
Implementing flexible, extensible
composition operators.

Teun van Hemert

June 17, 2013

A dissertation submitted to the University of Twente

for the degree of Master of Science.

UNIVERSITY OF TWENTE.

Faculty of Electrical Engineering, Mathematics and Computer Science.

Chair Software Engineering

Supervisors:

Dr. Ing. C.M. Bockisch

S. te Brinke, MSc

Dr. Ir. L.M.J. Bergmans

Abstract

The Co-op/III language lets developers implement their own composition op-
erators. It achieves this by reifying method invocations as messages. These
messages can then be manipulated by using bindings, which rewrite messages,
and constraints, which let the developer order and control the application of
bindings. In this thesis we investigate how we can develop a flexible and ex-
tensible execution framework for such composition operators in the Co-op/III
language. To achieve this, first the exact requirements for such an implemen-
tation are defined, as well as a precise specification of bindings and constraints
in Co-op/III. Two prototype implementations are implemented and described
in detail, one using only Java constructs, and one using a framework for ad-
vanced dispatching. To show that these prototype implementations conform to
the specification of bindings and constraints in Co-op/III, test cases are derived
from the developed specification and these test cases are used to show that the
prototypes have identical semantics. Finally, the prototype implementations are
evaluated and compared based on software quality aspects and conformance to
the developed requirements. The results of this evaluation show that while
both the Java-only approach and the approach using the advanced-dispatching
framework can be used to implement the execution framework, there are some
shortcomings in the advanced-dispatching framework that limit the usefulness
of the framework.

CONTENTS

1 Introduction 2
1.1 Background . 3
1.2 Problem analysis . 4
1.3 Approach . 6
1.4 Outline . 7

2 Co-op/III 8
2.1 Messages . 10
2.2 Bindings . 11
2.3 Constraints . 14
2.4 Implicit parameters . 21

3 Implementation 22
3.1 ALIA4J . 23
3.2 Common prototype features . 25
3.3 Tree-based prototype . 35
3.4 ALIA4J-based prototype . 47

4 Evaluation 58

5 Conclusion 62
5.1 Conclusion . 62
5.2 Future work . 65

1

1. INTRODUCTION

One of the most important design principles in modern software engineering
is the separation of concerns. A concern in computer programming is a feature
or behavior of a computer program. Examples of such concerns are computa-
tions, business logic, security, database access, and logging. The idea behind
the separation of concerns is that a software engineer should in general only
have to focus on one concern at a time, under the assumption that the other
concerns ‘just work’. In addition, these concerns are often separately devel-
oped and evolved . In software engineering, separation of concerns is achieved
by decomposing applications into separate entities, often called modules. This
concept is referred to as modularity.

Programming paradigms and design patterns exist to aid programmers in
achieving modularity in computer programs. For example, object-oriented pro-
gramming languages such as C++, C#, and Java support modularity through in-
heritance, while aspect-oriented [5, 12] languages such as AspectJ separate cross-
cutting concerns into aspects. Examples of crosscutting concerns are logging
and security, which tend to scatter throughout an entire application and are
hard to separate using object-oriented techniques. Design patterns aid the pro-
grammer in separating concerns as well. For example, the model-view-
controller pattern [8] separates the concerns of data presentation, data manip-
ulation, and data itself. On the architectural level, concerns can be separated
through architectural patterns. For example, Service-oriented architectures [16]
separate architectural concerns into services.

The mechanisms introduced in the previous paragraph are called composi-
tion operators. Typically, languages support only a limited amount of composi-
tion operators, while solutions to software problems (in particular with respect
to modularity) will often benefit from multiple, flexible composition operators.
While some of these shortcomings can be alleviated by using design patterns,
these patterns often require repetitious boilerplate code to implement.

Ideally, composition operators can be defined by programmers themselves.
By allowing this, programmers will always have access to the right composi-

2

Introduction 3

tion tools. The goal of this master thesis is to implement a powerful, flexible
execution framework for programmer-defined composition operators.

1.1 Background

1.1.1 Co-op

The Co-op approach attempts to address the issue of having only a limited num-
ber of composition operators in a programming language. At its core, Co-op is
a dynamically typed, object-based language with its syntax derived from Java.
Co-op only provides objects and function application (which is also a composi-
tion operation). It achieves flexibility in composition operators by reifying func-
tion applications as messages. Conceptually this is similar to languages such as
SmallTalk. By providing programmers with primitives that let them manipu-
late these messages, it allows programmers to design and implement their own
composition operators. The Co-op approach describes two types of primitives
for manipulating these messages: bindings and constraints. A binding rewrites
a message, and a constraint imposes some constraint on a pair of bindings, for
example, the order in which they are executed.

There have been several prototype implementations of the Co-op approach.
The first prototype implementation of Co-op – Co-op/I – was developed by
Havinga [11]. Co-op/I provides expressive, first-class, composable composi-
tion operators. A second prototype – Co-op/II – was developed by Te Brinke
[18]. Co-op/II builds upon the concepts of Co-op/I and improves some of the
core concepts related to message selection and constraints. It also provides ad-
ditional capabilities such as unifying method invocations and field lookups, ac-
cess to dynamic message properties, and avoidance of infinite recursion. With
these improvements, Co-op/II allows for the implementation of a wide range
of composition operators.

1.1.2 ALIA4J

In software engineering, dynamic dispatch is the process of selecting and calling
a method at run-time. Each place in the execution flow of a computer pro-

Introduction 4

gram where such method selection and calling takes place is called a dispatch
site. Most conventional languages support single dispatch. When using single
dispatch, the selection of the method that will be called is performed by using
one special argument of the method call. Usually this special argument is the
object that is the receiver of the method call. This special argument tends to
be indicated by using special syntax. Many programming languages, such as
the aforementioned C++, Java, and C#, indicate the target object by placing it
in front of the method to be called, separated by a dot. Other arguments of the
method call are not used when selecting a method.

There are, however, languages that support other forms of dispatching. Mul-
tiple dispatching [13], for example, uses not only the target object, but also one
or more of the other arguments of a method call. Aspect-oriented programming
[5, 12] lets programmers include additional behavior at dispatch sites, with-
out modifying the code at those dispatch sites. We call dispatching techniques
such as multiple dispatch and aspect-oriented programming advanced dispatch-
ing. The concepts from the Co-op approach can also be considered as a form of
advanced dispatching.

Advanced-dispatching languages share various concepts. In a related litera-
ture study, various frameworks for advanced-dispatching languages were stud-
ied. From this study we concluded that the Advanced-Dispatching Language-
Implementation Architecture (ALIA) [19] is a suitable candidate for the imple-
mentation of bindings and constraints. ALIA is a language-independent archi-
tecture that comprises a meta-model [1] of the common concepts of advanced-
dispatching languages, as well as execution environments for instances of the
meta-model. ALIA lets developers define dispatching concepts declaratively. It
allows for modularization of the implementation of the semantics of dispatch-
ing, as well as optimizations. Advanced-dispatching Language-Implementation Ar-
chitecture for Java (ALIA4J) [2] is an implementation of the ALIA architecture for
advanced-dispatching languages that extend Java.

1.2 Problem analysis

The Co-op approach, using bindings and constraints, has been shown to be suit-
able for implementing flexible composition operators [18]. This implementation

Introduction 5

was done for the Co-op/II language. Currently, development on the Co-op/III
language is in progress. This language does not yet support bindings and con-
straints, but it should do so in the future. Therefore, it should be possible to
easily integrate the binding and constraint implementation we develop for this
thesis into Co-op/III. As Co-op/III code is transformed to Java code, the imple-
mentation of the binding and constraint mechanism should also use Java.

The performance of the binding and constraint implementation is a relevant
issue, as potentially every method invocation and member access in Co-op/III
is influenced by it. In Co-op/II the evaluation of bindings and constraints are
treated as entirely separate concerns. While conceptually a good idea, imple-
menting them as such, in some cases has a significant negative performance im-
pact. For example, Te Brinke [18] describes the evaluation of a complex function
call when using multiple inheritance. Separating binding and constraint eval-
uation causes the processing of bindings to generate a lot of messages that will
be unreachable due to constraint evaluation later on. To optimize this behavior,
as well as other potential problems, a large degree of modularity is desirable.
A modular system allows for the implementation of optimizations without ne-
cessitating change in other parts of the system. These optimizations should
be implementable without requiring changes to the Co-op/III code generation
process.

Additionally, while the work by Nagy [14] and Te Brinke [18] shows that the
constraints used in Co-op/II are sufficient to implement a large range of compo-
sition operators, future research might reveal the necessity for other constraints.
The implementation of constraints should be sufficiently flexible to support (rel-
atively) easy implementation of new constraints. Similarly, the binding mecha-
nism must be flexible as well. Supporting this flexibility requires the implemen-
tation to be sufficiently expressive.

In summary, the implementation should provide:

R1: easy integration with the existing Co-op/III code base.

R2: binding and constraint semantics compatible to those found in Co-op/II.

R3: a reasonably performing implementation of bindings and constraints.

R4: the possibility to optimize the implementation of the bindings and con-
straints further, without influencing code generation.

Introduction 6

R5: the possibility to implement new types of bindings and constraints.

1.3 Approach

We will prototype two implementations of bindings and constraints. The pro-
totypes will both be implemented in Java, but one will be built using only core
Java concepts, while the second one will be developed using the ALIA4J frame-
work. Co-op/II was implemented as an interpreter in Haskell. This decision
was made because the goal of the implementation was to develop and show
the semantics of Co-op/II without being concerned with performance. Func-
tional languages such as Haskell lend themselves very well to the rapid de-
velopment of interpreters. However, interpreted code in general tends to have
(much) worse performance characteristics when compared to compiled code.
Message reification in Java can be implemented using aspect-oriented concepts.
As ALIA4J makes it easy to implement aspect-oriented concepts, we will be
using ALIA4J for message reification in both prototypes.

We will need to ensure that the semantics of the two prototype implemen-
tations are the same. To do so, we will develop a precise specification of the
semantics of bindings and constraints in Co-op/III. This specification is then
used to derive test cases for both prototypes.

One implementation will resemble the implementation of Co-op/II [18], us-
ing almost exclusively core Java concepts (the only exception is message in-
terception). The purpose of this implementation is to improve upon the im-
plementation of Co-op/II by removing unnecessary message generation, and
to provide a reference implementation of the semantics of Co-op/III bindings
and constraints. As this implementation generates a tree of messages, in the
remainder of this thesis this implementation will be referred to as the tree-based
prototype.

For the second prototype we use ALIA4J primitives to implement the bind-
ings and constraints. The concept of message manipulation through bindings
and constraints in Co-op is a form of advanced-dispatching. ALIA4J facilitates
the implementation of advanced-dispatching languages. Furthermore, it allows
for highly optimized implementation of advanced-dispatching concepts. Im-
plementing Coop/III bindings and constraints using ALIA4J might therefore

Introduction 7

provide benefits, both when considering ease of implementation and perfor-
mance. The advantage of this approach is that, since ALIA4J provides primi-
tives for ordering and composition, it should allow for a simple implementation
of bindings and constraints that is already optimized. Also, as the performance
of ALIA4J improves, so will the performance of this implementation. However,
the meta-model of ALIA4J is not expressive enough to completely implement
the semantics of bindings and constraints in Co-op/III. We will investigate what
is lacking in the ALIA4J meta-model. For the remainder of this thesis, this im-
plementation will be referred to as the ALIA4J-based prototype.

The implementations will be compared based on their code quality, exten-
sibility, and modularity. Directly comparing the performance of the implemen-
tations is unfeasible, as the implementations are executed using the interpreted
execution environment of ALIA4J. This interpreted execution environment per-
forms several extra method calls whenever the program running on top of the
execution environment performs a method call. This has a significant negative
performance impact on both prototypes. However, the impact is different for
each prototype, as it is likely that a large part of the implementation of ALIA4J
itself is not subject to this method call overhead.

1.4 Outline

The outline of the remainder of this thesis is as follows:

• Chapter 2 describes the relevant areas of the Co-op/III language. In this
chapter we also develop a detailed specification of the semantics of bind-
ings and constraints, and we show how they relate to the work performed
by Nagy [14].

• In chapter 3 we discuss the implementations of the prototypes in detail,
and elaborate the design decisions that were made.

• Chapter 4 discusses the differences between the the prototype implemen-
tations and the consequences of those differences.

• Finally, in chapter 5 we conclude the thesis and discuss the results and
future work.

2. CO-OP/III

In this chapter we describe the Co-op/III language. After giving a short over-
view of the language, we will focus on those language features relevant to our
problem analysis and solution.

Co-op/III is a programming language that syntactically resembles languag-
es such as C# and Java. Furthermore, it borrows some of its core concepts from
such languages. The language is based around the concept of classes encap-
sulating data and operations (i.e. methods), and objects, which are instances of
those classes.

Method calls and field accesses are treated as being the same in Co-op/III.
Field accesses are considered either (1) a method call without a return value,
and one parameter (setting the value of a field), or (2) a method call with a
return value and without parameters (getting the value of a field). In the future
when we refer to method calls we will mean both ‘ordinary’ method calls and
field accesses.

Method calls in Co-op are represented by message sends. Messages are sent
from a sender to a receiver. Figure 2.1 shows how a simple message is sent. Pro-
grammers do not directly access messages in Co-op, instead, messages gener-
ated by Co-op can be manipulated using bindings and constraints. Properties
of messages can be made accessible in method bodies using implicit parameters.
These messages, bindings, constraints, and implicit parameters will be elabo-
rated on in the following sections.

Co-op/III uses classes and objects, just like e.g. Java. However, the core lan-
guage is class-based, not object-oriented [21], and does not support inheritance

 Message

Sender Receiver

Figure 2.1: Simple message send.

8

Co-op/III 9

(which we consider a composition operator) as a built-in concept. There are
no global variables or methods in Co-op. Also, Co-op/III provides no access
modifiers for classes, fields or methods (e.g. protected, private, public). Every
member in a class is considered public. Classes in Co-op can have the following
members:

Variables are used to define fields, similiar to languages such as Java. Variables
can also be local to methods.

