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Abstract

When a mm-sized drop approaches a liquid pool, both interfaces deform before the drop actually touches
the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due
to this deformation, air is usually entrained during impact. We quantify the amount of entrained air
numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool,
coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We
compare our results to various experimental data and find excellent agreement in the amount of air that
is entrapped during drop impact onto a pool. Also the impact of a rigid sphere onto a pool is numerically
investigated and the air that is entrapped in this case also matches with available experimental data. In
both cases of drop and sphere impact onto a pool the numerical air bubble volume Vb that is found is
in agreement with the theoretical scaling Vb/Vdrop/sphere ∼ St−4/3, where St is the Stokes number. This
implies a universal mechanism for air entrainment for both impact scenarios, which has been suggested
in recent experimental work, but can now be further investigated with numerical results. In addition,
experiments have been conducted to infer the dynamics of a thin air film that is entrapped between an
impacting drop and a hydrophobic micro structure using high speed color interferometry.
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Chapter 1

Introduction

1.1 General introduction

The impact of a spherical object onto a liquid pool is a fundamental problem in fluid physics, and was
studied already in 1897 by A.M. Worthington and R.S. Cole. In their pioneering work [1, 2] they
were able to freeze the motion of a sphere impacting onto a liquid pool with the help of instantaneous
photography. A very precisely triggered 3-µs during spark with adjustable delay served as illumination
to capture an individual image at a desired time during the impact event. An example of an image that
they acquired is depicted in Fig. 1.1 a.

Figure 1.1: a) Photograph of an impacting sphere onto a liquid pool, courtesy of Worthington and Cole [2]
b) Snapshot of air bubble entrainment of an impacting sphere onto a liquid pool, courtesy of Marston et
al. [3] The scale bar is 2 mm. A central air bubble indicated with an arrow along with several satelite
bubbles can be observed c) High-speed image sequence of an impacting sphere onto a liquid pool, courtesy
of Marston et al. [3] Entrapped air bubbles are indicated with arrows in the final frame. The scale bar
represents 1 cm.

With the advent of highspeed cameras these kind of impact phenomena, which typically take place on a
millisecond time scale, can be studied in more detail. As was recently shown by Marston et al. [3], an
impacting sphere entering a liquid pool can entrap air bubbles at the bottom of the sphere (see Fig. 1.1 b)
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as well as at the apex of the sphere (see Fig. 1.1 c). The air entrapment mechanism of the latter case can
be understood as follows: When an object falls onto a pool, it usually creates a cavity behind the object
as a result of the fluid that is displaced during impact. The subsequent collapsing cavity can leave a
trapped bubble at the rear of the object, as was also shown in [4, 5]. The mechanism of air entrainment
at the bottom of the impacting sphere is quite different, as is sketched in Fig 1.2a. Due to the build up
of air pressure the liquid pool deforms before the sphere actually touches the liquid, which results in an
entrapped air bubble. Similar air bubble entrainment is observed when a liquid drop instead of a solid
sphere falls onto a liquid pool [6, 7]. Also, due to the same local increase of pressure around the impact
zone, air entrainment can be observed when a drop impacts onto a solid surface. [8]. These three different
scenarios have been schematically depicted in Fig. 1.2

Figure 1.2: a) Rigid sphere impact onto a pool. The pool deforms due to an increase in air pressure right
under the sphere before the sphere touches the pool, which results in an entrapped air bubble. b) Drop
impact onto a pool. Not only the pool, but also the drop consists of a deformable interface. As a result,
the increased air pressure deforms both the pool and the drop and an air bubble is entrapped. c) Drop
impact onto a solid. Also here, a local increase in air pressure deforms the drop before it touches the
solid and results in an entrapped air bubble

It is this mechanism of air entrainment that is the main focus of this thesis. The primary goal is to capture
the essential physics of such an impact event into a numerical model. We will identify details of the
pressure development in the air film and deformation of the interfaces at the impact zone. Quantitatively
we will find out how the volume of the air bubble depends on several physical parameters such as impact
velocity, and compare these results among the different scenarios depicted in Fig. 1.2. The results of the
numerical model will be compared with available results from multiple experimental works. Considering
the geometry of the problems described above, a 2d axisymmetric model can be used. In addition, to
study the interplay of air and a drop during a more complex 3d problem, the air film under a drop and
a micropatterned surface is experimentally investigated. The micropatterend surface is expected to have
an influence on the dynamics, since the micro morphology of the surface is of the same size as the typical
thickness of the air layer, as will become apparent. The outline of the thesis will be discussed in the next
section.

1.2 Thesis structure

This thesis is organized as follows. In Chapter 2 a general background regarding the topic will be given.
Chapter 3 covers the theory that is used in the numerical model. In this chapter we will see that the liquid
phase will be modeled with a different technique compared to the approach that is taken to model the
airflow. In Chapter 3.4 the coupling between the air layer and liquid phase is explained. Chapter 4 covers
the numerical result of air entrainment during sphere impact onto a pool, and a comparison with available
experimental data will be made. In Chapter 5 the slightly more complicated case of drop impact onto a
pool will be discussed. Again a comparison between numerical results and experiments will be made. In
Chapter 6 the experimental characterization of the air film dynamics under an impacting droplet onto a
hydrophobic micro structure will be discussed. Chapter 7 will reflect on the content of this thesis, and
opportunities for future research will be discussed.
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Chapter 2

Background

This thesis concerns drop impact onto a flat plate, drop impact onto a liquid pool, and impact of a
rigid sphere onto a liquid pool. Though these phenomena may seem quite different, the same physical
mechanism is responsible for the initial deformation of the liquid interface: the build up of air pressure
at the impact zone. In the current chapter this phenomenon is described by considering the extensively
studied case of drop impact onto a flat plate as an example, and relevant dimensionless numbers for the
problem will be identified.

2.1 Drop impact onto a solid plate

When a drop approaches a solid surface, the surrounding air will also be displaced by the moving drop.
In the final stage of approach, a thin air layer between the solid and the drop needs to be squeezed out,
see Fig. 2.1.

Figure 2.1: a) Schematic of mm-sized drop impact onto a solid surface. An air layer (with a typical
thickness in the order of µm) needs to be squeezed out when the drop is approaching the surface. b) Due
to the increase of air pressure at the bottom of the drop a dimple is formed before the drop touches the
surface. The air film which is trapped between the drop and the surface is characterized by a thickness
h(r, t) and a lateral extension L. c) The drop touches at the thinnest point, thus entrapping air.

It turns out that this air film can influence the drop dynamics before the drop can actually touch the
surface. This can be understood as follows: the pressure of the thin air film that is trapped will increase,
and deform the interface locally. As a consequence a dimple can be formed at the bottom of the drop, see
Fig. 2.1b. The location of the smallest separation distance between drop and solid is not located in the
center anymore but at a rim position r > 0. Eventually the drop will touch the solid at this location, and
will thus entrap an air bubble, see Fig. 2.1c. These collisions of drops with a solid surface and subsequent
air entrapment have been recently quantified by Bouwhuis et al. [9], where mm-sized ethanol droplets
impacting on a glass surface were studied. The experimental setup that was used is depicted in Fig. 2.2.
A high speed color interferometry technique [10] was used to infer the dynamics of the microscopic air
film just before the drop touches the surface, see Fig. 2.2c. This method uses the color information in
the interference fringes to reconstruct the profile of the air film. It has become apparent now that quite
different length scales are involved in the problem: while the size of impacting drops is in the order of
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millimeters, the air film thickness is in the order of micrometers. In Chapter 6 this color interferometry
method will be used to analyze the dynamics of the air film between an impacting drop and a structured
surface, in which case the impact is not axisymmetric anymore.
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Figure 2.2: Taken from Bouwhuis et al. [9]. a) A sketch of dimple formation (not drawn to scale). The
dimple is characterized by a dimple height Hd and a lateral extension L. b) A microscope is attached
to a high speed camera to capture the interference fringes that originate from the thin air film that is
trapped between the drop and the glass slide. c) An example of an interference pattern from which the
air layer profile can be reconstructed.

Several relevant dimensionless numbers regarding the problem can be identified. The Reynolds number
of the liquid drop Rel ≡ ρlRU/µl compares inertial forces to viscous forces in the drop. Here ρl and µl
are the density and viscosity of the liquid respectively. U is the impact velocity of the drop and R is
the radius of the drop. This means that for high Reynolds number drops, the effect of viscosity can be
neglected. The Reynolds number of the gaseous air layer Reg is less obvious, because different length
scales L and Hd (Fig. 2.1) are involved. From geometrical arguments it can be shown that L ∼

√
HdR [9].

After analysis using a proper non-dimensionalized Navier-Stokes equation, see Appendix A, we identify
the Reynolds number of the gas as Reg ≡ ρgHdU/µg. Another important dimensionless group is the
Stokes number St ≡ ρlRU/µg which compares the viscous force of the air layer to the inertial force in
the drop. This number is relevant for describing dimple formation, since, for high enough impact velocity
U , dimple formation is determined by two competing forces: the force of the viscous air layer trying to
deform the drop in the center opposing the inertial force of the drop, which needs to be slowed down
locally in order to form a dimple. Additional dimensionless numbers incorporating surface tension γ are
the Weber number We and Capillary number Ca, which are defined below. Summarizing we have the
following dimensionless parameters:

Rel ≡
ρlRU

µl
Reg ≡

ρgHdU

µg
St ≡ ρlRU

µg
We ≡ ρlRU

2

γ
Ca ≡ We

St

2.2 Dimple characterization

The impact speeds considered is this thesis are at maximum in the order of m/s. Combining this with
the fact that the thickness of the air film is in the order of µm, we can thus determine an upper bound for
the Reynolds number of the gas: Reg = ρgHdU/µg ∼ 0.1, which shows that viscous effects are dominant
compared to the inertial effects in the air film. This allows us to describe the dynamics of the air film by
low Reynolds (Stokes flow) lubrication theory, see Appendix A for a general description. Interestingly,
the Reynolds number of the drop is at lowest ∼ 10 and will be in general much higher, which implies
that inertia dominates viscous effects in the liquid. The fact that the drop dynamics are dominated by
inertia and the air film dynamics by viscosity allows us to describe our results with the Stokes number,
since this dimensionless group compares inertia of the fluid to viscosity in the air film. For drops with a
low impact velocity, the effect of surface tension becomes present, and the Capillary number is a relevant
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dimensionless group. However, to be able to compare results more easier, the Stokes number will in
general be used to describe the results. In the final stage of impact the dimple can be characterized by
a dimple height Hd and an entrapped bubble volume Vb. This has been recently done by Bouwhuis et
al. [9] and the result is depicted in Fig. 2.3

Figure 2.3: Adapted from Bouwhuis et al. [9]. Blue symbols correspond to BIM results, black open circles
correspond to experimental data. The normalized bubble volume Vb/Vdrop and normalized dimple height
Hd/R exhibit a maximum which separates the two regimes governing air bubble entrainment: the inertial
regime and the capillary regime. Theoretical scaling laws describing these regimes have been derived,
and are also shown in this plot and are explained in the text.

