
Multi-Target User Interface design and generation
using Model-Driven Engineering

THESIS

to obtain the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

and MASTER OF SCIENCE IN HUMAN MEDIA INTERACTION

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, the Netherlands

by

M. (Mark) Oude Veldhuis

mark@oudeveldhuis.nl

May 3, 2013

Enschede, the Netherlands

Supervisors from the University of Twente
dr. E.M.A.G. (Betsy) van Dijk

dr. L. (Luís) Ferreira Pires

Dr.-Ing. C.M. (Christoph) Bockisch

Supervisor from Sigmax
ir. R.L.M. (Robert) Spee

Preface
This document is my thesis for the master studies Computer Science and Human Media Interac-

tion from the University of Twente, the Netherlands. It describes the approach and results of my

master assignment, which I conducted at Sigmax in Enschede. The master assignment consists

of two related parts, one for each master programme.

I would like to use this opportunity to thank Luís, Betsy and Ivan, my supervisors from the

university, for guiding me throughout the entire process and providing me with feedback, and

Christoph for jumping in as third supervisor. Thanks to my colleagues at Sigmax; Rick, Danny

and Robert in particular for having me as their roommate. Thank you Robert for being my

supervisor at Sigmax and for your guidance. I appreciated your input a lot and learned many

things, not only related to the master assignment.

Many thanks tomy parents Joep and Gerda, and brother Sander. I appreciate your never-ending

support during all my years of study. And let me reassure you, they have all been worth their

while ;-)

A word of thanks to all members of study tour committee Noodle, of which I was the chair-

man. Marijn, David, Yme, Lex and Nils, my fellow committee members, my friends, thank you

for being patient and coping with the fact that I was only one day per week at the university

during most of our preparations, and many, many thanks for your commitment during the or-

ganization. Our amazing journey through South Korea, China and Hong Kong was worth every

struggle and time consuming moment.

I would like to thank my fellow students Tim Harleman and Martijn Adolfsen. We studied to-

gether before and at the university, attended most of the courses together, and had lots of fun

doing so.

Finally, I would like to thank all my friends whom I did not mention by name here and last, but

most certainly not least, my sweet girlfriend Lysette for her support and love.

—Mark Oude Veldhuis

May 3, 2013

iii

Abstract
The rapid development and wide spread adoption of smartphones and tablets creates a desire

to deploy applications to multiple platforms without developing the same application for every

target platform. Deploying an application to multiple platforms is challenging because of differ-

ent operating systems, screen sizes, and device capabilities such as the presence or absence of

a hardware keyboard. Additionally, the design of user interfaces is often based on experience

and intuition, instead of explicit guidelines.

In this thesis we explore how a Model-Driven Engineering (MDE) environment can be devel-

oped that generates mobile applications for multiple target platforms, based on a single source

model, while taking into account a set of user interface design guidelines. The design guidelines

were developed based on an extensive literature study, expert interviews, field studies and a lab

study. Seven guidelines were developed, of which six focus on design principles and high-level

application behavior, and one focuses on navigation through hierarchical lists.

We developed a proof-of-concept MDE environment that takes a single source model as input

and transforms it to an Android application for both smartphones and tablets. The guidelines

that were incorporated were be consistent, provide understandable feedback, and be supportive

and minimize manual input. Expert interviews with software architects and developers con-

firmed that such an approach can be helpful in the development of mobile applications in order

to decrease development time and manage complexity. Adopting an MDE environment in an

existing development environment was also seen as a challenging task. The flexibility of MDE

is a great advantage, but also creates challenges. Depending on the context of use it can be

difficult to determine the amount and abstraction level of metamodels to create.

v

Abbreviations
ATL ATLAS Transformation Language
EMF EclipseModeling Framework
EMP EclipseModeling Project
MBUID Model-Based User Interface Development
MDA Model-Driven Architecture
MDE Model-Driven Engineering
OMG ObjectManagement Group
PDA Personal Digital Assistant
PIM Platform-IndependentModel
PSM Platform-SpecificModel
UI User Interface
UML UnifiedModeling Language

vii

Contents
Preface iii
Abstract v
List of Figures xiii
List of Tables xv
1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Goals . 2

1.4 Approach . 3

1.5 Document outline . 3

2 Model-Driven Engineering 5
2.1 History and introduction . 5

2.2 Models, models and models . 5

2.3 Transformations . 7

2.4 Model-Based User Interface Development . 8

2.5 Cameleon Reference Framework . 9

2.5.1 Characteristics . 10

2.5.2 Abstraction Levels . 11

2.5.3 Model-Driven Architecture correspondence 12

2.6 Mobile Devices . 12

2.6.1 Challenges . 13

2.6.2 Approaches . 13

3 User Interface design for mobile devices 17
3.1 Introduction . 17

3.2 Hardware challenges . 17

3.3 Software challenges . 18

3.4 Environmental challenges . 19

3.5 Design Guidelines from literature . 19

3.5.1 High-level guidelines . 19

3.5.2 Low-level guidelines . 21

3.6 Success factors . 22

3.7 Validation methods . 23

4 Developing user interface design guidelines 25
4.1 Data Gathering . 25

4.1.1 Literature study . 25

4.1.2 Expert interviews . 25

ix

Contents

4.1.3 Field studies . 27

4.1.4 Lab study . 28

4.2 Design Guidelines . 32

4.2.1 High-level guidelines . 32

4.2.2 Low-level guidelines . 35

4.3 Discussion . 35

5 Solution design 37
5.1 Introduction . 37

5.2 Application patterns . 38

5.3 Metamodels . 39

5.3.1 SigmaxApp-metamodel . 39

5.3.2 Screens-metamodel . 41

5.3.3 Android-metamodel . 42

5.4 Transformations . 42

5.4.1 Model-to-model transformations . 43

5.4.2 Model-to-text transformation . 47

5.5 Discussion . 50

6 Acceptance and evaluation 53
6.1 Case Study . 53

6.1.1 Application model . 54

6.1.2 Transformations . 54

6.1.3 Result . 57

6.2 Expert interviews . 58

6.2.1 Setup . 58

6.2.2 Results . 59

6.3 Discussion . 59

7 Conclusions and final remarks 63
7.1 Conclusions . 63

7.2 Future work . 65

Bibliography 67
A Expert interviews 73
A.1 Interview questions . 73

A.2 Results . 74

A.2.1 Labels . 74

A.2.2 Data units . 75

B Field studies 79
B.1 Goals . 79

B.2 Questions . 79

B.3 Method . 79

B.4 Practical issues . 80

B.5 Ethical problems . 80

B.6 Results . 81

B.6.1 Labels . 81

B.6.2 Data units . 81

C Lab study 85
C.1 Basic design . 85

x

Contents

C.2 Participant tasks . 86

C.3 Experiment setup . 87

C.3.1 Independent variables . 87

C.3.2 Participant group/task distribution . 87

C.3.3 Phased plan . 87

C.4 Consent form . 88

C.5 Questionnaires . 89

D Acceptance expert interviews 91
D.1 Interview questions . 91

D.2 Results . 92

xi

List of Figures
2.1 Metamodeling levels in Model-Driven Development [4] 6

2.2 Generic representation of model transformations in MDA [26] 7

2.3 The operational context of ATL [29, 31]. MA, MB and TA,B are respectively the

source, target and transformation models. These models conform to the meta-

modelsMMA,MMB andMMT , respectively. For ATL,MMT is the ATL metamodel. 8

2.4 User Interface Engineering in MBUID [47] . 10

2.5 The (simplified) Cameleon Reference Framework [19, 37, 55, 57] 10

2.6 CRF correspondence to MDA [55] . 12

2.7 Transformational approach using transformation rules [3, 53] 14

3.1 The NS Reisplanner Xtra train planner application on an Android smartphone (left)

and iPhone (right). The applications show many similarities, but also platform

specific characteristics. 21

4.1 Screenshots of the application that was used during the lab study on a smartphone. 30

4.2 Screenshots of the application that was used during the lab study on a tablet. . . 31

5.1 Examples of screens involved with a classic CRUD-pattern for an entity, in this case

tasks. From left to right: creating, reading (viewing details), updating and deleting.

The application shown is Asana on an Android smartphone. 38

5.2 SigmaxApp-metamodel. 40

5.3 Screens-metamodel. 41

5.4 Excerpt of Android-metamodel. This figure only illustrates the most important

parts of the Android metamodel. 43

5.5 The model-to-model transformation chain and its operational context. 44

5.6 Operational context of the model-to-text transformation. 48

5.7 Alternative Android model generation from the SigmaxApp model. 50

6.1 The SigmaxApp-model for the case study. 55

6.2 The generated Screens model for the case study. Several Property elements
have been left out for readability, as well as how other ListScreens were struc-
tured. 56

6.3 The generated Android model for the case study. Several elements have been left

out for readability. 57

6.4 Screenshots of the Android smartphone implementation of the case study. 58

6.5 An alternative transformation chain for a Model-Driven Engineering environment,

argued by experts during expert interviews. 61

xiii

List of Tables
4.1 Labels, including their description and number of occurrences, that were derived

from the expert interviews by applying open coding in grounded theory. 27

4.2 Labels, including their description and number of occurrences, that were derived

from the field studies by applying open coding in grounded theory. 29

5.1 Transformation rules of how TSigmaxApp2Screens transforms source elements from

the SigmaxApp-metamodel to target elements for the Screens-metamodel. This

Table does not include the mappings for the entity properties, they are related

one-to-one. 44

5.2 Partial transformation rules of how TScreens2Android transforms source elements

from the Screens-metamodel to target elements for the Android-metamodel. We

can clearly see that this transformation involves an explosion of classes, as a lot

of detail is added. 46

6.1 Answers and claims by expert interview participants that were given by at least

two participants. The characters +/-/! indicate whether it is a positive aspect,

negative aspect or point of attention for an MDE environment. The headings 1-4

shows which participant made the corresponding claim. The total-header shows

the number of participants that made the claim. The Table is sorted descending

on the number of people that made a claim. 60

A.1 Labels, including their description and number of occurrences, that were derived

from the expert interviews by applying open coding in grounded theory. 75

B.1 Labels, including their description and number of occurrences, that were derived

from the field studies by applying open coding in grounded theory. 81

C.1 Groups/tasks distribution. 88

D.1 Results after applying the selective reading approach and open coding in grounded

theory to the expert interview results. 93

xv

Chapter 1
Introduction

This chapter provides an introduction to our research by giving our motivation, our problem

statement, our goals, our approach and the document structure.

1.1 Motivation
We can no longer think of a society without mobile devices, smartphones and tablets in partic-

ular. It seems that everyone has at least a smartphone nowadays. These devices are used for

communication with other people, but also to retrieve information from a central location using

a mobile internet connection. Think of Wikipedia, or news sources such as CNN.

Mobile devices are also widely used in professional environments. When a police officer stops

someone that violated the law, filing out all information about the offense and violator, as well

as printing the ticket is often done using a mobile device. The data are sent to a remote server

to make it available for further (automatic) processing. In daily life, one may find police officers,

train conductors, parking attendants, waiters on terraces, and many other professionals that

use mobile devices to make their jobs easier.

The variety in mobile devices in terms of dimensions, operating system, sensor capabilities,

and so on, makes it difficult to develop a single set of user interface (UI) design guidelines that

ensure a consistent user experience for the same application deployed on different devices. The

same issue is relevant for the technical development of mobile applications, in terms of keeping

the development time of new applications short, without having to develop a completely new

application for each different device.

This thesis aims to explore the possibilities to address these two issues, i.e. developing a set of

UI guidelines that are applicable to multiple target platforms and developing a single develop-

ment environment that can be used to build an application for multiple targets, from a single

model.

1

Introduction

1.2 Problem statement
Our problem statement was inspired by practical problems at Sigmax, but can be generalized.

Sigmax is a company located in Enschede, the Netherlands, and develops mobile solutions for

law enforcement, supervision, field service and inspection. They deliver complete solutions us-

ing mobile devices — such as smartphones and tablets — and back-end solutions. The problem

addressed by this research is limited to the mobile devices.

The design and development of user interface as well as other software components can be

improved in terms of consistency and development time. Comparable user interfaces and soft-

ware components that could be re-used, are often re-developed. This approach results in time-

consuming development, inconsistent user interfaces and a high rate of errors. The rapid de-

velopment and wide spread adoption of mobile devices nowadays creates a desire to deploy

the same application to multiple target platforms.

Additionally, the UI design of mobile applications is often based on intuition and experience, in-

stead of explicit guidelines. Although feedback is sometimes obtained from users, a structured

way of questioning end-users and formal validation to assess whether the user interfaces offer

a pleasant user experience is often missing.

1.3 Goals
The first goal of this work is to deliver a proof of concept that shows that a Model-Driven En-

gineering environment can be developed, to automatically generate applications for different

mobile devices types, such as smartphones and tablets. By modeling mobile applications and

re-using these models, the consistency between mobile applications and their user interfaces

potentially increases, and the development time is reduced.

The second goal of this work is to develop a set of user interface design guidelines that should

be taken into account during the design and development of mobile applications. The Model-

Driven Engineering environment that was developed as a proof of concept was supposed to

incorporate these guidelines.

To achieve these goals, the following main research question was stated:

RQ. How can a Model-Driven Engineering environment be developed to increase the con-
sistency, usability and development speed of mobile applications, while taking into ac-

count user interface design guidelines?

In order to answer the main research question, the following sub questions were stated:

SQ1. How can Model-Driven Engineering be applied during the development of mobile
applications, in order to speed up development and cope with a variety of mobile devices?

SQ2. Which are the challenges in user interface design and what are the usability issues
for mobile applications?

2

Introduction

SQ3. Which user interface design guidelines should be taken into account during the
development of mobile applications for different target platforms?

1.4 Approach
To answer the research questions, the following steps were taken. The research questions an-

swered in each step is denoted between parentheses:

1. An extensive literature study was conducted to gain background knowledge onModel-Driven
Engineering (MDE) and in particular MDE applied to user interfaces and mobile applications.

(SQ1)

2. An extensive literature study was conducted to gain background knowledge on User Inter-
face for mobile application design. The literature study identified several common challenges

and common design guidelines for mobile user interface design. (SQ2)

3. At Sigmax we conducted expert interviews and field studies to gain a better understanding
of the current challenges and issues of Sigmax applications. A lab study was conducted to in-

vestigate how people prefer to browse hierarchical data structures on smartphones and tablets.

(SQ2)

4. Several design guidelines were developed. The joint issues and challenges found during the
literature study, expert interviews, field studies and lab study were the primary source for the

development of these design guidelines. (SQ3).

5. A proof-of-concept was developed to answer the main research question. The knowledge
gained during the literature study on MDE was combined with the design guidelines in order to

develop a proof-of-concept that can generate mobile applications for different mobile devices,

based on a single source model. (SQ1, RQ)

6. The developed proof-of-concept was demonstrated to experts in software architecture and
development at Sigmax. Afterwards, semi-structured interviewswere conducted to assess whether

such an approach helps to increase the consistency, usability and development speed. (RQ)

1.5 Document outline
The remainder of this thesis is organized as follows:

Chapter 2 provides background knowledge on Model-Driven Engineering. The purpose of this

chapter is to provide the required understanding of MDE principles, techniques and viewpoints.

3

Introduction

Chapter 3 provides background knowledge on user interface design for mobile devices. The

purpose of this chapter is to provide an overview of common challenges in user interface design

for mobile devices, and to determine which data gathering techniques are useful to identify

current issues with mobile devices at companies like Sigmax.

Chapter 4 presents the data gathering techniques that we applied to identify the current issues

with mobile devices at Sigmax and the results that we found. The purpose of this chapter is to

show how the results from the data gathering techniques were used as input for user interface

design guidelines, and which design guidelines were developed.

Chapter 5 provides the solution design for the proof of concept. The purpose of this chapter is to

show the solution design of aModel-Driven Engineering environment that allows the generation

of applications for different mobile devices. This chapter also includes an overview of the used

tools and languages.

Chapter 6 assesses the acceptance of this research by implementing a case study using the

proof of concept. The case study elaborates on how the solution design is technically imple-

mented, and shows that the proof of concept works. This chapter also provides the results

from expert interviews that were used to assess the practical acceptance of this research.

Chapter 7 provides the final conclusion of this work, answers the research questions and iden-

tifies topics for future work.

4

Chapter 2
Model-Driven Engineering

This chapter provides background knowledge on Model-Driven Engineering. The purpose of this

chapter is to provide the required understanding of MDE principles, techniques and viewpoints.

2.1 History and introduction
The first Fortran compiler was delivered in 1957 and allowed programmers for the first time to

specify what the machine should do rather than how it should do that. The recent research, ac-

tivities and other developments related to Model-Driven Engineering are a natural continuation

of the trend where software development moves from a code-centric to model-based practice

[4, 6].

In 2000, the Object Management Group started the Model-Driven Architecture (MDA) initiative

[6] and in 2001 the MDA guide was adopted [26]. MDA describes a software development ap-

proach where abstract models of software systems are created, and then transformed to con-

crete implementations [18]. MDE is a software development approach that combines process

and analysis with the MDA principles and techniques [18, 32]. MDE may be seen as a generaliza-

tion of MDA [35].

2.2 Models, models and models
Models are the primary artifacts of model-driven development and are abstractions of some

aspect of a system [18]. They are described in a well-defined modeling language, described in a

metamodel, as for example the Unified Modeling Language (UML). Typically, model descriptions

are graph-based and rendered visually [34]. UML is however tightly bound to programming

languages — as UML was originally meant for representing code — making it less useful to

provide domain-specific modeling capabilities [25].

5

Model-Driven Engineering

Metametamodel

Metamodel

instanceOf

Model

instanceOf

instances

instanceOf

Meta-Object Facility (MOF)

UML Specification

UML Model

User data

MM3

MM2

MM1

MM0

FIGURE 2.1: Metamodeling levels in Model-Driven Development [4]

Metamodels. A metamodel defines the language a model is written in, making it a model
of a model [18, 34]. Since a metamodel is also a model itself, a metametamodel defines the

language a metamodel is written in. We could continue this recursion infinitely, but that would

not be practical. Figure 2.1 shows that MDE typically recognizes four levels of metamodeling.

The Meta-Object Facility (MOF) is a metametamodeling language that is closely related to the

UML and is used to define the abstract syntax of modeling languages [4, 18, 44]. An alternative

for the MOF is, for example, Ecore, from the Eclipse Modeling Project [15].

Viewpoints. An integral part of Model-Driven Architecture is its viewpoints: the computation
independent model viewpoint, the platform-independent viewpoint and the platform-specific view-

point. The computation independent model is used to model the requirements for a system.

In this work we however focus on the other viewpoints, as modeling requirements is not within

the scope of this research.

The platform-independent viewpoint focuses on the operation of a system, but hides techni-

cal details necessary for a particular platform [26]. This viewpoint focuses on aspects that are

unlikely to change for multiple platforms [18]. A platform-independent model (PIM) is a specifi-

cation of the system under development, derived from a platform-independent viewpoint [44].

Such a model is constructed using a well-defined platform-independent modeling language in

order to fulfill system application requirements [26].

A platform-specific model (PSM) is often derived from a PIM and adds technical details that

specify the system for a particular platform [18, 26]. It is a representation of a system from

a platform-specific viewpoint [26]. A PSM specifies the system under development for a par-

ticular platform, expressed in a well-defined modeling language [26, 44]. Since programming

languages are structurally well-defined modeling languages, source code can also be seen as a

special case of PSM.

6

Model-Driven Engineering

Source Model

Transformation
definition

Transformation Target Model

FIGURE 2.2: Generic representation of model transformations in MDA [26]

2.3 Transformations
Transformations are an integral and critical part of Model-Driven Engineering [26, 31, 34]. Func-

tionality specified in a PIM may be transformed to a PSM via some transformation definition, or

mapping [26, 32]. The complexity of bridging the conceptual gap between problem and imple-

mentation domain is dealt with using possibly automated transformations [18].

The typical transformation in MDE is from a PIM to PSM [32]. The PIM and other relevant in-

formation are combined in the transformation process that produces a PSM [26]. An abstract

model of a transformation is shown in Figure 2.2. The source model and transformation definition

are both input for the transformation process. The transformation definition describes how the

target model can be obtained from the source model.

There exist two kinds of transformations in MDE: model-to-model and model-to-text transforma-

tions. We discuss them in more detail below.

Model-to-model transformations. A popular transformation language is the ATLAS Transfor-
mation Language (ATL) [31]. ATL offers a declarative syntax to define rules that contain patterns

to match instances from a source model, as well as a target pattern to create the target models

for each of the matched instances. Imperative transformation code may be defined in ATL and

can contain a declarative target pattern as well as an action block, which is nothing more than

a sequence of statements. Listing 2.1 shows an example of a simple ATL transformation rule.