Methods are used to define operations on instances of classes, again similar to
languages such as Java.

Bindings are used to rewrite messages.

Constraints are used to provide a binary relationship between binding classes1.
For example, they can be used to provide an execution order between two
binding classes.

Variables are used to define fields. Fields in Co-op are scoped per object,
there is no concept of class fields. All variables are typed dynamically in Co-op.
The reason for this is that composition operators can change the behavior of a
Co-op class. For example, composition operators can be used to change which
methods can be called on an instance of a class. This makes static type checking
inappropriate, as information about these modified classes is not available at
compile-time. Therefore, static analysis will either be unable to guarantee type
safety, or it will disallow invoking methods that it can not determine to be avail-
able at compile-time. A variable definition in Co-op is shown in listing 2.1 on
line 2, and assigment to a variable is shown on line 5.

Method definitions in Co-op/III are similar to those in Java. They define a
method signature and body. The same scoping rules as in Java apply. Method
definitions in Co-op differ slightly from those in Java, as Co-op allows for the
definition of implicit parameters. These are parameters that are not passed explic-
itly to a method, but instead are assigned the values of message properties. The
this-keyword in Java needs to be specified as an implicit parameter in Co-op/III.
Lines 4-9 in listing 2.1 show method definitions in Co-op. Implicit parameters
are described in more detail in section 2.4.

1the difference between bindings, binding classes, and binding instances will be elaborated
in section 2.2

Co-op/III 10

Co-op supports annotations on method calls as well. Listing 2.2 shows how
method calls are annotated. These annotations become properties of messages.
As all built-in operations are method calls (and therefore messages) as well,
arithmetic operations such as +, - and * can be annotated as well.

Messages, bindings and constraints will be elaborated on in the following
sections.

1 class someClass {
2 var someVariable;
3
4 method setSomeVariable[this](someVariable) {
5 this.someVariable = someVariable;
6 }
7 method getSomeVariable[this]() {
8 return this.someVariable;
9 }

10 }

Listing 2.1: A simple class definition in Co-op/III

1 someVariable.@ParameterlessAnnotation someMethod();
2 someOtherVariable.@ParametrizedAnnotation(parameter) someOtherMethod();

Listing 2.2: Annotated method calls

2.1 Messages

In Co-op/III messages are an abstraction of the concept of method invocation.
Each method invocation in Co-op/III initially generates one message, that con-
tains information about the sender of the message (i.e. the caller of a method),
the target of the message (i.e. the receiver object, as well as the name of the called
method), the passed parameters, and a future2-like object [7] for the return value
of the called method. Table 2.1 gives an overview of common message proper-
ties.

There are no syntactical elements in Co-op/III just to handle messages, as
there is no explicit representation of messages in the language.

2In short, a future (or promise) is an object that acts as a proxy for a computation that is
not completed yet. Once the computation is complete, the object contains the result of the
computation. Futures are commonly used in asynchronous programming.

Co-op/III 11

Property Description
name Name of the called method.
target Target object of the method call.
targetType Type of the target object.
sender Source object of the method call.
senderType Type of the source object.
this Target object of the method call. This property is used to set the

this implicit parameter.
thisType Type of the target object. This property is used when a static

method call is performed.
parameters The parameter values of the method call.
result The return value of the method call.
message Annotations applied to the method call.

Table 2.1: Message properties

2.2 Bindings

Bindings are used to rewrite messages. Bindings consist of a selector and rewrite
rules. The selector is used to match a binding to a specific message. The rewrite
rules are then used to rewrite certain properties of a message, and generate a
new message with the rewritten properties.

1 binding myBinding = (mySelectorExpression) {
2 // rewrite rules
3 }

Listing 2.3: Binding syntax

A bindings is always a member of a class, and, as such, can access any
other member of that class. It is important to note that for each instance of
a class, a separate instance of a binding defined in that class exists. We call
this instance the binding instance. When we consider the definitions in list-
ing 2.4, we can distinguish between MyClass.myBinding, which is a binding
class, and myObject.myBinding, which is a binding instance. The difference is
that MyClass.myBinding refers to all instances of myBinding, while myObject
.myBinding only refers to the particular instance of myBinding that is part of
the myObject object.

1 class MyClass {
2 // other members
3 binding myBinding = (mySelectorExpression) {
4 // rewrite rules
5 }
6 }

Co-op/III 12

7
8 // an instance of MyClass
9 var myObject = MyClass.new();

Listing 2.4: Binding classes and instances

Binding instances can be activated and deactivated programmaticaly. List-
ing 2.5 shows this. By default, binding instances are not active, so after defini-
tion they have to be activated to have any effect.

1 // binding activation
2 myBinding.activate();
3
4 // binding deactivation
5 myBinding.deactivate();

Listing 2.5: Binding activation and deactivation

2.2.1 Selectors

Each binding instance uses a selector to determine to which messages it applies.
Selectors are binary expressions over the properties of messages. Selectors sup-
port the binary operations shown in table 2.2. Listing 2.6 gives an example of a
selector expression.

matching type operators lhs rhs
lazy &, | object object

normal ==, !=, <, >, <=, >= object object

annotation presence @==, @!= message annotation matching
expression

Table 2.2: Selector operators

1 binding myBinding = (name == "a" & message @== @MyAnnotation) {
2 // rewrite rules
3 }

Listing 2.6: Binding classes and instances

Selectors can also invoke methods on their containing objects. This can be
used to perform a field lookup on the containing object. Note that this will
generate a new message as well, and can potentially cause recursive method
calls.

Co-op/III 13

2.2.2 Message rewriting

Message properties are rewritten using rules. The rules can be used to either as-
sign a new value to a property, or, in the case of annotations, to add or remove
annotations. Assignments always have a message property on the left-hand
side and an expression on the right-hand side. The annotation operations al-
ways have the keyword message on the left-hand side, and an expression that
returns an annotation on the right-hand side. Examples of rewrite rules are
given in listing 2.7.

1 // assignment of a new value to a property
2 messageProperty = newValue;
3 // assignment of the value of an existing message property
4 parameters = message.result;
5
6 // adding an annotation
7 message @+= @MyAnnotation;
8 // removing an annotation
9 message @−= @MyOtherAnnotation;

Listing 2.7: Message rewrite rules

Similar to selectors, rewrite rules can call methods on the object containing
the binding. The same caveat as with method calls in selectors applies.

2.2.3 Default binding

The default binding is used to perform the final step in delivering a message to
its target object. The execution of the default binding for a given message causes
the method represented by that message to be executed. The default binding is
applicable whenever the current message represents a method that exists on an
existing object3. The default binding cannot be disabled, and is always active.

3Te Brinke [18] elaborates on this in more detail. Summarizing, the default binding selector
can be seen as (1) a selector that always is true, but can potentially fail. Essentially this means
that there exists only one default binding. The other option (2) is that for each existing method
a special selector exists, which only matches on messages that represent that method. There
would be a default binding for every method in the program. For us, this difference does not
matter, as their effect is identical.

Co-op/III 14

2.3 Constraints

Constraints are used to express the relations between binding classes that ap-
ply to the same message. The constraints used in Co-op/III are based on the
constraints as implemented in Co-op/II [18]. The constraints in Co-op/II are in
turn based on the model of constraints as presented by Nagy [14].

As the constraints of Co-op/III are derived from Nagy’s model for con-
straints at shared join points, we will first discuss Nagy’s model. Afterwards,
the model used by Co-op/III will be discussed, and differences between the
models will be elaborated. It is interesting to see how these models are differ-
ent, and what the consequences of these differences are.

2.3.1 Nagy’s model of constraints

In Nagy’s model, constraints apply to actions. Actions represent behavior that
is executed at a join point [12]. Nagy distinguishes between action presence and
action execution. An action is present at a join point whenever, before the evalu-
ation of any constraints, its behavior will be executed. An action is said to have
been executed whenever the behavior it represents has actually been executed.
Using constraints, both the presence and execution of actions can be controlled.

Whenever an action in Nagy’s model is executed, it may have a Boolean
result value. These result values are independent of the return type of the action,
and indicate if the execution of an action was successful. In this discussion we
are only concerned with this result value, and not the return value of an action.
When an action does not have a Boolean result value, Nagy considers the result
to be void. An action that has no result (i.e. the result of the funtion is void) is
considered to have been executed4.

Nagy defines three types of constraints:

• Structural constraints specify what actions can be present at a shared join
point.

• Ordering constraints specify a partial order of execution of actions.
4The absence of a result has some consequences for constraints, which will be discussed later

on in this subsection.

Co-op/III 15

• Control constraints specify conditional execution of actions.

Ordering and control constraints are also called behavioral constraints. They are
similar to the constraint types in Co-op. As Co-op does not support structural
constraints, we will not discuss those further.

Nagy’s model defines one ordering constraint, the pre-constraint. This con-
straint is used to specify a partial ordering between actions. The semantics are
as follows:

pre(x, y) – Actions x and y are executed in an order such that action y is never
executed before action x. Therefore, action y must be executed after action
x has been executed. This constraint is not transitive.

Control constraints in Nagy’s model have the following form: constraint
(condition, constrained action). The condition-part of the constraint is represented
by either a single action, or a Boolean expression composed of actions and log-
ical connectors (AND, OR and NOT). When using a Boolean expression, each
action in it has to have a result value of either true or false, i.e. methods without
a result are not allowed in such expressions. Control constraints use the result
values of the actions specified in the condition to control the execution of the con-
strained action. It is important to note that this automatically specifies a partial
ordering for the execution of actions as well, as the result values of the actions
in the condition must be known (and therefore the actions must be executed)
before the constrained action can be executed.

Nagy defines two control constraints, the cond and the skip-constraint:

cond(x, y) - Action y can only be executed if the result value of expression x is
true. For this constraint a result value of void is considered to be false, i.e.
when the result of x is void, y will not be executed.

skip(x, y, R) - The execution of action y is skipped, and action y is marked as
executed with result value R, if the result of expression x is true. R substi-
tutes the original return value of y only if y is skipped. This constraint is
not transitive.

The ordering and control constraints introduced by Nagy represent hard con-

Co-op/III 16

straints. This means that, whenever an action that is part of the condition5 is not
present at the join point, the execution of the constrained action is not allowed.
For example, consider a constraint pre(x, y), where x and y are actions. Then, if
action x is not present at the join point, the execution of action y is prohibited.
Conversely, soft constraints allow for the absence of an action in the condition
of a constraint. To support soft constraints, Nagy defines soft converter functions.
These functions substitute a return value whenever an action is absent. There
are three soft converter functions6:

%(action) - if action is absent, the result value void is substituted. Short notation:
%action.

%t(action) - if action is absent, the result value true is substituted.

%f(action) - if action is absent, the result value false is substituted.

As an example, consider the constraint pre(%x, y), where x and y are actions.
Now, if action x is not present at the join point, the soft converter function will
produce a void result and action x will be considered as executed anyway. Con-
sequently, action y is allowed to execute as well. Note that whether a constraint
is hard or soft, presence of the constrained action is not required.

When dealing with multiple constraints that apply to the same action, Nagy
states that certain precedence rules must be followed. The constraints should
be evaluated in the order pre, skip, cond, but it is not made explicit why this
ordering is important. However, it can be partially deduced from the semantics
of the constraints.

Let us assume that the constraints are hard. Futhermore, we know that the
cond and skip constraints require the execution of actions in the condition before
the execution of the constrained action, and thus they specify a partial ordering.

Consider the ordering of the hard skip, pre and cond-constraints. The impor-
tant difference is that the cond-constraint can actually prevent an action from
having a result value, while the skip-constraint ensures that there is a result
value, even when the constrained action is not actually executed. The implication

5We consider the first argument of the pre-constraint to be the condition as well, for the
purpose of this discussion.

6Nagy also defines a hard converter function (#), but as constraints are hard by default in
Nagy’s model, it is not used explicitly.

Co-op/III 17

of this is that, if we evaluate cond-constraints before skip-constraints, the cond-
constraint can ‘violate’ the hardness of the skip-constraint by removing one or
more of the actions in its condition. For example, if we have the constraints
cond(a,b) and skip(b,c,F)7, then, if a evaluates to false, b will not be executed at
all. When this happens, b will have no result value, and the skip will fail (i.e.
c will not be executed and have no result value). When evaluating skip before
cond, this will not be an issue, as a skip will always provide a result value for
its constrained action. When a cond-constraint does not remove its constrained
action, it can be executed before a skip constraint without any problem. The rea-
soning for the pre and cond constraints is the same. However, as a skip or pre can
always go before cond, and cond only sometimes before a skip or pre, evaluating
skip and pre before cond is the most convenient solution.

It is unclear why the pre constraint has to be evaluated first. Nagy does
not provide a justification for this choice. The algorithms provided by Nagy
simply evaluate the pre-constraints first, but there is no reason why they cannot
be evaluated last.

In summary, there are two reasons for needing precedence rules for constraints
in Nagy’s model:

N1: Both the ordering and control constraints specify a partial ordering of ac-
tions, and the control constraints require this ordering.

N2: The fact that the constraints in the Nagy model are hard, and the cond-
constraints can prevent a result value from being generated.

When we also take into consideration soft constraints, the issue with cond
described above can be resolved by using either the %t or %f soft converter
functions in the pre and skip-constraints. When cond-constraints then remove
the presence of actions, their results will be replaced by either true or false, re-
spectively, when used in a condition. Note however, that this may have conse-
quences for the semantics of a program.

7We use T and F to represent true and false, respectively.

Co-op/III 18

2.3.2 Co-op/III constraints

Now we first discuss the semantics of Co-op/III constraints, and relate them
to Nagy’s model. Then we will briefly discuss the syntax of constraints in Co-
op/III.

