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Abstract

Evaporating droplets with small contact angles posses an evaporative �ux that is singular at the
contact line. It has been argumented that near the contact line this singularity gives such a
powerful out�ow, that the �ow must be normal to the surface of the droplet. A �ow �eld with this
property prohibits application of the lubrication theory near the contact line of the droplet. In
this work the �ow �eld near the contact line is solved analytically for an arbitrary contact angle.
From this solution we demonstrate that the lubrication approximation does accurately describe the
�ow �eld near the contact line, which is in agreement with experiments.The analytical solution
of the �ow �eld near the contact line also gives the opportunity to observe the �ow for larger
contact angles. Remarkably, for these contact angles, regions are found where the �ow is in the
opposite direction as one might expect. To investigate these regions in the whole droplet, numerical
simulations are performed. The simulations con�rm existence of these regions near the contact
line, away from the contact line we see that these regions correspond to a �ow circulation in the
droplet.
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Chapter 1

Introduction

1.1 Evaporating droplets

The characteristic shape of a co�ee stain, a dark ring of particles close to the perimeter, can be
observed in our daily life, see �gure 1.1. The ring-like residue left on the substrate is evidence
of a, perhaps spilled, colloidal droplet which has dried over time. The formation of deposit close
to the perimeter is called the co�ee stain e�ect, but it is not unique for co�ee droplets and is
shared among evaporating colloidal droplets in general. The pattern formation by drying colloids
has many applications related to self-assembly [1], e.g. in the �elds of colloidal crystal generation
where crystals can be grown layer-by-layer [2], crystals with evenly spaced cracks from the capillary
forces [3], and self-assembling nano-structures by fast evaporation and particle attraction to the
air [4]. The e�ect can also be disadvantageous if a homogeneous coating is needed, for example in
the inkjet printing industry [5, 6] or in DNA analysis [7, 8], where the clustering of DNA around
the perimeter makes it impossible to examine the samples.

Figure 1.1: A typical co�ee stain.

For applications, better understanding of the co�ee stain e�ect is the key for improving control
over the depositioning of particles. When �uid evaporates from the droplet, the volume decreases
and the droplet will shrink as seen �gure 1.2 (a) and (b). However, if the contact line is pinned
(remains at the same position) the �uid at the contact line has to be replenished with �uid from
inside the droplet and an internal �ow towards the contact line must exist, see �gure 1.2 [5]. The
particles inside the �uid are then transported by this �ow to the contact line, resulting in the
distinctive pattern. For this pattern to appear it is thus necessary to have a pinned, or slowly
moving, contact line during evaporation of the droplet. This pinned contact line can occur for
various reasons, e.g. roughness of the substrate or self-pinning by the accumulated particles at
the contact line [9].
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(a)

(b)

(c)

θ

Figure 1.2: Illustration of the origin of �ow towards the contact line. (a) The initial
droplet of contact angle θ (b) Partially evaporated droplet with moving contact line.
(c) Partially evaporated droplet with pinned contact line, the arrows represent the
direction of the �ow inside the droplet.

In order to describe the �ow inside the droplet, the mass out�ow due to evaporation has to be
known. The evaporative �ux close to the contact line was expressed by Deegan et al. [5] while the
evaporative �ux over the entire droplet was given by Popov [10]. During evaporation, the �uid
from the droplet vaporizes which gives a saturated vapor concentration around the free surface.
If the ambient air is not saturated with vapor, the vapor will then di�use outward [5], giving
a mass �ux normal to the free surface of the droplet. Gelderblom et al. [11] showed that this
di�usion model accurately describes the evaporation process by comparing experimental data of
the rate of mass loss of the droplet with the analytical solution of the di�usion model, see �gure
1.3. Interestingly, the evaporative �ux is strongest, and even diverges, near the contact line due
to the singular geometry of the droplet, see the pointy shape of the droplet in �gure 1.4. This
singularity in the evaporative �ux gives rise to a singular velocity �eld [5, 12] and will present
problems in �nding analytical and numerical solutions of the velocity �eld [13, 14, 15].

A height-averaged velocity was derived from a mass balance in the droplet by Deegan et
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Figure 1.3: The rate of mass loss of the droplet versus contact angle for di�erent
initial droplet volumes from experiments (various markers and colors). Predictions
from the Popov model [10] (black solid line) and the model of Hu and Larson (purple
dashed line) for contact angles smaller tan 90◦ [16]. Reprinted from [11]
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Figure 1.4: A droplet with re�ection on the substrate. Close to the contact line the
sharp edge of the singular geometry is seen.

al. [5]. For small contact angles, the radius of the droplet becomes large compared to the height
of the droplet and the lubrication approximation can be used to obtain a velocity pro�le for the
internal �ow from this height averaged velocity [1]. However, it is argued that this theory does
not hold close to the contact line due to the singular evaporative �ux. Hu & Larson [16] state that
because of the singular evaporative �ux for small contact angles, the velocity close to the contact
line must be approximately normal to the free surface, see �gure 1.5. If this is the indeed the
case, this should be accounted for in the approximation whereas the vertical velocity is normally
neglected. Experimental data however, agrees well with velocity pro�les obtained directly from
the lubrication approximation [1]. This contradiction immediately brings a question to mind: why
does the lubrication approximation correctly predicts the �ow behavior close to the contact line for
small contact angles, even though the evaporative �ux is singular at the contact line? To answer
this question, the exact solution of the �ow �eld close to the contact line has to be known, which
is what we will derive in this thesis.

1.2 Scope of this work

In this thesis we consider small droplets (radius of order 10−3 m) with the same properties as
in the experiment performed by Marín et al. [1]1. The in�uence of gravity on droplets of this
size is negligible (Bond number of order 10−1), which results in droplets shaped as spherical caps.
For analysis of the argument of Hu & Larson, we are mainly interested in the region close to the
contact line. Here, both the curvature of the free surface and the contact line vanish and the
geometry can be approximated as a two-dimensional wedge.

The general problem of an evaporating droplet consists of a vapor concentration outside the
droplet from which an evaporative �ux is found that drives the internal �ow, see �gure 1.6. Using
the evaporative �ux for the wedge, we will solve for the �ow �eld in the droplet. From experimental

1For convenience, the properties of the droplet are listed in appendix A.

substrate

J

Figure 1.5: Visualization of the concept of Hu & Larson [17]. Sketched streamlines
are going to the normal of the free surface due to the high evaporative �ux at the
contact line. In this thesis we will verify this hypothesis by computing the streamlines.
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∇2c = 0

vapor

J

evaporation

∇4ψ = 0

droplet

substrate

Figure 1.6: Schematic representation of the problem in the wedge where c is the
vapor concentration, J the evaporative �ux, and ψ the stream function. Outside the
wedge, the concentration �eld of the liquid has to be solved with the Laplace equation
to �nd the evaporative �ux. Inside the wedge the �ow-�eld of the liquid can be found
by solving the biharmonic equation.

data [1], we �nd that the velocity is of order µm/s (Re = 10−3) [1]. In this low-Reynolds regime we
will search for a stream function that satis�es the Stokes equations to �nd the velocity �eld in the
wedge. Expansions of this analytic solution for the �ow �eld for small contact angles will be used
to verify the lubrication solution.

Remarkably, regions are found where the �ow is in opposite direction as one expects. When
there is an out�ux at the boundary, one might expect an internal �ow to this boundary to replenish
the �uid. From the analytical wedge �ow solution, contact angle regimes are found where the �ow
is directed towards the center of the droplet. We will describe some characteristics of these
regimes from the analytical solution. We wonder if these regimes can also be seen in the geometry
of the whole droplet, and, if they are seen, what they will look like. To address this question,
we will perform numerical simulations that give the full �ow pro�le in the entire droplet. The
concentration �eld and internal �ow �eld are linked by the evaporative �ux and solved in Comsol2

The wedge geometry is used as validation case, and shows good agreement with the analytic results.
A set-up is made for the whole droplet geometry, from where circulations in the droplet are seen,
but limited time restricted us from performing calculations in detail.

In chapter 2, we describe the relevant literature. First we describe the solution for evaporative
�ux close to the contact line. From the evaporative �ux, the rate of mass loss for the whole
droplet is calculated, giving an expression contact angle change in time. Next, a height-averaged
expression of the internal �ow will be given from a mass balance, from which the �ow �eld is
calculated using the lubrication approximation.

In chapter 3 we derive an analytical expression for the �ow close to the contact line. Here, the
Stokes equations are solved in the wedge, where we use the expressions for the evaporative �ux
and changing contact angle as kinematic boundary conditions. In chapter 4 we discuss our �ndings
from the analytical solution. We show the �ow �elds for various contact angles, and continue with
a description of the regions with reversed �ow. From here, we close the analytical research with a
discussion on the validity of the lubrication approximation close to the contact line.

In chapter 5 we describe the simulation set-up for the validation case and present the results.
In chapter 6 the set-up of the numerical simulation for the entire droplet is discussed after which
we show the results of this simulation and make a comparison with the analytical wedge solution.
We will �nish the thesis in chapter 7 with a general discussion of the work and a listing of all our
�ndings.

2Comsol Multiphysics®, version 4.2.1.110.
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Chapter 2

Background theory

In this chapter we will derive an expression for the evaporative �ux in the vicinity of the contact
line. This �ux will be used to calculate the moving free surface of the evaporating droplet. Both
equations are then used to de�ne the local rate of mass loss of the droplet. We derive the height-
averaged velocity, which we will use in the lubrication approximation to �nd the �ow �eld in the
entire droplet.

