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Summary 

In recent years it has become clear how vulnerable even industrialized and economically well-off regions 

like Europe can be to drought, when several severe and prolonged water deficit periods cause major 

environmental, social and economic problems. This seems to continue and can worsen when 

considering the possible impact of climate change in the 21st century. Climate impact studies on drought 

are obviously done to get a better understanding of the possible impact of a changed climate on 

drought, but also to identify different ways of analyzing drought. For many regions it is well established 

what the possible impact is, however mostly at a large spatial scale and with a high level of uncertainty.  

This study tries to reduce this uncertainty and uses projections at a small spatial scale (±25km). The main 

purpose is twofold: to identify new methods to assess the impacts of climate change on drought and to 

apply these methods to a case study: the Meuse basin. Drought will be assessed by applying the 

Standardized Precipitation Index (SPI) on different time scales. A different time scale will relate to a 

different type of drought; from meteorological, agricultural and hydrological to extreme long-lasting 

events. Each type of drought relates to different physical conditions. For example meteorological 

drought can be seen as a significant deviation from the ‘normal’ of meteorological variables such as 

precipitation. The assessment is based on the output of thirteen high resolution Regional Climate Model 

(RCM) runs driven by five different Global Climate Models (GCMs). Only the A1B SRES emission scenario 

is used as climatic forcing. It is known that RCMs have difficulty with simulating spatial structures and 

this is assessed in this study specifically for drought. Other drought indicators were developed and 

applied to identify and quantify the number of events and its characteristics.  

There is inherent uncertainty in these projections and related conclusions. Probably the most important 

source of uncertainty lies in the lack of using multiple emission scenarios in the impact analysis. Basically 

these emission scenarios are different storylines that could enfold in the 21st century. Furthermore, for 

most indicators and most RCMs the projection shows a large error between the simulated value and the 

observed one. I.e. the climate models have difficulty simulating drought. The impacts of climate change 

is expected to be larger then presented in this report. This is because the used drought identification 

method only incorporates precipitation, while it is known that other factors will influence the 

occurrence and the characteristics of drought. The main other factor is evapotranspiration which is 

largely determined by temperature. It is very likely that temperature will increase (globally) in the 21st 

century.  

Overall it seems that the RCMs simulate a more temporal variable climate than observed. The spatial 

structure of drought frequencies in the basin is not simulated well by the RCMs. The best performing 

RCM run, in simulating the spatial structure of drought, had a small to significant (15%) average error for 

different time scales. For each drought indicator used in this study a weighted average is calculated 

based on the error of each RCM run. This weighted average is used to identify the main trend of the 

projection in future periods. In this way the quality of the RCM run (for that specific drought indicator) is 

taken into account.  
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Based on this weighted average it was found that for most time scales there will be a significant increase 

(range between +7% and +44%) in the number of drought events. Each time scale is denoted with a 

different number (1, 3, 6 or 12) reflecting the number of aggregated monthly precipitation values used 

in the SPI calculation.  

For meteorological drought (SPI-1) it was found that the average duration increases (11%), the average 

deficit increases (40%) and the average intensity increases as well (28%). The variation in this 

characteristics changes even more than the average values. Meteorological drought will affect a larger 

area than the historical period. For agricultural drought (SPI-3) the average duration increases (14%), the 

average deficit increases (50%) and the average intensity increases as well (40%). The variation in this 

characteristics changes even more than the average values. Agricultural drought will affect a larger area 

than the historical period. For hydrological drought (SPI-6) the average duration does not increase 

significantly (less than 10%), the average deficit increases (34%) and the average intensity increases as 

well (27%). The variation in this characteristics changes even more than the average values. This type of 

drought will affect a larger area than the historical period. For extreme hydrological drought events (SPI-

12) the average duration increases (12%), the average deficit increases (40%) and the average intensity 

increases as well (22%). The variation in this characteristics changes even more than the average values. 

Extreme drought will affect a larger area than the historical period. 
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Chapter 1 Introduction 

This chapter presents the outline of this research. Section 1.1 provides a description of the background 

of this research. Section 1.2 describes the state-of-the-art with respect to climate impact studies on 

drought. Section 1.3 defines the problem that this research will address. Section 1.4 presents the 

research objectives and questions. Section 1.5 summarizes the research strategy and provides an outline 

of the thesis.  

1.1 Background 

Drought is a phenomenon that can affect society and the environment. As Palmer (1965) states various 

people have different concerns which depend on the effects of a drought. According to a report from 

EEA (1999), European Environment Agency, it is shown that in recent years it has become clear how 

vulnerable even industrialized and economically well-off regions like Europe can be to drought, when 

several severe and prolonged water deficit periods cause major environmental, social and economic 

problems. This seems to continue: for example in Europe there was an exceptional drought in 2003 

which was estimated to have cost 8.7 billion euro’s (EEA, 2010). A potentially significant impact of 

climate change over many regions will be changes in the frequency and characteristics of droughts 

(Blenkinsop and Fowler, 2007).  

The key factors to drought occurrence and drought severity are precipitation and evapotranspiration 

(Blenkinsop and Fowler, 2007). Therefore if climate change results in changes in one or both of these 

factors it can be expected that drought occurrence and its severity will change as well. Precipitation and 

evapotranspiration are part of the hydrological cycle and one of the key features of global climate 

change will be perturbations to the hydrological regime across Europe (Blenkinsop and Fowler, 2007). It 

is also expected that climate change can affect mean precipitation and its variability (Trenberth et al., 

2003). A change in the precipitation mean and variability obviously influence the occurrence and 

severity of drought. According to a study by IPCC (2007) changes in temperature, radiation, atmospheric 

humidity, and wind speed will affect the amount of evaporation which can exaggerate effects of 

decreased precipitation on surface water and run-off. Evaporation is closely related to temperature 

(Thornthwaite, 1948). A study by Lenderink et al. (2007) suggests temperature and evaporation increase 

when imposing future climate boundary conditions on Europe. A study by Vicente-Serrano et al. (2010) 

suggests that temperature will play a major role in determining future drought severity. A similar 

conclusion by Wang et al. (2011) is drawn stressing the importance of temperature for drought. 

Furthermore according to a study by Schär et al. (2004) an increase in variability of temperature implies 

an increase in extremes climatic conditions.  

Drought indices have been developed to objectively assess drought conditions and different kinds of 

drought. Looking only at meteorological drought, the departure from normal of meteorological variables 

that induces drying of the surface (Liu et al., 2012), it can be stated that duration, intensity and total 

deficit should be assessed. Liu et al. (2012) concluded that more drought indices from ecological and 

socioeconomic perspectives should be investigated and inter-compared to provide a more complete 
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picture of drought risks and its potential impacts on the nature-human coupled system. A drought can 

also be characterized by its frequency and spatial extent (Blenkinsop and Fowler, 2007).  

1.2 Assessing impacts of climate change on drought  

When assessing the impact of climate change at a high spatial resolution it is preferred to use Regional 

Climate Models (RCMs) to properly simulate the important variables. Climate models range from very 

simple zero order models (providing a single global average) to more complex three-dimensional general 

climate models (GCMs).  These GCMs can provide boundary conditions for RCMs. There have been 

numerous studies done to assess the impact of climate change on drought. In Europe the PRUDENCE 

project has set a new standard for interdisciplinary climate change research (Christensen et al., 2007). 

This project is the predecessor of the ENSEMBLES project which applies the same methodology. The 

main methodology of this project is to use multiple RCMs driven by multiple GCMs with multiple 

scenarios (greenhouse gas and aerosol emissions) to assess the change in climate at high spatial 

resolutions (around 50 km or less). By using this methodology a range of possible projections can be 

calculated and analyzed. The use of RCMs adds value to the projection, because it shows a higher level 

of detail (shape, vegetation and soil characteristics) and it describes smaller-scale atmospheric 

processes, which lead to the formation of mesoscale weather phenomena (Feser et al., 2011). For 

example Wang et al. (2011) used RCM projections based on three GCMs and two scenarios as input for 

SPI (a drought index to identify drought events) calculations and found that different combinations 

resulted in different changes in drought intensity, duration and frequency. Wang et al. (2011) stated 

that the different projections based on different GCM-RCM combinations are probably due to different 

model structures and parameterizations. Given the sensitivity of the climate system in central Europe, 

the value of using a multi-model ensemble to represent the uncertainty is evident (Lenderink et al., 

2007). Maule et al. (2012) state that a realistic reproduction of observations, coupled with an 

understanding of why the RCMs perform well or have limitations, are essential prerequisites for using 

the RCMs in climate change projections.  

In (climate impact) studies concerning drought the temporal and spatial variability as well as the spatial 

structure is not always assessed. More importantly there is no preferred way of assessing the temporal 

and spatial variability and the spatial structure to the authors knowledge. Min et al. (2003) assessed the 

temporal variability of SPI by applying a wavelet analysis and quantified the temporal extent of SPI 

values. Santos et al. (2010) applied a spectral analysis to SPI series and identified periodical signals. 

There are multiple ways to assess the spatial variability and the spatial structure. Santos et al. (2010) 

applied a principal component analysis (PCA) to the SPI series to assess the spatial variability and spatial 

structure. Livada and Assimakopoules (2007) calculated correlation values between SPI series of 

different rainfall stations to assess the spatial variability. Bonaccorso et al. (2003) applied a PCA to SPI 

series of Sicily and identified which part of the island show coherent climatic variability (assessing the 

spatial structure). Lloyd-Hughes and Saunders (2002) assess the spatial structure of drought by plotting 

the mean duration of (extreme) events and (complementary) the number of drought events for Europe. 

Overall it can be stated that multiple options have been applied to assess the temporal and spatial 

variability as well as the spatial structure in drought studies. 
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1.3 Problem definition 

The background section showed the importance of assessing the impact of climate change on drought. 

However there is not one preferred way of doing this. The mentioned studies in the previous section 

showed the importance of using multiple emission-GCM-RCM combinations to assess the uncertainty of 

climate change and its impacts. Furthermore it is difficult to simulate the climate of a relatively small 

river basin. In particular the spatial structure of climate is hard to simulate. This research will emphasize 

the temporal and spatial variability and the spatial structure of drought in the basin. The variability 

relates to the correlation of drought along time and space, while the spatial structure relates to the 

difference of drought along the basin, i.e. which parts of the basin are subject to more drought events. 

The problem definition is twofold; firstly what is an appropriate method to assess the impact of climate 

change on drought at river basin scale. And secondly what can such method reveal for the basin: i.e. 

assessing the impact of climate change on drought in the basin.  

For this study the Meuse basin is chosen since it is an important river for the Netherlands and has been 

the subject of many studies. A study by De Wit et al. (2007) is useful for this research since it is reveals 

the relation between meteorological conditions and low-flows for the Meuse river. The Standardized 

Precipitation Index (SPI) is applied in this study to identify drought events. This index can be applied at 

different time scales to assess different types of drought. The main reasons to use the SPI method, over 

other indices, is that the SPI method provides good results (Paulo et al., 2012), its simplicity (Lloyd-

Hughes and Saunders, 2002) and it can be used on different time scales to identify different drought 

types.  

1.4 Research objective and questions 

Based on the problem definition the following objective of this research is: 

Develop and apply a method to assess the impacts of climate change on drought in the Meuse 

basin at different time scales  

A schematic overview of the research is shown in Figure 1-1 and with each step a research question is 

formulated. To accomplish the research objective the following questions are formulated.  

1. How can drought be assessed in a suitable way for climate impact analysis?  

2. How well are the climate model simulations in simulating drought? 

3. What are the impacts of climate change on drought in the Meuse basin? 
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1.5  Research strategy and thesis outline 

The research questions guide the research and based on these questions the following conceptual 

model is made (Figure 1-1). Chapter 3 describes the SPI method, its limitations, and modifications of this 

method to appropriately apply the impact analysis (question 1). The drought assessment (for observed 

and RCMs, historical period) is based on the SPI method and drought statistics that analyze the SPI 

results (question 2). The impact analysis (question 3) is based on the difference between drought 

assessment based on the historical simulation and the simulation of the future period.  

 

Appropriate methods to 

assess drought

Drought assessment 

based on observed 

dataset (historical)

Drought assessment 

based on RCMs 

(historical)

Drought assessment 

based on RCMs (future)

Q1 

Ch 4.2

Ch 4.3Ch 4.1Ch 3

Q2 Q3 

 

Figure 1-1 Schematic overview of research. The research questions are denoted with a Q. 
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Chapter 2 Study area and data 

In this chapter the study area (section 2.1) and the data (section 2.2) are discussed. Relevant 

characteristics of the study area are described. Furthermore a preliminary selection is made of the 

available data sets (RMCs) in section 2.2.2. This is done based on the spatial resolution and period 

covered by these RCMs. 

2.1 Study area 

The Meuse basin covers parts of France, Luxembourg, Belgium, Germany and the Netherlands and 

covers approximately 33.000 km2 (de Wit et al., 2007; Pfister et al., 2004). There is a maximum altitude 

of just below 700 m above sea level according to de Wit et al. (2007). The Meuse basin as defined in this 

research is the Meuse basin upstream of the place Borgharen, the Netherlands. The catchment area of 

the Meuse upstream of Borgharen is approximately 21.000 km2. 