1 rule Class2Table {
2 from c: Class!Class
3 to t: Relational!Table (
4 name <- c.name
5)
6 }

Listing 2.1: A simple ATL rule that transforms classes to relational tables. The name of the Table is set to thename of the Class.

Figure 2.3 shows the operational context of ATL.

Model-to-text transformations. Another kind of transformation are model-to-text transfor-
mations, which are able to generate application source code, for example. An example of a

model-to-text transformation language is the Xpand language, developed in the scope of the

Eclipse Modeling Framework (EMF). It was originally part of openArchitectureWare before it be-

came a component of the EMF. Xpand uses templates that contain transformation definitions.

7

Model-Driven Engineering

MOF

MMT

conformsTo

MMBMMA

conformsToconformsTo

TA,B MBMA

conformsTo conformsTo conformsTobasedOnbasedOn

transformation

executedinput output

FIGURE 2.3: The operational context of ATL [29, 31]. MA, MB and TA,B are respectively the

source, target and transformation models. These models conform to the metamodels MMA,

MMB andMMT , respectively. For ATL,MMT is the ATL metamodel.

These definitions can invoke other definitions, and allow the use of for-loops and if-statements,

amongst others [45]. Listing 2.2 shows a simple transformation template with two definitions.

Model-to-text transformations create files that are filled with template code, in which the details

are derived from models.

1 <<DEFINE Root FOR data::DataModel>>
2 <<EXPAND Entity FOREACH entity>>
3 <<ENDDEFINE>>
4 <<DEFINE Entity FOR data::Entity>>
5 <<FILE name + ".java">>
6 public class <<name>> {
7 <<FOREACH attribute AS a>>
8 private <<a.type>> <<a.name>>;
9 <<ENDFOREACH>>
10 }
11 <<ENDFILE>>
12 <<ENDDEFINE>>

Listing 2.2: A simple Xpand transformation template containing two definitions. Here, a DataModel istransformed into corresponding Java files.

2.4 Model-Based User Interface Development
Model-Based User Interface Development (MBUID) refers to the use of MDE viewpoints and prin-

ciples during the development of user interfaces [37]. Parallel to the development of the MDE

8

Model-Driven Engineering

approach, researchers have been investigating how MDE can be adopted for the development

of user interfaces, to profit from the benefits offered by MDE.

Model-Based User Interface Development is a form of advanced user interface engineering [47].

With this approach, an abstract description of the UI is provided which is called a User Interface

Model (UIM). According to Silva et al. [47], a UIM is composed of four models:

1. The ApplicationModel describes application properties relevant to the UI. Exam-
ples include problem or domain models that describe concepts of the application.

For a library application, a book is an example of a concept.

2. The Task-Dialog Model describes tasks that the application end-users should be
able to perform, as well as the relationships between different tasks. Examples of

tasks are browsing through a list of items, selecting one and performing a certain

action on this item, such as editing or deleting it.

3. TheAbstract PresentationModel provides a conceptual description of the struc-
ture and behavior of the user interface using abstract presentation objects such as

text labels or text input boxes.

4. The Concrete Presentation Model describes the visual parts of a user interface
in detail, and how the interface is composed of concrete presentation objects, or

widgets. It represents the final structure and look and feel of the user interface, but

is only available in an editor and must be transformed to a certain UI implementa-

tion language.

The relationship between different tools and models is visualized in Figure 2.4. First, the appli-

cation and task-dialog models should be developed, both of which serve as input to an abstract

design tool, providing an abstract presentation model as output. This model is used as input to

a concrete design tool, which is able to produce a concrete presentation model based on guide-

lines.

Realizing this model-based approach calls for the support of tools. Modeling tools are (graph-

ical) environments that support the creation of UI models. Modeling assistants are (graphical)

environments that support UI developers by providing feedback to the developer. They provide

features such as model checking and validation [47].

2.5 Cameleon Reference Framework
An implementation of a Model-Based User Interface Development approach is the Cameleon

Reference Framework (CRF). It was developed to support the model-based development of user

interfaces [19, 37, 55], and describes the development steps and adopts certain conceptual el-

ements from the original MDA approach, such as different abstraction levels and model trans-

formations. Figure 2.5 shows a simplified version of the CRF. This simplified version is sufficient

to identify the core characteristics of the framework.

9

Model-Driven Engineering

Modelling tools

Modelling assistants

User Interface Model

Application
model

Task-dialogue
model

Abstract
presentation model

Concrete
presentation model

Abstract design tool

Concrete design tool

Design knowledge

Presentation
guidelines

FIGURE 2.4: User Interface Engineering in MBUID [47]

Concepts

Tasks

Domain

User

Platform

Context

Environment

Evolution

Transition

Adaption

Config 1

Tasks & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

Config 2

Tasks & Concepts

Abstract UI (AUI)

Concrete UI (CUI)

Final UI (FUI)

FIGURE 2.5: The (simplified) Cameleon Reference Framework [19, 37, 55, 57]

CRF can be seen as an implementation of the generic Model-Based User Interface Development

approach we discussed earlier in Section 2.4.

2.5.1 Characteristics
In CRF, three metamodels known as ontological models identify the key dimensions necessary to

solve a given problem [19]: domain, context and adaptation models, as shown in Figure 2.5. We

discuss each characteristic in more detail, and how they comply with the generic Model-Based

User Interface Development approach.

Domain Models provide a description of classes and objects that may be manipu-
lated by users that interact with a system, within the domain of the system [19, 55].

They can be described using an UML class diagram, entity-relationship-attribute

10

Model-Driven Engineering

model or some other object-oriented model [55]. Concepts are, for example, ob-

jects that need to be inspected in some location. Tasks could include inspecting or

editing a certain object or location.

The concepts model can be mapped to the application model of the generic user

interface engineering method as discussed in Section 2.4, since they share a com-

mon goal. The tasks model can be mapped to the task-dialog model of the generic

approach.

Context Models specify the context of use based on three characterizing aspects
[19, 55]: 1. User represents a stereotypical user of the system in terms of perceptual,

cognitive and action capacities; 2. Platform is modeled in terms of resources such as

available input and output mechanisms, screen size, memory size, operating system

and other technical aspects; 3. Environment is the set of all aspects that may have

an impact on the system or user aspects, such as the illumination of a certain envi-

ronment. The boundaries of this set are usually determined by domain analysts so

that only relevant aspects are included.

Adaptation Models are specified in terms of evolution and transition, so that the
system is able to properly respond to a change of context of use [19]. The evolution

model specifies to what implementation or configuration the system should switch

in case of a change in context. For example, an evolution model can define what

should happen when changes in brightness or screen orientation are detected. The

transition model aims to soften changes between different contexts. It allows spec-

ification of a prologue that prepares the context transition, and an epilogue that re-

stores system execution in the new context. During some transitions it is possible

that the current activity is paused before the transition, and resumed as soon as the

transition is finished.

2.5.2 Abstraction Levels
Figure 2.5 shows that CRF recognizes four levels of abstraction, which correspond with develop-

ment steps. We discuss each of these four levels of abstractions below.

Tasks & Concepts (T&C). The tasks and concepts for a user interface immediately
follow from the domain model in CRF, and describe domain concepts and tasks the

user should be able to perform.

Abstract User Interface (AUI). An AUI describes how the interface is composed us-
ing Abstract Interaction Objects (AIOs) [46, 55], and groups tasks according to criteria.

AIOs are available in two flavors: components and containers, where the latter either

contains components or other containers. An AUI mainly describes the interface in

terms of input and output components, but it does not include behavior.

The AUI model is related to the abstract presentation model from the generic

user interface engineering approach depicted in Figure 2.4.

11

Model-Driven Engineering

Computing Independent
Model (CIM)

Task & Domain

PIM

AUI

model-to-model

graph transformations

PSM

CUI

model-to-model

graph transformations

Source
Code

FUI

model-to-text

rendering

Model-Driven Architecture components and transformations

User Interface Engineering components and transformations

FIGURE 2.6: CRF correspondence to MDA [55]

Concrete User Interface (CUI). A CUI concretizes an AUI for a given context of use
by means of Concrete Interaction Objects (CIOs) [46, 55]. Although a CUI makes the

look and feel of a user interface explicit, it only runs in an MBUID environment. The

context of use is based on the three factors described in Section 2.5.1.

The CUI model can bemapped to the concrete presentationmodel of the generic

MBUID approach presented in Figure 2.4.

Final User Interface (FUI). An operational and running implementation of a CUI for
a particular platform, i.e. source code.

2.5.3 Model-Driven Architecture correspondence
So far we only discussed the models in the Cameleon Reference Framework. To comply with

MDA, transformations must be defined. Figure 2.5 depicts transformations with the arrows in

the config-blocks. The downward, upward and horizontal arrows illustrate reification, abstrac-

tion and translation transformations, respectively.

The models used in CRF and MDA in general show similarities in both their purpose and inter-

dependence [46, 55]. Both approaches start at a high abstract level by specifying what a user

interface or system should be able to do. Then, an abstract model is created that specifies this

functionality without taking into account the computing platform. The last two models are a

concrete implementation where the platform is taken into account and the actual source code,

which is the FUI for a MBUID.

Figure 2.6 shows how the models included with CRF approach correspond with the MDA ap-

proach defined by the OMG [55].

2.6 Mobile Devices
MOdel-Driven Engineering can be applied in the development of applications for mobile de-

vices, and it is most likely also beneficial for larger applications. A metamodel could be adopted

or defined that describes the target platform in order to generate a platform-specific model

for any kind of device. However, there are specific challenges that arise when applying model-

driven engineering for mobile devices, which we discuss in this section.

12

Model-Driven Engineering

2.6.1 Challenges
When developing applications for mobile devices, the main problem is that different mobile

devices often run different operating systems. Additionally, while mobile devices offer several

possibilities they also have their limitations. We discuss the challenges in further detail.

Multi-Target Systems. A multi-target system is an interactive application that is
aimed for use in multiple environments, has different input and output modalities,

and is built for multiple computing platforms [53].

Concerning input and output modalities, different devices may differ in their ca-

pabilities. For example: some devices have GPS-sensor or camera in order to sup-

port user input, while other devices do not. The different screen sizes and aspect

ratios are examples of differences in output modalities.

Different devices also vary in terms of available energy. While some devices can

work without recharge for days under heavy usage, others need to be recharged

after hours under the same heavy usage.

User Interfaces. In [55], Vanderdonckt recognizes that mobile computing platforms
pose a challenge in UI design. One challenge follows from the differences in screen

sizes and aspect ratios. An application that runs on a tablet may present the in-

formation differently than the same application on a smartphone, by exploiting the

larger screen. Other challenges are, for example, the (un)availability of a hardware

keyboard or other input and output modalities, such as GPS-sensors or speakers.

2.6.2 Approaches
In [33], Kim et al. applied Model-Driven Development during the development of an Android

smartphone application. They specified a platform-independent model of the application, and

used ATL to transform the PIM to a PSM. Both the PIM and PSM were UML models. The case

study is a classic example of applying a model-driven approach, in which they only generated

the code skeleton for the Android application. Application-specific code and logic still had to be

implemented. They did however show that a model-driven approach is beneficial for the devel-

opment of smartphone applications, as they conclude that by modifying the transformations,

also iPhone and Windows Mobile versions of the generated code skeleton could be generated.

While their approach clearly illustrated the power of Model-Driven Engineering in the devel-

opment of mobile applications, it remains a challenge to develop approaches that are more

flexible, scalable and able to deal with the many differences between devices. The model of

a system for different target devices remains the same, but the primary challenge is to pro-

vide proper transformations between the models, as illustrated in Figure 2.7. Querying Google

Scholar for MDE applied for mobile devices yielded two generic approaches: colored graph

transformations [53] and transformation templates [3]. Figure 2.7 shows that both approaches

operate in the same operational context, namely in the transformational context from abstract

to concrete model.

13

Model-Driven Engineering

Task & Domain

transformation

Abstract Model

transformation

Concrete Model
(tablet)

Concrete Model
(smartphone)

Concrete Model
(desktop)

Final Model
(tablet)

Final Model
(smartphone)

Final Model
(desktop)

FIGURE 2.7: Transformational approach using transformation rules [3, 53]

In Section 2.3 we introduced ATL, which is a language to specify model-to-model transforma-

tions. One of the advanced features of this language is its support for rule inheritance. Rule

inheritance allows the re-use of transformation rules, and is also a mechanism to support poly-

morphic rules [30]. Rule inheritance can be used to describe transformation rules that are com-

mon for different targets. These rules can then be extended in order to capture target specific

transformations.

Listing 2.3 gives an abstract example of rule inheritance in ATL. Listing 2.4 shows the compiler

interpretation of the example. In ATL, only the to-part of a sub-rule is unified with the to-part of

its parent. Following this example, one could also define a rule C that extends rule B. The to-part

of rule C would be the unification of the to-parts of rule A, B and C.

1 abstract rule A {
2 from [fromA]
3 using [usingA]
4 to [toA]
5 do [doA]
6 }
7 rule B extends A {
8 from [fromB]
9 using [usingB]
10 to [toB]
11 do [doB]
12 }

Listing 2.3: A simple abstract example of rule inheritance in ATL

1 rule B {
2 from [fromB]

14

User Interface design for mobile devices

3 using [usingB]
4 to [toA.bindings union toB.bindings]
5 do [doB]
6 }

Listing 2.4: Compiler interpretation of Listing 2.3

15

Chapter 3
User Interface design for mobile
devices

This chapter provides background knowledge on user interface design for mobile devices. In this

chapter we present an overview of common challenges in user interface design for mobile devices,

and determine which data gathering techniques are useful to identify current issues in mobile

devices at a company such as Sigmax.

3.1 Introduction
One of the goals of Human-Computer Interaction (HCI) design is to minimize the barrier be-

tween what a user wants to achieve, and the computer’s ability to understand the task [49]. In

order to minimize that barrier, we must know what causes it. Here, we investigate the problem

areas and issues that arise during interaction with a mobile device application. This allows us to

better understand the user needs.

3.2 Hardware challenges
Mobile devices are less powerful in terms of processing power and graphics than traditional

desktop computers, often differ in form factors and are limited in the available peripherals [7].

Although the processing power of mobile devices is rapidly increasing, the form factors and pe-

ripherals remain challenges. The main issues that are related to Human-Computer Interaction

and mobile devices, are input and output challenges.

Input. Hardware keyboards themselves are small, and have small keys because of
the limited amount of space on amobile device [11], which results in lower data-entry

17

User Interface design for mobile devices

rates [49]. Researchers first claimed that the data-entry rate would be comparable

to that of desktop applications and error-rates would not increase. More recent

research however showed that using a hardware keyboard can be quite tricky and

cumbersome, especially for people with thick fingers [28].

Software keyboards, i.e. on-screen keyboards, can be used but often require the

use of a stylus, which is a frequently used mechanism and acceptable alternative

[28]. However, using a stylus has its disadvantages. People can lose it, have issues

use it because of its small form factor, or using a stylus obstructs interaction with

other graphical elements on the screen.

Different types of input also play a role. One may distinguish text and numerical

data, but also dates or GPS coordinates, for example [42]. This introduces issues

where a default text entry mechanismmay not deliver the expected user experience

while entering a date, time or geographical coordinate.

Output. One of the most obvious hardware issues of mobile devices related to out-
put of information is the physical size of the screen [11, 42, 49]. Although there are

devices with larger screens, they are not always desirable because of the required

mobility [11, 28]. Switching between landscape and portrait mode introduces new

possibilities in application design, but also issues such as determining in which situ-

ations to switch between these two modes [42].

Because of the limited screen size, a trade-off between what should and should

not be displayed on the screen must be made, which can be achieved by conducting

user experiments [28]. Other identifiable issues related to screens are the low reso-

lution and lower amount of colors compared to regular computer screens, and the

width to height ratio that often differs from the usual 4:3, 16:9 or 16:10 [7].

Lastly, although audio output is limited, it is still a very useful and suitable mech-

anism to notify users with a sound effect in case of an event [28].

3.3 Software challenges
The hardware limitations described in section 3.2 result in several software challenges.

Screen size. Limited screen sizes force developers to make a trade-off between
what should and should not be on the screen, and result in the information being

split up into several small presentation units [28]. This is especially challenging in

case large amounts of data are available [1].

Hierarchical navigation. Navigation through hierarchical menus or other forms of
structured information is difficult [1, 28]. Structuring this information is a challenge.

With hierarchical menus one has to decide on the amount of levels and amount

of items per level. Research shows that more hierarchical levels is better than more

items per level, and that each level ideally should have 4 to 8 items [21, 28]. However,

this particular research was conducted with outdated mobile devices.

18

User Interface design for mobile devices

Data input. The fact that text entry on mobile devices is slower than when using
a regular computer keyboard [49], requires easy ways of entering information for

different types of data such as text, numerical data, dates and locations. Using mul-

timodal input here allows for easier input [42], such as, for example, a date picker to

select a date, instead of manual entry.

3.4 Environmental challenges
Using mobile devices in professional environments may often result in the device being used

outside, meaning that the weather outside becomes an important factor. As the device has

to be used in cold weather as well, issues arise during interaction with a device while wearing

gloves, for example, or reading from the screen on a bright sunny day.

Patchy sensors, poor or no network coverage or GPS-satellite reception can cause issues for

mobile devices, especially in case the device uses contextual information to increase user expe-

rience [11].

Related to network coverage, the mobile Internet connection is often slow compared to more

traditional wired or wireless connections, which can greatly affect interactivity when large amounts

of data have to be retrieved from a remote source [7]. Business mobile Internet connections

are also more expensive than mobile consumer Internet connections.

3.5 Design Guidelines from literature
The previous sections identified several challenges. These need to be taken into account when

designing for mobile devices. The next step is to find solutions that address these issues. Sev-

eral researches identified design guidelines that help HCI designers to develop user interfaces.

These guidelines can be categorized based on their purpose. We identified high-level and low-

level guidelines, both of which are explained further in this section.

3.5.1 High-level guidelines
From literature we identified several guidelines that we classified as high-level guidelines, which

presents what should or should not be done in terms of interface design and application be-

havior. High-level guidelines do not specify exact design details.

Gong presents guidelines based on Shneiderman’s Golden Rules of Interface Design, tailored to

meet mobile interface design [22, 51]. Although published a while ago, in 2004, the guidelines

are quite abstract and still applicable today. The work specifies a number of abstract guidelines,

such as offer informative feedback, reduce short-term memory load and design for enjoyment. The

guidelines describe points of attention that should be taken into account by a designer, and

help to design an application from the perspective of the end-user.

19

User Interface design for mobile devices

In addition and related to these guidelines, Kukkonen and Kurkela developed seven principles

for highly goal-driven mobile services [43]. They should allow for mobility, be useful, show

relevant information, be easy to use, allow the most important information to be easily located,

use user’s terminology and their way of thinking, and finally they should adapt to every user’s

own needs.

In combination with the work of Love [36], we selected three high-level guidelines that are of

importance: consistency, context-awareness and multi-modal input. We discuss these in more

detail:

Consistency. In [36], Love states that it is important to offer the same user expe-
rience among different applications on mobile devices or the same application on

different platforms, something that was also derived from Shneiderman his Golden

Rules of Interface Design [22, 51].

Apple (iOS) [2], Google (Android) [23, 24] and Microsoft (Windows Phone) [38, 39]

are major players on the mobile smartphone market. Their operating systems form

the majority of the smartphone market [20]: Android runs on 69.7% of all smart-

phones, iOS on 20.9% and Windows Phone on 3%. All these companies have de-

sign guidelines available for people that design applications for their mobile devices.

These guidelines describe in detail what the application interfaces and icons should

look like, but also how the application should behave. They aim to provide users of

the platforms from the companies mentioned before with a consistent user experi-

ence among applications.

An application deployed to multiple platforms should offer the same user expe-

rience as well. Whether an Android, iPhone or desktop version of an application is

used, users do not want to spend too much time learning the same application on

another platform [36]. A good example is the Dutch train planner application NS

Reisplanner Xtra, as it can be seen in Figure 3.1.

This presents challenges in interface design. Designers have to use the same in-

terface across different platforms, while taking into account the guidelines for each

of those platforms.

Context-awareness. Context-aware applications save user effort and frustration,
and therefore increase the usability ofmobile applications [22]. Exploiting contextual

information may avoid manual user input at all [42], but in contrast also introduces

new usability risks and challenges [27]. Research in this area fortunately resulted

in guidelines related to context-aware applications. Examples include always allow

the user to take over control and avoid information overflow [27]. Context-awareness

should support users during their activities and not force itself to the foreground.