Semantics

Each constraint in Co-op/III expresses a binary relation between binding classes.
Co-op provides two categories of constraints: ordering and control constraints.
As Co-op/III constraints apply to entire binding classes, and not individual in-
stances, we consider the actions here to represent entire binding classes. In con-
trast to Nagy’s model, the actions in the Co-op model do not have a result value.
In Co-op, we do not need this special result value for actions. As discussed by Te
Brinke [18], binding presence and success in Co-op are closely related, and we
can consider them identical for the purpose of constraints in Co-op. As a conse-
quence of this, control constraints influence only the application of actions, but
do not impose an ordering on the actions, as they do not require the condition to
have executed to determine a result value. This is in contrast to Nagy’s model,
where control constraints impose a partial ordering as well.

We now discuss the semantics of Co-op/III constraints in detail. We will
use the Greek letters α, β, and γ to refer to binding instances, and the Roman
lettersA, B, and C to refer to the binding classes of these instances, respectively.
Furthermore, unless we specify otherwise, we assume every binding instance of
a binding class is applicable. Note that, as constraints apply to binding classes,
and not to specific binding instances, there is no need for a distinction between
constraint classes and instances.

Co-op/III provides the following ordering constraints:

primitive pre(A, B) (short notation: p_pre) orders the application of binding in-
stances in such a way that all β ∈ B are applied after all α ∈ A are applied.
This constraint is not transitive. Assume we have defined the constraints
p_pre(A, B) and p_pre(B, C). Then if α, β, and γ are all applicable, the ap-
plication order of the bindings would be α → β → γ. However, if no
binding instance β ∈ B is applicable, then the application order of α and

Co-op/III 19

γ is undefined. It could be either α → γ or γ → α. The semantics of this
constraint are very similar to the soft pre-constraint of the Nagy model.

pre(A, B) has semantics similar to p_pre(A, B), but is transitive. Assume we have
defined the constraints pre(A, B) and pre(B, C). Then if α, β, and γ are all
applicable, the semantics are the same as those of p_pre. However, if no
binding β is applicable, the application order is guaranteed to be α→ γ.

Control constraints in Co-op/III take the same form as control constraints in
Nagy’s model. They have the form constraint(condition, constrained action). How-
ever, the condition in a Co-op/III is always a single action, and the condition
is evaluated based on the presence of that action. This is in contrast to Nagy’s
control constraints, where a condition can be a Boolean expression. While this
makes the constraint mechanism of Co-op/III less expressive, Te Brinke [18] has
shown that a large class of well-known composition operators can be expressed
using these constraints. Co-op/III provides the following control constraints:

cond(A, B) only allows the application of β ∈ B when ∃α ∈ A such that α is
applicable. This constraint is transitive by definition.

primitive skip(A, B) (short notation: p_skip) only allows the application of β ∈
B when @α ∈ A such that α is applicable. This constraint is not transitive.
Assume we have defined constraints p_skip(A, B) and p_skip(B, C), then α
will be applied, β will be skipped (due to the first constraint), and γ will be
applied, because the condition of the second constraint is no longer satis-
fied. The semantics of this constraint are very similar to the skip-constraint
of the Nagy model.

skip(A, B) has semantics similar to p_skip(A, B), but is transitive. Assume we
have defined constraints skip(A, B) and skip(B, C), then α will be applied,
and both β and γ will be skipped.

In Co-op/III we use the soft pre-constraint. It is not possible to express the
Co-op/III skip and cond-constraints in Nagy’s terms of hard and soft, as the se-
mantics of these constraints are different. Co-op/III constraints depend on the
presence of actions, and not the execution result.

Constraints of the same type are always evaluated in topological order. For
example, if we declare (in any order) constraints p_skip(B, C) and p_skip(A, B),

Co-op/III 20

then the constraint p_skip(A, B) will be evaluated before p_skip(B, C), because
the condition of the latter constraint depends on the evaluation of the former.

At the end of subsection 2.3.1 we discussed the two reasons why Nagy’s
model requires a certain order of precedence for its constraints. In Co-op/III,
the first reason (N1) is not a factor, as execution order is only specified by the or-
dering constraint. The control constraints merely depend on binding presence,
and not on a result of executing the binding. Similarly, the second reason (N2)
is no factor either, as the conditions of control constraints in Co-op/III evaluate
if a binding is present, and not its result value.

As ordering and control are entirely decoupled in Co-op/III, the evaluation
of precedence constraints can take place before, in-between, and after the eval-
uation of control constraints, without any semantic difference. Therefore we do
not explicitly define when evaluation of precedence rules has to take place.

Syntax

Constraints use the syntax as shown in listing 2.8. In this listing, constraintType
must be one of the constraints discussed in subsection 2.3.2.

1 constraint myConstraint = constraintType(myBindingClass, myOtherBindingClass);

Listing 2.8: Constraint syntax

Constraints, analogous to bindings, can be activated and deactivated. The
syntax is similar, as listing 2.9 shows. In general, constraints should be acti-
vated before the bindings they constrain are activated, as unconstrained bind-
ings might have undesirable side-effects.

1 // constraint activation
2 myConstraint.activate();
3
4 // constraint deactivation
5 myConstraint.deactivate();

Listing 2.9: Constraint activation and deactivation

Co-op/III 21

2.4 Implicit parameters

Implicit parameters are parameters that are passed implicitly to a method. An
example of an implicit parameter is the this variable, that is commonly used in
programming languages to refer to the object enclosing the current method. In
Co-op/III, implicit parameters are used to access message properties. All used
implicit parameters in Co-op/III must be defined in the method definition. List-
ing 2.10 shows the definition of a method addition with the implicit parameter
this.

1 method addition[this](var number){
2 //method body
3 }

Listing 2.10: Implicit parameter definition

Implicit parameters have the same scope and use as explicit parameters. Listing
2.11 shows how the addition method uses both its explicit and implicit param-
eter. As can be seen, from the point of view of the method body, there is no
difference between using an explicit or implicit parameter.

1 method addition[this](var number){
2 this.value = this.value + number.value;
3 return this.value;
4 }

Listing 2.11: Implicit parameter usage

The compiler will check if every implicit parameter used in a method body is
actually defined. If this is not the case, a compile-time error will be generated.

When a method declares the use of an implicit parameter, the value of the
message property with the same name as the implicit parameter is bound to
that parameter. No explicit argument is provided for the implicit parameter.
The caller of a method does not explicitly provide a value for the parameter.
Listing 2.12 shows how a callsite of the method addition on some object could
look.

1 var result = someInteger.addition(3);

Listing 2.12: Calling the addition method

When an implicit parameter is defined that does not refer to a message prop-
erty, and thus no value can be assigned to that implicit parameter, a run-time
exception is thrown (as this can only be determined at runtime).

3. IMPLEMENTATION

In this chapter, ALIA4J and the two prototypes of binding and constraint im-
plementations that we developed are described in detail.

We can implement the prototypes entirely separately, or have them imple-
ment a common interface. The advantage of using separate implementations
is that each implementation can be as expressive as possible. Using a common
interface, it is easier to determine if the semantics of the implementations are
equivalent. As the latter is one of our goals, we decide that the prototypes share
a common interface. Test applications are programmed only against this in-
terface, the specific prototype implementation is hidden from the application.
Furthermore, the prototypes share some functionality, such as the classes repre-
senting messages and selector expressions. The dependencies between applica-
tions and the prototypes are shown in figure 3.1.

The two prototypes take different approaches. The tree-based prototype re-
sembles the approach taken in Co-op/II [18] by generating a tree of messages,
recursively applying bindings and constraints to an initially generated message.
This leads to a tree with messages that should be deliverable to objects at its
leaves. These leaves are then ’executed’ by the default binding.

The ALIA4J-based protoype is very close to the conceptual model of Co-
op/III, where each applied binding generates a new message dispatch. It uses
ALIA4J attachments for its implementation of bindings, and uses the ordering
and composition mechanisms of ALIA4J to implement constraints.

The rest of this chapter is structured as follows: in section 3.1 we give a short
overview of ALIA4J. In section 3.2 we describe the modules that are shared by
both prototypes, and the interface both prototypes implement. Finally, in sec-
tions ?? and ?? we discuss the tree-based and ALIA4J-based prototypes respec-
tively.

22

Implementation 23

Runtime

Public API / Common prototype
functionality

TreePrototype AliaPrototype

Test application

Application Classes

Figure 3.1: Overview of dependencies between prototypes and ap-
plications

3.1 ALIA4J

The Advanced-dispatching Language Implementation Architecture for Java (ALIA4J)
approach [2] provides a meta-model for dispatching as a high-level intermedi-
ate language. It also supplies a framework for execution environments for the
intermediate representation, and a visual debugger for programs that use the
advanced-dispatching meta-model of ALIA4J.

ALIA4J’s metamodel is captured in the Language-Independent Advanced-
dispatching Meta-model (LIAM). The entities in LIAM capture the core con-
cepts underlying various dispatching mechanisms in a fine-grained manner.
Figure 3.2 gives an overview of the meta-model entities and their relations.
Most of the entities in this meta-model are abstract Java classes that can be re-
fined. Refinement of these entities is often necessary when mapping a language
to LIAM. When an appropriate default is not available, refinement is required
to define language-specific semantics. The only exceptions are the Attachment,
Specialization and Predicate entities, since their function is only to group other
meta-model entities together. The meta-model entities fulfill the following roles:

Pattern Patterns are used to quantify over the signatures of dispatch sites1.

1Dispatch sites are points in the execution flow of a program where a dispatch is performed.
In object-oriented languages this happens when a method on an object is invoked.

Implementation 24

Figure 3.2: The LIAM meta-model of advanced dispatching.

Context The context entity models runtime context that is available during dis-
patch, such as argument values or the receiver object.

Atomic Predicate Atomic predicates can be used to test the current context dur-
ing a dispatch. Atomic predicates are parametrized using Context entities.

Predicate Predicates are used to compose multiple atomic predicates together.
They are trees where the inner nodes are conjunctions or disjunctions, and
the leaves are (possibly negated) atomic predicates. The tree represents a
Boolean formula in negation normal form.

Action After evaluating all predicates at a dispatch, the Action entity is used to
define the actions that must be performed at a dispatch, such as calling a
method or throwing an exception.

Specialization Specializations are used to select specific dispatches by associ-
ating Patterns with Predicates. In addition a specialization has a list of
Context entities. These Context entities determine which runtime values
are to be exposed to the Actions at the selected dispatches.

Attachment and Schedule Information Specializations are associated with an
Action by the Attachment meta-model entity. Schedule information deter-
mines when the Action should be executed in relation to the dispatch (i.e.
before, after, around).

Precedence Rule and Composition Rule The Precedence Rule is used to de-
fine a partial ordering between Attachments, to be able to control the
execution order of Actions at a shared dispatch. The Composition Rule

Implementation 25

defines how Attachments should be composed at a shared dispatch. This
can be used to define for example mutual exclusion or overriding.

ALIA4J provides a framework for execution environments, Framework for Im-
plementing Advanced-Dispatching Languages (FIAL), that defines workflows
that are common to all execution environments that can execute LIAM models.
Based on this framework, ALIA4J provides the following execution environ-
ments:

NOIRIn NOIRIn (Non-Optimizing Interpretation-based Reference Implemen-
tation) is an interpreter for programs using LIAM models. It replaces ev-
ery dispatch site in the executing program with an invocation to a callback
that evaluates the appropriate attachments.

SiRin SiRIn (Site-based Reference Implementation) is a portable compile-time
execution environment that inserts dispatch logic at each dispatch site.

SteamloomALIA is an extension of the Jikes Research Virtual Machine that rei-
fies dispatches during Just-In-Time compilation. It does not always gener-
ate bytecode at each dispatch, but instead it can directly generate (poten-
tially optimized) machine code using the Jikes RVM JIT compiler.

The NOIRIn execution environment is usually the most up-to-date execution
environment for ALIA4J. It is the execution framework we use for the develop-
ment of the prototypes.

3.2 Common prototype features

While both prototypes take a different approach in their implementation, they
share a common interface for the Co-op/III language elements. Also, the pro-
totypes share some parts of the implementation. The interfaces and shared
elements are grouped together in the common package of the prototype. This
section discusses the design goals and implementation of the common package.

Implementation 26

3.2.1 Design goals

While we do not implement actual code generation from Co-op/III code to Java
code, we do want to make such generation relatively easy. Therefore, the first
design goal for the package is to make mapping Co-op/III language elements
to the prototypes easy.

The second design goal is to support testing and comparing the semantics
of the implementations, to support our problem statement.

The third design goal of this package is to maximize the reuse of code when
possible, while still providing flexibility in the prototype implementations.

3.2.2 Shared interfaces

To support the first two design goals, we provide a set of shared interfaces.
They mainly serve to define and create the bindings and constraints as described
in chapter 2, while hiding the prototype implementations. The goal is to ensure
that when generating code or creating test cases, no knowledge about these
implementations is needed.

This goal is achieved by developing interfaces for operating the bindings
and constraints, as well as interfaces for factories [8] to obtain implementations
of the binding and constraint interfaces. The bindings, constraints, and their fac-
tories are contained in the subpackages common.bindings and common.constraints.

Bindings and the binding factory

To define an appropriate interface for bindings, we have to consider the oper-
ations that are applied to bindings from a Co-op/III program. From chapter 2
we know that a binding definition consists of the following:

• a selector expression;

• a set of rewrite rules.

Furthermore, once defined, bindings support the following operations:

Implementation 27

• activate;

• deactivate.