The average annual precipitation ranges from 1,000 to 1,200 mm in the Ardennes (de Wit et al, 2007). 

Monthly precipitation displays little seasonal variation (de Wit et al., 2007). According to Pfister et al. 

(2004) the spatial distribution pattern of rainfall in the Meuse basin clearly reflects the differences in 

elevation. To interpret the SPI results it is important to know the common precipitation patterns for the 

basin. Furthermore a plot of elevation of the basin will provide information to better understand the SPI 

results. The Meuse basin defined in this research is presented in Figure 2-1. The figure shows that the 

part upstream of the Netherlands is considered in this research (a). The figure shows also the elevation 

in this area (b). Figure 2-2 shows the seasonal precipitation values. The elevation and precipitation 

patterns are clearly related. The figure supports the known observations of this basin: a relation 

between elevation and spatial distribution of precipitation and little seasonal variation.   
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Figure 2-1 Meuse basin topography (left)  and elevation map (right). 
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Figure 2-2 Average precipitation for different seasons (DJF = December, January, February, MAM = March, April, May, JJA = 
June, July, Augustus and SON = September, October, November) 
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2.2 Data 

This section will describe the data as used in this research. The observed dataset is given in section 2.2.1 

and the RCM simulations (historical and future periods) are described in section 2.2.2.  

2.2.1 Observed data set  

The observed data set is from the EU-FP6 project ENSEMBLES and the data providers in the ECA&D 

project. An earlier version of this data set was presented by Haylock et al. (2008) which can be used as 

reference. They stated that the data set consists of grid values representing the best estimate average of 

the grid square observations. The dataset E-OBS version 7.0 which was released in September 2012 is 

used in this study. This is a high resolution dataset concerning multiple variables including precipitation. 

The data file based on a 0.22 degrees rotated grid concerning the best estimate of daily precipitation is 

used. The dataset covers a period from 01-01-1950 until 30-06-2012. The data set is made on a 0.22 

degree rotated pole grid, with the North Pole artificially projected at 39.25N, 162W. The rotation 

provides the grid cells to vary less in size than on a regular grid over the whole projection.  

The dataset is based on point observations and interpolated to grid values. The interpolation inherently 

provides additional uncertainty in the values in the dataset. A study by Nikulen et al. (2011) concerning 

the performance of ENSEMBLES RCM stated that the uncertainties in the E-OBS dataset potentially 

contribute to the difference between observed and simulated variables. These uncertainties can arise 

from the number of observational stations combined with the orography. Obviously the uncertainties 

are larger for a lower number of stations and a more complex orography. To summarize Table 2-1 shows 

the characteristics of the observed dataset.   

Table 2-1  Overview observed dataset 

Institute Version Dataset Period covered  

ECA&D 7.0 E-OBS gridded dataset 1950/01/01- 2012/06/30 

2.2.2 RCM simulations 

The RCM simulations that will be used in this research have been retrieved from the ENSEMBLES 

project. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project 

ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. Each RCM simulation 

covers a historic period and a future projection. An overview of all these runs is provided in appendix E. 

In this section a preliminary selection is made.  

As stated in chapter 1 it is preferred to include multiple scenarios in climate impact analysis. The RCM 

runs all use the A1B scenario. Using these datasets the effect of uncertainty in emissions is neglected. 

Therefore the outcome of the impact analysis neglects this uncertainty and the results should be 

interpreted in this perspective. 
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The ENSEMBLES final report (Kjellström et al., 2011) indicates that it is important to fully sample the 

range of GCM uncertainty especially for projections around 2100 and for periods closer to the present 

more RCMs should be sampled. This is because of the relative importance of the climate model on 

different distant future periods. De Wit et al. (2007) found that the lateral forcing of the GCMs strongly 

influence the results for the Meuse basin.  

The preliminary selection is based on two criteria. First to make the results based on the different 

datasets intercomparable, obviously the same period should be sampled. Secondly a higher spatial 

resolution of these projections is preferred. The selection is based on the highest possible resolution 

(around 25 km or 0.22 d and the availability of the data set for future periods. From a SPI perspective at 

least 30 years should be covered to properly calculate SPI values (Guttman, 1998). It is decided to create 

three periods of 30 consecutive years each; one historical period for the validation phase and two future 

periods for assessing midterm and long term climate change impacts. Only runs that can cover these 

periods are considered in further analysis: 

 1971 - 2000   

 2021 - 2050  

 2066 - 2095  

Table 2-2 shows the 13 RCM projections which are included in this research. To assess the influence of 

the GCM on the RCM projection it is interesting to look for projections with the same RCM and different 

GCMs. The influence of the RCM can be assessed in a similar manner. Table 2-2 introduces a numbering 

for the 13 RCMs to keep the reference to each dataset short. 
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Table 2-2  All considered RCMs. For convenience the RCMs are numbered and this numbering will be used throughout this 
report (RCM with nr.1 is called RCM-1). The period covered is noted with an asterisk for two RCMs: the run goes up to the 
11

th
 month of the last year, instead of the 12

th
 for all the other simulations.  

Nr.  Institute Scenario Driving GCM RCM Period 
covered 

1 CNRM A1B ARPEGE_RM5.1  Aladin 1950-2100 

2 KNMI A1B ECHAM5-r3 RACMO 1951-2100 
3 SMHI A1B ECHAM5-r3 RCA 1950-2099 

4 SMHI A1B HadCM3Q3 RCA 1950-2098* 

5 MPI A1B ECHAM5-r3 REMO 1951-2100 

6 C4I A1B HadCM3Q16 RCA3 1951-2099 

7 ETHZ A1B HadCM3Q0 CLM 1950-2098* 

8 HC A1B HadCM3Q0 HadRM3Q0 1951-2100 

9 HC A1B HadCM3Q3 HadRM3Q3 (low sensitivity) 1951-2100 

10 HC A1B HadCM3Q16 HadRM3Q16 (high sensitivity) 1951-2100 
11 DMI A1B ARPEGE HIRHAM 1950-2099 

12 DMI A1B ECHAM5-r3 DMI-HIRHAM5 1951-2100 

13 ICTP A1B ECHAM5-r3 RegCM 1951-2100 
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Chapter 3 Methods 

In this chapter the methods as applied in this research will be described. Section 3.1 describes how 

drought will be characterized. The technical procedures of applying this index (the SPI method) and its 

limitations are discussed in section 3.2. Section 3.3 describes how the SPI can be modified to compare 

different locations or periods and how the SPI can be spatially aggregated to basin level. Analyzing the 

SPI results involves different techniques which are discussed in section 3.4. These techniques together 

form the new method to analyze the impact of climate change on drought based on RCMs. 

3.1 Drought definition 

A drought index can be used to identify drought events. A drought event can be described by its impact, 

duration and spatial extent. Drought assessment consists of describing the drought events given a 

certain location and period. In other words to get an understanding of what kind of drought events are 

normal and what is extreme all the events over a certain period are described and analyzed. This will be 

done in section 3.4 (drought assessment).   

However, there are multiple perspectives on drought and thus multiple definitions. The most common 

classification is the meteorological, hydrological, agricultural and socio-economic perspective (Wilhite 

and Glantz, 1985) as cited by Wilhite (2011). For climate impact studies the meteorological drought 

perspective is the most easy to apply and probably the most reliable. This is because the other 

perspectives need additional information (change in agriculture, socio-economic situation) and/or 

additional transformation (hydrologic model) and thus additional assumptions for the future scenarios. 

The climate models provide meteorological information and it would be preferred to use only this 

output for the drought assessment.  

For the drought identification the standardized precipitation index (SPI) is applied. This is mainly 

because the index has been proven to give good and reliable results. Another important factor is that it 

only requires (monthly) precipitation which is a direct output of the RCM runs. Another great advantage 

of this index is its simplicity which makes it easier to interpret the results. The main downside of this 

index is the lack of input (temperature, wind speed, etc.) known to be important for drought.  
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Since the SPI can be applied with different time scales, different types of drought can be assessed. 

Section 3.2.3 will describe how the different time scales probably relate to different types or definitions 

of drought. For the sake of interpretation it assumed that the used time scales relate to certain drought 

types as presented in Table 3-1. A time scale stands for the amount of months of precipitation the 

aggregation is based on. A different time scale relates to different physical conditions (soil water, 

agricultural problems or water level of the river) in the river basin. 

Table 3-1 The time scales and the related SPI and drought type 

Time scale SPI Drought type 

1-month SPI-1 Meteorological 

3-months SPI-3 Agricultural 

6-months SPI-6 Hydrological 

12-months SPI-12 Extreme hydrological 

 

Drought characteristics like intensity and severity are known in the literature next to total deficit and 

duration. The total deficit is simply the sum of the intensities during the event (each month has an 

intensity or SPI value). Severity is similar: the total deficit divided by the duration equals the severity of 

the drought event. Intensity is interesting since this reflects the ‘extremeness’ of the event, the lowest 

SPI value of that event. To keep the drought assessment short severity is not taken into account. This is 

seen as the least interesting characteristic since it is based on deficit and duration which is taken into 

account. 

3.2 SPI method 

The SPI method has been developed by McKee et al. (1993) and can be used at multiple time scales. This 

index converses precipitation values by calculating the probability distribution of these precipitation 

values into standardized values. These values have an average of zero and a standard deviation of one.  

3.2.1 SPI procedure 

The recommended methodology as described by WMO (2012) to apply the SPI is as follows. For each 

location (a precipitation station or in this case a grid cell) and for each month of the precipitation series 

(minus the possible lag due to the time scale) a SPI index value is calculated. For each time scale the 

aggregation of precipitation values is different. For SPI-12 the last 11 months and the month in question 

is aggregated for that particular month. For SPI-1 there is no real aggregation since the original monthly 

precipitation values are used.  To these aggregated values a probability density function (PDF) is fitted. 

Based on this function the non-exceedance probabilities are calculated which are transformed into 

standard normal variable values: i.e. SPI values (see Eq. (3.1)). Basically in this way the aggregated 

precipitation values are transformed into values that reveal what the probability is of that value. I.e. 

what is normal and what is extreme for that particular climate (location and period). 
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Eq. (3.1) 

 

Where 

                                                                

The non-exceedance probabilities range between 0 and 1. These values are transformed into SPI values 

by taking the inverse of these probabilities using the corresponding mean and standard deviation of the 

PDF. In this way the mean is zero and a value of one (or minus one) means a deviation of the mean of 

one standard deviation. In this research this will mean that for each grid cell ( ) and each month ( ) an 

aggregated precipitation value (    ) can be transformed into a SPI value based on the mean of that grid 

cell and the standard deviation. Appendix A presents the full procedure of the SPI calculation. 

3.2.2 Limitations SPI method 

When applying the SPI method it should be considered that the method inherently has some limitations 

considering the method itself, its application and what the method does not assess. Since the SPI has 

been widely applied a number of limitations of the method and therefore its results have been found. It 

should be noted that SPI values are standardized values and therefore typically have a range from 2.00 

to -2.00. A SPI value of   -1 has an occurrence probability of 15.9 % and a value of   -2 has a probability 

of 2.3% (Lloyd-Hughes and Saunders, 2002).  

Guttman (1999) stated that the number of observations of the precipitation data is related to the 

bounds of the SPI value. The SPI value represents a certain probability of occurrence. The amount of 

used data (observations) indicates to what extent the SPI method can assess extreme events. An earlier 

study of Guttman (1998) stated that the probability estimates can be considered to be a function of 

sample size. The less observations the more inaccurate the estimation of more extreme probabilities 

becomes. Agnew (2000) stated that in dry lands (a climate with a lot of zero monthly precipitation 

values) it is difficult to calculate precipitation averages with any certainty and it has been suggested that 

the use of the thirty-year averaging period is questionable. However the value of the SPI will change if 

different lengths of precipitation data are used (Wu et al., 2005), due to the changes in shape and scale 

parameters of the gamma distribution. Therefore when applying the SPI method the same length of 

precipitation data and a minimum of 30 continuous years data set should be used.  

The method assumes that a suitable probability distribution can be fitted to the precipitation data. This 

is not necessarily the case according to Lloyd-Hughes and Saunders (2002). However they also 

concluded that the 2-parameter gamma distribution seems to be the most appropriate approach to 

describe monthly precipitation over Europe and to calculate the SPI index. However it is open for 

discussion if the gamma distribution should be used all the time (Guttman, 1998). Sienz et al. (2012) 

studied the implications of using different probability distributions and state that the gamma function 
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should not be used but a Weibull type when applying the SPI. The SPI procedure involves determining 

the shape of the probability density distribution function. Certain shape parameters need to be 

calculated to determine this shape. Different statistical tools are available to determine these 

parameters. Since there is debate over the preferred probability density distribution function it remains 

also uncertain which tools should be applied. Comparability is limited since no uniform method of 

calculating SPI is known. Hayes et al. (2011) stated that a comprehensive user manual for the SPI should 

be developed. As stated earlier WMO (2012) provides a user manual. However the study of Sienz et al. 