Sharing one’s location with others is known to raise privacy concerns [49]. There-

fore, for people that use a mobile device professionally, context-awareness most

certainly can be a useful addition when applied correctly [22, 27].

Multimodal input. Multimodal interaction allows for easier input by using for ex-
ample speech, scanning RF-ID tags, barcodes, passports, and can help by using GPS

20

User Interface design for mobile devices

FIGURE 3.1: The NS Reisplanner Xtra train planner application on an Android smartphone (left) and

iPhone (right). The applications showmany similarities, but also platform specific characteristics.

or Bluetooth sensors [42]. Using multimodal input, specific types of input can be

entered easier. For example, the journey planner shown in Figure 3.1 uses GPS to

show nearby train stations to help select the departure station.

3.5.2 Low-level guidelines
While high-level guidelines describe in abstract terms how applications should behave, low-level

guidelines describe in more detail how (parts of) an interface should be designed, or behave.

Design Patterns. Design patterns address specific issues in interface design [42]. As
we mentioned earlier, text and data input in general is an issue on mobile devices.

Many patterns exist on how to deal with specific issues in mobile interface design.

An example is coping with text or other data entry. Guidelines prescribe that one

should either use contextual information, auto-complete what the user is typing,

allow the user to select some text from a list of predefined values, or use a specific

input mechanism.

Building Blocks. The design guidelines by Apple [2], Google [23, 24] and Microsoft
[38, 39] describe UI components such as text fields, dialogs, lists, grids, buttons,

checkboxes and so on, which are available for designers and developers. The avail-

able interface components are frequently used user interaction components. These

components help to provide a consistent user experience among applications on

the same platform, as their behavior and layout is comparable. Because users rec-

ognize the components, there is no need to learn a new interaction technique, which

increases the user experience.

Icons instead of text. Schröder and Ziefle conducted research towards a com-
pletely icon-based menu for mobile devices [50]. The textual terms used to indicate

the function of a menu item is often ambiguous, difficult to comprehend and space

21

User Interface design for mobile devices

consuming — which does not help in coping with small screens. The use of icons in

menus is encouraged: they are universal and improve the will to learn.

However, there are also downsides. Icons lack grammar, which is an issue be-

cause in language grammar is used to express relations between items. For this

reason, Schröder and Ziefle argue that icons are not useful in hierarchical menus. In

single-level menus, however, icons can be useful.

3.6 Success factors
To identify whether a developed application can be considered successful, we must first know

how we can measure success. From literature we identified that usability, fit for mobile work con-

text and positive impact on work productivity are key factors for the success of mobile applications

in professional environments [56, 58].

Usability. Usability plays an important role in the acceptance of mobile devices
and applications. In [5], Balagtas mentions that some usability aspects can be eas-

ily tested in a lab setting by having users interact with different versions of a user

interface. Usability, however, is not a simple single property of a user interface, but

has multiple components and is associated with five attributes, according to Nielsen

et al. [40]: (1) learnability – the system is easy to learn, (2) efficiency – once the user

learned the system, a high level of productivity is possible, (3)memorability – the sys-

tem is easy to remember, so that the user can return to the system after a period

of time not using it without having to learn the system again, (4) errors – the system

should have a low error rate, and (5) satisfaction – the system should be pleasant to

use and be liked by its users.

In particular, a positive correlation between perceived usefulness, fluent appli-

cation navigation and a positive user experience was found in research [58]. These

results suggest that satisfaction in navigational capacities as well as a central facet

of easiness to use seem to be key variables in usability.

Fit for mobile context. Most usability measures are developed for desktop applica-
tions. For mobile applications it is important that the context in which an application

is used is included. The interaction between the user and the application may fail

if designers do not fully understand the context the device is used [56]. Users of

mobile applications face more distractions than users of desktop applications.

In order to properly perform location dependent jobs, mobile workers need to

know not only their location, but also the location of other parties or objects they

either work for or have some kind of interaction with. Dynamic location-related

information is critical for location-sensitive tasks [58].

Positive impact on productivity For companies adopting mobile technology, im-
proving work productivity is usually considered to be one of themain success factors

22

User Interface design for mobile devices

from the company’s point of view [56]. There are several benefits for the user of mo-

bile applications in the field, of which one is time-saving by immediately registering

factual data on-site.

3.7 Validation methods
A good user experience is important for users to adopt some technology [5, 17]. Evaluation and

validation is integral to the design process. The goal is to improve the design, and thus the user

experience [49]. Since a good user experience is good for business [17, 56], evaluations are an

important part of the design process.

Because user experience is for a large part determined by the user interface, and we aim to

design user interfaces based on guidelines, we believe that design guidelines can be evaluated

by assessing the success of the mobile application.

Evaluations usually involve observing the end-user and measuring performance, in order to

meet the exact needs of the end-user or customer [49]. Conducting evaluations for a finished

product, which is called summative evaluations, is useful in order to assess the success of the

product. Indeed, positive correlations were found between a positive user experience and an

increase in technology usage [17].

In research we found that there are three types of evaluation that are useful during the evalua-

tion of mobile device applications. We discuss each of them in more detail below:

Laboratory Studies. Being the used technique in 71% of all conventional usabil-

ity evaluation tests, lab studies are the most used usability evaluation technique

[10]. Several researches claim that 5 participants reveal about 80% of all usability

problems, whereas 10 participants reveal approximately 90% [10]. This suggests one

would need a relative small amount of participants in order to provide a good us-

ability for most end-users. However, this argument is contradicted by others [16, 52].

Faulkner claims that one would need at least 10 participants in order to reveal a min-

imum of 80% of all usability issues [16].

Lab studies are used when design choices have to be made for a new product

[49], or when usability tests must be conducted [10]. Often a series of tasks that

are assessed have to be performed by the user. Questionnaires are used to register

subjective responses, often in combination with (semi-)structured interviews.

However, lab studies cannot account for uncontrollable or external factors that

play a role for mobile applications.

Field Studies. The advantage of field studies is that they show usability issues that
may not be revealed during lab studies because of the external factors associated

with the environment [10]. Especially for mobile applications, field studies are be-

coming more popular because of this advantage. They should be an integral part of

the design process [49, 54].

23

User Interface design for mobile devices

Field studies are also used when the need for a new design exists, as they directly

show issues encountered by users during the use of the application [49]. Compara-

ble to how lab studies are conducted, during field studies one could also let users

perform tasks, after which they would be asked to fill out a questionnaire asking for

their experience.

Studies without users. Studies without involving users are conducted for two rea-
sons. First, they are used in the beginning of the design process by asking consul-

tants or research experts for their experiences or opinions [49]. Originally intro-

duced by Nielsen, heuristic evaluations let experts assess whether UI elements con-

form to tried and tested principles [41, 49]. Additionally, cognitive walkthroughs are

used to check whether the “user’s goals and memory for actions can be assumed

to lead to the next correct action" and involve simulating a user’s problem-solving

process [48, 49].

While applying each of these evaluations independently is useful to evaluate an application,

combining these evaluation techniques may add significant value. Investigating from different

perspectives is called triangulation [49]. Themost applied form of triangulation ismethodological

triangulation: employing different data gathering techniques. Triangulation is good practice, but

difficult to achieve. Data gathered from different perspectives may not be compatible, making

it difficult to make the results complementary.

24

Chapter 4
Developing user interface design
guidelines
This chapter presents the user interface design guidelines that were developed. It also presents the

activities that were conducted in order to gather data that was required for the development of

these guidelines.

4.1 Data Gathering
Before we started to develop guidelines, current issues with mobile devices at Sigmax were

identified. This section describes the different steps in data gathering that were conducted.

Four different steps of data gathering techniques were conducted: a literature study, expert

interviews, field studies and a lab study. For each data gathering technique we describe the

methodology and discuss the results in this section.

4.1.1 Literature study
Extensive literature research was conducted on the subject of challenges and approaches in

applying Human-Computer Interaction concepts onmobile devices. The results of these studies

have already been presented in Chapter 3.

4.1.2 Expert interviews
To get a better understanding of the current situation of mobile products by Sigmax that are

already deployed in the field, such as user frustration and satisfaction, as well as limitations of

products, expert interviews were conducted. The goal of the expert interviews is exploratory.

25

Developing user interface design guidelines

Methodology. The interviews were designed to be semi-structured, and each interview took
30-45 minutes. Questions asked were, amongst others, “for which tasks in the professional envi-

ronment should the mobile device offer support", “in which areas does the application support the

user during his work?" and “in which areas does the application disturb the user during his work?".

The complete list of questions is included in Appendix A. The participants of the interviews

were people that have contact with customers and end-users, because those people have a

better understanding of how the products are experienced in the field when compared to soft-

ware programmers. Five Sigmax employees were interviewed: two helpdesk employees, a sales

manager, a functional consultant and the chief executive officer. Audio recordings and manual

notes were made.

Open coding in grounded theory [9] was used to analyze the results. Open coding is an inter-

pretive process meant to analytically break data into data units. In our case, the data was the

interview and the data units were expressions by the participants. The analyst conducting open

coding applies characterizing labels to data units. Related data units are labeled the same.

Open coding is a process of questioning and constant comparison, helping analysts to break

through subjectivity and bias. Its purpose is to identify the core topics in the data.

Results. Table 4.1 shows the labels that rose from the expert interview after open coding. The
areas in which mobile applications are used differ. They are used by security companies in rela-

tively device-friendly environments, but also by rail inspection companies or drainage cleaners

where the environment is less device-friendly. With device-friendly we mean the likelihood of

the device being damaged.

According to Table 4.1, software (SW ISSUE) and hardware issues (HW ISSUE) seem to be primary

factors that influence user experience. One of the most heard comments is that users find that

applications provide too little feedback about their activities. The applications tend to provide

too little feedback when it comes to progress or user interaction, possibly providing a slow

(SLOW) user experience. Changes in the user interface or application behavior after an update

is reported to be confusing for users. Additionally, the design philosophy at Sigmax is that

applications should be fully controllable with a finger, and without a stylus.

A hardware issue (HW ISSUE) is that people often find the quality of the device below what they

expected. The quality here concerns the look of the device itself, the quality of the screen as

well as the quality of the pictures made with the camera. While this may be true, a trade-off

must be made. The devices that are deployed in the field are often ruggedized, meaning that

the device is physically strengthened to better resist excessive use or abuse. However, this also

means trade-offs have to be made considering the quality of the device. It is also clear that the

mobile application could be more supportive in terms of feedback.

A mobile device forces the user to work in a certain way, which is a point of attention (PROC

POA). While this certainly provides benefits (PROC PRO), especially for new users who have to

learn working with the device, it may be less desired by experienced workers.

Inputting information is found the be difficult by only a few (INPUT ISSUE). The use of multi-

modal input is seen as a benefit (MULTIMODAL PRO). Certain hardware capabilities (HW PRO)

allow for multimodal input by, for example, using GPS sensors.

26

Developing user interface design guidelines

Label Description #
HELPS Data units with this label indicate that people are pleased with a

mobile device that helps them during their jobs.

10

SW ISSUE Data units with this label indicate that people experience software

issues.

5

PROC POA Data units with this label indicate that it is a point of attention that

a mobile device forces a certain way of working.

4

HW ISSUE Data units with this label indicate that people experience hard-

ware issues.

3

HW PRO Data units with this label indicate that people gain advantages by

using mobile device hardware and its capabilities.

3

PRIV ISSUE Data units with this label indicate that people have the feeling

their privacy may be infringed.

2

INPUT ISSUE Data units with this label indicate that people have issues in-

putting data.

2

MULTIMODAL PRO Data units with this label indicate that the multimodal input (i.e.,

using device capabilities to help the user during input) is experi-

enced to be pleasant.

2

PRES Data units with this label indicate issues with the presentation of

data on-screen.

1

SLOW Data units with this label indicate that the device is experienced

to be too slow.

1

PROC PRO Data units with this label indicate that the mobile devices force a

certain way of working, which is seen as a good thing.

1

SW FANCY Data units with this label indicate that people are pleased with

software features.

1

TABLE 4.1: Labels, including their description and number of occurrences, that were derived from

the expert interviews by applying open coding in grounded theory.

Worth mentioning is that the top heard comment during the interviews is that users of mobile

devices are very pleased with its use (HELPS). During a single interview we learned that screen

animations were found to be very nice (SW FANCY).

4.1.3 Field studies
After the expert interviews, the next step in data gathering were field studies in the form of

observations. Observations conducted in the beginning of the design process help understand

the user context, tasks and goals [49]. This section provides an overview of the most impor-

tant aspects of the methodology used for field studies and discusses the results. Appendix B

contains a more detailed description of the methodology and detailed results.

Methodology. The field study was set up as observation in combination with informal inter-
views before, during and after the study. During the study, we adopted a passive attitude, so

that application behavior by the user is interrupted as little as possible. The simple who-what-

where-framework, as introduced by Rogers et al. [49], was adopted to keep the goals and targets

straight. The observed person was asked to think aloud while interacting with themobile device.

Three field studies were conducted: at a company that cleans sewers and drainage systems, at

27

Developing user interface design guidelines

a railway inspection company, and at a municipality where parking attendants use a mobile de-

vice to register parking violations. Written notes were made, and after each observation the day

was reflected upon by the researcher by writing down as many observations as possible. Open

coding in grounded theory was used for analysis. The most important observations and claims

by the observed persons served as data units.

Results. Table 4.2 shows the labels that rose from the field studies after open coding. From
Table 4.2 we learn that most observations had to do with how the mobile application presented

its data (PRES), the mobile device being slow (SLOW), hardware issues (HW ISSUE) and software

issues (SW ISSUE).

During field studies we primarily discovered that people often find themselves browsing through

long lists of items using a stylus, something that has to do with how the application presents it

data. In one field study, the user had to scroll through lists so often that the protective screen

cover was completely worn off at certain parts. In another field study we noticed that people

always had to click on the single search result to view the details, instead of having the details

immediately shown. Additionally, in some cases the device lacked human-understandable er-

ror messages. For example, a NullPointerException was referred to as a “nul-error" (“nul"

being Dutch for zero), while it should not be shown at all.

We also learned a lot about how users interact with the device (INT POA), and how the appli-

cation matches their work process (PROC POA). User interaction in all three studies was done

using a stylus. This is an interesting observation, since during the experts interviews discussed

in Section 4.1.2 we discovered that the design philosophy is that interaction should be possible

using only fingers.

The users did not seem to have much problems with how the current interaction works (INT

ISSUE), and are happy with the device being around and facilitating their jobs (HELPS).

An often heard comment was that the application is experienced to be slow, and keeps get-

ting slower after each software update. The mobile application does not provide proper feed-

back about progress when time consuming algorithms are being executed, which most likely

strengthens this experience. Scrolling through long lists of choices in order to select an option

is experienced to be frustrating. The observed people argue that the application could place

items that are often selected from some list on top of the list, so that scrolling takes less time.

4.1.4 Lab study
During the literature and field studies we found that structuring hierarchical information is dif-

ficult, and that it is best to only show 4-8 items per hierarchical level [1, 21, 28]. However, the

mobile devices that were used in this research are by now outdated and replaced by smart-

phones and tablets. To understand how people prefer browsing hierarchical data structures on

both smartphones and tablets, a lab study was conducted.

This section provides an overview of the most important aspects of the methodology and dis-

cusses the results. Appendix C contains a more detailed description of the methodology and

detailed results.

28

Developing user interface design guidelines

Label Description #
PRES ISSUE Data units with this label indicate issues with the presentation of data

or information in the application being too vague or unclear.

8

SLOW Data units with this label indicate that people experience the device to

be slow.

5

HW ISSUE Data units with this label indicate that people experienced hardware

issues.

4

INT POA Data units with this label indicate interaction with the device is a point

of attention.

3

SW ISSUE Data units with this label indicate that people experienced software

issues.

3

PROC POA Data units with this label indicate that the device helps during people’s

jobs, but their work process must be taken into account. A point of

attention.

3

HELPS Data units with this label indicate that people are pleased with a mo-

bile device that helps them during their jobs.

2

INT ISSUE Data units with this label indicate that people experienced issues with

device interaction.

1

QUALITY ISSUE Data units with this label indicate that people experienced quality is-

sues.

1

TABLE 4.2: Labels, including their description and number of occurrences, that were derived from

the field studies by applying open coding in grounded theory.

Methodology. A simple application was developed to navigate hierarchical data structures on
smartphones and tablets. On the tablet, the application exploited the larger screen. Figure 4.1

and 4.2 show screenshots of the application on both a smartphone and tablet. Two data struc-

tures were implemented: one that shows a low amount of items on each hierarchical level but

uses more levels (the deep structure), and one that used longer lists where scrolling through the

list would be required, but less hierarchical levels (the broad structure). In this study there are

two independent variables: smartphone versus tablet, and a deep versus broad data structure,

providing us with four different configurations. This 2x2-study was designed as a counterbal-

anced within-design lab study using four different treatments. Participants were handed a form

with instructions and tasks to conduct. Furthermore they were equipped with a smartphone

and tablet to conduct the tasks, and a laptop computer to fill out a questionnaire about how

they experienced each task.

The questionnaire was used to register user experience. A selection of questions that were

asked in the questionnaire are: “I had to perform too many steps before I got to the item I wanted",

and “There were too many choices from which I had to choose at each step". These questions

were answered using a 7-point Likert scale where 1 meant “I completely disagree" and 7 meant “I

completely agree". At the end of each single experiment, a short semi-structured interview was

conducted to get a better understanding of the people’s preference for the smartphone or the

tablet, and the deep or the broad data structure. Additionally, video recordings were made to

allow interaction behavior to be reviewed later.

A total of 16 people participated in the lab study (10 male, 6 female, average age 24.4 years, 9

academics). All participants owned a smartphone and used it daily. The intensity of use was

measured on a 7-point Likert scale. Most participants use their smartphone intensively (M =

29

Developing user interface design guidelines

FIGURE 4.1: Screenshots of the application that was used during the lab study on a smartphone.

5.5, SD = 1.751). Tablets were owned by less participants: 25% of the participants owned a tablet,

and only 19% of all participants used a tablet on a daily basis. This means some participants use

a tablet on a daily basis, without owning one. Of the 4 participants that owned a tablet, there

was only one person that uses it on a daily basis. The intensity of tablet usage was also much

lower (M = 2.33, SD = 1.211) than that of smartphones.

Results. First of all, people found the assignments during the study very easy for each of
the configurations: M = 5.94, SD = 1.569 for smartphones using the deep data structure, M

= 5.88, SD = 1.996 for smartphones using the broad data structure, M = 6.25, SD = .856 for

tablets using the deep data structure, and M = 6.25, SD = 1.291 for tablets using the broad data

structure. No significant differences were found in how easy people found the deep versus

broad data structure on a smartphone (t(15) = .102, p = .92) or tablets (t(15) = 0, p = 1). There were

also no significant differences found in how easy people found the deep data structure on a

smartphone versus tablets (t(15) = -.924, p = .37), or the broad data structure on a smartphone

versus tablet (t(15) = -.651, p = .525). It is apparent that this is related to the fact that most people

were already acquainted with smartphones, and some with tablets.

Paired T-tests showed two significant comparisons regarding the extent to which users had to

go through too many hierarchical levels using one of the data structures. This user experience

was measured on a 7-point scale, by asking participants if they had to go through too many hi-

erarchical levels to complete an assignment (1 = completely disagree, 7 = completely agree). On

30

Developing user interface design guidelines

FIGURE 4.2: Screenshots of the application that was used during the lab study on a tablet.

smartphones, a significant difference (t(15) = 3.135, p < .01) was found between participants that

found they had to go through more too many hierarchical levels using the deep data structure (M

= 3.88, SD = 2.217) than using the broad data structure (M = 2.69, SD = 1.702). This comparison

was also significant when participants had to use a tablet (t(15) = 3, p < .01). On the tablet, people

also found that the deep data structure yielded more too many hierarchical levels (M = 3.94, SD =

2.175) than the broad data structure (M = 2.81, SD = 1.797).

The extent to which participants found that they had too many choices at each step (in the hierar-

chy), we see that on smartphones there is no significant difference (t(15) = -1.291, p = .216) using

either a deep (M = 2.63, SD = 1.708) or broad data structure (M = 3.38, SD = 1.668). On tablets

this difference was marginally significant (t(15) = 1.962, p = .069) using either a deep (M = 3.25, SD

= 1.77) or broad data structure (M = 2.38, SD = 1.408). This suggests that participants are more

bothered by the number of levels they have to go through and care less about the number of

items at each level, provided that the list is properly sorted for its goal.