2.1 Evaporative �ux

The evaporation time of the droplet (order 103 s) is slow compared to the time that it takes to
build up the concentration �eld around the droplet (order 10−2 s). Fluid from the droplet has to
transfer from the droplet towards the air surrounding the droplet, thereby crossing the interface.
This transfer rate is characterized by a time scale of order 10−10 s. The time it would take for
di�usion to build up a pro�le around the droplet is of order R2

/Dva which is about 10−2 s [18].
Hence, the problem is quasi-steady and the rate limiting step is given by the di�usion time of the
vapor in air. Fick's second law can be used to �nd the concentration �eld c;

∂c

∂t
= Dva∇2c, (2.1)

where Dva is the di�usion constant for vapor in air and t is time.
From here, the evaporative �ux J can be found by Fick's law,

J = −Dva∇c. (2.2)

We will solve these equations in the vicinity of the contact line for the wedge geometry. Polar
coordinates ρ and φ are introduced with the origin coinciding with the contact line. The free
surface of the droplet is located at φ = 0, see �gure 2.1. We introduce a non-dimensional length ρ̃,
and concentration c̃, and we de�ne a characteristic velocity U (of order µm/s),

ρ̃ =
ρ

R
, (2.3)

c̃ =
c− c∞

∆c
, and (2.4)

U =
Dva∆c

ρlR
, (2.5)

where R is the radius of the contact line, c∞ the concentration far away from the droplet, ∆c =
cs − c∞, and ρl the density of the �uid. Substitution of these quantities into (2.2) and (2.1) and

5



droplet

mirrored
droplet

substrate

∇2c = 0

cs

θ

θ

ρ

φ

Figure 2.1: Wedge-shaped geometry close to the contact line. The droplet is mirrored
with respect to the substrate. Polar coordinates ρ and φ are indicated as well as the
contact angle θ.

discarding the temporal derivate because of the quasi-steady problem leads to, after dropping the
tildes,

1

ρl
J = −U

(
∂c

∂ρ
eρ +

1

ρ

∂c

∂φ
eφ

)
, and (2.6)

0 =
1

ρ

∂

∂ρ

(
ρ
∂c

∂ρ

)
+

1

ρ2

∂2c

∂φ2
, (2.7)

where eρ and eφ are the unit vectors in radial and angular direction respectively.
The substrate imposes an impermeability boundary condition for the �ux J. This zero-�ux

boundary condition can be satis�ed mathematically, but here it is handled by mirroring the prob-
lem with respect to the substrate, thereby automatically satisfying impermeability, see �gure 2.1.
The mirrored free surface is located at φ = 2(π − θ).

For simplicity, it is chosen to solve for c′ = c − 1 which results in homogeneous boundary
conditions at the free surface and mirrored free surface,

c′(ρ, φ) = 0 at φ = 0 ∨ 2(π − θ). (2.8)

The Laplace equation is solved with separation of variables. Substitution of c′ = P (ρ)Φ(φ)
leads to

ρ
1

P (ρ)

∂

∂ρ

(
ρ
∂

∂ρ
P (ρ)

)
= λ2 = − 1

Φ(φ)

∂2

∂φ2
Φ(φ).

where λ is a constant. Here, the left hand side is an Euler equation and has as solution

P (ρ) = C1ρ
λ + C2ρ

−λ for λ > 0 and ρ > 0.

For λ = 0, a solution is lost and reduction of order has to be used to �nd a second solution [19],

P (ρ) = C1 + C2 ln ρ for λ = 0 and ρ > 0.

Solving the right hand side of (2.1) results in

Φ(φ) = C3 cosλφ+ C4 sinλφ for λ > 0, and

Φ(φ) = C3φ+ C4 for λ = 0.

6



Combined, the general solution to the Laplace equation in polar coordinates reads

c′(ρ, φ) = C1,0 + C2,0 ln ρ+ C3,0φ+ C4,0φ ln ρ+∑
n=1

(
C1,nρ

λn + C2,nρ
−λn

)
(C3,n cosλnφ+ C4,n sinλnφ) .

Since the current problem will only be valid locally near the contact line, the logarithmic and
ρ−λ terms have to be removed as they will result in an unphysical concentration at the origin;

c′(ρ, φ) = C1,0 + C3,0φ+
∑
n=1

ρλn (C3,n cosλnφ+ C4,n sinλnφ) .

In order to satisfy the homogeneous boundary condition at the free surface (φ = 0), all C3,n

terms have to be zero. From the homogeneous boundary condition at φ = 2(π− θ), an expression
for λ is found,

λ =
π

2(π − θ)
n with n ∈ N. (2.9)

Hence, for the concentration �eld close to the contact line we �nd

c(ρ, φ) = cs +
∑
n=1

ρλn sinλnφ. (2.10)

Now (2.6) can be used to calculate the evaporative �ux at the free surface,

J

ρl
= −U

∑
n=1

Cnλnρ
λn−1. (2.11)

Close to the contact line the �rst term is dominant, hence

J

ρl
= −A(θ)U ρλ−1, (2.12)

where prefactor A(θ) is found from the full spherical-cap solution [10]. Contours of the concentra-
tion �eld together with the evaporative �ux are shown in �gure 2.2.

2.1.1 Fitting the wedge solution to the solution for the entire droplet

The prefactor A(θ) is the link between the local wedge approximation and the global problem
of the evaporating droplet. A(θ) has to be �tted such that the wedge solution matches with the
solution for the entire droplet, available from Popov [10].

For small contact angles λ can be approximated as 1/2 and the exact solution of a disc-like
droplet can be used [10],

Jdisc

ρl
=

2

π

U R√
R2 − r2

, (2.13)

where r is the radius from the center of the droplet, i.e.

ρ = 1− r

R
.

This �ux can be approximated for small ρ,

Jdisc

ρl
=

√
2U

π

1
√
ρ
,

from which follows, for small ρ and small contact angles,

A '
√

2

π
. (2.14)

7



θ = 9◦ θ = 45◦

θ = 99◦ θ = 135◦

Figure 2.2: Contours of constant vapor concentration and corresponding evaporative
�ux at the free surface, (2.12), for di�erent contact angles. Note that the solution is
scale independent and therefor no axis scaling is shown.

2.1.2 Changing contact angle due to mass out�ow

Now the evaporative �ux is known, we can calculate the rate of mass loss of the droplet. Since
the droplet is described by a spherical cap with a pinned radius, we can relate the rate of mass
loss to a contact angle change.

Evaporation gives a total mass out�ow,

∂M

∂t
=

∫
S

J(ρ)dS, (2.15)

where M is the mass of the droplet and S is the free surface of the droplet. This out�ow has to
equal the mass change of the evaporating droplet,

∂M

∂t
= ρl

∂V

∂θ

dθ

dt
, (2.16)

where V is the volume of the droplet.
In the limit of small contact angles the steps of (2.15) and (2.16) can be approximated. Starting

with the evaporating mass, using (2.13), we �nd

dM

dt
=

R∫
0

4U ρl
Rr√
R2 − r2

dr = 4U ρlR
2. (2.17)

For small contact angles, we can approximate the droplet shape by a parabola,

h(r, t) =
R2 − r2

2R
θ,

where h is the height of the droplet, from which the volume is found to be

V = 2π

R∫
0

h(r, t)r dr =
π

4
R3θ. (2.18)
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The volume can now be substituted into (2.16), giving

∂M

∂t
=
π

4
ρlR

3 ∂θ

∂t
. (2.19)

By equating (2.17) to (2.19), we �nd the rate of contact angle change

dθ

dt
= −16

π

U

R
. (2.20)

Likewise, for the full spherical cap of arbitrary contact angle we can write

dθ

dt
=

1

ρl

∂θ

∂V

∫
S

J(ρ)dS.

Using the evaporative �ux for the whole droplet, one �nds

dθ

dt
= −B(θ)

U

R
(2.21)

where B(θ) is of order unity and can be found from (A8) in [10].

2.2 Internal �ow

The evaporative �ux drives a �ow inside the droplet. First we derive the height-averaged velocity
from the evaporative �ux, then we show how the lubrication approximation can be used to �nd
an expression for the entire �ow �eld.

2.2.1 Height-averaged �ow

The �ow inside the droplet can be described in a height-averaged way. A mass balance is evaluated
over an annulus of an in�nitesimal ring width dr. The axis of the annulus coincides with the axis
of symmetry of the droplet, see �gure 2.3.

The change of mass for the annulus at r can be described as

∂

∂t
m︸︷︷︸

rate of

mass loss

= Qin −Qout︸ ︷︷ ︸
change due to

mass �ux

− QJ︸︷︷︸
change due to

evaporation

, (2.22)

where t is the time, m the mass of the �uid ring, Qin/out the mass �ux in and out at r due to
convection, and QJ the mass �ux due to evaporation at r.

