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Summary 

This thesis was made as part of a bachelor project on the experimental observation of the ±1½ 
magnetic flux quantum (Φ଴ = 2.07 ⋅ 10ିଵହ	Wb) state in a specific type of superconducting rings, 
known as π-rings. The main reason for our research on this topic is the fact that the ±1½Φ଴ state has 
not been measured in superconducting structures so far, while in theory there is no reason why it 
cannot be measured. 
      The superconducting rings used in our research are partly made of a high critical temperature 
superconductor, yttrium barium copper oxide (YBCO), and partly made of a low critical temperature 
superconductor, niobium (Nb). 
      Indeed, the ±1½Φ଴ state in a π-ring has been observed in our measurements performed within an 
external magnetic field and in our measurements performed without an external magnetic field. The 
magnetic flux through the superconducting rings as a function of increasing external magnetic field is 
expected to increase in discrete steps with a size of the magnetic flux quantum Φ଴. These discrete 
steps have also been measured in our in-field measurements and in our zero-field measurements. 
The discrete steps are positioned differently for the so called 0- and π-rings.  
      The measurements that have been performed to observe these discrete steps are done using 
scanning SQUID microscopy (SSM). The reason why the SSM measurement setup is used is mainly the 
high sensitivity of the Superconducting Quantum Interference Device (SQUID). Another advantage is 
that the SSM measurement setup is able to scan rather large sample surface areas, so several 
YBCO/Nb rings can be scanned. 
      The significance of the research performed in this project lies both in verifying the theoretical 
expectations of flux quantization and in practical applications of flux quantization. The fact that we 
have measured the 0Φ଴, ±½Φ଴, ±1Φ଴, ±1½Φ଴ and 2Φ଴	states in our superconducting loops gives rise 
to the expectation that higher integer and higher half-integer numbers of magnetic flux quanta can 
also be captured in superconducting loops. The only limitation to this is the height of the 
supercurrent that can flow through these rings without exceeding the critical current of the 
Josephson junctions in the loop. Applications of these results will mostly be in the field of 
superconducting digital electronics and especially quantum-electronics.    
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Chapter 1. Introduction 

In past research, for example by dr. J.R. Kirtley, dr. C.C. Tsuei et al. [1], the state of a superconducting 
ring demonstrating a spontaneously generated magnetic flux corresponding to +1½ or -1½, shortly 
±1½, magnetic flux quantum Φ଴, has never been measured. Since, theoretically, there is no reason so 
far why the ±1½Φ଴ state in such a ring would not be possible, it was proposed by dr.  C.C. Tsuei that 
this state should be searched for and observed experimentally.  
      In previous research on the influence of the angle between two high-Tc/low-Tc Josephson 
junctions that are placed in a superconducting YBCO/Nb ring, several states with quantized magnetic 
flux both higher and lower than |±1½Φ଴| have been observed [1]. The goal of our research is to 
either measure the ±1½Φ଴ state in a superconducting π-ring or prove that it does not exist.  
      The outline of the thesis is as follows: in chapter 2, the theory concerning superconductivity and 
magnetic flux quantization will be discussed. The chapter will start with an overview of some 
important topics in superconductivity.  After this the fluxoid quantization condition for both integer 
and half-integer flux quanta is derived. Eventually, some theoretical background on the working of 
the used scanning SQUID microscope (SSM) setup is given. Also here, the reader will be introduced to 
the program that is used to derive the current density in the scanned rings on the sample from the 
magnetic flux measurements. 
      Chapter 3 deals with the more experimental aspects of this project. The devices that are used will 
be covered and the experimental realization of the sample will be explained.  
      Chapter 4 concerns the results of the performed measurements. The measurement data is given 
in the form of several graphs. The results are separated between measurements performed without 
an external magnetic field and with an external magnetic field when measuring. In this chapter, the 
hypothesis for the measurements of the quantized magnetic flux states in the 0- and π-ring as a 
function of the applied magnetic field during the cool-down of the sample will also be given.  
      In chapter 5, the results shown in chapter 4 will be discussed. First, the results will be compared 
to the hypothesis. Thereafter, the results will be compared to each other. Possible experimental 
errors in the measured values of parameters and the resulting possible error in the magnetic flux 
values will be taken into account in this chapter. 
      In chapter 6, the results and the discussions will be interpreted. The physical meaning of the 
processed data is discussed and conclusions are drawn. At the end, there will be an advice on 
possible future research in the topic of magnetic flux quanta in high-Tc/low-Tc superconducting rings 
with π-phase-shifts. 
 
In this thesis, magnetic field is denoted by both symbols ܤ and ܪ. The vector field ۰ is used in 
theoretical reasoning where it stands for the magnetic flux density. The vector field ۶ denotes the 
magnetizing field or auxiliary magnetic field in more practical situations. So both ۰ and ۶ stand for a 
magnetic field. ۰ has the unit tesla (T) and ۶ has the unit ampere per meter (A/m) in the SI system. 
The unit for magnetic flux Φ, which is the integral of magnetic field over an area, is the weber 
(Wb = Tmଶ). In the CGS system of units, the unit of ۰ is gauss (G). For the gauss is used as the unit 
for magnetic field in experimental environments like ours, the gauss will be used as the unit for 
magnetic field strength in chapters 4 and 5, ‘Results’ and ‘Discussion’ respectively, in this thesis. The 
gauss unit is practical because one gauss unit denotes a very small magnetic flux density compared to 
one tesla unit; and in the experiments conducted in this thesis, very small magnetic field variations in 
the order of magnitude of mG = 10ିଷ	G = 10ି଻	T, are externally applied on our sample using a 
solenoid. The gauss-tesla conversion is very straightforward: 	G = 10ିସ	T.      
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Chapter 2. Theoretical aspects 

2.1. Introduction 

The following chapter will cover the theory used in this thesis. First, superconductivity in general will 
be covered. Important properties, such as the Meissner effect, will be explained. The second part will 
focus on superconducting ring structures and especially the integer and half-integer quantization of 
magnetic flux through these structures. This flux quantization condition will be derived by using the 
single-valuedness of the so called order parameter wave function, which is explained in section 2.2.  
After this, some theory is explained on the topic of SQUIDs. A SQUID is the measurement device that 
is used for the measurements performed during this project. A more detailed description of the 
scanning SQUID microscopy (SSM) setup is given in chapter 3.  
      At the end of this chapter, a program will be introduced that is able to derive the current density 
in the scanned rings on the sample from the magnetic flux measurements using only one spatial 
component of the magnetic field. 
      An alternative derivation of half-integer flux quantization by means of energy minimization is 
given in appendix A. This derivation might also give a more intuitive grasp of the spontaneous current 
that is generated to induce the half flux quantum. 

2.2 Superconductivity 

There are two important ways to classify superconductors. The most straightforward way is to divide 
all superconducting materials into groups by their critical temperature, ௖ܶ. If the temperature of a 
superconductor is below its critical temperature, the material enters a superconductive state.  The 
critical temperature can be used to divide all superconductors into a group with a critical 
temperature below 30 K, called low-Tc superconductors, and a group with a critical temperature 
above 30 K, called high-Tc superconductors. 
      Another way to classify superconductors is by the possibility of a magnetic field penetrating the 
superconductor. Type I superconductors are superconductors with one critical external magnetic 
field, ܪ௖. Above this magnetic field the superconductor is in its normal state and magnetic field can 
penetrate the superconductor as it can penetrate any other non-superconducting material. Below  
this magnetic field the superconductor is in its superconductive state and it will completely shield the 
bulk of the superconductor from magnetic fields.  
      There are also type II superconductors. This type has two critical external magnetic fields, ܪ௖ଵ and 
ܪ ௖ଶ. This type of superconductor knows three regimes. Ifܪ < ௖ଵܪ <  ௖ଶ the superconductor is in itsܪ
superconductive state. This regime is exactly the same as a type I superconductor in an applied 
external magnetic field below its critical value.  
      The second regime is observed when ܪ > ௖ଶܪ >  ௖ଵ. In this regime the superconductor is in itsܪ
normal state in the same way as a type I superconductor in an applied external magnetic field above 
 .௖ܪ
      The third regime is found when ܪ௖ଵ < ܪ <  ௖ଶ. This is called the intermediate state. In theܪ
intermediate state the magnetic field is allowed to partially penetrate the superconductor. Parts of 
the superconductor that are penetrated by the magnetic field will be in their normal state, and 
currents will circulate around these regions. Such circulating currents are called vortices.  
      The type I and type II superconductors do not only have critical external magnetic fields, but they 
also have a critical temperature. The critical magnetic field, ܪ௖  for a type I and ܪ௖ଵ or ܪ௖ଶ for a type II 
superconductor, is always a function of temperature.   
      When the critical temperature ௖ܶ  is reached, ܪ௖(ܶ) = )௖ܪ ௖ܶ) = 0 and the superconductor will 
always be in its normal state. Characteristic phase diagrams for type I and type II superconductors 
are shown in figure 2.1. 
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Figure 2.1: The left figure shows the phase diagram of a type I superconductor. The curve ܪ௖(ܶ) is 
shown. Every state that is above this line is in its normal, non-superconductive, state. However, every 
state below the line is in its superconductive state. When the temperature hits the critical 
temperature ௖ܶ, there is no superconductive state and the material will always be in its normal state. 
The right figure shows the phase diagram for a type II superconductor as a solid line. When a state is 
between ܪ௖ଵ(ܶ) and ܪ௖ଶ(ܶ) the material is in its intermediate or mixed state, where the magnetic 
field is able to penetrate the material and form vortices. Below ܪ௖ଵ  and above ܪ௖ଶ  are the 
superconductive and normal state respectively. For comparison, the phase diagram of a type I 
superconductor is shown as a dashed line (figure adapted from Tinkham [2]). 
 
 
      In this thesis, superconductors will mostly be classified as being either high-Tc superconductors or 
low-Tc superconductors. This is because of the fundamentally different nature of these two groups of 
superconductors. This different nature is the cause of some interesting properties that are observed 
when high-Tc superconductors and low-Tc superconductors are brought in contact. Furthermore, the 
superconductors on which the rings used in the experiments are based, yttrium barium copper oxide 
(YBCO) and niobium (Nb), are both type II superconductors. So no distinction can be made with 
respect to the type I/II classification. 
      Since the discovery of superconductivity by Heike Kamerlingh Onnes in 1911, a lot of research has 
been conducted in this topic. Both experimentally, with results like the discovery of high-Tc 
superconductivity [3], and theoretically, like the explanation of low-Tc superconductivity. The 
theoretical explanation of low-Tc superconductivity was given in 1957 by Bardeen, Cooper and 
Schrieffer [4, 5]. They were awarded the Noble Prize in Physics for their BCS-Theory in 1972 [6]. 
According to the BCS theory, the charge carriers are bound into so called Cooper pairs via 
interactions with the lattice of the material, called electron-phonon interactions. While unbound 
electrons behave as fermions and are subjected to the Pauli exclusion principle, these Cooper pairs 
behave as bosons and are all able to occupy the same state. This state has an energy gap with 
respect to the next state. Even though BCS-theory has provided an explanation for low-Tc 

superconductivity, high-Tc superconductivity is still unexplained.  
      In 1930, Meissner and Ochsenfeld discovered the Meissner-Ochsenfeld effect, usually shortened 
to simply the Meissner effect. The Meissner effect is the expulsion of magnetic field from a  
superconducting material when this material enters its superconductive state [7], as shown in  
figure 2.2. 
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Figure 2.2: This figure shows a schematic picture of the Meissner effect. When a normal metal 
without superconducting properties (N) is exposed to a magnetic field, the magnetic field is expulsed 
by currents generated in the material. These currents quickly die out after some time due to 
resistance. When this material now enters the superconductive state (S), the magnetic field is 
expulsed again by generated shielding currents. These shielding currents do not die out after a given 
time because of the resistanceless conduction of the superconductor. This gives rise to the Meissner 
effect [7] (figure adapted from Ginzburg, Andryushin [8]).  

