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Abstract 
In large magnets, mechanical forces on the wire rise very high. These forces may degrade the 

superconducting performance of the wire. The impact of the forces depends on the wire structure. 

Extensive research has been done on axial and transverse deformations of single strands, but not on 

torsional deformation. The research in this thesis is an addition to the understanding of the strain 

sensitivity of the critical current in superconducting      . The first result of the effect of torsion on a 

      bronze route strand is obtained in parallel magnetic field at the Energy, Materials and Systems 

group at the University of Twente. The critical currents are measured between an angle of twist of 

120° and 840°. Several models have been proposed to calculate the critical current via the scaling law 

of A. Godeke. To model the effect of the parallel magnetic field, the output of the scaling law was 

scaled via Schild’s magnetic field orientation dependence. The strains used in this thesis were 

obtained from a three-dimensional FEM model in COMSOL. Eventually it is concluded that the 

principal strains should be inserted in the deviatoric strain, which must be used in the scaling law. A 

rescaling of the law is still necessary and the performance of the three dimensional scaling law should 

be validated by a detailed mechanical analysis.  
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1. Introduction 
The research in this thesis is an addition to the understanding of the strain sensitivity of the critical 

current in superconducting      . The first result of the effect of torsion on a       bronze route 

strand is obtained in parallel magnetic field. 

Superconductors are being used as powerful electromagnets, for instance in MRI machines, particle 

accelerators and experimental fusion reactors. To understand the performance of a superconductor, 

research is being done regarding the influence of external factors on the performance of the material. 

The influence of strain, temperature and magnetic field on the critical current is extensively 

researched. From these results scaling laws have been proposed to describe the critical current 

dependency on strain, magnetic field and temperature (          .  

In large magnets, mechanical forces on the wire rise very high. These forces may degrade the 

superconducting performance of the wire. The impact of the forces depends on the wire structure. 

Extensive research has been done on axial and transverse deformations of single wires, but not on 

torsional deformation. 

1.1 Superconductivity 
Superconductivity was first observed by Kamerlingh Onnes[1]. He first liquefied helium and 

thereafter it was possible for him to observe the superconductive state in mercury. 

A material is in the superconducting state when the electrical resistance is zero. Electrical resistivity 

originates from the scattering of electrons on thermally excited ions. Therefore, the lower the 

temperature is, the lower the resistance is. With zero resistance no power is dissipated. Therefore the 

materials are favorable to be used for generating strong magnetic fields. This is because strong 

magnetic fields are generated by high electrical currents, and high currents in a normal resistive 

material dissipate a lot of power. Momentarily these magnet systems are used in the ITER project, 

which focuses on producing energy from fusion.  

Not all materials are superconductors. Most materials have a remaining electrical resistance at zero 

Kelvin. This is also the main issue in superconducting technology: current superconductors are only in 

the superconducting state at relatively low temperature, i.e. in this thesis in the order of a few Kelvin. 

In this paragraph an introduction is given on superconductivity. 

A superconductor is only in the superconducting phase within certain boundaries. These boundaries 

are determined by the critical temperature (  ), the upper critical magnetic field (   ), the critical 

current (  ) and the strain state (  .  

When temperature descends below the critical temperature, electrons find it energetically preferable 

to form Cooper pairs. These cooper pairs are responsible for the superconducting state [2]. The 

binding energy of Cooper pairs serves as an energy gap that also describes the critical temperature. 

This is because the energy gap is larger at lower temperatures and it vanishes at the critical 

temperature of a superconductor. The critical temperature is the temperature at which a material 

changes from a superconductor to a normal resistive material. 

In applications for superconductors often external magnetic fields are present. The upper critical 

magnetic field is the magnetic field at which a material changes its superconducting state to a normal 
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resistive state. To explain this any further it is necessary to explain some things about flux pinning, 

fluxoids and type II superconductors.  

There are two types of superconductors, type I and type II. Type I superconductors are characterized 

by the Meissner effect, or in other words, magnetic flux is fully expulsed because of the existence of 

supercurrents over a distance near the surface, the London penetration depth. Type I superconductors 

are useless for magnets because of their low critical magnetic field.  

Type II superconductors find it energetically favorable to allow magnetic flux within the material. 

These are called vortices or fluxiods. The amount of flux is quantized, therefore a higher magnetic 

field leads to more fluxoids. In the presence of a current these fluxiods will move due to the Lorenz 

force. So this gives rise to a flux flow. Moving flux, or changing flux, is associated with potential. 

When the fluxoids start to move due to the presence of a current, a potential gradient is created and 

therefore a resistance is present. In real superconductors this movements of flux is prevented due to 

the ‘pinning’ of the fluxoids, called flux pinning. This happens due to defects in the superconductor. 

In       the defects, called pinning centers, are located at the grain boundaries. So it can be said that 

for       the flux pinning is a surface phenomenon [3]. 

Now an explanation of the upper critical field is obvious. The upper critical field at zero Kelvin and 

zero current is the magnetic field for which fluxoids will not move, so where the bulk pinning force of 

the material is equal to the Lorenz force on the fluxoids. This value is extrapolated from experimental 

data, since at zero current no Lorenz force is present. 

The strain state of a superconductor also influences the superconducting properties, i.e. the critical 

current. The strain dependence of the critical current of       wires is well documented in literature. 

The main focus lies on axial strain within the superconductor [4-13], but also bending experiments 

have been conducted [7, 13-17]. Several scaling laws have been proposed to calculate the critical 

current dependency on the strain state, the magnetic field and 

the temperature [7, 10, 18-21]. 

A good way to visualize the superconductor’s performance 

boundaries is by calculating the critical surface. Figure 1 shows 

the critical surface for      . Strain influences the shape of the 

critical surface [22]. 

In ordinary critical current measurements the electrical field (or 

voltage) of a sample is measured. This might be strange, 

because a superconductor does not have a potential gradient, 

since there is no resistance. Theoretically this is true, but in 

literature a superconductor is defined within a certain range, as 

explained above. This is also due to practical reasons, which have to do with the resolution of 

measuring devices available. The critical current is often defined as the current at which the 

superconductor has an electrical field of 10µV/m.  

Figure 1: Typical critical surface of 

Nb3Sn and NbTi. 
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1.2 Superconducting materials 
Several processes are commercially used to fabricate       wires, for instance the Internal Tin process 

and the bronze process. The experiment described in this thesis uses a bronze route strand produced 

by Bochvar Institute of Inorganic Materials. Other production methods will not be discussed.  

Figure 2 [23] shows the cross section of a bronze route strand. 

This is the cross section of a Bochvar strand. Superconducting 

wires contain thousands of microscopic filaments which carry 

the current. The        filaments are embedded in a bronze 

matrix for thermal and electrical stability [24].  

Superconducting wires need to be heat treated to form the 

superconducting material      . Before heat treatment the 

filaments consist solely of Nb(Ti) [25], which is not 

superconducting. During heat treatment the Nb(Ti) reacts with 

the tin from the bronze matrix material to form the brittle A-15 

phase, called        [26].  A single crystal of       is nearly 

cubic and cristal growth of the A15 layer during heat treatment 

is very anisotropic. From this it can be stated that the elastical 

properties of the A-15 phase are homogeneous. Figure 3 shows 

an example of the A-15 unit cell [6]. 