As can be seen in this figure both experiments and numerics show an optimum in Hd and Vb, which is
supported by theoretical scaling laws. It turns out that the optimum separates two regimes. For low
impact velocities, i.e. low St the dimple formation is limited by the force of the Laplace pressure, which
tries to keep the drop spherical, against the lubrication pressure in the gas, which tries to form a dimple.
This regime is called the capillary regime, and the following theoretical scalings have been derived [9]:

Hd/R ∼ St1/2 (2.1)

Vb/Vdrop ∼ St. (2.2)

In the case of high U it is however the inertia of the drop that reduces Vb, because the fluid needs to be
slowed down by the lubrication pressure at the bottom of the drop to form a dimple which gets more
difficult for drops with more inertia. This regime is called the inertial regime, and the following theoretical
scalings have been derived:

Hd/R ∼ St−2/3 (2.3)

Vb/Vdrop ∼ St−4/3. (2.4)

Consequently, there is a maximum in Vb and Hd between the capillary regime (surface tension dominated)
and the inertial regime, which is now also theoretically explained, see Bouwhuis et al. [9] for details.
However, in Fig. 2.3b one can observe that experiments and BIM do not perfectly follow the Vb/Vdrop ∼ St
trend in the capillary regime, but suggest a larger slope of 2. In Appendix B this is explored in greater
detail: preliminary results of a Stokes-Reynolds-Young-Laplace (SRYL) model to better understand the
capillary regime are presented, which doesn’t take into account the inertia of the fluid which is always
present to some amount in BIM.

2.3 Impact onto a pool

The impact of a liquid drop onto a pool of the same liquid and the impact of rigid sphere onto a liquid
pool can be described with the same dimensionless numbers. In fact, the initial geometry of the problems
is identical, and the difference is the deformability of the object, which is zero in case of a solid. As
is explained, the air layer is characterized by a low Reynolds number, and can be described by viscous
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lubrication theory, which is explained in Chapter 3.3. For the liquid, we have however a large Reynolds
number. This allows for describing the dynamics of the liquid with potential flow, i.e. neglecting viscous
effects. The potential problem can be solved using the Boundary Integral Method (BIM), see Cheng et
al. [11] for a historical review article. BIM for potential flow will be described in Chapter 3. In Fig. 2.4
an illustration of the problem, in this case impact of a drop onto a pool, together with the used methods
is shown. As is also clear from this figure, the coupling between the dynamics of the air layer and the
dynamics of the liquid is essential. This coupling will be further discussed in Chapter 3.4.

Figure 2.4: Schematic of drop impact onto a a pool. For solving the dynamics, we assume potential flow
in both the liquid domains. The air layer is described with Stokes flow. The gray arrows indicate that
the flow of air film is coupled to the dynamics of the liquid domains and vice versa.
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Chapter 3

Theory

In this chapter the Boundary Integral Method (BIM) for potential flow will be discussed. First the
concept of potential flow will be explained. Subsequently, the BIM for solving the potential problem will
be presented. The Physics of Fluid group in Twente developed a code that solves the Boundary Integral
equation numerically [12]. For the case of drop impact onto a liquid pool, two distinct liquid domains
were created in the original BIM code, which was originally designed for one domain. In section 3.3
lubrication theory will be developed to describe the dynamics of the air film.

3.1 Boundary Integral Method for Potential flow

When a flow field u has a high Reynolds number, the viscous term in the Navier-Stokes equation can be
neglected, and under additional assumptions [13], which are applicable for the flows we consider in this
thesis, we can conclude that the flow is irrotational, i.e. ∇× u = 0. This allows for setting up a scalar
potential φ describing the flow field:

u = ∇φ (3.1)

If in addition the Mach number Ma� 1, which is the case for our flows, we can conclude that the flow
is incompressible. From the continuity equation [13] it then follows that the velocity field is divergence
free:

∇ · u = 0. (3.2)

If we now substitute Eq.3.1 into Eq.3.2, we find that the velocity field u obeys the Laplace equation:

∇2φ = 0. (3.3)

The fact that the velocity field obeys the Laplace equation is used to efficiently solve the potential
problem, and thus the dynamics of the fluid, using the Boundary Integral Method, which is described
in the next section. For setting up the boundary integral equation (BI equation) use of the free space
Green’s function is made. The corresponding free space Green’s function G(x,x0) to Eq. 3.3 has to
satisfy ∇2G(x,x0) + δ(x− x0) = 0. The solution to this equation is given by:

G(x,x0) =
1

4π|x− x0|
. (3.4)

Combining these properties of Green’s function with the property of φ being a harmonic function, Green’s
second identity can be used to derive the Boundary Integral equation for the solution of the potential
inside a singly connected domain φ [14]:

φ(x0) =

∫
S

∂G(x,x0)

∂n
φ(x)dS(x)−

∫
S

G(x,x0)
∂φ(x)

∂n
dS(x) (3.5)

The power of the Boundary Integral equation Eq. 3.5 now becomes evident: the potential φ(x0) inside
the domain is represented as a function of boundary integrals of values on the surface, hence the name
Boundary Integral Method, see Fig. 3.1. This means that a 3d potential problem can be solved by solving
the BI equation at the 2d surface enclosing the volume. Likewise, a 2d potential problem can be converted
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to a 1d problem, where the BI equation now has to be solved for the line enclosing the surface. Thus,
a substantial computational gain is obtained, because BIM lowers the dimension of the problem by one
[15].

Figure 3.1: Adapted from Klaseboer et al. [15] a) Schematic of a 3d flow domain with x0 located inside
the domain. b) Here x0 is located on the surface of the domain. n is the unit normal vector.

The BI equation can be solved by putting x0 on the surface, see figure Fig. 3.1b. In the case that x0 is
located at the surface S, the LHS of the BI equation Eq. 3.5 is slightly modified [15] and reads:

cφ(x0) =

∫
S

∂G(x,x0)

∂n
φ(x)dS(x)−

∫
S

G(x,x0)
∂φ(x)

∂n
dS(x) (3.6)

Now the potential φ(x0) on the LHS of Eq. 3.6 is multiplied by a value c, which depends on the smoothness
of the interface. It turns out that if the curvature of the interface is well-defined, c has a constant value of
c = 1/2. If the interface has sharp edges with no well-defined curvature, as for example in the case where
a fluid touches a solid and forms a contact line, c will not be constant. However, the problems considered
in this thesis always deal with smooth fluid interfaces, so c always has the value of 1/2. Since Green’s
function G(x,x0) (and its normal derivative) is fully given, we inspect that Eq. 3.6 describes a relation
between φ and ∂φ

∂n at the surface S. We note that ∂φ
∂n = un is the normal component of the velocity at the

surface. One of these two variables φ or ∂φ
∂n has to be known in order to solve for the remaining unknown

variable. This depends on type of boundary condition at the surface, as will be explained in the next
section.

3.2 Boundary conditions

The type of boundary at the fluid surface determines what kind of boundary condition is employed. Two
cases can be distinguished. Either the fluid surface is a free surface, or the fluid is touching a solid and
we deal with a solid boundary.

If the fluid is touching a solid wall at some point, the normal velocity ∂φ
∂n of the fluid is specified by

the velocity of that solid wall, since the fluid has to move along with the wall. The boundary condition
for the potential at a solid wall will thus be a Neumann boundary condition ∂φ

∂n = −Uwall. Here the Uwall
is the normal velocity of the wall, which is simply zero if we deal with a rigid wall. While ∂φ

∂n is specified
at the solid boundary, the potential φ itself will be unknown.

If the fluid surface is a free surface instead of a solid boundary, ∂φ
∂n will be unknown. However, φ at

the free surface can be found using the unsteady Bernoulli equation which has to be valid at the free
surface [13]:

∂φ

∂τ
= −1

2
|∇φ|2 − g · x0 −

γκ(r, τ) + p

ρl
(3.7)

Here γ is the interfacial tension, κ is the local curvature of the interface, g is the acceleration of gravity,
τ is time, and p is the pressure at the exterior of the drop. Given a certain initial condition φ0(r, τ0) one
can find φ(r, τ > τ0) by integrating in time. In practice, this is done numerically: each time step the new
potential φ(r, τ > τ0) has to be found by integrating the given φ0(r, τ0) of the current timestep.

Furthermore, the free interface has to move with the local velocity, which is known as the kinematic
boundary condition. This effectively means that there can be now fluid flow across the interface which
means that a fluid particle xs at the surface will be displaced according to the local velocity:
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Dxs

Dτ
= ∇φ. (3.8)

Summarizing, we conclude that the BI equation 3.6 can be solved by providing either φ or ∂φ
∂n at the

surface using the appropriate boundary condition. In this thesis we only deal with free fluid surfaces
which means that φ will be known at the surface, and Eq. 3.6 can be used to solve for ∂φ

∂n . For a more
detailed numerical implementation the reader will be referred to [16].

3.3 Lubrication approximation for Stokes flow

In this section lubrication theory for drop impact onto a solid surface will be developed and extended to
the case of drop impact onto a liquid pool, which demands a more careful approach since we now deal
with a deformable subphase instead of a undeformable flat solid surface. For impact of a rigid sphere
onto a pool, we can use the same lubrication equations as for drop impact onto a pool.