 
      Though both high-Tc and low-Tc superconductors show the Meissner effect and are resistanceless 
when in their superconductive state, there is a great difference between the two. Both types of 
superconductors are described by their own so called order parameter Ψ. This order parameter Ψ 
can be interpreted as the quantum mechanical wave function of the superconductor as a whole. The 
squared modulus |Ψ|ଶ is a measure for the number of electrons in the superconductive state. The 
order parameter is different for low-Tc and high-Tc superconductors.  
      As an example niobium and YBCO, the two important superconductors central to this thesis, are 
compared. Niobium is a low-Tc superconductor. Its order parameter is a so called s-wave. On the 
other hand, the high-Tc superconductor YBCO has a ݀௫మି௬మ order parameter. A schematic drawing of 
these order parameters is shown in figure 2.3. The effects resulting from this difference in order 
parameter will be discussed in section 2.3 and especially starting from 2.3.3. 

 
 
 
 
 
 
 
 
 
 

Figure 2.3: In this figure, blue lobes represent positive values, while red lobes represent negative 
values. The signs can be arbitrarily chosen as long as there is a minus sign difference between the 
two. The left figure shows an s-wave order parameter wave function. This wave function is always 
positive. The right figure shows a ݀௫మି௬మ-wave function. This wave function has both positive and 
negative lobes. If the two were to be combined together, this would imply a phase-shift of π in the 
order parameter wave function because of the different sign between the lobe of the ݀௫మି௬మ- and s-
wave [9] (figure adapted from Verwijs [9]). 
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2.3. Integer and fractional flux quantization 

2.3.1 Magnetic flux quantization 
 
The Cooper pairs that are all in the same quantum mechanical state are called the condensate. The 
condensate in the superconducting system can be described as a single wave function  

 Ψ(ܚ, (ݐ = |Ψ(ܚ,  (2.1) (௧,ܚ)௜ఏ݁|(ݐ

Here Ψ(ܚ, ,ܚ)is the quantum mechanical wave function, |Ψ (ݐ  is the amplitude of the wave |(ݐ
function and ܚ)ߠ,  The macroscopic wave .ݐ and time ܚ is the phase of the wave function at position (ݐ
function (2.1) as shown above has to obey the time-dependent Schrödinger equation [10] 

 
ቈ

1
2݉

൬
ℏ
݅
∇ − ൰ۯݍ

ଶ

+ ቉Ψ߶ݍ = ݅ℏ
߲Ψ
ݐ߲

 (2.2) 

with ݉ the mass of the Cooper pairs, ݍ the charge of the Cooper pairs, ܚ)ۯ,  the magnetic vector (ݐ
potential and ߶(ܚ,  the scalar potential. These potentials are related to the magnetic and electric (ݐ
fields ۰ and ۳ by 
 ۰ = ∇ ×  (2.3) ۯ
and 
 ۳ = −∇߶ −

ۯ߲
ݐ߲

 (2.4) 

respectively. 
      If equation (2.2) is multiplied by Ψ∗ and its complex conjugate is subtracted, we find 

 −∇ ⋅ ൤
ℏ

2݉݅
(Ψ∗∇Ψ −Ψ∇Ψ∗) −

ݍ
݉

|Ψ|ଶۯ൨ =
߲
ݐ߲

(Ψ∗Ψ) (2.5) 

Multiplying equation (2.5) by q we obtain the electromagnetic continuity equation 

௦ߩ߲
ݐ߲

= −∇ ∙ ۸௦ (2.6) 

with ߩ௦ the charge density and 

۸௦ =
ℏݍ

2݉݅
(Ψ∗∇Ψ −Ψ∇Ψ∗) −

ଶݍ

݉
|Ψ|ଶ(2.7) ۯ 

the current density. Equation (2.7) is known as the second Ginzburg-Landau equation named after 
the first to derive it by expanding the free energy of a superconductor in powers of Ψ [11]. 
      Substituting equation (2.1) into equation (2.7) results in 

݉
ଶݍ݊

۸௦ + ۯ =
ℏ
ݍ
 (2.8) ߠ∇

where ݊ is the local  charge carrier density in the superconducting condensate. To obtain this result it 
is assumed that Ψ∗Ψ can be interpreted as ݊ because the number of charge carriers involved in the 
superconducting condensate is large. Integrating equation (2.8) around a closed contour Γ yields  

ℏ
ݍ
ර∇ߠ ⋅ ܔ݀
	

୻
= ර

݉
ଶݍ݊

۸௦ ⋅ ܔ݀
	

୻
+රۯ ⋅ ܔ݀

	

୻
=

݉
ଶݍ݊

ර۸௦ ⋅ ܔ݀
	

୻
+ Φ (2.9) 

Here equation (2.3) and Stokes’ Theorem have been invoked to identify the magnetic flux 

රۯ ⋅ ܔ݀
	

୻
= න (∇ × (ۯ ⋅ ܁݀ = න۰ ⋅ ܁݀

	

ௌ

	

ௌ
≡ Φ (2.10) 
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      The wave function introduced in equation (2.1) has to be single-valued. This yields the condition 
that integrating ∇ߠ over a closed contour has to yield a multiple of 2ߨ. Implementing this condition 
in equation (2.9) results in the fluxoid quantization condition: 

݉
ଶݍ݊

ර۸௦ ⋅ ܔ݀
	

୻
+Φ =

ℎ
ݍ

n = nΦ଴, nϵℤ (2.11) 

in which 

Φ଴ ≡
ℎ

|ݍ| =
ℎ

2݁
= 2.07 ⋅ 10ିଵହ	Wb (2.12) 

is the magnetic flux quantum.  
      In the bulk of a superconductor, magnetic field is expelled by the Meissner effect[7]. Because of 
this effect it is impossible for a current to flow in the bulk of the superconductor. If one defines the 
closed integration path Γ to be in the bulk of the superconductor where the current density  ۸௦ is 
zero, we find, by  equation (2.11), that the flux in the enclosed hole is quantized 

Φ = nΦ଴, nϵℤ (2.13) 

In 1961 the effect of flux quantization was experimentally observed by Deaver and Fairbank. This 
proved not only that the flux through a superconducting loop is quantized, but also that the charge 
carriers in a superconductor carry a charge of ݍ = −2݁ as expected from the BCS-theory, where 
electrons bond in Cooper pairs [12]. It is important to note that equation (2.13) is a special case. In 
general, the fluxoid, defined as the left-hand side of equation (2.11), is quantized, not the flux. 
Another important aspect is that Φ stands for the total flux, which is a sum of the externally applied 
flux and the self-generated flux. 

2.3.2 Gauge invariance 

The vector- and scalar potentials ۯ and ߶ are defined by the partial differential equations (2.3) and 
(2.4). The results from these equations are not unique. These equations are invariant under the 
gauge transformation [13] 

ۯ → ۯ + ∇χ 

߶ → ߶ −
߲߯
ݐ߲

 
(2.14) 

Simply combining the gauge transformations (2.14) with equation (2.8) suggests that the 
supercurrent density ۸௦ is dependent on the gauge chosen for	ۯ and ߶. However, ௦݆ is a quantity that 
can be experimentally measured, so it is impossible that it is dependent on the gauge that is chosen 
in (2.14). This problem can be fixed by noting that the Schrödinger equation (2.2) is still gauge 
invariant when the phase ߠ is transformed along with ۯ and ߶ as 

ߠ → ߠ −
ߨ2
Φ଴

߯ (2.15) 

If this transformation is done along with the transformations in (2.14), ۸௦ is again independent of the 
chosen gauge. 

2.3.3 Josephson junctions 

A Josephson junction is a weak link between two superconductors. The weak link can, in general, 
consist of an insulating barrier, a small region of non-superconducting material or a physical barrier 
that weakens superconductivity in some region. In the Josephson junction the macroscopic wave 
functions of the two superconductors overlap. This overlap can create a phase jump in the total wave 
function that gives rise to a current across the Josephson junction. If no magnetic field is present, the 
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current flowing through the junction is related to the phase drop between the two wave functions 
via [14] 

௦ܫ = ௖ܫ sin(ߠଵ −  ୀ૙ (2.16)ۯ(ଶߠ

Here ܫ௦  is the current in the superconductor, ߠଵ − ଶߠ  is the phase difference between the 
overlapping order parameter wave functions and  ܫ௖  is the critical current of the junction. The critical 
current is the maximum current that can flow through the Josephson junction without losing the 
superconductivity in the junction. The phase terms ߠଵ and ߠଶ will depend on the gauge chosen in 
equation (2.15). Equation (2.16) can be written in a gauge invariant way by defining the gauge such 
that 

ᇱۯ = ۯ + ∇߯ = ૙ (2.17) 

where ۯᇱ is the gauge invariant magnetic vector potential. Using this gauge we obtain the phase 
difference 

ଵᇱߠ − ଶᇱߠ = ଵߠ − ଶߠ +
ߨ2
Φ଴

න ∇߯ ⋅ ܔ݀

మܚ

భܚ

 (2.18) 

Using ܫ௦ = ௦ᇱܫ = ௖ܫ sin(ߠଵᇱ − ଶᇱߠ  ᇲୀ૙ together with (2.17) and (2.18) we findۯ(	

௦ܫ = ௖ܫ sin߮ (2.19) 

with ߮ the gauge invariant phase difference, defined by 

߮ ≡ ଵߠ − ଶߠ −
ߨ2
Φ଴

න ۯ ⋅ ܔ݀

మܚ

భܚ

 (2.20) 

2.3.4 Magnetic flux quantization in loops with junctions 

Let us consider a loop containing ܰ Josephson junctions. Magnetic flux quantization in such a loop is 
again dictated by the single-valuedness of the macroscopic wave function in the superconductor. 
Using equations (2.8) and (2.20) the flux through a loop becomes 

ර∇ߠ ⋅ ܔ݀ = −
ߨ2
Φ଴

න
݉
ଶݍ݊

۸௦ ⋅ ܔ݀
	

୻ᇲ
−

ߨ2
Φ଴

රۯ ⋅ ܔ݀ −෍߮௜

ே

௜ୀଵ

	 (2.21) 

In this equation the contour Γᇱ is a contour in the bulk of the superconducting loop, as in the 
derivation of equation (2.13), but with the Josephson junctions excluded. Because of our choice of 
the integration path and the Meissner effect we can assume that ۸௦ is zero as we have done to get to 
equation (2.13)[7]. The single-valuedness of the wave function and Stokes’ Theorem now simplify 
(2.21) to the fluxoid quantization condition for loops containing ܰ Josephson junctions 

Φ +
Φ଴

ߨ2
෍߮௜

ே

௜ୀଵ

= nΦ଴, nϵℤ (2.22) 

This equation shows that the sum of the flux and normalized phase is quantized. 

2.3.5 π Josephson junctions in superconducting loops 

A ߨ Josephson junction is a Josephson junction where the gauge invariant phase difference ߮ =  .ߨ
The effect of a ߨ Josephson junction in a loop is shown in the fluxoid quantization condition for loops 
with a ߨ-phase-shift. Assuming we have a loop containing two junctions, one with ߮ଵ =  and one ߨ
with ߮ଶ = 0, we can use equation (2.22) to find the flux through the superconducting loop: 
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Φ +
Φ଴

ߨ2
෍߮௜

ଶ

௜ୀଵ

= nΦ଴ → Φ = ൬n +
1
2
൰Φ଴, nϵℤ (2.23) 

This result implies that the magnetic flux through the loop is not simply quantized to an integer 
multiple of Φ଴. Instead, it is quantized to an integer multiple of Φ଴ and offset by ½Φ଴. Would the 
phase shifts in the junction have been ߮ଵ = ߮ଶ = 0 or ߮ଵ = ߮ଶ =  the result would have been the  ߨ
same as equation (2.13). Concluding, the ߨ-phase-shift results in a half flux quantum offset in the 
quantized flux through the ring. In our experiments the ߨ-phase-shift is the result of the changing 
sign of the order parameter wave function between the s- and ݀௫మି௬మ-wave in niobium and YBCO 
respectively.  
      The flux Φ in the superconducting loop can be generated in two ways: the self-generated flux and 
the externally applied magnetic flux, so by (2.23) 

ܮ௦ܫ +Φ௘ = ൬n +
1
2
൰Φ଴ , nϵℤ (2.24) 

where ܮ is the self-inductance of the loop and Φ௘ is the flux applied by an external magnetic field. 