Surrounding the filamentary area is a Niobium or Tantalum 

barrier to prevent tin leakage into the copper.  

The elastic properties of the A-15 layer are homogeneous and 

anisotropic as stated before, but the elastic properties of the 

entire strand are not. This is a possible source for error in the 

mechanical model explained in chapter 2.  

The filaments in strands are twisted and describe helixes [25]. The filaments are twisted to minimize 

eddy current coupling losses. In transverse field the twist pitch should be as short as possible to 

reduce eddy current coupling loss. However, the minimum twist pitch is often limited by fabrication 

process limits[27].   

After heat treatment the larger thermal contraction of the matrix materials (typically about -0.3% from 

300 K to 4K) compared to the thermal contraction of the       (about -0.18%) results in an axial pre-

compression (  ) of the A15 phase [7].  

1.3 Mechanical loads and strain scaling behavior 
As mentioned in the previous paragraphs, the critical current of       depends on the strain state of 

the material. In this case the deformation of the       filaments inside the bronze matrix. A lot of 

work is done regarding axial- and transverse deformations, but none is done regarding torsion. In this 

paragraph an outline is given about the known influences of axial and transverse deformations. Also 

good scaling relations exist that describe the critical current dependence on the strain. In these scaling 

laws most strain dependencies are defined through the strain dependence of the upper critical 

magnetic field or the critical temperature.  

Figure 2: Cross section of a bronze 

route strand from Bochvar Institute. 

Figure 3: Schematic presentation of the 

Nb3Sn A15 unit cell. 
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On microscopic level strain deforms the A15 lattice and therefore its vibration modes will change. 

Microscopic effects of the strain on the upper critical magnetic field and the critical temperature are a 

result of the full electron phonon interaction spectrum and the density of states [20]. In this thesis 

microscopic effects are not further regarded.  

Strain affects the bulk pinning force which is responsible for the pinning of the fluxoids. As a starting 

point in the description of the critical current, the bulk flux pinning force is often taken  (        ). 

From here the magnetic field dependence of the critical current can be found. The temperature 

dependence is then implemented via the temperature dependence of the upper critical field and by 

the ginzburg-landau parameter ( )[20]. Then the strain dependencies are defined trough the strain 

dependence of the upper critical field (   ) or the critical temperature (  ).  

     
      

    

  
     

   

 
 

 

 

 

(1) 

In which    ,      is the maximum upper critical magnetic field and     is the maximum critical 

temperature. As can been seen from (1), the upper magnetic field is three times as sensitive to strain as 

the critical temperature.  

An important macroscopic conclusion by Welch is that in a three-dimensional strain description the 

deviatoric strain components dominate the strain sensitivity of the critical current of      . And that 

the hydrostatic components have, in comparison, a negligible effect[20].  

In one dimension stress and strain relate via Hooke’s law for elastic behavior (    ). Here stress and 

strain are scalars. Poisson’s ratio relates the uniaxial strain to the shear strain. This gives rise to the 

sense that strain is not a one-dimensional phenomenon. In fact it is not. Strain is a three-dimensional 

phenomenon, which is described by the strain tensor. Strain is a tensor in which the diagonal elements 

are the uniaxial elements of the strain and the off-diagonal elements the shear strains.  By rotating the 

coordinate system to another base a coordinates system can be found in which the shear components 

are all zero. The remaining components are called the principal strains (  ,   ,   ) [10]. 
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From here three parameters exist, called strain invariants, which are not influenced by the coordinate 

system. The first one is the hydrostatic strain and describes a volume change. 

     
        

 
 

 

 

(3) 

The second and third invariants are the symmetric and asymmetric components of the deviatoric 

strain tensor[7]. The second invariant is the ‘deviatoric strain’ and is defined as: 

     
 

 
        

         
         

  

 

 

(4) 

This second invariant of the deviatoric strain tensor describes a change of shape instead of a change in 

volume. The third invariant is the multiplication of the three principal strain components (      ). In 

an orthogonal coordinate system, in which the principal strain axles coincide with the coordinate 
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axles, the principal strains are equal to the orthogonal strains in the strain tensor[7]. The deviatoric 

strain tensor can be found by subtracting the hydrostatic strain tensor from the strain tensor. 
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Now, there are three relevant models that describe the strain dependence (    ) of the critical current 

of       wires, as summarized by Godeke[20].  

First of all Ekin’s power law. This law, proposed in 1980, describes the critical current as function of 

the applied axial strain. It does not account for the three-dimensional nature of strain, but it includes 

the observed asymmetry in axial strain experiments. 

In figure 4[7] a typical current-strain curve 

is shown, in which this asymmetry is 

visible. “When a wire is subjected to 

uniaxial compressive strain, the critical 

current density, upper critical field and the 

critical temperature reduce approximately 

linearly and reversibly with strain. When a 

wire is subjected to a uniaxial tensile 

strain, the critical parameters increase 

approximately proportionally and 

reversibly with strain until a parabolic-like 

peak is reached, after which the properties 

reduce approximately linearly with 

strain”[20]. 

The maximum in the curve is reached when 

the deviatoric strain components in the A15 

are minimized. This is not the same value as where the axial pre-compression is minimized, i.e. where 

   is counteracted.  

The second model is the deviatoric strain model by Ten Haken [10]. This model incorporates the three-

dimensional nature of the strain, but does not model the asymmetry around the maximum in the 

strain dependence curve (see figure 4). 

The third model is the full invariant analysis proposed by Markiewicz [21]. This model uses a more 

microscopic approach and is therefore more complex, but also the best fit. The model does not yet 

incorporate a full description of the dependence of the upper critical magnetic field and the critical 

temperature on strain.  

From here on the focus will lie on the proposed scaling law by Godeke. This scaling law fully 

describes the critical current density,          , for uniaxial strains based on the deviatoric strain 

model. Here    is the critical current density. Below the scaling law is shown: 

Figure 4: typical current-strain curve for Nb3Sn wires. 

Experimental results (dots) and scaling law fit (line) 

with the deformation fitting parameters. 



11 

 

          
  

 
                            

 

 

(5) 

         
              

 
 

(6) 
      

      

(7) 
       

       

 
 

(8) 
   

           
                  

 
 

(9) 

  
        

        
 
  

 

 

(10) 

      
 

         

           
        

 
          

        
 
           

 

 

(11) 

    
       

    
     

 
 

 

 

(12) 

                      (13) 

 

The superconducting parameters   ,     
    , and    

     and the deformation related parameters    , 

   ,      and    need to be determined experimentally. The parameters are listed in table 1 

Parameter Description 

  Fitting parameter of the bulk pinning force (         ) 

  Fitting parameter of the bulk pinning force (         ) 

  Constant 

    
     Maximum upper critical field at 0 Kelvin 

       Maximum Ginzberg-Landau parameter in strain dependence results  

  
     Inhomogeneity averaged critical temperature 

   
       Upper critical field 

   
     Inhomogeneity averaged maximum critical temperature in strain dependency results at 

0 strain 

    Second invariant axial strain sensitivity 

     Axial remaining strain term 

    Third invariant axial strain sensitivity 

         Applied strain in axial direction 

   Axial pre-strain in the A15 phase 

Table 1: Description of the parameters in the strain scaling law by Godeke. 