(2012) state that the Weibull type is preferred whiles the gamma function is prescribed in this manual. 

Another observation concerning the probability density function is about the extreme (SPI) values that 

are calculated. There are common problems in fitting the tails of the distribution function and therefore 

Dubrovsky et al. (2009) state that SPI values outside of the range of (-2 and +2) should be used with 

care.  

Applying the SPI method should also include assessing the ‘normal’ rainfall distribution of de study area. 

For example Hayes et al. (1999) stated when calculating SPI values based on one or three month(s) for 

areas with normally low seasonal precipitation totals a small variance in precipitation can result in 

misleadingly low SPI values. A similar conclusion is drawn by Lloyd-Hughes and Saunders (2002) warning 

for misleading results. Agnew (2000) stated that SPI method takes no account of impacts.  

An important limitation is the standardized nature of the index (Lloyd-Hughes and Saunders, 2002) is 

that drought events identified by the SPI, when considered over a long time period, will occur with the 

same frequency at all locations. The standardization introduces problems when comparing droughts 

between different periods (same location) or different locations (same period). When comparing 

between different periods (as the impact analysis in this research) the SPI should not be applied. This is 

because the standardization will cause a similar distribution of SPI values in the classification categories 

of the SPI for both periods (Lloyd-Hughes and Saunders, 2002). However there is a solution proposed by 

Dubrovsky et al. (2009) to overcome this limitation. Dubrovsky et al. (2009) state that future drought 

conditions need to be expressed in present-day climate. The SPI is basically transformed into a relative 

SPI based on the present-day climate rather than the future period. This is done by using the probability 

distribution functions of the present-day period (1971-2000) to calculate the SPI values for the future 

period (2021-2050 or 2067-2098). Comparing locations based on SPI obviously results is a similar 

problem and a similar solution can be applied. Using a reference set the relative SPI can be applied to 

compare locations. The reference set could be based on one location and using this location to compare 

the other locations to that one. The relative temporal and relative spatial SPI will be defined and applied 

in this research (see section 3.3 for more information). 
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3.2.3 Interpreting SPI results 

The SPI can be calculated on different time scales and each time scale relates to different physical 

mechanisms related to drought. The SPI method is applied at multiple time scales to get a 

comprehensive view of drought events. A time scale of 1 month reflects short-term conditions. A larger 

time scale is associated with droughts with long-term impacts. WMO (2012) stated that the SPI can be 

calculated based on 1 month up to a time scale of 72 months. It is decided to look into three periods of 

30 years and because of the length of this period the SPI up to 12 months is calculated. This is based on 

the sample size becoming too small and therefore the statistical confidence of the probability estimates 

on the extremes (wet and drought) becoming weak (Guttman, 1998). The time scale has implications 

concerning the length of the SPI series. For each time scale the input is the same (360 monthly 

precipitation values) however a different time scale results in a different length of the SPI series. For 

example for SPI-1 the 360 precipitation values can be transformed into 360 SPI values. However for SPI-

12 the first 12 precipitation values are used to calculate the first SPI value. The SPI-12 series has 

therefore 360 – 11 (349) values for each period. It is not known for the Meuse basin how the different 

SPIs relate to physical conditions and type of drought. However based on the studies presented here, 

Table 3-1 is made.  

1-month SPI 

The results based on the 1-month SPI reflect the short-term conditions of drought. WMO (2012) state 

that the results can be closely related to meteorological drought, soil moisture and crop stress during 

the growing season. However interpreting the results can be misleading unless the climatology is 

understood. As stated by WMO (2012) if the rainfall during a month is normally low the SPI can fluctuate 

largely even if the departure from the mean is relatively small. Lee and Kim (2012) stated that soil 

moisture conditions respond to precipitation anomalies on a relatively short scale. In this report the 1-

month SPI is interpreted as a time scale that reflects meteorological drought.  

3-month SPI 

The 3 month SPI of a certain month uses the precipitation values of the considered month and the two 

previous months to calculate the SPI value. The results based on the 3-month SPI reflect short-term 

conditions and can provide misleading results in a similar manner as the 1-month SPI. Bussay et al. 

(1998) and Szalai and Szinell (2000) found that agricultural drought in Hungary was related to SPIs with 

time scales of 2 to 3 months. Myronidis et al. (2012) found moderate correlation values between the 

lake’s water level and SPI-3. This was lake Dorian in the north of Greece with a surface area of about 40 

km2 and an average depth of 10 m. The study stated that intense drought phenomena strongly affect 

the water level of Lake Doiran. In this report the 3-month SPI is interpreted as a time scale that reflects 

agricultural drought. 

6-month SPI 

The 6-month SPI indicates seasonal to medium-term trends in precipitation. WMO (2012) state that SPI-

6 can be very effective in showing drought over seasons. Bussay et al. (1998) and Szalai and Szinell 

(2000) found that for Hungary the stream flow was best described by SPIs with time scales from 2 to 6 

months. They also found a strong relation between ground water level and SPI with time scales of 5 to 
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24 months. In this report the 6-month SPI is interpreted as a time scale that reflects hydrological 

drought. 

12-month SPI 

The 12-month SPI reflects long-term conditions of drought. WMO (2012) state that this time scale can 

be related to stream flows and reservoir levels. Lee and Kim (2012) stated that stream flow and reservoir 

storage reflect longer-term precipitation anomalies. De Wit et al. (2007) showed that multi-seasonal 

droughts are generating critical low-flows for the river Meuse. In this report the 12-month SPI is 

interpreted as a time scale that reflects extreme hydrological drought.  

The resulting SPI values can be further analyzed and interpreted. Each SPI value relates to a certain 

probability. For example a  SPI value of zero represent a precipitation value that is ‘normal’ for that 

period and a SPI value of -2 or less can be considered extreme since such a value or lower has a 

probability of 2.3 %. Table 3-2 shows these relations between the SPI value and the probability of 

occurrence of the SPI value. 

Table 3-2 Range of SPI values, their category and their probability of occurrence (based on Lloyd-Hughes and Saunders, 2002) 

SPI value Category Probability [%] 

2.00 or more Extremely wet 2.3 
1.50 to 1.99 Severely wet 4.4 
1.00 to 1.49 Moderately wet 9.2 
0 to 0.99 Mildly wet 34.1 
0 to -0.99 Mildly drought 34.1 
-1.00 to -1.49 Moderate drought 9.2 
-1.50 to -1.99 Severe drought 4.4 
-2 or less Extreme drought 2.3 

 

3.3 SPI modifications 

Some modifications are made to the original SPI. This was done to be able to compare over time, 

location and to identify drought at a higher spatial level (river basin). To compare over time or location 

the original SPI is made relative based upon a reference point. The reference point is a presumed 

different climate (different location or period) where the precipitation is also presumed to be different. 

The SPI basin is based on the SPI series of the cells covering the basin.  

3.3.1 Relative temporal SPI 

The reference point for the relative temporal SPI is the historical climate. The difference for the relative 

temporal SPI is to use the historical probability density function parameters that describe the fit to 

calculate the SPI for the future period. In this way the difference in meteorological conditions (i.e. 

climate change) is taken into account for the SPI values. The future monthly precipitation values are 

fitted to the historical probability density function. In this way extreme future precipitation values, 

extreme compared to historical values, will result in extreme SPI values. When a new probability density 
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function was constructed for the future period this same extreme future precipitation values will result 

in ‘normal’ SPI values due to the standardization. The relative temporal SPI is abbreviated to rtSPI in this 

report.  

3.3.2 Relative spatial SPI 

For the relative spatial SPI the reference set is the average of the probability parameter values off all the 

cells describing the basin. This will identify which cell is more (or less) drought prone compared to the 

average: i.e. the normal of the basin.  The average is weighted with the area size of the cell. The relative 

spatial SPI is only used to calculate the drought frequency of each cell. The frequency values can be 

plotted over the Meuse basin to reveal observed spatial patterns. The relative spatial SPI is abbreviated 

to rsSPI in this report. 

3.3.3 SPI basin calculation 

There are 63 grid cells that overlay the Meuse basin. The SPI for the whole basin is calculated by 

considering the area covered by each cell:  

 
                                 

    

   

         Eq. (3.2) 

In this equation            is the SPI time series of        . Each cell represents a part of the basin and the 

relative importance of each time series is based on the area of the basin covered by that cell          and 

the total area of the Meuse basin       .  
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3.4 Drought assessment based on SPI 

Multiple drought statistics are designed to quantify drought characteristics. The input for these statistics 

is the results of the SPI and its modifications. Interesting values are the number of events, average 

duration, deficit and intensity of the events. This is a quick way to analyze what type of drought is 

observed or simulated. All the drought statistics will be discussed in this section. The drought statistics 

are: 

 Number of drought events 

 Characteristics of drought events 

 Drought frequency basin plot 

 Deficit-duration relationship 

 Temporal correlogram 

 Spatial correlogram 
 
To get an intuitive understanding the following plot (Figure 3-1) is made. Figure 3-1 gives an impression 

how a SPI series is used to identify and describe drought events. Figure 3-1 shows (part of) the basin SPI-

12 series based on observed precipitation values. The first values (blue ones) show first positive values 

(relative wet but normal conditions) and then change into negative values. As soon as a SPI value 

changes from above -1 to below this number a drought events begins (red bars). As long as the SPI value 

does not reach a positive value the drought continues. The duration of this drought event is the number 

of red bars. The deficit is the sum of all red values (the length of each red bar). The frequency is the 

duration of all drought events in that series divided by the amount of SPI values in that series. 

 

Figure 3-1 Part of observed SPI-12 series. The bars represent SPI values for each month. The red ones indicate a drought 
event. 
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3.4.1 Number of drought event, its characteristics and frequency basin plot 

The number and characteristics of drought events reveals what type of drought events (range of values 

for drought characteristics: duration, deficit and intensity) are to be expected and how variable these 

characteristics are. The number of drought events can be easily derived once the SPI series are 

calculated. For all drought events identified the average in drought characteristics (duration, deficit and 

intensity) can be calculated as well. To assess the variability in these characteristics the standard 

deviation is calculated. The standard deviation is calculated by:  

 

    
 

   
         
 

   

 

   

 Eq. (3.3) 

Where    stands for the value of that characteristic (duration, deficit or intensity) of the  th event.   

stands for the total number of events. The drought frequency is based on the sum of duration of all 

drought events divided by the length of that series. 

For each cell in the basin the relative spatial SPI is utilized to calculate the drought frequency that 

reflects the difference of drought along the basin. Since the relative spatial SPI is based on the basin 

average the drought frequency reflect which areas are subject to more or less drought events than the 

basin ‘normal’. This will reveal the spatial structure of drought in the basin.  

For the RCM assessment the weighted-average absolute error is calculated for each time scale to reveal 

which RCM simulates the spatial structure in the basin well. The weighting is based on the area covered 

by that cell. For each cell an absolute error is calculated. Based upon this absolute error the best 

performing RCM is used for the impact analysis, all the other RCMs are not used in the impact analysis 

for this specific indicator.  

3.4.2 Deficit-duration relationship 

The deficit and duration relationship reveals what type of drought events are to be expected. For all 

drought events (cell and basin based) a plot can be made a long duration and deficit. This will reveal, 

visually, the relationship of these two characteristics.  

For the assessment and impact analysis the relationship and difference (or change) in this relationship is 

quantified. For the assessment the difference is an error in simulation. Calculating the error in 

simulating this relationship is done by calculating the absolute mean error of the simulation and the 

observation for each duration value:  

                       
 Eq. (3.4) 

For some duration values there are no events for one datasets (RCM or EOBS) and consequently no 

absolute error can be calculated. To summarize the error in the simulation the sum of the weighted 

errors is calculated. The weighted error is the sum of absolute error in relation with the mean number of 
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events the error is based on. In this way an error based on a few events becomes less important than 

one based on a lot of events. Overall there are a lot of low duration events and this number quickly 

drops with a high duration value. The weighted error is formulated as: 

 

            
  
                           

 
 

           

        

   

 

 

Eq. (3.5) 

The second term determines the weight based on the number of drought events for that particular 

duration ( ) along all the drought events (both observed and RCM) considered in this equation. For the 

impact analysis the change is calculated by first calculating for each duration value: 

                     
 Eq. (3.6) 

The value for the change in deficit and duration is calculated by weighted summing (similar to Eq. (3.13)) 

the change between historical simulation and the future (a positive value equals a larger deficit in the 

future for the same duration in the historical period). The value is based on a summation where positive 

values can compensate negative values.  

3.4.3 Temporal and spatial correlation 

The temporal and spatial correlogram are used to identify the temporal and spatial variability in the SPI 

series. The correlation (and thus variability) of SPI series can be examined with a correlogram. For the 

temporal correlation a plot of autocorrelation values at different lags (shift of the series over time) is 

made. The correlation values are calculated by:  

 
        

          
 
                            

           
          

 

 

Eq. (3.7) 

Where   is the length of the time series and the lag   is the number of intervals between points.    is 

the observed value at   and    the mean of the dataset.  