2.4. Scanning superconducting quantum interference device microscopy 

2.4.1 SQUIDs 

The measurement device used in this thesis is called a SQUID, which is short for Superconducting 
Quantum Interference Device. The SQUID is the most sensitive measurement device for magnetic 
flux and can do non-destructive measurements. For these reasons, SQUIDs have applications in  
several fields like geology, medicine and astronomy [15, 16]. The scanning SQUID microscope (SSM) 
is able to measure the flux through an area of several hundreds of micrometers per side. A 
description of the type of SQUID used during the research conducted for this thesis is given in [17]. 

2.4.2 Working principle 

The SQUID sensor is a superconducting loop. As shown in equations (2.13) and (2.23), the flux 
through this loop is quantized. As a result of this quantization, any magnetic field penetrating the 
loop will be compensated for by a current circulating around the loop. When the magnetic field 
becomes too strong, the sign of the current will change to induce a magnetic field in the loop that 
rounds the magnetic flux penetrating the loop to the next integer multiple of the magnetic flux 
quantum Φ଴. The current that is now flowing through the loop is a measure for the magnetic field 
that is externally applied to the loop. This external magnetic field can, for example, be the earth’s 
magnetic field or the magnetic field coming from a sample. 

2.4.3 Conversion of SQUID measurement data to flux 

In the following, the method used to integrate the flux from the SSM images is explained. Each image 
consists of a set of pixels, which have an ݕ ,-ݔ- and associated ܰ-value (which is converted to a color 
scale), see figure 2.4(a). ܰ is proportional to Φ௦, the flux detected by the sensor pick-up loop for that 
particular pixel. To integrate the flux, first the values ܰ are summed for all pixels within a radius ݎ 
from the center of the ring. The integration area is given by the sum of all pixels times the area per 
pixel ܣ௣. In figure 2.4(b), ∑ܰ is plotted as a function of the integration area (black solid points). In 
the absence of a background magnetic field ∑ܰ should increase with ݎ until ݎ reaches the inner 
radius of the ring, and then remain constant until the outer diameter is reached. To compensate for 
constant offsets in the SQUID signal ∑ܰ is fitted to a straight line between an inner radius ܴ௜௡ and 
an outer radius ܴ௢௨௧ , see figure 2.4(a) and the blue line in figure 2.4(b). ܴ௜௡ and ܴ௢௨௧  are chosen well 
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within the superconducting material. In figure 2.4(b) the resulting ∑ܰ∗ after background subtraction 
is shown (red solid points). 
      There is a difference between the area of the sensor pick-up loop ܣ௦ and the pixel area ܣ௣. The 
flux through one pixel on the sample equals 

Φ௣ = ௣ܣܤ  (2.25) 

The flux through the sensor pick-up loop is given by  

Φ௦ =  ௦ (2.26)ܣܤ

where ܣ௦ is the effective area of the sensor pick-up loop which is calculated to be 24.6	ߤmଶ at 4.2 K. 
This effective area is comparable to the actual area of the pick-up loop, but the magnetic field that is 
pushed through the loop as a result of the Meissner effect is incorporated which makes the effective 
area slightly bigger than the actual area. This effect is called flux focusing. The effective area of the 
pick-up loop is found by calibrating it with a single vortex. A single vortex always has a trapped 
magnetic flux of 1Φ଴. By calculating the magnetic flux of this vortex, some amount of flux is found. 
Assuming the initially assumed effective area is not perfectly right, this amount of flux will not equal 
exactly 1Φ଴. A look at equation (2.28), which will be explained later on in this section, shows that 
multiplying the initially assumed sensor pick-up loop area by the measured amount of flux quanta Φ଴ 
will yield the right effective area  ܣ௦ of the sensor pick-up loop. 
      When comparing equation (2.25) with (2.26) it can be seen that the magnetic field is assumed to 
be constant throughout the complete loop and throughout the sample. This is justified by assuming 
that both the sensor and the ring are small enough to say that fluctuations in magnetic field are 
minimal. The desired quantity that is measured is the flux through a pixel on the sample surface, so it 
is necessary to find an expression for this in terms of the measured flux through the pick-up loop Φ௦. 
This expression can be found by substituting equation (2.26) into equation (2.25). The result of this 
substitution is  

Φ௣ = Φ௦
௣ܣ
௦ܣ

 (2.27) 

      The flux through a ring is equal to the summation of Φ௣ over all pixels within the inner radius of 
the ring. Each pixel has an area ܣ௣ of 6 × mଶ (or 3ߤ	6 ×  mଶ in other SSM images), which isߤ	3
determined by the scan step size (6	ߤm or 3	ߤm for the experiments conducted in this thesis). 
However, ܰ∗ is related to the flux through the pick-up loop of the sensor Φ௦, with a different area ܣ௦ 
of 24.6	ߤmଶ, which should be taken into account when integrating the flux. In general, the flux Φ௣ 
through a pixel is related to the flux through the sensor pick-up loop Φ௦ via (2.27). The value ܰ is 
determined from the flux Φ௦ through the SQUID pick-up loop via the flux-to-voltage transfer Φ-to-V 
of the flux-locked loop, the gain and an analog-to-digital conversion step (16 bits for ±10 V). 
Combining this with equation (2.27) we find the following relation between ∑Φ௣ and ∑ܰ∗ 

෍ Φ௣
௥	ழ	ோ೔೙

=
1

Φ− to − V ⋅ gain ⋅ ൬2ଵ଺
20 ൰

௣ܣ
௦ܣ

෍ ∗(ݎ)ܰ
௥	ழ	ோ೔೙

 (2.28) 

Inserting the values for the flux-to-voltage transfer (14-18 V/Φ଴) and gain (1-2 ×), the integrated flux 
∑Φ௣ can be directly calculated as a function of the integration area. The result is shown in figure 
2.4(c). Φ௥௜௡௚  can be evaluated at any value of ݎ between ܴ௜௡ and ܴ௢௨௧ , as by construction it is 
constant within experimental noise between these values. 
      Throughout this section, the distance from the sensor pick-up loop to the sample is not taken in 
as a factor between the measured signal and the calculated flux. A justification for this is given at the 
end of section 3.2.2. 
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Figure 2.4: (a) SSM image for the 0-ring with ߠଶ = 332° (integer magnetic flux quantization), showing 
the size of a pixel and the inner- and outer radii used for background subtraction. (b) Integrated ܰ as 
a function of integration area. Black solid points: ∑ܰ, blue line: fit between ܴ௜௡ and ܴ௢௨௧  , red solid 
points: ∑ܰ∗. (c) Integrated flux ∑Φ௣ as a function of integration area. 
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2.5 Mapping of current in a sample 

Given a measurement of a magnetic field’s ݖ-component through a sample, it is possible to create a 
mapping of the current density in the sample. This mapping can be used to find out if a 
superconducting sample is in its superconducting state or if the superconductivity in the sample is in 
some way destroyed. This destruction can be the result of high currents flowing in the sample or 
temperatures above the critical temperature. 
      There are complications on creating this mapping. Maxwell’s equations are all only useful for  
more-dimensional fields because of the use of the curl and divergence operator. In this project, only 
the ݖ-component of the magnetic field is known. For this reason it is impossible to use Maxwell’s 
equations when calculating the current. The Biot-Savart law  

۰ =
଴ߤ
ߨ4

න
(ᇱܚ)۸ × ܚ) − (ᇱܚ

ܚ| − ᇱ|ଷܚ
݀ଷrᇱ (2.29) 

can be used if some assumptions are made.       
When looking in Cartesian coordinates, the Biot-Savart law implies that each component of the 
induced magnetic field is generated by the two orthogonal components of the current density field. 
The information that is known is only ܤ௭, which contains information on two components of the 
current density field, ܬ௫ and ܬ௬. To compute this problem, we will have to assume that ܬ௭ = 0. In 
general this is not necessarily true, but if samples are sufficiently small, the approximation can be 
made. With this assumption done, the integral in equation (2.29) in Cartesian coordinates can be 
computed for the ݖ-component. 
      The assumption is made that there is no current loss and that no current is created, so ∇ ⋅ ۸ = 0. 
The simplified integral that is now left can be computed by using Fourier transformation. Using the 
integral property of the Fourier transform, where integration in real space corresponds to multiplying 
by a frequency term in Fourier space, this integral can be computed. The result is a direct relation 
between the Fourier transforms of ܬ௫ and ܬ௬. These are now scaled with respect to each other, where 
the scaling is the ratio between the frequency terms picked up by using the Fourier transform’s 
integration property. The ݔ - and ݕ-component of the current density can now be found by 
computing the inverse Fourier transform. A measure for the total current is found  by adding the 
resulting ܬ௫ܠො and ܬ௬ܡො using vector addition. 
      Fourier transforming gives rise to a few problems when solving the integral. The Fourier 
transform implicitly assumes periodicity. This results in some artifacts on the sides of the mapping. 
These artifacts are shown as lines that are not closed and can therefore be identified on the picture.  
Another problem resulting from the Fourier transform comes from filtering the values. High 
frequency values can be the result of a background signal and are therefore filtered out by using a 
Hanning window. The removing of high frequency signals gives a blurring effect on sharp edges. This 
means a loss in resolution. A more detailed mathematical justification of the program is found in 
[18]. 
      From the program’s result, measures can be found for ܬ௫, ܬ௬ and |۸|. ܬ௫ and ܬ௬ can be used to 
deduce the direction of the current. |۸| is used to see where the current is strong or weak, but does 
not contain information about the actual direction of the current.  
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Chapter 3. Experimental aspects 

3.1. Introduction  

In this chapter the setup that is used in the experiment is discussed. First, the SQUID sensor will be 
explained. The SQUID sensor is the part of the setup that measures the magnetic flux through the 
sample. There will be an overview of the basic working of the sensor and the electronics behind it. In 
the second part, there is an explanation on some external devices used in the setup. These devices 
include, among others, an amplifier to enhance the signal and a solenoid with a current source to 
alter the magnetic field on the setup. Lastly, there is a description of the fabrication of the sample 
and the possible influences this process has on the performed measurements. 

3.2. The holder 

The SQUID sensor is attached to a holder. This holder contains not only the sensor, but also a 
cantilever to ensure the right positioning of the SQUID and electronics. The sensor should be 
mounted on the cantilever as shown in figure 3.3, this way ensuring that the pick-up loop of the 
SQUID is always as close to the sample as possible. If the pick-up loop is close to the sample, the 
measured signal will be strongest. However, if the loop touches the sample, the loop can be polished 
away and might even damage the sample.  
      If the sensor comes in contact with the sample, the cantilever will bend and the contact angle 
between the sensor and the sample will decrease to 10°. As long as the sensor and the sample are 
not in contact, the cantilever will not bend. In this case the angle between the cantilever and the 
sample will be 30°. 
      The holder has to be mounted into the setup. For practical reasons, it is important to align the 
cantilever and the sample with either the ݔ- or ݕ-axis of the motor. This way, positioning the sample 
above the sensor will be easier. When this is done, it is possible to change the position of the SQUID 
sensor with respect to the sample. However, due to the difference between room temperature and 
the operating temperature (the boiling point of helium at 4.2 K), the cantilever will bend due to 
thermal expansion and the position of the sensor will change. This thermal expansion only has a 
relevant effect in the direction that the cantilever is pointing, so either the ݔ- or ݕ-coordinate on the 
scanned sample will not change. 

3.2.1 The SQUID sensor 

The sensor is an open, superconducting loop with two Josephson junctions. The basic working of the 
SQUID sensor is explained in section 2.4.2. Before the sensor is used it has to be cut in such a way 
that the pick-up loop can get as close to the sample as possible. Pictures of a cut and an uncut sensor 
are taken using an optical microscope. These are shown in figure 3.1. 

 
 
 
 
 
 
 
 
 
 

Figure 3.1: In the above figures, a cut (left) and an uncut SQUID sensor (right) are shown. The photos 
are taken under an optical microscope. From these pictures, characteristic lengths of the sensor can 
be measured. 
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Figure 3.2 shows a schematic representation of the sensor pick-up loop with the characteristic 
lengths indicated in the picture. 

 
 
Figure 3.2: This figure shows a schematic representation of the SQUID sensor. The shape of the 
sensor pick-up loop is roughly equal to a rectangle, as can be seen in figure 3.2. The interior of the 
rectangle has dimensions of approximately 6 by 4 µm. The thickness of the pick-up loop edge is 2 µm. 
The ideal distance between the edge of the sensor and the edge of the pick-up loop is a bit more 
than the length of the loop. In this case this distance is 9 µm. 
 