Godeke used the deviatoric strain model as a starting point. From there he defined his model for 

uniaxial strain experiments. He added the linear term       to the strain dependence,     , to rotate 

the curve around the maximum to account for the stronger reduction in critical current for tensile 

strains. Due to this the axial position of the maximum shifts by a factor    . Also due to this the 

maximum of                  increases above one and therefore      is re-normalized to the 

maximum observable critical field value. This results in the scaling law above.  
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As stated before transverse pressure is documented in literature, but if scaling is regarded no 

qualitative scaling has been found to propose the incorporation of the influence of shear strains, 

besides the incorporation via the principal strains in the deviatoric strain or via the full invariant 

analysis. These methods have not been verified yet for a full three-dimensional analysis. So as with 

axial strain in the scaling law of Godeke, no scaling law exists in which current scales with the shear 

strain components. Also Ten Haken states that transverse strain experiments on       have 

insufficient reproducibility to link them to the proposed deviatoric strain dependence of    
 . Another 

confusing finding was the decrease of    
  with decreasing deviatoric strain in tapes. As from this, it 

can be concluded that no applicable transverse strain dependence of the critical current has been 

formulated yet. It must be stated though that in wires a large reduction of the critical current has been 

observed in transverse strain experiments. This reduction has not been observed in tapes.  

For the purpose of this thesis no scaling law has been found that describes the critical current as 

function of the full three-dimensional strain. The basis for such a scaling law is available in literature 

[7][4] [21], but these are not fully developed and have not been compared to a detailed mechanical 

study yet.  

1.4 Parallel magnetic field 
A Lorenz force exists when a magnetic field has an angle 

with a current. A normal electrical wire which is parallel 

to a magnetic field is therefore ‘force-free’. This is not the 

case for a parallel bronze route wire since the filaments 

are twisted and therefore, if the strand’s axis is parallel to 

the magnetic field, the filaments are not parallel to the 

field. From the paragraph above it is given that the 

critical current depends on the magnetic field strength. 

The ‘effective’ magnetic field strength increases with 

increasing angle between the strand’s axis and the 

magnetic field, reaching its maximum at      . In 

figure 5 this is visualized[3]. 

Research about the critical current dependence on the magnetic field orientation is done by Schild [3] 

and Takayusa. Schild limits his research to the magnetic field orientation dependence due to 

manufacturing process. In chapter 4 a geometrical influence will be substituted.  

Schild defines the reduced critical current as 

   
     

       
 

 

 
(14) 

Here   is the angle of the strand’s axis with the magnetic field. A field strength dependence in noticed 

for high fields, above 15 Tesla, in the bronze route samples, but since the magnetic field strength in 

this thesis is small compared to the maximum upper critical field, this field strength dependance is not 

taken into account[3]. Therefore the magnetic field orientation dependence of the critical current is 

given by Takayasu’s experimental law 

 

  
            

 
(15) 

Figure 5: strand coordinate system 
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Where m and n are two fitting parameters and    is the average angle of the filaments with the 

magnetic field.   and   are 0.83 and 0.19 respectively for a bronze route strand [3].    is given by 

   
 

  
                  

  

 

  

 

 

 

 
(16) 

This is the integral over the filamentary cross section, taking into account that along the radius the 

filaments have a different angle with the magnetic field.    is set as the angle that controls the critical 

current dependence of the magnetic field orientation [3].      is the filament distribution function and 

         is the angle of a filament with the magnetic field, given as 

                         
   

 
                   

   

 
                 

 

 
(17) 

Here   is the twist pitch.  

1.5 Course of the assignment and lay-out of the thesis 
In this thesis the influence of torsion on the critical current of       is researched. Results are 

obtained under parallel magnetic field for a bronze route strand. The scaling law of Godeke is used in 

combination with a 3D model from COMSOL and the orientation dependence by Schild, which results 

in a model for the critical current dependency on torsion.  

The entire development of the experimental setup was done by R. Pompe van Meerdervoort. He also 

contributed the photos further on in the thesis. The experiments are done by R. Pompe van 

Meerdervoort and myself. My contributions are also the development of the COMSOL model, the data 

processing and the alignment of the theoretical framework with the result.  

In chapter 2 the COMSOL model is explained and discussed, leading to some first conclusions 

regarding the performance of the model. Chapter 3 describes the experimental setup and methods. In 

chapter 4 the results from the experiment will be presented and discussed, as well as the results from 

the modeling. Chapter 5 summarizes the main conclusions and some recommendations are made 

regarding the research performed in this thesis, as well as for future research.  
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2. Modeling 

2.1 Structure 
From chapter one it is known that the strain state of the sample is important for critical current 

calculations. The purpose of this model is for it to be able to give good insight in the strain state within 

the A15 layer.  

Within the Energy Materials and Systems group, COMSOL Multiphysics is often used for strand 

modeling. By choosing COMSOL as modeling program an easy understanding and adoption of the 

model within the group is possible. 

After extensive effort to implement the thermo-mechanical modeling in combination with the 

mechanical modeling, the simplification has been made to model the pre-compressive strain (  ) 

directly.  

Furthermore, a large part of the strand has been homogenized to limit the degrees of freedom in the 

FEM calculations.  Since the only interest is in the strain state of the A15 layer, the copper, bronze and 

a large part of the       filaments can be taken together in the homogenization. The model only has 

to simulate the induced strain in the       filaments, which originates from the applied forces and 

the surrounding matrix material. The barrier material has not been accounted for.  

Due to the expected radial differences in the strain when applying torsional deformation, a 

multifilament model has been made. Its structure can be seen in figure 6.  

 

Figure 6: different views of the COMSOL model. Locations of the filaments from inside to outside, A to D.  

The model has been built to the specifications in table 2. The filamentary area has been divided into 

four circular regions, each represented by one large filament. The height of this model is 1/8 of a twist 

pitch. This results in a strain state at the center cross section that should not have any influence of the 

entrance effects any more. This will be clarified later. The inner filament is placed just outside the 

strand’s z-axis and the outer filament just inside the filamentary area. From inside to outside we have 

filament A to D.  

The bottom boundary is fixed. The axial force is applied to the top boundary. The angle of twist is 

applied to the top edge.  

 

 



15 

 

Bochvar strand parameter Value 

Strand radius (  )  0.405 mm 

Filamentary area radius (  ) [28] 0.273 

mm* 

Twist pitch ( )  15 mm 

Number of filaments [23][29] 7225 

Filament radius [23] 1.5 µm 

Thermal pre-compression (  )  -0.110%** 

Table 2: relevant specifications of the Bochvar strand investigated in this work. 

*average of bronze route filamentary area radii 

**from unpublished result of Pacman measurements on Bochvar strands 

2.2 Calibration 
Now the model needs to be calibrated to generate plausible outcomes of the strain state. Elastic 

properties are well documented in literature (elastic modulus and Poisson’s ratio). Also tensile strain 

experiments are well documented. The calibrations are done under the assumption of isotropic elastic 

properties for the geometry and subdomains. 