The mass of the annulus at r can be expressed as

m = 2π r dr h ρl,

where h is the droplet height at r and ρl the density of the liquid. The only time-dependent
variable is the droplet height. Hence, the rate of mass loss at r equals

∂

∂t
m = 2π r dr ρl

∂

∂t
h. (2.23)

Convection of �uid inside the droplet contributes a mass �ux in and out of the �uid ring. The
mass �ux in the ring is given by

Q(r) = 2π r h(r)ur(r) ρl, (2.24)

9





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


Qout Qin

J

h

r

axis of
symmetry

substrate

Figure 2.3: Schematic drawing of the cross section of an axisymmetric droplet on a
substrate. An annulus of width dr in the droplet at radius r with height h is shaded.
The di�erent in- and out�ows of mass in the annulus are visualized as Q, where the
subscripts in and out denote the mass �ux by convection, and J , which is the mass
�ux by evaporation.

where Q(r) is the mass �ux due to convection at r, and ur the height-averaged radial velocity.
For the annulus, the net rate of mass loss due to convection is

Qin −Qout = Q(r)−Q(r + dr) = −2π dr
∂

∂r
Q(r). (2.25)

Now the remaining term in (2.22) is the mass �ux due to evaporation. Multiplying the evapo-
rative �ux with the area of the annulus at the free surface yields

QJ = 2π r dr J(r, t)

√
1 +

(
∂h

∂r

)2

. (2.26)

Combination of (2.22), (2.23), (2.25) and (2.26) results in

ρl
∂h

∂t
= − 1

r

∂

∂r
Q(r)− J(r, t)

√
1 +

(
∂h

∂r

)2

. (2.27)

For small contact angles, the spatial derivative of h will be small compared to unity and can be
neglected. This approximation leads to the following equation:

ρl
∂h

∂t
= − 1

r

∂

∂r
Q(r)− J(r, t). (2.28)

The height-averaged velocity for small contact angles, close to the contact line, can be calcu-
lated from (2.28) [1]. Substitution of the relations (2.13) and (2.20) into (2.28) gives

1

ρl

∂Qr
∂r

=
2

π

U R r√
R2 − r2

− 16

π

U

R

(R2 − r2)r

2R
. (2.29)

Integration now gives the height-averaged velocity by using (2.24),

ūr =
Qr
r h

=
2U

π r h

(
R
√
R2 − r2 − (R2 − r2)2

R2

)
. (2.30)

In the vicinity of the contact line, a similar expansion can be applied as was done in section 2.1.1.
Neglecting the higher order terms yields

ūr =
Qr
ρl r h

=
2
√

2U

π

R

h

√
ρ. (2.31)
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substrate

Figure 2.4: Streamlines of the �ow approximated with the lubrication approximation,
(2.33) and (2.34), in the wedge with θ = 30◦.

2.2.2 Lubrication Approximation

An estimate of the full velocity �eld can be obtained from the height-averaged velocity. For small
contact angles, the height of the droplet is small compared to the radius. Because of these length
scales, we estimate that variations along the free surface of the droplet are much more gradual
than the variations normal to the free surface of the droplet [20]. In the introduction it is explained
that there must exist a viscous �ow to the contact line, and using the lubrication approximation,
we can write for this �ow

∂p

∂r
= µ

∂2ur
∂z2

, (2.32)

Where p is the pressure, µ the dynamic viscosity, and ur the radial velocity. At the substrate a
no-slip boundary condition is imposed,

ur|z=0 = 0.

At the free surface there is no force acting tangential to the �uid, and therefore no-shear stress is
implied, [

∂ur
∂z

+
∂uz
∂r

∣∣∣∣
z=h

= 0,

where the second term on the of the left hand side is neglected in the lubrication approximation.
When using these boundary conditions, integration of (2.32) gives the radial velocity,

ur =
1

µ

∂p

∂r

(
1

2
z2 − hz

)
.

This pro�le can be expressed in terms of the height-averaged velocity, (2.31),

ūr = − 1

3µ

∂p

∂r
h2 =

2
√

2U

π

R

h

√
ρ,

to give an expression for the radial velocity [1];

ur = −6
√

2

π

U R

h

√
ρ

[
1

2

( z
h

)2

− z

h

]
. (2.33)

From the continuity equation we can �nd an expression for the vertical velocity

uz =
2
√

2U

π

[
5

2

( z
h

)3

− 9

2

( z
h

)2
]
. (2.34)

The streamlines given by this velocity �eld are displayed in �gure 2.4.
Hu & Larson [17] argue that the lubrication approximation is not applicable close to the contact

line. For small contact angles, the evaporative �ux is almost vertical, and the vertical velocity can
be approximated as:

uz ≈
∂h

∂t
+
J

ρl
.
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substrate

J

Figure 2.5: Visualization of the concept of Hu & Larson [17]. Sketched streamlines
going to the normal of the free surface due to the high evaporative �ux at the contact
line.

Close to the contact line, they state that this term becomes signi�cant due to the singularity
in the evaporative �ux and cannot be neglected as is done in the lubrication approximation; see
�gure 2.5 for an impression.

Experiments [1], however, do show good agreement with the lubrication approximation close
to the contact line. To understand why, we will solve the velocity �eld in the wedge in full detail.
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Chapter 3

Stokes �ow in a wedge

The �ow �eld inside a wedge will be solved by �nding a stream function. We will start by �nding
a general solution for the biharmonic equation in the wedge which describes the Stokes �ow �eld.
At the free surface we will impose a no-shear condition and a �ow due to evaporation and due to
the interface movement.

3.1 Problem description

Because the �ow inside the droplet is given by the Stokes equations, the �ow �eld inside the wedge
can be described by a stream function ψ, which has to satisfy the biharmonic equation,

∇4ψ = 0. (3.1)

Polar coordinates ρ and φ with origin at the contact line will again be a convenient choice
to describe the problem. This time, however, φ = 0 coincides with the substrate and φ = θ
with the free surface, see �gure 3.1. Given the coordinate system, the radial and angular velocity
components can be expressed respectively as

uρ =
1

ρ

∂ψ

∂φ
and uφ = −∂ψ

∂ρ
, (3.2)

and the boundary conditions can be speci�ed in terms of the stream function:

1. No-slip at the substrate,

uρ|φ=0 =
1

ρ

∂ψ

∂φ

∣∣∣∣
φ=0

= 0. (3.3)

2. Impermeability of the substrate,

uφ|φ=0 =
∂ψ

∂ρ

∣∣∣∣
φ=0

= 0. (3.4)

∇4ψ = 0

ρ

φ

Figure 3.1: Stokes �ow problem in the wedge with polar coordinates ρ and φ and
the origin located at the contact line. The biharmonic equation is solved in the shaded
area with the boundary conditions (3.3), (3.4), (3.5), and (3.6).
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3. Similar as in section 2.2.2, here to a no-shear stress condition is imposed at the free surface,

µ

[
ρ
∂

∂ρ

(
1

ρ
uφ

)
+

1

ρ

∂

∂φ
uρ

∣∣∣∣
φ=θ

=

[
1

ρ2

∂2

∂φ2
ψ − ρ ∂

∂ρ

(
1

ρ

∂

∂ρ
ψ

)∣∣∣∣
φ=θ

= 0. (3.5)

4. We impose an out�ow due to the evaporation at the free surface. In addition, there is a
movement due to the decreasing volume of the droplet. In the wedge approximation this
can be visualized as a closing hinge. Hence, the kinematic boundary condition at the free
surface reads

uφ|φ=θ = −∂ψ
∂ρ

∣∣∣∣
φ=θ

= ρ
dθ

dt
− 1

ρl
J(ρ).

Substitution of (2.21) and (2.12) shows that both conditions give power laws in ρ,

−∂ψ
∂ρ

∣∣∣∣
φ=θ

= −ρB(θ)
U

R
+A(θ)U ρλ−1, (3.6)

where
λ =

π

2(π − θ)
(3.7)

as in (2.9) with n = 1.

Since the biharmonic equation is similar to applying the Laplacian twice, again separation of
variables is chosen to handle this problem. Substitution of

ψ(ρ, φ) = P (ρ) Φ(φ),

into (3.1) results in

PρρρρΦ +
2

ρ
PρρρΦ +

1

ρ2
Pρρ(2Φφφ − Φ) +

1

ρ3
Pρ(Φ− 2Φφφ) +

1

ρ4
P (Φφφφφ + 4Φφφ) = 0, (3.8)

where the subscripts denote the derivatives, e.g. Pρ =∂P/∂ρ. Using our experience from the Laplace
equation for the concentration �eld c, section 2.1, a power law for P (ρ) and a harmonic function
for Φ(φ) are tried,

P (ρ) = C1ρ
α and Φ(φ) = C2 cosβφ+ C3 sinβφ.

When inserting these into (3.8), a relation for β in terms of α is found;

β = α− 2,−α,+α, and −α+ 2.

The linear independent solutions can now be inserted into (3.1) to �nd the general solution to the
biharmonic equation,

ψ = ρα (C1 cosαφ+ C2 sinαφ+ C3 cos(α− 2)φ+ C4 sin(α− 2)φ) for α 6= 0, 1, 2. (3.9)

For the special cases α = 1 or 2,1 linearly independent solutions are lost and the general solution
degenerates to [21, 22]

ψ = ρ (C1 cosφ+ C2 sinφ+ C3φ sinφ+ C4φ cosφ) (3.10)

for α = 1, and
ψ = ρ2 (C1 cos 2φ+ C2 sin 2φ+ C3 + C4φ) (3.11)

for α = 2. All that now remains to obtain the �ow �eld is to �nd the coe�cients C1 to C4 from
the boundary conditions.

The kinematic boundary condition (3.6) introduces two powers of ρ that will, in general, not
be equal. This means that for each power of ρ, (3.9) has to be solved independently, giving a
solution of the �ow due to the moving interface and a �ow due to evaporation. Superposition of
both solutions will then give the complete �ow �eld in the wedge.

1The special case of α = 0 will not be used.
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3.2 Flow due to evaporation

The �ow �eld in the wedge due to evaporative �ux is solved �rst. The kinematic boundary
condition is expressed as:

∂ψ

∂ρ

∣∣∣∣
φ=θ

= αρα−1(. . . ) = A(θ)U ρλ−1

and hence,
α = λ. (3.12)

First a solution is sought for λ 6= 1 or 2. To �nd C1 to C4 we use the boundary conditions
from the previous section and (3.2). Starting with no-slip, (3.3), we �nd

C4 =− λ

λ− 2
C2.