Once a binding is defined, the selector expression and rewrite rules cannot be
modified anymore. Furthermore, a binding needs both a selector and a set of
rewrite rules to be in a consistent state. This makes them likely candidates as
parameters for the constructor of a binding. As interfaces in Java do not support
the definition of constructors [10], we cannot guarantee that a selector expres-
sion is provided when directly creating a binding instance. A unified way to
provide a selector expression and rewrite rules must be enabled in a different
manner. For the selector expression, we decided to make this a parameter for
the factory method to create a binding. We will discuss this in a moment. For
the rewrite rules, we moved these to the factory method as well. The rewrite
rules can be nicely expressed using a Java Map. The keys of the Map represent
the properties of the message that are to be rewritten, and the values are the ex-
pressions for the new values of the properties. However, providing a method
that takes a Map of rewrite rules requires the use of some unwieldy Java syntax.
Modifying the rewrite rules repeatedly to develop test cases proved to be rather
error-prone, so we decided to also add a method to add a single rewrite rule to
our interface for bindings. The activate and deactivate operations are candidates
for the interface as well. As activate and deactive are only invoked on existing
instances of bindings, they are added to the binding interface. The interface for
bindings can be seen in listing 3.1.

1 public interface Binding {
2 public Binding activate();
3 public Binding deactivate();
4 public Binding addRewriteRule(final String property,
5 final UnaryExpression newValue);
6 }

Listing 3.1: The Binding interface.

Note that each operation returns an instance of Binding. Implementations of this
interface must return this (i.e. the binding that was modified by the operation).
This technique is called fluent interfaces [6]. We also use fluent interfaces for the
constraint-interface and messages later on. Fluent interfaces lets programmers
(or code generators) write more concise and elegant code. An example of it can
be seen in listing 3.2

1 // arguments omitted for brevity

Implementation 28

2)
3 .addRewriteRule("name", new ObjectConstantExpression("after"))
4 .addRewriteRule("target", new ObjectConstantExpression(receiver))
5 .activate();

Listing 3.2: The fluent Binding interface in action

The implementation of the BindingFactory interface is responsible for the cre-
ation of new bindings. In addition, it provides access to the default binding. The
BindingFactory interface is shown in listing 3.3.

1 public interface BindingFactory {
2 public Binding getDefaultBinding();
3 public Binding createRewriteBinding(
4 final String name,
5 final BinaryExpression selector,
6 final CoopObject containingObject);
7 public Binding createRewriteBinding(
8 final String name,
9 final BinaryExpression selector,

10 final Map<String, UnaryExpression> rewriteRules,
11 final CoopObject containingObject);
12 }

Listing 3.3: The BindingFactory interface

As described in chapter 2, binding instances are part of a binding class. The
name argument that is provided is the name of this binding class. As discussed
earlier, the selector expression is passed as an argument as well. Furthermore,
binding instances often require access to the object that contains them. The con-
tainingObject argument is used to provide a reference to this containing object
to the binding instance.

The common.bindings package also contains a class to detect2 infinite recur-
sion. It maintains a stack of messages currently being processed, and generates
a notification whenever a message is generated that was already on the stack.
Such an event indicates a likely case of possibly infinite recursion. Prototype
implementations can determine what to do with such an event, for example,
they can decide to warn the programmer, or stop processing of messages for
the specific method call that generated the initial message.

2It also supports recursion avoidance.

Implementation 29

Constraints and the constraint factory

The motivation for the Constraint interface is largely the same as those for bind-
ings. Again we consider which operations we need to support. Constraints
always operate on two binding classes, and these binding classes are supplied
to a constraint when it is defined. As such, the creation of constraints is best
facilitated by a factory. The only operations supported by constraints are simi-
lar to that of a binding, i.e. activate and deactivate. This makes the interface for
constraints very simple, as listing 3.4 shows.

1 public interface Constraint {
2 public Constraint activate();
3 public Constraint deactivate();
4 }

Listing 3.4: The Constraint interface

Co-op/III supports 5 types of constraints, and each of these constraints requires
a factory method. The ConstraintFactory-interface is shown in listing 3.5. Each
factory method refers to the binding classes that it constrains by name.

1 public Constraint createCondConstraint(
2 final String prerequisiteBinding,
3 final String conditionalBinding);
4 public Constraint createPrimitivePreConstraint(
5 final String preceedingBinding,
6 final String preceededBinding);
7 public Constraint createPreConstraint(
8 final String preceedingBinding,
9 final String preceededBinding);

10 public Constraint createPrimitiveSkipConstraint(
11 final String prerequisiteBinding,
12 final String skippableBinding);
13 public Constraint createSkipConstraint(
14 final String prerequisiteBinding,
15 final String skippableBinding);
16 }

Listing 3.5: The ConstraintFactory interface

3.2.3 Shared functionality

Aside from the common interfaces, the prototypes share functionality as well.
The CoopObject class is necessary to implement the dynamic typing in Co-
op/III. The classes in the common.expressions package implement selector ex-
pressions. The classes in the common.messaging package implement the message

Implementation 30

interception mechanism and Co-op/III messages. Finally, the common.graph
package provides the implementation of a directed graph and some operations
on such graphs that are used by both prototype implementations.

The CoopObject class

The CoopObject class (contained in the common package) is used to simulate dy-
namic typing in Co-op/III. The Java language is statically typed [10]. However,
by ‘abusing’ the inheritance mechanism in Java, and using the fact that we use
code generation3, we can emulate dynamic typing.

As a statically typed language, Java needs to know at compile-time which
methods can be called on a certain type. As discussed in chapter 2, Co-op/III
lets programmers modify the methods that can be called on a type at runtime.
To overcome this incompatibility, we introduce the CoopObject class. For a
given Co-op/III program, this class contains a stub method for every method
that is called by said program. These stub methods throw a runtime exception
when invoked.

Now, by having all classes extend the CoopObject class, overriding just the
methods they implement, we can emulate dynamic typing. Listing 3.6 gives
an example of this concept. This approach cannot be used to emulate access to
instance fields in a dynamic language (as they cannot be overridden). However,
as we discussed in chapter 2, we always access instance fields through getters
and setters, so this is not an issue. It is now possible to call any method defined
in CoopObject on instances of SomeClass and SomeOtherClass, without getting
compile-time errors. At runtime, when a class does not actually implement the
method, a runtime exception gets thrown and the program will terminate.

1 // CoopObject.java
2 public class CoopObject {
3 // stub method
4 public CoopObject someMethod() {
5 throw new RuntimeException("Method not implemented");
6 }
7
8 // stub method
9 public CoopObject someOtherMethod() {

10 throw new RuntimeException("Method not implemented");
11 }

3The prototypes described in this thesis do not actually use code generation, so some manual
labor is necessary to achieve the same effect.

Implementation 31

12 }
13
14 // SomeClass.java
15 public class SomeClass extends CoopObject {
16 public CoopObject someMethod() {
17 // actual implementation
18 }
19 // someOtherMethod() is not implemented here!
20 }
21
22 // SomeOtherClass.java
23 public class SomeOtherClass extends CoopObject {
24 // someMethod() is not implemented here!
25 public CoopObject someOtherMethod() {
26 // actual implementation
27 }
28 }

Listing 3.6: Emulating dynamic typing using the CoopObject class

Expressions

The common.expressions package contains all classes necessary to define selector
expressions. Selector expressions are binary expressions that are used to select
messages.

We implemented the selector expressions as trees. Each inner node in the
tree is a binary node (i.e. it has two children). Binary nodes represent the op-
erators as discussed in subsection 2.2.1. The leaf nodes of the tree represent
operands: either message properties or unary expressions (i.e. a constant prim-
itive or composite value, a field lookup, or a message property lookup). Listing
3.7 gives an example of an expression definition.

1 // this represents the following Co−op/III selector expression:
2 // name == m && targetType == ReceiverA
3 Expression ex =
4 new AndExpression(
5 new EqualsExpression(
6 new MessagePropertyLookupExpression("name"),
7 new ObjectConstantExpression("m")),
8 new EqualsExpression(
9 new MessagePropertyLookupExpression("targetType"),

10 new ObjectConstantExpression(ReceiverA.class)));

Listing 3.7: Selector expression definition

Selector expressions are consumed by the prototypes, and the prototypes
need a way to evaluate these expressions. Each binary expression implements

Implementation 32

the BinaryExpression interface (Listing 3.8). The evaluate-method defined by this
interface requires the implementor to apply the operator represented by the
binary node to its subexpressions and return the TernaryValue result.

1 public interface BinaryExpression extends VisitableExpression {
2 public TernaryValue evaluate(Message message);
3 }

Listing 3.8: The BinaryExpression interface

Similarly, each unary expression implements the UnaryExpression interface
(Listing 3.9). The getValue-method of this method requires the implementor to
return the value encapsulated by the node.

1 public interface UnaryExpression extends VisitableExpression {
2 public CoopObject getValue(Message message);
3 }

Listing 3.9: The UnaryExpression interface

The prototypes might need to apply certain operations (such as transforma-
tions) to the expression tree. To support this, the tree implementation supports
the visitor pattern [8] through the VisitableExpression interface.

Most of these nodes represent the operators that can be used in expressions.
Important to note are that there are two types of nodes to perform method in-
vocations:

MethodInvocation can perform a non-reflective method invocation. To do so,
an anonymous instance of this abstract class has to be created, and im-
plement the getValue() method to non-reflectively call the method on the
containing object. By doing so, a new message will be generated, as dis-
cussed in chapter 2.

ReflectiveMedhodInvocationExpression can perform a reflective method in-
vocation on the object containing the binding instance. By performing a
reflective method invocation, no message will be generated (as ALIA4J
does not intercept reflective method calls).

UnaryExpressions are also used by the message rewrite rules to perform field
lookups and property lookups when rewriting messages.

Implementation 33

«interface»
Expression

+accept(in visitor : ExpressionVisitor)

«interface»
VisitableExpression

+getContainingObject() : Object
+getValue() : Object

UnaryExpression

+getInstance() : EmptyArrayExpression

EmptyArrayExpression

+getValue(in message : Message) : Object
+MessagePropertyLookupExpressoin(in property : String)

MessagePropertyLookupExpression

+evaluate(in message : Message) : bool

«interface»
BinaryExpression

+getLhs() : MessagePropertyLookupExpression
+getRhs() : UnaryExpression

ComparisonExpression
+getLhs() : BinaryExpression
+getRhs() : BinaryExpression

LogicExpression

OrExpression AndExpression

EqualsExpression NotEqualsExpression

LessThanExpressionGreaterOrEqualExpression LessOrEqualExpression

GreaterThanExpression

+getInstance() : NullExpression

NullExpression

MethodInvocationExpressionObjectArrayExpression ObjectConstantExpression

ReflectiveMethodInvocationExpression

Figure 3.3: Expression class hierarchy.

Implementation 34

Messages and message handling

The common.messaging package contains the Message class, used to represent
messages, as well as the MessageGenerator class and MessageHandler interface
that are used to generate the messages.

The Message class uses a Map to implement message properties. It provides
methods to retrieve the value of a property, to rewrite properties, and to remove
properties. Adding a property to a message is done by performing a rewrite on
a non-existant property.

The interface for the Message class is shown in listing 3.10. Note that the in-
terface is fluent again. Also, instances of message are immutable. The message
class has a private constructor. To create a new message, the empty message is
‘rewritten’, resulting in a new message with the desired properties. An example
of message creation is shown in listing 3.11.

1 public final class Message {
2 // retrieve the empty message
3 public static final Message empty();
4
5 public Object readProperty(final String name);
6 public Message rewriteProperty(final String name, final Object newValue);
7 public Message removeProperty(final String name);
8
9 public boolean hasProperty(final String name);

10 public Map<String,Object> getProperties();
11 }

Listing 3.10: The Message class

1 // create a message with the properties ’name=m’ and ’targetType=SomeClass’
2 Message myMessage = Message.empty()
3 .rewriteProperty("name", "m")
4 .rewriteProperty("targetType", SomeClass.class);

Listing 3.11: Message creation

1 public interface MessageHandler {
2 public void handle(Message message);
3 }

Listing 3.12: Message handler interface

Message creation is only performed by an instance of the MessageGenerator
class. The purpose of this class is to perform message reification. It intercepts
every method call to instances of CoopObject and its subtypes. For each method

Implementation 35

call, it creates an instance of the Message class with the properties as discussed
in section 2.1.

For each method call, an empty ResultWrapper object is created and set as the
result property of the message. The MessageGenerator maintains a reference to
this ResultWrapper object. This is necessary to be able to return the result of the
method call to the caller when the message has been processed.

The MessageGenerator passes the message on to the handle method of the Mes-
sageHandler implementation that was passed to the MessageGenerator when it
was constructed. The MessageHandler interface is shown in listing 3.12. The
MessageHandler then further processes the message. Once the MessageHandler is
done processing the message, it will return, and the ResultWrapper will contain
the final return value of the method call. This return value is then returned to
the caller.

In the prototype this interception is done using an ALIA4J attachment (see
section 3.1 for details). In this case the choice for ALIA4J for message reification
was done out of convenience: ALIA4J is suitable for the task, and we are already
using it for one of our prototype implementations. Message reification could
also be performed using other tools or frameworks, such as AspectJ [20]. A
more mature framework, that is not performing interpretation, could provide
performance benefits.

Graphs

The common.graph package provides the implementation of a directed graph.
The graph package supports a graph with vertices containing Java objects, and
both labeled and unlabeled edges. It also supports the calculation of the transi-
tive closure of a graph, using the Floyd-Warshall algorithm [4].

3.3 Tree-based prototype

The tree-based prototype exclusively uses Java constructs to implement bind-
ings and constraints. It does so by, for every method call, generate a tree of
messages. This tree is manipulated using implementations of the visitor pat-

Implementation 36

Node<T>

+accept(inout visitor : MessageNodeVisitor)
+MessageNode(inout value : Message)

MessageNode

+accept(inout visitor : MessageNodeVisitor)

RewriteBindingNode

+accept(inout accept : MessageNodeVisitor)

DefaultBindingNode

+visit(inout node : RewriteBindingNode)
+visit(inout node : DefaultBindingNode)

MessageNodeVisitor

+visit(inout node : RewriteBindingNode)
+visit(inout node : DefaultBindingNode)

DefaultBindingVisitor

+visit(inout node : RewriteBindingNode)
+visit(inout node : DefaultBindingNode)

BindingAndConstraintVisitor

Figure 3.4: treeprototype.tree package class hierarchy

tern [8]. Using this approach, the binding and constraint semantics as described
in chapter 2 are implemented. The remainder of this section discusses the im-
plementation details of this protoype, as well as the design decisions that were
made.