Here two methods will be set forth to calibrate the model. The first uses an aerial approach, summing 

the volume fractions of the different materials with their elastic properties, to find the elastic 

properties of the homogenization. The second approach uses axial stress-strain results to determine 

the uniform elastic properties of the entire strand. From these the elastic properties of the 

homogenization are determined by subtracting the aerial fractional portion of the elastic properties of 

the four filaments.  

First this was done for a model with 1 filament and a subdomain for the copper shell. Later the copper 

shell was integrated in the homogenization for simplicity. This simplification did not influence the 

calculated strain state of the A-15 phase. Also three more filaments were added, which also did not 

alter the strain state of the first filament. The strain state in the filament is calculated from the strain of 

the matrix on the filaments and the applied strain. The presence of the added filaments does not alter 

these strains. 

In table 3 the values of the aerial homogenization are shown. 

Material Volume fraction Elastic modulus Poisson’s ratio 

Cupper 60 % 137 GPa 0.355 

Bronze 26% 119 GPa 0.34 

A-15 14% 100 GPa 0,39 

Barrier 0 % 100 GPa 0.38 

Homogenization  127 GPa 0.356 

A-15  100 GPa 0.39 

Table 3: Elastic properties of strand materials [23, 29-32] and the homogenized elastic properties by using an 

aerial approach. 

The second method uses the stress-strain curve of the Bochvar strand, see figure 7. Here the slope of 

upper curve is called the ‘effective elastic modulus’. It is not the elastic modulus since that term is only 

appropriate for the slope in the elastic regime. The effective elastic modulus needs to be determined in 

a certain regime since the stress-strain curve is not linear. The elastic properties are determined in the 
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range between 70 MPa and 156 MPa stress, in other words between 0.0012 and 0.004 strain. By 

extrapolating this curve down as if the stress-strain curve of the Bochvar stand is linear, an extra term 

to the intrinsic strain is added. The Poisson’s ratio of the homogenisation is estimated at 0.4. The 

added offset in the pre-compressive strain is -0.001. The elastic properties are shown in table 4. 

Domain Effective elastic 

modulus 

Poisson ratio 

Entire strand 29.2 GPa  

Homogenization 29.2 GPa 0.4 

A-15 100 GPa 0.39 

Table 4: elastic properties for the modeling of the Bochvar strand in COMSOL by using the stress-strain curve 

and the ‘effective elastic modulus’. 

 

Figure 7: Measured stress-strain curve for a Bochvar strand by the EMS group at Twente University. 

It would be expected that both approaches would deliver the same result, since both give a good 

approximation of the reality.  Intuitively it can be stated that this is not the case, since the elastic 

moduli of the homogenizations differ by a factor of four. Therefore the second calibration will be used 

for the remainder of this thesis, because this calibration gives a much more reliable output for axial 

strain modeling in the domain of interest. Note that this is only a good approximation as long as the 

stress (or strain) increases (figure 7). The difference in the value of the elastic modulus and the 

effective elastic modulus can be assigned to plastic deformations in the matrix material and copper 

[26]. In the stress-strain curve it can also be seen that the strand deforms plastically in the low strain 

regime (0 to 0,002), so it might be possible that the slope of the curve at zero strain is ~127 GPa. This is 

then also the case for all points along the x-axis where the stress increases from zero.  

In figure 8 the resultant strain curves can be seen for the values in table 5. This is the axial strain in the 

strand due an applied force. In figure 9 it can be seen that the axial strain in the filaments is almost 
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zero when a force on the top boundary is applied. This force should result in 0.0011 axial strain on the 

strand, hence, the strain in the filaments in the z-direction should be 0. As can be seen in table 5 (and 

figure 7) this force should be 65 MPa. On the x-axis the length of the simulated filament is shown as 

function of length of a twist pitch in radians. The simulated twist pitch is ¼ of one total twist pitch 

(2π). 

 

Figure 8: Strains in the strand for different stresses.  Figure 9: Strain in the filaments at 65 MPa axial 

stress. 

Applied stress Strain strand 

from literature 

Strain strand 

from model 

Error 

65 MPa 0.0011 0.00105 5% 

95 MPa 0.002 0.00203 2% 

125 MPa 0.003 0.00305 2% 

156 MPa 0.004 0.00403 1% 

Table 5: Comparison of the literature with the output from the COMSOL model. 

2.3 Results and discussion 
The modeling in COMSOL has been done under de assumption of a homogeneous distribution of 

twist and axial strain within the sample.  

As explained in paragraph 2.1 torque is applied on the top edge of the model. Some results of the 

uniaxial strain (z-component strain) can be seen in figure 10. 

The curves in figure 10 are not straight lines. Only one strain value can be assigned to a filament. 

Therefore we neglect the entrance effects and use the value of the strain at 0.4 radians twist pitch. To 

check the validity of this value, the length of the model has been double to 1/4 of a total twist pitch. 

The resultant graphs can be seen in figure 11. In table 6 the extrapolated data from these angles of 

twist can be found. There is no error between model 1 and 2 so we can use the extrapolated data from 

model 1. No change of the strain in model 2 is observed between 0.5 and 1.1 radians twist pitch.  

De x- and y- components of the strain, as well as the principal strains, have comparable results, i.e. 

entrance effects at the top and bottom of the filament and a constant value in the middle.  
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Figure 10: strains at two angles of twist for the 1/8   Figure 11: strains at two angles of twist for the 1/4 

twist pitch length model.     twist pitch length model.   

Twist Filament Value model 1 Value model 2 

180 A 0.00018 0.00018 

 B 0.00022 0.00022 

 C 0.00029 0.00029 

 D 0.00038 0.00038 

720 A 0.00019 0.00019 

 B 0.00034 0.00034 

 C 0.00065 0.00065 

 D 0.00108 0.00108 

Table 6: Comparison of the strains in model 1 (1/8 twist pitch length) and model 2 (1/4 twist pitch length 

For a transverse strain calibration better results should be available on bending strain on bronze route 

strands. In [17] and [16] are modeling and measuring methods of transverse pressure proposed. So a 

better calibrated model can be obtained by implementing thermo-mechanical aspects and improved 

material properties. Also the plastic properties of the strand should be modeled in that case [17]. For 

now the axial calibration gives a good sense of the ligidity of the results. The transverse calibration is 

out of the scope of this thesis.  

This model is used throughout this thesis, but a 

check on some parameters in a later stage gave some 

results regarding the deviatoric strain. From 

literature it is known that at an axial strain close to 

the axial pre-compression the deviatoric strain 

minimizes [10]. This is at a strain δ. For the strand in 

the thesis this value is unknown. In figure 12 the 

deviatoric strain is plotted against the axial tension. 

At 62.5 MPa the deviatoric strain minimizes. This is 

close to the value of the axial pre-compression, but 

since no value for δ is known, no conclusions can be 

drawn regarding the precision of the model if it 

comes to the deviatoric strain. 

Figure 12: Deviatoric strain minimization due 

to axial tension. 
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Another comment on the model is the value for the Poisson’s ratio (0.4), which is not a logical choice if 

compared to the result of the Poisson’s ratio from the homogenization (0.356). Due to time constraints 

the calculation for the entire model are not redone, but one value is obtained for an angle of twist (ϕ) 

of 720° with a Poisson’s ration of 0.356. The value of the deviatoric strain changed by 2% where the 

Poisson’s ratio changed by 11%.  