Impermeability, (3.4), gives

C3 = −C1. (3.13)

These relations are now substituted into the no-shear stress boundary condition, (3.5), at the free
surface to �nd an expression for C2;

C1

[(
λ2 − λ

)
cosλθ −

(
λ2 − 3λ+ 2

)
cos(λ− 2)θ

]
+C2

[(
λ2 − λ

)
sinλθ −

(
λ2 − λ

)
sin(λ− 2)θ

]
= 0,

C2 = −λ cosλθ − (λ− 2) cos(λ− 2)θ

(sinλθ − sin(λ− 2)θ)λ
C1.

Finally, for the kinematic boundary condition, the evaporation out�ow must be satis�ed at the
free surface,

∂ψ

∂ρ

∣∣∣∣
φ=θ

= A(θ)U ρλ−1,

C1

[
cosλθ − cos(λ− 2)θ +

C2

C1

(
sinλθ − λ

λ− 2
sin(λ− 2)θ

)]
= −A(θ)U

λ
,

C1 =
A(θ)U

2

(λ− 2) (sinλθ − sin(λ− 2)θ)

λ cosλθ sin(λ− 2)θ − (λ− 2) cos(λ− 2)θ sinλθ
. (3.14)

For the cases λ = 1 or 2, di�erent coe�cients are found. Starting of with λ = 1 (θ = 90◦), ψ
is now given by (3.10). No-slip and impermeability now give

C4 = −C2, and C1 = 0.

No-shear stress at the free surface yields

2C2 sin θ + 2C3 cos θ = 0,

C3 = − tan θ C2.

Finally, for the kinematic boundary condition (3.2) one �nds

C2(sin θ − θ tan θ sin θ − θ cos θ) = −A(θ)U,

C2 = −A(θ)U
cos θ

θ − sin θ cos θ
.
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For the special case where λ = 2 (θ = 135◦), (3.11) can be substituted into the boundary
conditions. Again, starting with no slip and impermeability one �nds

C4 = −2C2, and C3 = −C1. (3.15)

No shear stress over the free surface yields

C1 cos 2θ + C2 sin 2θ = 0,

C2 = − 1

tan 2θ
C1. (3.16)

C1 is found from the kinematic boundary condition

−2ρC1

(
cos 2θ +

sin 2θ

tan 2θ
− 1− 2θ

tan 2θ

)
= −A(θ)U ρ, (3.17)

C1 = 2A(θ)U
tan 2θ

2θ − tan 2θ
.

3.3 Flow due to the moving interface

For the �ow due to the moving interface the kinematic condition is given by

−∂ψ
∂ρ

∣∣∣∣
φ=θ

= αρα−1(. . . ) = −ρB(θ)U. (3.18)

hence, α = 2.
As seen in the previous paragraph, this results in a special case of the general solution, (3.11).

Since the boundaries at the substrate and the no shear stress condition at the free surface still
hold for the �ow due to a changing interface, the solution to coe�cients C2, C3, and C4 are given
in (3.15) and (3.16). In fact, the only di�erence with the special case λ = 2 from the �ow due to
the evaporative �ux is C1, which becomes

C1 = −B(θ)
U

2

tan 2θ

2θ − tan 2θ
. (3.19)
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Chapter 4

Analytical results

We will now analyze the �ow properties that result from the exact solutions that we derived in the
previous chapter. Remarkably, we �nd contact angle regimes where the �ow is in opposite direction
as expected which we will describe. Next, we will show that depending on the contact angle, a �ow
type will dominate close to the contact line. When we expand the solution of the dominant �ow
type for small contact angles, the exact �ow �eld solution will simplify to the result of lubrication
approximation.

4.1 Wedge �ow �elds

The streamlines for both the �ow due to evaporation and the �ow due to the moving interface
are given in �gure 4.1 and 4.2 respectively. The spacing between the streamlines is controlled by
the magnitude of the �ow velocity, a larger velocity magnitude corresponding to areas of densely
packed streamlines and areas of coarsely packed streamlines corresponding to areas with a low
�ow velocity magnitude. Remarkably, regions are found where the �ow is in the opposite direction
as one might suspect. For �ow induced by evaporation one could reasonably expect that the �ow
inside the wedge must be in the outward direction due to the outward �ux. There are, however,
certain contact angle regions where some �ow moves in the opposite direction, towards the center
of the droplet, as seen in �gure 4.1 for θ = 130◦, 150◦, and 160◦.

In the �ow �eld due to the evaporative �ux, the e�ect of reversal �rst seen in the streamlines
for θ = 130◦. One observes streamlines that will reach the free surface and streamlines that turn
turn away from the contact line, towards the center of the droplet, separated by a dividing line.
Interestingly, the reversal in the �ow �eld has disappeared at θ = 140◦, but reappears at θ = 150◦.
For θ = 160◦ one even observes multiple lines that divide the �ow �eld into di�erent regions where
the �ow changes the direction.

Similar features are observed for the �ow �eld with the moving interface boundary condition,
see �gure 4.2. Since the contact angle is decreasing, the �ow is expected to oriented away from
the contact line, yet, for θ = 100◦, 110◦, and 120◦ regions are seen where there exists �ow towards
the contact line. The line that divides the di�erent �ow regimes moves upwards to the free surface
as the contact angle becomes larger.

In both �gures of the streamlines in the wedge, �gure 4.1 and 4.2, no scale is shown. This is
because these �ow solutions are self-similar, i.e.

uρ
uφ

= constant for constant φ. (4.1)

This self-similarity originates from the general solution to the biharmonic equation (3.9). The gen-
eral solution gives similar powers in ρ for both velocity components, and hence, the ρ-dependency
in (4.1) drops out. Note that, in general, the superposition of the solutions, the �ow �eld due to
evaporation and the �ow �eld due to the interface movement, will not be self-similar.

17



θ = 20◦

θ = 80◦

θ = 130◦

θ = 150◦

θ = 40◦

θ = 120◦

θ = 140◦

θ = 160◦

Figure 4.1: Streamlines of the �ow driven by evaporation in the wedge for di�erent
contact angles. Black dashed lines mark the region where the �ow changes direction.
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θ = 20◦

θ = 80◦

θ = 110◦

θ = 130◦

θ = 40◦

θ = 100◦

θ = 120◦

θ = 140◦

Figure 4.2: Streamlines of the �ow driven by the moving interface in the wedge
for di�erent contact angles. The black dashed line marks the region where the �ow
changes direction.

19



Figure 4.3: Plot of a typical �ow region separated by separatrices (dashed). Stream-
lines are from the �ow due to evaporation at a contact angle of 160◦.

4.2 Regions of reversed �ow

The lines that divide the �ow �eld into the regimes where the �ow changes direction are char-
acterized by a vanishing angular velocity, the separatrices of the �ow �eld. Here, we will try to
describe the separatrices that we observe more quantitatively.

A Separatrix cannot appear suddenly inside the �ow for a certain θ; it has to enter from
the boundaries. To analyze the solution at a boundary, the substrate is a convenient choice
because here (3.9) simpli�es. However, since the angular velocity is always zero here, which is our
impermeability boundary condition, a di�erent description for the separatrices is needed. One can
demonstrate from the biharmonic equation that separatrices correspond to local extrema in the
radial velocity; if we substitute that the angular velocity, and its derivatives with respect to ρ, are
zero, the biharmonic equation at a separatrix gives:

1

ρ4
(ψφφφφ + 4ψφφ) +

2

ρ2
ψρρφφ −

2

ρ3
ψρφφ = 0. (4.2)

In the �rst term, the derivatives of the stream function will cancel, both remaining terms now
have to equal zero independently to satisfy the biharmonic equation. We �nd that a separatrix
exists at the origin when

∂uρ
∂φ

∣∣∣∣
φ=0

=
1

ρ

∂2ψ

∂φ2

∣∣∣∣
φ=0

= 0. (4.3)

4.2.1 Separatrices in the �ow due to evaporation

If (4.3) is solved for the �ow due to evaporation at the substrate we �nd

1

ρ

∂2ψ

∂φ2

∣∣∣∣
φ=0

= C1

(
(λ− 2)2 − λ2

)
= 0 with λ 6= 0, 1, 2. (4.4)

Hence, a separatrix appears at the substrate if the numerator of C1, (3.14), is zero, i.e.

f(θ) = sinλθ − sin(λ− 2)θ = 0. (4.5)

A plot of this function is given in �gure 4.4. The zeros of this function predict the contact angles
when a separatrix appears at φ = 0.

