast in this research only aims to be an indicator for future values of the
system price and limited time was available for conducting this research, these more extensive
analyses are left out.

The models developed in this research are regarded as simple time-series models. Alternative
models could be developed to forecast the system price, such as artificial neural network models
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(ANN models) or models based on wavelet decomposition techniques. These models might
provide better forecasting performance than the models developed in this research. The choice
for developing the simple ARMA and EGARCH time-series models is however justified by the
criteria that the model should be transparent and useful. Furthermore, the inclusion of external
factors in ARMA and EGARCH models is relatively straightforward, facilitating the analyses and
forecasts of the fundamental and merged models of this research.

Final point of discussion is that the forecasting model developed in this research should not
form the only base for future electricity prices for structuring renewable energy projects. The
research and model follow a different approach than other market consultants and thereby
provide a different view and insight on electricity prices. It does not replace other forecasts, but
instead should be seen as complimentary information to make informed decisions.

9.3 Recommendations

Based on the goal, conclusions and limitations of this research, multiple recommendations are
suggested. The first two recommendations focus on further developing and using the developed
system price forecasting model of this research. Recommendations 3 till 6 indicate ideas for
further research.

Recommendation 1: Use developed model to perform free new forecasts

The merged model used in chapter 8 to forecast the system price under different scenarios
should be used to get indications of where the system price will go in the future. The user of the
model can develop their own scenarios with regard to the three underlying key factors (i.e.
demand, oil and interconnection) to forecast the future system price. An advantage of using this
model is that the model is transparent (i.e. it is easy to understand how the model works and
what the impact of the underlying key factors is) and free to use. It should however be noted
that this model is based on the training period between 2000 and 2012 and therefore should not
be used to perform forecasts starting from a starting date later than a couple of years after 2013.
This restriction limits the possibility that the developed model becomes inapplicable and that
market changes have deteriorated the performance of the model significantly.

Recommendation 2: Analyse underlying external factors

The main goal of this second recommendation is to indicate that the forecasting model of this
research could be enhanced when the underlying factors are analysed more thoroughly. The
future behaviour of these prices / values determine the future system price significantly (see
different scenarios and system price forecast in chapter 8). Therefore a deeper understanding of
the behaviour of these external factors leads to a better understanding of the development of the
future system price and therefore to a better forecast. Instead of using the simple deterministic
models developed in chapter 8 of this research for the underlying external factors incorporated
in the model (i.e. demand, oil and interconnection), the user could improve the model by
developing more sophisticated and/or stochastic models for the external factors.

Recommendation 3: Analyse the mean and trend of the system price

As mentioned in paragraph 9.1, one of the conclusions of this research is that the system price is
mean-reverting. This means that the price has a tendency to revert back to its mean. The mean
of the system price is relevant for the user since it indicates the average electricity price over a
long period of time in the past and thereby indicates what the mean might be in the future. This
research however does not indicate what the value is of this mean and if the mean is subject to a
trend or not. Further research should be conducted to analyse the mean and the trend of the
system price. Such an analysis is useful in that it provides more knowledge about the market and
the electricity price and thereby adds to the necessary information to make educated decisions
in future financing opportunities.
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Recommendation 4: Analyse future market development and excluded key factors

The literature review (chapter 4) suggested that there might be other factors influencing the
system price that are outside the scope of this research. Further research should be conducted
to determine which other factors have a significant impact on the system price and based on this
analysis, new forecasting models can be developed. Also more insight should be gained in the
development of the Nordic market in the future. Although it is (nearly) impossible to predict
market changes, it is possible to construct reasonable assumptions about e.g. future build-out of
electricity generators (wind, hydro, nuclear, thermal power plants etc.), potential changes to the
support system for renewable energy projects and about the impact of a trans-European Super
Grid (as introduced in paragraph 6.2.3). Including other external factors that influence the
system price and analysing the future development of the Nordic market might lead to different
conclusions and other forecasting models than constructed in this research.

Recommendation 5: Analyse and forecast tradable green certificate price

Besides the electricity price renewable energy projects also generate revenue by selling the
tradable green certificates (as described in chapter 2). To predict the future cash flows of the
renewable energy projects, the behaviour of the price of these certificates should therefore also
be analysed. Such an analysis can be used to develop a model able to forecast the price of these
certificates. This adds to the knowledge about future revenues and thus cash flows of projects in
Norway and Sweden, necessary to structure and finance these projects.

Recommendation 6: Analyse if inflation is applicable to electricity price or not

Another topic to be analysed is whether the electricity price in general should be indexed by
inflation over the future years of a renewable energy project or not. It is common practice in
renewable energy project finance to do so, but there are some voices in the market stating that
electricity prices are actually not subject to inflation. Indexing electricity prices with 2% on an
annual basis accumulates to almost 35% of the revenues in 15 year of the lifetime of a project.
Indexing electricity prices or not thus impacts the revenues of renewable energy projects
significantly and research about the relation between inflation and electricity prices should be
conducted.
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Appendix A — EGARCH Model

The EGARCH model stands for Exponential GARCH model. It is one of the extensions of the basic
GARCH model and allows for the signs of the residuals or shocks to have an effect on the
conditional volatility. Therefore, it captures a stylized fact of financial volatility that bad news
(negative shocks) tends to have a larger impact on the volatility than good news (positive
shocks) (so-called leverage effect) (Eviews, 2010b). The specific conditional variance of an
EGARCH model is given by the following equation:

Ot—i

q P
log(c?) = w + Z @jlog (atz_j) + Z 0;
j=1 i=1

-

Et—i Et—k

e
Or_

t ] t—k

Where the first factor is a constant factor w; the second factor is summarizing the log values of
the previous conditional variances from previous periods j = 1 till g (where g depends on how
many lags are included). The conditional variances are denoted by O'tz_j; the third factor
summarizes the absolute values of the previous residuals of the regression divided by the
previous conditional variances from the previous periods i = 1 till p (where p depends on how
many lags how many lags are included). The previous residuals are denoted by &;_;. The final
factor summarizes the values of the previous residuals of the regression divided by the previous
conditional variances from the previous periods k = 1 till r (where r depends on how many lags
are included). The ¢;,8; and 9 for the second, third and fourth factor respectively are
estimated by the regression. Note that the left-hand side of the equation is the log of the
conditional variance, implying that the leverage effect is exponential.