2.4 Conclusions 
At this moment the model performs well for axial loads. The performance for transverse loads is 

unknown. A maximum error of 5% under axial tension has been observed at 65 MPa. No error can be 

estimated for the deviatoric strain, since the strain value at which the deviatoric strain minimizes is 

unknown. The minimum in the deviatoric strain is observed close to the value of the axial pre-

compression, which is in good agreement with literature. The Poisson’s ratio of the homogenization 

does not influence the output of the model significantly. Throughout the remainder of this thesis this 

model is used for strain state simulations. 
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3. Experimental details 

3.1 Configuration and setup 
The experiment is done in the 15 Tesla cryostat at the EMS group of the University of Twente. This 

device has a boring diameter of 80 mm. 

The cryostat maintains a constant temperature of 4.2 K during operations. 

An external field is applied on the sample during operations by an electromagnet inside the cryostat. 

The field is assumed perfectly parallel to the sample axis. Deflections from the center of the cryostat 

will be present, but are intuitively ignored because these are very small and the magnetic field 

strength does not change substantially in that region. In figure 13 is visible that the magnetic field will 

not have the same field strength along the entire length of the sample, which is 157 mm. The center of 

the sample is located at the center of the cryostat. From figure 13 it can be estimated that the magnetic 

field strength decreases about 9% from the center to the edge of the strand, namely 1.8 Tesla decrease 

over 10 cm when the center has a field strength of 15.6 T.  

 

Figure 13: Magnetic field strength in the 15T cryostat at the EMS group. Picture by Jeroen van Nugteren. 

For the experimental research an adapted version of the TARSIS insert was used. Modifications have 

been made to freeze all degrees of freedom, except two. The part of the insert at cryogenic 

temperatures can be seen in figure 14. 

The first degree of freedom is the axial force, which results in an axial strain. The ends of the strand 

were soldered into cylindrical copper blocks. One end is clamped into the central shaft and the other is 

initially located ‘free’ at the bottom, to account for shrinking of the set up. Shrinking of the setup 

occurs during the cool down in the cryostat. Before the start of the experiment it is favorable to have a 

sample which has not been loaded yet. During the experiment the bottom cylinder is also clamped 

and the axial force is applied via the central shaft on the top cylinder (see figure 14). 
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Figure 14: Insert at strand level with the strand inside (left) and the strand’s fixation (right). 

Secondly the angle of twist is a degree of freedom, which also is applied from outside the cryostat on 

the central shaft to the top cylinder. 

The central copper shaft was also used as current lead. Current passes through shaft and the top 

copper cylinder into the strand, into the lower cylinder, into two YBCO tapes and into the bottom 

copper parts. The YBCO tapes are soldered at the ends to the copper block on the bottom and are free 

to move at their centers. This structure makes sure that the bottom copper cylinder is still ‘free’ to 

move to account for the shrinking of the setup. The setup is able to deliver currents of more than 750 

Ampere to the strand.  

The bottom copper cylinder fits into a G-10 holder (see figure 14), which holds it in place and acts as a 

clamp for the cylinder to go up, when pulled up during testing. Later this axial load will be further 

clarified. 

The strand is supported along its length by the G-10 holder and a reinforced ceramic tube (see figure 

14). The ceramic tube is being held in place by G-10 struts. This way the Lorenz forces will not affect 

the position of the strand.  

Most materials used in the setup do not magnetize. If so, the materials surrounding the sample would 

influence the angle and strength of the externally applied field, and therefore the measurements. 

Magnetization does occur in the copper parts. The effect of this magnetization is neglected in this 

thesis because the distortion of the field is very small compared to the applied field and no copper 

parts are ‘near’ the sample (further away than a few µm), this means the sample will not ‘feel’ the 

presence of the copper parts in the setup. 

During the experiment, measurements are done by different devices on different parameters. The 

parameters that are being measured are: the current, different voltages along the sample (by five 
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voltage pairs), the magnetic field and the applied axial force. For the applied axial force a voltage is 

measured from which the actual force in Newton can be calculated. 

Each device has an error. Later a decision has to be made if these errors are of significance or not. 

Below you will find an overview of the devices, the specifications and the errors in the measured 

parameter. The errors originate from the datasheets of the devices and are an approximation of the 

total error in the measured parameter.      

Device Measured parameter Error Range and notes 

Hitec Zero-flux Current (A) Max. 0.9 A Type B2000 

Range: 200 to 750 A 

Keithley Model 1801 

Nanovolt Preamp with 

2001 

Voltage (V) 0.3 nV Range: 1 to 10 µV 

Keithley 2182A 

Nanovoltmeter 

Voltage (V) 40 nV Range: 1 to 10 µV 

Cryogenic magnetic 

power supply CTS-

91/25 

Magnetic field (T) ~10 mT Type PS120C 

Range: 14 T 

Tedea Huntleigh model 

615 with Keitley 2000 

multimeter (loadcell) 

Voltage (V) 3 µV Range: 0.25 mV 

Table 7: List of experimental devices used in the experiment and their final error in the measured parameter.  

It is expected that these errors do not have a significant influence on the experimental results, since 

they are all, at least, a hundred times smaller than the measured parameter. Most are in the range of a 

thousand times smaller than the measured parameter. 

Furthermore, VI was used to process the data. It calculates the V-I graphs, the critical currents and n-

values of the experiment.  

3.2 Materials and Methods 
Due to the extremely brittle A15 phase in the sample, the sample had to be handled very carefully. 

Another important step of the sample preparation is good electrical contact with the current supply.  

Only the most important steps of the sample preparation will be reported here.  

When the sample was soldered into the cylinders and the cylinders were placed into the setup, good 

electrical contact was guaranteed by etching away the outer chrome layer of the strand, and by 

scrubbing down the copper layers of the cylinders and the inside of the central shaft.   

A G-10 sample holder was used to prevent the strand from breaking, see figure 15. This holder was 

also used to place the sample in the insert. When placed in the setup the voltage taps were soldered 

on. 5 voltage pairs were used to measure the voltage over the strand at different positions. The lengths 

can be seen in table 8. The length of a section is used to calculate the electrical field strength, which is a 

measure for the resistance as described in paragraph 2.1. The wires used for the voltage pairs do not 

lay any restrictions on the movement of the strand. 

After testing the voltage pairs, the insert, with the strand, is ready for the experiment.  
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Figure 15: Sample holder 

The torsion experiments are the first to be executed on       wires. This experiment is the first 

experiment with a combination of axial strain, torsional strain and parallel magnetic field.  

Various attempts have been done with this setup on internal tin wires, without proper results. From 

these experiments it can be concluded that high magnetic field strengths, of 14 Tesla, are needed to 

measure a critical current. Therefore the experiment is conducted at 14 Tesla, parallel field. Also, 

caution is required regarding the current supply. Too much current can lead to a quench in the strand, 

and in its turn this can lead to a temperature of the strand higher than the melting point of the 

soldering used to attach the voltage pairs, i.e. the voltage pairs will come loose. 

   

As explained in chapter one, within a certain range it is said a material is superconducting. This range 

is specified by the critical field, defined as 10 µV/m. During measurements the current increases and 

the voltage (or electrical field) of the different voltage pairs is measured. This results in V-I curves 

shown in figure 18. VI calculates the associated critical current by extrapolating down to the field 

criterion from the measured values in the range of 100µV/m to 1000µV/m. The VI settings are given in 

table 9.  