3.3.1 Drop impact onto a flat surface

A definition sketch of drop impact onto a solid surface is depicted in Fig. 3.2. The air which needs to
be squeezed out when the drop is approaching the solid surface is essential for the dynamics of the drop.
Due to an increase in air pressure right under the impacting drop, the interface will deform locally: a
dimple is formed before the drop touches the surface. The dynamics of the thin air film trapped between
the impacting drop and the solid surface is characterized by a thin film Reynolds number Reg = ρUhd/µ,
as is described in Chapter 2. Here U is the impact velocity of the drop and h(r, t) is the film thickness.
Furthermore, ρ is the density of air and µ is the dynamic viscosity of air.

Figure 3.2: a) Schematic of drop impact on a solid surface. Air needs to be squeezed out when the drop
is approaching the surface. b) Due to the increase of air pressure a dimple is formed before the drop
touches the surface. The air film which is trapped between the drop and the surface is characterized by
a thickness h(r, t) and a lateral extension L.

The highest Reynolds number in the explored parameter range is Re ∼ 0.1 and we can use lubrication
theory as described in Appendix A. In that case the Navier-Stokes equations can written as:

∂p

∂r
= µ

∂2ur
∂z2

. (3.9)

We can integrate equation Eq. 3.9 twice with respect to z, employing a no slip boundary condition at
the solid surface (ur = 0 at z = 0) as well as at the surface of the drop (ur = Ud(r, t) at z = h):

ur = Ud

( z
h

)
+

1

2µ

∂p

∂r
(z2 − zh). (3.10)
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The first term of Eq 3.10 can be associated with Couette flow, caused by the movement of the drop
surface. The second term can be associated with Poiseuille flow, which is driven by the radial pressure
gradient [17]. Assuming that the air flow is incompressible (Ma� 1), mass conservation is given by:∫ h

0

1

r
urdz +

∂

∂r

∫ h

0

urdz + ḣ = 0. (3.11)

Here the fact that the surface of the interface moves with the local velocity is used, which is known as
the kinematic boundary condition:

∂h

∂t

∣∣∣∣
z=h

+
∂h

∂r
ur|z=h − uz|z=h = 0 (3.12)

We now substitute our expression for ur in Eq. 3.11:

∫ h

0

1

r

[
Ud

( z
h

)
+

1

2µ

∂p

∂r
(z2 − zh)

]
dz +

∂

∂r

(∫ h

0

[
Ud

( z
h

)
+

1

2µ

∂p

∂r
(z2 − zh)

]
dz

)
+ ḣ = 0. (3.13)

Performing the integration and multiplying with r, we find:[
Ud
h

2
− h3

12µ

∂p

∂r

]
+ r

∂

∂r

([
Ud
h

2
− h3

12µ

∂p

∂r

])
+ rḣ = 0. (3.14)

We can now combine the first two terms of the LHS, which is essential in solving for ∂p
∂r :

∂

∂r

(
r

[
Ud
h

2
− h3

12µ

∂p

∂r

])
+ rḣ = 0. (3.15)

We now can write Eq. 3.15 like:

rUd
h

2
− rh3

12µ

∂p

∂r
=

∫ r

0

−r̃ḣdr̃. (3.16)

Solving for ∂p
∂r gives an expression which we can integrate numerically to compute the pressure p in the

film:

∂p

∂r
=

12µ

rh3

∫ r

0

r̃ḣ dr̃ +
6µUd
h2

. (3.17)

The second term of the RHS is the extra term due to movement of the drop surface in the radial direction.

3.3.2 Drop impact on a liquid pool

The lubrication equations for impact on a pool will be derived in several steps. The approach will be the
same as for drop impact onto a flat surface, but we will see that the geometry of the thin air film will be
different, since the pool, just like the drop, will also deform. This will result in slightly more complicated
equations.

Mass conservation

We start with continuity in cylindrical coordinates:

ur
r

+
∂ur
∂r

+
∂uz
∂z

= 0. (3.18)

A definition sketch of drop impact on a liquid pool is depicted in Fig. 3.3. Here the drop surface is
taken as a reference, and the curvilinear coordinate t is defined along the drop, starting at the center of
symmetry. At some large radial coordinate where t = T we assume atmospheric pressure. The coordinate
perpendicular to t is defined to be n. The gap height h is defined as the length of the perpendicular
line from the drop projected onto the liquid pool. The two surfaces are assumed to be nearly parallel
(|∂th| � 1), so we can apply lubrication theory.
It can be shown that for this new (t,n)-coordinate system, the continuity equation can be written as [16]:
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Figure 3.3: a) Schematic of drop impact on a liquid pool. b) Definition of the curvilinear (t,n)-coordinate
system.

ur
r

+
∂ut
∂t

+
∂un
∂n

= 0. (3.19)

At the interface of the liquid pool (n = h) we know that the fluid particles have to move with the interface.
This is mathematically described with the kinematic boundary condition:

ḣ+

(
ut

∂h

∂t

)∣∣∣∣
n=h

= un|n=h − un|n=0. (3.20)

Here ḣ is the time derivative of h. We emphasize that t is the curvilinear coordinate and not time. We
now integrate Eq. 3.19 along h and obtain:∫ h

0

ur
r
dn+

∫ h

0

∂ut
∂t

dn = −
∫ h

0

∂un
∂n

dn = un|n=0 − un|n=h. (3.21)

Using Leibniz integral rule for the second integral we find:∫ h

0

ur
r
dn+

∂

∂t

∫ h

0

ut dn−
(
ut

∂h

∂t

)∣∣∣∣
n=h

= un|n=0 − un|n=h. (3.22)

We now use the kinematic boundary condition formulated in Eq. 3.20 for the third term on the LHS to
obtain: ∫ h

0

ur
r
dn+

∂

∂t

∫ h

0

ut dn+ ḣ− un|n=h + un|n=0 = un|n=0 − un|n=h. (3.23)

Canceling the terms un|n=h and un|n=0 on both sides gives:∫ h

0

ur
r
dn+

∂

∂t

∫ h

0

ut dn+ ḣ = 0. (3.24)

We still have to describe ur within the new (t,n)-coordinate system. Therefor we substitute ur =
un cos(θ)− ut sin(θ) in the equation above to get:∫ h

0

1

r
un cos(θ)dn−

∫ h

0

1

r
ut sin(θ)dn+

∂

∂t

∫ h

0

utdn+ ḣ = 0. (3.25)

We assumed in lubrication theory that un is small, so we neglect the first term. The second term is an
integral with respect to n containing the variable r. This radial coordinate r across h is a function of n:
r = n cos θ + c(t). Here c = c(t) is the value of r at the drop surface (n = 0) for some coordinate t. We
thus substitute this expression for r into Eq 3.25 and neglect the first term to find:

−
∫ h

0

sin(θ)

n cos θ + c
utdn+

∂

∂t

∫ h

0

utdn+ ḣ = 0. (3.26)
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Flow profile within the air film

Just like the case of drop impact onto a flat surface, we assume a small thin film Reynolds number
Re � 1. Again, the geometry of the problem allows us to use lubrication theory. In the case of impact
on a pool, the Navier-Stokes equations can then be written as:

∂p

∂t
= µ

∂2ut
∂n2

. (3.27)

We can integrate equation Eq. 3.27 twice with respect to n, employing a no slip boundary condition at
the drop surface (ut = Ud at n = 0) as well as at the surface of the pool (ut = Ub at n = h):

ut =
(

(Ub − Ud)
n

h
+ Ud

)
+

1

2µ

∂p

∂t
(n2 − nh). (3.28)

The first term of Eq. 3.28 can be associated with Couette flow, caused by the movement of interfaces. The
second term can be associated with Poiseuille flow, which is driven by the radial pressure gradient [17].
Substituting this expression for ut in our equation for mass conservation, Eq. 3.26, we get:

−
∫ h

0

sin(θ)

n cos θ + c

[(
(Ub − Ud)

n

h
+ Ud

)
+

1

2µ

∂p

∂t
(n2 − nh)

]
dn

+
∂

∂t

∫ h

0

[(
(Ub − Ud)

n

h
+ Ud

)
+

1

2µ

∂p

∂t
(n2 − nh)

]
dn+ ḣ = 0. (3.29)

In the first integral we deal with a prefactor sin(θ)/(n cos θ+ c). When taking into account the geometry
of the problem into account we note that n cos θ � c. We thus assume sin(θ)/(n cos θ + c) ≈ sin(θ)/(c).
Performing the integrals of Eq. 3.29 under this assumption yields:

− sin(θ)

c

(
h

2
(Ub + Ud)−

h3

12µ

∂p

∂t

)
+
∂

∂t

(
h

2
(Ub + Ud)−

h3

12µ

∂p

∂t

)
+ ḣ = 0. (3.30)

We note that one cannot combine the first two terms of the LHS of the equation above easily, unlike the
case of impact on a flat plate, where we could nicely combine the two terms, as was done in going from
Eq. 3.14 to Eq. 3.15. We now have to work a bit harder to obtain an expression for ∂p

∂t . If we adopt

G(t) =
(
h
2 (Ub + Ud)− h3

12µ
∂p
∂t

)
we can transform the equation above to a first order inhomogeneous linear

ODE for G(t):

Ġ(t)− a(t)G(t) = f(t). (3.31)

Here a(t) and f(t) are known functions of t:

a(t) =
sin(θ)

c
(3.32)

f(t) = −ḣ (3.33)

Solving first order inhomogeneous ODE

To solve Eq. 3.31 we define an integrating factor Ĩ(t) = e−
∫
a(t)dt = ece−

∫ t
0
a(t̃)dt̃. Here ec is an integration

constant. We multiply both sides of Eq. 3.31 with the integrating factor Ĩ(t) to obtain:

(ĨG)′ = Ĩ(Ġ− aG) = Ĩf (3.34)

Integrating this equation yields:

I(t)G(t) =

∫ t

0

I(t̃)f(t̃) dt̃+K (3.35)

Here we have defined I(t) = e−
∫ t
0
a(t̃)dt̃ and absorbed ec in the integration constant K. Solving for G(t)

finally gives us:

G(t) =
1

I(t)

(∫ t

0

I(t̃)f(t̃) dt̃+K

)
(3.36)
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The integration constant K should be taken such that G(t) = 0 for t = 0, because we have zero pressure

gradient in the center of symmetry, and also zero tangential velocities. Because the integral
∫ t
0
I(t̃)f(t̃) dt̃

goes to zero for t = 0, we conclude K = 0.