The equation gives two conditions;

λθ + 2πn = λθ − 2θ, and (4.6)

2λθ − 2θ = π(2n+ 1), (4.7)
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where n is an integer. The �rst condition gives θ = πn which will not result in any separatrix in
the range θ from 0 to π. Hence, the the second equation for θ gives the contact angles at which a
separatrix is at the substrate

θ =
π

2

(√
n2 + 2n− 1 + 1− n

)
. (4.8)

From observing the solution of the �ow in the wedge, we see that the �rst separatrix indeed
enters the wedge at θ =π/2

√
2 (θ ' 127◦), as predicted by (4.8). For larger contact angles, the

separatrix moves upwards, towards the free surface, until it disappears at the free surface. When
the separatrix coincides with the free surface, the will be a con�ict between the kinematic boundary
condition, the out�ow due to evaporation, and the separatrix, which imposes that there must be
zero out�ow. We observe that the separatrix leaves around 133.4◦, where a division by zero in C1

prevents us from calculating the solution.
We have derived a formula that gives us the contact angles at which a separatrix is present at

the substrate. From there, we observed that the separatrix at the substrate moved upwards, into
the �ow �eld, and left the �ow �eld at the free surface. For larger contact angles, λ will grow rapidly
and more and more separatrices will be present in the �ow �eld, making observation cumbersome.
In the limit of large contact angles, however, we can approximate the angular velocity and give
an estimate for the amount of separatrices in the �ow �eld. In the limit of large λ we have,

C4 = − λ

λ− 2
C2 ≈ −C2, (4.9)

and, by substituting this approximation and (3.13), we can write the angular velocity as

uφ = −∂ψ
∂ρ
≈ −λρλ−1 (C1[cosλθ − cos(λ− 2)θ) + C2(sinλθ − sin(λ− 2)θ)]

= −λρλ−1 sinφ [C1 sin(λ− 1)φ+ C2 cos(λ− 1)φ] . (4.10)

The coe�cients C1 and C2 are independent of φ, and the separatrices are given by zero angular
velocity. Hence, the angular frequency at which reversal occurs within the wedge is estimated by

λ− 1, (4.11)

which can be used to approximate the amount of separatrices in the wedge for large contact angles.
Using the full angular domain from φ = 0 to θ, we �nd

m =

⌊
(λ− 1)

θ

π

⌋
, (4.12)

θ [◦]

f(θ)

0 20 40 60 80 100 120 140 160 180
-1.5

-1.0
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Figure 4.4: Plot of (4.5) versus the contact angle. Separatrices enter the �ow �eld
when the function passes trough the horizontal axis.
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Figure 4.5: On the left side, the crossover length-scale (4.15) is plotted against
di�erent contact angles (solid black). The dashed gray line is the approximation of ρc

for small contact angles, ρc = 2−
7/3 . On the right side a comparison of the absolute �ow

normal at the free surface due to evaporation (solid black line) and moving interface
(dashed gray) versus distance for di�erent contact angles.

where m is the amount of separatrices in the wedge and the brackets note rounding to the largest
previous integer.

4.2.2 Separatrices in the �ow due to the moving interface

We noticed that a separatrix also appeared in the �ow due to the moving interface, see �gure
4.2 for contact angles θ = 100◦, 110◦, and 120◦. When solving (4.3) for the stream function that
describes the �ow due to the moving interface one �nds

1

ρ

∂2ψ

∂φ2

∣∣∣∣
φ=0

= −4C1 = 0, (4.13)

where C1 is given in (3.19). Hence, here a separatrix appears at the substrate when

sin 2θ = 0, (4.14)

which corresponds to θ = 90◦ in the domain from θ = 0◦ to 180◦. Again, the separatrix moves
upwards in the �ow �eld for larger contact angles, and disappears at the free surface. We see
that in C1 a division by zero occurs around θ = 122.46◦, which, we observe, corresponds to the
separatrix leaving the �ow �eld.

4.3 Dominant �ow driving mechanism

As discussed in section 3.1, there are two mechanisms that drive the �ow inside the wedge: the
evaporative �ux and the moving interface. Because of the di�erent powers of ρ in these mecha-
nisms, one will, in general, be stronger than the other for certain ρ, see �gure 4.5. A crossover
length-scale can be de�ned at which the dominating driving mechanism for the �ow changes. This
crossover length-scale can be found by equating the right hand side of (3.6) to zero;

A(θ)U ρλ−1
c −B(θ)U ρc = 0,

where ρc is in dimensionless form, see (2.3). The crossover length-scale is found as

ρc =

(
B(θ)

A(θ)

)1/(λ(θ)−2)

. (4.15)
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Figure 4.6: Plot of the velocity ratio (4.16) versus contact angle at ρ =1/2ρc. It can
be seen that evaporation is the dominant �ow driving mechanism for 0 < ρ < ρc when
θ < 135◦, for θ > 135◦ the changing interface will be the main driving force.

For contact angles smaller than 135◦ (λ = 2), the �ow due to evaporation is dominant below
the crossover length scale due to the negative power in ρ. However, above 135◦ degrees the hinge
�ow is dominant in the region ρ < ρc. This can be shown by comparing both �ows

ζ =
uevapφ

uhingeφ

=
A(θ)

B(θ)
ρλ(θ)−2. (4.16)

where uevapφ is the angular velocity of the �ow due to evaporation at the free surface, uhingeφ the
angular velocity of the �ow due to the moving interface at the free surface, and ζ the ratio between
these �ow driving mechanisms. If this number is larger than one for given ρ, evaporation is the
dominant �ow driving mechanism. Otherwise, for a ratio smaller than one, the hinge movement
is the driving mechanism, see �gure 4.6. It should be noted that A(θ)/B(θ) is of order unity, and it
can be seen that a crossover takes place at λ = 2.

In the limit of small contact angles, the functions A(θ), B(θ), and λ become independent of θ
and are given by (2.14), (2.20), and λ =1/2. Here we �nd a crossover length of a �fth of the droplet
radius, and thus, evaporation is dominant close to the contact line for small contact angles, see
�gure 4.5.1

4.4 Towards the lubrication approximation

To verify the validity of the lubrication approximation close to the contact line, we expand the
Stokes �ow solution in the limit of small θ and φ. In this limit the �ow due to evaporation is
dominant and the �ow �eld is approximated by neglecting contribution of the �ow due to the
moving interface. A Laurent series is used to expand the solution around θ = 0 to include θ of
negative degree [23],

ψ = A(θ)U
√
ρ
(
8 sin3 1

2φ θ
−3 − 3

(
cos 3

2φ− cos 1
2φ
)
θ−2 − 5 sin3 1

2φ θ
−1
)

+ O(θ0),

whereupon a Maclaurin series is used to expand the solution for φ,

ψ = A(θ)U
√
ρ

[
−3

(
φ

θ

)2

+

(
φ

θ

)3

− 5

8

φ3

θ

]
+ O(θ3).

The terms φ/θ are of order unity, whereas the last term will be of order θ2. In the small contact
angle limit this last term is negligible, as well as other higher order terms, and an approximation

1The dominant e�ect of the evaporative �ux over the moving interface close to the contact line for small contact
angles also appeared in section 2.2.1, (2.31). Here we saw that the contribution due to the moving interface can be
neglected because of the higher power in ρ.
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of the �ow �eld is found,

ψ ≈ A(θ)U
√
ρ

[
−3

(
φ

θ

)2

+

(
φ

θ

)3
]
. (4.17)

When looking at small contact angles, the Cartesian coordinates can be approximated from
the polar coordinates as

x = Rρ cosφ ≈ Rρ y = Rρ sinφ ≈ Rρφ, and h ≈ Rρ θ, (4.18)

and we can write,
φ

θ
≈ z

h
. (4.19)

Hence, the horizontal velocity component can be obtained from (4.17) as, using (2.14) for the �ux
constant,

ur ≈ −
1

ρ

∂ψ

∂φ
≈ −6

√
2

π

U R

h

√
ρ

[
1

2

( z
h

)2

−
( z
h

)]
. (4.20)

Which is exactly similar to the result obtained by applying the lubrication approximation, given in
(2.33), section 2.2.2, providing a solid mathematical argument for applying the lubrication theory
to describe the �ow in evaporating droplets in the limit of small contact angles. In �gure 4.7 the
lubrication approximation is plotted together with the exact solution for di�erent θ. For conve-
nience, the velocities are scaled to the velocity at the free surface. One can see good agreement,
even up to relatively large contact angles.

One could have expected this result from the streamlines of the �ow due to evaporation in
�gure 4.1 for contact angles 20◦ and 40◦, which look remarkably similar to the �ow �eld obtained
by the lubrication approximation in �gure 2.4. In contrast to the argument of Hu & Larson, the
streamlines arrive more tangential than normal at the free surface.
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Figure 4.7: Lubrication approximation plotted against the exact radial velocity nor-
malized by the velocity at the free surface for di�erent θ.

4.4.1 Why the lubrication theory works

From the presented results it is clear that even close to the contact line, where the evaporative
�ux is diverging, the lubrication approximation can be applied. Instead of the mathematical
argument a, perhaps, more intuitive method can be tried to explain the validity of the lubrication
approximation close to the contact line.
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Figure 4.8: Illustration to estimate the velocity components at ρ. The �ux J gives
the approximately vertical mass �ow at the free surface. The horizontal �ux through
the wedge of height h, Q, is given by the total out�ow from ρ to the contact line,
which is marked by the shaded area.

If the argument of Hu & Larson [17] in section 2.2.2 is recalled, at small contact angles and
close to the contact line, the vertical velocity at the free surface can be approximated as,

uz|z=h ≈ uφ|φ=θ =

√
2

π

U
√
ρ
. (4.21)

Now instead of abandoning the lubrication approximation due to the singular velocity, we will look
for an estimate of the horizontal velocity. This component is estimated by the amount of �uid
passing through the wedge at given ρ. The �ow close to the contact line is evaporation driven,
thus the �ux through the wedge at given ρ is given by the amount of �uid that evaporates in the
domain from ρ to the contact line,

Q(ρ)

ρl
=

ρ∫
0

√
2

π

U
√
ρ′

dρ′ =

√
2

π
U
√
ρ, (4.22)

see �gure 4.8. This �ow has to squeeze itself through the local height of the wedge, approximately
θ · ρ. Now the height average velocity, which is the average horizontal velocity, is given by,

ūr ≈ −
Q(ρ)

ρl θ ρ
= −
√

2

π

U

θ
√
ρ
. (4.23)

and the ratio between the velocities becomes,

ur
uz
∝ 1

θ
. (4.24)

We see that even though the vertical velocity is singular around the origin, the horizontal velocity
possesses the same singularity, but in addition is also inversely proportional to the contact angle.
For small contact angles, the horizontal �ow will be much larger than the vertical velocity, resulting
in an approximate horizontal velocity. This is contradictory to the argument of Hu & Larson and
implies that the lubrication approximation may indeed be used to describe the �ow for small
contact angles.
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Chapter 5

Wedge �ow simulation

For the numerical simulations Comsol1 will be used. Comsol is chosen for the ability to easily
couple di�erent physics problems together in the simulation; here the concentration �eld outside of
the droplet and �ow �eld inside the droplet. In this chapter we will validate the Comsol code by
comparing numerical solutions for the wedge with the analytical solutions described in chapter 3.