The spatial correlation is analyzed by calculating for each cell the correlation in SPI-series with all the 

other cells. Combined with the distance between each combination a correlogram can be made. Only 

unique combinations are used (comparing cell 1 with 2 gives the same result as comparing 2 with 1). 

With 63 cells        this will result in 
     

 
      unique combinations. The correlation value for 

each combination is calculated with: 

 
     

                  
   

           
             

   

 

 

Eq. (3.8) 

In this equation there is no lag since only the spatial correlation is relevant. All the unique combinations 

of the SPI series of other cells    are compared with one cell   
 . The distance calculations are based on 

longitude and latitude values. 
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Correlation length calculation 

The temporal and spatial patterns can be described by calculating the correlation length. This is a certain 

length (in months or km’s) which is a characteristic of the correlation over time or space. To calculate 

this value an exponential function is fitted through the correlation dataset. Based on this fit the 

correlation length is calculated. For the temporal and the spatial correlation the relationships are 

estimated with an exponential function: 

 
        

 
  

 
Eq. (3.9) 

  stands for the lag in time or space. When there is no lag ( =0) the fit should and is showing an 

correlation of one. The term    stands for the correlation length: when      the value      is reduced 

by a factor   (i.e. a correlation of 0.368). The correlation length is a descriptive value of the relation of 

SPI values over time of space. It can be interpreted as the temporal or spatial extent over which the SPI 

values are significantly positively related to each other.  

For the temporal correlation the number of correlation values considered for the fit is based on the time 

scale of the SPI series and the correlation values itself. The time scale is related to physical conditions 

and temporal variations. Based on this it is decided that correlation values up to twice the time scale will 

be considered. For example the SPI-3 is based on three months of precipitation and from a physical 

point of view it is interesting if there is a temporal correlation up to 6 months. When the correlation 

values are below a certain limit the values will not be considered for the fit. This seems logical because 

the correlation length should be based on relevant (positive) correlation values since the correlation 

length is an indicator of the positive correlation. The limit is on a 95 % significance level and can be 

estimated by: 

       
 Eq. (3.10) 

Based on this significance level it can be expected that 5% of the correlation values are outside of the 

confidence limit suggesting a significant correlation when actually there is no significant correlation. The 

confidence level is for all the SPI-series around 0.05 (  ranges from 349 to 360). In this way the 

correlation series is reduced to positive significant values suitable for the exponential fit.  

Significance and strength of fit 

The exponential fit can be analyzed based on the goodness-of-fit and the significance of the fit. The 

goodness of fit or strength of the fit is assessed by the   value. The better the exponential regression 

the closer the value of    is to one. However since an exponential function is used to fit through the 

dataset a linearization is needed to use the    as a measurement of goodness-of-fit. The significance of 

the fit is assessed by the F-test (Haan, 2002). The    and   values are presented in Appendix B. The 

resulting drought indicator is the correlation length ( ) for both temporal and spatial correlation.  
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3.4.4 Impact analysis 

For the impact analysis there is a weighted average constructed based on the error found in the RCM 

assessment. The RCM assessment consists of comparing the drought statistics based on the observed 

dataset and the output of the RCMs. This is input for a weighted average of all RCMs in the impact 

analysis. For each statistic and each time scale there is a different error and therefore a different 

weighting of each RCM. The lowest rank will result in a first ranking and thus a weighting of 13.4 %, see 

Table 3-3. The weights are linearly distributed with a minimum of 2% for the worst RCM. In this way the 

weighted average is related to the quality of the RCM. For each drought statistic and each time scale the 

ranking is different, since the error is different. 

Table 3-3 The weighting of RCMs in the impact analysis 

Rank Weight [%] 

1 13.4 

2 12.4 

3 11.5 

4 10.5 

5 9.6 

6 8.6 

7 7.7 

8 6.7 

9 5.8 

10 4.8 

11 3.9 

12 2.9 

13 2.0 
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Chapter 4 Results 

In this chapter all the results are presented. Section 4.1 provides the observed drought of the historical 

period 1971-2000. This provides information for assessing the quality of the RCMs to simulate drought 

in the Meuse basin which is described in section 4.2. For each SPI and statistics a weighted average is 

calculated. This average and the individual projections indicate the possible impact of climate change on 

drought for different statistics for two future periods, 2021-2050 and 2066-2095, which are described in 

section 4.3. 

4.1 Observed historical drought 

This section will firstly present how observed historical drought is identified and quantified by the SPI. 

Furthermore the same statistics as will be used in section 4.2 and 4.3 will be presented based on the 

observed dataset. The concluding remarks will discuss the statistics and tries to find consistency in the 

results.   

4.1.1 SPI basin 

To get an understanding how a SPI series might look like (at different time scales) the SPI series of the 

Meuse basin are plotted for the historical period. Figure 4-1 the presents the SPI basin series based on 

the observed dataset. This gives an impression about how the different SPIs temporally differ and when 

in this period what kinds of droughts are identified. For example an extreme long-term drought event 

can be identified by SPI-12 around 1976, with an extreme trough in September of that year. This 

corresponds with known droughts in the history of the Meuse basin and parts of Western Europe 

(Sheffield et al., 2009). It can be noticed that the larger the time scale the less the values vary. This 

indicates that a larger time scale is more predictable than a smaller one. Another result is that a short 

term wet period can occur during a long term drought event (SPI-12 drought event around 1976 and at 

the same time some positive peaks (wet events) in SPI-1).  
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Figure 4-1 All SPI basin series based on the observed dataset. 
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4.1.2 Driest month 

Figure 4-2 shows SPI values of the months with the lowest SPI basin value during the observed period, 

i.e. the driest month. For each time scale this is a different month. However it can be noticed that these 

months for SPI-3, -6 and -12 are around the end of 1976 or beginning of 1977 and are therefore 

probably related to each other. The plots reveal how an extreme drought event is spatially structured 

over the basin for that month. There is a different spatial pattern visible for all four plots. Based on 

these plots it seems that drought is spatially correlated but that each drought event is spatially 

differently structured. However the plot is a snapshot and does not represent all drought events. 

Another observation is that SPI-12 does not show extreme values like the other time scales.  

 

Figure 4-2 Driest months for four time scales based on observed dataset. The darker (red) values show a lower value (more 
extreme) than the light color (yellow).     
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4.1.3 Table of drought events 

Table 4-1 presents the number of basin drought events identified with the SPI and their distribution as a 

function of  duration. It is clear that the larger the time scale the lower the number of drought events 

identified. Table 4-2 shows that the larger the time scales are the longer the average duration is. This 

could be explained by the variability of the larger time scales; the variability is lower for a larger time 

scale and therefore a drought event is likely to continue. The different (temporal) variability of different 

time scales can be intuitively explained by the SPI basin plots and quantitatively by the temporal 

correlation length (see section 4.1.6). A larger time scale has a lower variability; i.e. when the SPI-12 

value is below minus one it is unlikely that the next month the value will be above zero. Most SPI-1 

droughts have a duration of 1 month and SPI-1 clearly has a high variability that causes this. The small 

range in average intensity and its variation can probably be largely explained by the standardization 

nature of the SPI: all SPI values have a certain probability of occurrence (see section 3.2.3). Therefore 

the most extreme month in a drought event (intensity) has a probability that is largely determined by 

the method itself.  

Table 4-1 Distribution of drought events based on observed dataset (basin events). 

 Duration [months] Observed 

SPI-1 All 47 

1 28 

2 12 

3 and longer 7 

SPI-3 All 17 

1,2,3 8 

4 to 7 5 

8 and longer 4 

SPI-6 All 11 

1 to 4 7 

5 to 8 1 

9 and longer 3 

SPI-12 All 4 

1 to 8 2 

9 to 16 1 

17 and longer 1 
Table 4-2 Drought characteristics of drought events based on observed dataset (cell events). 

  Ave. duration 
[month] 

St.dev. duration 
[month] 

Ave. 
deficit [-] 

St.dev. 
deficit [-] 

Ave. 
intensity [-] 

St.dev. intensity 
[-] 

SPI-1 1.81 1.46 -2.25 1.51 -1.65 0.51 

SPI-3 5.21 4.32 -5.65 5.08 -1.67 0.53 

SPI-6 7.83 7.13 -9.28 9.72 -1.79 0.62 

SPI-12 19.62 16.31 -21.37 20.43 -1.75 0.48 
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4.1.4 Drought frequency plots  

The relative spatial SPI (rsSPI) is only used to calculate the drought frequencies for all cells in the river 

basin. These drought frequencies will reveal the spatial structure of drought inside the basin. Figure 4-3 

shows the drought frequency based on the rsSPI. To interpret these plots it can be useful to look at the 

average precipitation for different seasons over the basin (Figure 2-1). Since for the rsSPI the same 

probability density function is used, the drought frequencies based on the rsSPI are mainly determined 

by the input: precipitation values. For most SPIs there is a clear spatial pattern that relates to the 

difference in elevation and precipitation. The more elevated the area, the more precipitation and thus 

the fewer droughts occurs. SPI-12 is the exception where it seems that a reverse relation is shown; the 

higher areas are subject to more droughts compared to the lower regions. This is difficult to explain 

looking at the precipitation pattern. Maybe this could be explained by the fact that SPI values between 

minus one and zero can be part of a drought event, but are not necessarily. It depends if it is preceded 

with a SPI value below minus one (start of drought event). For SPI-12 there are few drought events with 

a high average duration and therefore one drought event not identified because the threshold is not 

reached will influence the drought frequency quite largely. 

 

Figure 4-3 Drought frequencies for four time scales for the Meuse basin based on observed dataset. 
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4.1.5 Deficit-duration relations 

Each drought event is plotted by its deficit and duration in Figure 4-4. For SPI-1 cell events there is a 

maximum in duration found of 13 months and a maximum of around -13 for the deficit. For SPI-12 there 

are extreme cell events identified with a duration of more than 100 months (more than 8 years) and a 

deficit of around -120. This is a confirmation of Table 4-2 where it was noticed that a larger time scale 

relates to a higher average duration and a higher deficit value. Another observation is that for each SPI 

the relation between deficit and duration seems to be linear. For each SPI, there seems to be an 

increase in deficit of one, for each month in duration. This seems to be confirmed by Table 4-2 where 

the average (and standard deviation) is similar for duration and deficit for all time scales. Furthermore 

the difference in basin and cell drought events can be analyzed. The relation between duration and 

deficit for cell events seems to be similar to basin events for all time scales. However based on these 

plots it seems that cell events are more variable: for the same duration value there is more variation in 

deficit for the cell events than the basin events. This could be caused by the fact that there are a lot 

more cell events than drought events. Another observation is the lower maximum in duration for the 

basin events compared to the cell events. It seems unlikely that this can be explained by just the higher 

number of events. This is probably related to the difference in spatial scale. It is more unlikely that a 

drought event occurs at a larger spatial scale (basin) than a smaller spatial scale (cell).  

  

  
Figure 4-4 Deficit as a function of duration based on observed dataset for four time scales and for basin and cell events. 
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4.1.6 Temporal correlogram 

Figure 4-5 shows the correlation values for different lags for the three SPIs of the basin and the 

exponential fit of these series. The temporal correlogram shows for different time scales the temporal 

variability of that SPI. As was noticed by the SPI basin plots the larger the time scale the lower the 

temporal variability. This plot confirms this observation. The variability of each SPI series can be largely 

explained by how these values are constructed. For example for the SPI-1 series, the next SPI value is 

based on a different dataset (precipitation next month for 30 years) and therefore a different probability 

density function (PDF). The correlation of precipitation in one month and the next is for all 12 months 

probably low. This is related to why the correlation length of the SPI-1 is not calculated. This is further 

explained in appendix C. The SPI-12 is the SPI series based on the largest aggregation of precipitation 

values. Therefore the next SPI value is based on a similar dataset (1 of 12 values is different) and 

therefore also a similar PDF.  

 

Figure 4-5 Temporal correlogram SPI-basin, for SPI-3, -6 and -12 based on observed dataset.  

The correlation length is based on the exponential fit. Table 4-3 shows the correlation length based on 

these fits. It can be interpreted as the temporal extent where the SPI values are significantly positively 

related to each other.  

Table 4-3 Temporal correlation length based on observed dataset. 

 Temporal correlation length [months] 

SPI-3 2.2 

SPI-6 4.7 

SPI-12 9.8 



30 
 

4.1.7 Spatial correlogram 

Figure 4-6 shows the spatial correlograms based on the combination of all cells. For each combination a 

certain correlation value and the distance between the cells is calculated. The spread of data points 

shows that an exponential function fits well and the    value confirms this. The correlation length is 

shown in Table 4-4. It can be interpreted as the spatial extent where the SPI values are significantly 

positively related to each other It seems that short term drought conditions (SPI-1 and SPI-3) are a bit 

less spatially correlated than long term drought conditions (SPI-6 and SPI-12). However the main 

conclusion is that for each SPI the correlation length is a multitude of the maximum width of the river 

basin. The plots show that the greatest distance between cells is around 350 km, while the observed 

correlation lengths are all above 750 km (range between 760 and 947 km). This implies that the 

correlation length is an extrapolated value and thus is subject to a higher uncertainty than when it was 

in range of the data points. 