We also tried to find correlations between summations of data. The questionnaires were used

to measure to what extend people had to perform too many actions to either select an item

from the list, or get to the correct level in the hierarchy. We summed up these two questions for

each of the configurations for all participants, constructing a new measure that indicates how

much a participant did not like a certain configuration. The configurations are in this case all

possibilities of the independent variables (smartphone versus tablet, and a deep versus broad

data structure). Using this approach, we found one significant comparison between how par-

ticipants experienced the deep versus the broad data structure on tablets (t(15) = 2.928, p = .01).

The participants experienced the action of having to go through too many hierarchical levels and

having too much choices at each stepwere summed both for the deep and broad data structures.

31

Developing user interface design guidelines

Participants were more pleased with a broad data structure (M = 5.19, SD = 2.762), than a deep

data structure (M = 7.19, SD = 3.6).

These results suggest that people prefer longer lists if that means they have less hierarchical

levels. The interviews confirm this: participants mentioned that they do not experience scrolling

as a bad thing, since people that use mobile devices “are already used to it". These results are in

contrast with earlier research that was discussed in Section 3.3. In that work, it was suggested

that 4-8 items per hierarchical level would be optimal [21]. However, the comparison with this

study is not entirely fair, as our experiment was conducted with modern smartphones and

tablets, while Geven et al. conducted their experiments in 2006 using devices with small screens

and limited interaction mechanisms.

It is safe to say that when displaying hierarchical data structures, people prefer longer, logically

sorted, lists at each level if that means they have to go through less hierarchical levels.

4.2 Design Guidelines
This section presents the guidelines that were obtained from the data gathering techniques.

Similar to what we found during the literature study presented in Chapter 3, a distinction is

made between high and low-level design guidelines. The distinction between high-level and

low-level guidelines was made to categorize the design guidelines based on their purpose.

The guidelines were defined based on what we learned during data gathering. Issues that oc-

curred often, and in multiple steps during data gathering formed the basis for these design

guidelines.

During the literature study, it was found that three success factors are of importance for mobile

applications: usability, fit for mobile work context and positive impact on work productivity. The

aim of the guidelines is to help achieve one or more of these success factors.

4.2.1 High-level guidelines
High-level guidelines can be seen as principles that should be taken into account during the

development process of user interfaces, as well as the application itself.

Be responsive
Identified from: expert interviews, field studies.
Motivation: An often heard comment during the expert interviews and field studies was that
the application would become slow or irresponsive. If an application does not respond imme-

diately to user action, this may result in frustrated users as their work is slowed down and their

actions are not immediately acknowledged. Users might also think that the application crashed.

Desired behavior: Regardless of whether it is possible to immediately provide a proper re-
sponse to user action, the application should always provide on-screen feedback when a user

32

Developing user interface design guidelines

interacts with the device, albeit a loading or ‘please wait’ dialog. This way the user knows that

the device registered the action and is not tempted to try again. If an action is being executed

that takes some time to finish, there are three degrees of information that can be displayed:

(1) a progress dialog that shows how long the operation is going to take, (2) a percentage that

shows the current progress, (3) a ‘please wait’ dialog.

Be consistent
Identified from: literature study, expert interviews.
Motivation: After a while, users will get acquainted with the application and expect certain
application behavior. During the field studies we learned that people sometimes get confused

after an application update, so it is important to keep this in mind. Consistency decreases the

learning curve: once people learned a certain concept in an application, they recognize it when

the concept is re-used elsewhere in the application.

Desired behavior: To be consistent is a guideline that effects several dimensions, such as types
of screens, but also how on-screen elements respond to user action. The same types of screens

and concepts should be used throughout the application. Components that are often used

should be placed in a framework or automatically generated, so that re-use is encouraged. Be-

cause mobile devices enforce a way of working for the user, it is important to offer consistency

so that people recognize all screens and do not have to learn a new concept every time.

Provide understandable feedback
Identified from: expert interviews, field studies.
Motivation: While developers are technical, most users are not. When a user clicks a button
on the screen but nothing happens, or when something went wrong and a technical error mes-

sage is displayed, it worsens the user experience and people may develop an aversion to the

application. In case of application error, people tend to think they did something wrong while

this may not be the case. Feedback is important to keep the user informed about the activities

of the application, in addition to being responsive.

Desired behavior: At all times, but especially in case of errors, it is of utmost importance that
an application provides understandable feedback. User friendly error messages should be dis-

played, including an error code that allows the user to quickly look up the error to inform the

helpdesk or developers. When possible, the reason why the error message popped up should

be included. In case the user made a mistake, the user should be informed of the mistake and

asked to try again. In these cases, an error code does not have to be displayed, since the error

can be fixed by the user.

Be supportive and minimize manual input
33

Developing user interface design guidelines

Identified from: literature study, expert interviews, field studies.
Motivation: Manual input is experienced by users to be difficult and time consuming. Reasons
include a small screen — making an on-screen keyboard tiny and difficult to use, especially on

smartphones — as well as the limited input capabilities of mobile devices in general. There-

fore, manual input should be reduced and the application should support the user as much as

possible.

Desired behavior: An application should avoid user input and use additional device capabilities
such as GPS sensors, or the ability to scan barcodes in order to support the user in his or her

tasks, as explained in Section 3.3. Developers should think about tailoring to specific types of

users; different users using the same application may have different preferences or activities.

To be supportive is a paradigm that should be followed through the whole process of designing

and implementing of an application.

Prioritize data presentation in list choices
Identified from: field studies.
Motivation: Users often have to make a choice from an extensive list of options. The organiza-
tion of this list is important, as extensive lists are prone to claim lots of user time. In some cases

it may be a challenge to show an extensive list of items, as the screen size of mobile devices is

smaller than that of desktop or laptop computers. This guidelines affects list choices used to

select a single option, and not a full-screen list with items.

Desired behavior: The desired behavior for this guideline is strongly related to being support-
ive. The information needed by the users should be displayed immediately, and not after an

extra (unnecessary) user action. Additionally, users should not have to spend too much time

choosing an option from a list of possible choices. In case a list of options is displayed, the

option that is most likely to be selected should be presented at the top of the list.

Allow customization
Identified from: literature study (Section 3.5.1).
Motivation: Consultants and programmers will often determine what should be displayed in
a list. However, users may want to be able to customize lists in order to apply a certain filter

to reduce the number of items in a list and find specific items. If the application supports

a home-screen, it may differ which items are more often selected by certain users. Allowing

customizations makes users feel comfortable and in control.

Desired behavior: Developers should carefully consider what should be customizable. For
example, allowing to customize filters that are applied to certain lists, the displayed data can

be tailored to the users needs at that moment. Other customizable aspects could be a home

screen where the items that need to be displayed can be selected.

34

Developing user interface design guidelines

4.2.2 Low-level guidelines
Low-level guidelines provide specific instructions in how to implement application behavior for

certain concepts. These guidelines go into a lot more detail than high-level guidelines. While

a significant number of high-level guidelines were developed, only one low-level guideline was

developed. The reason for this is because our studies revealed more principles that should be

taken into account during development than concrete advises on how to build a user interface.

Navigating through hierarchical data structures
Rose from: literature study, lab study.
Motivation: When displaying hierarchical data structures, a trade-off between the number of
hierarchical levels and number of items per level has to bemade. It may be difficult to make this

trade-off and anticipate on how users are going to experience navigating through hierarchical

structures.

Guidelines: The most important guideline is that the items in a list should be sorted logically.
In most cases this will be alphabetically, but developers must take into account the goal of the

list. For example, if a list of articles is displayed with a price, it may very well be that the most

expensive items should be on top. Additionally, people do not mind scrolling through longer

lists, as long as the items are logically sorted and therefore easy to find. It is useful to add a

search box that allows textual input on top of the list that acts as a filter for the list of items

when text is entered.

Smartphone implementation: Lists use full screen width and height, and should be headed
by a search box. The search box allows to construct a filter for the current list based on textual

input. In case a list is contained within some other screen, the list uses the full screen width, and

is as high as is required to show all items in the list. In this case, a search box is not required,

but the items should be sorted logically.

Tablet implementation: How lists are shown depends on their usage. In case details are shown
when an item is clicked, the list uses about a third of the available screenwidth and the complete

available height. The width should be about a third, but should be kept the same for different list

screens throughout the application, as suggested by the guideline to be consistent. The selected

item remains highlighted. When a screen is shown in a pop-up, it uses the complete pop-up

width and height. If a list is used in some other screen, it is as wide as the screen, and as high

as is required to show all items. A search box is not required, but the items should be sorted

logically.

4.3 Discussion
The development of design guidelines involved a lot of data gathering, in which many opinions

have been registered. All these opinions were categorized and some of them were shared by

more people, without these people knowing each other. Especially opinions that were regis-

tered more than once and from different data gathering techniques formed the basis for our

35

Developing user interface design guidelines

design guidelines. The primary opinions concerned frustrations about general behavior of the

device, which is why there aremore high-level guidelines, or principles, than low-level guidelines

being presented.

36

Chapter 5
Solution design
This chapter presents the solution design of a Model-Driven Engineering environment that supports

the development of multi-target mobile applications. We present the metamodels and model

transformations that were defined in this work.

5.1 Introduction
One of the goals of this research is to develop a proof of concept environment that supports

Model-Driven Development of mobile applications for both smartphones and tablets, and in

particular with respect to mobile application layouts. To implement an MDE environment there

are three key requirements that need to be satisfied, being (1) a language to support the de-

velopment of metamodels and models; (2) a language to support model-to-model transforma-

tions; and (3) a language to support model-to-text transformations.

The language for defining metamodels was chosen to be Ecore [13], a popular modeling lan-

guage in the academic world. For model-to-model transformations the ATLAS Transformation

Language [30, 31] (ATL) was adopted. For model-to-text transformations the Xpand [14] language

was adopted. Conveniently, the Eclipse Modeling Project [15] bundles tools that support these

three languages, and provides these languages as plugins for Eclipse [12], a popular integrated

development environment (IDE) in both the academics and industry.

The user interface design guidelines and principles that were presented in the previous chapter,

were used as input during the development of metamodels and transformations. This combi-

nation could show the real added value of using MDE in the development of multi-target mobile

applications.

To keep the proof of concept feasible and within time boundaries, we limit ourselves to the

development of a Model-Driven Engineering environment that generates an application for the

Android platform.

37

Solution design

FIGURE 5.1: Examples of screens involved with a classic CRUD-pattern for an entity, in this case

tasks. From left to right: creating, reading (viewing details), updating and deleting. The applica-

tion shown is Asana on an Android smartphone.

In the remainder of this chapter we start by discussing the philosophy that was adopted for

the design of applications in an Model-Driven Engineering environment. Then, the metamodels

that were developed are presented and explained in detail, followed by themodel-to-model and

model-to-text transformations. We end this chapter with a discussion.

5.2 Application patterns
From the analysis of the current mobile applications at Sigmax we learned that there are several

abstract application patterns used throughout applications. An application pattern can be seen

as a building block that offers functionality. An instance of a pattern requires some configura-

tion, so that it provides the desired functionality.

For our proof of concept implementation, we adopted a single pattern: the CRUD-pattern, which

is used to create, read, update and delete instances of some entity. You can find this pattern in
many applications today. Figure 5.1 illustrates an example CRUD-pattern for a taskmanagement

application on a smartphone. It shows a list of your tasks, where you can also create new tasks,

update existing ones, or delete tasks that are no longer needed.

Application patterns can be broken up into different types of screens, each with their own spe-

cific goal. Most data-driven applications only have a few different types of screens that are

differently implemented to satisfy requirements. Following the CRUD application pattern that

was selected for the proof of concept, we identified three different types of screens: (1) A dash-

board menu to navigate to other screens; (2) a list screen, used to display a list of instances of

some entity; and (3) a details screen that shows details of a single entity instance.

The CRUD-pattern that we described as an application pattern can be implemented using these

types of screens. A list screen may be used to show an overview of entity instances. A details

screen can be used to show details of a single entity, allowing this entity to be updated, or to

create a new entity. Figure 5.1a and 5.1c shows that the screens to create or update a task are

identical.

38

Solution design

5.3 Metamodels
We developed three metamodels: two to allow the definition PIMs, and one to allow the defini-

tion of PSMs. Introducing multiple steps in metamodeling allows us to specify specific charac-

teristics or behavior at the most suitable levels. It also decreases the complexity of the model

transformations, as they are being split up over multiple models. The metamodels define what

elements are available to create specific models, and what relations may be defined between

the model elements.

The three metamodels that were developed are: (1) the Sigmax-metamodel, allowing to model

applications in terms of application patterns; (2) the Screens-metamodel, allowing to model an

application in terms of types of screens; and (3) the Android-metamodel, allowing to model

an application for the Android platform. Multiple metamodels were defined to distribute the

complexity of application development over multiple models. At the most abstract level, the

Sigmax-metamodel hides as much implementation details as possible.

The metamodels are written in ECore [15], which looks similar to UML. Many of the modeling

elements in ECore correspond to those of UML. It recognizes elements such as EPackage,

EClass, EOperation, EAttribute, EReference, amongst others.

First, the SigmaxApp-metamodel was developed to facilitate the development of a model that
represents amobile application in terms of application patterns that are relevant to the domain,

in our case Sigmax. It supports the development of PIMs, and aims to keep the design of an

application as simple as possible.

Second, the Screens-metamodel was developed to represent the application under develop-
ment in terms of logical screens and their relations. The goal of this metamodel is to allow the

development of PIMs that break down the application patterns from the SigmaxApp-metamodel

into different types of screens that are related to each other. A bit of logic is introduced in this

model, allowing to infer application behavior to differentiate the purpose of screens.

Third, Android-metamodel was developed to support the development of PSMs that represent
the application on an Android platform. It supports modeling application behavior so that logic

can be added during code generation, as well as multiple layout definitions for a single screen.

This allows us to create a PSM of the application under development that can be deployed

on multiple devices with different screen sizes, following the development paradigms of the

Android platform.

5.3.1 SigmaxApp-metamodel
The SigmaxApp-metamodel is the most abstract metamodel. It facilitates the development of

PIMs, and its goal is to keep the design of the application as simple as possible. It does this

by providing model elements that represent application patterns that are often seen in applica-

tions, bound to a certain domain or context of use. The number of details required to create a

model based the SigmaxApp-metamodel is kept to a minimum. Application patterns have a set

of properties that need to be set in order for them to offer the desired behavior and features.

39

Solution design

FIGURE 5.2: SigmaxApp-metamodel.

Figure 5.2 shows the SigmaxApp-metamodel. As can be seen in this figure, the EClass Pattern

is an abstract, attribute-free concept. It was introduced so that the metamodel can introduce

multiple specific application patterns, such as the CRUD pattern. We discuss this pattern inmore

detail below.

The CRUD EClass is added to a model in order to represent a CRUD-pattern for some entity,

allowing instances of that entity to be created, read, updated and deleted. Using the name

attribute, the application pattern is provided with an identifying name such as “Location Man-

agement" if the pattern is meant to create, read, update and delete locations. The attribute

entityName is required so that data from the correct data source can be retrieved and manip-

ulated. The attribute isHierarchical tells whether an entity is hierarchical, as that requires a

specific way of user interaction, determined by the user interface guidelines that were discussed

earlier in Section 4.2. Furthermore, a CRUD-pattern recognizes multiple properties. These prop-

erties have a certain data type, and specify which properties of the entity can be modified. A

CRUDReference is used to relate entities, and can be enriched with properties.

The SigmaxApp-metamodel represents few user interface specific details. It does not allow to

specify how a certain pattern should be implemented on a smartphone or on a tablet. The rea-

son for this is because this metamodel should be as abstract as possible. One of the important

guidelines of user interface design is to be consistent. Allowing platform-specific specifications

at this level of modeling could jeopardize this guideline.

40

Solution design

FIGURE 5.3: Screens-metamodel.

5.3.2 Screens-metamodel
The goal of the Screens-metamodel is to support the creation of PIMs of the applications under

development in terms of screens and their relations. Figure 5.3 shows the Screens-metamodel.

The goal of this model is to advance a step in application development. It does this by breaking

down the application patterns from the SigmaxApp-metamodel into different types of screens.

In other words, it further specifies what is visible to the end-user of the application in terms of

screens.

The metamodel recognizes different types of screens that may each have their own additional

properties. The types of screens that are available represent the goals of application patterns.

The Screens-metamodel recognizes three types of screens: (1) the ListScreen, meant to list

instances of a certain entity; (2) a DetailsScreen, meant to view the details of a single entity

or update its information; and (3) a Dashboard, meant to navigate to other screens.

41

Solution design

The Screens-metamodel does not provide a method to specify application behavior or logic, as

this is implicitly defined. For example, a ListScreen may have a reference to a DetailsScreen, in-

dicating that navigation to a DetailsScreen from a ListScreen is possible, but the metamodel

does not specify how the DetailsScreen can be reached from the ListScreen. Instead,

the reference between these types of screens implies that navigation to the DetailScreen

is possible by selecting an item in the ListScreen. How this selection is implemented is not

specified in this model, as this may depend on the target platform and therefor be specified in a

succeeding model. Additionally, referring to an Entity from a ListScreen implies that some

data storage must be consulted to obtain a list of instances from that entity.

5.3.3 Android-metamodel
The Android-metamodel facilitates the creation of PSMs. Its goal is to support the creation

of models that represent applications for an Android platform. Figure 5.4 shows (part of) the

Android metamodel. The available modeling elements in the Android-metamodel represent

the development components on Android, supplemented with modeling elements that allow to

model logic and application behavior.

An Activity represents a screen on an Android device and uses no, one ormultiple Fragments.

Android introduced fragments primarily to support flexible user interfaces on larger devices

such as tablets, without having to develop a second version of an application. Fragments repre-

sent certain behavior or a portion of the user interface within an activity, and thus allow reuse.

The Android development platform provides extensive support for the development of multi-

target applications. This metamodel was developed with this support in mind. A direct result

from this can be observed in Figure 5.4: both an Activity and DialogFragment recognize

one or multiple layout definition. A Layout has one attribute, namely: target. This string

identifies for which screen size the layout is suited, as supported by the Android platform. The

Android metamodel aims to provide the required modeling elements to support the creation of

a single model for an Android-application, aimed at both smartphones and tablets.

Furthermore we introducedmodeling components that can enrich amodel with logic. An exam-

ple is an Activity, which is an abstract concept in our metamodel. A specific implementation

is the DashboardActivity, which is used to start other activities. A CRUDActivity was in-

troduced to share attributes and references that the ListActivity and CreateActivity

have in common. Certain ActivityBehavior can be attached to an activity, to allow dynamic

configuration of a certain activity instance.

5.4 Transformations
The development ofmultiplemetamodels requiresmultiplemodel transformations. Since three

metamodels were developed, two model-to-model transformations are required. Additionally,

a model-to-text transformation is required to generate the required source code for an applica-

tion that can be run on an Android device.

42

Solution design

FIGURE 5.4: Excerpt of Android-metamodel. This figure only illustrates the most important parts

of the Android metamodel.

The model-to-model transformations were implemented in the declarative ATLAS Transforma-

tion Language (ATL). The model-to-text transformations were implemented in the imperative

language Xpand. Both languages are available within the Eclipse Modeling Project (EMP) [15] .

Figure 5.5 illustrates the model-to-transformations that were introduced, including their oper-

ational context. The green elements are components of MDA; the yellow elements were meta-

models and transformations written during this work; the blue model is made by developers

using theMDE environment; and the red elements aremodels derived through transformations

The model-to-model transformations are discussed in further details in this chapter. Figure 5.5

omits the model-to-text transformation that generates source code from the Android model

MAndroid.

5.4.1 Model-to-model transformations
Two model-to-model transformations were introduced. The first transforms a model instance

of the the SigmaxApp-model, MSigmaxApp, to a model instance of the Screens-metamodel,

MScreens. In Figure 5.5 this transformation is referred to as TSigmaxApp2Screens. The second

43

Solution design

ECore

MMSigmaxApp MMScreensMMATL

TSigmaxApp2Screens MScreensMSigmaxApp

conformsToconformsToconformsTo

transformation

executed

output

basedOn basedOn

MMAndroidMMATL

TScreens2Android MAndroid

conformsToconformsTo

executed

basedOn basedOn

transformation

inputinput

conformsTo conformsToconformsToconformsTo conformsTo

FIGURE 5.5: The model-to-model transformation chain and its operational context.

Source element Target element
App Application

Dashboard

CRUD ListScreen

DetailsScreen

Entity

CRUDReference DetailsScreen

Entity

RefProperty (2x)

... ...