3.2.2 Distance to the sample 

The distance to the sample has to be set accurately. Being close to the sample ensures a greater 
sensitivity but also increases the chance of colliding with the sample. If the sensor and the sample 
collide, this might damage both the sensor and the sample. If the very edge of the sensor is touched 
by the sample, the setup is in so called contact mode. To approach the sensor with the sample, the 
sample can directly be moved towards the sensor by adjusting the ݖ-position on the motor. It is 
important to stop the approaching early enough, to be sure not to crash into the sensor. To approach 
the sample in a more fine manner, the SSM has an approach mode. Pressing the “up”-button on the 
computer makes the sample go downwards to the sensor in steps. When this is done, an adjustable 
length is scanned in the ݔ-direction. This process is repeated until a signal is measured from the 
sample during the scanning. In practice, being far away from the sensor will also introduce a gradient 
in the signal that is measured. As long as this gradient is present, one can be fairly sure that the 
sample and sensor are not in contact mode yet.  
      Because the sensor is positioned at an angle, there is still an effective distance between the 
sample and the sensor. This distance can be calculated using the geometry of the sensor. The more 
detailed geometry of the sensor is shown in figures 3.1 and 3.2 in section 3.2.1. The positioning of 
the sensor with respect to the sample is shown in figure 3.3. 
      The effective distance between the sensor and the sample depends on the half length of the pick-
up loop, on the distance between the end of the sensor and the pick-up loop and on the angle 
between the sample and the sensor, as shown in figure 3.3. The geometry shows that this distance is 
equal to (4.5	µm + 9	µm) ∙ sin(10°) = 2.3	µm in contact mode. Here, 4.5	µm comes from the half 
length of the pick-up loop and 9	µm comes from the distance between the pick-up loop and the edge 
of the sensor. The angle between the sample and the pick-up loop in contact mode is 10°. The 
distance of 9	µm between the pick-up loop and the edge of the sensor is only a typical value that can 
deviate for different sensors. This distance is only determined by how the sensor is cut. 
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Figure 3.3: The left figure shows a schematic of the SQUID sensor in non-contact mode with the 
sample. The typical angle between the sensor and the sample for this mode is 30°. When the sensor 
comes in contact with the sample, the SQUID sensor is in contact mode, shown in the right figure. 
The typical angle between the sensor and the sample in contact mode is 10°.  
 

Even though the distance to the sample plays a role in the sensitivity of the measurements, it is 
important to note that it is not necessary to correct for this distance when analyzing a measurement, 
as long as the distance remains constant. Intuitively, one might think that the distance to the sample 
has an influence on the measured flux. This is a result of the flux spreading out in space after passing 
through  the ring on the sample. This way it looks like the flux can only be accurately measured by 
holding the pick-up loop precisely on the ring. However, when an area is scanned that is larger than 
the ring, the flux that diverges away from right above the ring will also be scanned at some point. 
This does mean the measurement does not exactly yield the flux profile on the sample, but it actually 
shows the flux profile at a distance from the sample. Integration of this flux profile yields the same 
amount of flux through the superconducting ring, but it does not yield an accurate picture showing 
where the flux comes from. 

3.3. External devices 

There are a number of external devices used in the SSM setup. They are used for various reasons, 
such as introducing a magnetic field to the sample or enhancing the measured signal. One of these 
components is a solenoid. The solenoid can be attached to the setup in such a way that both the 
SQUID sensor and the sample are inside the solenoid. If a current is now running through the 
solenoid a magnetic field is induced. The magnetic field that is induced is generally a function of the 
location inside the solenoid, but it can be assumed constant when the sensor and sample are kept in 
the center. This is justified by noting that in the center of the solenoid, a change in location has only a 
small effect on the magnetic field, as is shown in figure 3.4. 
      The magnetic field applied on the sample is offset by the earth’s magnetic field. The earth’s 
magnetic field can be compensated for using the field induced by the solenoid. Previous 
measurements have shown that the earth’s magnetic field is compensated for when a current            
ܫ = −0.65	mA runs through the solenoid. This corresponds to a magnetic field in the ݖ-direction of 
௭ܤ = 42	mG/mA ⋅ 0.65	mA = 27.3	mG. Here, the factor 42 comes from the calibration graph in 
figure 3.4. 
      An amplifier is also incorporated into the system. The amplifier introduces a gain between 1 and 
100. The main reason for using this amplifier is that the signal directly coming from the scanning 
SQUID is too small to measure it accurately. 
      During most measurements, the amplifier was set to a gain of 1 or 2, dependent on which gave 
the most practical output. The output as a result of the test signal is measured using a Tektronix TDS 
3012C Digital Oscilloscope. 
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Figure 3.4: Calibration graph for the solenoid used to apply external magnetic fields. The point              
 mm corresponds to the the center of the solenoid. An important property of the graph is the 0 = ݖ
small slope of the graph around 0 = ݖ mm. This small slope can be used to minimize the error in the 
magnetic field. By making sure the sensor and sample are close to the center of the solenoid, the 
gauss/ampere ratio can be determined with greater precision.    
 

      The sample that will be used in this thesis contains niobium. Niobium is a type II, low-Tc 

superconductor with a critical temperature ௖ܶ  of 9.2 K. To get to such low temperatures a cryostat is 
used. The cryostat is filled with liquid helium. The helium level in the cryostat is measured with an 
American Magnetics 110. The device gives a value between 0 and 100 percent. One hundred percent 
corresponds to a completely filled cryostat. Zero percent however does not correspond to a 
completely empty cryostat. When the American Magnetics measures a helium level of 0 percent this 
means that the lowest level the solenoid can get to is reached. For the experiments conducted in this 
thesis, this effectively means that the amount of helium is not high enough to continue doing 
measurements when a zero percent helium level is reached. 
      The position of the sample can be changed with respect to the position of the sensor. A Newport 
Universal Motion Controller & Driver is attached to the system. This motion controller has three 
components to change the ݕ ,-ݔ- and ݖ-position of the sample. When measuring, only the ݔ- and ݕ-
controller are used to move the sample across the sensor during a scan. The distance between the 
sensor and the sample, the ݖ-component, is constant during the scan. The ݖ-controller can be used to 
approach the sensor before measuring or to retract the sample when the system consisting of the 
SQUID sensor and the sample is taken out of the cryostat. A schematic overview of the SSM system is 
shown in figure 3.5(a). A close-up of the scanner is shown in figure 3.5(b). The solenoid that is placed 
around the scan area during the actual measurements to compensate for stray fields and to apply an 
external magnetic field in the Dewar, is not shown.   
 
      To find the flux-to-voltage transfer Φ-to-V of the flux-locked loop, as mentioned in section 2.4.3, a 
test function is used. The reaction of the SQUID output to this test function equals the reaction of the 
SQUID output to the measurement of a magnetic flux equal to one magnetic flux quantum Φ଴. The 
test function is generated using an Agilent 33220A 20MHz Function Generator. When the test signal 
is turned off, the output can be used to give a measure for the noise level of the measurement. The 
noise level typically ranges from 30 to 50 mV. However, the noise can significantly increase due to 
cell phone noise. Cell phones that are turned on in the room where the SQUID measurements are 
done, will typically give rise to a relatively strong 217 Hz noise. 



Magnetic Flux Quanta in High-Tc/Low-Tc Superconducting Rings with π-phase-shifts    ______                  

18 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: (a) Schematic of the scanning SQUID microscope setup. (b) Schematic of the scan head 
and the SQUID stage (figures adapted from Verwijs [9]). 

 

3.4. The sample 

The sample that is used in the measurements done as a part of this project, was created and used 
several years ago by dr. C.J.M. Verwijs as a part of his research done in[9]. The sample is already 
more than five years old, so the quality may have been degraded as years passed. Most parts in 
section 3.4 were adapted from chapter 4 in [9] written by Verwijs as we did not fabricate the used 
sample ourselves but used the old sample that Verwijs used. 
      In this section the general properties of YBCO and niobium will first be discussed. After this the 
main focus will be on the process of creating the sample.   

(a) (b) 
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3.4.1 YBa2Cu3O7-δ      

Yttrium barium copper oxide (YBCO) exists in several stoichiometric phases, such as YBaଶCuଷO଻ିఋ   
(Tc = 93 K), YBaଶCuସO଼ (80 K), and YଶBaସCu଻Oଵସା௫ (95 K). YBaଶCuଷO଻ିఋ  is most often used because 
it is easier to fabricate. In this thesis, YBCO will refer to YBaଶCuଷO଻ିఋ. The crystal structure of YBCO 
is shown in figure 3.6(a). The structural and electronic properties of YBCO are strongly dependent on 
the oxygen deficiency. For YBaଶCuଷO଺ (ߜ = 1) the crystal structure is tetragonal: the a- and b crystal 
axes are equal to each other but different from the c-axis. There are four oxygen atoms located in the 
copper-oxide planes and two atoms are surrounding the two barium atoms. The sites in the ab-plane 
(at the top and bottom of the unit cell in figure 3.6) are empty for ߜ = 1. When the oxygen content 
increases, the occupancy of the states in the copper-oxide planes increases and the oxygen divides 
evenly between sites that are located on the a-axis (the O5 sites) and sites that are located on the b-
axis (the O1 sites). When 7−  reaches a value of approximately 6.35 a phase transition occurs. The ߜ
YBCO goes from the non-superconducting tetragonal phase to the superconducting orthorhombic 
phase. For the orthorhombic crystal structure the a-, b- and c axes differ from each other. When the 
oxygen content 7 −  is increased even further the occupancy of the O1 sites increases but the ߜ
occupancy of the O5 sites starts to decrease, as indicated in figure 3.6(b). The cell constants and 
critical temperature of YBCO depend strongly on the oxygen deficiency. Experiments provided 
evidence for a maximum Tc around ߜ = 0.13. All YBCO thin films that are used in this thesis are close 
to optimal doping, resulting in a critical temperature of approximately 92 K and cell constants 
ܽ	 = 	3.82	Å, ܾ	 = 	3.89	Å, and ܿ	 = 	11.65	Å. 
      Superconductivity in YBCO is believed to take place in the copper-oxygen planes. These planes are 
not perfectly flat but are slightly bend towards the Y3+-ion. Despite this bending, superconductivity 
can still be regarded as a 2-dimensional phenomenon. Because of this it is very important that YBCO 
thin films are grown epitaxially. The devices described in this thesis contain c-axis oriented YBCO 
films that were epitaxially grown on SrTiO3 substrates. SrTiO3 has a simple cubic crystal structure, and 
its lattice constant of 3.905 Å matches well with the a- and b axes of YBCO.  

 
Figure 3.6: (a) Schematic representation of the unit cell of YBaଶCuଷO଻ିఋ. The oxygen sites at the top 
and (equivalently) bottom of the unit cell, indicated with a slight transparency, can be separated in 
two pairs: the O1 sites are located on the b-axis and the O5 sites are located on the a-axis. (b) 
Occupancy of the O1 and O5 sites as a function of the oxygen content 7 −  figure adapted from) ߜ
Verwijs [9]).  
 
3.4.2 Niobium 

In this thesis, niobium is used as a low-Tc superconductor. Niobium is the only elemental 
superconductor that is type II. The reason why this element is chosen instead of other low-Tc 
superconductors is its relatively high critical temperature of 9.25 K. Because of this high critical 

(a) (b)  
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temperature it is possible to cool the sample using liquid helium, which has its boiling point at 4.2 K. 
Niobium oxidizes easily to a variety of oxides and in this way it is capped by a thin Nb2O5 layer, which 
prevents further oxidation. This natural Nb2O5 coating is dense, mechanically hard and stable. The 
melting point above 2000 K and low diffusivity below 400 K result in long time stability and 
robustness to thermal cycling. All these factors combined make niobium one of the most popular 
metallic superconductors. The crystal structure of niobium is BCC. The niobium films that were used 
in our experiments consist of polycrystalline niobium (grain size ≈ 60-80 nm) which is much easier to 
fabricate than the epitaxially grown YBCO. The high chance of oxidation of niobium poses a problem 
at the Josephson contacts between YBCO and niobium. When brought into contact with YBCO, the 
niobium can oxidize using the oxygen in the YBCO. To prevent this oxidation, a thin layer of Au is 
deposited between the electrodes. The gold layer is chemically inert and will therefore reduce the 
oxidation at the junction.  