  

  
Figure 4-6 Spatial correlogram with exponential fit for all time scales based on observed dataset. 

Table 4-4 Spatial correlation length based on observed dataset. 

 Observed correlation length [km] 

SPI-1 803 

SPI-3 760 

SPI-6 887 

SPI-12 947 
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4.1.8 Concluding remarks  

Based on the previous sections the following statements can be made: 

 The larger the time scale, the larger the temporal correlation (i.e. the lower the temporal 

variability). 

 The larger the time scale, the less drought events are observed. 

 The larger the time scale, the higher the average and standard deviation in duration. 

 The larger the time scale, the higher the average and standard deviation in deficit. 

 For all the time scales there is a similar average and standard deviation in intensity. 

 For all time scales, except SPI-12, there is a clear relation between the spatial precipitation 

pattern and the drought frequency pattern in the river basin 

 For all time scales there was a (rough) linear relationship between duration and deficit. 

 For all time scales the spatial correlation is larger than the basin length, indicating a 

homogenous basin for each month in SPI values.  

The different temporal variability for different time scales is obviously largely explained by the 

aggregation of precipitation values of consecutive months. For larger time scales this will result in less 

variable input values. With less variable input values for the SPI calculation, the SPI values will be less 

variable as well. The difference in temporal variability for the different SPIs is probably causing the 

difference in average and maximum drought duration and deficit for the different SPIs. Larger time 

scales have a higher average and maximum in duration and deficit.  

There is quite a strong relation between deficit and duration for all time scales.  The difference in 

temporal variability probably also explains the difference in number of drought events. For a 30 year 

period there were 47 SPI-1 events, 17 SPI-3 events, 11 SPI-6 events and four SPI-12 events identified. In 

other words it is very likely that an increase in temporal variability will result in an increase in the 

number of the events and these events will have a lower average and a lower standard deviation in 

duration and deficit. Temporal variability seems not to be related to the spatial correlation or the 

intensity of the drought events. 

The drought frequency plots show a clear spatial structure for all SPIs that correspond with the 

precipitation, except for SPI-12. There is no obvious explanation for this, since for the other time scales 

it seems to be explained by the precipitation pattern which is the same for each SPI. However this 

precipitation pattern does not to seem influence SPI-12 in the same way.   
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4.2 RCM assessment 

The RCM assessment consists of comparing the drought statistics based on the observed dataset and 

the output of the RCMs. This is input for a weighted average of all RCMs in the impact analysis. For each 

statistic and each time scale there is a different error and therefore a different weighting of each RCM.  

4.2.1 Number of drought events 

Table 4-5 shows how all the identified drought events are distributed based as a function of duration. 

Overall SPI-1 drought events are simulated quite well. The total number is for most RCMs (exceptions 

are RCM-1, RCM-9 and RCM-10) in the range of the observed number of drought events. The exceptions 

also show a totally different distribution of events as a function of duration. For example RCM-1 

simulates most events in the highest category (3 and longer) instead of simulating most events in the 1-

month category.  

SPI-3 drought events are overall overestimated. For the highest category (8 months and longer) there is 

a large underestimation by half of the RCMs. RCM-1, RCM-7 and RCM-11 performed well for the SPI-3 

drought events.  

SPI-6 drought events are mostly well simulated, only RCM-10 largely overestimates the number of 

events. RCM-5, RCM-7 and RCM-9 show a significant different distribution than observed. RCM-8 

underestimates the number in the longest category.  

SPI-12 events are overestimated by all RCMs. However RCM-4, RCM-9 and RCM-10 show a similar 

number of drought events (5 instead of 4 events). In particular RCM-4 performs extremely well, only one 

event in the shortest category is simulated more than observed. All the other RCMs have a relative large 

overestimation (around +100%) in the total number of events and /or a significant different distribution. 
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Table 4-5 The number of drought events as a function of duration, based on observed and 13 RCM output datasets. 

 Duration [months] Observed RCM-1 RCM-2 RCM-3 RCM-4 RCM-5 RCM-6 

SPI-1 All 47 28 40 37 43 39 40 

1 28 5 14 14 20 13 17 

2 12 11 14 10 9 15 12 

3 and longer 7 12 12 13 14 11 11 

SPI-3 All 17 20 20 21 22 20 21 

1,2,3 8 13 12 12 12 11 10 

4 to 7 5 3 6 6 8 6 10 

8 and longer 4 4 2 3 2 3 1 

SPI-6 All 11 9 14 15 12 12 13 

1 to 4 7 3 7 8 6 1 4 

5 to 8 1 3 3 5 3 9 6 

9 and longer 3 3 4 2 3 2 3 

SPI-12 All 4 7 9 11 5 9 11 

1 to 8 2 3 7 9 3 8 9 

9 to 16 1 3 1 2 1 0 2 

17 and longer 1 1 1 0 1 1 0 

 

 Duration [months] RCM-7 RCM-8 RCM-9 RCM-10 RCM-11 RCM-12 RCM-13 

SPI-1 All 39 38 25 31 39 39 44 

1 13 16 8 0 22 16 18 

2 15 7 0 21 6 14 17 

3 and longer 11 15 17 10 11 9 9 

SPI-3 All 19 18 27 28 18 20 22 

1,2,3 10 8 11 11 9 8 14 

4 to 7 6 10 16 12 6 12 6 

8 and longer 3 0 0 5 3 0 2 

SPI-6 All 13 11 15 21 12 13 13 

1 to 4 2 8 10 16 6 5 4 

5 to 8 9 3 0 1 2 6 6 

9 and longer 2 0 5 4 4 2 3 

SPI-12 All 7 10 5 5 8 8 9 

1 to 8 6 10 0 5 6 7 8 

9 to 16 0 0 5 0 2 1 1 

17 and longer 1 0 0 0 0 0 0 
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4.2.2 Characteristics of drought events 

Duration 

For each RCM the average duration and the standard deviation based on all cell events is shown in Table 

4-6. These are different events than in Table 4-5 since these are all drought events identified by all the 

cells, rather than based on the basin. The main difference is that basin drought events tend to be more 

‘extreme’ (longer and more deficit) than cell drought events. The reason to use the cell based events is 

because of the fact that there are a lot more cell based events than basin based and thus the statistics 

are more robust.  

The average for SPI-1 events is overestimated by all RCMs. RCM-1 and RCM-10 show the highest 

overestimation. For SPI-3 events all RCMs underestimate the average. RCM-11 seems to perform the 

best. For SPI-6 most RCMs are close to the observed value. RCM-1 overestimates the most; RCM-8 

underestimates the most. For SPI-12 events all RCMs underestimate the average duration. RCM-8 is 

estimating the lowest value. RCM-1 performs the best.  

Looking at the standard deviation it can be noticed that for SPI-1 it is simulated well by all RCMs. The 

worst simulation, RCM-1, overestimates the standard deviation by 27 %. For SPI-3 all RCMs 

underestimate the standard deviation. The best RCMs are RCM-1 and RCM-11 (both driven by GCM 

ARPEGE). The worst estimation was made by RCM-8. For SPI-6 RCM-1 simulates the standard deviation 

very well. All the other RCMs significantly underestimate the value, where RCM-8 simulates the worst 

value. For SPI-12 all RCMs largely underestimates the standard deviation. The best estimation is made 

by RCM-4 which underestimates by around 40 %. 

Table 4-6 Average duration in months based on observed and 13 RCM output dataset, cell based events, 1971-2000. The 
standard deviation is presented between the brackets.  

 Observed RCM-1 RCM-2 RCM-3 RCM-4 RCM-5 RCM-6 

SPI-1 1.8 (±1.5) 2.6 (±1.9) 2.2 (±1.5) 2.1 (±1.2) 2.1 (±1.6) 2.0 (±1.2) 2.1 (±1.4) 

SPI-3 5.2 (±4.3) 4.4 (±3.5) 4.0 (±2.5) 3.6 (±2.4) 4.4 (±3.1) 4.2 (±2.8) 4.5 (±2.4) 

SPI-6 7.8 (±7.1) 9.4 (±7.0) 6.9 (±4.0) 6.0 (±3.4) 6.8 (±4.6) 7.1 (±3.3) 6.7 (±3.5) 

SPI-12 19.6 (±16.3) 15.9 (±8.5) 12.2 (±9.3) 10.5 (±7.2) 14.8 (±10.3) 12.1 (±9.7) 10.1 (±8.4) 

 

 
      

 RCM-7 RCM-8 RCM-9 RCM-10 RCM-11 RCM-12 RCM-13 

SPI-1 2.0 (±1.2) 2.3 (±1.4) 2.4 (±1.3) 2.9 (±1.4) 2.1 (±1.7) 2.0 (±1.3) 2.0 (±1.4) 

SPI-3 4.2 (±2.8) 3.6 (±1.3) 3.3 (±1.9) 4.5 (±2.2) 4.9 (±3.5) 3.9 (±2.3) 4.1 (±2.6) 

SPI-6 7.1 (±3.3) 4.9 (±2.4) 6.9 (±5.8) 6.0 (±4.0) 7.6 (±4.8) 6.4 (±3.8) 6.9 (±4.6) 

SPI-12 11.8 (±9.5) 7.4 (±5.6) 13.4 (±5.0) 11.0 (±2.8) 12.2 (±7.6) 12.9 (±8.6) 10.9 (±6.8) 
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Deficit 

Table 4-7 shows the observed and simulated average deficit and the standard deviation of all cell based 

events. For SPI-1 events all RCMs overestimate the average deficit, but for most RCMs this is not a large 

overestimation. The largest errors are made by RCM-1, RCM-9 and RCM-10. For the SPI-3 events most 

RCMs underestimate the average deficit but not by much. RCM-11 performs the best in this case. For 

the SPI-6 events all RCMs underestimate the average except for RCM-1. Most estimates are near the 

observed value, the two worst performing RCMs are RCM-8 and RCM-10. For SPI-12 all RCM 

underestimate the average deficit. The worst performing RCM is RCM-8, RCM-1 performs the best.  

For SPI-1 events the RCMs perform overall well for the standard deviation. The worst RCMs are RCM-1 

and RCM-9. For SPI-3 events all RCMs underestimate the standard deviation. The three worst 

performing RCMs are RCM-8, RCM-9 and RCM-10. These simulations are made with a Hadley RCM. For 

SPI-6 RCM1 performs by far the best. All the other RCMs underestimate the value. RCM-8 performs the 

worst. For SPI-12 all RCMs largely underestimate the value. 

Table 4-7 Average deficit [-] based on observed and 13 RCM output dataset, cell based events, 1971-2000. The standard 
deviation is presented between the brackets.  

 Observed RCM-1 RCM-2 RCM-3 RCM-4 RCM-5 RCM-6 

SPI-1 -2.3 
(±1.5) 

-3.2 
(±2.3) 

-2.7 
(±1.3) 

-2.4 
(±1.3) 

-2.5 
(±1.5) 

-2.4 
(±1.3) 

-2.5 
(±1.3) 

SPI-3 -5.7 
(±5.1) 

-4.9 
(±4.2) 

-4.9 
(±3.4) 

-4.3 
(±3.0) 

-4.9 
(±3.7) 

-4.8 
(±3.4) 

-5.1 
(±2.9) 

SPI-6 -9.3 
(±9.7) 

-10.6 
(±9.5) 

-7.7 
(±4.6) 

-6.8 
(±4.5) 

-7.4 
(±6.4) 

-7.8 
(±4.6) 

-7.8 
(±4.3) 

SPI-12 -21.4 
(±20.4) 

-17.5 
(±12.1) 

-12.9 
(±10.3) 

-11.0 
(±9.0) 

-16.7 
(±13.8) 

-12.3 
(±10.1) 

-10.8 
(±9.3) 

 

 
      

 RCM-7 RCM-8 RCM-9 RCM-10 RCM-11 RCM-12 RCM-13 

SPI-1 -2.4 
(±1.3) 

-2.7 
(±1.5) 

-3.1 
(±2.4) 

-3.5 
(±1.5) 

-2.6 
(±1.9) 

-2.4 
(±1.4) 

-2.4 
(±1.4) 

SPI-3 -4.8 
(±3.5) 

-4.1 
(±1.9) 

-3.8 
(±2.1) 

-4.8 
(±2.1) 

-5.7 
(±4.5) 

-4.5 
(±2.8) 

-4.7 
(±3.2) 

SPI-6 -7.8 
(±4.7) 

-5.0 
(±2.7) 

-6.8 
(±5.5) 

-5.7 
(±4.2) 

-8.6 
(±6.6) 

-7.1 
(±4.7) 

-7.5 
(±5.4) 

SPI-12 -12.0 
(±10.1) 

-7.7 
(±5.6) 

-13.2 
(±6.8) 

-11.7 
(±4.6) 

-13.4 
(±10.0) 

-13.6 
(±10.7) 

-11.9 
(±8.6) 
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Intensity 

Table 4-8 shows the observed and simulated average intensity for all SPIs. For the SPI-1 events the 

averages are really close to each other. There are no large deviations from the observed values. This is 

the same for SPI-3, SPI-6 and SPI-12 events. The observed and simulated results are all showing values 

around -1.7. The maximum is -1.8 and the minimum -1.5. In other words there is little variation in the 

results. As was mentioned in section 4.1.3 the SPI method is probably related to this close range in 

average intensity and the standard deviation.  