3.3.1 Overview of message processing in the tree-based proto-

type

The tree used by this prototype is implemented in the treeprototype.tree package.
The class hierarchy for the most important classes (with their most important
methods) in the tree package is shown in figure 3.4.

Every node in the tree encapsulates one message. RewriteBindingNodes rep-
resent messages that still have to be rewritten, and DefaultBindingNodes repre-
sent messages that can be delivered to a receiver (i.e. a subtype of CoopObject

Implementation 37

that has an implementation of the appropriate method). The root node and in-
termediate nodes of a tree are always RewriteBindingNodes, and the leaves of the
tree are usually DefaultBindingNodes4.

Initially, a message tree consists of only one RewriteBindingNode. This initial
node is generated by the TreeMessageHandler, which will be discussed shortly.
This single node is visited by the BindingAndConstraintVisitor. Whenever this
visitor encounters a RewriteBindingNode, it applies the applicable constraints
and bindings, creating new child nodes. It then visits each of these child nodes
depth-first, eventually generating a tree with the properties mentioned above
(intermediate RewriteBindingNodes, and DefaultBindingNodes at the leaves). Once
this process is completed, an instance of the DefaultBindingVisitor visits the tree.
When this visitor encounters a RewriteBindingNode, it simply visits the children
of said node. When it encounters a DefaultBindingNode, it delivers the message
by reflectively invoking the method that is represented by the message. It does
so for all DefaultBindingNodes in the tree, in depth-first order. Figure 3.5 illus-
trates this process.

Details about how the BindingAndConstraintVisitor exactly interacts with the
classes of the treeprototype.bindings and treeprototype.constraints packages is dis-
cussed in subsections

It is possible to implement other visitors, for example, to generate a graph-
ical representation of the message tree for debugging purposes. Supporting
new node types is also possible, by implementing a new subclass of MessageN-
ode. Furthermore, a new visitor needs to be defined for the new node type.
This requires creating a new subclass of MessageNodeVisitor, as well as adding
a new visit(..) method to MessageNodeVisitor and all its subclasses. As can be
seen, adding a new node type involves modifying several existing classes, be-
sides adding new subclasses. This is a known downside of the visitor pattern
[8]. However, adding new node types is expected to happen only on very rare
occasions, and therefore we consider this trade-off acceptable.

4The exception being when a message ends up matching no selector expressions of a rewrite
binding, and cannot be delivered by the default binding.

Implementation 38

RewriteBindingNode RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

RewriteBindingNode

1

RewriteBindingNode

RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

DefaultBindingNode

3

RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

DefaultBindingNode

3

DefaultBindingNode

4

BindingAndConstraintVisitor
process

RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

DefaultBindingNode

DefaultBindingNode

RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

DefaultBindingNode

4

DefaultBindingNode

33 5

RewriteBindingNode

1

RewriteBindingNode

DefaultBindingNode

2

DefaultBindingNode

4

DefaultBindingNode

3 5

5

6

DefaultBindingVisitor process

Figure 3.5: The tree visiting process.

Implementation 39

+TreeMessageHandler()
+TreeMessageHandler(inout visitors : Set<MessageNodeVisitor>)
+addVisitor(inout visitor : MessageNodeVisitor) : bool
+removeVisitor(inout visitor : MessageNodeVisitor) : bool
+handle(inout message : Message)

TreeMessageHandler

+handle(inout message : Message)

«interface»
MessageHandler

MessageNodeVisitor1*

Figure 3.6: treeprototype.messaging package class hierarchy.

3.3.2 Message handler

As discussed in section 3.2, each prototype implementation must implement the
MessageHandler interface. In this prototype the TreeMessageHandler class in the
treeprototype.messaging package implements this interface. The implementation
of this class is very simple, and the relevant methods are shown in figure 3.6.
The TreeMessageHandler class encapsulates an ordered set of MessageNodeVisi-
tors, and implements the handle(Message message) method from the MessageHan-
dler interface.

Whenever a message is handed off to the TreeMessageHandler by the message
interception mechanism, the TreeMessageHandler creates a new RewriteBindingN-
ode representing the message. It then proceeds by having each visitor it encap-
sulates visit this root node.

By default the TreeMessageHandler creates a set containing a BindingAndCon-
straintVisitor and a DefaultBindingVisitor, in that order. By doing so, it supports
the semantics of bindings and constraints as discussed in chapter 2. However, it
is possible to add additional visitors, for example, in order to support new node
types, or to support visualisation of the message tree. As there is no reason to
have more than one instance of the TreeMessageHandler, it is implemented as a
singleton.

Implementation 40

3.3.3 Bindings

Bindings are implemented in the package treeprototype.bindings. This package
contains implementations for the binding types that are described in chapter
2. It also provides an implementation for the BindingFactory interface that was
discussed in section 3.2, and it contains the BindingManager class, which is re-
sponsible for keeping track of binding classes, binding instances, and whether
or not a binding instance is active. Figure 3.7 shows the class hierarchy for this
package.

Binding instances are implemented in three classes: AbstractBinding, Default-
Binding and RewriteBinding. The abstract AbstractBinding class implements func-
tionality that is common to both binding instance types: activation and deacti-
vation. Furthermore, it provides functionality to determine whether a binding
instance is active, to which binding class a particular binding instance belongs,
and which CoopObject instance encapsulates the binding. It implements the
Binding interface of the common.bindings package, and provides a dummy imple-
mentation for the addRewriteRule method. The class defines two abstract meth-
ods: boolean isApplicableTo(Message message) and MessageNode applyTo(Message
message). These methods are necessary to determine if a binding instance is ap-
plicable to a given message, and to actually apply a binding instance to a given
message. These two methods are invoked by the BindingAndConstraintVisitor
discussed earlier. Finally, the class has a protected constructor that handles the
registration of the binding instance with the BindingManager, discussed later.

The DefaultBinding class implements the isApplicableTo method and the ap-
plyTo method of the AbstractBinding class. The applyTo method simply returns a
new DefaultBindingNode representing the message that is passed to it. The isAp-
plicableTo method determines if the default binding is applicable to this message.
It does so by inspecting the target, targetType, parameters, and name properties of
the message, and looking for an object that matches these properties. If it finds
such an object, it returns true, otherwise it returns false.

The RewriteBinding class keeps track of the selector expression and rewrite
rules of the binding instance it represents. It supports the addition of new
rewrite rules through the addRewriteRule method. It also implements the isAp-
plicableTo and applyTo methods of the AbstractBinding class. The isApplicableTo
method passes the message that is provided to it to the selector the Rewrite-

Implementation 41

+activate() : Binding
+deactivate(in message : Message) : Binding
+addRewriteRule(in property : String, in newValue : UnaryExpression) : Binding

«interface»
Binding

+getContainingObject() : DynamicObject
+isActive() : bool
+getClassName() : String
+activate() : AbstractBinding
+deactivate() : AbstractBinding
+addRewriteRule() : Binding

AbstractBinding

DefaultBinding

-rewriteRules
-selector

RewriteBinding

+getInstance() : BindingFactory

TreeBindingFactory

+registerBinding(in className : String, in binding : AbstractBinding)
+activateBinding(in binding : AbstractBinding)
+deactivateBinding(in binding : AbstractBinding)
+getBindingInstancesByClassName() : List<AbstractBinding>
+getActiveBindingClasses() : List<String>
+getActiveBindingInstancesByClassName() : List<AbstractBinding>

BindingManager

+getDefaultBinding() : Binding
+createRewriteBinding(in name : String, in selector : Expression) : Binding
+createRewriteBinding(in name : String, in selector : Expression, in containingObject : DynamicObject) : Binding

«interface»
BindingFactory

Figure 3.7: treeprototype.bindings package class hierarchy.

Implementation 42

Binding instance contains. The result of the selector evaluation determines if
the binding instance is applicable to the message. The applyTo method takes the
message that is passed to it, and applies each rewrite rule that is contained in
the RewriteBinding instance. After applying all the rewrite rules, it returns a new
RewriteBindingNode containing the rewritten message.

The TreeBindingFactory is a singleton [8], that implements the methods de-
fined by the BindingFactory interface. When asked for the default instance, it
returns the single instance of the DefaultBinding it contains. When asked for a
RewriteBinding, it creates a new instance of a RewriteBinding with the specified
binding class, selector, and containing object.

The BindingManager singleton class keeps track of all binding classes and
their binding instances. On construction, each instance of an AbstractBinding
subclass registers itself with the BindingManager instance. The BindingManager
is also aware of which bindings are active. Finally it provides methods to re-
trieve (active) binding instances by binding class name.

3.3.4 Constraints

Constraints are implemented in the package treeprototype.constraints. The pack-
age contains implementations for the constraints as described in chapter 2. It
also provides an implementation for the ConstraintFactory interface that was
discussed in section 3.2, and it contains the ConstraintManager class, which is
responsible for keeping track of constraints, and whether or not a constraint is
active. The ConstraintManager is also responsible for the actual evaluation of
constraints. This is supported by using one or more instances of one of the Con-
straintProcessor subclasses. Figure 3.8 shows the class hierarchy for this package.

Similarly to the binding instances discussed in the previous section, the ab-
stract AbstractConstraint class implements some common functionality for con-
straints. It encapsulates information about the name of the constraint, and the
names of the binding classes that are constrained by a particular instance of an
AbstractConstraint subclass. It also implements methods to activate and deacti-
vate a constraint instance. This activity state is registered with the Constraint-
Manager.

Implementation 43

+activate() : Constraint
+deactivate() : Constraint
+isActive() : bool

«interface»
Constraint

+getFirstBindingClass() : string
+getSecondBindingClass() : string

AbstractConstraint

PreConstraint CondConstraintSkipConstraint PrimitivePreConstraintPrimitiveSkipConstraint

+process(in graph : Graph, in constraints : List<AbstractConstraint>) : Graph

ConstraintProcessor

+getInstance() : ConstraintManager
+getConstraints() : List<AbstractConstraint>
+applyConstraintsTo(in bindings : List<AbstractBinding>) : List<AbstractBinding>
+activateConstraint(in name : string, in constraint : AbstractConstraint)
+deactivateConstraint(in name : string)
+getConstraintByName(in name : string) : AbstractConstraint
+registerConstraintProcessor(in processor : ConstraintProcessor)
+registerConstraintProcessor(in processor : ConstraintProcessor, in constraintType : Class<? extends AbstractConstraint>)

ConstraintManager

CondConstraintProcessorSkipConstraintProcessor

PreConstraintProcessorSkipExecutionProcessor PrimitivePreProcessor

PrimitiveSkipProcessor

+getInstance() : TreeConstraintFactory

TreeConstraintFactory

+createCondConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint
+createPrimitivePreConstraint(in name : string, in preceedingBindingClass : string, in preceededBindingClass : string) : Constraint
+createPrimitiveSkipConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint
+createPreConstraint(in name : string, in preceedingBindingClass : string, in preceededBindingClass : string) : Constraint
+createSkipConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint

«interface»
ConstraintFactory

Figure 3.8: treeprototype.constraints package class hierarchy.

Implementation 44

The subclasses of AbstractConstraint, PreConstraint, PrimitivePreConstraint, Skip-
Constraint, PrimitiveSkipConstraint, and CondConstraint merely serve as ‘mark-
ers’. They are used to determine what kind of constraint the system is dealing
with. Alternatively this could have been expressed by not making AbstractCon-
straint abstract, and having it keep track of a constraint type identifier, for ex-
ample an enumeration representing the constraint types. Both approaches are
modular enough (i.e. they allow for definition of new constraint types without
modification of existing classes), and there is no clear advantage of one over the
other.

The TreeConstraintFactory is a singleton that implements the methods defined
by the ConstraintFactory interface. When asked for a subtype of AbstractCon-
straint, it creates a new instance of a subtype of AbstractConstraint, with the
provided name, constraining the provided binding classes.

The ConstraintManager singleton performs administrative tasks similar to
the BindingManager. The ConstraintManager is not aware of what types of con-
straints exist, it maintains a mapping of ‘subtype of AbstractConstraint’ to a list
of actual instances of that subtype. In addition, it is responsible for applying the
constraints that it manages. It does so through instances of ConstraintProcessor
subclasses. As discussed in 2, every constraint expresses a binary relation be-
tween two binding classes. Graphs are a natural way to express a collection of
such relationships. Therefore, each subclass of ConstraintProcessor transforms a
graph5 of applicable binding instances that is provided to it by the Constraint-
Manager. The ConstraintManager creates this graph based on information about
active binding classes passed to it by the BindingAndConstraintVisitor.

Each ConstraintProcessor is executed in turn, being passed the graph that was
transformed by the previous ConstraintProcessor. This is an implementation of
the ‘Pipes and Filters’ architectural pattern [3]. Figure 3.9 illustrates this process.

The ConstraintProcessor instances each perform (part of) the evaluation of a
certain constraint type. The ConstraintManager is aware of which types of con-
straints are active, and ConstraintProcessor instances register with the Constraint-
Manager which subtype of AbstractConstraint (if any) they can process. The Con-
straintProcessor instances are executed in the order in which they register with
the ConstraintManager. This system is easily extensible, as adding new types

5Using the graph implementation in common.graph

Implementation 45

ConstraintProcessor 1

ConstraintProcessor 2

ConstraintProcessor N

p_pre

p_pre

p_pre

p_pre

p_pre

p_pre

p_pre

...

p_skip

p_skip

p_pre

Figure 3.9: Processing constraints.

Implementation 46

of constraints is a matter of implementing a new subclass of AbstractConstraint,
implementing one or more6 new subclasses of ConstraintProcessor for the new
constraint type, and registering these ConstraintProcessors with the Constraint-
Manager. No modification of the ConstraintManager itself is necessary, or any
other part of the system.