3.4.3 Ramp-type Josephson junctions 

The YBCO/Nb rings are connected via Josephson junctions. These connections require special 
attention because of the nature of superconductivity in YBCO. As mentioned, the superconductivity 
in YBCO is believed to take place in the copper-oxygen planes. Because of the suppressed gap in the 
c-axis direction, planar junctions are not suitable to connect the YBCO electrode to the s-wave 
niobium electrode. Studies to Josephson contacts between high-Tc and low-Tc superconductors 
revealed that ramp-type Josephson junctions can be used to fabricate reliable junctions. 
      The cross section of a ramp-type Josephson junction is shown in figure 3.7, where the YBCO film is 
grown with the CuO2 planes parallel to the substrate. For this geometry, the ab-plane of the YBCO 
base electrode is aligned with the niobium top electrode. Because of the YBCO d-wave symmetry the 
coupling will be the largest when the junction edge is aligned with the a- or b-axis of the YBCO crystal 
structure. 
      The overlap, which is typically a few µm for the sample discussed in this thesis, serves to 
compensate for small misalignments between the top- and bottom electrodes in the direction of the 
current. The STO capping layer prevents current in the c-axis direction. Therefore the size of the 
overlap will not have an influence on the junction critical current in this ramp-type geometry. During 
the design stage, the overlap was always designed such that the niobium overlap has a smaller width 
(i.e. the out-of-plane direction in figure 3.7) than the YBCO base electrode. This smaller width serves 
to allow for small in-plane misalignment errors between the top- and bottom electrodes in the 
direction perpendicular to current transport. Without this difference in width, a misalignment would 
result in the formation of a junction with a π-phase-shift which generates unwanted flux or reduces 
the critical current of the junction. 
      Studies on YBCO/Au interfaces show an amorphous layer at the interface between the high-Tc 
base electrode and the Au layer deposited at the ramp edge. Such an amorphous layer strongly 
suppresses the critical current density of the Josephson junction. For this reason a restoring 
interlayer is deposited and annealed in situ prior to the deposition of the gold barrier. This interlayer, 
with a typical thickness of 7 nm, restores the surface and leads to clean, reproducible and well-
defined interfaces. 
 
 
 
 
 
 
 
 
Figure 3.7: Schematic cross section of a ramp-type Josephson junction connecting the high-Tc 
superconductor YBCO to the low-Tc superconductor niobium (figure adapted from Verwijs [9]).  
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3.4.4 Fabrication procedure 

This section is concerned with the practical realization of the YBCO/Nb ramp-type Josephson 
junctions. The general fabrication procedure will be outlined. 
      The fabrication procedure is schematically illustrated in figure 3.8. After cleaning and a surface 
cleaning step, a [001]-oriented YBCO film is epitaxially grown on the STO substrate using pulsed laser 
deposition (PLD). During the same fabrication step an STO layer is deposited on top of the YBCO film. 
Then a layer of resist is spun on the sample in which the shape of the base electrode is patterned 
using optical lithography. Next the parts of the bilayer that are not covered by resist are etched away 
using argon ion milling. To ensure a well-defined ramp for all junction angles, the sample is rotated 
during etching and oriented at an angle of 45° with respect to the argon ion beam. After the resist is 
removed, a thin (~7	nm)  YBCO layer is grown (again using PLD) and  annealed in order to restore the   
ramp which has been damaged during the argon ion milling process. After this restoration step the 
gold barrier is applied in situ, also using PLD. On top of the gold layer a resist layer is spun in which 
the shape of the counter electrode is defined using optical lithography. In the final deposition step 
niobium is sputtered onto the sample. Lift-off is used to remove the resist and unwanted niobium. In 
the last step, the redundant uncovered YBCO/Au layer is removed by argon ion milling. Several 
processing steps are discussed in more detail in [9]. 

 
Figure 3.8: Processing steps for the fabrication of YBCO/Nb ramp-type Josephson junctions. (a) 
Treated STO substrate. (b) Pulsed laser deposition of the YBCO-STO bilayer. (c) Application of 
photoresist. (d) Patterning of photoresist. (e) Argon ion milling. (f) Resist removal. (g) Pulsed laser 
deposition of the YBCO interlayer and gold barrier. (h) Application of photoresist. (i) Patterning of 
photoresist. (j) Sputter-deposition of niobium. (k) Lift-off. (l) Removal of redundant Au and YBCO 
(figure adapted from Verwijs [9]). 
 
3.5 Experiments on a 0- and a π-ring 

The layout of the rings that are used is depicted in figures 3.9(a)-(c). The ring connects a YBCO base 
electrode to a niobium counter electrode via two ramp-type Josephson junctions. Depending on the 
geometry such a ring can be either a 0-ring which contains a flux nΦ଴, or a  π-ring which contains a 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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flux ቀn + ଵ
ଶ
ቁΦ଴ provided the ring is in the so-called large inductance limit, i.e. ܫܮ௖ 	~	Φ଴. This is 

shown in figures 3.9(d)-(f). For a predominantly d-wave symmetry the rings (d) and (f) will be a 0- and 
π-ring, respectively, but the behavior around the nodal directions depend critically on the details of 
the order parameter symmetry. For a pure d-wave superconductor the transition from a 0- to π-ring 
occurs at an angle of 45 degrees. An s-wave admixture would result in a shift of the 0- to π-transition 
[9]. For the two different rings used in this thesis the Josephson junction angle is far away from the 
nodal angles and thus YBCO can be considered as a pure d-wave superconductor.  
      An array of 72 rings was fabricated with one junction kept at a constant angle (-22.5 degrees) and 
the second junction angle varying in intervals of 5 degrees. The rings were fabricated using the 
procedure described in section 3.4. The YBCO-STO bilayer has a thickness of 340 nm (YBCO) + 70 nm 
(STO). The choice for a rather thick YBCO layer was made to enhance the critical current. The critical 
current of the junctions along the nodal directions will be strongly suppressed. A thick YBCO layer will 
result in larger critical currents and therefore helps to stay in the large inductance regime, which is 
crucial for our experiments. The thickness of the gold is 16 nm and the niobium counter electrode 
has a thickness of 160 nm. The YBCO semi-rings have an inner radius of 15 µm and an outer radius of 
65 µm, the niobium rings have an inner radius of 20 µm and an outer radius of 60 µm. The YBCO 
semi-rings were chosen wider than the niobium semi-rings to ensure a single straight junction: a 
corner in the YBCO under the niobium overlap results in a corner junction, which in turn can result in 
a spontaneously generated current. The 72 rings are spaced by 400 µm in a square array. In chapter 5 
in [9], Verwijs proves that the rings are indeed in the large inductance limit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9: (a) Schematic of the YBCO/Nb rings used in the experiment. (b) Scanning electron 
microscopy (SEM) picture of the YBCO ‘island’ which is contacted by the niobium counter electrode 
via two Josephson junctions. (c) SEM picture of the ramp-type junction between YBCO and niobium. 
(d)-(f) Optical micrographs of superconducting YBCO/Nb rings in three different geometries. The 
angle of the first junction is fixed at an angle ߠଵ = 0°. By tuning the angle ߠଶ of the second junction 
the ring can be (d) a 0-ring, (e) a ring that can either be a 0- or a π-ring, depending on the details of 
the YBCO gap symmetry, or (f) a π-ring (figure adapted from Verwijs [9]). 

(a) 

(b) 

(d) (e) (f) 

(c) 

0-ring ?-ring ߨ-ring 
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      The 0- and π-ring on which the measurements are done in the experiments in this thesis are 
indicated in both figure 3.10 (schematic overview) and figure 3.11 (optical micrograph). 
      As can be seen in the schematic overview the π-ring is the upper ring in the indicated area and 
the π-ring’s YBCO part ranges from the constant ߠଵ = −22.5° to the variable ߠଶ = 272°; the 0-ring is 
the lower ring in the indicated area and the 0-ring’s YBCO part ranges from ߠଵ = −22.5° to 
ଶߠ = 332°. 
      The angle through which YBCO occurs is ߠగ 	= ଵߠ− + ଶߠ = 294.5° for our π-ring and ߠ଴ = 354.5° 
for our 0-ring. Because YBCO is assumed to be a pure d-wave superconductor, the transitions from a 
0-ring to a π-ring occur at the angles: ߠ = 45°; 225°. And the transitions from a π -ring to a 0-ring 
occur at the angles: ߠ = 135°; 315°. So indeed, we are dealing with a 0-ring (ߠ଴ = 354.5° > 315°) 
and a π-ring (ߠగ 	= 294.5° < 315°). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10: Schematic overview of the entire sample and the two rings used in the experiments. 
Courtesy of Ariando [19]. The small black rectangle shows the 0-ring and π-ring on which the 
measurements are done in this thesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11: Optical micrograph of the entire sample and the two rings used in the experiments. The 
black rectangle shows the 0-ring and π-ring on which the measurements are done in this thesis. 
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3.6 The complete setup 

A complete figure of the setup is shown in figure 3.12. 

 
Figure 3.12: This figure shows the complete setup as used in this project. The black lines show how 
the equipment is linked together (figure adapted from Wijnands [20]). 
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Chapter 4. Results 

4.1. Introduction 

This chapter concerns the experimental results. Here, the results will be presented and explained.  
Two types of measurements are performed. The first set of measurements is performed with the 
sample cooled in a magnetic field where after the field is set to counter the earth’s magnetic field 
right before the measurement is started. This way, the measurements are done in effectively zero 
magnetic field. The second set of measurements is also performed with the sample cooled in a 
magnetic field, but the field strength is not changed before the measurement is started. This way, an 
external flux is applied on the ring during the measurement. 
      The discussion and interpretation of the results given in this chapter will mainly be done in 
chapters 5 and 6. 
      To calculate the flux through a high-Tc/low-Tc superconducting ring, a MATLAB program based on 
equation (2.28) and created by dr. C.J.M. Verwijs, is used. The MATLAB scripts making up the 
program are given in [21]. 

4.2. Measurements conducted in zero field 

After aligning the cantilever with the sample’s ݔ-axis, the missing ring on the sample is looked up. 
When the position of the sensor pick-up loop is close to the missing ring, the missing ring can act as a 
reference point. With this reference point, it is possible to find out which ring on the sample 
corresponds to the measured data. Around the missing ring are two especially interesting rings as 
can be seen in figures 3.10 and 3.11. One with an angle ߠଶ = 332°. The other with an angle 
ଶߠ = 272°. Both rings are offset with an angle ߠଵ = −22.5°, as mentioned in section 3.5. These two 
particular rings are expected to show integer flux quantization (0-ring) and a half flux quantum offset 
(π-ring) respectively. 
      When the sensor pick-up loop has been positioned close to the missing ring, measurements start 
with a magnetic field applied on the sample during the cool-down of the scan head and the SQUID 
stage. This way, magnetic flux gets trapped in the interior of the ring. As soon as the sample has been 
cooled down and the flux measurement (i.e. scanning the ring on the sample) is running, the current 
through the solenoid is set to ܫ = 0.65	mA  (i.e. ܤ௭ = 27.3	mG is applied) as to counter the earth’s 
magnetic field. After the measurement, the system is warmed up above the critical temperature. This 
process is repeated for several measurements while setting different values for the external applied 
magnetic field during the cool-down. 