TABLE 5.1: Transformation rules of how TSigmaxApp2Screens transforms source elements from

the SigmaxApp-metamodel to target elements for the Screens-metamodel. This Table does not

include the mappings for the entity properties, they are related one-to-one.

transformation transforms the generatedMScreens to amodel based on the Android-metamodel,

MAndroid. This transformation is referred to as TScreens2Android. We describe each of these

transformations in more detail below.

SigmaxApp to Screens. The TSigmaxApp2Screens transformation is the first step in the trans-

formation process. From the SigmaxApp-model that was manually created, it derives a second

model that is based on the Screens-metamodel. We call this the Screens-model, orMScreens as

it is referred to in Figure 5.5.

Recall the SigmaxApp and Screens metamodel from Figures 5.2 and 5.3, respectively. The sim-

ple, manually created, SigmaxApp-model must be transformed to a more detailed model. Ta-

ble 5.1 shows how the SigmaxApp-metamodel elements are transformed to Screens-metamodel

elements, so that detail is added. Each instance of a CRUD pattern that was introduced earlier

is transformed to a ListScreen, DetailsScreen and Entity.

44

Solution design

TSigmaxApp2Screens does not take into account the fact that the application under development

is targeted for both smartphones and tablets. It applies simple transformation rules to de-

rive the required screens from application patterns. The philosophy is that a ListScreen will

always be a list screen, no matter what platform or target device the screen is meant for. A

ListScreen simply has different implementations for smartphones and tablets.

A total of 11 transformation rules were defined, of which 2 were lazy rules. Lazy rules are

only executed when they are called by another rule. Listing 5.1 shows the transformation rule

crud2screens. This transformation rule transforms a CRUD-pattern to an Entity, List-

Screen and DetailsScreen in a Screens-model. The properties set in an instance of a CRUD

modeling element find their way into several modeling elements in the Screens model, or are

used to derive properties.

1 rule crud2screens {
2 from crud: SigmaxApp!CRUD
3 to entity: Screens!Entity (
4 name <- crud.entityName,
5 fields <- crud.properties->collect(p | thisModule.resolveTemp(p, ’

property’)),
6 isHierarchical <- crud.isHierarchical
7),
8 detailsScreen: Screens!DetailsScreen (
9 id <- entity.name + ’Details’,
10 title <- entity.name + ’Details’,
11 entity <- entity,
12 refScreens <- crud.references->collect(r | thisModule.doDetailsScreen(r))
13),
14 screen: Screens!ListScreen (
15 id <- entity.name + ’List’,
16 title <- crud.name,
17 entity <- entity,
18 deletable <- crud.deletable,
19 detailsScreen <- detailsScreen
20)
21 }

Listing 5.1: Transformation rule crud2screens. This transformation rule breaks a CRUD-pattern up inScreens

Screens to Android. The TScreens2Android transformation is the second step in the transfor-

mation process. From the Screens-model that was created by the first model transformation, it

derives a third model that is based on the Android-metamodel. We call this the Android-model,

orMAndroid as it is referred to in Figure 5.5. While the previous model transformation was rel-

atively simple, the TScreens2Android transformation adds many details and causes an explosion

of classes. Figure 5.3 and 5.4 already suggested this, since the Android-metamodel recognizes

significantly more elements than the Screens-metamodel.

Recall the Screens and Android metamodel from Figures 5.3 and 5.4, respectively. The relatively

simple Screens-model must be transformed to a model that adds details so that the application

under development can be properly represented for an Android platform. Table 5.2 shows how

the Screens-metamodel elements are transformed to the proper Android-metamodel elements,

and that indeed more detail is added.

45

Solution design

Source element Target element
Application Application

Dashboard LinearLayout

Layout

DashboardActivity

ListScreen ListActivity

Layout (2x)

ListFragment

FrameLayout

FragmentContainer

LinearLayout

RelativeLayout (3x)

FragmentContainer (3x)

... ...

TABLE 5.2: Partial transformation rules of how TScreens2Android transforms source elements from

the Screens-metamodel to target elements for the Android-metamodel. We can clearly see that

this transformation involves an explosion of classes, as a lot of detail is added.

Unlike the previousmodel-to-model transformation, TScreens2Android takes into account that the

application under development is targeted for both smartphones and tablets. For the Android

platform this means that multiple layout definitions are generated for different types of screens,

each layout representing the same screen on different platforms.

A total of 24 transformation rules were defined, of which 12 were lazy rules. Listing 5.2 shows

how the ListScreen that was created by the previous transformation is transformed to the

proper Android modeling elements, including multiple layouts. This transformation clearly

shows the complexity of TScreens2Android. Two Layout definitions are added, one of which has

the target property set to default and the other to large. On Android, tablets, for example, are

classified as a ‘large’ layout. For both layouts, the required layout components are generated.

For the large layout, the number of modeling components that are added in this transformation

rule is substantially larger than for the default layout. Additionally, Listing 5.2 shows that from

a single ListScreen, many modeling elements from the Android metmaodel are added, most

of which are related to user interface components.

1 rule listscreen2activity extends screen2activity {
2 from scr: Screens!ListScreen
3 to act: Android!ListActivity (
4 layoutDefinitions <- Sequence{ldD, ldL},
5 fragments <- Sequence{
6 thisModule.details2android(scr.detailsScreen, false),
7 scr.detailsScreen.refScreens->collect(s | thisModule.details2android(s

, true)),
8 fragList
9 },
10 menu <- menu,
11 entity <- scr.entity
12),
13 ldD: Android!Layout (
14 target <- ’default’,
15 content <- cDgroup
16),
17 ldL: Android!Layout (
18 target <- ’large’,
19 content <- cLgroup
20),

46

Solution design

21 fragList: Android!ListFragment (
22 name <- scr.entity.name + ’ListFragment’,
23 contextMenuItems <- Set{if scr.deletable then thisModule.

listFragmentAddDeleteSupport(act) else OclUndefined endif}
24),
25 menu: Android!Menu (
26 name <- act.name + ’Menu’,
27 items <- Sequence{itmCreate}
28),
29 itmCreate: Android!MenuItemOpenCreateEntityFragment (
30 id <- act.name + ’Menu_Create_’ + scr.entity.name,
31 title <- ’Create ’ + scr.entity.name,
32 fragment <- act.fragments->first(),
33 entity <- scr.entity
34),
35 cDgroup: Android!FrameLayout (
36 views <- Sequence{cDfragc}
37),
38 cDfragc: Android!FragmentContainer (
39 id <- act.name + ’_fragment_left’, -- Same name as the first fragment in

the large layout. Makes life easy. Trust me.
40 fragment <- fragList
41),
42

43 cLgroup: Android!LinearLayout (
44 horizontal <- true,
45 layout_width <- ’match_parent’,
46 layout_height <- ’match_parent’,
47 views <- Sequence{cLrl1, cLrl2, cLrl3}
48),
49 cLrl1: Android!RelativeLayout (layout_weight <- 0.33, views <- Sequence{

cLfrag1c}),
50 cLrl2: Android!RelativeLayout (layout_weight <- 0.34, views <- Sequence{

cLfrag2c}),
51 cLrl3: Android!RelativeLayout (layout_weight <- 0.33, views <- Sequence{

cLfrag3c}),
52 cLfrag1c: Android!FragmentContainer (id <- act.name + ’_fragment_left’,

fragment <- fragList, next <- cLfrag2c),
53 cLfrag2c: Android!FragmentContainer (id <- act.name + ’_fragment_center’,

fragment <- fragList, next <- cLfrag3c),
54 cLfrag3c: Android!FragmentContainer (id <- act.name + ’_fragment_right’,

fragment <- fragList)
55 }

Listing 5.2: Transformation rule listscreen2activity. This transformation transforms a ListScreen toall required Android modeling elements.

5.4.2 Model-to-text transformation
A model-to-text transformation was created to transform an Android-model to the required

source code. Figure 5.6 illustrates the operational context of the model-to-text transformation

that was introduced. The green elements are provided by tools; the yellow elements weremeta-

models and transformations written during this work; the blue model is made by developers

using the MDE environment; and the red elements are derived through transformations.

Android applications are packaged in .apk-files, which are Android package files. The most im-

portant contents of a package file are the compiled Java classes, XML definitions for screen

layouts, a manifest file with information about the application, as well as graphical resources,

such as icons. A package file can contain multiple layout definitions for a single screen, from

47

Solution design

MMAndroid

MAndroid

conformsTo

MMXpand

TAndroid2Text Source Code

conformsTo

executed

basedOn

input

Java syntax
and grammar

conformsTobasedOn

output

transformation

FIGURE 5.6: Operational context of the model-to-text transformation.

which Android automatically selects the correct layout definition based on the screen size at

runtime. This allows developers to deploy a single package file to multiple targets.

The model-to-text transformations are where most user interface design guidelines and princi-

ples were implemented. Most of the guidelines have to do with application behavior, which is

eventually determined by code. Since guidelines should always be taken into account, adding

them as modeling elements would be superfluous and increase the complexity of modeling

and transformations. The guidelines that were incorporated were: “be consistent", “provide un-

derstandable feedback" and “be supportive and minimize manual input". Be consistent is inherent

to adopting a Model-Driven Engineering environment. The layouts that are generated for each

pattern follow the same transformation rules, thus making the layout consistent. Providing un-

derstandable feedback was realized in multiple places. When an entity is created, updated or

deleted, a short Android-compliant notification is shown, informing the user of what happened.

Being supportive and minimize manual input was realized using a specific type of keyboards that

is made available on Android to only allow numbers as input in text fields. The Android model

that is used to generate the source code is aware of which properties are associated with an en-

tity. Thus, for numerical properties, a numerical property is provided to the Android component

to which it is transformed. Listing 5.3 shows this model-to-text transformation.

1 «DEFINE view FOR android::layout::view::EditText»
2 <EditText
3 «IF inputType.length > 0»android:inputType=’«inputType»’«ENDIF»
4 «EXPAND arguments FOR this»
5 />
6 «ENDDEFINE»

Listing 5.3: Model-to-text transformation that shows a numerical keyboard when the EditText element isactivated, provided that inputType is set to numeric.

A total of 85 model-to-text DEFINE blocks were written, divided over 5 different template files.

Listing 5.4 illustrates the complexity that is associated with the model-to-text transformation.

The listing begins with the DEFINE block main, executed in the context of an Application

modeling component. This is the first model-to-text transformation definition that is executed.

48

Solution design

It creates the manifest file, and makes sure the activity block is executed for all activi-

ties. In the activity block, we see that two Java-files are created: Base«name».java and

«name».java. All generated code is added in Base«name».java, and an empty «name»-

.java is created. The base class is abstract, and the extending class is always constructed. This

allows developers to extend or modify the generate code. At the end of the activity block, all

layout definitions belonging to the activity are generated. This is where the support for multiple

target platforms is realized.

1 «DEFINE main FOR Application»
2 «setAppIdentifier(identifier)»
3 «setPackageName(identifier)»
4 «FILE ’AndroidManifest.xml’»
5 ...
6 «ENDFILE»
7 «EXPAND activity FOREACH activities»
8 «ENDDEFINE»
9

10 «DEFINE activity FOR activity::Activity»
11 # We put everything in the base activity, so that it can be overriden/extended by

the user if desired.
12 «FILE ’src/’ + getPackageDir() + ’/activities/Base’ + name + ’.java’»
13 package «getPackageName()».activities;
14

15 «classHeader(’Base’ + name + ’Activity’)»
16 abstract class Base«name» extends Activity«EXPAND activityImplements FOR this» {
17 // Whether this activity uses multipane or not
18 protected boolean isLarge = false;
19

20 @Override
21 public void onCreate(Bundle savedInstance) {
22 ...
23 isLarge = ((getResources().getConfiguration().screenLayout & Configuration.

SCREENLAYOUT_SIZE_MASK) >= Configuration.SCREENLAYOUT_SIZE_LARGE);
24 ...
25 «EXPAND activityOnCreateBehavior FOR this»
26 }
27

28 «EXPAND menu::methods FOR this»
29 «EXPAND activityMethods FOR this»
30 «EXPAND activityBehavior FOREACH behaviors»
31 }
32 «ENDFILE»
33

34 # This activity can be modified by the user. Should have some check that it is not
overwritten tho

35 «FILE ’src/’ + getPackageDir() + ’/activities/’ + name + ’.java’»
36 package «getPackageName()».activities;
37

38 «classHeader(name + ’Activity’)»
39 public class «name» extends Base«name» {
40 public «name»() {
41 super();
42 }
43 }
44 «ENDFILE»
45

46 # Create activity layout files. We can have more than one to support multiple
devices.

47 «FOREACH layoutDefinitions AS layout»
48 «FILE ’res/layout’ + (layout.target == ’default’ ? ’’ : ’-’ + layout.target) + ’/

’ + name.toLowerCase() + ’.xml’»
49 <?xml version=’1.0’ encoding=’utf-8’?>
50 «EXPAND layout::content FOR layout.content»
51 «ENDFILE»

49

Solution design

Screens
model

Transformation

Transformation

Android
smartphone

model

Android
tablet
model

Screens to smartphone
transformation definition

Screens to tablet
transformation definition

SigmaxApp
model Transformation

SigmaxApp to Screens
transformation definition

FIGURE 5.7: Alternative Android model generation from the SigmaxApp model.

52 «ENDFOREACH»
53

54 «EXPAND fragment FOREACH fragments»
55 «EXPAND menu::menu FOR menu»
56 «ENDDEFINE»

Listing 5.4: First model-to-text transformation rules that are executed.

5.5 Discussion
Our MDE solution contains three metamodels, thus at least two model-to-model transforma-

tions were required. In addition, a model-to-text transformation is required to generate source

code. The aim of the environment is to be able to generate mobile applications for multiple tar-

get platforms. Alternatively to the method described in this chapter, a second model-to-model

transformation could be developed that derives two Android models from a Screens model:

one aimed for smartphones and one aimed for tablets, as illustrated in Figure 5.7. The advan-

tage is that two models are generated, which are focused at a specific target, allowing to model

platform specifics. The disadvantage is that we would have two models and two model trans-

formation definitions to maintain. Additionally, the Android platform provides sophisticated

support for the development of multi-target applications using a single code base, hence we

only need a single model. To generate an application that is as much as possible in line with the

developer principles of the target platform, a single Android model was generated.

Another point of discussion may be a bit odd, but why would we need model transformations

at all? From a single source model it is possible to immediately generate the required source

code for each desired platform using a single model-to-text transformation. In this case we

would not need to develop twomoremetamodels or write additional model transformation, but

would only have one complex model-to-text transformation. However, the complexity would be

very difficult to maintain. Splitting up the model in multiple transformations keeps complexity

50

Solution design

manageable, thus eliminating these transformations would introduce a lot of complexity. For

that reason, we developed an environment as described in this chapter.

The current approach allows to easily switch to different platforms. If the same application

must be transformed to an iPhone implementation, two actions need to be performed. First, a

metamodel is required that can describe the application for an iPhone environment. Second,

model transformations need to be written to transform a platform-independent Screens-model

to a platform-specific iPhone model.

The project workspace that contains all metamodels, model-to-model and model-to-text trans-

formations, as well as a sample source model can be downloaded from https://github.

com/markoudev/modeling/tree/thesis.

51

https://github.com/markoudev/modeling/tree/thesis
https://github.com/markoudev/modeling/tree/thesis

Chapter 6
Acceptance and evaluation

This chapter assesses the acceptance of the developed proof of concept implementation of a

Model-Driven Engineering approach for mobile devices, which takes into account user interface

design guidelines. By means of a case study and semi-structured expert interviews with experienced

application architects, we show that a model-driven approach may help to significantly reduce

development time.

6.1 Case Study
To elaborate on the details of the models and model transformations, and to show that the im-

plemented solution design fromChapter 5 works, a case study was conducted. The requirement

of the case study was to implement an Android application that features as much functionality

available in existing Sigmax applications.

Sigmax develops the Field Mobility Suite (FMS), an application that is used by field workers for

planning and registration of articles they used during tasks. The FMS is an abstract application,

so that it can be tailored to meet requirements for as many customers as possible. Many cus-

tomers have comparable requirements for which the same software components may be used

in order to reduce development time. For this case study, five primary types of entities from

the FMS application were considered: tasks, articles, problems, objects and locations. We discuss

each of these entities in more detail:

1. Tasks provide information about the work a field worker has to perform. They can be
assigned to a field worker by a planner and automatically sent to the mobile device of the

field worker.

2. Articles can for example be parts or tools that are used during the execution of a task.
When a task was conducted by a field worker, he or she registers the articles that were

53

Acceptance and evaluation

used during the task. This information is then synchronized, and may be used to keep a

proper stock, as well as for billing and administration purposes.

3. Problems need to be solved and are assigned to a task so that they are properly reg-
istered. The registration of problems may help field workers and customers to resolve

comparable problems faster and more efficiently.

4. Objects are physical objects in the field that are maintained by field workers. Objects
may be hierarchical, allowing to break down an object into detailed parts in order to be as

precise as possible.

5. Locations indicate where a certain task or object is located so that field workers know
where they have to go to. Locations are hierarchical, so that countries, provinces, cities

and so forth can be properly structured.

The case study is limited to creating, reading, updating and deleting instances of each of these

entities on the mobile device itself. Code generation for synchronization protocols was not in

the scope of this research.

In the remainder of this section we discuss the SigmaxApp-model that was created for this case

study. Furthermore the results of both model-to-model transformations and the model-to-text

transformation are discussed. To increase readability, this chapter focuses on how the Tasks

entity is modeled and transformed throughout the transformations. Discussing each of the

entities would be repetitive and reduce readability.

6.1.1 Application model
Figure 6.1 shows the source model for this case study. The bold printed text represents the

metamodel element that was instantiated, and the most important properties for each of these

elements are printed in italic. This figure focuses on the Tasks implementation of a CRUD-

pattern and shows which descriptives are associated with Tasks. The other four CRUD-patterns

have similar properties, but are left out for illustration purposes.

An application with the name FMS Port was modeled using the SigmaxApp-metamodel. The ap-

plication recognizes five CRUD-patterns so that tasks, articles, problems, locations and objects can

be created, read, updated and deleted. Tasks have six different properties: a title, a description,

an indicator whether the task is in progress, a list of used articles and a reference to the solved

problem. Articles that were used during the task have two extra properties: an amount of how

many items of some article were used, and a reason for its use.

6.1.2 Transformations
The source model is based on the SigmaxApp-metamodel. As presented in the solution design

from Chapter 5, this source model is transformed to a Screens model, which is again trans-

formed to an Android model. From this Android model, source code is generated. Each of

these transformations is discussed in more detail in this section, where the focus is on how the

Tasks CRUD-pattern is transformed throughout the process.

54

Acceptance and evaluation

CRUD
name="Tasks"

isHierarchical=false

CRUD
name="Articles"

isHierarchical=false

CRUD
name="Problem

registration"
isHierarchical=false

CRUD
name="Locations"
isHierarchical=true

CRUD
name="Objects"

isHierarchical=false

App
name="FMS Port"

CRUDReference
name="Used articles"

isMultiref=true

Text
name="Description"

Text
name="Title"

Bool
name="In progress"

Number
name="Number of

people"

Number
name="Amount"

Choose
name="Reason"

choices="Pre-order,
on-site required, post-

order"CRUDReference
name="Solves

problem"
isMultiref=false

FIGURE 6.1: The SigmaxApp-model for the case study.

SigmaxApp to Screens. As described in the solution design in Chapter 5, a model based on
the SigmaxApp metamodel is transformed to a model based on the Screens metamodel. A

Screens-model represents the application in terms of types of screens and their relations. Fig-

ure 6.2 shows the most important parts of the Screens model that was derived from the Sig-

maxApp model as it was described earlier in Section 6.1.1. Figure 6.2 focuses on the model

elements that are derived from the Tasks CRUD-pattern.

From the SigmaxApp model, the App model element was transformed to an Application

model element in the Screens model. For the Tasks CRUD-pattern that was present in the

SigmaxApp-model, a ListScreen and a DetailsScreen were directly created in the Screens

model. The ListScreen allows viewing a list of tasks, and the DetailsScreen describes a

screen that can be used to create new tasks, and updating or viewing existing ones. Deleting

tasks may be facilitated by the ListScreen, but this functionality is not specified in terms of

screens. Additionally, an Entity was created in the Screens model to represent a Task. This

model element was created from the CRUD-pattern in the SigmaxApp model. Figure 6.2 shows

55

Acceptance and evaluation

Application
name="FMS Port"

ListScreen
title="Tasks"

ListScreen
title="Problem
registration"

ListScreen
title="Articles"

ListScreen
title="Objects"

ListScreen
title="Locations"

DetailsScreen
title="TaskDetails"

DetailsScreen
title="Used articles"

DetailsScreen
title="Solves problem"

Entity
name="Task"

TextProperty
name="Title"

BoolProperty
name="In progress"

...