The EGARCH model used in this research only includes one lag of each factor described above.
Therefore, the equation of the conditional variance simplifies to the equation below due to the
fact that the sum functions disappear:

€t—1 Et-1

log(af) = w + ¢, log(af 1) + 64 + 9

Ot—1 Ot-1
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Appendix B — Jarque-Bera Test

The Jarque-Bera test is used for normality testing. It tests whether the sample data has a
skewness and kurtosis similar to a normal distribution. The statistic is computed as follows:

N K — 3)?

Jarque — Bera = 3 <S2 + %)

where N is the number of observations, S is the sample skewness and K is the kurtosis. The
reported probability is the probability that a Jarque-Bera statistic exceeds the observed value
under the null hypothesis. A small probability value leads to the rejection of the null hypothesis
of a normal distribution.
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Appendix C — Dickey-Fuller Test System Price 2000-2012

Null Hypothesis: ELSPOT has a unit root
Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=13)

Augmented Dickey-Fuller test statistic

Test critical values: 1% level
5% level
10% level

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(ELSPOT)

Method: Least Squares

Date: 01/03/13 Time: 14:01

Sample (adjusted): 2000M03 2012M12
Included observations: 154 after adjustments

Variable Coefficient
ELSPOT(-1) -0.207113
D(ELSPOT(-1)) 0.213316

Cc 4.782044
@TREND(2000M01) 0.031844
R-squared 0.127570
Adjusted R-squared 0.110122
S.E. of regression 6.882265
Sum squared resid 7104.836
Log likelihood -513.5481
F-statistic 7.311220
Prob(F-statistic) 0.000131

t-Statistic
-4.458327
-4.018748
-3.439267
-3.143999
Std. Error t-Statistic
0.046455 -4.458327
0.080147 2.661569
1.494278 3.200237
0.014702 2.165974

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

Prob.*

0.0024

Prob.

0.0000
0.0086
0.0017
0.0319

0.195130
7.295686
6.721403
6.800285
6.753445
2.041566
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Appendix D — Dickey-Fuller Test Log System Price 2000-2012

Null Hypothesis: LOG_ELSPOT has a unit root
Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=13)

Augmented Dickey-Fuller test statistic

Test critical values: 1% level
5% level
10% level

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOG_ELSPOT)
Method: Least Squares

Date: 01/03/13 Time: 14:02

Sample (adjusted): 2000M02 2012M12
Included observations: 155 after adjustments

Variable Coefficient
LOG_ELSPOT(-1) -0.143401

Cc 0.441614
@TREND(2000M01) 0.000742
R-squared 0.072402
Adjusted R-squared 0.060196
S.E. of regression 0.190642
Sum squared resid 5.524334
Log likelihood 38.46987
F-statistic 5.932008
Prob(F-statistic) 0.003306

t-Statistic

-3.435549
-4.018349
-3.439075
-3.143887

Std. Error t-Statistic

0.041740 -3.435549
0.128533 3.435792
0.000418 1.772966

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

Prob.*

0.0504

Prob.

0.0008
0.0008
0.0782

0.006281
0.196653
-0.457676
-0.398771
-0.433750
1.787016
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Appendix E — Correlogram of Squared Residuals System Price 2000-2012

Date: 0171013 Time: 18:33
Sample: 2000M03 2012012
Included ohservations: 154

Q-statistic probahilities adjusted for 2 ARMA term(s)

Autocorrelation

Partial Correlation

AC

PAC

Q-Stat

Prob

OO0~ £ Wk —

0.097
0.105
0.019
n.018
-0.043
-0.060
-0.040
-0.063
-0.002
0.046
0.069
-0.045
-0.086
0.001
0.085
-0.056
-0.038
-0.039
0.017
-0.00
-0.003
0.002
-0.069
0.005
n.018
-0.007
0.026
-0.006
-0.026
0.047
0.027
-0.055
-0.056
-0.051
-0.050
-0.052

0.097
0.097
-0.000
0.007
-0.048
-0.056
-0.021
-0.046
0.016
0.058
0.058
-0.071
-0.102
n.018
0.109
-0.063
-0.043
-0.029
0.027
0.001
-0.018
0.002
-0.051
0.014
0.005
-0.030
0.058
n.008
-0.081
0.030
0.034
-0.056
-0.048
-0.043
-0.035
-0.038

1.4877
3.2398
3.2948
3.3495
3.6490
4.2339
4.4903
51378
51385
5.4888
6.2827
6.6180
7.8699
7.8702
91319
9.6854
9.9387
10.204
10.255
10.255
10.257
10.258
11.121
11.125
11.182
11.191
11.322
11.330
11.458
11.892
12.036
12.625
13.242
13.768
14.272
14.822

0.070
0.187
0.302
0.375
0.481
0.526
0.643
0.704
0.711
0.761
0.725
0.795
0.763
0.785
0.824
0.856
0.893
0.923
0.946
0.963
0.960
0.973
0.931
0.988
0.99M
0.994
0.996
0.997
0.998
0.998
0.998
0.998
0.998
0.998
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Appendix F— ARCH LM Test System Price 2000-2012