The expectation for this measurement series is a number of steps in the flux through the rings. These 
steps are a result of the spontaneous current in the ring that induces a magnetic field to round the 
magnetic flux to the closest number of integer or half-integer magnetic flux quanta for a 0- or a π-
ring respectively. In the case of the 0-ring with integer flux quantization, the steps are expected to 
occur at magnetic field strengths corresponding to the following relation: 

୬ܤ =
ቀn + 1

2ቁΦ଴

଴ܣ
, n ∈ ℤ (4.1) 

In the case of the π-ring with half-integer flux quantization, the steps are expected to occur at 
magnetic field strengths given by: 

୬ܤ =
nΦ଴

గܣ
, n ∈ ℤ (4.2) 

The area ܣ in square meter (m2) of the 0- and π-ring used in equations (4.1) and (4.2) is found by 
using: 
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ܣ =
ߨ

360
௒ଶݎ௒ߠ) +  ேଶ) (4.3)ݎேߠ

Here ݎ௒ and ݎே are the inner radii in meter (m) of the YBCO and the Nb semi-rings respectively, 
 ே are the angles in degree (°) of the YBCO and Nb parts in the YBCO/Nb ring respectively, andߠ ௒andߠ
it holds that ߠ௒ + ேߠ = 360°. For the 0-ring with ݎ௒ = 15 ⋅ 10ି଺	m, ݎே = 20 ⋅ 10ି଺	m, ߠ௒ = 354.5° 
and ߠே = 5.5°, equation (4.3) yields ܣ଴ = 7.2 ⋅ 10ିଵ଴	mଶ, and for the π-ring with ߠ௒ = 294.5° and 
ேߠ = గܣ  ,65.5° = 8.1 ⋅ 10ିଵ଴	mଶ.   
      The magnetic field strengths corresponding to the jumps in the expected magnetic flux through 
the 0- and π-ring are computed using equations (4.1) and (4.2). To be able to use these equations, 
the area of the ring has to be known. This area is calculated using equation (4.3). Use of these 
equations gives rise to deviations in the expected magnetic field strengths for which the jumps occur. 
These deviations are the result of the uncertainties in the area of the 0- and π-ring. Using partial 
derivatives, the maximum possible deviations in the field strengths can be calculated: 

Δܤ୬ =
ቀn + 1

2ቁΦ଴

଴ଶܣ
Δܣ଴, n ∈ ℤ, (4.4) 

Δܤ୬ =
nΦ଴

గଶܣ
Δܣగ , n ∈ ℤ (4.5) 

for the respective 0- and π-ring. Δܣ଴ and Δܣగ  are also calculated using partial derivatives: 

Δܣ =
ߨ

180
௒ݎ௒Δݎ௒ߠ) +  ே) (4.6)ݎேΔݎேߠ

Substituting equation (4.6) in equations (4.4) and (4.5) yields 

Δܤ୬ =
ቀn + 1

2ቁߨΦ଴

଴ଶܣ180
௒ݎ௒Δݎ௒ߠ) + ,(ேݎேΔݎேߠ n ∈ ℤ, (4.7) 

Δܤ୬ =
nߨΦ଴

గଶܣ180
௒ݎ௒Δݎ௒ߠ) + ,(ேݎேΔݎேߠ n ∈ ℤ (4.8) 

for the respective 0- and π-ring. Δݎ௒ and Δݎே are both assumed to be 1 ߤm. The possible errors Δߠ௒  
and Δߠே in	ߠ௒  and ߠே respectively, turn out be negligible and are omitted in the expressions above. 
      For both the 0- and the π-ring, the location of the jumps in magnetic flux through the ring is 
predicted. The prediction is done for magnetic field strengths ranging from −60	mG to +60	mG and 
is shown in figure 4.1. 
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Figure 4.1: (previous page) The left figure shows the expected magnetic flux in Φ଴ at a given 
magnetic field in mG for the π-ring with an angle ߠଶ = 272°. This ring is expected to show a half 
magnetic flux quantum offset. The figure on the right hand side shows the expected magnetic flux for 
the 0-ring with ߠଶ = 332°. This ring is expected to show integer flux quantization. All steps are 
expected to show up at nΦ଴/ܣగ 	 (left figure) or ቀn + ଵ

ଶ
ቁΦ଴/ܣ଴  (right figure) as mentioned in 

equations (4.1) and (4.2). The double vertical lines at the jumps are due to an uncertainty of 1	µm in 
the inner radii ݎ௒ and ݎே of the YBCO/Nb ring resulting from the fabrication process. 
 

The eventual measurements done in zero field are plotted as a number of (half-)integer magnetic flux 
quanta in the ring against the effective applied magnetic field. The resulting graph is shown for both 
the 0- ring and the π-ring in figure 4.2. 

 
 

 
 
Figure 4.2: The upper figure shows the measured magnetic flux in Φ଴ at a given magnetic field in mG 
for the π-ring with ߠଶ = 272°. The lower figure shows the magnetic flux in Φ଴ as a function of 
applied magnetic field in mG for the 0-ring with ߠଶ = 332°. For both figures the following scaling 
holds. If the applied magnetic field value reads ‘0’, this means that the earth’s magnetic field is 
compensated for and no extra magnetic field is applied. For clarity, dashed horizontal lines are added 
to the graphs at half-integer and integer amounts of flux quanta respectively, since these are the only 
allowed states for the magnetic flux through the ring. 
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Flux profiles for the zero-field measurement are measured alongside the total flux scanning image. 
The profiles are extracted using Gwyddion version 2.31. An example of such a profile is shown in 
figure 4.3. By comparing the height of the peak seen in such a profile to a standardized peak height, 
an estimation of the flux through a ring can be made. The standard peak height has to be chosen for 
a ring with a known amount of flux quanta. This is best done for a π-ring that is cooled and measured 
without an external magnetic field, because the flux through this ring has to be ±½Φ଴. In this 
estimation, the height of the flux density peak in the center of the ring with respect to the flux 
density peaks on the ring is taken as a measure for the total flux through the ring. To make this 
comparison, it is important to take in all other important factors that can change between different 
measurements, for example the flux-to-voltage transfer Φ-to-V of the flux-locked loop and the scan 
step size ඥܣ௣. 

 

Figure 4.3: Flux density profile of the ring with a π-phase-shift (π-ring). This measurement is done 
with a current of 0.95	mA through the solenoid corresponding to a magnetic field of 12.6	mG during 
the cool-down of the sample. Three regimes that can be distinguished. Outside the ring, the flux 
density is zero because of the magnetic field being set to zero. On the ring, flux focusing plays an 
important role and a positive peak is observed. Inside the ring, flux quantization makes for a negative 
dip in the flux density. 
 
 
An important feature of the profile shown in figure 4.3 is the small offset of the flux density. As is 
expected from a measurement done in zero magnetic field, the offset is small. An approximate 
calculation shows that this offset of 1.4 ⋅ 10ିଷ	Φ଴/ܣ௣  corresponds to a residual magnetic flux 
density of 0.80	mG. This value is assumed small enough compared to the applied magnetic field to 
say that it is negligible. 
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4.3. Measurements conducted in field 

The measurements in field are expected to show the same result as the measurements in zero field, 
shown in figure 4.1. In the case of zero-field measurements, the magnetic flux is trapped in the ring 
during the cool-down and should not change when the field is turned off. Then, this magnetic flux is 
caused by a circulating supercurrent ܫ௦ which has started to flow spontaneously in the ring. However, 
in the case of in-field measurements, a flux Φ௘ applied by an external magnetic field is still present. 
Here, to keep the magnetic flux in the ring a smaller supercurrent ܫ௦ is needed according to equation 
(2.24). This smaller current results in a smaller chance that the Josephson junctions will break down 
due to the current exceeding the critical current ܫ௖. So the expectation is that higher magnetic fields 
strengths and states with a higher (half-)integer number of magnetic flux quanta can be reached for 
in-field measurements. 
      The measurements conducted without an applied background field (zero-field measurements) do 
however give a stronger proof of the possible existence of the 1½Φ଴ state. The spontaneously 
generated current flowing through the superconducting ring and inducing the magnetic flux, should 
keep circulating even if the background field is turned off. So in this case, the ring should be able to 
fully sustain this 1½Φ଴ state without any help from an external magnetic field. 

The results from the measurements done in an applied magnetic field are shown in figure 4.4. 

Figure 4.4: The upper figure shows the magnetic flux through the π-ring as a function of magnetic 
field. The lower figure shows the results for the same type of measurement, but here the 
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measurement is performed on the 0-ring. In both figures, dashed horizontal lines are added at the 
half-integer or integer numbers of flux quanta for clarity, since these are the only states allowed for 
the magnetic flux through the respective ring. 
 

Profiles of the magnetic flux density are measured. A typical example of such a profile for the in-field 
measurements is shown in figure 4.5.  

 
Figure 4.5: Flux density profile for a measurement performed on the ring without a π-phase-shift (0-
ring). The current of −0.95	mA through the solenoid corresponds to a magnetic field of −12.6	mG. 
The flux density is plotted as a function of the position on the ring. The same three regimes as in 
figure 4.3 can be observed. Note that, because of the applied magnetic field during the 
measurement, the flux density outside the ring is not zero, but is offset to a positive value. 
 

The magnetic flux through the 0- or π-ring that is estimated using the magnetic flux density profiles, 
generally deviates less than 0.1Φ଴ from the flux that is computed using Verwijs’ program [21] to 
integrate the flux over all pixels within the inner radius of the ring. From this, the conclusion is drawn 
that the measurement data given in figures 4.2 and 4.4 is in good agreement with the flux density 
profiles given in figures 4.3 and 4.4 respectively. 
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Chapter 5. Discussion 

5.1 Introduction 

In this chapter, the results shown in chapter 4 will be discussed. This chapter will start with discussing 
the measurements done in zero magnetic field, followed by a discussion of the measurements done 
in non-zero field. After the measurement results for both measurement types have been discussed, 
the two types will be compared to each other in the last section of this chapter. 

5.2 Discussion on measurements conducted in zero field 

In figure 5.1, the magnetic flux values that were measured in zero magnetic field are compared to the 
expectations for these values.   

 
Figure 5.1: In the upper figure, the expected steps in magnetic flux are shown together with the 
measured values for magnetic flux through the π-ring. The lower figure is comparable, but the 
measurements are performed on the 0-ring. The measurements are done without a background 
field, but the scan head with sample and the SQUID stage are cooled down in the magnetic field 
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indicated on the ݔ-axis in the (Φ,ܤ)-diagrams. The separate graphs, not imposed on each other, are 
shown in figures 4.1 and 4.2. Error boxes are plotted to show the possible experimental errors ΔΦ 
and Δܤ in the magnetic flux Φ (in Φ଴) and the magnetic field strength in the ݖ-direction ܤ (in mG) 
respectively.   
 

For both the 0- and π-ring, the main part of the measurements follow the expected pattern. Some 
deviations from this pattern are observed though. The error boxes for the measurements are 
calculated by incorporating the possible errors ΔΦ and Δܤ in the values of the magnetic flux Φ and 
the magnetic field strength ܤ in the ݖ-direction respectively.  
      Experimental errors in the total amount of measured flux through the ring Φ are mainly the result 
of possible deviations in the flux-to-voltage transfer Φ-to-V and the defined integration area (see 
equation (2.28) in section 2.4.3). The experimental error as a result of Φ-to-V is calculated using 
partial derivatives: 

ΔΦ = Δቌ ෍ Φ௣
௥ழோ೔೙

ቍ =
߲൫∑ Φ௣௥ழோ೔೙ ൯
߲(Φ− to− V)Δ

(Φ− to− V) =
Δ(Φ− to− V)
Φ − to− V

෍ Φ௣
௥ழோ೔೙

 (5.1) 

The experimental error as a result of deviations in the defined integration area is estimated by 
computing Φ = ∑ Φ௣௥ழோ೔೙  several times. From the values that are found in these calculations the 
possible deviation is estimated and applied in ΔΦ; this can be seen as accounting for possible 
deviation in ∑ ோ೔೙	ழ	௥∗(ݎ)ܰ  (see equation (2.28)). So, in fact 

ΔΦ = ቆ
Δ(Φ− to− V)
Φ − to− V

+
Δ൫∑ ோ೔೙	ழ	௥∗(ݎ)ܰ ൯
∑ ோ೔೙	ழ	௥∗(ݎ)ܰ

ቇΦ (5.2) 

It is assumed that Δ(Φ− to− V) is 0.3 V/Φ଴. The experimental errors Δgain, Δܣ௣  and Δܣ௦ in the 
gain, ܣ௣ and ܣ௦ (see equation (2.28)) respectively, turn out be negligible and are therefore omitted in 
the considerations above. 
      Possible deviations in the applied external magnetic field ܤ with 

ܤ = ܥ ⋅  (5.3) ܫ

are the result of two factors: a constant experimental error in the calibration constant ܥ and 
experimental errors in the current flowing in the solenoid ܫ . Using partial derivatives the 
experimental error in ܤ is found to be 

Δܤ = ܫΔܥ +  (5.4) ܥΔܫ

where ܥ is the calibration constant with a value of 42	G/A. Δܫ and Δܥ are estimated to be 0.01	mA 
and 0.5	G/A respectively. 
      When comparing the measurement points with error boxes to the expected quantized magnetic 
flux states in the rings, some deviation is still observed. A possible explanation for the deviations that 
are still present is that the ring contains corner junctions. Because the YBCO semi-rings were chosen 
wider than the niobium semi-rings, they do not match together precisely (see also figure 3.9 in 
section 3.5). The niobium is partly encompassed by the YBCO, introducing extra junctions in the ring. 
These junctions are relatively small but do introduce some extra spontaneously generated currents 
flowing in the ring. 