For all time scales the standard deviation is simulated quite well. Significantly different results are 

shown by RCM-10: particular low values for SPI-3, -6 and -12. 

Table 4-8 Average intensity [-] based on observed and 13 RCM output dataset, cell based events, 1971-2000. The standard 
deviation is presented between the brackets.  

 Observed RCM-1 RCM-2 RCM-3 RCM-4 RCM-5 RCM-6 

SPI-1 
-1.6 (±0.51)  

-1.7  
(±0.56)  

-1.8  
(±0.58) 

-1.6  
(±0.51) 

-1.7  
(±0.52) 

-1.7  
(±0.56) 

-1.7  
(±0.57) 

SPI-3 
-1.7 (±0.53) 

-1.7  
(±0.53) 

-1.8  
(±0.54) 

-1.8  
(±0.52) 

-1.6  
(±0.43) 

-1.7  
(±0.52) 

-1.7  
(±0.48) 

SPI-6 
-1.8 (±0.62) 

-1.8  
(±0.62) 

-1.8  
(±0.54) 

-1.7  
(±0.44) 

-1.6  
(±0.45) 

-1.7  
(±0.49) 

-1.8  
(±0.48) 

SPI-12 
-1.7 (±0.48) 

-1.8  
(±0.68) 

-1.7  
(±0.44) 

-1.7  
(±0.41) 

-1.8  
(±0.57) 

-1.7  
(±0.49) 

-1.7  
(±0.36) 

 

 
      

 RCM-7 RCM-8 RCM-9 RCM-
10 

RCM-
11 

RCM-
12 

RCM-
13 

SPI-1 
-1.7 (±0.56) 

-1.7 
(±0.52)  

-1.7 
(±0.63) 

-1.8 
(±0.49)  

-1.7 
(±0.60) 

-1.6  
(±0.48) 

-1.6 
(±0.46) 

SPI-3 
-1.7 (±0.53) 

-1.6 
(±0.40)  

-1.7 
(±0.49) 

-1.6 
(±0.31) 

-1.8 
(±0.52) 

-1.7 
(±0.52) 

-1.7 
(±0.46) 

SPI-6 
-1.7 (±0.50)  

-1.6 
(±0.43) 

-1.6 
(±0.39) 

-1.5 
(±0.25) 

-1.7 
(±0.51) 

-1.7 
(±0.48) 

-1.7 
(±0.46) 

SPI-12 
-1.7 (±0.50)  

-1.6 
(±0.45) 

-1.7 
(±0.40) 

-1.5 
(±0.33) 

-1.7 
(±0.55) 

-1.7 
(±0.43)  

-1.7 
(±0.50) 
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4.2.3 Drought frequency pattern 

Figure 4-7 shows how RCM-1 simulates the drought frequency pattern in the river basin. In this section 

all the RCMs are compared to the observed pattern. For each time scale the best performing RCM was 

RCM-1. Visually comparing the observed pattern (Figure 4-3) and Figure 4-7 it can be noticed that for 

SPI-1 similar values and a similar pattern is visible. For SPI-3 and SPI-6 there are similar values simulated 

but a more spatially variable pattern is shown. For SPI-12 there was an unexpected observed pattern. 

The simulation seems more logical; the lower areas have less precipitation and thus a higher drought 

frequency (since drought is now defined relative to the basin average). The average error in drought 

frequency is 0.05, 0.09, 0.12 and 0.15 for respectively SPI-1, -3, -6 and -12. Considering the range for 

drought frequency values (between 0 and 1) an average absolute error of 0.15 seems significant.  

 

 

Figure 4-7 Drought frequency based on relative spatial SPI RCM-1, historical period 
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4.2.4 Deficit and duration error 

Table 4-9 shows the relative errors in the deficit-duration relation for all RCMs. This relative error is 

based on the absolute difference between observed and simulated average deficit for each duration 

value. In appendix D an example deficit duration plot of one RCM is shown for all time scales. This can 

be helpful when interpreting the results in Table 4-9. 

It is established in section 4.1.3 that the smaller the time scale, the shorter and higher the number of 

events is. This can be seen as the main factor causing the difference in relative error for different SPIs. 

The smaller the time scale, the higher the number of events and the shorter the events are and thus the 

less variability in deficit. For all SPIs and all RCMs the relative error was below 3%. This seems a 

particular low value that can be (partly) explained by the input and how the weighting is done.  

Another factor that relates to this low error value is that extreme events are most of the time not taken 

into account since there is no corresponding event in the other dataset. This is quite important for the 

assessment since the more extreme events are more important than the less extreme ones. However 

the relation is overall simulated quite well. Section 4.2.2 showed how well the duration and deficit is 

simulated. The average and standard deviation of both characteristics were largely underestimated for 

SPI-12 by all RCMs. In combination with section 4.2.1, where it was established that most RCMs 

simulated more events for SPI-12, but less extreme events, it can be stated that most likely there are not 

a lot of extreme events not taken into account. In other words it is very likely that there is not a great 

error for any RCM for the deficit-duration relationship. This is probably related to the high correlation 

between these characteristics.  

Table 4-9 The relative error in simulating the deficit [%] 

 SPI-1 SPI-3 SPI-6 SPI-12 

RCM-1 0.24 1.12 1.44 2.85 

RCM-2 0.28 0.87 1.40 1.64 

RCM-3 0.14 0.69 1.07 1.95 

RCM-4 0.14 0.79 1.16 2.45 

RCM-5 0.10 0.60 1.25 2.39 

RCM-6 0.22 0.98 1.42 1.77 

RCM-7 0.10 0.53 1.17 2.46 

RCM-8 0.26 0.67 1.09 1.82 

RCM-9 0.45 0.91 1.57 1.98 

RCM-10 0.49 0.60 0.92 2.64 

RCM-11 0.21 0.90 0.97 1.78 

RCM-12 0.16 0.83 1.27 2.43 

RCM-13 0.17 0.63 1.13 2.58 
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4.2.5 Temporal correlation length 

Table 4-10 shows the observed values and the difference in temporal correlation length between 

observed and simulated. For SPI-3 the temporal correlation length is simulated quite well. The highest 

overestimation is made by RCM-10 (+0.71 months), the highest underestimation is made by RCM-9 (-

0.71 months). These are (relatively) quite large errors, however most RCMs are close to the observed 

value.  

For SPI-6 it can be noticed that most RCMs underestimate the value, except for RCM-1. RCM-1 simulates 

by far the best of all RCMs for SPI-6. RCM-8 performs the worst with an underestimation of 2 months. 

For SPI-12 all RCMs underestimate the correlation length. RCM-8 performs again the worst with an 

underestimation of 6.32 months. RCM-1 performs the best with an underestimation of 1.17 months.  

An underestimation of the temporal correlation can be interpreted as an overestimation of the temporal 

variability; i.e. the SPI values change more quickly and drought events have a higher probability to end 

and to start again. This will probably result in more drought events. It is uncertain how the average 

duration and its standard deviation will be affected. But based on the observed drought and the 

difference between the SPIs and their type of drought it can be expected that an overestimation of the 

temporal variability will result in an underestimation of the average duration and deficit. Section 4.2.2 

showed the average and standard deviation of duration of all drought events for all RCMs. Looking at 

RCM-8 for SPI-12 (the largest underestimation of the temporal correlation) it can be noticed that the 

average duration is the lowest of all simulations and that the standard deviation in duration is one of the 

lowest of all simulations. Section 4.2.1 shows that RCM-8 simulates the most events of all simulations. 

This indicates that the temporal variability is related in the way as expected with the number of drought 

events and the kind of droughts. The goodness-of-fit and the strength of the fit are based on the    and 

the   value respectively. These values can be found in appendix B. For SPI-3 10/13 RCMs showed 

significant fits, for SPI-6 this is 8/13 and for SPI-12 this is 11/13. 

Table 4-10 Observed values and error in temporal correlation length [months] 

 SPI-3 SPI-6 SPI-12 

Observed 2.18 4.74 9.82 

RCM-1 0.26 0.32 -1.17 

RCM-2 0.01 -1.38 -3.35 

RCM-3 -0.42 -1.23 -3.26 

RCM-4 0.12 -1.06 -2.38 

RCM-5 -0.23 -0.77 -1.48 

RCM-6 -0.07 -1.43 -3.69 

RCM-7 -0.24 -0.82 -1.74 

RCM-8 -0.02 -2.00 -6.32 

RCM-9 -0.71 -0.69 -3.92 

RCM-10 0.71 -1.00 -3.22 

RCM-11 -0.28 -1.03 -2.39 

RCM-12 -0.41 -1.46 -2.04 

RCM-13 -0.26 -0.94 -2.88 
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4.2.6 Spatial correlation length 

The observed spatial relation showed a quite constant high spatial correlation for each SPI. Table 4-11 

shows the error in correlation lengths of each simulation and SPI. For SPI-1 there are large under- and 

overestimations. With an observed value of around 800 km an underestimation of 367 km (RCM-8) is 

quite large. The largest overestimation is made by RCM-1 with 289 km.  

For the other SPIs it can be noticed that RCM-1 largely overestimates the spatial correlation length. 

RCM-10 seems to highly overestimate the correlation length for all SPIs except for SPI-1. RCM-5 and 

RCM-8 largely underestimates the spatial correlation length for all SPIs. For all SPIs there is a rather 

equally spread of under- and overestimation. This can be seen as positive since the weighted average 

will be around the observed value. An overestimation of the spatial correlation length can be 

interpreted as an overestimation of the spatial extent of the drought events. The goodness-of-fit and 

the strength of the fit are based on the    and the   value respectively. These values can be found in 

appendix B. The fits were all significant, but not always very strong: RCM-10 for SPI-6 and -12 showed a 

value of 0.46 and 0.28 respectively for the   . However all the other fits were equal or above 0.5 and 

most above 0.8. This indicates that most fits were strong. 

Table 4-11 Observed values and error in spatial correlation length [km] 

 SPI-1 SPI-3 SPI-6 SPI-12 

Observed 803 760 887 947 

RCM-1 289 514 498 628 

RCM-2 30 -12 -139 -318 

RCM-3 81 50 -112 -131 

RCM-4 -39 130 64 77 

RCM-5 -255 -275 -424 -523 

RCM-6 60 50 -20 -99 

RCM-7 -255 -274 -421 -524 

RCM-8 -367 -434 -508 -733 

RCM-9 280 47 -279 -167 

RCM-10 -83 486 912 886 

RCM-11 -158 -7 -141 -102 

RCM-12 -232 -179 -349 -309 

RCM-13 -225 -225 -369 -457 
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4.2.7 Summary of results and discussion 

Based on the previous sections the following statements can be made: 

 For each SPI, except SPI-1, most RCMs tend to overestimate the number of drought events 

 For each SPI, except SPI-1, most RCMs underestimate: 

o the average duration 

o the variation in duration 

o the average deficit 

o the variation in deficit 

 For each SPI the average intensity and its variation are simulated well. 

 For each SPI most RCMs simulate the spatial variation inside the basin not well. 

 Based on one RCM (RCM-1; the best performing RCM for drought frequency pattern), it seems 

that the spatial variation inside the basin is better simulated for smaller time scales. 

 For each SPI the deficit-duration relation seems to be simulated well by all RCMs. 

 For SPI-3 the temporal correlation length is simulated well, for SPI-6 and SPI-12 most RCMs 

underestimate the correlation.  

 For each SPI the spatial correlation was simulated well by some RCMs.  

The main conclusion that can be drawn is that RCMs have difficulty in simulating the observed drought. 

There was not one RCM that really performed well for all assessment criteria. Overall it seems that 

RCMs simulate a more temporally variable climate than observed. The higher variability (assessed by the 

temporal correlation length) is probably the main factor contributing to more drought events. The 

simulated drought events are less extreme (lower duration and deficit) and the variation in duration and 

deficit is lower. The relation between a higher temporal variability and an increase in number of events 

and less extreme events is confirmed in this section. 

For the SPI-1 events there is an underestimation of the number of events. This is probably related to the 

higher average duration and also a higher average deficit. The simulated temporal variability is probably 

lower than observed, but this was not quantified with the temporal correlation length. The spatial 

structure was simulated quite well by RCM-1 for all time scales. However, RCM-1 was one of the RCMs 

that largely overestimate the spatial correlation length for all time scales. This seems a contradicting 

result. Apparently the spatial correlation is not related with the spatial structure. The spatial structure is 

mostly dependent on the precipitation pattern, while the spatial correlation is not. The spatial 

correlation is based on SPI; i.e. standardized precipitation values, and therefore does not necessarily 

reflect the spatial structure of precipitation.  