5.1 Wedge model description

To validate the numerical code we want to solve a case which we can verify with the analytical
wedge solution. We analytically solved the concentration �eld and evaporative �ux, as described
in section 2.1, and the �ow �eld in chapter 3. Here, we will numerically solve the wedge-�ow
problem for θ = 40◦ and compare it with the analytical solution, a case with θ = 130◦ is solved
to observe if the regions of reversed �ow are seen in the numerical simulation. In the simulation,
again, the Laplace equation will be solved to �nd the concentration �eld,

∇2c = 0. (5.1)

For the �ow inside the droplet, however, the continuity for incompressible �uids and Stokes equa-
tion are solved directly,

∇ · u = 0, and (5.2)

µ∇2u = ∇p, (5.3)

where p is the pressure, instead of via the stream function.
The analytical solutions for the wedge are self-similar and extend all the way to in�nity. For

the numerical simulation, however, the physical domain has to be bounded at certain ρ = P and
boundary conditions must be applied to these newly introduced boundaries, see �gure 5.1. For
reference purposes we will call these newly introduced boundaries the �far-�eld boundaries�.

The far-�eld boundaries impose problems for the comparison of the results obtained by nu-
merical simulation and the analytical results. One could substitute the analytical solution on the
boundaries, but then the in�uence of these boundaries on the solution of the numerical simulation
is unknown. Therefore, we impose di�erent boundary conditions here and compare the numerical
solution with the anlytical solution close to the contact line.

For the concentration �eld we specify the same boundary conditions as in section 2.1, but in
addition we introduce a boundary condition at the vapor far-�eld boundary,

c|ρ=P = cosλ(φ− θ), (5.4)

where λ is given in (3.7). Instead of introducing a constant c = 0 at the boundary, which will result
in a singularity in the evaporative �ux at the far-�eld, this boundary condition will introduce a

1Comsol Multiphysics®, version 4.2.1.110.
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π − θ

Figure 5.1: Geometry of the wedge �ow problem used for the validation case. The
arcs that close the wedge containing the vapor concentration and the wedge containing
the �uid are newly introduced compared to the analytic case and are referred to as
the far-�eld boundaries.

small normal derivate, and thus, a small �ux. For θ < 90◦ this is justi�ed, whereas for θ > 90◦ this
boundary condition will introduce large errors. For the case with θ = 130◦ we want a boundary
condition that will give a larger �ux at the free surface, instead of (5.4), we chose

c|ρ=P = 1− sinλ(φ− θ), (5.5)

which is derived from the analytical solution, (2.10), at ρ = 1.
At the far-�eld boundary for the �uid a condition is wanted that does not directly a�ect the

�ow; here we chose a �xed pressure,
p|ρ=P = p0. (5.6)

Next to the no-slip (3.3), impermeability (3.4) and the no shear-stress (3.5) boundary conditions,
we will only include the evaporative �ux condition at the free surface, and neglect the moving
interface condition because of its dominance for cases where θ < 135◦. Hence, at the free surface
we impose,

uφ|φ=θ =
J

ρl
= −D

ρl
n · ∇c. (5.7)

5.2 Set-up in Comsol

The equations for the concentration �eld and �ow �eld are implemented as presented above with
the speci�ed boundary conditions. The concentration �eld and �ow �eld will be solved sequentially,
starting with the the concentration �eld because of the dependency of the evaporative �ux on the
concentration �eld, to save computational resources.

Near the contact line, a dense mesh is needed to capture the high gradients in c, u, and p. The
mesh generation algorithms in Comsol do not cope well with large variations in cell sizes and
a custom-made mesh is generated. Because the geometry consists of two circular segments, an
algorithm is created to build a mesh for a circular segment with a dense nodal distribution near the
contact line, see �gure 5.2 (a). The mesh is build mainly out of arcs of quadrilateral elements that
follow the φ coordinate. As the quadrilateral elements come closer to the contact line, their size
decreases, resulting in a denser mesh until a critical distance ρm after which triangular elements
are introduced to break-down the arc of quadrilateral elements and converge towards the corner,
see �gure 5.2 (b). In the break down region, quadrilateral elements are still used where they result
in better aspect ratios than triangular elements.

To solve the problem we use the Mumps solver for the concentration �eld and Pardiso for
the �ow �eld. The tolerance factor in Comsol is set to 1 to as convergence criteria.

28



(b) (a)

Figure 5.2: (a) The generated mesh for a circular segment. The black lines display
cell boundaries, the node points are positioned at the intersections of the black lines.
Inset (b) shows a magni�cation of the mesh close to the origin.

5.3 Results for θ = 40◦

A numerical simulation is performed for the case with θ = 40◦. The quadrilateral arcs are generated
at 1◦ φ-intervals and extend from ρ = 1 to 10−6. The total mesh consists out of 160.150 elements
(triangular and quadrilateral).

First we will analyze the exterior problem by comparing the evaporative �ux of the numerical
simulation with the analytical solution given in (2.12). The correct-power law behavior of the
numerical solution is shown in �gure 5.3 (a). Here the evaporative �ux of the simulation is plotted
together with the analytic solution. The analytic solution includes a prefactor A(θ) to �t the
local wedge solution to the solution of the entire droplet. In the simulation this link to the entire
droplet is missing and a di�erent prefactor is expected. In order to compare the two solutions, the
factor A(θ) is chosen to �t the result of the numerical simulation. Near ρ = 1 a di�erent behavior
due to the far-�eld boundary is seen, but the evaporative �ux converges rapidly to the analytic
power-law and good agreement is seen over a large amount of decades. Even as ρ goes to zero,
the singularity is described well by the numerical solution.

(a) (b)

J ′

101

102

103

ρ′
10−10 10−8 10−6 10−4 10−2 100

Figure 5.3: (a) Comparison of the evaporative �ux of the numerical simulation (solid
black) and the analytical solution (dashed gray) for θ = 40◦. The factor A(θ) in the
analytic solution is �tted to the numerical solution. (b) Streamlines of the numerical
simulation in the wedge for θ = 40◦, close to the origin.

29



(a) (b)

uφ
U

0

0.1

0.2

0.3

0.4

0.5

ρ
0.2 0.4 0.6 0.8 1

×10−3

Figure 5.4: (a) Out�ow at the free surface, close to the contact line. The node
points are marked and connected linearly. (b) Arrows of the �ow direction, the invalid
behavior near the origin can be clearly seen.

The evaporative �ux drives a �ow in the wedge; a plot of the streamlines of this �ow is created
using the numerical solution on the domain ρ = 0 to 10−3, and is shown in �gure 5.3 (b). The
result appears to be in good agreement with the streamlines of the analytic solution, shown in
�gure 4.1. Near the contact line, between ρ = 0 and ρm, the numerical solution deviates from the
analytical solution. Here, a con�ict in boundary conditions at the contact line results in an invalid
out�ow as can be seen in �gure 5.4 (a). The no-slip and impermeability boundary conditions
dominate over the out�ow boundary condition. This results in an invalid out�ow for the node at
the origin and the adjacent node on the free surface, giving rise to an incorrect �ow �eld near the
origin, as can be seen in �gure 5.4 (b).

A more quantitative validation of the numerical simulation can be made by calculating how
much the numerical solution deviates from the analytical solution. In �gure 5.5 (a) the angle of the
�ow (φ-direction), the direction of the streamlines with respect to the substrate, of the numerical
solution is compared with the analytic solution at all node points with ρ < 10−1. Again, it can
be seen that close to the origin, the numerical solution di�ers (0 − 1◦ at ρm) from the analytic
solution. In �gure 5.5 (b) the absolute velocity at the node points is compared with the analytic
solution. Similar as done for comparison of the evaporative �ux, the factor A(θ) is missing and
the numerical solution is �tted to the analytic solution in the region 10−4 < ρ < 10−2. The
�ow magnitude of the simulation is lower than the analytic result near the origin. This can be
explained by the missing out�ow at the �rst two node points, see �gure 5.4 (a). Yet, we �nd an
excellent agreement of the numerical solution with the analytical solution in a range ρ from 10−4

to 10−1.
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Figure 5.5: Comparison of the numerical solution for the �ow �eld for a wedge
(subscript s) and the analytic solution (subscript a) for θ = 40◦. (a) Comparison of
the direction of the �ow with respect to the substrate versus distance. (b) Comparison
of the velocity magnitude.
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Figure 5.6: (a) The evaporative �ux of the simulation (solid black) and the evapora-
tive �ux of the analytical solution (dashed gray) versus radial distance. (b) Streamlines
near the origin, 0 ≤ ρ ≤ ρm.

5.4 Results for θ = 130◦

The reason for performing numerical simulations was investigation of the separatrices, which is
why a case is created for θ = 130◦, where a separatrix appeared in the analytical solution to
the �ow �eld due to evaporation, see �gure 4.1. The mesh of this case, again, consists of arcs of
quadrilateral elements which are by 1◦, only this time ρm is set to 10−5. The total mesh consists
of 120.707 elements.