Using the program described in section 2.5 and [18], mappings were made of the current flowing in 
the rings. Some examples of functioning rings where the junctions were not broken down are given 
in figure 5.2. 
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Figure 5.2: Mappings of the current density |۸|. A high current density is shown as a bright, white 
color. No current is shown as black. The bright white spots seen on the rings are vortices. In a vortex, 
one flux quantum Φ଴ is generated while the current can only circulate in a small loop. This results in 
a high current density around the vortex. As a result of the Meissner effect, all current is generally 
flowing on the edge of the ring, this way shielding the magnetic field out of the superconducting ring. 
 
  
Since the superconducting rings are subject to the Meissner effect, they show zero magnetic flux 
density on the ring. This is best illustrated with a 3-dimensional plot, shown in figure 5.3.  

 
Figure 5.3: In the left figure, a 3-dimensional plot of the flux density profile of the π-ring is shown. 
The big negative spike on the ring is a vortex. This vortex is used for calibration of the effective area 
of the sensor pick-up loop ܣ௦, as described in section 2.4.3, which was found to be 24.6	ߤmଶ. The 
smaller dip in the center is the flux going through the ring. This measurement is done for ܤ =
12.6	mG during the cool-down. The right figure shows another flux density profile through the π-ring. 
Here ܤ = −12.6	mG. In both figures, the pixel area ܣ௣ is 36	ߤmଶ. For these figures, the color scale is 
arbitrary, and only the axes values are to be used. 
 
 
There are several cases where a Josephson junction or even a part of the superconducting material in 
the ring can transition to its normal state. This transition can be the result of the temperature 
exceeding the critical temperature or the magnetic field exceeding the critical magnetic field, as 
mentioned in section 2.2. A Josephson junction can also transition to its normal state when the 
current flowing through the junction exceeds a certain critical current. When this transition from the 
superconducting state to the normal state has happened we say that the junction has been broken 
down. When a junction has been broken down the current will not flow through the junction, but will 
flow back via the inner edge of the ring to its starting point on the outer edge. As a result, the current 
does not circulate in a closed loop; using Stokes’ Theorem to get to equation (2.9) and choosing the 
right integration path to get to equation (2.13) is not allowed anymore. The result is that the flux 
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through the ring is not necessarily quantized anymore. This behavior is only expected at high enough 
fields. When this happens, it is possible to see the current flowing back via the inner edge of the ring 
using the current mapping program. 
      In the measurements in zero magnetic field, complete junction breakdown is not observed, 
because the measurements were stopped when the junctions started to break down. This start of 
the breakdown of the junctions is shown in figure 5.4. In the figure it can be seen that a current is 
flowing across the junctions towards the inner edge of the ring. This implies that the junctions have 
been broken down. This breakdown can be explained by the high currents flowing in the ring. Since 
in this experiment the magnetic field is set to zero, all magnetic flux through the ring has to be 
generated by the current circulating in the ring. To generate this flux the current has reached a value 
that is higher than the critical current for that junction. Because the sample containing the rings is 
already more than five years old, it is possible that the junctions have deteriorated, for example by 
oxidation of the niobium to insulating NbOx obtaining the required oxygen from the neighboring 
YBCO that degrades in this way, and as a result have a decreased critical current density of orders of 
magnitude [9]. The breakdown of the junctions cannot be explained by the temperature or the 
magnetic field being too high, because the temperature is set well below its critical value and the 
magnetic field was set to zero during the zero-field measurement set. 

 
 
 
 
 
 
 
 
 

Figure 5.4: The start of the breakdown of the junctions. Current is still flowing through the junction, 
as can be seen from the white color in the junction area. But a part of the junction were already 
broken down. There is flux coming through the junctions. This means that the Meissner effect is not 
observed in these areas anymore and therefore part of the junction is not superconducting anymore. 
 
 
The 3-dimensional flux density profiles also show this breakdown of the junction. Since the junction 
is not superconducting anymore, flux can go through the junction, as can be seen in figure 5.5.  

 
Figure 5.5: In both figures it can be seen that the junctions were broken down. Inside the junctions, 
magnetic flux can be seen. This is visible via a second peak next to the first expected peak. The 
breakdown of the junctions is a result of either currents exceeding the critical current or the 
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magnetic field exceeding ܪ௖ଶ. For these figures, the color scale is arbitrary, and only the axes values 
are to be used. 
 
 
This breakdown of the junctions is a possible explanation of the deviations between measured and 
expected flux, shown in figure 5.1 in this section. The quantization condition is not fully met and 
therefore the flux stays close to its quantized value, but is not exactly equal to it. The expectation is 
that flux deviates more from the expected quantized value as fields get higher until at some 
magnetic field strength a step in the (half-)integer number of flux quanta is reached. This still results 
in a step in the measured amount of flux up to the next (half-)integer number of flux quanta. Raising 
the field strength even further should then again give rise to deviations from the expected value. 
      The deviation from the expected magnetic flux state might also be explained by an exited energy 
state. When computing the expected values for magnetic flux, it is always assumed that the magnetic 
flux is quantized to its energetically most favorable state, the ground state which has the lowest 
energy. This type of energy minimization is often seen in physical systems. This does not mean that 
the energetically most favorable state is the only state that can be occupied. There is a chance that 
higher (excited) energy states are occupied, even though the probability of this happening is 
assumed to be smaller than the probability of the (ground) state with minimal potential energy being 
occupied. This cause for deviations from the expected quantized magnetic flux state can explain why 
the flux still seems to be quantized. 
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5.3 Discussion on measurements conducted in field 

The measured values for the magnetic flux are plotted as a function of the applied magnetic field in 
figure 5.6, as done for the measurements in zero field in figure 5.1. 

 
 

  

Figure 5.6: In the upper figure, the expected steps in magnetic flux are shown together with the 
measured values for magnetic flux in the π-ring. The lower figure is comparable, but the 
measurements were performed on the 0-ring. The measurements were conducted in a background 
field. The cool-down is done in the same background field. The separate graphs, not imposed on each 
other, are shown in figures 4.1 and 4.4. 

 
In the upper figure in figure 5.6 for the π-ring, it can be seen that although negative magnetic flux is 
expected for negative magnetic field strengths, the measured magnetic flux is positive. The only 
negative point seen in this figure is at effectively ܤ = 0	mG. The expected step from the ½Φ଴ state 
to the 1½Φ଴ state is observed for the magnetic field strength that was hypothesized in chapter 4. 
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      In the lower figure in figure 5.6 for the 0-ring, the same problem arises as for the measurements 
done on the π-ring. All measured values for the magnetic flux are positive. Another problem that 
arises in this figure is that where the expectations were that the flux would be 0 or −1Φ଴, the 
measured flux is still +1Φ଴. For these measurements done on the 0-ring, the deviations from the 
expected magnetic flux cannot all be explained by the chance that the higher excited potential 
energy states are occupied. Since this effect is statistical it is not expected that it happens as many 
times as is seen in this in-field 0-ring measurement series. 

For this series of in-field measurements, there are also mappings of the current density. Some 
mappings for well functioning rings are shown in figure 5.7. 

 
 
 
 
 
 
 
 

Figure 5.7: Some examples of the current in a ring when spontaneously generating a magnetic flux. 
The figures show high values of the current density |۸| in white while zero values of |۸| are shown as 
black. It can be seen that the currents are generally flowing on the edges of the ring as expected by 
the Meissner effect. Currents inside the ring are generally vortices. In these figures, the current 
circulates all the way around the ring. 
 
 
Examples of the 3-dimensionally plotted flux density profiles of such well-functioning rings are shown 
in figure 5.8.  

 
Figure 5.8: These figures show the flux density profiles for rings where the junctions were not broken 
down. For these figures, the color scale is arbitrary, and only the axes values are to be used. 
 
Some of the junctions were broken down during the measurements. A few examples of these 
junctions are shown in figure 5.9. In the figure the broken-down junctions can be seen by the current 
flowing across the junction towards the inner edge of the ring, as in figure 5.4. The difference with 
the measurements in figure 5.4 is that the field is not set to zero this time. The externally applied 
magnetic field now produces part of the magnetic flux through the ring. The only supercurrent 
flowing through the ring is a current to round the (half-)integer number of flux quanta to its nearest 
quantized value. This current is low enough to not exceed the critical current of the junction. The 
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magnetic field that is used can be the cause of the junction breakdown. If the magnetic field that is 
used exceeds the critical magnetic field of the junction, superconductivity is suppressed in the 
niobium. This results in the current flowing back via the inner edge of the ring, as can be seen in 
figure 5.9. In any case, it is not the critical external magnetic field ܪ௖ଶ of niobium that is exceeded, 
because this critical field is of an order of magnitude of 10ଷ	G = 10ିଵ	T at a temperature of 4.2 K 
[22], while the highest external magnetic field that was used in the experiments is lower than 
60	mG = 6.0 ⋅ 10ି଺	T.  

Figure 5.9: In the above figures, junction breakdown due to the exceeding of the critical current is 
shown. All three pictures show that no current flows between the two junctions in the ring, but 
current actually flows along, or parallel to, the junctions. The current flows back via the inner edge of 
the ring and forms a closed loop that does not include the superconducting ring itself. 
 

Flux density profiles for some rings with broken down junctions are shown in figure 5.10.  

 
Figure 5.10:  This figures show two measurements on rings with broken down junctions. It can be 
seen that there is some positive flux inside the junctions, which means that the junctions are not 
superconducting anymore. For these figures, the color scale is arbitrary, and only the axes values are 
to be used. 
 
 
The expectation was that for the in-field measurements the breakdown of the junctions would 
happen at higher magnetic field strengths than for the zero-field measurements. This is because of 
the externally applied flux during the scanning of the rings. Flux that is already applied on the ring 
does not have to be generated by supercurrents spontaneously flowing in the ring. This results in a 
lower current and therefore a lower chance of exceeding the critical current of the junctions. 
      Comparing figure 5.6 to figures 5.9 and 5.10, it clearly turns out that although the junctions were 
broken down, the measured flux is still shown to be quantized inside the rings. This is not completely 
unexpected, as the part of the ring that is not superconducting anymore is relatively small compared 
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to the part that is still superconducting. This means that using Stokes’ Theorem to get to equation 
(2.9) is not exact anymore, but using it is still approximately justified. An analogous argument holds 
for the choice of the integration path to get to equation (2.13). The largest part of the integration 
path, the part inside the superconducting region of the ring, still shows ۸௦ = ૙. Only a small part, the 
non-superconducting region, will have a finite value for ۸௦. When the non-superconducting part of 
the ring becomes larger, it is expected that the flux quantization condition will no longer hold.  

5.4  Comparing the in-field and zero-field results 

Contrary to what one would expect, it was not possible to measure higher (half-)integer magnetic 
flux quantum states in the in-field measurement series than in the zero-field measurements series. 
The junctions broke down before the high (half-)integer numbers of flux quanta were reached. It is 
possible that this is due to the applied magnetic field getting closer to the critical magnetic field ܪ௖ଶ 
of the ramp-type Josephson junctions via which the YBCO/Nb rings are connected. If a higher 
magnetic field while measuring is a cause of a lower critical current, this may explain why the 
junctions broke down before the higher flux quantum states seen in the zero-field measurements 
series, were reached. Future research might point out whether this hypothesis is correct. 
      As implicitly mentioned at the start of this section, it is also expected that the supercurrent 
flowing in the ring in the zero-field measurements series is higher than in the in-field measurements 
series. But because of the rather precise need for calibration in the program for mapping the current 
density in the ring, it is not possible to observe this. 
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Chapter 6. Conclusions and recommendations 

The main goal of this bachelor assignment was either experimentally observing the 1½Φ଴ state of 
either positive or negative polarity in a high-Tc/low-Tc superconducting ring with a π-phase-shift 
or explaining why it cannot be experimentally observed. This goal has been achieved. The ±1½Φ଴ 
state has been measured in both measurements performed without any magnetic field and 
measurements performed in a magnetic field. 
      As an experimental check, the steps in the half-integer number of magnetic flux quanta in the π-
ring have been measured. For the measurements conducted without a background field, the 
measured data showed only a minimal deviation from the expected values. For the measurements 
performed in a background field, this deviation was larger. In the case of the ring without ߨ 
Josephson junctions (0-ring), almost every measured flux value, with only one exception, showed a 
positive amount of flux i.e. the +1Φ଴ state. This does not agree with the theoretical expectation that 
negative magnetic field gives rise to negative magnetic flux in the ring. It has to be noted that an 
important feature, the step between the ½Φ଴ state and the 1½Φ଴ state, was measured in the in-field 
measured π-ring. 