We can now substitute G(t) =
(
h
2 (Ub + Ud)− h3

12µ
∂p
∂t

)
to write an equation for ∂p

∂t , noting that we have

to evaluate two numerical integrals to calculate ∂p
∂t :

∂p

∂t
= −12µ

h3

(
1

I(t)

(∫ t

0

I(t̃)f(t̃) dt̃

)
− h

2
(Ub + Ud)

)
(3.37)

with
I(t) = e−

∫ t
0
a(t̃)dt̃. (3.38)

We note that for calculating p(t) we have to evaluate three numerical integrals compared to two numerical
integrals in the case of impact on a flat plate. As a check of our analysis we now orientate the (t,n)-
coordinate system in such away that t = r, to recover the situation for drop impact onto a flat plate. In
that case we have θ = −π/2, and we can write for a:

a(r) =
sinθ

r
= −1

r
(3.39)

The integrating factor I now becomes:

I(r) = e−
∫ r
0
a(r̃)dr̃ = eln r = r (3.40)

Under the proposition t = r, which resembles the more simple coordinate system of drop impact onto a
solid surface, we also have Ub = 0. We can now write Eq. 3.37 as:

∂p

∂r
= −12µ

h3

(
1

I(r)

(∫ r

0

I(r̃)f(r̃) dr̃

)
− h

2
(Ub + Ud)

)
=

12µ

h3

(
1

r

(∫ r

0

r̃ḣ dr̃

)
+
h

2
Ud

)
(3.41)

We see that Eq. 3.17 derived in the previous section for drop impact onto a solid is recovered by Eq. 3.41
which was derived by taking Eq. 3.37 for t = r, which gives a consistency check for our analysis.

3.4 Coupling air dynamics to the BIM

The description of the air flow dynamics with lubrication theory is not enough to describe the whole
impact event. As is explained in Chapter 2, a coupling is needed with the liquid that is described by
potential flow solved by using BIM. This coupling is realized by using an additional pressure term Pg in
the unsteady Bernoulli equation Eq. 3.7, which serves as a boundary condition in the BIM as described
in Chapter 3. The unsteady Bernoulli equation with the extra term for the gas pressure Pg reads:

∂φ

∂τ
= −1

2
|∇φ|2 − g · x0 −

γκ(r, τ) + (Pg − Patm)

ρl
(3.42)

In Fig. 3.4 an illustration of the numerical implementation is shown. The air pressure Pg is calculated
using the lubrication equations as described in the previous sections 3.3.1 and 3.3.2. Pg serves as an
input for solving the BI equation Eq. 3.42 for the next timestep via the unsteady Bernoulli equation.
The solution of the BI equation will give the current shape evolution of both the drop and the pool.
Subsequently, the lubrication pressure Pg can again be determined as function of the shape evolution and
serves as a new input to solve the BI equation of the next time step. The pressure will be solved from
r = 0 until some large radial coordinate rmax, where the pressure is negligible small, which is in practice
taken as rmax = 0.7R. Here R is the radius of the drop.

17



Figure 3.4: Feedback mechanism of the solving routine: The air pressure Pg is calculated and serves
as input for the BIM. Subsequently, the drop and pool shape get updated, and this allows for the next
calculation of Pg, and so forth.
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Chapter 4

Air entrainment during solid sphere
impact on a liquid pool

In this chapter we consider air entrainment during the impact of a rigid sphere onto a liquid pool
numerically, and compare it to experimental data from Marston et al. [3]. Potential flow is used for the
liquid pool and solved using BIM as described in Chapter 3 coupled to a viscous lubrication air layer as
described in Chapter 3.3.2.

Figure 4.1: Rigid sphere impact onto a liquid pool. Note the different length scales for the x-axis and
y-axis in the shape plots. The impact speed is U = 0.42m/s and the radius is R = 0.95mm. The density
and surface tension of the fluid are respectively ρ = 916 kg/m3 and γ = 0.020N/m. The simulation
starts at time t = 0ms at an separation of h = 50µm. Due to the approach of the sphere, the excess air
pressure Pg will increase and acts on the liquid pool (t = 0.12ms). At the final stage t = 0.15ms the
interfaces are very close to each other (∼ 0.4µm) and the simulation is stopped.
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4.1 Time evolution of sphere impact onto liquid pool

A typical result is depicted in Fig. 4.2. In the first frame corresponding to t = 0ms the initial condition
of the simulation is shown. In all simulations the sphere is released from an initial height of h0 = 50µm.
Convergence tests regarding the initial release height have been conducted, and releasing the sphere from
a larger height gave almost the same results. The physical reason is that the lubrication pressure goes to
zero for large separation of the sphere and the pool, and it turned out that h0 = 50µm is large enough
to have a negligible lubrication pressure at this height. At t = 0.12ms the pool starts to feel the sphere,
and the interface is deforming. In the lower panel of this frame, the increase in pressure is indeed visible.
At t = 0.14ms the sphere is getting closer to the pool, and the interface has been further deformed. It
can also be noted that the pressure maximum is not located in the center at r = 0 anymore, but now
corresponds to a location where the separation between the sphere and the pool is smallest. In the final
frame t = 0.15ms we observe that the two interfaces are very close together (∼ 0.4µm). Typically, at
this point where the air gap is ∼ 0.4µm, the pressure Pg will diverge and we cannot continue simulation.
Though, we do note that the interfaces up to this final stage are very well resolved, which is shown in the
inset in the final frame in Fig. 4.1. We further note from the final frame that an microscopic air film finds
itself trapped between the sphere and the pool. It is this entrapped air that constitutes the air bubble
that is dragged into the liquid, as will be further discussed in the next section.

4.2 Contact diameter at impact

Marston et al. [3] performed experiments of steel spheres impacting on various liquid pools and studied
the air bubble that is formed at the bottom of the sphere. A high-speed image sequence of the air bubble
entrainment that they captured is shown in Fig. 4.2a. A contact diameter Dc is defined as the diameter
of initial contact of the sphere with the pool. As is shown in Fig. 4.2a, this already happens in the second
frame. It has been reasoned by Marston et al. [3] that this initial contact diameter Dc sets the bubble
volume, because after contact the air sheet merely contracts to form a hemispherical air bubble, but the
total volume of air that is entrapped is already determined. Since our simulations do not capture the
complex dynamics after contact (which involves a moving contact line), it will be insightful to compare
our numerical value for the initial contact diameter Dc, which is taken as the peak-to-peak distance of
the two local maxima of the liquid pool, see Fig. 4.2b. These maxima are close to the location of the
minimum air gap and are thought to represent the detection of the diameter in experiment best.
The experimental results for Dc from Marstion et al. [3] together with the BIM results are shown in
Fig. 4.3. We see that the BIM results, which are shown as red solid circles, are in reasonable agreement
with the trend that is shown by the experimental data. Though we cannot simulate the subsequent
collapse of the air film into a bubble, the agreement in Dc suggests that we will be able to estimate the
total bubble volume Vb which is enclosed by the two interfaces.

4.3 Entrapped air bubble volume

The air bubble volume Vb is determined at the final stage of impact as shown in Fig. 4.2c by numerically
integrating the trapped air film starting from the location of minimum separation. The result of Vb versus
St is depicted in Fig. 4.4a, where the Stokes number St is varied by varying the impact velocity only.
We find excellent agreement with experimental data. Also, the BIM results (yellow triangles) agree with
the theoretical description Vb/V ∼ St−4/3 (solid line), which has been successfully developed to describe
bubble entrapment during drop impact onto a flat surface [18, 19, 9], see also Chapter 2. It seems that
there is a similar mechanism for bubble entrapment during impact of a solid sphere onto a pool and liquid
drop impact onto a solid, which has also been suggested by Marstion et al. [3]. The apparent universal
mechanism for bubble entrapment will be further discussed in Chapter 5.1.

For calculating Vb the final frame as depicted in Fig. 4.2c is considered where the minimum air gap
thickness hmin = 0.4µm. It is required that the air bubble volume has been converged at this stage. To
check this assumption, the bubble volume has been also determined at hmin > 0.4µm. This result is
shown in Fig. 4.4b. We conclude that Vb is determined accurately, although we were not able to simulate
until hmin = 0µm, because hmin = 0.6µm gives similar results.
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Figure 4.2: a) High-speed image sequence taken and modified from Marston et. al [3]. The scale bar
represents 500µm b) Numerical determination of Dc c) Same snapshot as in b, zoomed in on the air film
to indicate the entrapped bubble volume Vb.

21



10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

Re
g
=UD/ν

g

D
c/

D

 

 

D
0
 = 15 mm, water

D
0
 = 20 mm, water

D
0
 = 30 mm, water

D
0
 = 15 mm, 25% gly

D
0
 = 20 mm, 25% gly

D
0
 = 30 mm, 25% gly

D
0
 = 20 mm, 60% gly

D
0
 = 20 mm, 70% gly

D
0
 = 20 mm, 10 cSt oil

D
0
 = 20 mm, 80% gly

D
0
 = 20 mm, 3% SDS

BIM

Figure 4.3: Experimental data for the contact diameter Dc normalized by the sphere diameter D, taken
from Marston et. al [3] who are acknowledged for providing their original data set. A general trend
independent of viscosity has been found for various spheres of diameter D. BIM results are in reasonable
agreement with this trend.