It is assumed that at the start of the experiment the sample has not experienced plastic deformations 

from, for instance, sample handling and shrinkage. To freeze out the degrees of freedom at the bottom 

of the sample a uniaxial force was applied, by the loadcell, to pull the strand in tension. This locks the 

bottom copper cylinder in the G10 holder, see figure 14. When the sample is unloaded, a voltage of 0.1 

mV was measured by the load cell. A stress of 70e6 N/m² is applied to the strand, which corresponds 

to a voltage of 0.25 mV. It is assumed that the applied load at the top of the insert is the load applied 

on the strand. This axial load also result in a critical current to the right of the maximum critical 

current, see figure 4. 

Voltage pair Location Length 

1 Top 23 mm 

2  21 mm 

3 Center 30 mm 

4  22 mm 

5 Bottom 23 mm 

Table 8: Voltage pair locations and lengths. 

Setting Value 

Critical field criterion (V/m) 1e-5 

Current margin (A) 3 

Margin upper critical field (-) 100 x critical field 

Margin bottom critical field (-) 10 x critical field 

Table 9: VI-settings for critical current calculations 

Figure 16: Top of the insert 
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Because of the temperature gradient during an experiment, the materials in the setup expand. This 

would result in a smaller uniaxial force if not compensated for. Therefore the uniaxial load was 

maintained at 0.25 mV. 

Torsion is applied by hand. In figure 16 it can be seen that the arrow indicates a certain angle of twist. 

This way of applying torque gives an estimated error in the angle of twist of 1°. It is assumed that the 

applied angle of twist at the top of the insert is equal to the angle of twist of the strand. 
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4. Results & discussion 
In this paragraph the results from the experiment will be presented and discussed. Then two different 

effects of torsion, namely the geometric and mechanical effect, will be further examined in search of an 

explanation for the experimental result. 

The experimental result was obtained from a Bochvar strand, which is a bronze route strand. The 

measured critical current of the different sections is plotted against the angle of twist in degrees in 

figure 17. The electrical field of section A and E was too low to calculate a critical current until an 

angle of twist of 840 degrees. The same is the case for sections A and D until an angle of twist of 180 

degrees. The result shows good symmetry along the strand’s length. This suggests a homogeneous 

distribution of force and twist, that is also assumed in COMSOL. A critical current for section C was 

calculated for the first time at an angle of twist of 120 degrees. Lower angles of twist did not result in a 

strong enough electrical field to calculate a critical current. Note the supplied current did not exceed 

750 A. The reason for this was a lack of insight in when the strand would quench as stated in 

paragraph 3.2.. The curve at 120 degrees suggests a flattening of the slope for lower angles of twist. In 

axial strain experiments the critical current of the strand without twist is in the parabolic region for an 

axial load of 70 MPa. This would also suggest a decreasing slope with increasing angle (see figure 4). 

Other torsion experiments need to be conducted to confirm this suspicion of the lower torsional 

region. 

 

Figure 17: Critical current plotted against applied angle of twist on a bronze route Bochvar strand under 14 

Tesla parallel magnetic field. Ic A is the top voltage pair and Ic E is the bottom voltage pair.  

Figure 18 shows the V-I curves at an angle of twist of 840 degrees made in VI. From this figure the 

following can be concluded: 
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Earlier it was explained that the magnetic field declines about 9% along the strand’s length from 

center to edge. A decline in electrical field results in a higher critical current. Is differentiation in the 

critical currents along the sample length a result of a different applied magnetic field?  Literature 

states it is, since a lower magnetic field in the parralel direction means a lower effective magnetic field 

and thus a lower Lorentz force, i.e. a higher critical current.  

Figure 18 also suggests that the wire is homegeniously twisted, since the two outer voltage pairs 

(curve 1 and 5) are relalitively close to eachother and have comparible slopes. The same is the case for 

the voltage pairs next to the center voltage pair (curve 2 and 4). 

 

Figure 18: V-I curves at 720 degrees twist. 1=top voltage pair to 5=bottom voltage pair. 

Looking at the result in figure17, a distinction is made between different influences on the result.  

First of all it is expected that due to torsion the field orientation changes. The filaments inside the 

strand are not parallel to the magnetic field and therefore not in the force-free state. The filaments are 

twisted and make an angle with the field. When right-handed torsion is applied, which is the case, the 

twist pitch of the filaments decreases and the angle with the magnetic field increases, resulting in a 

larger effective field and thus a decrease of critical current with increasing angle of twist.  

T. Schild suggested formulas to calculate the magnetic field orientation dependence of the critical 

current of      , as can be seen in paragraph 1.4. Rewriting these formulas to fit the purpose of this 

thesis, i.e. the influence of torsion and parallel magnetic field, gives the following formula. 

                 
          

              
 

 

 
(18) 

Originally       was      , because the twist pitch was constant. The angle between the magnetic field 

and the strand’s axis is known and the twist pitch   is written as 

     
    

     
 
  

 

 

 
(19) 
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L is the sample length and    is the twist pitch without deformations. To plot the critical current 

against the angle of twist we take Ic(90°,0) as the critical current of an unloaded Bochvar strand in 

transverse, 14 Tesla, magnetic field. Also, to avoid time consuming calculations,       was calculated 

for the experimental values of  . The resultant plot of the critical current’s geometrical effect is shown 

in figure 19. 

 

Figure 19: Geometrical effect of torsion on the critical current. The experimental average and the model of T. 

Schild plotted against the applied angle of twist. 

The resultant curve shows a small dependence on the changing angle with the critical field due to 

torsion. The critical current is inversely proportional with the angle of twist, as expected. The small 

impact of the geometric effect on the critical current is intuitively explained by little changes in twist 

pitch do to torque. These small changes in twist pitch are visible almost one-to-one in the critical 

current since the sinus of a small angle (formula 18) is in approximation that small angle. It can be 

concluded that the geometrical effect of torsion does not ‘control’ the critical current.  

Second of all, a mechanical effect is expected due to the change in strain state due to torsion. This 

effect is studied via the scaling law proposed by A. Godeke, as described in paragraph 1.3. Godeke 

expands the scaling law from the deviatoric strain model (Ten Haken) with an extra term to account 

for the asymmetry that has been observed in strain experiments, eventually rewriting the strain 

dependence (s( )) to a form that describes the strain dependence of the critical current very well 

(within 2%). This law, together with the mechanical model from COMSOL, results in a strain 

dependence of the critical current due to torsion. The result is shown in figure 20. In this graph the 

uniaxial component of the strain (  ) is inserted in de scaling law, just as proposed by Godeke.  
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Figure 20: Mechanical effect of torsion on the critical current by using the z-component of the strain from 

COMSOL. The experimental average and the scaling law of Godeke plotted against the applied angle of twist. 

The slope of de scaling law is slightly negative. From this it can be concluded that the axial component 

of the strain is not the ‘controlling’ strain component of the critical current in the case of torsional 

deformation, so the scaling law of Godeke is not suitable for critical current calculations in this case. 

This is not surprising since in uniaxial experiments the transverse components of the strain have little 

influence [10] and therefore these components are not taken into account in the scaling law of Godeke. 