Heteroskedasticity Test: ARCH

F-statistic
Obs*R-squared

1.445728
1.450985

Test Equation:

Dependent Variable: RESID*2

Method: Least Squares

Date: 01/10/13 Time: 18:30

Sample (adjusted): 2000M04 2012M12
Included observations: 153 after adjustments

Variable Coefficient

Cc 43.16996

RESID?2(-1) 0.097377
R-squared 0.009484
Adjusted R-squared 0.002924
S.E. of regression 114.9304
Sum squared resid 1994557.
Log likelihood -941.9729
F-statistic 1.445728
Prob(F-statistic) 0.231097

Prob. F(1,151)
Prob. Chi-Square(1)

Std. Error t-Statistic
10.05337 4.294077
0.080986 1.202384

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

0.2311
0.2284

Prob.

0.0000
0.2311

47.78578
115.0987
12.33952
12.37913
12.35561
2.018847
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Appendix G — White Test System Price 2000-2012

Heteroskedasticity Test: White

F-statistic 3.307069
Obs*R-squared 15.47657
Scaled explained SS 42.99554

Test Equation:

Dependent Variable: RESID*2
Method: Least Squares

Date: 01/10/13 Time: 18:24
Sample: 2000M03 2012M12
Included observations: 154

Collinear test regressors dropped from specification

Variable Coefficient

C 58.48572
GRADF_01*GRADF_02 32.13983
GRADF_01*GRADF_03 -18.08344
GRADF_02/2 -0.079905
GRADF_02*GRADF_03 0.122187
GRADF_03"2 -0.068633
R-squared 0.100497
Adjusted R-squared 0.070109
S.E. of regression 110.6553
Sum squared resid 1812200.
Log likelihood -940.2452
F-statistic 3.307069
Prob(F-statistic) 0.007340

Prob. F(5,148)
Prob. Chi-Square(5)
Prob. Chi-Square(5)

Std. Error

12.20446
10.71273
10.58969
0.088120
0.194274
0.117146

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

t-Statistic

4.792160
3.000154
-1.707647
-0.906780
0.628944
-0.585879

0.0073
0.0085
0.0000

Prob.

0.0000
0.0032
0.0898
0.3660
0.5304
0.5588

47.57824
114.7509
12.28890
12.40722
12.33696
2.036230
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Appendix H — Dickey-Fuller Test System Price 2000-2007

Null Hypothesis: ELSPOT has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 1 (Automatic - based on SIC, maxlag=11)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -4.221746 0.0061
Test critical values: 1% level -4.058619
5% level -3.458326
10% level -3.155161
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(ELSPOT)
Method: Least Squares
Date: 01/03/13 Time: 17:31
Sample (adjusted): 2000M03 2007M12
Included observations: 94 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
ELSPOT(-1) -0.221789 0.052535 -4.221746 0.0001
D(ELSPOT(-1)) 0.438771 0.094616 4.637393 0.0000
Cc 4.287876 1.512695 2.834595 0.0057
@TREND(2000M01) 0.049736 0.024368 2.041048 0.0442
R-squared 0.254852 Mean dependent var 0.351915
Adjusted R-squared 0.230014 S.D. dependent var 6.362040
S.E. of regression 5.582619 Akaike info criterion 6.318814
Sum squared resid 2804.907 Schwarz criterion 6.427040
Log likelihood -292.9843 Hannan-Quinn criter. 6.362529
F-statistic 10.26045 Durbin-Watson stat 1.977213

Prob(F-statistic) 0.000007
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Appendix | — Heteroscedasticity Tests System Price 2000-2007

ARCH LM Test:

Heteroskedasticity Test: ARCH

F-statistic 1.385327 Prob. F(1,91) 0.2423
Obs*R-squared 1.394545 Prob. Chi-Square(1) 0.2376
Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 01/15/13 Time: 11:20
Sample (adjusted): 2000M04 2007M12
Included observations: 93 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C 27.61302 10.28661 2.684365 0.0086
RESID?2(-1) 0.122481 0.104062 1.176999 0.2423
R-squared 0.014995 Mean dependent var 31.47686
Adjusted R-squared 0.004171 S.D. dependent var 94.21001
S.E. of regression 94.01333 Akaike info criterion 11.94602
Sum squared resid 804304.1 Schwarz criterion 12.00049
Log likelihood -553.4900 Hannan-Quinn criter. 11.96801
F-statistic 1.385327 Durbin-Watson stat 2.059833
Prob(F-statistic) 0.242265
White Test:
Heteroskedasticity Test: White
F-statistic 2.627647 Prob. F(5,88) 0.0291
Obs*R-squared 12.21095 Prob. Chi-Square(5) 0.0320
Scaled explained SS 51.02964 Prob. Chi-Square(5) 0.0000
Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 01/15/13 Time: 11:20
Sample: 2000M03 2007M12
Included observations: 94
Collinear test regressors dropped from specification
Variable Coefficient Std. Error t-Statistic Prob.
C 31.32176 12.05907 2.597361 0.0110
GRADF_01*GRADF_02 36.75306 13.46501 2.729525 0.0077
GRADF_01*GRADF_03 -25.44303 13.46021 -1.890241 0.0620
GRADF_02"2 -0.085131 0.097050 -0.877192 0.3828
GRADF_02*GRADF_03 0.043348 0.200759 0.215923 0.8295
GRADF_03"2 0.053215 0.121713 0.437217 0.6630
R-squared 0.129904 Mean dependent var 31.22063
Adjusted R-squared 0.080466 S.D. dependent var 93.73506
S.E. of regression 89.88472 Akaike info criterion 11.89663
Sum squared resid 710975.1 Schwarz criterion 12.05897
Log likelihood -553.1418 Hannan-Quinn criter. 11.96221
F-statistic 2.627647 Durbin-Watson stat 2.068163
Prob(F-statistic) 0.029113
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Correlogram of Squared Residuals System Price 2000-2007:

Date: 0111513 Time:11:18
Sample: 2000M03 2007M12
Included observations: 94

Q-statistic probahilities adjusted for 2 ARMA term(s)
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Appendix J— Comparison ARCH Models

Four different ARCH models have been estimated during the periods 2000-2007 and 2000-2012.
The regressions are analysed based on the correlation in the residuals, the hypothesis for the
residuals to have a normal distribution and on the fit of the models with historical electricity
prices based on the adjusted R?, Akaike and Schwarz criteria.

Over the first period, the EGARCH model is preferred due to the highest adj. R2 (together with
the PARCH model) and the lowest Akaike and Schwarz criteria (see table below).

Period: 2000-2007

C:;r;(l’a:::: Ja;g:xae- Adj. R? Akaike Schwarz
GARCH No 0.80 0.79 5.97 6.13
EGARCH No 0.68 0.80 5.92 6.11
PARCH No 0.76 0.80 5.92 6.13
C-GARCH No 0.00 0.80 6.03 6.25

Over the second period, the GARCH and C-GARCH models have correlations in their residuals
and therefore are misspecified. The EGARCH model is preferred above the PARCH model due to
its lower Akaike and Schwarz criteria and due to the observation that one factor in the volatility
equation of the PARCH model is not significant with an alpha-level of 0.20.

Period: 2000-2012

C:;r;(l’a:::: Ja;g:xae- Adj. R? Akaike Schwarz
GARCH Yes 0.10 0.76 6.43 6.55
EGARCH No 0.11 0.76 6.38 6.51
PARCH No 0.27 0.76 6.37 6.53
C-GARCH Yes 0.07 0.76 6.39 6.54

Concluding, when an ARCH model is used, the research should use an EGARCH model.
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Appendix K — Correlogram of System Price 2000-2007

Date: 01/03113 Time: 17:33
Sample: 2000M01 2007012
Included ohservations: 96
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Appendix L — Summary of all ARMA and EGARCH models

ARMA MODELS

Model Intercept AR(p) MA(q) Adj.Rz Akaike Schwarz
Model 1 C AR(1) AR(2) - 0.81 6.34 6.42
Model 2 C AR(1) MA(1) 0.81 6.35 6.43
Model 3 C AR(1) AR(2) AR(5) - 0.80 6.38 6.49
Model 4 C AR(1) AR(2) AR(5) AR(6) = 0.79 6.40 6.54
Model 5 - AR(1) MA(1) 0.80 6.42 6.47
Model 6 C AR(1) AR(2) AR(4) AR(5) AR(6) - 0.79 6.42 6.59
Model 7 C AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) - 0.79 6.44 6.64
Model 8 - AR(1) AR(2) = 0.79 6.45 6.50
Model 9 AR(1) AR(2) AR(5) - 0.78 6.45 6.53
Model 10 - AR(1) AR(2) AR(3) AR(5) = 0.78 6.47 6.58
Model 11 - AR(1) AR(2) AR(3) AR(4) AR(5) - 0.78 6.49 6.63
Model 12 C AR(1) = 0.78 6.51 6.56
Model 13 - AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) - 0.77 6.52 6.69
Model 14 - AR(1) = 0.77 6.54 6.57
EGARCH MODELS

Model Intercept AR(p) MA(q) Adj. R’ Akaike Schwarz
Model 1 C AR(1) AR(2) - 0.80 5.92 6.11
Model 2 C AR(1) MA(1) 0.79 5.93 6.12
Model 3 - AR(1) MA(1) 0.79 5.96 6.12
Model 4 - AR(1) AR(2) = 0.78 5.96 6.12
Model 5 C AR(1) AR(2) AR(4) AR(5) - 0.78 5.93 6.18
Model 6 C AR(1) AR(4) = 0.77 5.92 6.11
Model 7 C AR(1) AR(2) AR(4) AR(5) AR(6) - 0.77 5.95 6.23
Model 8 C AR(1) AR(4) AR(5) = 0.77 5.91 6.13
Model 9 C AR(1) - 0.76 5.95 6.09
Model 10 C AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) = 0.76 5.97 6.28
Model 11 - AR(1) AR(2) AR(4) AR(5) AR(6) - 0.76 6.07 6.32
Model 12 - AR(1) AR(2) AR(4) AR(5) = 0.75 6.03 6.25
Model 13 - AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) - 0.75 6.09 6.37
Model 14 - AR(1) AR(4) = 0.75 6.01 6.17
Model 15 - AR(1) AR(4) AR(5) - 0.75 6.01 6.20
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Appendix M - Estimation Output Technical Models

ARMA Model:

Dependent Variable: ELSPOT

Method: Least Squares

Date: 01/15/13 Time: 10:59

Sample (adjusted): 2000M03 2007M12

Included observations: 94 after adjustments

Convergence achieved after 3 iterations

White heteroskedasticity-consistent standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
Cc 30.55628 3.724039 8.205143 0.0000
AR(1) 1.244886 0.144657 8.605787 0.0000
AR(2) -0.413978 0.135477 -3.055699 0.0029
R-squared 0.815305 Mean dependent var 29.59532
Adjusted R-squared 0.811246 S.D. dependent var 13.07120
S.E. of regression 5.678898 Akaike info criterion 6.342786
Sum squared resid 2934.739 Schwarz criterion 6.423955
Log likelihood -295.1109 Hannan-Quinn criter. 6.375572
F-statistic 200.8519 Durbin-Watson stat 1.947173
Prob(F-statistic) 0.000000
Inverted AR Roots .62-.16i .62+.16i
EGARCH Model:
Dependent Variable: ELSPOT
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 01/18/13 Time: 14:33
Sample (adjusted): 2000M03 2007M12
Included observations: 94 after adjustments
Convergence achieved after 35 iterations
Bollerslev-Wooldridge robust standard errors & covariance
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(6)
*RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1))
Variable Coefficient Std. Error z-Statistic Prob.
Cc 28.12984 3.076999 9.141971 0.0000
AR(1) 1.059560 0.094161 11.25259 0.0000
AR(2) -0.193521 0.089765 -2.155862 0.0311
Variance Equation
C4) 0.367875 0.246824 1.490436 0.1361
C(5) 0.531729 0.275946 1.926930 0.0540
C(6) 0.433890 0.156379 2774610 0.0055
C(7) 0.734045 0.073755 9.952427 0.0000
R-squared 0.803264 Mean dependent var 29.59532
Adjusted R-squared 0.798940 S.D. dependent var 13.07120
S.E. of regression 5.861083 Akaike info criterion 5.920202
Sum squared resid 3126.058 Schwarz criterion 6.109596
Log likelihood -271.2495 Hannan-Quinn criter. 5.996703
Durbin-Watson stat 1.577065
Inverted AR Roots .82 .23
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Appendix N — Correlogram of Residuals Technical Models 2000-2007

ARMA Model:

Date: 0111513 Time: 11:17
Sample: 2000M03 2007M12
Included ohservations: 94

Q-statistic probabilities adjusted for 2 ARMA term(s)

EGARCH Model:

Date: 017118113 Time: 14:55
Sample: 2000M03 2007M12
Included observations: 94

Q-statistic probabilities adjusted for 2 ARMA term(s)
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Appendix O — Histogram of Residuals of System Price Regression 2000-2007

ARMA Model:

24
Series: Residuals
Sample 2000M03 2007M12

20 1 Observations 94

16 Mean 3.10e-12
Median -0.624664
Maximum 28.43327

12 Minimurm -15.33786
Std. Dev. 5 617502
Skewness 1.595829

5 Kurtosis 9918174

44 Jarque-Bera  227.3539
Prabability 0.000000
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EGARCH Model:

14
Series: Standardized Residuals
15 Sample 2000M03 2007 M12
Observations 94
10 1 Mean 0.009563
Median -0.087332
8 1 — Maximum 2.872969
Minimum -2.533893
6 - [ Std. Dev. 1.008229
n Skewness 0.187923
o Kurtosis 3.226036
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2 Probability 0.686129
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Appendix P — Histogram of Residuals Technical Model Log System Price 2000-2007

ARMA Model:
20
Series: Residuals
- Sarmple 2000M03 2007M12
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Mean 2.72e-13
. | ] Median -0.011121
| Maximurm 0.495343
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Appendix Q — Correlogram of Residuals Merged Models 2000-2007

ARMA Model 1:

Date: 03/20/113 Time: 16:27
Sample: 2000M03 2007M12
Included observations: 94

Q-statistic prohabilities adjusted for 2 ARMA termis)

ARMA Model 2:

Date: 03720113 Time: 16:31
Sample: 2000M03 2007M12
Included observations: 94

Q-statistic probabilities adjusted for 2 ARMA term(s)
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2.7084
4.8964
5.4972
5.5691
5.6035
5.9087
5.9756
8.7580
9.3724
9.8588
10.600
10.665
11.116
11.994
12.700
12.750
12.750
13.236
13.990
15.148
15.257
15.681
15.802
15.898
15.901
16.460
17.542
18.120
18.207
18.211
18.212

0.859
0.595
0.510
0.608
0.429
0.482
0.591
0.692
0.749
0.817
0.644
0.671
0.705
0717
0.776
0.802
0.800
0.809
0.851
0.888
0.900
0.902
0.889
0913
0.924
0.941
0.955
0.967
0.970
0.965
0.968
0.976
0.983
0.988
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EGARCH Model 1:

Date: 0171913 Time:12:17
Sample: 2000M04 2007M12
Included observations: 93

Q-statistic probabilities adjusted for 2 ARMA term(s)

Date: 01119113 Time:12:19
Sample: 2000M03 2007M12
Included ohservations: 94

EGARCH Model 2:

Q-statistic probahilities adjusted for 2 ARMA term(s)