Figure 4.4: a) Normalized bubble volume versus Stokes number. BIM gives good agreement with various
experiments and the theoretical slope of −4/3. b) BIM results for different hmin. This indicates that
further decreasing hmin is not expected to affect the final bubble volume Vb much.
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Chapter 5

Drop impact onto a liquid pool

Drop impact onto a liquid pool is different compared to impact of a rigid sphere onto a pool because
the impacting object, the drop, is a deformable object. This means that the pressure build up in the
air layer will affect both the liquid pool and the drop. In this Chapter drop impact onto a pool and the
subsequent air entrapment is discussed. A numerical result is depicted in Fig 5.1. As is clear from this
figure, both the drop and the pool deform, unlike rigid sphere impact on a pool which is depicted the
previous chapter, Fig. 4.1. Just like is described in Chapter 4, a bubble will be entrapped due to the
deformation of the interfaces, which will be investigated in detail below.

5.1 Entrapped air bubble volume

Similar as was done in Chapter 4 the bubble volume Vb is determined in the final stage of impact,
where the air gap thickness hmin = 0.4µm. This numerical bubble volume will be compared to recent
experimental data [6], see Fig. 5.3. In this figure we see a drop entering a liquid pool when looking from
the side. In the first three frames we observe a stable air film between the drop and the pool. In the
subsequent frame at 0ms we observe rupture of the air film, because the interfaces are so close to each
other at this point that they will touch, i.e they coalesce. After coalescence surface tension contracts the
air film into an air bubble, which can be measured.
When comparing the numerics in Fig. 5.1 to the experiment Fig. 5.2 one difference can be noted: the
distance the drop travels into the pool before the air film ruptures. In the case of experiment, the drop
sinks deep into the pool (∼ mm) before rupture, while in case of numerics, where rupture is assumed
to occur at hmin = 0.4µm, the drop does not penetrate the pool that much (∼ µm). The penetration
depth of the drop into the pool will be further discussed in Chapter 5, we will now first focus on the air
bubble volume Vb that is entrapped. The numerical result for Vb (yellow circles), together with recent
experimental data for drop impact onto a pool [6] (red symbols), is depicted in Fig. 5.3. We again find
excellent agreement between BIM simulations and experimental data. In this figure also the data for
sphere impact onto a pool (simulations shown as yellow triangles, experiment as blue triangles), and
experimental data for drop impact onto a solid from Fig. 4.4 (green symbols) are shown.
As can be seen from the figure, the same scaling Vb ∼ St−4/3 holds for drop impact onto a pool (both
numerics and experiments), but there is an offset from the rest of the data for which only one of the
interfaces is deformable, i.e. the case of sphere impact onto a pool, or drop impact onto a solid. Intuitively
we can understand this offset: when we deal with two deformable interfaces (liquid drop and pool) both
interfaces can be deformed to make more room for an air bubble compared to the case when we deal
with only one deformable interface. To further investigate this, we investigate the deformation δ of the
interfaces. A definition sketch of δ is shown in Fig. 5.4.

The time evolution of the deformation δ of both the pool and the drop are displayed in Fig. 5.5.
We note that δ for the pool and the drop are behaving very similar, they are almost identical. In the final
frame t = 0.13ms δ of the pool for rigid sphere impact with the same velocity is superimposed. We note
that δ of the sphere impact simulation is of similar magnitude compared to δ of the drop impact onto
a pool. The fact that δ is so similar for both interfaces, and the fact that we deal with two deformable
interfaces instead of one, leads us to the suspicion that the entrapped bubble in case of drop impact onto
a pool compared to sphere impact onto a pool might differ by a factor 2. This hypothesis is tested by
first plotting the results from Fig. 5.3, but now we include also the BIM results that have been found in
the capillary regime for drop impact onto a pool, see Fig. 5.6. These results have been initially omitted
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Figure 5.1: Drop impact onto a liquid pool. Note the different length scales for the x-axis and y-axis
in the shape plots. The impact speed is U = 0.42m/s and the radius is R = 0.95mm. The density
and surface tension of the fluid are respectively ρ = 916 kg/m3 and γ = 0.020N/m. The simulation
starts at time t = 0ms at an separation of h = 50µm. Due to the approach of the sphere, the excess air
pressure Pg will increase and acts on both the drop and the liquid pool (t = 0.13ms). At the final stage
t = 0.16ms the interfaces are very close to each other (∼ 0.4µm) and the simulation is stopped. The
bubble volume Vb can thus be determined

in Fig. 5.3, because no experimental data in this regime exists for drop impact onto a pool. We note that,
just like results for drop impact onto flat plate [9], Vb exhibits a maximum. The physical reason for this
maximum has been explained in Chapter 2. We note that Vb for drop impact onto a pool is also bigger
than Vb for drop impact onto a flat plate in the capillary regime. To test the hypothesis of a factor 2, we
plot 0.5Vb instead of Vb for drop impact onto a pool. As can be seen in Fig. 5.6b, the yellow simulation
data indeed collapses on the data which has only one deformable interface. These results thus support
the following statement: the bubble that is entrapped during drop impact onto a pool is twice as big
compared to impact which involves only one deformable interface. A more rigorous theoretical treatment
is needed to further support this factor 2. Another explanation, which also successfully collapses the
data in the inertial regime has been given by Tran et al. [6], which takes into account that the drop
penetrates the pool with a penetration velocity Up = 0.5U , where U is the impact velocity. When their
experimental results for Vb for drop on a pool are plotted with a modified St based on Up = 0.5U , the
data in Fig. 5.6a is effectively moved to the left, which gives a similar collapse with the data with one
deformable interface [6]. We check this experimental observation of Up = 0.5U with our simulation data.
A time evolution of the velocities of both interfaces at r = 0 is shown in Fig. 5.7. After some transient
behavior at time t = 0.1ms where the drop is decelerated while the pool is accelerated, we see that both
the drop and the pool adapt to half of the original impact speed, which is indicated with a solid line in
the lower panel. This can be understood from an energy balance [6], which depends on the density ratio
of the fluids, which is one in this case. This result demonstrates that BIM, apart from the microscopic
air film entrapment, is also able to predict properties of the large scale dynamics of the problem.
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Figure 5.2: Adapted from Tran et al. [6]. A side view image sequence of a silicone drop with a viscosity of
20 cSt and a diameter of 1.92mm entering a pool of the same liquid with an impact velocity of 0.52m/s
is shown. At 0ms the air film ruptures and subsequently a bubble is trapped.

As Tran et al. [6] suggest in their work, it is interesting to investigate the effect of a density difference
between the pool and the drop on Up, which was not within the scope their work. However, this can be
easily done with the current BIM, and could subsequently be verified with experiments. This is also not
within the scope of this thesis, but recommended for future research. Furthermore, we note from Fig. 5.7,
that the drop sinks very deep into the pool, compared to for example the drop in Fig. 5.1. It turns out
that this is actually depends on the impact speed U of the drop. The penetration depth of the drop into
the pool will be the topic of the next section.
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Figure 5.3: Figure adapted from Tran et al. [6], BIM results superimposed. Various experimental data
for Vb is shown. As can be inspected from the figure, Vb for drop impact onto a pool is always bigger
(almost perfectly a factor 2) compared to Vb of the sphere impact onto a pool and drop impact onto a
solid.

Figure 5.4: Definition sketch of δ
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Figure 5.5: Drop impact onto a pool with a corresponding plot of the deformation δ of both the pool and
the drop. We observe excellent overlap between the deformations. In the final frame the deformation of
the pool is shown in case of the impact of a rigid sphere instead of a drop for the same impact conditions:
The impact speed is U = 0.42m/s and the radius is R = 0.95mm. The density and surface tension of
the fluid are respectively ρ = 916 kg/m3 and γ = 0.020N/m.
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Figure 5.6: Figure adapted from Tran et al. [6], BIM results superimposed. a) Original data set b) Vb
data for BIM (yellow circles) for drop impact onto a pool is multiplied by 0.5, and a collapse with the
data with only one deformable interface is obtained.

28



Figure 5.7: Drop impact onto a pool. The impact speed is U = 0.14m/s and the radius is R = 0.95mm.
The density and surface tension of the fluid are respectively ρ = 916 kg/m3 and γ = 0.020N/m. The
vertical velocity of the two interfaces are tracked in time at r = 0. We observe that after some transient
behavior the drop sinks with Up = 0.5U , which is indicated with the black solid line.
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5.2 Experimental results: penetration depth viscous drop onto
a pool

In Chapter 5 we found very good agreement in the entrapped bubble volume during drop impact onto a
pool when comparing BIM simulations to experiments. One difference between numerics and experiment
was observed though, which is the penetration depth of the drop into the pool until rupture occurs. This
distance is defined as the rupture height Hr, see Fig. 5.8. Here we focus on a set of experiments which
have been carried out to investigate the effect of the viscosity of the liquid on Hr.

Figure 5.8: Courtesy of Ezeta and Citravidya [20], who have made this image during the Experimental
Technique course. a) A drop entering the pool right before air film rupture. b) Air film rupture is
indicated with the yellow arrow.

The reason why the air film ruptures is that at some point the attractive van der Waals force between
the surfaces becomes dominant which results in coalescence, which typically happens when the air film
thickness is ∼ 100nm [21, 6, 7]. It turns out that Hr is greatly influenced by the material properties of
the fluid that is employed, as is for example shown by Saylor et al. [22]. They showed that the use of
viscous oils could result in relatively stable air films, which results in large Hr, compared to the case where
they used water as the working fluid. In that case, no reproducible results regarding air film stability
were obtained. Here it was hypothesized that possible surfactant contamination at the water surface is
responsible for early coalescence, which inhibits reproducible experiments. Another phenomenon that
can be observed is that a drop with a low enough impact speed bounces back after entering the pool. In
that case no rupture of the air film occurs, and the drop is able to bounce back. Thoroddsen et al. [7]
demonstrated that the threshold impact velocity for bouncing depends on the viscosity of the liquid. This
demonstrates again the importance of liquid properties on the onset of rupture. We further investigate
the effect of impact velocity and viscosity on Hr in a more complete parameter scan. A setup, which is
schematically shown in Fig. 5.9, is used to acquire high-speed image sequences of a drop that impacts
on a pool of the same liquid. An example of a typical image that is taken by the high-speed camera is
depicted in Fig. 5.8. From this image Hr can be measured. Before the drop hits the pool, the drop is
still undeformed and the diameter and impact velocity can be furnished from the recording (not shown
in Fig. 5.8).
To investigate the effect of viscosity, different types of silicone oil have been used, see Table 5.1. The
experimental result for Hr as function of St is depicted in Fig. 5.10 of four different viscosities is shown.
The BIM results are also included in this plot. As can again be noticed from this plot, numerical results
for Hr are much smaller than the experimental result for Hr. But we note as well that, when looking at
the experimental data, the viscosity of the silicone oil also affects Hr. From the data we can see a trend
that for the same St the rupture height Hr will be bigger for a more viscous oil. But apparently this
doesn’t affect the bubble volume that is entrapped, as after close inspection of Fig. 5.3, the Vb versus St
data don’t show a trend as a function of the different viscosities that were used for the experiments of
drop impact onto a pool. This again supports the hypothesis that the bubble volume of an impacting
object onto a pool is already determined in the early stage, as was also discussed in Chapter 4. The
reason why Hr depends on the viscosity of the silicon oil has probably to do with the chemical properties
of the particular silicon oil, and this hypothesis could be a topic for future research.
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Figure 5.9: Courtesy of Ezeta and Citravidya [20], who have made this image during the Experimental
Technique course. Schematic of the experimental setup that was employed to study the rupture height
Hr. A high speed camera (Photron Inc.) is triggered with the computer to capture individual drop
impact events. By adjusting the height of the needle (24-gauge stainless steel needle, Hamilton Co) the
impact velocity of the drop could be varied. This allows for a systematic parameter scan covering different
impact velocities.