The current prototype implements seven ConstraintProcessors. They are reg-
istered in the following order, and perform the following transformations:

PreConstraintProcessor This processor adds an edge labeled ‘p_pre’ to the (ini-
tially edgeless) graph for each PreConstraint that is active and applicable.
It then calculates the transitive closure for the graph with these edges and
labels any added edges with ‘p_pre’ as well.

PrimitivePreConstraintProcessor This processor takes the graph created by the
previous processor and adds an edge labeled ‘p_pre’ for each PrimitivePre-
Constraint7.

SkipConstraintProcessor This processor adds an edge labeled ‘p_skip’ to the
graph, created by the previous processor, for each SkipConstraint that is
active and applicable. It then calculates the transitive closure of the graph,
considering only the edges labeled ‘p_skip’, and labels any added edges
with ‘p_skip’ as well.

PrimitiveSkipConstraintProcessor This processor takes the graph created by
the previous processor and adds an edge labeled ‘p_skip’ for each Primi-
tiveSkipConstraint. Note that both the SkipConstraintProcessor and the Prim-
itiveSkipConstraintProcessor do not remove any vertices yet. This is done
later in the process by the SkipExecutionConstraintProcerssor.

CondConstraintProcessor This processor adds an edge labeled ‘cond’ to the
graph, created by the previous processor, for each CondConstraint that is
active and applicable. Note that this does not add edges from inapplicable
binding instances to applicable binding instances (as inapplicable binding
instances are not in the initial graph). It is possible for a CondConstraint to
have a relation between an inapplicable binding class and an applicable

6Depending on the complexity of the constraint.
7The graph implementation in common.graph does not support multiple edges between the

same vertices with the same label. Adding such duplicate edges to a graph is conveniently
ignored.

Implementation 47

binding class however. We call this a dangling cond-constraint. They will
be processed later. Note that, again, this constraint processor does not
actually remove any vertices. The cond-constraints are evaluated later on
in the process by the CondExecutionConstraintProcessor.

SkipExecutionConstraintProcessor This processor ‘evaluates’ each edge labeled
‘p_skip’ in topological order. For each ‘p_skip’ edge it encounters, it re-
moves the vertex at the head of the edge from the graph.

CondExecutionConstraintProcessor This processor ‘evaluates’ each edge la-
beled ‘cond’ in topological order. However, it first checks if any vertices
remaining should be eliminated due to a dangling cond-constraint. Each
vertex that should be removed by this process is added to the dangling vic-
tims list. The CondExecutionProcessor then proceeds by topologically eval-
uating each vertex and constraint. If the condition of a constraint is con-
tained in either the dangling victims list, or it does not exist in the graph,
the constrained binding is removed from the graph.

After this processing is done, the graph contains only vertices for binding
instances that should be executed, and edges labeled ‘p_pre’. The binding in-
stances are returned to the BindingAndConstraintVisitor in topologically sorted
order8. Figure 3.9 also illustrates this transformation process.

3.4 ALIA4J-based prototype

The ALIA4J-based prototype is built upon the ALIA4J-framework, of which
an overview was given in section 3.1. While both prototypes use ALIA4J for
message reification through the common framework, with this prototype we
attempt to use ALIA4J to ease the implementation of bindings and constraints
as well. In chapter 4 we discuss how well this succeeded, and we compare the
implementations of the prototypes. In this section we discuss the implementa-
tion details and design decisions of the ALIA4J-based prototype.

With the ALIA4J-prototype we to use ALIA4J primitives to implement bind-
ings and constraints. We chose to implement bindings using ALIA4J attach-
ments. This choice was made because these attachments support the use of

8if a cycle exists in the graph, this will fail, and the running program will terminate.

Implementation 48

predicates to test the current context (including the current message) to deter-
mine their applicability. When putting this in Co-op terms, these predicates can
be used as selector expressions. Furthermore, ALIA defines constructs (Prece-
denceRule and CompositionRule) to provide ordering between attachments, as
well as control over their execution. This is similar to constraints in Co-op.

3.4.1 Overview of message processing in the ALIA4J prototype

The processing of messages in the ALIA4J prototype is more complex than in
the tree-based prototype. To improve understanding of this process we first
give a short overview before we proceed with the detailed discussion of the
system.

Figure 3.10 shows the flow of a message through the MessageHandler and
constraint and binding system. Initially, a message is generated by the Message-
Generator in the common.messaging package. The message is handed off to the
MessageHandler.handle(. . .) method. This method simply passes the message on
to the prepareConstraints(Message message) method.

The prepareConstraints method is responsible for evaluating control constraints.
The reason for this will be discussed in subsection 3.4.4. After processing the
control constraints, the static dispatch(Message message, DisabledBindingInstances
instances) method is called. However, this method will never be actually exe-
cuted, as the ALIA4J-attachment contained by subtypes of the AbstractBinding
class will intercept the call. The reason for this ‘dummy’ invocation of the dis-
patch method is that ALIA4J, in Co-op terms, cannot generate new messages.
While ALIA4J does support the invocation of a target method using the proceed-
mechanism, these invocations cannot be intercepted again by ALIA4J. There-
fore, we do not use this mechanism, but instead generate a dummy method
call. As ALIA4J is not aware of such calls, it is not able to optimize for this
situation.

The subtypes of AbstractBinding use a predicate to determine if they should
actually do so. The message is handed off to the appropriate implementation
of AbstractBinding, and if the binding was not made inapplicable by a control
constraint, the binding is executed. In the case of a RewriteBinding, the message
is rewritten, and sent to the prepareConstraints method of the MessageHandler

Implementation 49

Initial message

AliaMessageHandler.handle(..)

AliaMessageHandler.prepareConstraints(…) &
ConstraintManager processing

aliaMessageHandler.dispatch(…)

AbstractBindingInstance.dispatch(…)

Message

Message

bindingType?

rewriteBinding.disp
atch(..)

DefaultBinding.disp
atch(…)

defaultBinding

rewrittenMessage

rewriteBinding

Interception by bindingAttachment

Invoke target
method

Figure 3.10: Message processing in the ALIA4J-based prototype.

Implementation 50

+handle(in message : Message)
+dispatch(in message : Message, in disabledBindings : List<Binding>)
+prepareConstraints(in message : Message)

AliaMessageHandler

+handle(in message : Message)

«interface»
MessageHandler

Figure 3.11: The aliaprototype.messaging package.

again, restarting the process. The DefaultBinding performs an actual method
call, using the Java reflection mechanism.

3.4.2 Message handler

This prototype, as is necessary for the proper handling of messages, also has an
implementation of the common.messaging.MessageHandler interface. The inter-
face is implementated in the aliaprototype.messaging package, by the AliaMessage-
Handler class. Figure 3.11 shows the class hierarchy of the aliaprototype.messaging
package.

As discussed above, the AliaMessageHandler implements three methods: han-
dle(. . .), dispatch(. . .), and processConstraints(. . .). The simplest of these methods
is dispatch. This static method merely functions as a dummy method for bind-
ings to intercept.

The handle method is necessary for the implementation of the MessageHan-
dler interface. In the case of AliaMessageHandler, it simply hands off the message
it is passed to the prepareConstraints method. This method initiates the evalua-
tion of control constraints for each message. Constraint processing is discussed
in detail in subsection 3.4.4. The implementation keeps track of which bindings
should not be executed due to the evaluation of control constraints.

3.4.3 Bindings

Bindings are implemented in the package aliaprototype.bindings. This package
contains implementations for the binding types that are described in chapter

Implementation 51

2. It also provides an implementation for the BindingFactory interface that was
discussed in section 3.2, and it contains the BindingManager class, which is re-
sponsible for keeping track of binding classes, binding instances, and whether
or not a binding instance is active. The package also contains the DisabledBindin-
gInstances class, which encapsulates a list of bindings, as well as the imple-
mentations of certain selector expression operators as ALIA4J predicates, and
an implementation of a common.messaging.ExpressionVisitor, SelectorExpression-
TransformationVisitor, to transform selector expressions from common.expressions
to ALIA4J predicates. Finally, the class BindingClassAttachmentReference imple-
ments an ALIA4J AttachmentReference that refers to the attachments for a given
binding class. Figure 3.12 shows the class hierarchy for this package.

Binding instances are again implemented in three classes: AbstractBinding,
DefaultBinding and RewriteBinding. The abstract AbstractBinding class imple-
ments functionality that is common to both binding instance types: activation
and deactivation. Furthermore, it provides functionality to determine whether
a binding instance is active, to which binding class a particular binding in-
stance belongs, and which CoopObject instance encapsulates the binding. It
implements the Binding interface of the common.bindings package, and provides
a dummy implementation for the addRewriteRule method. The class defines two
abstract methods: boolean isApplicableTo(Message message) and MessageNode ap-
plyTo(Message message). These methods are necessary to determine if a bind-
ing instance is applicable to a given message, and to actually apply a binding
instance to a given message. Furthermore, the class implements a method to
retrieve the attachment that it encapsulates. Finally, the class has a protected
constructor that handles the creation of its attachment9, and registration of the
binding instance with the BindingManager, discussed later.

Setting up the ALIA4J attachment is done by transforming the selector to an
ALIA4J predicate by applying the SelectorExpressionTransformationVisitor to the
SelectorExpression that is passed to the constructor. Theoretically, by doing so,
the binding does not have to determine by itself if it is applicable to a message,
since the attachment will do so. If we would only implement pre and primi-
tive pre constraints in this prototype, this would be the case. However, as we
also implement the control constraints of Co-op/III, this is no longer sufficient.

9In ALIA4J, attachments (and constraint rules such as the PrecedenceRule), need to be de-
ployed before they function. Deploying the encapsulated attachment is done by the activate
method, and conversely, undeployment is performed by the deactivate method.

Implementation 52

+activate() : Binding
+deactivate() : Binding
+addRewriteRule(in property : string, in newValue : UnaryExpression) : Binding

«interface»
Binding

+getContainingObject() : DynamicObject
+isActive() : bool
+getClassName() : String
+activate() : AbstractBinding
+deactivate() : AbstractBinding
+addRewriteRule() : Binding
-setupBindingAttachment(in predicate)
-processMessage() : Message

AbstractBinding

DefaultBinding
-rewriteRules
-selector

RewriteBinding

+getInstance() : BindingFactory

AliaBindingFactory

+registerBinding(in className : String, in binding : AbstractBinding)
+activateBinding(in binding : AbstractBinding)
+deactivateBinding(in binding : AbstractBinding)
+getBindingInstancesByClassName() : List<AbstractBinding>
+getActiveBindingClasses() : List<String>
+getActiveBindingInstancesByClassName() : List<AbstractBinding>

BindingManager

+getDefaultBinding() : Binding
+createRewriteBinding(in name : String, in selector : Expression) : Binding
+createRewriteBinding(in name : String, in selector : Expression, in containingObject : DynamicObject) : Binding

«interface»
BindingFactory

SelectorExpressionTransformationVisitor

+visit(in expression)

ExpressionVisitor

+references(in attachment : Attachment) : bool
+BindingClassAttachmentReference(in bindingClass : string)

BindingClassAttachmentReference

«interface»
AttachmentReference

Figure 3.12: aliaprototype.bindings package class hierarchy.

Implementation 53

For these control constraints we need to be able to evaluate the selector expres-
sions separately. Subsection 3.4.4 on constraints will elaborate why exactly this
is necessary. However, as ALIA4J predicates cannot be evaluated separately,
bindings in this prototype still need the isApplicableTo(. . .) method. Further-
more, as a binding needs to know, after evaluation of the control constraints,
if it is still applicable, the predicate of the attachment contained by the binding
also validates if it is not in the list of binding instances contained in the Dis-
abledBindingInstances instance that is also passed to the dispatch method of the
AliaMessageHandler. If the binding instance encapsulating the attachment is in
the list, the predicate will be false, and the binding will no longer match.

The DefaultBinding class implements the isApplicableTo method and the ap-
plyTo method of the AbstractBinding class. The applyTo method invokes the tar-
get of the message. The isApplicableTo method determines if the default binding
is applicable to this message. It does so by inspecting the target, targetType, pa-
rameters, and name properties of the message, and looking for an object that
matches these properties. If it finds such an object, it returns true, otherwise it
returns false.

The RewriteBinding class keeps track of the selector expression and rewrite
rules of the binding instance it represents. It supports the addition of new
rewrite rules through the addRewriteRule method. It also implements the isAp-
plicableTo and applyTo methods of the AbstractBinding class. The isApplicableTo
method passes the message that is provided to it to the selector the Rewrite-
Binding instance contains. The result of the selector evaluation determines if
the binding instance is applicable to the message. The applyTo method takes the
message that is passed to it, and applies each rewrite rule that is contained in the
RewriteBinding instance. After that, it invokes prepareConstraints, as discussed in
3.4.1.

The AliaBindingFactory is a singleton [8], that implements the methods de-
fined by the BindingFactory interface. When asked for the default instance, it
returns the single instance of the DefaultBinding it contains. When asked for a
RewriteBinding, it creates a new instance of a RewriteBinding with the specified
binding class, selector, and containing object.

The BindingManager singleton class keeps track of all binding classes and
their binding instances. On construction, each instance of an AbstractBinding

Implementation 54

subclass registers itself with the BindingManager instance. The BindingManager
is also aware of which bindings are active. Finally it provides methods to re-
trieve (active) binding instances by binding class name.

The BindingClassAttachmentReference implements an ALIA4J AttachmentRef-
erence, and is used by the ordering constraints discussed in the next section to
implement precedence constraints between binding classes. It works by im-
plementing the boolean references(Attachment attachment) method of the Attach-
mentReference class. This method returns true if the attachment passed to this
method is contained by a binding instance that is part of the binding class the
BindingClassAttachmentReference instance represents.