The scaling law by Godeke is based on a combination of the invariant analysis and the deviatoric 

strain model. From here on two different approaches will be evaluated to find the strain that controls 

the critical current. Godeke uses the uniaxial strain (  ) and an orthogonal coordinate system in which 

the principal strain direction are the same as the coordinate system axles. Then, from literature, the 

deviatoric strain is defined as: 

     
 

 
        

         
         

  

 

 
(19) 

From the discussion above it is now known that the simplification from      to                is 

not applicable to torsional deformations. The two alternatives are:  

1) The critical current is determined by an orthogonal coordinate system, which also includes 

‘off axial’ components of the strain, namely    and   . This also means the off axial 

components are not linearly related to the applied uniaxial strain by Poisson’s ratio, as done 

by Ten Haken and Godeke. Since in an orthogonal system      ,       and      , the off 

axial components and the uniaxial component from the COMSOL model should be inserted in 

the deviatoric strain.  

2) The critical current is not determined by the strain of an orthogonal coordinate system, so the 

principal strains are not the same as the strains in the axles’ directions of the orthogonal 

system. From the COMSOL model the principal strains can be found and implemented in the 

deviatoric strain formula.  
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Both alternatives are not described in literature. The scaling law in literature uses uniaxial strain and 

the constants in the scaling law are determined by experiments, as described in [20]. Therefore the 

insertion of the deviatoric strain in this scaling law will not be scaled properly, i.e. the 

superconducting and deformation related parameters do not have the correct value. Godeke relates to 

uniaxial strain to the off axis strains by the Poisson’s ratio, as can be seen in formula (20). If now the 

deviatoric strain is determined from the principal strain tensor, the value of the deviatoric strain is in 

close approximation with the applied axial strain. This is shown in formula (21). 

    
      

      
    

  

 

 
(20) 

     
 

 
                  

 

 
(21) 

   is the principal strain tensor.  

Though the use of the scaling law, in combination with the two alternatives, is not correct, the 

argument above suggests that the use of the deviatoric strain will be a good enough approximation, 

mainly, to get an idea of the influence of the two alternatives on the critical current, i.e. the scaling law 

will allow the use of the deviatoric strain without large errors. 

Note that the change of the principal coordinate directions in alternative 2 does not change the 

formula of the deviatoric strain, since the deviatoric strain is an invariant of the deviatoric strain 

tensor and thus independent of the coordinate system. 

From COMSOL the uniaxial strain (z), the y- and x-component of the strain and the principal strains, 

all at different angles of twist and in the different filaments are known. Each filament in the COMSOL 

model represents a part of the cross section of the strand. A fractional aerial summation has been done 

to get a strain value that describes the average strain in the strand. These have been substituted in the 

scaling law. The critical current, as result of the strain, at different angles of twist, is then calculated. 

These critical currents are substituted for            in Schild’s formula. The resultant curve is the 

model of the critical current as function of the angle of twist, that combines the geometrical and 

mechanical effect for uniaxial strain, orthogonal strains and principal strains. The result is shown in 

figure 21. 

Also plotted are the critical currents at 0 twist. These are in good agreement with each other and 

higher than the critical current found from Schild in figure 19, i.e. 674 A. This can be explained by the 

increase of critical current due to the applied axial load, for which not has been accounted for in the 

offset of the geometrical effect model, which is: the critical current at 14 Tesla transverse field with no 

load applied. The increase of critical current at 0 twist originates from the relaxation of the A15 phase.  

As can be seen from figure 21, the uniaxial approach does not give a good fit to the experimental 

results. The orthogonal approach describes the linearity in the experimental results very well. Results 

in the lower twist region (up to 180º) are needed to give a better understanding of the agreement 

between experimental results and the orthogonal approach in the lower twist region. On the other 

hand it can be stated that the orthogonal approach underestimates the influence of strain due to 

torsion.  
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Figure 21: Geometrical and mechanical effect of torsion combined by using the z-component of the strain, the 

orthogonal components of the strain and the principal strains in the scaling law. Also the experimental 

average has been plotted. 

Three main errors can be pointed out. First of all, the scaling was done for a uniaxial modeling. The 

influence of this error is expected to be minimal, since the unknown parameters of the scaling law 

only twist it around the critical current’s maximum to account for the difference in strain sensitivity 

for compression and stretching. This change in slope (sensitivity) is also suggested by the 

experimental result. The linear curve from the orthogonal model can therefore not be reshaped to the 

experimental results by rescaling. 

Another influence in the error can easily be seen from figure 22. The shear strains are plotted on the y-

axis for filament D. From figure 22 it can be seen that the XZ and YZ shear strains are not close to 0 

and increase with increasing angle of twist. These are the cross-sectional shear strains and when 

plotted against an entire twist length should give a sinusoidal curve [33]. The orthogonal model does 

not account for these shear strains. 

The third contribution of the error originates from the COMSOL model, as discussed in chapter 2.  The 

model was not calibrated for torsional deformations. Also the model does not account for plastic 

deformations. Reversibility in the A15 layer is well documented in the axial direction (within 0.2% and 

0.4% reversibility), but in the transverse direction it is not. Further calibration of the elastic parameters 

in the model has to be done. For instance, the effect of shear deformations in the COMSOL model 

should be compared to transverse pressure experiments. Another important experiment should be 

focused on finding the force needed to apply a certain angle of twist. From these a better calibrated 

model can be generated and shear stress-strain curves for      . 
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Figure 22: Shear components of the strain inside filament D for 180 and 720 degrees of twist. 

Now the principal strain approach is discussed. It is discussed that the influence of shear strains 

should be accounted for. Therefore a method that takes into account the three dimensional character 

of torsional deformation has to be used. The deviatoric strain does account for this if the ‘true’ 

principal strains are used, i.e. not just the orthogonal strains. Figure 21 shows reasonable agreement 

with the experimental result in the low twist region (up to 360° angle of twist). In the high twist region 

the influence of strain is overestimated. Now the expected causes are discussed. 

The modelled graph is not linear over the entire twist region, which confirms the suspicion of a 

flattening slope towards the zero twist point. Therefore the scaling is important for improved results. 

As stated before, the constants in the scaling law rotate and shift the result and determine the 

sensitivity of the critical current to strain. Determining the parameters in the scaling law can result in a 

better corresponding output. Estimated form the modelled curve, the counter clockwise rotation 

around the maximum critical current should be larger, and/or the sensitivity to compressive shear 

strain and axial strain should be lower, i.e.     should be lower (less rotation). Also,      should be      

and account for the non-axial, remaining strain components when the axial strain is zero.  

As stated by Godeke: “the performance of this model is assessed by determining how well the model 

fits data from uniaxial strain experiments. However, it remains to be seen how well the model 

performs with the direct use of the three-dimensional form in a detailed mechanical analysis”[4]. The 

same conclusion is draw above. 

As discussed in chapter two and above, the COMSOL model is not a true reproduction of the strand 

and therefore creates deflections in the output of, mainly, shear strains (and thus principal strains).  
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A better evaluation of the principal strain model can be made by generating more data points and 

comparing these with the experimental result.  