Density (ρ) [kg/m3] Surface tension (γ) [N/m]
5 cs 916 19.7×10−3

10 cs 934 20.1×10−3

20 cs 953 20.8 ×10−3

50 cs 963 20.8 ×10−3

100 cs 968 20.9 ×10−3

Table 5.1: Physical values for each of the used oils and average diameter of the droplets.
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Figure 5.10: Courtesy of Ezeta and Citravidya [20], who have made this image during the Experimental
Technique course. Experimental results for the rupture height Hr versus St. BIM results are superim-
posed.
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Chapter 6

Air film dynamics during drop
impact onto hydrophobic
micro-patterned surfaces

In the previous chapters only axisymmetric 2d impact phenomena have been modeled with BIM and
compared with experiments. A full 3d BIM simulation of the fluid coupled to the viscous air layer, as
has been done for example by Hicks et al. [18], is not within the scope of the present thesis. However,
recent advances in high-speed color interferometry [10] allows us to quantify airfilm dynamics during a
3d impact event experimentally. We will focus on the use of this interferometric technique to analyze the
3d airfilm dynamics of the thin air layer that is trapped between an impacting drop and a hydrophobic
micro-structure. During my master poject I became involved in this experimental project, which is not
directly related to the numerics of impact onto pool, which is the main focus of the thesis. This chapter
is based on a preprint authored by R.C.A. van der Veen, M.H.W. Hendrix, T. Tran, P. Tsai, C. Sun,
and D. Lohse [23]. My contributions to this project were doing measurements and doing analysis. We
start with a section describing the experimental details before continuing to the results of the analyzed
air film.

6.1 Experimental details

As described in Chapter 2, a drop impacting onto a solid causes the air pressure underneath the drop
to increase due the thin air layer that needs to be squeezed out before the drop can touch the solid.
This build-up of air pressure can deform the drop, causing a non-equilibrium dimple, which may result
in air bubble entrainment [24, 25, 26, 9]. The role of air has shown to be important in the macroscopic
splashing behaviour of droplets impacting on smooth surfaces [27] or micro-structured surfaces [28]. In
the latter case, the interplay of the trapped air and the geometry of the structure determine the complex
outcome of a drop impact event, such as directional splashing. A characterization of the dynamics of the
airfilm during drop impact onto a microstructured surface has however not been obtained before, to the
author’s best knowledge, and is it is therfor essential to quantify these dynamics.

When a drop impacts onto a microstructured surface instead of a smooth surface we have the same
mechanism of increasing air pressure that will deform the drop, see Fig. 6.1d. In this case however, we
do not deal with a smooth surface and we expect that the micropillar morphology on the glass slide
influences the airfilm dynamics. We focus on the trapped air layer between an impacting water drop and
various superhydrophobic micro-structured surfaces. We quantitatively measure the air film thickness
during impact, using the color interferometry method which has been recently used to infer the dynamics
of the air film under an impacting drop onto a smooth surface [10]. The experimental method together
with a description of the microstructure is depicted in Fig. 6.1.

The experimental setup is shown in Fig. 6.1a and is similar to that of [9, 10], with the exception of the
use of hydrophobic micro-patterned surfaces. A milli-Q water drop detaches from a needle after growing
quasi-statically and impacts on the surface. A high-speed side view recording is used to measure impact
velocity and droplet diameter. The targeted substrate consists of glass micropillars regularly arranged
in a square lattice, with pillar width W , pillar spacing S and pillar height H, as shown in Fig. 6.1a, b.
It is coated with a hydrophobic fluorocarbon (FC) coating [29], which gives a contact angle of 113◦ for
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water on glass. The thickness of this film is around the order of 100 nm. Micro-patterned surfaces with
hydrophilic coatings were also tried, but found to be less suitable to study impact dynamics and compare
with the case of smooth glass slides (Menzel microscope slides, average roughness ≈ 10 nm). Because the
pillar heights are of the order of the thickness of the typical air layer, the liquid touches the pillars early
in the impact process and consequently quickly completely wets the surface. In the case of hydrophobic
pillars the liquid first only wets the top of the pillars (see Fig. 6.2a) and is pinned at the top pillar edge
(see Fig. 6.5d). This allows the dimple dynamics to be compared with the smooth surface case. The
hydrophilicity of the smooth glass slides does not influence the pre-wetting phenomena because there
is no contact between the liquid and surface. A synchronized bottom view recording by a high-speed
color camera is used to measure the shape of the bottom of the droplet, or equivalently, the shape of the
air film between the droplet and the surface. Broad-spectrum white light from a high-intensity mercury
vapor lamp (Olympus ILP-1) is fed into the coaxial light port of the long-working-distance microscope
(Navitar inc.). This light reflects from both the top surface of the substrate and the bottom surface of
the droplet (see Fig. 6.1(e)), creating colored interference patterns. These colored patterns can be used
to measure the absolute thickness of the film in question, since the color of the interference at a certain
location is determined by the local filmheight h. A color-matching approach in combination with known
reference surfaces is employed [10].
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Figure 6.1: Experimental characterization of the drop impact experiments. (a) Schematic of the exper-
imental setup used to study drop impact using high-speed color inferometry. A water droplet with a
typical radius of R = 1 mm falls on a transparent hydrophobic micropatterned or hydrophilic smooth
glass slide. The impact velocity can be varied by changing the falling height of the droplet, but is typi-
cally U = 0.4 m/s. The droplet radius and velocity is measured using a high-speed side view camera (not
shown). The bottom view is captured by a high-speed color camera (SA2, Photron Inc.) operating at
10000 or 20000 frames per second (FPS). The camera is connected to a long working-distance microscope
and a 10x objective to obtain a 1 mm field of view. (b) Scanning electron microscope (SEM) image
of a representative micropatterned surface used in the drop impact experiments. (c) Magnified SEM
image showing the width (W ), spacing (S) and height (H) of the micropillars. (d) Sketch of the dimple
formation (not drawn to scale) just prior to impact. The height h(x) of the air film is defined from the
bottom of the pillars to the bottom of the liquid drop. (e) Schematic showing the interference of light
rays between the glass micropatterned surface and the liquid droplet. Light can interfere both in between
and through the transparent pillars; refer to Fig. 6.2(a) for an example of an interference pattern.

6.2 Characteristics of airfilm

The resulting air layer shape of impact on a substrate with relatively large pillar width and spacing is
shown (W = 100µm, S = 100µm) in Fig. 6.2. As is the case with smooth surfaces, the liquid is deformed
and a dimple is created due to a pressure build-up in the air layer. In Fig. 6.2(b) it can be seen that this
also happens very locally; above one of the pillars a local maxima in the air layer thickness is formed.
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Figure 6.2: Two-dimensional (2-D) and three-dimensional (3-D) reconstruction of the air layer profile
between an impacting droplet and micropatterned surface. The droplet radius is R = 1 mm, the impact
velocity is U = 0.4 m/s, the micropattern properties are W = 100µm, S = 100µm, H = 1.1µm. (a)
Top: Snapshot of the interference pattern created by light interfering between the surface and the bottom
of the droplet. The liquid wets the top of four of the six visible pillars. The pillars are large compared
to the dimple width, resulting in broken symmetry. Bottom: Air layer profiles along two lines shown at
the top. Take note of the difference in horizontal and vertical scale. (b) 3-D reconstruction of the air
layer. Black iso-height lines are shown with labels in µm. The dimple is deformed by the presence of the
micropillars.

In the case of smaller pillar width and spacing, the air layer shapes and impact dynamics are much
more reminiscent of impact on a smooth surface, see Fig. 6.3. A cross-section of the air layer is made
through the space between two rows of pillars. Two distinct areas can be discerned. One is the dimple
which is very symmetrical and not influenced by the presence of the pillars. The second one is the outer
region where the top of the pillars are wetted and the liquid bends down into the gaps to a height of
approximately 0.3µm, less than half of the pillar height. In between, there is a connecting region of
colored rings where the height of the film decays from the pillar height to the mentioned penetration
height 0.3µm. At an unpredictable time the liquid unpins (outside of the frame) from the pillars and
starts to completely wet the surface. As can be the case with smooth surfaces, the dimple collapses into an
entrapped air bubble. The time at which wetting starts varies between experiments, because it strongly
depends on small irregularities or contaminants. Together with possible tiny tilts or non-symmetrical
release of the droplets these effects also cause the non-axisymmetric wetting behavior.
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Figure 6.3: Snapshots of interference patterns and their corresponding calculated profiles obtained during
impact (U = 0.4 mm/s, R = 1 mm) on a micropatterned surface (W = 10µm, S = 20µm, H = 1.1µm).
Take note of the large time step between the fourth and fifth frame. At 0.72 ms wetting starts, resulting
in a stable entrapped air bubble.