3.4.4 Constraints

Constraints are implemented in the package aliaprototype.constraints. The pack-
age contains implementations for the constraints as described in chapter 2. It
also provides an implementation for the ConstraintFactory interface that was
discussed in section 3.2, and it contains the ConstraintManager class, which is
responsible for keeping track of constraints, and whether or not a constraint is
active. The ConstraintManager is also responsible for the actual evaluation of
control constraints. Figure 3.13 shows the class hierarchy for this package.

Similarly to the binding instances discussed in the previous section, the ab-
stract AbstractConstraint class implements some common functionality for con-
straints. It encapsulates information about the name of the constraint, and the
names of the binding classes that are constrained by a particular instance of an
AbstractConstraint subclass. It also implements methods to activate and deacti-
vate a constraint instance. This activity state is registered with the Constraint-
Manager.

Similar to the tree-based prototype, subclasses of AbstractConstraint, Skip-
Constraint, PrimitiveSkipConstraint, and CondConstraint merely serve as ‘mark-
ers’. They are used to determine what kind of constraint the system is dealing
with. The PreConstraint and PrimitivePreConstraint, in addition, encapsulate an
ALIA4J PrecedenceRule. This precendence rule imposes a partial ordering be-
tween two BindingClassAttachmentReferences, discussed in the previous subsec-
tion. In the case of the (transitive) PreConstraint, activation of the constraint

Implementation 55

+activate() : Constraint
+deactivate() : Constraint
+isActive() : bool

«interface»
Constraint

+getFirstBindingClass() : string
+getSecondBindingClass() : string

AbstractConstraint

PreConstraint CondConstraintSkipConstraint PrimitivePreConstraintPrimitiveSkipConstraint

+getInstance() : ConstraintManager
+getConstraints() : List<AbstractConstraint>
+applyConstraintsTo(in bindings : List<AbstractBinding>) : List<AbstractBinding>
+activateConstraint(in name : string, in constraint : AbstractConstraint)
+deactivateConstraint(in name : string)
+getConstraintByName(in name : string) : AbstractConstraint

ConstraintManager

+getInstance() : AliaConstraintFactory

AliaConstraintFactory

+createCondConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint
+createPrimitivePreConstraint(in name : string, in preceedingBindingClass : string, in preceededBindingClass : string) : Constraint
+createPrimitiveSkipConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint
+createPreConstraint(in name : string, in preceedingBindingClass : string, in preceededBindingClass : string) : Constraint
+createSkipConstraint(in name : string, in prerequisiteBindingClass : string, in conditionalBindingClass : string) : Constraint

«interface»
ConstraintFactory

Figure 3.13: aliaprototype.constraints package class hierarchy.

Implementation 56

involves calculating the transitive closure over the constrained binding classes
as well, and creating a BindingClassAttachmentReference for each binding class
that is closed over by the constraint. This entire set of BindingClassAttachment-
Reference instances can then be passed to a single PrecedenceRule. Using Prece-
denceRule instances and the BindingClassAttachmentReference makes implement-
ing the ordering constraints of Co-op/III very simple.

ALIA also defines a CompositionRule, which could potentially be used to im-
plement control constraints. However, due to a problem with the semantics of
this CompositionRule, at least in the release of ALIA4J used for the development
of this prototype10, the CompositionRule is disabled. The consequences of this are
that (1) we are unable to determine if control constraints can be implemented at
all using CompositionRules, and (2) implementing control constraints is difficult
using the chosen approach.

On a theoretical level, the former should be, at least partially, possible. Com-
positionRules can be used to define overriding relationsships and constraints
for jointly executed Actions according to the documentation [2]. However, as
in practice the CompositionRule cannot be used, this cannot be validated. Fur-
thermore, we are unsure if we can express the precedence rule for control con-
straints11 that was discussed in 2.3.2. Finally, it appears that the evaluation of
CompositionRules depends on static analysis. As the semantics of Co-op/III con-
straints are mostly dependant on dynamic (runtime) information, it might not
be possible at all. However, as it is not possible to actually test or investigate
this, it is unclear what the precise impact is.

The latter can be solved by, before the bindings actually get to intercept
the message (through the dispatch method), evaluating the control constraints.
However, this solution has some negative consequences:

• We need to know, before the attachment of a binding actually matches, if a
binding should be allowed to apply or not. This requires us to separately
evaluate the predicate of an attachment. As this is not possible in ALIA4J,
we need to use the original selector implementation, as is discussed in
subsection 3.4.3. Therefore, it is no longer truly useful to use predicates to
determine which bindings to apply.

10Version ALIA4J-0.1.0.
11Skip and primitive skip should be evaluated before cond.

Implementation 57

• Using the CompositionRule of ALIA would nicely modularize the behavior
of control constraints. This is no longer possible, as now the prototype
itself needs to keep track of which bindings are enabled and disabled due
to the application of constraints.

• Being able to use AttachmentReferences would simplify the implementation
of the transitive skip constraint. However, this is no longer possible.

• We can no longer take advantage of improvements to the ALIA4J frame-
work, at least when it comes to control constraint implementation.

We did however still choose to implement control constraints in the manner
mentionend. If/when the CompositionRule (with the proper semantics) becomes
available again, it should be relatively easy to implement the control constraints
using the CompositionRule. Furthermore, we still benefit from the use of the
PrecedenceRule and optimizations to other parts of ALIA, so the prototype is
useful.

The implementation of control constraints is now done by having each Rewrite-
Binding send their rewritten message to the prepareConstraints method of the
AliaMessageHandler. The prepareConstraints method then delegates the process-
ing of the control constraints to the ConstraintManager class. This class eval-
uates the constraints in a manner similar to the tree-based prototype, using a
graph, albeit in a less flexible manner12. The result of this is a list of bindings
that should no longer be applicable due to them being constrained by the con-
trol constraints. This list of bindings is passed on to the dispatch method of the
AliaMessageHandler, and available as context to the binding instances. The pred-
icate of the attachment encapsulated by the binding instance can now use this
list to determine if it is actually applicable. If it is not, the predicate will be false,
and the binding will not be executed.

12Note, however, that it is possible to reuse the entire constraint handling mechanism of the
tree-based prototype for this.

4. EVALUATION

In this chapter we evaluate both prototype implementations. We compare them
based on traditional software quality metrics, as well as on modularity and ex-
tensibily.

However, first we determine if, and to what extent, the prototypes support
the requirements presented in section 1.2. For convenience, we repeat those
requirements here:

R1: easy integration with the existing Co-op/III code base.

R2: binding and constraint semantics compatible to those found in Co-op/II.

R3: a reasonably performing implementation of bindings and constraints.

R4: the possibility to optimize the implementation of the bindings and con-
straints further, without influencing code generation.

R5: the possibility to implement new types of bindings and constraints.

Requirement R1 is supported by both prototypes, as they both implement
the interfaces described in subsection 3.2.3. These interfaces were designed to
support easy integration with Co-op/III.

Requirement R2 is also supported by both prototypes. Test cases were de-
rived from the definition of binding and constraint semantics as defined in
chapter 2. As both prototypes succeed in executing all the tests, they both con-
form to those semantics.

Requirement R3 is difficult to quantify, as the prototypes both execute on the
NOIRIn interpreting execution environment of ALIA4J. This has a significant
negative performance impact. As such, it is difficult to say if the prototype
implementations are viable for ‘real-world’ usage. We can conclude that, in
relation to eachother, the prototypes have similar performance characteristics
(they run their tests withing about 30ms of eachother). However, the prototypes

58

Evaluation 59

do both improve on the binding and constraint handling process of Co-op/II1,
as both prototypes avoid the generation of unnecessary messages.

Requirement R4 is supported by both prototypes, as their implementations
are hidden behind the interfaces described in subsection 3.2.3. As the proto-
types must conform to those interfaces, and the code generation process must
only use those interfaces, the implementations can change without affecting
code generation.

Requirement R5 is the most difficult requirement to evaluate. As both pro-
totypes are fundamentally based on Java, if it is possible to implement extra
bindings and constraints at all, it can be done in both prototypes. Therefore, we
can state that both prototypes support this requirement. However, when con-
sidering how easy it is to implement such extensions, the discussion becomes
more complex.

The tree-based prototype always requires the implementation of the entire
binding or constraint without support of the underlying framework. That makes
it initially more complex to develop new constraints. However, as the prototype
is designed to support extensibility when it comes to handling constraints, as
shown in section 3.3, constraints can be implemented modularly.

As shown in section 3.4, when ALIA4J primitives can be used to support the
development of a binding or constraint, it can be very easy to do so. See for
example the pre constraint. However, when ALIA4J primitives cannot be used,
it can become quite complex to implement additional constraints. As is shown
by the implementations of the skip and cond constraints, it can require some
workarounds and might make the use of some ALIA4J features inconvenient or
even impossible.

The mechanism for controlling action execution in ALIA4J (i.e. the Prece-
dence and Composition rules) are not extensible. The consequence is that it
is not possible to define new rules. Thus, defining Co-op constraints that re-
quire primitives other than the Precedence rule or Composition Rule will likely
require a lot of effort.

Concerning debuggability, the tree-based prototype is currently easier to de-

1Co-op/II treated bindings and constraints as entirely separate concerns, as discussed in the
introduction.

Evaluation 60

bug. As this prototype only uses conventional Java constructs2, conventional
Java debuggers such as the one in the Eclipse IDE can be used. Debugging the
ALIA-based prototype is more difficult. Applications using ALIA4J in general
are difficult to debug, as it is often difficult to see what parts of a program are
affected by an attachment. There are currently no tools to support debugging
such applications. However, a visual debugger for ALIA4J is currently in de-
velopment [22], but is not yet available.

The tree-based prototype is easier to understand by simple inspection of
the code. The ALIA4J-based prototype is difficult to understand as it may be
unclear how attachments are affecting the messages.

Software metrics were measured3 and analysed as well. We are in particular
interested in modularity, and therefore in the metrics for coupling and cohesion.
We observed the following:

• Only the ConstraintManager in the tree-based prototype shows a high fan
out (i.e. it ‘knows’ about more than 25 other types). For most classes the
fan out is well below 15.

• None of the prototypes exhibit significant fan in, for most classes the af-
ferent coupling is 10 or lower.

• When considering the Chidamber and Kemerer definition for Lack of Co-
hesion, none of the classes in both prototypes exhibited significant lack of
cohesion.

• When considering the Henderson-Sellers definition for Lack of Cohesion,
none of the classes in both prototypes exhibit significant lack of cohesion.

• None of the prototypes use very deep inheritance, the deepest inheritance
hierarchy is 4 levels. This depth of inheritance is exhibited by two classes
that extend ALIA4J predicates, and part of this inheritance occurs inside
the ALIA4J framework.

The above shows that both prototypes are of good quality, when considering
traditional software metrics. Note, however, that ALIA4J ‘hides’ some depen-

2Except for the interception of messages. However, this is a very modularized and small
part of the prototype.

3The Eclipse Metrics [15] and Eclipse Metrics (continued) [9] Eclipse plugins were used for
this purpose.

Evaluation 61

dencies, as it does not always use traditional mechanisms to invoke methods.
Software metric tools are not able to see those dependencies. Similarly, as both
prototypes depend on reflection to implement the ‘default binding’, and reflec-
tive method calls are also invisible to metric tools, dependencies created there
are also not considered.

5. CONCLUSION

In this chapter we discuss the conclusion of this thesis, as well as future work.

5.1 Conclusion

The main purpose of this thesis was to investigate how to flexibly and extensi-
bly implement composition operators. The idea of having flexible, developer-
defined composition operators is already embraced by the Co-op language.
Therefore, the latest iteration of the Co-op language, Co-op/III, was used as
a foundation for this work. In this thesis we developed two implementations
for bindings and constraints in Co-op/III.

Co-op/II, the predecessor of Co-op/III, already supports the definition of
composition operators by using bindings and constraints. However, for Co-op/III
there existed no specification for the semantics of bindings and constraints. As
we wanted to ensure that our implementations provided the same semantics,
first we developed a precise specification for the semantics of bindings, and in
particular constraints, in Co-op/III. This specification was used to develop test
cases for our implementations, to show that they were semantically equivalent.
Furthermore, we also show how the semantics of Co-op/III constraints com-
pare to the constraints described by Nagy [14]. While the constraints of Co-op
are inspired by Nagy’s constraints, there are some significant differences. The
most important of these differences is that certain types of constraints (the con-
trol constraints) also necessitate a partial order of the constrained actions. Fur-
thermore, the constraints of Nagy support complex condition expresions, when
compared to Co-op. However, as Te Brinke has shown [18], it is still possible to
implement a large class of composition operators using only the relatively sim-
ple conditions that are available in Co-op. Finally, Nagy’s constraints need to be
evaluated in a particular order. We have partially shown that this is the result
of the semantics of the condition expressions used by those constraints, and we
also show that such an evaluation order is not necessary for Co-op constraints.

62

Conclusion 63

Based on the specification for bindings and constraints, we developed two
implementations. These implementations implement a common interface. This
supports the development of test cases and provides a convenient target for
code generation. Furthermore, the implementations are hidden from the code
generator. We have shown that both a plain Java implementation1 and an imple-
mentation based on ALIA4J [2] can be used. We evaluated both approaches and
can summarize the results as follows. Both approaches improve on handling
of bindings and constraints when compared to Co-op/II, as the generation of
unnecessary messages is eliminated.

The Java-based approach, which works by generating a tree of applicable
bindings, has the following advantages:

• The implementation is not limited by any underlying frameworks. The
entire implementation is designed with the goal of implementing bindings
and constraints in Co-op/III. An important consequence is that it is not
necessary to implement (sometimes complex) workarounds to overcome
limitations of such frameworks.

• Due to being independent of an underlying framework, the implemen-
tation is very flexible. The pipe-and-filter approach used makes it easy to
implement additional semantics, as long as these semantics depend on the
manipulation of a directed graph.