The evaporative �ux, again, shows good agreement with the analytical solution after �tting
of A(θ), see �gure 5.6 (a). The streamlines, �gure 5.6 (b), promisingly show a region of reversed
�ow. The far-�eld boundary condition of constant pressure is not compatible with the �ow re-
versal, and the self-similarity is lost. If streamlines are plotted from the region 0 ≤ ρ ≤ 10−1, it
becomes apparent that the region of reversed �ow, from the numerical simulation, corresponds to
a circulation inside the wedge, see �gure 5.7. This con�rms that the small-scale �ow reversal is
very robust, and seems to be unavoidable. For a closed geometry, as in the entire droplet, one
therefore expects circulation as clearly visible in �gure 5.7.

Figure 5.7: Streamlines of the �ow �eld from the numerical simulation for θ = 130◦

revealing a circulation inside the wedge, radial distance 0 ≤ ρ ≤ 10−1.
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Chapter 6

Numerical results

In this chapter we will present the results of numerical simulations for the whole droplet geometry.
First, di�erences with the validation case will be discussed after which we will compare the evapo-
rative �ux with analytical Popov solutions [10]. To close o�, we will make a small comparison of
the �ow �eld and the wedge and show some more results of the circulation seen inside the droplet.

6.1 Droplet model description

The model to solve the �ow in the whole droplet is set-up in a similar way as the validation
case for the wedge in chapter 5. Here, the geometry of the droplet is con�ned by itself and no
arti�cial boundaries have to be introduced. The concentration �eld, on the contrary, does have to
be bounded, see �gure 6.1. The problem is axisymmetric and the droplet is described by a perfect
spherical cap, see �gure 6.1.

r

z

u

c

θ

substrate

axis of
symmetry

Figure 6.1: Illustration of the geometry used for the numerical simulation of the
evaporating droplet of contact angle θ (gray), together with cylindrical coordinates r
and z. The dashed line shows the axis of symmetry. The top and most right lines
mark the far-�eld boundaries.

The far-�eld boundary condition for the concentration �eld is placed far away from the droplet,
such that the vapor concentration can be approximated to be the vapor concentration at in�nity,

c = 0 in the far-�eld. (6.1)

On the free surface of the droplet, the vapor concentration is saturated and we impose

c = 1 at the free surface. (6.2)
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At the substrate and symmetry axis there is a zero-�ux condition for the concentration �eld,

∂c

∂z
= 0 at z = 0 and r = 0. (6.3)

The boundary conditions for the droplet are more complex than for the �uid wedge because
the droplet is a closed geometry. In the wedge case we could impose the evaporative �ux on the
free surface and the far-�eld boundary would allow for replenishment of the �uid that evaporates.
In the closed geometry of the droplet, this replenishing of the �uid is taken care of by the shrinkage
of the droplet. To satisfy continuity, the total out�ow of the droplet must be compensated by an
inward �ow due to the movement of the boundary, quite similar to how the time derivate of the
contact angle was found in section 2.1.2. The total out�ow can be calculated from the surface
integral of the evaporative �ux,

dM

dt
=

∫
S

JdS, (6.4)

where S is the free surface area. This out�ow due to evaporation combined with the mass of a
spherical cap [10],

M = ρl π R
3 cos3 θ − 3 cos θ + 2

3 sin3 θ
(6.5)

yields a time derivative of the contact angle θ,

dθ

dt
=

dθ

dM

dM

dt
=

(1 + cos θ)2

ρl π R3

dM

dt
. (6.6)

Next, to �nd an expression for the movement of the boundary, we make use of toroidal coordinates,
see �gure 6.2,

r = R
sinh τ

cosh τ − cosσ
, and (6.7)

z = R
sinσ

cosh τ − cosσ
, (6.8)

where lines of constant σ correspond with the free surface of the droplet for di�erent contact
angles, σ = π − θ, and the τ coordinate is normal to the free surface. Hence, using (6.6), the
boundary movement can be expressed as;

u =

√(
∂r

∂θ

)2

+

(
∂z

∂θ

)2
dθ

dt
=

1

ρl π R2

(1 + cos θ)2

cosh τ + cos θ

dM

dt
, (6.9)

and is normal to the free surface.
Finally, the kinematic boundary condition at the free surface is given by the sum of the out�ow

due to the evaporative �ux, (5.7), and the moving boundary, (6.9),

u = −D
ρl

n · ∇c− 1

π R2

(1 + cos θ)2

cosh τ + cos θ

∫
S

n · ∇cdS

 . (6.10)

Note that this boundary condition is similar to (3.6) used for the analytical solution, where also
an out�ow due to the evaporative �ux and an inward �ow due to the moving boundary. The other
boundaries remain similar; at the free surface no-shear stress is imposed, at the substrate no-slip
and impermeability,

u = 0 at z = 0, (6.11)

and axial symmetry at the axis of revolution,

∂u

∂r
= 0 at r = 0. (6.12)
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Figure 6.2: Illustration of the toroidal coordinate system. The lines of constant σ
follow the free surface of the droplet for di�erent contact angles and are displayed as
solid black. The lines of constant τ are gray.

6.2 Results

To present results on the free surface, we introduce a length ` which compares the arc-length from
the position on the free surface to the contact line with the total arc length of the free surface
from the contact line towards the axis of symmetry,

` =
1

θ
arctan

z − zo
r
− 1

2

π

θ
+ 1, (6.13)

where

zo = −R tan

(
1

2
π − θ

)
, (6.14)

is the vertical o�set to the center of the droplet, see �gure 6.3. The length maps the contact line
at zero and increases to one at the top of the droplet, the axis of symmetry, see �gure 6.3.







droplet

` = 0

` = 1

θ

R

zo

Figure 6.3: Illustration of the length on the free surface, (6.13). ` = 0 coincides with
the contact line and ` = 1 with the axis of symmetry.
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(a) (b)

Figure 6.4: Contour plots of the concentration �eld outside of the droplet for (a)
θ = 40◦ and (b) θ = 140◦ obtained from the numerical simulation.

6.2.1 Concentration �eld and evaporative �ux

Contour plots of the concentration for droplet with contact angles of 40◦ and 140◦ are shown in
�gure 6.4. Regions with closely packed contour lines mark the areas with large evaporation. The
di�erence between the negative and positive power in the evaporative �ux is clearly seen; for the
case with θ = 40◦, �gure 6.4 (a), the contours are packed closely at the contact line, where the
singular evaporative �ux is found. In the second case, θ = 140◦, the contours are sparse around
the origin and, the evaporation is suppressed, as we have seen in section 2.1.

The analytical solution of Popov [10] is derived for an unbounded geometry, and showed good
agreement with experiments [11]. For the simulations, the far-�eld boundaries had to be intro-
duced. To investigate the e�ect of these boundaries, a comparison with the analytical solutions
of Popov is shown in �gure 6.5 for the cases with θ = 40◦ and 140◦. We see good agreement
with the solutions of Popov without adjustable parameters, small deviations are only seen close
to the contact line. Since ` provides us with a length scale that goes linearly with ρ close to the
contact line, the evaporative �uxes are displayed on log scales to show that the power-law close
to the contact line. In �gure 6.5 it is shown that a power-law is in agreement with the numerical
simulations for the whole droplet and the analytical solutions from Popov.
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Figure 6.5: Comparison of evaporative �ux found from the numerical simulation
(black dots) and the analytical solution of Popov [10] (red line) versus ` for (a) θ = 40◦

and (b) 140◦. The black dots correspond to the node positions of the mesh.
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(a) (b)

Figure 6.6: Streamlines in the droplet for (a) θ = 40◦ and (b) 140◦. Note that the
position of these streamlines does not indicate the velocity magnitude but only the
direction of the �ow �eld.

6.2.2 Droplet �ow �elds

The evaporative �ux from the preceding section drives a �ow inside the droplet, shown in �gure
6.6. Even though the streamlines for both cases look convincing, the validation case for θ = 40◦

revealed that problems may occur near the contact line due to the singular evaporative �ux.
Indeed, a similar break down in the solution is seen for the simulation of the whole droplet, see
�gure 6.7.

Contrary to the validation case, here, due to the break-down of the solution the continuity
equation is no longer satis�ed. The actual out�ow due to evaporation is not similar to the imposed
evaporative �ux from the exterior problem near the contact line, see �gure 6.7 (b). Since there is
less out�ow than predicted from the exterior problem, the boundary movement overcompensates
the out�ow due to evaporation and a non-zero net mass �ux trough the free surface appears.
Scaling this net �ux gives an estimate for an error in the simulation,

e =
cos θ + 1

2π R2

1

U

∫
S

n · udS, (6.15)

which is of order 10−4 for this case while typical values of other simulations of large contact angles,
θ = 130◦, 140◦, and 150◦, are of order 10−12.
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Figure 6.7: Breakdown of the �ow �eld in the corner of the droplet for θ = 40◦. (a)
shows the direction of the �ow at the mesh nodes. (b) Comparison of the imposed
out�ow due to the evaporative �ux (dashed black) and the actual out�ow in the
simulation (blue). Flow due to evaporation is dominating close to the contact line.
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Figure 6.8: (a) Comparison of the di�erent �ow driving mechanisms, in black the
out�ow due to evaporation and in dashed blue the inward �ow due to the boundary
movement, scaled by the velocity U over the free surface. (b) The same data, but close
to the contact line. Here it can be seen that the �ow due to the moving boundary
dominates, as predicted in section 4.3. The dots correspond with node points of the
mesh.

Close to the contact for the case where θ = 140◦ also shows interesting behavior. We derived in
section 4.3 that here the movement of the boundary is dominant over out�ow due to evaporation
close to the contact line. In �gure 6.8 (a) and (b) the magnitudes of the di�erent �ow driving
mechanisms are compared and one can indeed see that in the numerical simulation the moving
boundary is dominant near the contact line, see �gure 6.8 (b). When moving further over the
free surface, away from the contact line towards the center of the droplet, the evaporative �ux
will dominate over the boundary movement which is again overtaken by the moving boundary
about half-way on the free surface. Close to the contact line there is a �ow towards the center of
the droplet. Hence, to create out�ow further away from the contact line, a circulation must exist
inside the droplet, as seen in �gure 6.9.