34



To study the effect of the micropillar size and arrangement, we measure the height of the air film at the
center of the dimple. In Fig. 6.4(a) it can be seen that the dimple shape itself is quite symmetrical for
all pillar arrangements considered. By counting the fringes one can already note that the dimple height
is different for every arrangement. This is quantified in Fig. 6.4(b) by plotting the dimple height Hd(t)
versus time for six different micropillar arrangements and one smooth surface case. Time t = 0 is defined
at the moment where fringes are first visible in the frame. The first thing to notice when comparing the
dimple height evolutions is that all have very similar shape and seem to be shifted vertically with respect
to each other. This is quantified in Fig. 6.4(c), where the difference of all profiles with the smooth surface
case is shown. In an interval of 0.2 ms the fluctuation of these lines is within the measurement error
of 100 nm. The presence of protruding pillars in the air layer creates an additional pressure build-up,
or resistance, to the impacting droplet, increasing the height of the dimple. For equal pillar width and
smaller pillar spacing, the dimple is pushed up higher because air can escape less easily. Outside of the
dimple, the liquid wets the top of the pillars, so there are only channels with cross-sectional area of less
than S ·L through which air can escape. When comparing cases with equal ratio of pillar spacing to pillar
width S/W , the total area through which air can escape is equal. Nonetheless, structures with larger
dimensions have a smaller dimple height suggesting that air escapes more easily in those cases. This can
be explained using the concept of hydrodynamical resistance (aerodynamical in this case), which is larger
for many small channels than for a smaller number of large channels with equal total cross-sectional area.
The geometrical parameter W/(W + S) is used to show the dimple height increase depending on the
micropillar arrangement (Fig. 6.4(d)). This factor includes smooth surfaces at 0 and 1, shifted by the
pillar height in question. The three different values show a monotonic increase between 0 and 1. Further
exploration of pillar arrangements could supply a scaling dependence between dimple height increase and
pillar geometry, possibly also including the air flow resistance to collapse the data.
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Figure 6.4: Overview of micropattern dependence for fixed pillar height H = 1.1µm (U = 0.4 m/s,
R = 1 mm). (a) Four snapshots at t = 0.23 ± 0.03 ms (see text for definition of reference time) of
micropatterned surfaces (W = 20µm) with spacings S = 10, 20 and 40µm and one smooth glass slide.
(b) Evolution of maximal dimple height with time. Every line consists of an average of two individual
experiments, which are independently shifted in time according to the method described in the text.
The variation between every experiment falls within the systematic error of 150 nm we attribute to the
method of analysis. (c) The difference between the six micropattern experiments and the smooth surface
case, showing that the shape of Hd(t) hardly depends on the type of micropattern. The gray area shows
the interval 0.05 ms < t < 0.25 ms used to determine the average dimple height difference. (d) Average
dimple height difference normalized by the pillar height H = 1.1µm versus the pillar width parameter
W/(W + S). A value of zero corresponds to a smooth surface at z = 0, a value of one corresponds to
a smooth surface at z = H. The wider the pillars compared to the unit cell, the higher the air dimple.
Besides this, the smaller the absolute spacing, the higher the dimple height.

Besides the pillar width and spacing, influence of pillar height is also of interest. Fig. 6.5(a) through (c)
show snapshots of the interference patterns and corresponding dimple shapes for three different pillar
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heights. For a pillar height H = 1.1µm, which is smaller than the typical dimple height, the dimple is
not disturbed and still symmetric. For larger pillar heights the liquid wets the top of all the pillars and
the dimple is much more deformed, although the general shape can still be seen. As a further indication
that the liquid is pinned at the top of the pillars, a profile between two adjacent pillars is constructed
(Fig. 6.5(d)). A combination of the color interference technique and manually counting fringes allows us
to resolve a large part of the fringes in between the pillars. Very close to the pillars the profile is steep
and the fringes are too narrow to resolve. Profiles at two instants in time both show, when extrapolating,
that the liquid surface is connected very close to the top of the pillars. .
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Figure 6.5: Influence of pillar height. (a), (b) and (c) Snapshots of measurements at t = 0.15± 0.03 ms
with W = 20µm and S = 60µm, but different pillar heights of H = 1.1, 3.1, and 5µm respectively
(U = 0.4 m/s, R = 1 mm). The profile is evaluated along a line between the pillars, showing that
especially for large pillar height the air film significantly penetrates the microstructure. The dimple height
and volume do not seem to clearly depend on the pillar height. (d) Top: Magnification of interference
pattern between two pillars at t = 0.23 ± 0.03 ms (U = 0.3 m/s, R = 1 mm, W = 50µm, S = 50µm,
H = 5.1µm). Bottom: Air layer profile for t = 0.3 ms and t = 2.3 ms. The separate data points are
measured by selecting the fringes by hand, while the center part is done using the color interference
technique described in the text. The shape and dynamics of this pattern suggest pinning of the liquid to
the top edge of the pillars.
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Chapter 7

Discussion and outlook

In this final chapter we reflect back on the findings of this thesis and discuss possible opportunities for
future research.

7.1 Discussion

Theory for drop impact onto a solid plate has been extended to describe and quantify air entrainment
during the impact of a rigid sphere onto a liquid pool and drop impact onto a liquid pool. The fluid was
modeled with potential flow, using the Boundary Integral Method (BIM), coupled to viscous lubrication
theory for the surrounding air, which needs to be squeezed out at the impact zone. For the case of drop
impact onto a pool, two distinct domains were successfully created in the existing BIM code for one fluid
domain. Air bubble entrainment for both rigid sphere and drop impact onto a liquid pool have been found
to agree excellent with experimental data and theory, as has been shown in Chapter 4 and Chapter 5.

The distance that the impacting sphere or drop travels into the pool before the air film between the
two interfaces ruptures is however not agreeing when comparing numerics to experiment. As results
have shown in Chapter 5.2, this penetration distance is for experiments typically much larger than for
numerics. As the complex interaction energy between the two interfaces in the final stage determines
rupture in experiments, it will be very hard to capture this in a numerical model, since whole new physics
enter at small scale separations of ∼ 100nm. Therefor, in the current situation, a minimum numerical
air thickness is chosen to account for rupture: at a minimum air film thickness of 0.4µm the simulation
is stopped and rupture is assumed. This introduced cut off might be the reason for the discrepancy
between experiment and theory regarding the penetration distance. Another reason for the discrepancy
could be that in the early stage of impact the inertia of the air plays a role in deforming the pool, which
is not captured in the model, since viscous lubrication theory is used to describe the air layer. The
difference in penetration distance, however, doesn’t seem to effect the final air bubble volume, as is also
suggested by Thoroddsen et al. [3] for impact of a rigid sphere onto a pool, where it was showed that the
bubble volume is determined at early stage of impact. To further attest this hypothesis for drop impact
onto a liquid pool, experiments have been conducted with silicon oils of varying viscosity, which showed
different penetration distances depending on the viscosity of the oil: a trend could be observed that
more viscous silicon oil drops have a larger penetration distance over the whole range of impact velocities
that were explored, see Chapter 5.2. Experimental results for drop impact onto a pool, which have also
been discussed in Chapter 5.1, show that different viscosities don’t affect the bubble volume [6], which
supports our hypothesis that the penetration distance is not determining the entrapped bubble volume.
Furthermore, the penetration velocity Vp of the drop into the pool has been numerically investigated,
and was found to be Vp = 0.5V where V is the impact speed of the drop. This agrees with experimental
findings of Tran et al. [6]. In addition, the behavior of the microscopic air film that is trapped during
drop impact onto a hydrophobic micro structure is characterized experimentally, making use of high-speed
color interferometry.

7.2 Outlook

In this thesis only axisymmetric impacts are modeled. It would be a challenge to extend the model to a
3d version to capture for instance the complex 3d dynamics of an impacting drop onto a micro sturcture,
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as has been experimentally investigated in Chapter 6. It is emphasized that this will be challenging
since both the BIM for potential flow and the viscous lubrication equations have to be modified to a
3d version. Hicks and Purvis [18] have however already been able to account for the 3d dynamics of
a drop and the trapped air layer in the case where a drop impacts onto a non-flat surface. Here also
a BIM for the impacting drop was coupled to the dynamics of the air layer. In this thesis we have
mainly considered the inertial regime, where surface tension effects could be neglected. However, as is
also shown in Chapter 2, experiments and BIM don’t agree with the scaling for the entrapped bubble
volume, Eq. 2.2: Vb/Vdrop ∼ St in the capillary regime, see also Fig. 7.1a.

-4/3

Figure 7.1: a) Adapted from Bouwhuis et al. [9]. a) Normalized bubble volume Vb/Vdrop versus St. Blue
symbols correspond to BIM results, black open circles correspond to experimental data. b) Normalized
dimple height Hd/R versus St. SRYL results are superimposed on existing experimental and BIM data
and show excellent agreement.

We observe that the BIM results in the capillary regime give a slope of 2, instead of 1 which is predicted on
basis of scaling theory [9] which is based on a balance between capillary pressure and lubrication pressure.
This leads us to the suspicion that it might be the case that inertia is still playing some role in the BIM
simulations in the capillary regime. One could think of performing BIM simulations where the density is
put to a very low value to test if only capillary effects remain. This is, however, also counter-intuitive,
since BIM for potential flow assumes high Reynolds number flows, so putting the density to a very low
value cannot be done without some checks. Also, BIM simulations in the capillary regime take typically 10
times more CPU time compared to the inertial regime, because the impact speeds are relatively low. This
motivates us to look for a simpler model that takes the capillary effects into account, and doesn’t have
inertia in it. Stokes-Reynolds-Young-Laplace (SRYL) theory is meeting these needs, which is described
in detail in Appendix B. An advantage of this model is that a typical simulation takes minutes, whereas
the corresponding BIM simulation takes days. SRYL theory also suggests Vb/Vdrop/sphere ∼ St and

Hd/R ∼ St1/2, just as is derived by Bouwhuis et al. [9]. As can be observed in Fig. 7.1b, SRYL results
are in agreement with BIM results and experiments, and also the theoretical scaling Hd/R ∼ St1/2. As
is explained in Appendix B it is not possible yet to determine Vb with the current SRYL theory, because
only the local deformation of the drop at the impact zone is solved in the early time, which doesn’t result
in a bubble yet, see Appendix B. Further development of this theory would be recommended, to see if a
bubble is entrapped in a later stage, and how it will relate to the present findings. It the will be needed
to link the inner problem to the outer drop shape, as is for example done in Chan et al. [30], to ensure
volume conservation of the drop.