Autocorrelation Partial Carrelation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat Prob
] 1 -0.002 -0.002 0.0006 gt (NN 1 -0.038 -0.038 0.1426
(g 2 0118 0118 1.3624 (Il [l 2 0143 0142 21454
| 3 0.008 0.008 1.3680 0.242 i [ 3 0082 0094 28102 0094
(m 4 -0.184 -0.201 47456 0.083 g g 4 -0109 -0.126 4.0014 0135
(nl 5 0168 0174 7.5761 0.056 iy [ 5 0092 0.081 48670 0182
g 1 6 -0.146 -0.110 9.7302 0.045 g g 6 -0.150 -0.123 7.1759 0127
[nl 7 0168 0146 12622 0.027 g [ 7 0026 0017 7.2483 0203
N 8 0075 0062 13210 0.040 g [N 8 0037 0056 7.3906 0.286
g 9 -0.050 -0.032 13.469 0.061 g g 9 -0112 -0.083 8.7209 0273
[ 10 0107 0.024 14680 0.066 ( [N 10 0.099 0.049 97778 0.281
ig 11 -0155 -0.063 17.253 0.045 (N 1) 11 -0.036 0.012 9.9177 0357
A 12 0.090 0.052 18.134 0.053 (g [ 12 0.087 0.073 10760 0377
I 13 -0.223 -0.233 23626 0.014 g g ! 13 -0.103 -0.138 11.941 0.368
| 14 -0.163 -0.142 26,589 0.009 g g 14 -0.075 -0.067 12.583 0400
[y 15 0115 0108 28.079 0.009 g [ 15 0.030 0.014 12686 0472
g 16 -0.130 -0.046 30.014 0.008 (N [ 16 -0.040 0.039 12.875 0536
| 17 0.000 -0.168 30.014 0.012 g g 17 -0.108 -0.145 14.240 0507
ig 18 -0.140 -0.082 32.313 0.009 g g 18 -0.110 -0.125 15678 0476
1] 19 0.013 0.094 32333 0.014 [ I 19 0.094 0142 16732 0473
g 20 -0.078 -0.140 33.062 0.016 [ [ 20 -0.037 -0.007 16.901 0530
1ot 21 -0.037 0.082 33227 0023 [ u] [l 21 0153 0165 19780 0408
L 22 0065 0032 33749 0.028 (N [ 22 0088 0.045 20746 0412
gt 23 -0.086 -0.060 34.672 0.031 o N 23 -0.004 -0.045 20.747 0474
[ 24 0033 -0.030 34810 0.041 [ [ 24 0.099 0.029 22.009 0459
g 25 -0173 -0.105 38.699 0.021 g ! g 25 -0.159 -0.091 25314 0334
g 26 -0123 -0.156 40.685 0.018 (N g 26 -0.045 -0.118 25587 0.374
g 27 0083 0019 41616 0.020 g [ 27 0.025 0.043 25674 0425
g 28 -0.149 -0.084 44643 0013 g [ 28 -0122 -0.013 27.710 0373
g 29 0.040 -0.081 44860 0.017 1) [ 29 0.024 -0.027 27.790 0422
[ 30 0.034 0033 45026 0.022 g [ 30 -0.085 -0.039 28.801 0423
[ 31 -0.022 -0.099 45.094 0.029 1l g 31 -0.001 -0.092 28.801 0475
] 32 0.011 -0.043 45111 0.038 gt [ 32 -0.026 -0.033 28901 0523
] 33 0019 0146 45164 0.048 g I 33 0.041 0132 29147 0562
g 34 0.031 -0.080 45304 0.060 g [ 34 0036 -0.009 29.347 0601
I 35 0.068 0120 46.012 0.066 [ 1 35 0036 0047 29544 0.640
1] 36 -0.008 -0.021 46.023 0.082 1 [N 36 0.038 0.043 29.765 0675
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Appendix R — ARCH LM Test Merged Models 2000-2007

ARMA Model 1:

Heteroskedasticity Test: ARCH

F-statistic 1.198252 Prob. F(1,91) 0.2766
Obs*R-squared 1.208672 Prob. Chi-Square(1) 0.2716
Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 03/20/13 Time: 16:28
Sample (adjusted): 2000M04 2007M12
Included observations: 93 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
Cc 19.22583 7.766415 2.475509 0.0152

RESID?2(-1) 0.113954 0.104101 1.094647 0.2766
R-squared 0.012996 Mean dependent var 21.67930
Adjusted R-squared 0.002150 S.D. dependent var 71.78709
S.E. of regression 71.70986 Akaike info criterion 11.40440
Sum squared resid 467949.7 Schwarz criterion 11.45887
Log likelihood -528.3048 Hannan-Quinn criter. 11.42640
F-statistic 1.198252 Durbin-Watson stat 2.041544
Prob(F-statistic) 0.276560
ARMA Model 2:
Heteroskedasticity Test: ARCH
F-statistic 0.733588 Prob. F(1,91) 0.3940
Obs*R-squared 0.743715 Prob. Chi-Square(1) 0.3885
Test Equation:
Dependent Variable: RESID*2
Method: Least Squares
Date: 03/20/13 Time: 16:31
Sample (adjusted): 2000M04 2007M12
Included observations: 93 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 20.15418 7.761105 2.596818 0.0110

RESID?2(-1) 0.089384 0.104360 0.856497 0.3940
R-squared 0.007997 Mean dependent var 2211297
Adjusted R-squared -0.002904 S.D. dependent var 71.41851
S.E. of regression 71.52214 Akaike info criterion 11.39916
Sum squared resid 465502.9 Schwarz criterion 11.45363
Log likelihood -528.0610 Hannan-Quinn criter. 11.42115
F-statistic 0.733588 Durbin-Watson stat 2.024570
Prob(F-statistic) 0.393973

89




UNIVERSITY OF TWENTE.