• The implementation is relatively easy to understand and debug. As the
implementation does not depend on any specific framework, anyone with
reasonable Java experience can understand the implementation. Further-
more, the implementation can be debugged using common Java debug-
ging facilities, such as those found in the Eclipse IDE.

The Java-based approach also has some disadvantages:

• As Java and the Java Class Library do not provide any support for developer-
defined composition operators or advanced programming language con-
structs, such as aspects or advanced dispatching, all types of bindings and
constraints had to be implemented manually.

1With the exception of message reification.

Conclusion 64

• Consequently, the implementation of bindings and constraints has to be
optimized manually, there are no optimizations in the underlying frame-
work that can be taken advantage of.

• The implementation cannot use advanced modularization mechanisms
such as aspect-orientation, impairing its modularity.

The ALIA4J-based approach uses the primitives provided by ALIA4J to im-
plement bindings and constraints. This approach has the following advantages:

• When an ALIA4J primitive closely matches a concept from Co-op/III (i.e.
a binding or constraint), it is easy to implement such a concept. A good ex-
ample of this are bindings, which can easily be mapped to ALIA4J Attach-
ments, and selector expressions, which can be implemented using pred-
icates. Pre-constraints can also easily be implemented using the Prece-
dence Rule in ALIA4J.

• As ALIA4J is developed separately from the implementation of bindings
and constraints, but provides a relatively stable interface, optimization of
ALIA4J results in better performance of the binding and constraint imple-
mentation. These performance improvements come ‘for free’, i.e. without
having to modify the implementation of the bindings and constraints.

• Due to its advanced-dispatching nature, when depending only on ALIA4J
primitives the ALIA4J-based implementation is more modular than the
Java-based implementation.

However, the ALIA4J-based implementation has some disadvantages as well:

• ALIA4J does not natively support intercepting a method call that was gen-
erated by ALIA4J. As we model bindings as attachments, and bindings
can apply to messages generated by other bindings, this is a significant
shortcoming. We developed a workaround for this, but this may have an
impact on the ability of ALIA4J to optimize.

• While the work on ALIA4J describes a Composition Rule that might be
used to implement skip and cond constraints, in the current release of
ALIA4J this Composition Rule is not implemented. The most important

Conclusion 65

consequence of this omission is that complex workarounds were neces-
sary to make these skip and cond constraints work.

• The mechanism for controlling the execution order actions cannot be ex-
tended. In other words, it is not possible to add constructs such as the
Precedence Rule or Composition Rule without modifying the source of
ALIA4J itself. This might be an issue when trying to implement new types
of constraints.

• Debuggability is currently an issue, as there are no debugging tools specif-
ically for ALIA4J, and the common debugging tools are not always usable
when dealing with ALIA4J-specific issues. There is ongoing work to de-
velop a debugger for ALIA4J, but it was not available at the time of this
work.

• The execution flow of programs using advanced-dispatching mechanisms
and aspect-orientation is generally harder to understand, as it is often
unclear where specific behavior applies. This is also the case when us-
ing ALIA4J. This makes extending the implementation of this framework
more complex.

The two most important disadvantages of the ALIA4J approach are the lack
of debugger support, which makes resolving some bugs very difficult, and the
lack of primitives to support the implementation of control constraints. The lat-
ter of these disadvantages is a clear indication that ALIA4J is not (yet) expres-
sive enough. Currently we feel that the potential advantages of using ALIA4J
do not outweight the disadvantages.

5.2 Future work

For future work based on this thesis we can consider two directions. The created
prototypes can be improved on and one of them can be added to Co-op/III, or
other implementation strategies can be explored.

Some improvements have to be made to both prototypes before they can
be used in Co-op/III. The ability for selectors and bindings to generate new
messages can cause (potentially infinite) recursion, as discussed by Te Brinke

Conclusion 66

[18]. The common infrastructure used by both implementations does support
a rudimentary form of recursion detection that can possibly also be used to
avoid (some forms of) recursion, but this has not been extensively tested. Fur-
thermore, currently there is no way to bind message properties to implicit pa-
rameters in Co-op/III. However, implementing this is likely easy, as implicit
parameters can trivially be implemented using a stack on which the message
properties can be placed.

If the ALIA4J-based prototype is to be used, it might be necessary to inves-
tigate if that framework can be extended. While it is promising, as discussed
in the previous section it currently lacks some features to make it useful for im-
plementing Co-op/III bindings and constraints. In particular, a mechanism to
support the execution of actions based on the presence of other actions (i.e. the
ALIA4J-equivalent of control constraints) should be (re)introduced.

A final option is not using ALIA4J alltogether, and explore other frame-
works, such as Reflex [17]. However, there does not seem to be a lot of active
development on these frameworks. For example, development on Reflex has
been stagnant for several years now. Still, it might be worth investigating if
there are other options available.

BIBLIOGRAPHY

[1] BÉZIVIN, J. On the unification power of models. Software and Systems
Modeling 4, 2 (2005), 171–188.

[2] BOCKISCH, C., SEWE, A., YIN, H., MEZINI, M., AND AKŞIT, M. An in-
depth look at alia4j. Journal of Object Technology 11, 1 (Apr. 2012), 1–28.

[3] BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND

STAL, M. Pattern-oriented Software Architecture: A System of Patterns. John
Wiley & Sons, 1996.

[4] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Intro-
duction to Algorithms, 3 ed. The MIT Press, 2009.

[5] FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKŞIT, M., Eds. Aspect-
Oriented Software Development. Addison-Wesley, 2005.

[6] FOWLER, M. Fluent interface. http://www.martinfowler.com/

bliki/FluentInterface.html, 2005. [Online, accessed 24th of Febru-
ary 2013].

[7] FRIEDMAN, D., AND WISE, D. Aspects of applicative programming for
parallel processing. Computers, IEEE Transactions on C-27, 4 (april 1978),
289 –296.

[8] GAMMA, E., HELM, R., JOHNSON, R., AND VLISIDES, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[9] GBOISSIER. Eclipse metrics plugin (continued). Eclipse Marketplace, 2009.
[Online, Eclipse IDE plugin, version 1.3.8.

[10] GOSLING, J., JOY, B., STEELE, G., BRACHA, G., AND BUCKLEY, A. The
java language specification - java se 7 edition. http://docs.oracle.

com/javase/specs/jls/se7/html/index.html, 2012. [Online, ac-
cessed 24th of February 2013].

67

BIBLIOGRAPHY 68

[11] HAVINGA, W. K., BOCKISCH, C. M., AND BERGMANS, L. M. J. A case for
custom, composable composition operators. In Proceedings of the 1st Inter-
national Workshop on Composition: Objects, Aspects, Components, Services and
Product Lines, Rennes, France (March 2010), vol. 564 of Workshop Proceedings,
CEUR-WS, pp. 45–50.

[12] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C.,
MARC LOINGTIER, J., AND IRWIN, J. Aspect-oriented programming. In
ECOOP (1997), SpringerVerlag.

[13] MUSCHEVICI, R., POTANIN, A., TEMPERO, E., AND NOBLE, J. Multiple
dispatch in practice. In Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications (New York,
NY, USA, 2008), OOPSLA ’08, ACM, pp. 563–582.

[14] NAGY, I. On the Design of Aspect-Oriented Composition Models for Software
Evolution. PhD thesis, University of Twente, Enschede, June 2006.

[15] OF FLOW, S. Eclipse metrics. Eclipse Marketplace, 2010. [Online, Eclipse
IDE plugin, version 3.12.0].

[16] PAPAZOGLOU, M. P. Web Services: Principles and Practice. Pearson Educa-
tion Limited, 2008.

[17] TANTER, E., AND NOYÉ, J. A versatile kernel for multi-language
aop. In Generative Programming and Component Engineering, R. Glück and
M. Lowry, Eds., vol. 3676 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2005, pp. 173–188.

[18] TE BRINKE, S. First-order function dispatch in a java-like programming
language. Master’s thesis, University of Twente, January 2011.

[19] THE ALIA4J PROJECT. Alia4j overview. http://www.alia4j.org/

alia4j/, 2008-2012. [Online; accessed 1st of February 2013].

[20] THE ECLIPSE FOUNDATION. The aspectj project. http://www.eclipse.
org/aspectj/, 2013. [Online; accessed 24th of February 2013].

[21] WEGNER, P. Concepts and paradigms of object-oriented programming.
SIGPLAN OOPS Mess. 1, 1 (Aug. 1990), 7–87.

BIBLIOGRAPHY 69

[22] YIN, H., BOCKISCH, C. M., AND AKŞIT, M. A fine-grained debugger for
aspect-oriented programming. In Proceedings of the 11th Annual Interna-
tional Conference on Aspect-oriented Software Development, AOSD 2012, Pots-
dam, Germany (New York, March 2012), ACM, pp. 59–70.

A. SOFTWARE METRICS

This appendix contains the results of the software metrics tools, split by proto-
type. Legend:

Abbreviation Meaning
LINE Lines of code
WMC Weighted Methods per Class
Ce Efferent Coupling (fan out)
NOF Number of Fields
LCOM Lack of Cohesion of Methods
LCOM-PFI LCOM - Pairwise Field Irrelation
LCOM-TC LCOM - Total Correlation
LCOM-HS LCOM - Henderson-Sellers
LCOM-CK LCOM - Chidader & Kemerer

70

BIBLIOGRAPHY 71

Common prototype features

TYPE LINE WMC Ce NOF LCOM-PFI LCOM-TC LCOM-HS LCOM-CK
DynamicClass 3 21 3 0
RecursionAvoider 7 3 4 0
AndExpression 5 3 5 0
ComparisonExpression 3 3 4 2 100 100 100 1
EmptyArrayExpression 3 4 3 0
EqualsExpression 5 4 7 0
ExpressionVisitor 3 15 16 0
GreaterOrEqualExpression 5 3 6 0
GreaterThanExpression 5 3 6 0
LessOrEqualExpression 5 3 6 0
LessThanExpression 5 3 6 0
LogicExpression 3 3 2 2 100 100 100 1
MessagePropertyLookupExpression 5 8 7 1 0 0 0 0
MethodInvocationExpression 5 3 3 1 0 0 0 0
NotEqualsExpression 5 4 7 0
NullExpression 3 4 3 0
ObjectArrayExpression 3 4 3 1 0 0 0 0
ObjectConstantExpression 3 4 3 1 0 0 0 0
OrExpression 5 3 5 0
ReflectiveMethodInvocationExpression 6 8 9 1 0 0 0 0
TernaryValue 3 0 1 0
TernaryValue.FALSE 5 0 1 0
TernaryValue.TRUE 4 0 1 0
TernaryValue.UNKNOWN 6 0 1 0
UnaryExpression 3 3 2 1 0 0 0 0
Edge 4 8 5 2 50 12 33 0
Graph 9 80 25 2 74 33 39 0
LabeledEdge 3 6 8 1 0 0 0 0
Vertex 3 7 7 1 0 0 0 0
Message 7 15 7 1 0 0 0 0
MessageGenerator 34 11 20 1 0 0 0 0
MessageGenerator(anonymous) 36 1 4 0
ResultWrapper 3 4 2 1 0 0 0 0

Tree-based prototype

TYPE LINE NOF WMC Ce LCOM-PFI LCOM-TC LCOM-HS LCOM-CK
AbstractBinding 10 3 10 9 100 112 89 4
BindingManager 9 2 12 9 100 92 60 1
DefaultBinding 10 0 10 10
RewriteBinding 16 2 13 15 71 29 42 0
TreeBindingFactory 8 1 5 8 0 0 0 0
AbstractConstraint 9 4 7 4 100 116 90 9
CondConstraint 10 0 1 3
CondConstraintProcessor 13 0 11 13
ConstraintManager 15 3 19 26 79 99 67 1
ConstraintProcessor 11 0 7 8
PreConstraint 9 0 1 3
PreConstraintProcessor 13 0 12 17
PrimitivePreConstraint 9 0 1 3
PrimitivePreConstraintProcessor 12 0 5 12
PrimitiveSkipConstraint 9 0 1 3
PrimitiveSkipConstraintProcessor 12 0 6 12
SkipConstraint 9 0 1 3
SkipExecutionConstraintProcessor 8 0 4 7
TransitiveSkipConstraintProcessor 13 0 12 17
TreeConstraintFactory 6 0 8 9
TreeMessageHandler 15 1 6 11 0 0 0 0
BindingAndConstraintVisitor 15 0 9 12
DefaultBindingNode 5 0 4 4
DefaultBindingVisitor 12 0 13 17
GraphvizDotVisitor 5 1 6 7 0 0 0 0
MessageNode 10 0 5 5
MessageNodeVisitor 3 0 2 3
Node 6 3 5 4 100 117 100 3
RewriteBindingNode 11 5 14 7 100 129 100 10
TextVisitor 5 2 4 8 50 0 50 0

BIBLIOGRAPHY 72

ALIA4J-based prototype

TYPE LINE WMC Ce NOF LCOM-PFI LCOM-TC LCOM-HS LCOM-CK
AbstractBinding 33 13 21 4 100 112 89 4
AliaBindingFactory 8 5 8 0
AttachmentCollectionReference 9 5 6 1 0 0 0 0
BindingManager 9 19 11 4 95 92 70 13
DefaultBinding 12 14 12 0
EqualsSelectorPredicate 9 2 7 0
NotEqualsSelectorPredicate 9 2 7 0
RewriteBinding 14 10 12 2 100 92 75 1
SelectorExpressionTransformationVisitor 26 17 21 3 67 88 70 0
SelectorPredicate 14 3 11 2
AbstractConstraint 9 7 6 4 100 116 90 9
AliaConstraintFactory 6 8 7 0
CondConstraint 9 2 5 0
ConstraintManager 9 7 7 1 0 0 0 0
PreConstraint 11 4 6 1 0 0 0 0
PrimitivePreConstraint 7 2 4 0
PrimitiveSkipConstraint 7 2 4 0
SkipConstraint 9 2 5 0
AliaMessageHandler 13 5 8 0