For future research, it would be interesting to investigate the dynamics of a drop that impacts onto
a thin liquid layer instead of an infinite liquid pool. Viscous effect in such a thin film may become
important, and BIM cannot be used to model such a viscous film, since invisced flow is assumed in
the BIM for potential flow framework. In that case another tool needs be used to account for the full
equations that are needed to describe the dynamics of this liquid film, such as the open-source Gerris
software [31]. With the newly arisen possibility to work with more than one liquid domain in the BIM
code, new possibilities are opened to study problems with more than one liquid domain. It would be also
interesting to continue simulation of a drop impacting onto a pool after the air film is ruptured. This
would require a recombination of the two liquid domains, which is not done in this work yet. Rather,
this is recommended for future research.
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Appendix A

Stokes flow in cylindrical coordinates

To derive the lubrication equation for Stokes flow in the air gap we start by considering the initial
geometry of the problem which is depicted in Fig. A.1. This geometry is identical for drop impact onto
a flat plate, drop impact onto a liquid pool, and impact of a rigid sphere onto a pool. For doing this
lubrication analysis we follow references [32, 33].

Figure A.1: Schematic of drop impact onto a solid plate

We will introduce scaled dimensionless variables to help us indentify which terms are dominant in the
governing physics of our problem. We will make use of the parameter ε = Hd/R � 1, exploiting the
fact that the two lengthscales Hd(∼ µm) and R(∼ mm) in this problem differ three orders of magnitude.
Dimensionless variables will be indicated with an asterisk. We first scale the coordinates r and z. A
natural scaling for z will be the typical height of the air gap Hd: z

∗ = z/Hd = z/Rε. To find a proper
scaling for r, we take into account the shape of the sphere, which can be approximated with a parabola:

z = Hd +
r2

2R
. (A.1)

Using this formula together with the scaling for z∗, we deduce r∗ = r/Rε1/2. Similarly, a natural scale
for u∗z would be: u∗z = uz/U . The continuity equation Eq. A.2 with dimensionless variables r∗, z∗ and u∗z
is given by:

1

Rε1/2
1

r∗
∂(r∗ur)

∂r∗
+

U

Rε

∂u∗z
∂z∗

= 0. (A.2)

We deduce that u∗r = urε
1/2/U , since both terms of Eq. A.2 have to be of the same order [33]. The flow

of the air film will obey the Navier-Stokes equation. The r-component of the Navier-Stokes equation in
cylindrical coordinates for axisymmetric flow, neglecting gravity, is given by:
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+ µ

(
∂2ur
∂z2

+
1

r

∂

∂r
(r
∂ur
∂r

)− ur
r2

)
(A.3)
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This equation can also be written non-dimensionalized using the previous defined dimensionless variables,
together with the scaled time t∗ = tU/Rε and scaled pressure p∗ = pRε2/µU to give:

ρU2

ε3/2R

(
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

)
= − µU

R2ε5/2
∂p∗

∂r∗
+

µ

((
U

R2ε5/2

)
∂2u∗r
∂z∗2

+

(
U

R2ε3/2

)
1

r∗
∂

∂r∗
(r∗

∂u∗r
∂r∗

)−
(

U

R2ε3/2

)
u∗r
r∗2

)
(A.4)

Now we divide by the coefficient of the biggest visous term, µU/R2ε5/2, to obtain:

ρUεR

µ

(
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

)
= −∂p

∗

∂r∗
+

(
∂2u∗r
∂z∗2

+ ε
1

r∗
∂

∂r∗
(r∗

∂u∗r
∂r∗

)− ε u
∗
r

r∗2

)
(A.5)

We now indentify the appriopiate Reynolds number for the problem as Reg = ρUεR/µ = ρUHd/µ on
the LHS. We note that if this number is small, we can neglect the terms on the LHS of the equation.
Furthermore, since ε is small, we can neglect higher order terms to obtain:

∂p∗

∂r∗
=
∂2u∗r
∂z∗2

(A.6)

Back substitution of dimenional variables gives:

∂p

∂r
= µ

∂2ur
∂z2

(A.7)

A similar analysis for the z-component of the flow leads to:

∂p

∂z
= 0 (A.8)
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Appendix B

SRYL theory for slow drops

A schematic of a drop approaching a flat surface in depicted in Fig. B.1.

Figure B.1: Schematic of drop impact onto a flat surface. The thin film that is trapped between the drop
and the solid is characterized by h(r, t).

The pressure in the thin film trapped between a slow impacting drop and the flat plate is given the
Young-Laplace equation:

p =
2γ

R
− γ

r

∂

∂r

(
r
∂h

∂r

)
. (B.1)

Inertial effects are thus neglected, and the pressure in the film is fully determined by the curvature of
the interface. The thinning rate of the film is given by the Stokes-Reynolds equation which describes the
dynamics of the film:

∂h

∂t
=

1

12µr

∂

∂r

(
rh3

∂p

∂r

)
. (B.2)

Upon inserting Eq. B.1 into Eq. B.2 we obtain an equation with fourth-order derivatives in h:

∂h

∂t
=

1

12µr

∂

∂r

(
rh3

∂

∂r

(
−σ
r

∂

∂r

(
r
∂h

∂r

)))
. (B.3)

This equation can be solved with the method of lines similar as was done in [34, 35], which effectively
turns the PDE equation B.3 into an ODE equation. The following boundary conditions are employed.
At r = 0 we have ∂p

∂r = 0 = ∂h
∂r due to symmetry. For large radial coordinate r →∞, the excess pressure

p has to go to zero, since there will be no pressure build up far away from the impact zone. It has been
shown theoretically [36] that p decays as p ∼ r−4. This boundary condition will be implemented, rather
than simply putting the p = 0 at a large radial coordinate [34, 35]. The boundary condition p ∼ r−4 is
implemented as r ∂p∂r + 4p = 0 for r → ∞. Furthermore, at some large radial coordinate r = rmax, the

interface moves with a set impact velocity: ∂h
∂t = −V (t). As an initial condition a parabolic shape for

the impacting drop will be assumed: h(r, 0) = h0 + r2/2R0, which gives indeed zero excess pressure when
applying Eq. B.1 to this initial geometry. Here h0 is some initial separation where the drop doesn’t feel
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the wall yet, this is practically taken as h0 = 50µm. Equation B.3 can be nondimensionalized [17] by
adopting the following dimensionless variables:

p′ =
R

σ
p t′ = Ca1/2

σ

Rµ
t r′ = Ca−1/4

r

R
h′ = Ca−1/2

h

R

We can now write Eq. B.3 in terms of these nondimensional variables:

∂h′

∂t′
=

1

12r′
∂

∂r′

(
r′h′3

∂

∂r′

(
− 1

r′
∂

∂r′

(
r′
∂h′

∂r′

)))
. (B.4)

From the dimensionless variables that were used to successfully nondimensionlize Eq. B.3 we can already
deduce that: Hd

R ∼
√
Ca and Vb

R3 ∼ Ca. Because we plot our results in terms of St, let us convert these
scaling in terms of St: For Hd this becomes:

Hd

R
∼
√
Ca ∼

√
(We/St) ∼ µg√

γρlR
St1/2 (B.5)

And for Vb this becomes [9]:

Vb
R3
∼ Ca ∼We/St ∼

µ2
g

γρlR
St (B.6)

We note that the scaling suggested by SRYL is indeed the same as was derived by Bouwhuis et al. [16].
We now have a look at a typical simulation result, which is depicted in Fig. B.2. As we can see from
this time evolution Hd converges during impact, which has been confirmed by some stability tests. No
real bubble volume can be determined yet though, since the drop is not enclosing any air yet. As we
can also see, the drop keeps spreading without stopping. This is because we have no boundary condition
at r = rmax which limits the drops from spreading when it is impacting. While the inner problem of
drop impact is solved, there is not yet a connection to the outer drop shape which guarantees volume
conservation, and what would prevent the drop from spreading. In practice this would mean that the
drop keeps spreading, which is not realistic. This can be noted in the final stage of the simulation, which
is shown in red, see Fig. B.2. Here the drop has spread to such an extent that the location of rmax can
not be regarded as a location far away from the impact zone anymore, which is especially notable in
the pressure plot Fig. B.2b. Further increasing the location of rmax is not solving this problem. It is
however possible to solve this problem by matching the inner solution at the impact zone to the outer
drop shape [30], but this is not within the scope of the present thesis.

Figure B.2: a) Drop impact based on SRYL theory. Lines are separated by 0.07ms. To match the results
of Bouwhuis et al. the radius is taken R = 0.9mm, and the surface tension is set to γ = 0.022N/m.
The impact speed U is U = 0.021m/s. The location of rmax is chosen at rmax = 0.8R = 0.72mm. b)
Corresponding pressure development in the draining air film.

As the dimple height Hd is already converged, we can compare this value with the already existing results
of Bouwhuis et al. [9], see Fig. B.3. We find excellent agreement in both comparison to experiments,
existing BIM results and theory which predicts Hd/R ∼ St1/2. It is worth noting that SRYL theory can
be further developed to study the discrepancy in Vb as is explained in Chapter 2 for the capillary regime,
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since no inertia of the fluid is taken into account in this model. See also Fig. B.3. This also brings a
computational advantage when comparing SRYL to BIM in the capillary regime. A SRYL simulation
takes typically minutes, while a BIM simulation in the capillary regime typically takes days.

Figure B.3: a) Adapted from Bouwhuis et al. [9]. a) Normalized bubble volume Vb/Vdrop versus St. Blue
symbols correspond to BIM results, black open circles correspond to experimental data. b) Normalized
dimple height Hd/R versus St. SRYL results are superimposed on existing experimental and BIM data
and show excellent agreement.
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