FIGURE 6.2: The generated Screens model for the case study. Several Property elements have
been left out for readability, as well as how other ListScreens were structured.

that the entity has a TextProperty and BoolProperty, among other properties. More prop-

erties were created, but left out of the figure for readability.

Because the Tasks CRUD-pattern in the SigmaxAppmodel for the case study uses two CRUDReferences,

twomore DetailsScreenswere created and linked to by the TaskDetails details screen. These

two details screens allow a Task to be linked to Articles or a Problem, while creating or updating

a task.

Screens to Android. The second model transformation involves transforming the Screens
model to an Android model. This transformation adds the required elements to an Android

model, in order to represent the application as it would be implemented for the Android plat-

form. Figure 6.3 shows the most important part of the Android model, and clearly shows the

complexity of modeling an application for the Android platform. Figure 6.3 focuses on the

model elements that were added from the original Tasks CRUD-pattern. It clearly shows that

different layouts were generated for a single Android activity. EClasses denoted with an ‘A’ rep-

resent Android elements. Other items were introduced to add required detail or implicitly de-

scribe Android concepts.

As Figure 6.3 already suggests, this transformation causes an explosion of modeling elements

and derives a complex model from the relative simple Screens model. Since the Screens model

does not take multiple target mobile devices into account, this model transformation does. We

can see that from the Screens-model, the ListScreen for tasks is transformed to a ListActivity in the

Androidmodel. This activity is a specialization of an Activity, so that during themodel-to-text

transformations we know what code to generate for this kind of activity. The ListActivity

“TaskListActivity" forms the root of what in the SigmaxApp model was added as a CRUD-pattern.

The ListActivity recognizes two Layout definitions, for which the target property was set to

default, and the other to large. The default layout describes a layout that is meant for smart-

phones, while the large layout describes a layout that is meant for tablets.

56

Acceptance and evaluation

ListActivity
name="TaskListActivity"

Layout
target="default"

Layout
target="large"

FrameLayout

FragmentContainer

LinearLayout
horizontal=true

FrameLayout

FragmentContainer

FrameLayout

FragmentContainer

FrameLayout

FragmentContainer

ListFragment

ListActivity
name="ArticleListActivity"

ListActivity
name="ProblemListActivit

y"

ListActivity
name="LocationListActivit

y"

ListActivity
name="ObjectListActivity"

Application
name="FMS Port"

Dashboard
title="FMS Port"

Entity
name="Task"

DialogFragment
name="TaskDetailsFra

gment"

DialogFragment
name="ArticleKoppelD

etailsFragment"

DialogFragment
name="TaskDetailsFra

gment"

Layout
target="default"

Layout
target="default"

Layout
target="default"

...A

A

A A

A

A

A

A A

A

A A A

A

A

A A A

A

FIGURE 6.3: The generated Android model for the case study. Several elements have been left

out for readability.

Android model to source code. From the Android model we can generate source code using
a model-to-text transformation. The model-to-text transformation generates the required Java

classes, as well as XML-files that are required to describe different layout definitions, menu

structures or collection of strings. A total of 68 files were generated. 38 Java classes were

generated, 12 for activities, 12 for fragments, and 14 for data storage support. Additionally, 30

XML-files were generated: 23 for layout definitions, 5 for menu structures, one that contains

string collections, and one Android manifest file.

All Java code was generated as an abstract class. For each of the generated abstract classes,

an empty class was generated that extends the base class. For example, the Java code that was

generated for the ListActivity is the abstract base class BaseTaskListActivity. The

empty class TaskListActivity then subclasses the abstract base class. This pattern allows

the generated code to be modified and extended by programmers if desired.

6.1.3 Result
The generated source code was compiled and packaged for the Android platform, and deployed

on an Android smartphone. Figure 6.4 shows the smartphone implementation of the source

model for the case study.

Figure 6.4(a) shows theDashboard that allows navigation to the five CRUD-patterns. Figure 6.4(b)

shows the Android implementation of a ListScreen including some Tasks. Clicking an item in this

list opens up a DetailsScreen, as can be seen in Figure 6.4(c). Figure 6.4(d) shows a DetailsScreen

57

Acceptance and evaluation

FIGURE 6.4: Screenshots of the Android smartphone implementation of the case study.

to add a used article to a task. This screen allows to set the additional properties that we added

in the source model to be set.

6.2 Expert interviews
As this research adopted a pragmatic approach, expert interviews at Sigmax were conducted

in order to assess the acceptance the work, and to determine whether the solution design is

useful in the development of applications for mobile devices.

This section provides an overview of the most important aspects of the setup and discusses the

results. Appendix D contains a complete overview of the interview questions and results.

6.2.1 Setup
The expert interviews were designed to be semi-structured, and took about 30-45 minutes.

The interview participants were experts on the subject of software development and software

architecture within Sigmax. Four people were selected as participants, based on their skills and

role within Sigmax. Before the interviews were conducted, a presentation of what MDE exactly

is and a demonstration of the implemented MDE environment was given. Questions asked

were, amongst others, “for what goal do you think MDE is best applicable?", “what do you think of

the source model, as it was presented?", “what do you think of the separation of models into three

levels?" and “do you think the proposed MDE environment would help to reduce development time

for Sigmax applications?". During the interview, audio recordings and textual notes were made.

The results of the interviews were written down according with the selective reading approach,

after which open coding in grounded theory was applied to analyze the results. This approach

is similar to the expert interviews that were used as a data gathering technique for the design

guidelines, as presented in Section 4.1.2. The data units that were used in the grounded theory

approach were textual notes and expressions by the participants.

58

Acceptance and evaluation

6.2.2 Results
This section discusses the most important results of the expert interviews. A complete overview

of the results can be found in Appendix D. Table 6.1 shows the data units that were answered

the same by at least two participants.

In general, experts were positive about the concept of Model-Driven Engineering and believe

that MDE can be used for the development of proof of concepts or mockups. They clearly

see the benefits of an MDE approach, such as standardization and consistency of application

development, as well as faster development and focus on the design instead of implementation.

Provided that an MDE environment is adopted and provides the proper modeling elements and

transformation, experts agree that development using MDE is significantly faster.

While many positive comments were provided during the interviews, experts independently

agree that a Model-Driven Engineering approach introduces certain drawbacks to the organiza-

tion. The most occurring comment is that an MDE development may be difficult to adopt in an

existing development process, and to get it accepted by developers. This is caused by several

issues such as the ability of the MDE environment to be able to integrate with other develop-

ment tools, but also the ability of developers to understand the level of abstraction introduced

by MDE. Additionally they fear that if the metamodel that provides modeling elements for the

source model is not complete enough, developers will miss freedom. Experts also mentioned

that the generated source code should be easy to extend.

Experts found the proposed environment to be potentially valuable, but argued that in its cur-

rent state it is not complete enough to be adopted. However, all participants agreed that the

source model brings structure to applications by providing application patterns. Two partici-

pants agreed that the proposed source model would help in the development of multi-target

mobile applications. A drawback of the current source model is that it currently does not sup-

port the addition of specific bits of logic. Most experts agreed that breaking up the model trans-

formations in multiple transformations is arbitrary, but indeed helps manage transformation

complexity, something that is seen as a positive.

6.3 Discussion
The complexity associated with modeling an application for the Android platform including de-

tails required for code generation can be seen in Figure!6.3. By defining model transformations

and multiple metamodels, this complexity can be captured in a much simpler model, as our

SigmaxApp-model. We saw that experts agreed on the benefits of such an approach, such as

more consistent and faster development, but also more focus on the design instead of imple-

mentation.

During the expert interviews, some experts argued that a good alternative to the proposed

model chain would be to derive a Screen-model for each target platform. Figure 6.5 illustrates

this alternative design. This figure illustrates that a separate screens model could be derived

for each target platform, providing more flexibility in user interface modeling. Experts argued

that it is difficult to talk about screens when you do not know your target platform. It may be

59

Acceptance and evaluation

+/-/! Sentence, claim (data unit) 1 2 3 4 Total
+ MDE is useful for quick proof of concepts or mockups x x x x 4

+ The proposed source model helps to structure applications x x x x 4

+ The proposed environment may help Sigmax if it is extended x x x x 4

! The generated code should allow customization and extensi-

bility

x x x x 4

+ MDE brings consistency in development and makes it pre-

dictable

x x x 3

+ MDE prevents repetitive work x x x 3

- MDE may be difficult to adopt and get accepted in an existing

development process

x x x 3

- If the source model isn’t good enough, developers miss free-

dom

x x x 3

+ MDE is useful for the development of multi-platform applica-

tions

x x x 3

+ Transformation separation helps to manage complexity x x x 3

+ MDE allows for faster development. x x 2

+ MDE helps to focus on the design, you are not distracted by

the details

x x 2

+ MDE brings standardization x x 2

- MDE uses a level of abstraction not easily understood by all x x 2

- To setup an MDE environment may be difficult x x 2

- Debugging the generated application becomes difficult x x 2

- The adaptability or extensibility of generated code may be dif-

ficult

x x 2

- It is difficult to find the right level of abstraction for a source

model

x x 2

+ Proposed source model helps to develop multi-platform x x 2

- Talking about screensmeans you have to know the target plat-

form

x x 2

! Instead of generating for Android, you could generate for a

framework

x x 2

TABLE 6.1: Answers and claims by expert interview participants that were given by at least two

participants. The characters +/-/! indicate whether it is a positive aspect, negative aspect or

point of attention for an MDE environment. The headings 1-4 shows which participant made the

corresponding claim. The total-header shows the number of participants that made the claim.

The Table is sorted descending on the number of people that made a claim.

feasible for smartphones and tablets, but what if the same source model is to be transformed

to web pages, experts argued. It is true that deriving a Screens-model meant for multiple target

platforms limits the use of platform-specific screens, and limits the number of target platforms

for which the proposed environment can generate code for. Generating a separate Screens-

model for each target platform also providesmore flexibility to describe user interfaces for each

platform. A drawback of deriving a Screens-model for each target platform is that a separate

application is eventually generated for each target platform. While this research focused on

the generation of mobile applications for smartphones and tablets, a single Screens-model can

be used. Because Android was chosen as the target platform, this was also more in line with

how Android applications are developed. However, to be prepared for future developments, an

alternative approach such as the one shown in Figure 6.5 may provide more flexibility.

If the proposed environment was to be extended with multiple application patterns, and the

60

Acceptance and evaluation

SigmaxApp
model

Transformation

Transformation

Screens
model for

smartphones

Android
model for

smartphones

SigmaxApp to
smartphone screens

transformation definition

SigmaxApp to
tablet screens

transformation definition

Transformation

Screens to Android
transformation definition

Transformation
Screens
model for

tablets

Android
model for

tablets

FIGURE 6.5: An alternative transformation chain for a Model-Driven Engineering environment,

argued by experts during expert interviews.

generated application was visually more appealing, experts say that modeling applications may

help Sigmax in the development of mobile applications. The goal of the mobile applications

generated by the MDE environment, however, is seen more as to be able to quickly generate

a proof of concept or application mockup. If an MDE environment was to be adopted for the

development of mobile applications, it may be better to develop or adopt an application frame-

work in which only the details of the application have to be filled.

61

Chapter 7
Conclusions and final remarks
This chapter concludes the research, and provides an answer to the presented research questions.

Suggestions for future work are also provided.

7.1 Conclusions
This section presents the conclusions of our work by answering the research questions that

were introduced in Chapter 1, starting with question SQ1:

SQ1. How can Model-Driven Engineering be applied during the development of mobile
applications, in order to speed up development and cope with a variety of mobile devices?

Chapter 2 presented the results of a literature study on the topic of Model-Driven Engineer-

ing and how MDE can be applied in the development of multi-target mobile applications. We

learned that the core principles and viewpoints of MDE are very suitable to support multi-target

application development. By using a single source model, defining the proper metamodels for

each desired target platform, and developing proper model-to-model and model-to-text trans-

formations, MDE can in theory be tailored to meet the requirements of any target platform. In

practice this means that the correct metamodels and transformations must be created, in order

to support the development process.

SQ2. Which are the challenges in user interface design and what are the usability issues
for mobile applications?

Chapter 3 presented the common challenges in user interface design for mobile applications.

Next to hardware challenges that primarily concern input and output limitations, software chal-

lenges are related to the smaller screen, navigation through menus and data input. The smaller

screen forces developers tomake a trade-off betweenwhat should and should not be displayed.

63

Conclusions and final remarks

Navigation through menus is especially difficult in hierarchical menus. Another software chal-

lenge is inputting data: as data input is more difficult, specific input paradigms could be made

available in software. Finally, poor network coverage introduces issues if a mobile application

requires an Internet connection. In case of errors, the error messages should be understand-

able for users.

Chapter 4 focused more on challenges inspired by Sigmax applications. From expert interviews

and field studies we learned that the primary issues are related to the quality of the devices as

well as their responsiveness. Users often expected a higher quality from the device in terms of

physical appearance and the image quality of pictures made using the device camera. During

its use, it was found that people had to scroll through many long lists of items. A challenge here

is to tailor the list so that the number of items displayed can be decreased.

SQ3. Which user interface design guidelines should be taken into account during the
development of mobile applications for different target platforms?

Chapter 3 introduced UI guidelines and principles from literature. An important aspect to take

into account during the design process, are success factors. Usability, fit for mobile work context

and positive impact on work productivity are key factors for the success of mobile applications in

professional environments [56, 58]. These factors guided the development of design guidelines.

Chapter 4 presented the adopted and developed guidelines. Seven guidelines were developed.

The guidelines that were incorporated, were to be consistent, provide understandable feedback

and be supportive and minimize manual input. To be consistent is meant to delivering a consistent

user experience while using different screens of an application, or using the application on

different platforms. This concerns several dimensions, such as the types of screens that are

used, use of language, but also the structuring of information. During the field studies, we

observed that some people were confused by comparable types of screens that did not behave

as expected. Provide understandable feedback was incorporated because during the initial expert

interviews and later field studies it was found that when the device was unable to complete it

task, technical error messages were displayed. Thesemessages are not very well understood by

most users, causing them to think that they did something wrong. The guideline was developed

to instruct developers to provide understandable error messages that clearly inform users of

what happened and what they can do about it. Be supportive and minimize manual input reduces

the work load for users by assisting the user as much as possible. For example, if text input is

required but only numbers are required in the field, a numerical input mechanism should be

used. If the current address is required and the device offers GPS capabilities, assist the user by

proposing the current location as the most likely address.

RQ. How can a Model-Driven Engineering environment be developed to increase the con-
sistency, usability and development speed of mobile applications, while taking into ac-

count user interface design guidelines?

In Chapter 5 we presented the solution design for an MDE environment for the development of

multi-target applications that takes into account a selection of the user interface design guide-

lines from Chapter 4. By introducing a metamodel that allows developers to create a single

64

Conclusions and final remarks

source model for an application for mobile devices, andmetamodels to describe an Android ap-

plication for multiple platforms, we showed that MDE indeed can be used for the development

of multi-target mobile applications on the Android platform. Alternatively a metamodel for a

different target platform could be developed, and new transformation rules could be written ac-

cordingly in order to adopt a new platform. The introduction of the Screensmodel and therefore

multiple model-to-model transformations, helps maintain the complexity of themodel transfor-

mations from the source model to a model that represents the application under development

for a specific target platform into multiple levels.

The user interface design guidelines that were introduced in Section 4.2 primarily consisted

of high-level guidelines and principles, of which some were adopted by the MDE environment.

Considering the guideline be consistent, this is inherent to aModel-Driven approach, since source

code is generated using transformation rules that are executed more than once. Considering

the guideline provide understandable feedback, each instance of a CRUD-pattern in the source

model an interface to a data storage is generated. Whenever an entity is created, updated or

deleted, a short notification is displayed, informing the user of the action that was performed.

Considering the guideline be supportive and minimize manual input, numerical properties added

to an instance of a CRUD-pattern in the source model are ultimately transformed to a text box

on Android that when activated shows an on-screen keyboard that only allows numerical input.

However, there are also some disadvantages and challenges to be addressed before anMDE en-

vironment can be adopted. The first challenge concerns a business aspect. Companies have to

deal with budgets, and developing an MDE environment suited to support the development de-

partment of a company may be a time consuming and costly investment, as argued by experts

during validation interviews. Additionally, developing an MDE environment that is integrated

with other development environments and tools may be a challenging task.

Technically speaking, it remains difficult to find themost suitable level of abstraction for a source

model. There is not a single correct answer to the question which level to choose. The level has

to be chosen by carefully weighing the pros and cons of each abstraction level. Finally, experts

argue that not all developers have the ability to adopt the level of abstract thinking required by

MDE.

7.2 Future work
While the proof of concept shows that a development approach using MDE that takes into ac-

count user interface design guidelines is feasible, it is far from complete. To adopt the proposed

environment, the source metamodel should be extended with modeling elements that allow to

model an application that could be used in the field. For future research we propose the follow-

ing topics that may be interesting to investigate further.

Graphical visualization of the source model. Something that was not included in this re-
search, but may be of interest for future work, is the visualization of the source model. A

Domain-Specific Language (DSL) allows both developers and designers to invest in domain

65

Conclusions and final remarks

knowledge instead of technical (programming) languages. The EMFText project [8] facilitates

the definition of textual DSLs for languages described as an Ecore metamodel. They can be rep-

resented using a textual concrete syntax, or a graphical concrete syntax. However, this graphical

syntax is still a diagram that looks like a UML class diagram. Especially when working with user

interfaces, such as in this work, a graphical representation of the source model is desired. We

therefore argue that one could investigate how a graphical concrete syntax for a source model

can be adopted, in order to graphically model user interfaces at an abstract level, and what this

graphical syntax would look like.

Abstraction levels of application development. In the solution design of this work we intro-

duced three different metamodels that describe the application at different levels of abstrac-

tion, and from different viewpoints. The choice for these three levels was argued by some

experts to be arbitrary. While this may be the case, the choice for three different metamodels

was argued carefully in this work, provided the context of the proof of concept. It may be in-

teresting to investigate which factors influence the decision of developing a certain amount of

metamodels and transformations. If such factors can be identified, the choice for the number

of metamodels and transformations can be better justified.

Balance between generating components and using a framework. Themodel-to-text trans-
formation in this work generated many software components without the use of a framework.

While any target platform can be seen as a framework, since platforms provide a sophisticated

API, software developers often use an application framework to simplify application develop-

ment. For future research it may be interesting to investigate whether it is more beneficial to

invest in the development of a framework to be used by an MDE environment. It can be ar-

gued that adopting a framework simplifies the model-to-text transformations, since complex

source code can be captured by an application framework. This way, functionality that could be

facilitated by a framework does not have to be generated every time with model-to-text trans-

formations.

Allow customization of generated code. During the expert interviews it was found that all
interviewed experts argued that the generated code should allow customization and extensi-

bility. While this is possible by generating abstract base classes and extending those, as it was

done in this work, it may be interesting to investigate other possibilities. It is for example, in-

teresting to investigate whether specific application source code may be captured in the source

model to ultimately be used in code generation. The challenge is, however, to cope with dif-

ferent target platforms that use different programming languages. If such an approach were

possible it would save development time, as specific source code can be used in code genera-

tion for multiple platforms, and only needs to be written once.

66

Bibliography
[1] Christine Anderson, Sandra G. Hirsh, and Andre Mohr. Wheels around the world: Windows

Live mobile interface design. In CHI ’08 extended abstracts on Human factors in computing

systems, CHI EA ’08, pages 2113–2128, New York, NY, USA, 2008. ACM.

[2] Apple. iOS Human Interface Guidelines, 2010.

[3] Nathalie Aquino, Jean Vanderdonckt, and Oscar Pastor. Transformation templates: adding

flexibility to model-driven engineering of user interfaces. In Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ’10, pages 1195–1202, New York, NY, USA, 2010. ACM.

[4] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foundation. Soft-

ware, IEEE, 20(5):36 – 41, sept.-oct. 2003.

[5] Florence Balagtas-Fernandez, Jenny Forrai, and Heinrich Hussmann. Evaluation of user

interface design and input methods for applications on mobile touch screen devices. In

Tom Gross, Jan Gulliksen, Paula Kotzé, Lars Oestreicher, Philippe Palanque, Raquel Prates,

and Marco Winckler, editors, Human-Computer Interaction – INTERACT 2009, volume 5726 of

Lecture Notes in Computer Science, pages 243–246. Springer Berlin / Heidelberg, 2009.