Possible errors in the RCM simulation can only be explained by how the RCMs simulate the 

precipitation. This since only (monthly) precipitation is used as input for the SPI calculations. There could 

be a precipitation bias in the used GCM and/or RCM. This can be examined by looking at research 

addressing the particular GCM or RCM and how it simulates precipitation. This will be done in discussion 

section (Chapter 5). However the SPI standardizes the precipitation values and therefore the difference 

in absolute values (observed vs. simulated) is not the main problem. The variability is the main issue 
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here. The temporal variability can be differently simulated than observed and maybe more importantly 

the variability in precipitation for each individual month. The first variability will result in a different 

temporal variability of the SPI values and thus result in a different type of drought events. The latter 

variability largely determines the probability density function and thus the SPI values.  

Influence of GCM and RCM on results 

RCM-11 and RCM-12 (same RCM but different GCM) show similar values for the number of events but a 

different distribution. For all the other statistics similar values were obtained or similar trends. This 

suggests that the RCM determines most of the results when analyzing meteorological drought. However 

the other RCMs with the same RCM and a different GCM did not show this relation.  

RCM-2, -3, -5, -12 and -13 (different RCM but same GCM) show similar values in number of events but a 

different distribution. The drought characteristics and temporal correlation was quite similar. The large 

difference lies in the spatial correlation. This suggests that the RCM determines the spatial correlation 

length more than the GCM. However the other RCMs with the same RCM and a different GCM did not 

show this relation. However the other RCMs with a different RCM and the same GCM did not show this 

relation. Based upon the previous paragraphs it seems that the applied RCM or driving GCM is not 

largely influencing the simulations of the historical period.  
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4.3 Impact of climate change on drought  

The impact analysis is carried out by comparing the results for the future period (2021-2050 or 2066-

2095) with the historical period (1971-2000). In the plots these periods are indicated by the last year, of 

the respective period. To indicate the simulated trend a line based on the average of all RCM simulations 

is plotted. For each statistic the average is a weighted average based on the RCM assessment, except for 

the drought frequency of the basin. 

Table 4-12 shows for each RCM run the driving GCM and applied RCM. For the 13 RCM projections five 

different GCMs and 11 different RCMs are applied. Each GCM has a unique symbol (or marker) to 

identify the driving GCM for each RCM projection. In combination with a color all the projections have a 

unique code. The color relates to the used RCM, except for the RCMs with white as their color. Some 

RCM runs use the same RCM (they only differ in GCM). These RCM runs are colored red, blue or green 

and each color relates to the same RCM (RCA3 (red)) or to similar RCMs (the Hadley RCMs (blue) and 

HIRHAM and DMI-HIRHAM both are green). The difference in the Hadley GCMs is their parameterization 

and response to radiative forcing (Kjellström et al. 2011). These groups can indicate the influence of the 

used GCM on the drought impact results. There are five RCM runs that use the ECHAM5-r3 GCM. These 

RCM runs all have a square as the symbol. In this way the influence of the RCM can be investigated. For 

the historical period the observed value (the yellow point) is shown in the figures and indicates how well 

the RCMs perform by comparing with the simulated value.  

Table 4-12 The GCM-RCM matrix; symbols and color identification for all RCM runs 

 GCM ARPEGE ECHAM5-r3 HadCM3Q0 HadCM3Q3 HadCM3Q16 

RCM Color/ Symbol 
 

 

 

 

 

 

 

 

 

 

Aladin White RCM-1     

RACMO Orange  RCM-2    

RCA# Red  RCM-3  RCM-4 RCM-6 

REMO Cyan  RCM-5    

CLM White   RCM-7   

HadRCM3Q0 Blue 
 

  RCM-8   

HadRCM3Q3    RCM-9  

HadRCM3Q16     RCM-10 

HIRHAM Green RCM-11     

DMI-HIRHAM  RCM-12    

RegCM White  RCM-13    
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4.3.1 Change in number of drought events 

Figure 4-8 shows the number of drought events based on the SPI basin. For the SPI-1 drought events it 

can be noticed that all RCMs underestimate the number of drought events (see section 4.2.1). On 

average there is a small increase simulated. The spread in results remains similar for all periods.  

The SPI-3 drought events show an obvious increase in the number of events. For the SPI-6 drought 

events the spread in results increases for the future periods. The weighted average shows an increase in 

the number of events. The number of SPI-12 drought events is overestimated by all RCMs. The spread in 

the possible number of events increases and one RCM projects no basin drought events for the last 

period. On average there is a slight decrease and a slight increase for respectively period 2050 and 2095.  

Focusing on particular RCMs it can be noticed that RCM-8 shows an increase in number of drought 

events for all SPIs and that RCM-3 shows the largest decrease in the number of events. For all the SPIs it 

can be noticed that the RCMs with GCM ECHAM5-r3 (denoted with a square) show the lowest number 

of drought event for the future periods. This indicates that this GCM is projecting a more wet climate 

than the other GCMs.  

 

 
Figure 4-8 Number of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) with 
weighted average of simulations.  



45 
 

4.3.2 Change in drought event characteristics 

The drought events considered are the cell based events. Next to duration the other event 

characteristics that are considered are total deficit (sum of SPI values) and intensity (lowest SPI value of 

an event).  

Duration 

Figure 4-9 shows the change in average duration of drought events. The average duration is 

overestimated for SPI-1 and underestimated for SPI-3 and SPI-12 by all RCMs. For SPI-6 there is a good 

representation of the average duration as most results are close to the observed value (see section 4.2). 

For all SPIs there is an increase projected for the 2095 period. The average duration decreases for SPI-1, 

SPI-3 and SPI-6 for the 2050 period and increase (compared to the historical period) in the 2095 period. 

Most of the RCMs with the GCM ECHAM5-r3 (denoted with a square) are projecting below average for 

all SPIs. The Hadley RCMs (blue ones) all show an above average estimation for SPI-1.  

 

 
Figure 4-9 Average duration of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) 
with weighted average of simulations. 



46 
 

Figure 4-10 shows the change in the standard deviation of duration. For all SPIs, except for SPI-1, the 

RCMs underestimate the standard deviation. For SPI-1 there is an overall good simulation of the 

standard deviation. See section 4.2 for more information.  

There is a small to large increase on average in standard deviation for all time scales. In combination 

with a small to large increase in average duration for the different SPIs (see Figure 4-9), it can be 

concluded that an increase in extreme long drought events for all time scales is projected in the future. 

Especially for SPI-1 for the 2066-2095 there is a large increase in average duration and its standard 

deviation.    

RCM-7 seems to simulate strange results for most SPIs (except for SPI-1); there are extremely high 

values simulated for the two future periods. In combination with the fact that RCM-7 simulated the 

observed value well this will have a quite large influence on the weighted average value.  

 

 
Figure 4-10 Standard deviation of duration of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 
(simulated) with weighted average of simulations. 
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Deficit 

Figure 4-11  shows the change in average deficit of all RCMs. Deficit is by definition a negative value. A 

lower value for the deficit means a higher deficit. For SPI-1 the RCMs overestimate the average deficit 

and a large increase in the range of values for the future periods can be noticed. The average of the 

RCMs shows that the average deficit will increase for all SPIs. For SPI-3 the RCMs underestimate the 

observed value. Most RCMs tend to show an increase in deficit which corresponds with the weighted 

average. For SPI-6 there is an overall good simulation of the observed value. Most RCMs shows an 

increase in deficit for the two future periods. For SPI-12 the simulations underestimate quite largely the 

observed value and the projections for the two future periods show an increased range of values. The 

first statement indicates the lack of quality in the simulations (both historical and future periods) the 

latter statement indicates the large range of possible outcomes. Combined it should be noted that for 

this case no strong conclusion can be drawn.  

RCM-10 shows the largest increase for SPI-1 events in average deficit. RCM-7 simulates one of the 

largest increases in average deficit for most SPIs. For SPI-6 the RCMs with GCM ARPEGE (green) show 

the largest increase in average deficit.  

 

 
Figure 4-11 Average deficit of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) 
with weighted average of simulations. 



48 
 

Figure 4-12 shows the change in the standard deviation of the deficit. The standard deviation for SPI-1 

drought events is simulated quite well, for the other SPIs the RCMs underestimate the deviation. See 

section 4.2 for more information.  

On average the standard deviation of the deficit increases for all time scales. This indicates similar to the 

increase in variation in duration an increased chance of extreme events. RCM-7 shows oddly high 

changes for all SPIs. RCM-10 shows a similar strange high change for SPI-1.  

 

 
Figure 4-12 Standard deviation of deficit of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 
(simulated) with weighted average of simulations. 

  



49 
 

Intensity  

Figure 4-13 shows the change in average intensity (the lowest SPI value of a drought event). For all SPIs 

the observed value is simulate well and the weighted average shows an increase in intensity (a lower 

value, thus a higher intensity). The spread in results for all SPIs considerably increases in the future 

periods. RCM-7 shows the largest changes in average intensity for all SPIs. 

 

 
Figure 4-13 Average intensity of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) 
with weighted average of simulations. 
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Figure 4-14 shows the change in standard deviation of the intensity. The standard deviation for each SPI 

is simulated quite well. The spread in results in the future periods is quite high, but the weighted 

average shows for all SPIs a considerable increase in the standard deviation of intensity. This implies a 

more extreme climate: i.e. drought events with a larger variation in intensity. Combined with the 

projected increase in the average intensity this will result in more events with an extreme intensity. 

RCM-7 simulates the largest changes for all SPIs.  

 

 
Figure 4-14 Standard deviation of intensity of drought events, for 2000 (observed and simulated), 2050 (simulated) and 2095 
(simulated) with weighted average of simulations. 
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4.3.3 Change in drought frequency basin 

The change in basin drought frequency is shown in Figure 4-15. The average is not weighted for this 

statistic. The average of all RCMs show a slight increase simulated for all SPIs. However the spread in 

simulations suggest a large uncertainty for the future periods. For SPI-12 (period 2066-2095) there is 

one RCM (RCM3) that simulates no drought at basin level, while another RCM (RCM11) projects drought 

around 60% of the time.  

Other interesting results are the RCMs with the same GCMs and same or similar RCM. For example the 

RCMs with ECHAM5-r3 (square) as their driving GCM have overall lower than average drought 

frequencies in the future periods. The RCMs with ARPEGE (circle) as their driving GCM show the highest 

change in drought frequency for all SPIs. I.e. the GCM ECHAM5-r3 simulates a wetter climate compared 

to the weighted average projection, while the GCM ARPEGE simulates a drier climate.  

 

 
Figure 4-15 Drought frequency of the river basin, for 2000 (simulated), 2050 (simulated) and 2095 (simulated) with average 
of simulations. 
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4.3.4 Change in drought frequency pattern 

The assessment showed that RCM1 simulated the drought frequency over the basin the best of all 

RCMs. Figure 4-16 shows the drought frequency for the Meuse basin for the three periods for SPI-1. It is 

clear that for each future period there is an increase for most part of the basin. This could be expected 

since the basin average drought frequency changes from 0.244 to 0.275 for 2050 and 0.439 for 2095. An 

interesting result is the relation with the known relief of the basin; it seems that the higher locations are 

less drought prone than the less elevated locations. This can be probably largely explained by the RCM-1 

projection of more precipitation for higher locations then the lower ones.  

Figure 4-17 shows the drought frequency for the basin for the three periods for SPI-3. There is a clear 

increase in overall drought frequency projected. The basin average changes from 0.235 to 0.321 and  

0.514 for 2050 and 2095 respectively. There is a similar spatial pattern visible as for SPI-1; the more 

elevated the less drought prone the area is.  

Figure 4-18 shows the drought frequency for the basin for the three periods for SPI-6. There is a clear 

spatial pattern simulated for the historical period. This pattern changes to a less clear structure and with 

more spatial variation. The basin average changes from 0.248 to 0.324 and 0.530 for both future 

periods. Although it is less obvious for SPI-6 than the smaller time scales, the less elevated areas have 

higher drought frequencies then the higher elevated areas.  

Figure 4-19 shows the drought frequency for the basin for the three periods for SPI-12. There is a clear 

spatial pattern simulated for the historical period. This pattern changes quite largely to an extremely 

spatially variable pattern for the period 2050. This changes for the last period (2095) into a spatially 

correlated pattern with little variation in values. On average for the whole basin the drought frequency 

changes from 0.315 to 0.198 to 0.375 (see Figure 4-15). This is interesting when combined with the 

extreme variable pattern for the period 2050; on average there is a decrease which is quite large (from 

0.315 to 0.198) while for some parts of the basin there is a strong increase.    
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Figure 4-16 Change in drought frequency as simulated by RCM-1 (SPI-1) 
 

 

 
 

Figure 4-17 Change in drought frequency as simulated by RCM-1 (SPI-3) 
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Figure 4-18 Change in drought frequency as simulated by RCM-1 (SPI-6) 
 

 

 
 

Figure 4-19 Change in drought frequency as simulated by RCM-1 (SPI-12) 
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4.3.5 Change in deficit-duration relations 

Figure 4-20 shows the change in the deficit-duration relationship. For all SPIs the average is decreasing, 

this indicates a higher deficit for the same duration. For SPI-1 all RCMs simulate a decrease and thus it 

can be concluded that it is most likely that SPI-1 drought events will become more severe (a higher 

deficit for the same duration). For SPI-3 drought events a similar observation can be made except that 

one RCM (RCM-12) simulates no change to a little increase. For SPI-6 and SPI-12 drought events the 

projection shows for some RCMs an increase, while the average is decreasing. This indicates that there is 

a bit more uncertainty in the projections than for example SPI-1 where all projections show a decrease. 