Resultant from the above discussion is that the principal strain approach should be applied to model 

the effect of torsional deformations on the critical current. This because it takes into account the shear 

components of strain, which cannot be neglected when a strand is twisted. 

Briefly a few other effects and results will be pointed out.  

Since the magnetic field makes small angles with the filament axles, the question arose if the self field 

has an influence on the angle of the magnetic field with the strand axis ( ). The self field’s maximum 

is 0.37 Tesla at 750 Ampere. The angle of the resultant field, with regard to the sample’s axis, will not 

be zero degrees, since a helical field will be present due to the self field. The deflection of the parallel 

field due to the self field will be 1.5 degrees for a current of 750 Ampere. Since the filaments make an 

angle with the magnetic field of the same order of magnitude, i.e. in the order of 5°, the influence of 

the self field for parallel field experiments should be examined.  

N-value data is shown in appendix A. It suggests inhomogeneity along the strand’s length due to 

current redistribution. This because at low angles of twist (60º and 120º) VI reports significant 

electrical field, i.e. in the range of 10 µV/m and n-values larger than one. Data from an angle of twist of 

600º suggest an upward shift of the ‘feet’ of the V-I curves. This could be explained by crack formation 

in the A15 layer due to the deformations. Also the geometrical effect could be the source of this effect. 

Namely, at 0 twist the increasing electrical field with current is also visible (n>1).  It could be a result 

from the changing external field from the end to the centre of the strand. The centre part of the strand 

then has a lower critical current than the ends and thus the current will redistribute to the middle 

filaments, because those make the slightest angle with the magnetic field and therefore have the 

highest critical current value. Due to insufficient data regarding the n-values, no clear conclusion can 

be drawn. Crack formation due to torsional deformation must be researched to get a better 

understanding of what happens in the lower electric field region. Also, the experiment should be 

repeated in a more homogeneous magnetic field. 
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5. Conclusion 

5.1 Main conclusions 
The first experimental results are obtained on bronze route      , on which torsional deformations 

have been applied. These results are obtained in parallel magnetic field. Several models have been 

proposed to calculate the critical current via the scaling law of Godeke. The output of the scaling law 

was scaled via Schild’s formula to model the parallel magnetic field. It was found that the geometrical 

effect of torsion, i.e. decrease in twist pitch, does not have a significant influence on the critical current. 

It has been determined that the deviatoric strain, which uses the principal strains, is the strain that 

determines the critical current dependency on torsional deformation in parallel field. This is due to the 

increase of the cross sectional shear strain components with angle of twist. This increase cannot be 

neglected. The scaling law used in this thesis does not suffice, due to its uniaxial nature. From the 

experimental results and the modeling it is suspected that the slope flattens for lower angles of twist 

and under this suspicion it can be stated that the critical current does not degrade for practical angles 

of twist.  

5.2 Recommendations 
Regarding the COMSOL model several recommendations can be made. The linear homogenization 

made in paragraph 2.2 leads to a limited applicability. To increase this, first the plastic deformation of 

the matrix and the copper need to be implemented as suggested by T. Wang [17]. Also the 

implementation of the thermo-mechanical aspect, due to the cool down to cryogenic temperatures, 

gives a more realistic reproduction of the real strand. Finally the model should be calibrated for torque 

and bending. The calibration with torque can be easily established by measuring the force needed to 

apply a certain angle of twist. Due to this it might be necessary to incorporate the anisotropic strain 

dependence of a strand. The calibration of bending is of less importance. Comparing the model with 

bending experiments will lead to a better understanding of the applicability of the model in torsional 

experiments, since torsion is a combination of applying radial shear strain and axial strain. It will 

result in a better understanding of the anisotropy. 

It is also recommended to expand the strain scaling law so that it can cope with the three-dimensional 

nature of strain. Therefore systematic experimental research needs to be done on the critical current 

dependency on three-dimensional strains. The basis for this scaling law is proposed by [4]. Relations 

need to be found that describe the upper magnetic field and the critical temperature dependence on 

the strain (or rather the strain invariants). The full invariant analysis can also be used to describe the 

critical current accurately, but its complexity and many parameters make in less favorable for practical 

applications.  

As for the experiment described in this thesis, it is recommended to extend the range of samples. The 

critical current should also be obtained for the low twist regime. Another area of interest is the 

clockwise twist regime, which would, hypothetically, compress the filaments in the first principal 

strain direction and pull them in tension in the second and third principal strain direction.  In an ideal 

situation the samples should be measured in a transverse, fully homogeneous, magnetic field. 

Building a setup that can twist straight samples in a transverse field is a large technical challenge and 

should therefore be avoided. Building a setup in which sample handling is limited is advisable.  
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The increase of the n-values must be further research by looking at crack formation due to torsional 

deformation. Also, the experiments should be repeated in a more homogeneous magnetic field so that 

there is no change in the magnetic field strength along the strand’s axis. 

In appendix B the experimental result shows a single data point at 360°. This result is obtained by 

returning the angle of twist form 1080° to 360°. The critical current shows little reversibility. Further 

research should be done to determine the degree of reversibility of the critical current. 

For future research the different strains used in this thesis are plotted against the angle of twist, see 

appendix C. Note that these are calculated by the COMSOL model.  
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7. Appendices 

Appendix A 
In the last indention of chapter 4 some remarks are made about the n-value data. Below this data can 

be found. Figure 23 and 24 show data from VI. Figure 23 shows the electrical field plotted against the 

current for all the voltage pairs at 60 degrees of twist. Here significant electric field can be noticed. 

Also a steady rise of the curves with a n-value above one is noted. 

 

Figure 23: V-I curves at 60 degrees twist. 1=top voltage tap to 5=bottom voltage tap 

Figure 24 shows the electrical field plotted against the current for the centre voltage pair at all the 

angles of twist. The upwards shift of the ‘feet’ of the curve, indentified in the last indention of chapter 

4,  is clearly visible if curve 1 and 18 are compared. In table 10 the legend shows which number 

represents which angle of twist.  

 

Figure 24: All results of voltage tap 3. 1=0 degrees of twist to 20=840 degrees of twist 
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Number 
of the 
curve 

Angle 
of twist 

(°) 

1 0 

3 60 

4 120 

6 180 

8 210 

9 270 

11 330 

12 360 

13 420 

14 480 

16 540 

18 600 

19 720 

20 840 

Table 10: Angle of twist per curve shown in figure 24 

Figure 25 shows the n-values obtained from the experiment plotted against the angle of twist for all 

the voltage pairs.  

 

 

Figure 25: n-values of a bronze route Nb3Sn strand plotted against the angle of twist 
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Appendix B 
In the final indention of paragraph 5.2 a remark is made about the reversibility of the deformations. A 

single data point is obtained after returning the angle of twist to 360 degrees from 1080 degrees. This 

is shown in figure 26 and gives an indication of the reversibility of the critical current. 

 

Figure 26: Torsion on a bronze route Nb3Sn strand with reversibility data point. The sample is twisted back to 

360 degrees from 1080 degrees 

Appendix C 
From COMSOL different strain values were obtained to be implemented in the scaling law of Godeke. 

These strain values are plotted against the angle of twist in figure 27. In future research it might be 

preferable to make a comparison between strain models and the one used it this thesis.   

 

Figure 27: Different strain values from COMSOL plotted against the angle of twist 
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