[6] Jean Bézivin. On the unification power of models. Software and Systems Modeling, 4:171–188,

2005.

[7] Luca Chittaro. Visualizing information on mobile devices. Computer, 39(3):40 – 45, march

2006.

[8] Christian Wende and Mirko Seifert and Florian Heidenreich and Sven Karol and Jendrik

Johannes. EMFText website. Accessed on November 18, 2012.

[9] Juliet M Corbin and Anselm Strauss. Grounded theory research: Procedures, canons, and

evaluative criteria. Qualitative sociology, 13(1):3–21, 1990.

[10] Henry Been-Lirn Duh, Gerald C. B. Tan, and Vivian Hsueh-hua Chen. Usability evaluation

for mobile device: a comparison of laboratory and field tests. In Proceedings of the 8th

conference on Human-computer interaction with mobile devices and services, MobileHCI ’06,

pages 181–186, New York, NY, USA, 2006. ACM.

[11] Mark Dunlop and Stephen Brewster. The Challenge ofMobile Devices for Human Computer

Interaction. Personal and Ubiquitous Computing, 6:235–236, 2002.

[12] Eclipse Foundation. Eclipse. http://eclipse.org/.

67

Bibliography

[13] Eclipse Modeling. Ecore. http://wiki.eclipse.org/Ecore.

[14] Eclipse Modeling. Model To Text (M2T).

[15] Eclipse Modeling. Modeling Project.

[16] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sample sizes in

usability testing. Behavior Research Methods, 35:379–383, 2003. 10.3758/BF03195514.

[17] Ben Fehnert and Alessia Kosagowsky. Measuring user experience: complementing qual-

itative and quantitative assessment. In Proceedings of the 10th international conference on

Human computer interaction with mobile devices and services, MobileHCI ’08, pages 383–386,

New York, NY, USA, 2008. ACM.

[18] Robert France and Bernhard Rumpe. Model-driven development of complex software: A

research roadmap. In 2007 Future of Software Engineering, FOSE ’07, pages 37–54, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[19] Gaëlle Calvary and Joëlle Coutaz and David Thevenin and Quentin Limbourg and Laurent

Bouillon and Jean Vanderdonckt. A Unifying Reference Framework for multi-target user

interfaces. Interacting with Computers, 15(3):289–308, 2003.

[20] Gartner. Gartner SaysWorldwideMobile Phone Sales Declined 1.7 Percent in 2012, February

2013. Accessed on March 28, 2013.

[21] Arjan Geven, Reinhard Sefelin, and Manfred Tscheligi. Depth and breadth away from the

desktop: the optimal information hierarchy for mobile use. In Proceedings of the 8th confer-

ence on Human-computer interaction with mobile devices and services, MobileHCI ’06, pages

157–164, New York, NY, USA, 2006. ACM.

[22] Jun Gong and Peter Tarasewich. Guidelines for handheld mobile device interface design.

In Proceedings of DSI 2004 Annual Meeting, 2004.

[23] Google. Android Design, 2012.

[24] Google. User Interface Guidelines, 2012.

[25] Jack Greenfield and Keith Short. Software factories: assembling applications with patterns,

models, frameworks and tools. In Companion of the 18th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, OOPSLA ’03, pages 16–27,

New York, NY, USA, 2003. ACM.

[26] Object Management Group. MDA Guide Version 1.0.1, 2003.

[27] Jonna Häkkilä and Jani Mäntyjärvi. Developing design guidelines for context-aware mobile

applications. In Proceedings of the 3rd international conference on Mobile technology, applica-

tions & systems, Mobility ’06, New York, NY, USA, 2006. ACM.

[28] Kuo-Ying Huang. Challenges in Human-Computer Interaction Design for Mobile Devices.

In Proceedings of the World Congress on Engineering and Computer Science, volume 1, October

2009.

68

Bibliography

[29] Ivan Kurtev and Luís Ferreira Pires. Lecture sheets for Advanced Design of Software Engi-

neering: Model-Driven Engineering, 2012.

[30] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model transformation

tool. Science of Computer Programming, 72(1–2):31 – 39, 2008.

[31] Frédéric Jouault and Ivan Kurtev. On the architectural alignment of ATL and QVT. In Pro-

ceedings of the 2006 ACM symposium on Applied computing, SAC ’06, pages 1188–1195, New

York, NY, USA, 2006. ACM.

[32] Stuart Kent. Model driven engineering. In Michael Butler, Luigia Petre, and Kaisa Sere,

editors, Integrated Formal Methods, volume 2335 of Lecture Notes in Computer Science, pages

286–298. Springer Berlin / Heidelberg, 2002.

[33] Woo Yeol Kim, Hyun Seung Son, Jae Seung Kim, and Robert Young Chul Kim. Adapting

model transformation approach for android smartphone application. In Tai-hoon Kim, Ho-

jjat Adeli, Rosslin John Robles, and Maricel Balitanas, editors, Advanced Communication and

Networking, volume 199 of Communications in Computer and Information Science, pages 421–

429. Springer Berlin Heidelberg, 2011.

[34] Thomas Kühne. Matters of (meta-) modeling. Software and Systems Modeling, 5:369–385,

2006.

[35] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-based DSL frame-

works. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming

systems, languages, and applications, OOPSLA ’06, pages 602–616, New York, NY, USA, 2006.

ACM.

[36] Steve Love. Understanding Mobile Human-Computer Interaction. Information Systems Series.

2005.

[37] Gerrit Meixner, Fabio Paternò, and Jean Vanderdonckt. Past, Present, and Future of Model-

Based User Interface Development. i-com, 10(3):2–11, November 2011.

[38] Microsoft. Design Guidelines for Windows Mobile 6.5, 2010.

[39] Microsoft. User Experience Design Guidelines for Windows Phone, 2012.

[40] Jakob Nielsen and JoAnn T Hackos. Usability engineering, volume 125184069. Academic press

Boston, 1993.

[41] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings of the

SIGCHI conference on Human factors in computing systems: Empowering people, CHI ’90, pages

249–256, New York, NY, USA, 1990. ACM.

[42] Erik G. Nilsson. Design patterns for user interface for mobile applications. Advances in

Engineering Software, 40(12):1318 – 1328, 2009.

[43] Harri Oinas-Kukkonen and Virpi Kurkela. Develping successful mobile applications. Inter-

natinoal Conference on Computer Science and Technology (IASTED), pages 50–54, 2003.

69

Bibliography

[44] OMG Architecture Board ORMSC. Model Driven Architecture (MDA) Document number

ormsc/2001-07-01, July 2001.

[45] openArchitectureWare. oAW Tutorial – Part I. Getting Started.

[46] Inés Pederiva, Jean Vanderdonckt, Sergio España, Ignacio Panach, and Oscar Pastor.

The beautification process in model-driven engineering of user interfaces. In Cécilia

Baranauskas, Philippe Palanque, Julio Abascal, and Simone Barbosa, editors, Human-

Computer Interaction – INTERACT 2007, volume 4662 of Lecture Notes in Computer Science,

pages 411–425. Springer Berlin / Heidelberg, 2007.

[47] Paulo Pinheiro da Silva. User Interface Declarative Models and Development Environ-

ments: A Survey. In Philippe Palanque and Fabio Paternò, editors, Interactive Systems De-

sign, Specification, and Verification, volume 1946 of Lecture Notes in Computer Science, pages

207–226. Springer Berlin / Heidelberg, 2001.

[48] Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton. Cognitive walk-

throughs: a method for theory-based evaluation of user interfaces. International Journal

of Man-Machine Studies, 36(5):741 – 773, 1992.

[49] Yvonne Rogers, Helen Sharp, and Jenny Preece. Interaction Design: Beyond Human-

Computer Interaction. John Wiley & Sons, third edition, 2011.

[50] Sabine Schröder and Martina Ziefle. Making a completely icon-based menu in mobile de-

vices to become true: a user-centered design approach for its development. In Proceedings

of the 10th international conference on Human computer interaction with mobile devices and

services, MobileHCI ’08, pages 137–146, New York, NY, USA, 2008. ACM.

[51] Ben Shneiderman. Designing the User Interface – Strategies for Effective Human-Computer

Interaction.

[52] Jared Spool and Will Schroeder. Testing web sites: five users is nowhere near enough. In

CHI ’01 extended abstracts on Human factors in computing systems, CHI EA ’01, pages 285–286,

New York, NY, USA, 2001. ACM.

[53] Adrian Stanciulescu, Jean Vanderdonckt, and Tom Mens. Colored graph transformation

rules for model-driven engineering of multi-target systems. In Proceedings of the third in-

ternational workshop on Graph and model transformations, GRaMoT ’08, pages 37–44, New

York, NY, USA, 2008. ACM.

[54] Jan Willem Streefkerk, Myra P. van Esch-Bussemakers, and Mark A. Neerincx. Field evalua-

tion of a mobile location-based notification system for police officers. In Proceedings of the

10th international conference on Human computer interaction with mobile devices and services,

MobileHCI ’08, pages 101–108, New York, NY, USA, 2008. ACM.

[55] Jean Vanderdonckt. A mda-compliant environment for developing user interfaces of infor-

mation systems. In Oscar Pastor and João Falcão e Cunha, editors, Advanced Information

Systems Engineering, volume 3520 of Lecture Notes in Computer Science, pages 16–31. Springer

Berlin / Heidelberg, 2005.

70

Bibliography

[56] Maiju Vuolle, Mari Tiainen, Titti Kallio, Teija Vainio, Minna Kulju, and Heli Wigelius. Develop-

ing a questionnaire for measuring mobile business service experience. In Proceedings of the

10th international conference on Human computer interaction with mobile devices and services,

MobileHCI ’08, pages 53–62, New York, NY, USA, 2008. ACM.

[57] W3C Incubator Group. Model-Based UI XG Final Report, 2010.

[58] Yufei Yuan, Norm Archer, Catherine E. Connelly, and Wuping Zheng. Identifying the ideal

fit between mobile work and mobile work support. Information & Management, 47(3):125 –

137, 2010.

71

Appendix A
Expert interviews

Expert interviews were conducted as the first step in data gathering in order to gain a better

understanding of the current situation of mobile products already in the market, as well as the

current user frustrations and application limitations. The expert interviews are covered in

Section 4.1.2.

A.1 Interview questions
The interview was set-up to be semi-structured. The questions below were used to guide the

interview, but the results are not limited to only these questions.

1. Do you mind if I make a audio recording of this interview? I use the recording as a supple-

ment to my notes for the best result.

2. My goal: to understand points of improvement in the current application, and in particular

with respect to the user interface.

3. With which recent project were you actively involved, and what was your role in that

project? This concerns projects that involve a mobile application. (Max 2).

4. For each project:

(a) Without involving the PDA, which tasks need to be conducted at the client side for

this project?

(b) Why are these tasks conducted?

(c) For which tasks should the PDA offer support?

(d) In which areas does the application support the user during his work?

(e) In which areas does the application disturbs the user during his work?

(f) What are, perhaps more generic, comments that you hear from users?

73

Expert interviews

(g) Do you have any other comments you would like to say and are relevant to this

interview?

5. Are there other people you would advice me to interview?

6. Do you have any comments regarding this interview?

7. Thank you for your time! I will write the results for this interview, and then validate those

with you.

A.2 Results
A.2.1 Labels
The analysis of the interviews using open coding in grounded theory resulted in several labels

to be assigned to independent data units. Table A.1 shows the labels that were identified by

applying open coding in grounded theory during the analysis of the results.

Label Description #
HELPS Data units with this label indicate that people are pleased with a

mobile device that helps them during their jobs.

10

SW ISSUE Data units with this label indicate that people experience software

issues.

5

PROC POA Data units with this label indicate that it is a point of attention that

a mobile device forces a certain way of working.

4

HW ISSUE Data units with this label indicate that people experience hard-

ware issues.

3

HW PRO Data units with this label indicate that people gain advantages by

using mobile device hardware and its capabilities.

3

PRIV ISSUE Data units with this label indicate that people have the feeling

their privacy may be infringed.

2

INPUT ISSUE Data units with this label indicate that people have issues in-

putting data.

2

MULTIMODAL PRO Data units with this label indicate that the multimodal input (i.e.,

using device capabilities to help the user during input) is experi-

enced to be pleasant.

2

PRES Data units with this label indicate issues with the presentation of

data on-screen.

1

SLOW Data units with this label indicate that the device is experienced

to be too slow.

1

PROC PRO Data units with this label indicate that the mobile devices force a

certain way of working, which is seen as a good thing.

1

SW FANCY Data units with this label indicate that people are pleased with

software features.

1

74

Expert interviews

TABLE A.1: Labels, including their description and number of occurrences, that were derived from

the expert interviews by applying open coding in grounded theory.

A.2.2 Data units
The results that are represented in the following table are aggregated results from all individual

interviews.

Data unit Label
No more paper, folders, forms, alarm codes, alarm ad-

dresses, directions, . . . for workers to carry with them as they

have been replaced by a device.

HELPS

The device supports a default style of reporting and a finite

list of often-used options during reporting, making it less

error-prone and easier to process

HELPS

Planning component is integrated. HELPS

If a wireless internet connection is available, the device is able

to show real-time and up-to-date supportive information

HELPS

The use of a PDA changes the way in which people work, and

sometimes people have the idea they have to fill out more

information using a PDA than before

PROC POA

The fact that a lot of data is registered on the PDA results in a

feeling by users that they are being monitored.

PRIV ISSUE

People complain about the small size of the screen. HW ISSUE

Devices come with a camera, but people complain about the

quality of the pictures, which is lower than what they desire

or expect.

HW ISSUE

In some branches, people want to work with a device that

looks good, is sexy, and is comparable to popular consumer

electronics.

HW ISSUE

Sometimes, non-relevant information is displayed on the de-

vice, whichmay not be a good practice given the small screen.

PRES

Touching the screen and making a selection of options is

easy, but manual user input is often experienced to be dif-

ficult.

INPUT ISSUE

The devices act as a replacement of or support administra-

tive tasks. Something that people using the device don’t like

spending time on.

HELPS

The availability of a camera is very desirable, as it allows for

precise and detailed registration.

HW PRO

75

Expert interviews

The collaboration between the device and a sophisticated

third-party planning systemmakes not only the workers their

jobs easier, but also that of the planners.

HELPS

As the PDA is also equipped with a GPS, it may also be used as

a navigation device to guide the worker to a customer, elimi-

nating yet another device.

HELPS, HW PRO

The PDA enforces a certain way of working, sometimes not

compliant to the real-life way of working. In that case, work-

ers put aside the PDA and use their own way, which results in

erroneous data on both the device and backend.

PROC POA

Workers sometimes have the feeling that they are being

checked on what they do because of the fact that everything

is being registered.

PRIV ISSUE

Some user interface elements lack a “cancel” option. SW ISSUE

The UI does not clearly show what information is required

and what is optional.

SW ISSUE

Using a PDA enforces a uniform way of working. A great ad-

vantage for companies, but sometimes annoying to users, as

it might not support their way of working.

HELPS

Historic data of a certain issue may be retrieved from a back-

end system, supporting solving an issue.

HELPS

Searching for items (can be really anything: locations, mate-

rials, issues, ...) should be supported by available means. In

the case of locations for example by using a GPS, in order to

filter the list from superfluous items.

MULTIMODAL PRO, HW PRO

The user interface is really tiny. SW ISSUE

For some applications, it is near-to-enforced (because of

choices in the UI, and small UI elements) to use a stylus, while

users wish they didn’t have to. Some users however thinking

the stylus is a great way of working. The problem with a sty-

lus is that it is small and lost easily. In general, applications

should be developed so that a stylus is not required.

INPUT ISSUE

Most applications provide poor feedback of what is going on,

especially in case of errors. As can be seen with the public

transport application, doing so significantly reduces the time

required by the helpdesk to provide support.

SW ISSUE

After a software update, some sequences of interfaces may

be changed that are not introduced, confusing the user upon

first confrontation.

SW ISSUE

76

Field studies

Users appreciate it when they are supported during input of

information. For example, support scanning the barcode on

a driver license so that the license number doesn’t need to

be filled out manually.

HELPS, MULTIMODAL PRO

Applications sometimes respond too slowly. A button is

clicked, and nothing happens immediately on the screen. Be-

cause of this, users try to click again resulting in unexpected

application behavior. At least some sort of indication that

the application is busy should be provided. It cannot be that

a user clicks the screen and that nothing happens immedi-

ately.

SLOW

The way of working enforced by a PDA increases the number

of steps that must be completed before a task can be com-

pleted. On paper, people could skip steps that they could not

fill out which would later be the problem of the person post-

processing the information, instead of theirs.

PROC POA

Applications are very leading during the tasks of users (com-

plete step 1, step 2, 3, ...). This is useful for new guys so that

they know what do to. Experienced people go and perform

their task, and then later put everything in the PDA as they

aren’t waiting for a device that keeps telling them what to do.

PROC POA, PROC PRO

Screen transitions with animations are very positively experi-

enced by users.

SW FANCY

77

Appendix B
Field studies
Observations were conducted in the beginning of the design process, as they help to understand the

user’s context, tasks and goals [49]. The field studies are covered in Section 4.1.3.

B.1 Goals
The goal of this application is to identify the problem areas in the current version of the FMS-

application, as used in the field. The result of this serves as input for a set of guidelines that will

ultimately be developed so that the future application can deals with the problem areas.

B.2 Questions
In order to reach this goal, the following questions have been developed.

1. What tasks have to be supported by the PDA?

2. During what tasks does the user experience difficulties in terms of interaction with the

device, and what are those difficulties?

3. What features of the PDA are experienced by the user as useful?

B.3 Method
The chosen method is a field study in the form of an observation, combined with informal inter-

views before, during and after the study. During field studies, observations can be conducted

in order to see how users use the application during their daily work activities. This method

allows to fill in details about the use of an application, that are more difficult to explain using

interviews or questionnaires.

79

Field studies

Framework. During the study, a framework is used to guide the observations. Although sim-
ple, the who-where-what-framework helps to keep goals and targets straight. Using this frame-

work means that it will be identified who is being observed, what technology he or she is using,

in what area, and what actions are performed.

Degree of participation. The observer will adopt a passive attitude so that the worker is as
less bother during his work as possible.

Registration of data. During the field study some things will be written down at that moment.
After the observation, the entire day will be reflected upon and experiences will be written down

as soon as possible so that everything is still fresh in the observers memory. After that, this

mind-dump can be processed, but at least the data has been registered.

Acceptance in the group. The goal is to improve the application that is being used by the
persons being observed. for that reason, no problems are expected in this area.

Guaranteeing different perspectives. This observation is one from a series of observations,
all at different locations. This way, a lot more information and also from different contexts of

use will be obtained.

Think-aloud principle. Before the field study, the person being observed will be asked to be a
bit more verbose than normal while using the device. This has the advantage that the observer

knows what the observed is doing and what is going on in his or her head.

B.4 Practical issues
This field study may be conducted at less reachable or clean areas. It is therefor of importance

to dress accordingly.

B.5 Ethical problems
The privacy of the worker will always be guaranteed. The identity will only be known to the

observer and the person who scheduled the observation. This information is however not of

importance for the results. In case the observed must be contacted after the observation, this

will always happen through the observer.

Any confident statements, surroundings, systems, methods, information or otherwise obtained

confidential information will be handled as such.

80

Field studies

B.6 Results
Three field studies were conducted. The first one was conducted at a sewer and drainage clean-

ing company (in the table below denoted as Sewer) that uses the Field Mobility Suite for planning

activities and registration of activities. A second field study was conducted at a municipality

(Municipality), where parking attendants use the CityControl application by Sigmax to register

and print fines for parking violations. The third and last field study was conducted with an in-

spector of railways (Railways), with whom we inspected several kilometers or railway and used

the FlexInspect application to register issues.

B.6.1 Labels
Table B.1 shows the labels that were identified by applying open coding in grounded theory

during the analysis of the results.

Label Description #
PRES ISSUE Data units with this label indicate issues with the presentation of data

or information in the application being too vague or unclear.

8

SLOW Data units with this label indicate that people experience the device to

be slow.

5

HW ISSUE Data units with this label indicate that people experienced hardware

issues.

4

INT POA Data units with this label indicate interaction with the device is a point

of attention.

3

SW ISSUE Data units with this label indicate that people experienced software

issues.

3

PROC POA Data units with this label indicate that the device helps during people’s

jobs, but their work process must be taken into account. A point of

attention.

3

HELPS Data units with this label indicate that people are pleased with a mo-

bile device that helps them during their jobs.

2

INT ISSUE Data units with this label indicate that people experienced issues with

device interaction.

1

QUALITY ISSUE Data units with this label indicate that people experienced quality is-

sues.