EGARCH Model 1:

Heteroskedasticity Test: ARCH

F-statistic 0.000105 Prob. F(1,90) 0.9918
Obs*R-squared 0.000107 Prob. Chi-Square(1) 0.9917
Test Equation:
Dependent Variable: WGT_RESID?2
Method: Least Squares
Date: 01/19/13 Time: 12:21
Sample (adjusted): 2000M05 2007M12
Included observations: 92 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C 1.017642 0.191106 5.325000 0.0000

WGT_RESID"2(-1) 0.001079 0.105282 0.010250 0.9918
R-squared 0.000001 Mean dependent var 1.018738
Adjusted R-squared -0.011110 S.D. dependent var 1.511046
S.E. of regression 1.519417 Akaike info criterion 3.696030
Sum squared resid 207.7765 Schwarz criterion 3.750851
Log likelihood -168.0174 Hannan-Quinn criter. 3.718156
F-statistic 0.000105 Durbin-Watson stat 1.979324
Prob(F-statistic) 0.991844
EGARCH Model 2:
Heteroskedasticity Test: ARCH
F-statistic 0.521349 Prob. F(1,91) 0.4721
Obs*R-squared 0.529772 Prob. Chi-Square(1) 0.4667
Test Equation:
Dependent Variable: WGT_RESID?2
Method: Least Squares
Date: 01/19/13 Time: 12:21
Sample (adjusted): 2000M04 2007M12
Included observations: 93 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
Cc 1.087563 0.184187 5.904685 0.0000

WGT_RESID"2(-1) -0.075621 0.104731 -0.722045 0.4721
R-squared 0.005696 Mean dependent var 1.010667
Adjusted R-squared -0.005230 S.D. dependent var 1.445435
S.E. of regression 1.449210 Akaike info criterion 3.601184
Sum squared resid 191.1189 Schwarz criterion 3.655649
Log likelihood -165.4551 Hannan-Quinn criter. 3.623176
F-statistic 0.521349 Durbin-Watson stat 1.988095
Prob(F-statistic) 0.472118
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Appendix S — Histogram of Residuals Merged Models 2000-2007

ARMA Model 1:

16
Series: Residuals
14 — Sample 2000M03 2007M12
Observations 94
12 A
Mean 4.17e-11
10 A Median -0.317915
1| 7 = Maximum 25.71665
8 - — — Minimum -12.54983
T Std. Dev. 4.656501
6 1 Skewness 1.792194
Kurtosis 11.97023
4 .
Jarque-Bera  365.4755
21 —H Probability 0.000000
0 ’_‘ I r T "_l_! |_| | T T !_I
-10 5 0 5 10 15 20 25
ARMA Model 2:
14
Series: Residuals
12 . B - Sample 2000M03 2007M12
Observations 94
107 Mean 0.164338
™ Median -0.158219
8 1 ] Maximum 25.74503
= Minimum -11.18769
6 - — — Std. Dev. 4.700753
Skewness 1.752566
4 Kurtosis 11.20326
5 Jarque-Bera  311.6862
Probability 0.000000
oM SENY VN E—
-10 -5 0 5 10 15 20 25
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EGARCH Model 1:

14
_ Series: Standardized Residuals
194 | Sample 2000M04 2007M12
Observations 93
107 ] ] Mean 0.051249
Median 0.110145

Maximum 2.558149
Minimum -2.442112

Std. Dev. 1.008278
Skewness 0.000604
Kurtosis 3.208241

Jarque-Bera 0.168042
Probability 0.919412

EGARCH Model 2:

16
Series: Standardized Residuals
14 — Sample 2000M03 2007M12
Observations 94
12 A
Mean -0.032242
101 Median -0.048327

Maximum 2.662285
Minimum -2.230294

Std. Dev. 1.008320
Skewness 0.133144
Kurtosis 3.035206

Jarque-Bera 0.282582
Probability 0.868237
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Appendix T — Dickey-Fuller Test Brent Crude Oil Index 2000-2012

Null Hypothesis: OIL_GRAPH has a unit root
Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=13)

Augmented Dickey-Fuller test statistic

Test critical values: 1% level
5% level
10% level

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(OIL_GRAPH)
Method: Least Squares

Date: 01/26/13 Time: 13:42

Sample: 2001M01 2012M12

Included observations: 144

Variable Coefficient
OIL_GRAPH(-1) -0.017629

C 1.278520

R-squared 0.006990
Adjusted R-squared -0.000003
S.E. of regression 4.395000
Sum squared resid 2742.875
Log likelihood -416.5075
F-statistic 0.999528
Prob(F-statistic) 0.319125

t-Statistic

-0.999764
-3.476143
-2.881541
-2.577514

Std. Error t-Statistic

0.017633 -0.999764
0.946295 1.351079

Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat

Prob.*

0.7525

Prob.

0.3191
0.1788

0.406181
4.394993
5.812604
5.853851
5.829364
1.677365
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Appendix U — Dickey Fuller Test Interconnection 2000-2012

Null Hypothesis: INTERCONNECTION has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=13)

t-Statistic
Augmented Dickey-Fuller test statistic -3.440121
Test critical values: 1% level -3.472813
5% level -2.880088
10% level -2.576739
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation
Dependent Variable: D(INTERCONNECTION)
Method: Least Squares
Date: 01/26/13 Time: 14:17
Sample (adjusted): 2000M02 2012M12
Included observations: 155 after adjustments
Variable Coefficient Std. Error t-Statistic
INTERCONNECTION(-1) -0.143068 0.041588 -3.440121
C 62.02371 42.38471 1.463351
R-squared 0.071796 Mean dependent var
Adjusted R-squared 0.065729 S.D. dependent var
S.E. of regression 480.2559 Akaike info criterion
Sum squared resid 35288801 Schwarz criterion
Log likelihood -1175.948 Hannan-Quinn criter.
F-statistic 11.83443 Durbin-Watson stat
Prob(F-statistic) 0.000750

Prob.*

0.0110

Prob.