A small dent is seen in the circulation near the contact line. Observation of this dent revealed
that it originated from a circulation enclosing solely the node point at the contact line and the
�rst node point from the contact line further among the free surface. This could indicate that the
dent seen in the larger circulation is an artifact of the numerical simulation. Indeed, when a local
re�nement is made in the mesh close to the contact line, the dent decreases in size and again it
solely seems to depend on the �rst two node points of the mesh. In �gure 6.9 the streamlines of
both the coarse and locally re�ned case are shown to observe the grid independence of the results.

(a) (b)

Figure 6.9: (a) Streamlines near the corner of a droplet with contact angle of 140◦.
(b) A close-up of the streamlines local around the contact line, showing an artifact
of the simulations. In blue, streamlines of a coarser mesh (total of 96293 elements)
are shown together with streamlines at the same location of a locally re�ned mesh
(total of 108579 elements) in red. The streamlines of both solutions are generated in
Comsol and pass through the same line.
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Figure 6.10: Comparison of the �ow near the contact line for numerical simulation
of the droplet (blue, dots at the node points) and the analytical wedge solution (red)
in (a) the normal direction and (b) the tangential direction with respect to the free
surface. For the droplet geometry, ρ is the dimensionless distance to the contact line.

More investigation can be done on the dent in the streamlines; the normal velocity and tangen-
tial velocities can be compared to the analytical solution in the wedge, see �gure 6.10. Divergence
near the contact line can be seen in the simulation, especially in �gure 6.10 (b) where the tangen-
tial component is presented. The alternating tangential velocity for adjacent node points near the
contact line hint at an numerical error that damps with for increasing distance from the contact
line. A small note on the �gure, the factors A(θ) and B(θ) used in the analytical solution are
not �tted as was necessary for the validation case but are derived from the small ρ limit of the
solutions from Popov [10]. Away from the contact line, one can see good agreement for the normal
�ow simulated in the droplet compared to the analytical wedge solution up to a ρ of order 10−3.
Streamlines of the analytical solution also show the larger circulation we found in the simulation,
see �gure 6.11.

The circulation seen for θ = 140◦ cannot appear at once in the wedge, but will have to grow
for increasing θ. In �gure 6.12 (a) the streamlines of the numerical simulation of a droplet with
θ = 130◦ are plotted. For contact angles close to 135◦, the driving mechanisms are equally
important and a superposition of the �ow �elds of both driving mechanisms is shown in �gure
6.12 (b), where we see a separatrix. We expect that this separatrix bounds the area of circulation
in the entire droplet, as illustrated in �gure 6.12. Even though the solution of the numerical
simulation does not behave well close to the contact line, the circulation appears to be bounded
by the separatrix.

Figure 6.11: Streamlines for the analytical wedge solution, using a superposition of
the solution due to the evaporative �ux and the solution due to the moving boundary,
with θ = 140◦.
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(a) (b)

Figure 6.12: Streamlines near the corner for the numerical simulation of the entire
droplet with θ = 130◦ (a) and the total analytical wedge solution, superposition of
both �ow driving mechanisms (b). A line with the same angle as the separatrix in the
analytical case overlain in (a).

Figure 6.13: Streamlines near the corner of a droplet with a contact angle of 150◦

on a domain of −0.2×R to 0.2×R.

For larger contact angles the �ow due to the moving interface dominates more and more over
the �ow due to the evaporative �ux near the contact line. More �ow inwards close to the contact
line is expected to give a larger circulation, and indeed, if the streamlines for a droplet with
θ = 150◦ are plotted the circulation becomes visible at a larger scale, see �gure 6.13.
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Chapter 7

Discussion and conclusion

In this �nal chapter we brie�y re�ect and summarize the work that we have done, closing o� with
several suggestions for future research on evaporating droplets.

7.1 Conclusion

In this work we analytically solved the Stokes equations in the vicinity of the contact line, where
the geometry simpli�es to that of a wedge, for an arbitrary contact angle. We found that two
driving mechanisms for the �ow exist: the outwards evaporative �ux from the surface of the
droplet and the downwards motion of the liquid-air interface. In the contact angle region with
θ < 135◦ the evaporative �ux is the dominant �ow driving mechanism close to the contact line,
above 135◦ the motion of the interface is dominant.

We demonstrated that expansion of the exact solution for small contact angles gives a solution
identical to the solution obtained by application of the lubrication approximation. Hence, the
lubrication approximation accurately describes the velocity �eld in droplets, of small contact
angle, close to the contact line. Indeed, we see that the streamlines are not directed normal to
the free surface as was hypothesized by Hu & Larson [17], but arrive at a well de�ned angle,
almost parallel to the substrate. Another physical argument for this, next to the expansion of the
stream function that we have derived, was given from a mass balance close to the contact line.
The horizontal mass �ux for droplets of small contact angle has to be squeezed through an area
with a small height. This results in the same singularity in both velocity components, but giving
the horizontal component a prefactor that is inversely proportional to the contact angle. Hence,
for small contact angle the horizontal velocity is much larger than the vertical velocity.

The analytical solution of the �ow �eld near the contact line also allowed us the opportunity
to investigate the �ow �eld for larger contact angles. Remarkably, for larger contact angles regions
exist where the �ow is in the opposite direction as one might expect; i.e. when there is an out�ow
at the free surface, one would expect the �ow to be directed towards the free surface. However, we
found regions where the �uid moves towards the center of the droplet. These regions are bounded
by separatrices which we describe analytically.

To study these regions of reversed �ow in more detail, numerical simulations were performed
for the entire droplet geometry. In these simulations a circulation in the droplet is indeed seen in
the region predicted by the analytical solution. We numerically investigated the �ow �elds for the
entire droplet of contact angles θ = 130◦, 140◦, and 150◦, for which circulation is observed. We
observe that the circulation becomes larger as the �ow due to evaporation becomes less important
compared to the �ow due to the moving liquid-air interface close to the contact line. More work is
needed to further quantify the comparison between the numerical simulations and the analytical
solutions.
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7.2 Discussion and recommendations for future research

An advantage of the analytical solution is that we can cope with the singularity in the evaporative
�ux. For contact angles below 90◦ we saw errors in the numerical simulations close to the origin due
to the singularity in the evaporative �ux. However, the numerical results obtained for the exterior
problem, solving the concentration �eld and �nding the evaporative �ux, are in good agreement
with the analytical solutions of Popov [10] up to ρ = 10−8. From this exterior problem, one
could extract the prefactors A(θ) and B(θ) which we used in the analytical solution of the wedge
problem to �t the �ow �eld due to evaporation and the �ow �eld due to the moving boundary to
the solution of the whole droplet. We therefore propose that in the future, the problematic region
close to the contact line can be replaced with the analytical solution of the wedge, resulting in a
well de�ned problem that Comsol can solve.

The singular evaporative �ux gives rise to a singular velocity �eld in the analytical solution.
The question that remains is what physical mechanism is responsible for the regularization of this
singularity. In attempt to regularize this singularity within the limits of continuum mechanics,
we tried to couple the concentration �eld at the free surface with the diverging pressure �eld
using the Kelvin equation, see also [24]. The Kelvin equation relates the liquid pressure to the
saturated vapor concentration. The huge pressure at the contact line will give rise to a very
low saturated vapor concentration. Despite the singularity in the pressure �eld, the prefactors
that couple the pressure to the vapor concentration prevented the coupling to be of any physical
meaning. In�uence on the concentration �eld was seen in the nanometer range, well below the
mean free path of the water molecules. Perhaps the regularization could occur on the length scale
of the mean free path, where continuum mechanics fail. This remains an important issue for future
investigation.

Another e�ect that could be taken into account is that the nonuniform evaporative �ux gives
rise to a local cooling of the droplet [5]. The resulting temperature gradients alter the surface
tension locally, thereby driving a �ow over the free surface. Throughout this work this Marangoni
�ow is neglected as the e�ect is not seen in experiments with water droplets [25]. Other �uids,
however, do show the Marangoni �ow and inclusion of this �ow in the numerical model could be
of interest. The temperature �eld in the droplet can be solved while coupled to both the �ow �eld
and evaporative �ux. When this temperature �eld is know, the Marangoni �ow can be calculated
and incorporated in the boundary condition at the free surface.

More research on the circulation that we observed in the droplet can be done. Perhaps a
critical τc could be found to express the length where the dominant mechanism changes, likewise
to the critical ρc that we found for the wedge. This critical distance will give the position of
the stagnation point from the circulation at the free surface, and thereby can provide a rough
description of the circulation inside the droplet. We imagine that visualization of this circulation
in experiments will be cumbersome due to the large contact angles at which the circulation occurs,
the small size and velocity of the circulation, and in�uence of the substrate roughness and tracer
particles.
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Appendix A

Typical droplet properties

The typical properties of the droplet that are used throughout this thesis are taken from the
supplementary material of [1] and are listed in the table below, together with derived values.

Table A.1: Droplet properties from Marín et al. [1], or otherwise when noted.

R 1× 10−3 m
ρl 9.98× 102 kg ·m−3

µ 1.002× 10−3 kg ·m−1 · s−1 [26]
Dva 24× 10−6 m2 · s−1

∆c 1.2× 10−2 kg ·m−3

Table A.2: Derived droplet values from table A.1

U = Dva ∆c/Rρl 2.9× 10−7 m · s−1

Re = Dva ∆c/µ 2.9× 10−4

Bo = (ρl−ρa) g R2

σ 1.3× 10−1
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