1

TABLE B.1: Labels, including their description and number of occurrences, that were derived from

the field studies by applying open coding in grounded theory.

B.6.2 Data units
The results in the table below were constructed using axial coding in grounded theory, where

the most important observations or claims by the observed persons were used as data units.

81

Field studies

Context Data unit Label
Sewer The list of planning assignments isn’t sorted logically enough.

Easier would be if the closest location would be selected.

PRES ISSUE

Sewer De primary complaint is the device being slow or responding

slow. The navigation in particular, it takes 1 minute before it

boots up.

SLOW

Sewer The stylus is primarily used as interaction mechanism. INT POA

Sewer A lot of scrolling through lists is required to select the correct

item. In the case of RRS, drainage blockage often has the

same reason. The application could note this.

PRES ISSUE

Sewer The hardware keyboard is not easy to use because of the

small keys on the keyboard. The use of it should be mini-

mized.

INT ISSUE

Sewer It was not clear that the device also supported a software key-

board.

INT ISSUE

Sewer At first use, the use of the PDA was strange and it was unclear

what fields were mandatory and what fields weren’t.

PRES ISSUE

Sewer The rubber bumper around the device is beginning to be

worn off because the device is constantly put in and out of

its holder in the car.

HW ISSUE

Sewer At about 2/3rd of the screen from the left side a lot of

scratches are visible. This is because at that location a lot

of interaction is required to scroll through lists.

HW ISSUE,

PRES ISSUE

Context Data unit Label
Municipality Happy with the device! Works in most cases better than the

papers that used to be filled out, and is convenient in its use.

HELPS

Municipality Requesting information for a parking violation from the

server takes a while (7 seconds). Unclear if this has to do

with the PDA, data connection or the server.

SLOW

Municipality The required information to see whether a parking permit is

valid (something that is checked often), requires an extra user

action.

PRES ISSUE

Municipality In case of a violation, three pictures are always made. How-

ever, it takes a while before the camera starts up.

SLOW

Municipality Sometimes, the application suddenly opens the fact book (an

overview with all legal regulations). The reason is unclear.

SW ISSUE

Municipality General complaint is that the device is slow. SLOW

Municipality The use is not kept up to date with what the device is doing.

When the application is shut down, all data is synchronized

with the backend system. This is a process that may take a

while, but the user is not informed of the progress.

PRES ISSUE

82

Lab study

Municipality People have the feeling that the application gets slower after

each update.

SLOW

Municipality When the device is put in the cradle for charging, it switches

to a wired connection. However, when the device was syn-

chronizing, this process is aborted and not automatically re-

sumed. As a result, this has to be done manually the next

morning.

HW ISSUE, SW

ISSUE

Municipality When the device is removed from the cradle, it switches to a

mobile data connection. Sometimes the device doesn’t suc-

ceed in which case a popup is shown every 15 seconds.

HW ISSUE, SW

ISSUE

Municipality Only the stylus is used for interaction. INT POA

Context Data unit Label
Railways Rail inspectors have a huge document that describes all rail-

way requirements. When changes are made to this docu-

ment, it sometimes takes a while before the PDA is updated

with the changed.

PROC POA

Railways The grouping of information offers room for improvement.

For example, there are multiple types of turnovers. Inspec-

tors would like to select that they are inspecting a turnover,

and then selecting the type.

PRES ISSUE

Railways The number of inspection points per object differs per type.

Not all questions are answered all time, because it are sim-

ply too many questions. More guidance could be made here,

by requiring certain questions or placing important questions

on top of the list.

PROC POA

Railways A lot of scrolling is required through lists to select the desired

item. In many cases the most used option could be placed at

the top.

PRES ISSUE

Railways The camera is used a lot. Its quality is fine, but a simple digital

camera is used because of the better quality.

QUALITY

ISSUE

Railways With each inspections, inspectors can make a comment be-

forehand. This comment can be found back in the overview

that is made available at a computer for processing. Some in-

spectors use this as a work-around to easily remember what

a certain inspection was about.

PROC POA

Railways Interaction is primarily done using a stylus. The hardware

keyboard is only used as a trigger to make a picture.

INT POA

Railways In general, inspectors are very happy with the device. HELPS

83

Appendix C
Lab study

A lab study was conducted to investigate people’s preferences with respect to browsing through

hierarchical data structures on both smarpthones and tablets, using either more items per

hierarchical levels, or less items per level but more hierarchical levels.

C.1 Basic design
Goals. Navigation through hierarchical menus or other forms of structured information is dif-
ficult [1, 28], especially onmobile devices. There is a balance between the number of hierarchical

levels and the number of items presented on each level, and thus structuring hierarchical infor-

mation is a challenge. Research shows that more hierarchical levels is better than more items

per level and that each level ideally should have 4-8 items [28]. This research was however

conducted using older mobile telephones, and an (for these days) outdated Windows Mobile

devices.

Questions. There are two main question that we aim to answer by conducting this experi-
ment:

1. Do users prefer a hierarchical setting with more items per level instead of a deeper drill-

down in levels in order to select an item?

2. Is there a difference in this preference between a smart-phone and tablet setting?

Paradigms and techniques. This is a counterbalanced within-subjects design lab study. The
order of the tasks will differ between groups. There will be four different participant groups,

section C.3 elaborates on why. After each series of tasks the participant fills out a questionnaire

about the task he or she just conducted. After the participant conducted the tasks, he or she is

asked for a short interview. During the interview we will ask open questions, not answered in

85

Lab study

the questionnaires, that elaborate on their experiences during the tasks. Video recordings will

be made of the participants. There will be no statistical analysis done, but the questionnaires,

interviews and video recordings will be used for qualitative analysis.

Section C.3 elaborates on the experiment setup.

Practical issues. It may be difficult to gather participants. And if they are gathered, it may be

a challenge to find non-academic participants.

Ethical issues. A consent form should be read and signed so that each participant knows
what he or she can expect, and we have the proper permissions to use the experiment data.

Furthermore this experiment does not involve any activities that impose ethical issues.

Evaluation, interpretation and presentation. As mentioned, we expect that we may have
some difficulties finding enough participants to conduct proper quantitative research. We there-

for designed the experiment with focus on the qualitative part, and will be conducting manual

analysis of the results. The results of this experiment will be used to improve a design guidelines

document.

C.2 Participant tasks
The tasks that are to be conducted by the participant form an important part of this experiment.

Each participant will conduct a total of 8 different tasks, spread over the different configurations.

Every task will be conducted once by each participant.

Every task is associated with a difficulty rating. This rating is related to the depth of the hierarchy

the user has to work through in order to reach the goal of the task. We denote difficulty with

the variable D.
1. (D=7) Navigate to the Zilverling Building.
The Zilverling Building is located at the University of Twente in theWest district of Enschede,
which is located in the province Overijssel in the Netherlands,West Europe.

2. (D=6) Navigate to Google Headquarters.
Google’s headquarters is located in Moutain View, Santa Clara County, California in the
United State of America, at the continent North America.

3. (D=5) Navigate to Plein van de Hemelse Vrede.
The Plein van de Hemelse Vrede is located in Peking, in the northern part of China, a republic
that is located in Central Asia.

4. (D=7) Navigate to the The Studio.
The Studio is part of the Sydney Opera House in the Northern district of the City of Sydney
in Sydney, which is located in the province of New South Wales in Australia.

86

Lab study

5. (D=7) Navigate to the Euromast.
The Euromast is in the Centrum of Rotterdam, located in the province Zuid-Holland in the
Netherlands, West Europe.

6. (D=6) Navigate to the St. Basiliuskathedraal (=Pokrovkathedraal).
The St. Basiliuskathedraal is located inMoskou, which can be found in theWestern part of the
Russian Federation, in Eastern Europe.

7. (D=5) Navigate toMachu Picchu.
Machu Picchu is located in the Cusco Region of Western Peru, a country that is found on the
continent of South America.

8. (D=6) Navigate toMosselbaai.
Mosselbaai is located in the district Eden, of the province West-Kaap, which is found in the
country of South Afrika, in the Southern part of the continent Africa.

C.3 Experiment setup
C.3.1 Independent variables
First of all, we will be using the same application on both a smartphone and a tablet. The
layout will be different between these platforms, as we exploit the large screen that is available

on the tablet device.

During all tasks we will be using the same data, but there is a difference in how it is structured.

The deep representation uses a relatively large amount of hierarchical levels, but shows less
items on each level. The broad representations uses a relatively small amount of hierarchical
levels, but shows more items on each level.

Summarizing, we have four different configurations. 1: smartphone/broad (SP/B), 2: smart-

phone/deep (SP/D), 3: tablet/broad (TAB/B) and 4: tablet/deep (TAB/D).

C.3.2 Participant group/task distribution
We decided to create four participant groups. We do not alter between smart-phone and tablet

to keep the number of groups feasible, and to make the experiment less difficult for partici-

pants.

In Table C.1 you can find the final distribution of tasks over participant groups. Every task is

conducted by every group and on every device configuration. We aim to retrieve a multitude of

4 participants, with a minimum of 12.

C.3.3 Phased plan
Finally, we write down a phased plan for this experiment.

87

Lab study

Task→ 1+2 3+4 5+6 7+8
Group A SP/D SP/B TAB/D TAB/BGroup B SP/B SP/D TAB/B TAB/DGroup C TAB/D TAB/B SP/D SP/BGroup D TAB/B TAB/D SP/B SP/D

TABLE C.1: Groups/tasks distribution.

1. Welcome to experiment

2. Signing the consent form

3. Thank you for participating, explain what we’ll be doing

4. Experiment starts

(a) Participant fills out general questionnaire;

(b) Participant conducts tasks according Table C.1, and fills out a digital questionnaire on

a laptop after each configuration (or pair of tasks).

5. Participant is asked for a brief interview to elaborate on his or her experiences, as well can

we ask questions about certain, characterizing, choices that the participantmade through-

out the experiment.

6. Participant gets a cookie

C.4 Consent form
Hello, and thank you for participating in this experiment! Your participation is very much appre-

ciated. The experiment is part of the thesis that I, Mark Oude Veldhuis, am writing to obtain the

degree of Master of Science in Human Media Interaction.

This experiment will take approximately 20-30 minutes of your time. You will be asked to con-

duct series of tasks on a smartphone and tablet. The exact details of the tasks will be disclosed

when the experiments starts. During the experiment there will be a total of 4 moments where

we ask you to fill out a short questionnaire about what you just did and what your experiences

were, as well will we ask you to fill out a short questionnaire that provides some information

about you. These questionnaires includes closed, multiple-choice and open questions. After

you completed all tasks and filled out all questionnaires we may want to ask you a question or

two about your experiences.

If at any time during the experiment you find yourself feeling uncomfortable or want to quit the

experiment for whatever reason, please let us know.

The experiment is completely anonymous. A unique number will be attached to this session,

but your identity cannot be obtained or derived from this number. Your name on this consent

form will not be disclosed to anyone, and is only available to the experiment conductors. The

data that is obtained during this experiment will be aggregated and analyzed together with

88

Lab study

all the results of all other experiment sessions. A video-recording of your session will also be

made, but the recorded audiovisual data will not be disclosed to anyone but the experiment

conductors and is solely used to analyze the results of this experiment. This data will not be

shared with anyone except for the experiment conductors and supervisors. The final conclusion

of this experiment results in an advice that will be shared with Sigmax Mobile Solutions B.V., an

Enschede-based company with whom we collaborate.

If you have any questions or concerns after the experiment you can contact the Human Media

Interaction department of the University of Twente. Please address your message to either the

primary experiment conductor (Mark), or the experiment supervisor (Betsy).

M. (Mark) Oude Veldhuis — m.oudeveldhuis@student.utwente.nl

dr. E.M.A.G. (Betsy) van Dijk — e.m.a.g.vandijk@utwente.nl

Once again, thank your for your participation. Please sign this form if you agree with the above

stated and hand it over to the experiment conductors. Oh, and I almost forgot to mention that

you’ll get a little reward after the experiment :-)

Your name Signature Today’s date City
Enschede

tick this

box

Optional: I hereby grant the experiment conductors permission to use the au-

diovisual material gathered during this session for publishing purposes such as

scientific research papers and presentations, but my face may not be recogniz-

able.

C.5 Questionnaires
1. Questionnaire at the beginning of the experiment (step 4a).

(a) What’s your age?

Answer: range-based list

(b) What’s your gender?

Answer: male/female

(c) What is the highest level of education you attended?

Answers: vmbo, havo, vwo, gymnasium, mbo, hbo, wo, phd

(d) What kind of education did you attend? (multiple options possible):

Answers: alpha, beta, gamma

(e) Smart-phone questions:

i. Do you personally own a smart-phone?

Answer: yes w/ touchscreen, yes w/o touchscreen, no

ii. Do you use a smart-phone on a daily basis?

Answers: yes w/ touchscreen, yes w/o touchscreen, no

89

Acceptance expert interviews

iii. How extensive would you rate your daily smart-phone usage?

If answer to 1(e)ii is no, this question is not asked. Answer: scale 1-7

(f) Tablet questions:

i. Do you personally own a tablet?

Answer: yes, no

ii. Do you use a tablet on a daily basis?

Answers: yes, no

iii. How extensive would you rate your daily tablet usage?

If answer to 1(f)ii is no, this question is not asked. Answer: scale 1-7

(g) Thank you for your answers! You may now look at the tasks you have to conduct

during this study. Good luck!

2. Questionnaires under step 4b concern how the user experienced the task in the setting at

that moment.

(a) It was easy to complete the task.

Answer: scale 1-7 (1: completely disagree, 7: completely agree)

(b) I had to perform too many steps before I got to the item I wanted.

Answer: scale 1-7

(c) There were too many choices from which I had to choose at each step.

Answer: scale 1-7

(d) Briefly explain your answers and elaborate on your experiences.

Answer: open text

3. The interview at step 5 is semi-structured. We prepared a single question to ask the par-

ticipant that will open up a short discussion/conversation:

(a) What configuration, smartphone/tablet in combination with deep/broad data, has

your preference?

90

Appendix D
Acceptance expert interviews
Expert interviews with software developers and architects were conducted to assess the acceptance

the Model-Driven Engineering environment that was developed.

D.1 Interview questions
This expert interview is semi-structured. There are certain questions we would like an answer

to, but the interview allows discussion.

1. Do you mind if I make an audio recording of this interview?

2. My goal: find out whether expert software developers think the propose MDE environ-

ment would help to reduce development time, or what changes should be made.

3. Do you have any questions about MDE in general, or the proposed MDE environment?

4. Without taking the proposed MDE environment in mind:

(a) Now that you know what MDE is and what an environment looks like: what advan-

tages do you see in adopting an MDE environment?

(b) And what disadvantages do you foresee?

(c) For what goal do you think MDE is best applicable?

5. Looking at the proposed MDE environment:

(a) What do you think of the source model, as it was presented?

(b) What do you think of the separation of models into three levels?

(c) Do you think the proposed MDE environment helps to reduce development time for

Sigmax applications?

(d) What changes should bemade to the proposedMDE environment be altered in order

to help reduce development time?

91

Acceptance expert interviews

6. Do you have any other comments about adopting MDE, or the proposed MDE environ-

ment?

7. Thank you for your time!

D.2 Results
Table D.1 shows the results of the expert interviews after applying the selective reading approach

and open coding in grounded theory. The source-header denotes the first occurrence of the data

unit. The headings 1-4 shows which participant made the corresponding claim. The total-header

shows the number of participants that made the claim. The Table is sorted descending on the

number of people that made a claim.

+/- Sentence/claim (data unit) Source 1 2 3 4 Total
+ MDE is useful for quick proof of concepts or mockups 1 x x x x 4

+ Proposed source model helps to structure applica-

tions

1 x x x x 4

+ Proposed environment can help Sigmax if it is ex-

tended

1 x x x x 4

! The generated code should allow customization and

extensibility

1 x x x x 4

+ MDE brings consistency in development and makes it

predictable

1 x x x 3

+ MDE prevents repetitive work 1 x x x 3

- MDE may be difficult to adopt and get accepted in an

existing development process

1 x x x 3

- If the source model isn’t good enough, developers

miss freedom

2 x x x 3

+ MDE is useful for the development of multi-platform

applications

1 x x x 3

+ Transformation separation helps to manage com-

plexity

1 x x x 3

+ MDE allows for faster development. 2 x x 2

+ MDE helps to focus on the design, you are not dis-

tracted by the details

2 x x 2

+ MDE brings standardization 3 x x 2

- MDE uses a level of abstraction not easily understood

by all

1 x x 2

- To setup an MDE environment may be difficult 2 x x 2

- Debugging the generated application becomes diffi-

cult

2 x x 2

- The adaptability or extensibility of generated code

may be difficult

1 x x 2

92

Acceptance expert interviews

- It is difficult to find the right level of abstraction for a

source model

2 x x 2

+ Proposed source model helps to develop multi-

platform

1 x x 2

- Talking about screens means you have to know the

target platform

1 x x 2

! Instead of generating for Android, you could generate

so that a framework is used

2 x x 2

- MDE is less suitable for products 1 x 1

+ MDE is suitable for custom solutions 1 x 1

+ MDE helps to develop less error prone (eventually) 1 x 1

- MDE introduces a huge learning curve for users and

developers

1 x 1

- MDE may be difficult to connect to other develop-

ment tools

1 x 1

+ MDE is useful to automate development of tech-

niques that are well specified

2 x 1

- May be difficult to transform requirements to pat-

terns in source model

1 x 1

+ The level of abstraction in the proposed sourcemodel

is good

1 x 1

? Better to splits from SigmaxApp to Screens based on

the target platform

1 x 1

? The SigmaxApp model will change over time (not a

bad thing)

1 x 1

! It has to be researched how MDE can be tailored into

a development process

1 x 1

? MDE may be better useful for the generation of parts

of the entire application

2 x 1

! A proper graphical representation of a source model

is still required

2 x 1

- Specific UI requirements should be able to be defined

in the source model

3 x 1

- User interfaces may be difficult to collect in patterns 3 x 1

! Before such an approach is adopted, management

has to be convinced of the investment

4 x 1

TABLE D.1: Results after applying the selective reading approach and open coding in grounded

theory to the expert interview results.

93

	Preface
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Goals
	1.4 Approach
	1.5 Document outline

	2 Model-Driven Engineering
	2.1 History and introduction
	2.2 Models, models and models
	2.3 Transformations
	2.4 Model-Based User Interface Development
	2.5 Cameleon Reference Framework
	2.5.1 Characteristics
	2.5.2 Abstraction Levels
	2.5.3 Model-Driven Architecture correspondence

	2.6 Mobile Devices
	2.6.1 Challenges
	2.6.2 Approaches

	3 User Interface design for mobile devices
	3.1 Introduction
	3.2 Hardware challenges
	3.3 Software challenges
	3.4 Environmental challenges
	3.5 Design Guidelines from literature
	3.5.1 High-level guidelines
	3.5.2 Low-level guidelines

	3.6 Success factors
	3.7 Validation methods

	4 Developing user interface design guidelines
	4.1 Data Gathering
	4.1.1 Literature study
	4.1.2 Expert interviews
	4.1.3 Field studies
	4.1.4 Lab study

	4.2 Design Guidelines
	4.2.1 High-level guidelines
	4.2.2 Low-level guidelines

	4.3 Discussion

	5 Solution design
	5.1 Introduction
	5.2 Application patterns
	5.3 Metamodels
	5.3.1 SigmaxApp-metamodel
	5.3.2 Screens-metamodel
	5.3.3 Android-metamodel

	5.4 Transformations
	5.4.1 Model-to-model transformations
	5.4.2 Model-to-text transformation

	5.5 Discussion

	6 Acceptance and evaluation
	6.1 Case Study
	6.1.1 Application model
	6.1.2 Transformations
	6.1.3 Result

	6.2 Expert interviews
	6.2.1 Setup
	6.2.2 Results

	6.3 Discussion

	7 Conclusions and final remarks
	7.1 Conclusions
	7.2 Future work

	Bibliography
	A Expert interviews
	A.1 Interview questions
	A.2 Results
	A.2.1 Labels
	A.2.2 Data units

	B Field studies
	B.1 Goals
	B.2 Questions
	B.3 Method
	B.4 Practical issues
	B.5 Ethical problems
	B.6 Results
	B.6.1 Labels
	B.6.2 Data units

	C Lab study
	C.1 Basic design
	C.2 Participant tasks
	C.3 Experiment setup
	C.3.1 Independent variables
	C.3.2 Participant group/task distribution
	C.3.3 Phased plan

	C.4 Consent form
	C.5 Questionnaires

	D Acceptance expert interviews
	D.1 Interview questions
	D.2 Results