0.0007
0.1454

1.608032
496.8626
15.19933
15.23860
15.21529
2.046963
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Appendix V — Histogram of Interconnection 2000-2012

20
Series: INTERCONNECTION
) - Sample 2000M01 2012M12
15 - | Observations 156
— Mean 421.3006
. =1 | Median 360.8870
Maximum 2626.448
Minirmum -1897.656
. B m Std. Dev. 927 6347
Skewness 0.036737
Kurtosis 2.738904
o Jarque-Bera 0478201
Probability ~ 0.787336
0 I ’ I s I ’ I

-2000 1500 1000  -500 0 500 1000 1500 2000 2500
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Appendix W — Exponential Smoothing

Exponential smoothing provides a simple method for adaptive forecasting and is an effective
way of forecasting when only few observations are available (Eviews, 2010a). For the Demand
forecast in chapter 8 the Holt-Winters method is used, where the smoothed series is given by:

2t+k =a+ bk + Ct+k

[t consists of three parameters where

a the intercept (permanent component)
b trend

c additive seasonal factor

t end of the estimation sample

k future periods

The first three parameters are computed by the following recursions:

a(t) = p(zc — ce(t =) + (1 = p)(alt — 1) + b(t — 1))
b(t) = T(a(t) —a(t— 1)) +1—1b(t—1)
ct(t) =0(zy —a(t+1) —Oc,(t —s)
Where 0 < p, 1,60 < 1 are the damping factors and s is the seasonal frequency. In this case s = 12
indicating monthly seasonality. The p,7 and 6 are estimated by the exponential smoothing
function in Eviews.
Forecasts of this exponential smoothing method are computed by:

Zepk = a(t) + bk + coyr—s

Where the seasonal factors are used form the last s estimates (Eviews, 2010a).
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Appendix X — Estimation Output Merged Model with AR(2) Process 2000-2012

Dependent Variable: ELSPOT

Method: Least Squares

Date: 01/21/13 Time: 17:14

Sample (adjusted): 2000M03 2012M10

Included observations: 152 after adjustments

Convergence achieved after 11 iterations

White heteroskedasticity-consistent standard errors & covariance

Variable Coefficient Std. Error t-Statistic Prob.
OIL 0.336354 0.067085 5.013821 0.0000
DEMAND 0.464002 0.093154 4.980994 0.0000
INTERCONNECTION 0.007393 0.001368 5.403140 0.0000
AR(1) 0.774802 0.094443 8.203948 0.0000
AR(2) -0.060009 0.091138 -0.658441 0.5113
R-squared 0.834092 Mean dependent var 34.47882
Adjusted R-squared 0.829578 S.D. dependent var 14.52476
S.E. of regression 5.996144 Akaike info criterion 6.452452
Sum squared resid 5285.201 Schwarz criterion 6.551922
Log likelihood -485.3863 Hannan-Quinn criter. 6.492860

Durbin-Watson stat 1.991708

Inverted AR Roots .69 .09
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Appendix Y — Multi-collinearity

Intercorrelations:

One check for multi-collinearity is to look at the intercorrelations between the explanatory,
independent variables. If these are too high, multi-collinearity can distort the model estimation
procedure. Although there are no formal tests for multi-collinearity, a rule of thumb is that the
intercorrelations should not be greater than the adjusted R2 from the whole regression
(Alexander, 2001).

The intercorrelations of explanatory variables of the merged model in chapter 8 are provided in
the table below:

Interconnection oil System Price (-1) Demand
Interconnection 1.00 -0.30 0.50 0.10
oil -0.30 1.00 0.38 -0.01
System Price (-1) 0.50 0.38 1.00 0.21
Demand 0.10 -0.01 0.21 1.00

The adjusted R? of the merged model is 0.87 (see table 15b). Since the intercorrelations are
lower than this value, they indicate that there is no multi-collinearity in this model.

Variance Inflation Factor:

The Variance Inflation Factor (VIF) is widely used as a measure of the degree of multi-
collinearity of a independent variable with the other independent variables in a regression
model (O’brien, 2007). The VIF is calculated by the following equation:

VIF = ————
(1-R)

The R? represents the proportion of variance in the ith independent variable that is associated
with the other independent variables (O’brien, 2007). In other words, it represents how well a
regression over the other independent variables fits the data of the ith independent variables. In
order to determine the R?, several regressions have to be run. The results of the different
regressions are provided in the table below, together with the calculated VIF values:

2

R VIF
Demand -4.61 0.18
AR(1) 0.57 2.31
Interconnection 0.52 2.08
Oil 0.41 1.71

O’brien (2007) states that different rules of thumb for values of VIF are mentioned in the
literature, ranging from 4 to higher values. When these values are exceeded, it is an indication
that there is multi-collinearity in the model. Since the VIF values of the four regressions all do
not exceed the most conservative limit for VIF of 4, it is concluded that the merged model used
for forecasting in chapter 8 does not suffer from multi-collinearity.
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Appendix Z — Forecasting Output ARMA Merged Model 2 Dynamic 2008-2012

The Mean Squared Error of the developed model is calculated by taking the square of the Root
Mean Squared Error value of the evaluation output given below:

€80 -
€70 -
€60 -
€50 -
€40 -

€30

. . ; [ ) A
. ¢ ; ! . \ 2
v v ; o4 L N
\ A ; e S . \
\ AN g v .

L PRt ' ; (. \ K

e R T e “f ) : o \ —
v . b Wt Vo7
. " ; i .

€10 -

€O rrrrrrrrrrryrrrrrrrrrrryprrrrrrrrrrryrrrrrrrrrrryprrrrrrorrorrrT

2008 2009 2010 2011 2012

—— ARMA Merged Model 2 Dynamic
------ Confidence Interval

Forecast: MM2_DYNAMIC

Actual: ELSPOT

Forecast sample: 2008M01 2012M12
Included observations: 60

Root Mean Squared Error 9.736570

Mean Absolute Error 7.144671
Mean Abs. Percent Error 18.12746
Theil Inequality Coefficient  0.115143
Bias Proportion 0.083707
Variance Proportion 0.222827

Covariance Proportion 0.693466
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