Future research might be done on superconducting rings scanned in a background magnetic field 
using scanning SQUID microscopy. Our measurements showed that the flux states in the rings did not 
follow the steps that might be expected from the 0- and π-ring for the in-field measurement series. 
New measurements should be done to see if this has only an experimental reason, or if something 
more fundamental governs the flux in these in-field measurements.  
      The superconducting rings in zero magnetic field also showed some deviations from the expected 
values that could not be explained in this thesis. Future research might point out the cause of these 
deviations.  
      The deviation from the expected magnetic flux state might be explained by an exited energy 
state. There is a chance that higher excited energy states are occupied, even though the probability 
of this happening is assumed to be smaller than the probability of the ground state with minimal 
potential energy being occupied. This cause for deviations from the expected quantized magnetic 
flux state can explain why the flux still seems to be quantized in the cases of deviation in the zero-
field 0-ring measurement set (one deviation) and the in-field π-ring measurement set (two 
deviations). The excited energy magnetic flux state explanation is not applicable on the in-field 0-ring 
measurement set since there are too many deviations that show the excited +1Φ଴ state.    

For future research, it is also interesting to look at the breakdown of the Josephson junctions in the 
0- and π-ring. As is stated at the end of section 5.3 the expectation was that for measurements 
performed in a magnetic field, the junctions would break down for higher magnetic field strengths as 
compared to zero-field measurements. The experiments, using the current density mapper, showed 
the contrary. The junctions, when subject to an external magnetic field, broke down for even lower 
magnetic field strengths than the junctions without an externally applied field during the 
measurement. In section 5.2 we hypothesized that the breakdown of the junctions might give rise to 
the deviations from the expected steps in the allowed (half-)integer magnetic flux quantum states. 
This hypothesis can be checked by using scanning SQUID microscopy and possibly the program for 
mapping the current density in the rings. 

The next step in research on superconducting loops would be a form of superconducting quantum-
electronical circuits. Using the resistanceless conduction in superconductors, energy can be 
transported without or with only minimal losses. Knowledge on the behavior of magnetic fields and 
magnetic flux in these circuits is vital to the working of these systems. 



__________________________________________________________________Acknowledgements  
 

41 
 

Acknowledgements  

This thesis has had great benefit from the support of a lot of people. We would like to thank some of 
these people here. 

First, we are very grateful to professor Hilgenkamp for his advice on our research and for offering the 
very interesting topic of research. 
Xiao Renshaw Wang and Steven Wells have helped us a lot during the course of this project. You 
have learned us a lot on operating the SSM and we were always able to turn to you if we had any 
questions.  

Finally, we would like to thank everyone in the ICE group for the great time we have had here. It has 
been a lot of fun working with all of you for the past months. 



Magnetic Flux Quanta in High-Tc/Low-Tc Superconducting Rings with π-phase-shifts    ______                  

42 
 

References 
 
[1] J.R. Kirtley, C.C. Tsuei, Ariando, C.J.M. Verwijs, S. Harkema and H. Hilgenkamp, Angle-resolved 

phase-sensitive determination of the in-plane gap symmetry in YBa2Cu3O7-δ, Nature Physics, 
2006, vol. 2, 190-194. 

[2] M. Tinkham, Introduction to superconductivity, 2nd ed., McGraw-Hill, (1996). 

[3] J.G. Bednorz and K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, 
 Zeitschrift für Physik B, 1986, vol. 64, 189-193.  

[4]  J. Bardeen, L.N. Cooper and J.R. Schrieffer, Microscopic theory of superconductivity, Physical 
Review, 1957, vol. 106, 162-164. 

[5] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Physical Review, 
1957, vol. 108, 1175. 

[6] S. Lundqvist, Nobel lectures in physics 1971 – 1980, World Scientific Publishing, (1992). 

[7] W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Die 
Naturwissenschaften, 1933, vol. 21, 787-788. 

[8] V.L. Ginzburg and E.A. Andryushin, Superconductivity, World Scientific Publishing, Singapore, 
(1994).  

[9] C.J.M. Verwijs, Fractional flux quanta in high-Tc/low-Tc superconducting structures, Ph.D. 
Thesis, University of Twente, (2009). 

[10] S. Gasiorowicz, Quantum physics, 3rd ed., Wiley-VCH, (2003). 

[11] V.L. Ginzburg and L.D. Landau, Phenomenological theory of superconductivity, Zh. Eksp. Teor. 
Fiz., 1950, vol. 20, 1064. 

 
[12] B.S. Deaver jr. and W.M. Fairbank, Experimental evidence for quantized flux in 

superconducting cylinders, Physical Review Letters, 1961, vol. 7, 43-46. 
 
[13] D.J. Griffiths, Introduction to electrodynamics, 3rd ed., Pearson Benjamin Cummings, San 

Francisco, (2008). 
 
[14] B.D. Josephson, Supercurrents through barriers, Advances in Physics, 1965, vol. 14, 419-451. 
 
[15] J. Clarke and A.I. Braginski, The SQUID handbook vol. I fundamentals and technology of 

SQUIDs and SQUID systems, Wiley-VCH Verlag, (2004). 
 
[16] J. Clarke and A.I. Braginski, The SQUID handbook vol. II applications of SQUIDs and SQUID 

systems, Wiley-VCH Verlag, (2006). 
 
[17] J.R. Kirtley, M.B. Ketchen, K.G. Stawiasz, J.Z. Sun, W.J. Gallagher, S.H. Blanton and S.J. Wind, 

High-resolution scanning SQUID microscope, Applied Physics Letters, 1995, vol. 66, 1138-
1140. 

 



_________________________________________________________________________References 
 

43 
 

[18] F. Laviano, D. Botta, A. Chiodoni, R. Gerbaldo, G. Ghigo, l. Gozzelino, S. Zannella and E. 
Mezetti, An improved method for quantitative magneto-optical analysis of 
superconductors, Superconducor Science and Technology, 2003, vol. 16, 71-79. 

 
[19] Ariando, Josephson junction arrays with d-wave-induced ߨ -phase-shifts, Ph.D. Thesis, 

University of Twente, (2005). 

[20] T. Wijnands, Scanning superconducting quantum interference device microscopy, Master 
Thesis, University of Twente, (2013). 

 
[21] C.J.M. Verwijs, Scanning SQUID microscope soort van gebruiksaanwijzing, (2010). 
 
[22] K. Saito, Critical field limitation of the niobium superconducting RF cavity, KEK Accelerator 

Lab, Ibaraki-ken, 10th International SRF Workshop, Japan, (2001). 
 



Magnetic Flux Quanta in High-Tc/Low-Tc Superconducting Rings with π-phase-shifts    ______                  

44 
 

Appendix A. Fractional flux quantization by energy minimization 

A.1 Energy in a superconducting loop 

This appendix gives a derivation of half-integer flux quantization by means of energy minimization as 
an alternative for the derivation that was done in section 2.3.5. This derivation might also give a 
more intuitive grasp of the spontaneous current that is generated to induce the half flux quantum. As 
such, this appendix can be thought of as the remainder of the consideration of half-integer flux 
quantization in chapter 2.  
      The total energy of the superconducting loop and the junctions is given by the electrical energy 
stored in the junctions and the generated magnetic field. The energy stored in a junction can be 
found by integrating the work needed to change the phase across the junction with respect to time, 
so 

௃ܷ = නܫ௦ ௃ܸ݀ݐ
௧

଴

 (A.1) 

where ௃ܷ  is the energy stored in a junction and ௃ܸ  is the voltage over a junction. ܫ௦  is the 
supercurrent through a junction, which can be found using equation (2.19). The voltage over a 
junction is given by[14] 

௃ܸ =
Φ଴

ߨ2
݀߮	
ݐ݀

 (A.2) 

Substituting (2.19) and (A.2) into equation (A.1) yields 

௃ܷ =
Φ଴ܫ௖
ߨ2

න sin(߮)
݀߮
ݐ݀

ݐ݀

ఝ

ఝబ

= −௃(1ܧ cos߮) (A.3) 

where the integration constant was chosen to give ௃ܷ = 0 for ߮ = 0. The constant ܧ௃ is the so called 
coupling energy of the Josephson junction 

௃ܧ ≡
Φ଴ܫ௖
ߨ2

 (A.4) 

      The energy stored in the magnetic field generated by the current through the superconductor can 
be seen as the energy of the magnetic field generated by a solenoid with the same magnetic 
induction ܮ. This energy can be found by integrating the power with respect to time: 

ܷ஻ = නܫ௦ ௃ܸ݀ݐ
௧

଴

= න ௦ᇱܫ௦ᇱ݀ܫܮ
ூೞ

଴

=
1
2
 ௦ଶ (A.5)ܫܮ

      The total energy in the superconducting loop is the sum of (A.3) for all junctions and (A.5). 
If two a loop contains two junctions with phases ߮ଵ and ߮ଶ, this implies 

௟ܷ = ௃ܷ + ܷ஻ = −௃ଵ(1ܧ cos߮ଵ) + −௃ଶ(1ܧ cos߮ଶ) +
1
2
 ௦ଶ (A.6)ܫܮ

where ௟ܷ  is the energy stored in the superconducting loop. 
      We use conservation laws to invoke the condition that the current should be the same through 
both junctions. This can be written as  

௦ܫ = ௖ଵܫ sin߮ଵ = ௖ଶܫ sin߮ଶ (A.7) 

We can find expressions for ߮ଶ as a function of a given ߮ଵ and the critical currents through both 
junctions: 
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߮ଶ = arcsin ൬
௖ଵܫ
௖ଶܫ

sin߮ଵ൰ (A.8a) 

or  

߮ଶ = ߨ − arcsin ൬
௖ଵܫ
௖ଶܫ

sin߮ଵ൰ (A.8b) 

If we substitute (A.8a) and (A.8b) into equation (A.6) and compute the energy difference the result is 

௟ܷ(߮ଶ௕) − ௟ܷ(߮ଶ௔) =
Φ଴

ߨ
ටܫ௖ଶଶ −  ௦ଶ (A.9)ܫ

where we have used the identity cos(sinିଵܺ) = √1 − ܺଶ. To get to this result, we have implicitly 
assumed that ܫ௖ଶ ≥  ௖ଵ. This assumption is justified because the indices 1 and 2 are arbitrarilyܫ
chosen, so the two can be interchanged without any loss of generality. The difference in energies 
shown in equation (A.9) is always positive. This means that the energy stored in the loop is greater 
for solution (A.8b) than for solution (A.8a). So to minimize energy, it is always favorable for the phase 
of a junction to satisfy equation (A.8a). 

A.2 Spontaneous current by energy minimization 

Using this, consider a loop with 2 Josephson junctions with phases ߮ଵ = and ߮ଶ ߨ = 0 respectively. 
Now it is impossible for both junctions to satisfy equation (A.8a) with respect to each other and keep 
the phase difference ߨ intact. So it should be impossible to minimize the energy in the system. 
Because the energy in the system cannot be minimized by the energy in the Josephson junctions, the 
loop is called a frustrated loop. This problem can be solved by adding a phase gradient ∇߮. This 
would mean that the phase difference between the junctions would still be ߨ while the phases in the 
junctions are still a solution to equation (A.8a). This would result in minimization of the energy in the 
loop. 
      Physically, a phase gradient in the loop would mean a current flowing through the loop, inducing 
a spontaneous magnetic flux. This spontaneous magnetic flux is the ½Φ଴ offset in the magnetic flux 
through the loop in equation (2.23). 