The RCMs with ECHAM5-r3 (square) as their driving GCM show the smallest change in the deficit-

duration relation. RCM-7 shows one of the largest changes of all RCMs. RCM-9 shows an outlier for SPI-

12 for the period 2095 which could just be the result of particular drought events. As discussed in 

section 4.2 this statistic is subject of matching drought events for the same duration in both datasets (in 

this case simulation for the past and future climate). Larger time scales have less drought events and the 

events have a higher deficit. RCM-10 shows for SPI-1 for the period 2050 an extreme result. Since SPI-1 

events are mostly short-lasting and there is not much variation (see section 4.2.1) in deficit it is unlikely 

that such much change will occur.  

 

 
Figure 4-20 Change in the deficit-duration relation of drought events, all SPIs, for 2000 (simulated), 2050 (simulated) and 
2095 (simulated) with weighted average of simulations. 
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4.3.6 Change in temporal correlation 

Figure 4-21  shows the change in temporal correlation for the future periods. For SPI-3 the correlation 

length is well reproduced by quite a lot of RCMs. The weighted average does not show a significant 

change.  

For SPI-6 the RCMs, except for RCM-1, underestimate the correlation length. The weighted average 

shows a rather large decrease in correlation length.  

For SPI-12 the RCMs quite largely underestimate the correlation length. This implies that the projections 

in the future periods have a relative large uncertainty. The average value in correlation length is slightly 

decreasing.  

 

 
Figure 4-21 Temporal correlation length, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) with 
weighted average of simulations. 
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4.3.7 Change in spatial correlation 

Figure 4-22 shows the change in spatial correlation. For SPI-1 the spatial correlation length is simulated 

rather well and the weighted average shows an increase. For SPI-3 the correlation length is simulated 

quite well by most RCMs. RCM-10 overestimates the value and shows for all SPIs a high value for the 

period 2050. The average shows a steady increase in correlation length. RCM-11 and 12 (green) show 

the lowest values for the future periods. For SPI-6 the correlation length is simulated well by most RCMs. 

On average there is quite a large change in correlation length: from around 800 km up to 1000 km in the 

period 2095. For SPI-12 the correlation length is simulated quite well by some RCMs. On average the 

correlation length is projected to increase slightly. 

RCM-10 shows an extreme high value for period 2050 for all SPIs. There is on average an increase in 

correlation length. RCM-11 and 12 (HIRHAM and DMI-HIRHAM as their RCM) show one of the lowest 

value for both future periods for SPI-1 and SPI-3.  

 

 
Figure 4-22 Spatial correlation, for 2000 (observed and simulated), 2050 (simulated) and 2095 (simulated) with weighted 
average of simulations. 
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4.3.8 Summary of results and discussion 

Section 4.3 presents the results of the impact analysis. The results are interpreted for each time scale. 

Each time scale will relate to a different physical condition in the river basin as discussed in section 3.2.3. 

This will reveal a more practical application of the results. The statements are based on the average of 

the projections. The statements concerning the spatial structure are based on RCM-1. 

There is no known study done for the Meuse basin concerning the correlation between different time 

scales and different physical conditions. However for a similar basin (Mosselle, a sub-basin of the Rhine 

River adjacent to the Meuse basin) the correlation between aggregated precipitation and low-flow has 

been studied (Demirel et al., 2013). There was some correlation (0.25) found between precipitation 

(aggregated to around 5 months) and the discharge in that basin. De Wit et al. (2007) found a high 

correlation between the variance in summer precipitation and the variance in average discharge in the 

summer for the Meuse basin. This suggests that even small time scales SPI-1 and SPI-3 for this basin are 

correlated with discharge.  

Impact at different time scales 

For SPI-1 there is a small increase (7%) in the number of drought events. These events have a higher 

average duration (11%), higher variation in duration (19%), higher average deficit (40%), higher variation 

in deficit (79%), higher average intensity (28%) and higher variation in intensity (75%). The basin will 

have 33% more droughts. The spatial structure of drought will largely remain the same. The spatial 

correlation length increases with 19%, indicating a significant increase in the area affected by droughts.  

For SPI-3 there is a significant increase (29%) in the number of drought events. These events have a 

higher average duration (14%), higher variation in duration (13%), higher average deficit (50%), higher 

variation in deficit (56%), higher average intensity (40%) and higher variation in intensity (80%). The 

basin will have 35% more droughts. The spatial structure of drought will largely remain the same. The 

temporal correlation does not change largely (+2%). The spatial correlation length increases with 32%, 

indicating a significant increase in the area affected by droughts. 

For SPI-6 there is a significant increase (44%) in the number of drought events. These events have no 

significant change (+3%) in average duration but a higher variation in duration (21%), higher average 

deficit (34%), higher variation in deficit (78%), higher average intensity (27%) and higher variation in 

intensity (68%). The basin will have 29% more droughts. The spatial structure of drought will largely 

remain the same. The temporal correlation decreases significantly (-20%). The spatial correlation length 

increases with 31%, indicating a significant increase in the area affected by droughts. 

For SPI-12 there is a significant increase (10%) in the number of drought events. These events have a 

significant higher average duration (12%), higher variation in duration (54%), higher average deficit 

(40%), higher variation in deficit (123%), higher average intensity (22%) and higher variation in intensity 

(63%). The basin will have 23% more droughts. The spatial structure of drought will change largely. The 

temporal correlation decreases but not significantly (-6%). The spatial correlation length increases with 

10%, indicating a significant increase in the area affected by droughts. 
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The main conclusion is that climate change, most likely, has an impact on drought in the Meuse basin. 

Overall this impact will result in more drought events for most SPIs. For all SPIs the events have on 

average a higher duration, deficit and intensity. Furthermore the variation in these three drought 

characteristics increases as well, indicating more extreme events. For most SPIs, except SPI-6, the 

temporal variability did not seem to change significantly. The temporal variability seems to significantly 

decrease for SPI-6. For the future periods there are significantly more events with overall more extreme 

characteristics. The logical explanation for this is the change in climate or more specific the temporal 

precipitation patterns. The spatial correlation of drought for all time scales increases which indicates 

that drought events will affect larger areas.  

Influence of GCM and RCM on results 

Another way of interpreting the results is based on the projections with the same driving GCM or same 

RCM. Each RCM run has at least one other RCM run with the same RCM or GCM (see table 4-15). Some 

combinations with similar or clear different results will be discussed. 

RCM-7 and RCM-8 (both driven by GCM HadCM3Q0) show similar results regarding the number of 

drought events and the average duration; both show one of the largest increases in the number of event 

and an above estimate in average duration. However the similarity seems to stop here. For the other 

statistics there are no apparent similarities. However RCM-7 shows particular high projections for most 

SPIs in most drought characteristics statistics. Furthermore the variation in deficit for SPI-12 is 

particularly high projected by RCM-7 for the two future periods. The assessment of this RCM for this 

statistic (see section 4.2) shows it was the second worst simulation. This means that the values of this 

RCM have a weight of 2.9 % on the weighted average (see section 3.4.4). However the particular high 

value (+400%) for standard deviation in deficit of this RCM compared to the other projections means 

that it will influence the weighted average largely. However this is not a reason to neglect the results of 

this RCM. The main reason that this projection is less reliable than most other RCMs is its lack of ability 

to simulate the observed value for that statistic.  

RCM-11 and RCM-12 (same RCM, different GCM) show for the drought frequency basin diverting results; 

RCM-11 shows for all SPIs one of the highest estimates, and RCM-12 shows for all SPIs one of the lowest. 

This can only be explained by the difference in driving GCM. This explanation seems logical and 

furthermore other projections confirm this. For example RCM-1 (same GCM, different RCM than RCM-

11) shows also high results, while the RCMs driven by the same GCM as RCM-12 (ECHAM5-r3) shows 

below average estimates for the drought frequency in the basin. Furthermore this difference was also 

visible in the number of events and their characteristics; RCM-11 projected consistently more extreme 

droughts than RCM-12. Interestingly the temporal and spatial correlation was really similar. Based on 

these statistics it is therefore stated that GCM ECHAM5-r3 shows one of the least extreme climates of all 

GCMs (there are five RCM runs with this GCM which will be discussed later on) and that GCM ARPEGE 

shows one of the most extreme climates for the Meuse basin. Since the temporal and spatial correlation 

was similar it seems that the driving GCM has less influence on this statistic and that the RCM is the 

main contribution to this. This can be confirmed by focusing on the RCM runs with the same RCM but 

different driving GCMs. However, based on the RCMs runs with RCA (red marker) or the Hadley RCMs 
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(blue marker) this could not be confirmed. This indicates that both the RCM and the GCM are not 

dominant when simulating the spatial correlation. 

RCM-2, -3, -5, -12 and -13 are all driven by the ECHAM5-r3 (square) and all these projections showed a 

similar tendency to a less extreme climate change than the weighted average.  Most projections showed 

a below average estimate of the number of drought events. Furthermore the drought characteristics for 

all these projections were below average. This obviously relates to a below average projection in 

drought frequency of the basin. Therefore it can be stated that ECHAM5-r3 projects a below average 

change for the Meuse basin, i.e. a wetter climate than average.  

Uncertainty and range of projections 

When discussing the results of the impact analysis the uncertainty in these results should be considered 

as well. The uncertainty of the RCM runs is assessed by calculating the difference between observed and 

simulated for each individual SPI and statistic. For most statistics the RCMs did not simulate the 

observed value well. The spread in simulated results and the difference between observed and 

simulated values indicate the quality of the RCMs. This is the main factor determining the certainty of 

the projections. Furthermore there was a tendency of higher uncertainty for future periods as well. Both 

factors give an indication of the uncertainty in the results. Since for each time scale and each statistic 

there is a different spread and difference, it would be too much to discuss this for each result. Since the 

weighted average of all these projections give a good estimate of the tendency of all projections and 

incorporates the uncertainty of these projections, only the average is discussed.  

The weighted average is a useful way to analyze the impact of climate change on drought. However the 

range of the projection is neglected when only focusing on the weighted average. Looking at the RCMs 

that show the largest increase (more extreme drought) and the smallest increase (or largest decrease; 

less extreme drought) for each statistic the range in projections is assessed. However for almost each 

indicator and time scale the smallest change was a small decrease and the largest change was a larger 

increase. I.e. it is likely that an increase in drought and its characteristics will occur. This is supported by 

the fact that for most statistics the best performing RCM showed a similar trend as the weighted 

average. More importantly for most statistics only a few RCMs projected a decrease, i.e. for most 

statistics most RCMs projected an increase. 
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Chapter 5 Discussion 

The discussion consists of a discussion of the results and the limitations of the applied methods. 

Furthermore the ability of the applied methods to be used for different cases is discussed.  

Results 

The results based on the observed dataset showed that different time scales had a clear different 

temporal variability. This resulted in a clear difference in drought characteristics; higher temporal 

variability relates with more drought events with less. Komuscu (1999) also found this relation between 

higher time scales and the number of drought events. The impact analysis showed the impact of climate 

change on drought and while the temporal variability reduces, the number of events can still increase 

and its characteristics can be more extreme. 

The spatial correlation length was in the range of 1000 km, indicating the low spatial variability of SPI 

values. As was earlier noted this is a multitude of the river basin itself, i.e. there is a high correlation of 

the SPI values in the basin. To the authors knowledge this is the first study to show the correlation 

length of SPI values. Studies concerning spatial correlation or similar phenomena like monthly 

precipitation values are also not known to the author. The spatial structure based on the observed 

values showed for most SPIs a clear relation with the elevation in the basin. The spatial structure was 

not well simulated by most RCMs. This could be expected since some physical processes are active at 

smaller scales, than incorporated in the RCMs (van der Linden and Mitchell, 2009). The climate model 

will parameterize these processes using semi-empirical relationships.  

Meteorological drought is not only caused by the lack in precipitation; it can also be affected by other 

factors. The main other factor is evapotranspiration which is largely determined by temperature 

(Thornthwaite, 1948). The expected result is, since there will be (very likely) an increase in temperature 

for the 21st century (IPCC, 2012), that the drought events will be even more extreme than projected in 

this research.  

Taylor et al. (2012) showed the importance of using multiple emission scenarios, multiple GCMs and 

multiple RCMs. This is mainly due to the inherent uncertainty in them and the impact this has on the 

results.  For this impact analysis only one emission scenario (A1B) is used. Therefore the uncertainty and 

spread in results due to different possible emission scenarios is not included. Thus it can be stated that 

the impact analysis shows a higher accuracy than there really is.  

There was one RCM run (RCM-7 from ETHZ) that projected exceptional large changes in drought 

characteristics. This can only be explained by the used RCM: CLM. A study by Bachner et al. (2008) 

evaluates this RCM to simulate daily precipitation characteristics for different areas in Germany. It was 

found that generally the averages were acceptably simulated. However a significant dry bias was found 

throughout the summer season. This could partly explain the extreme results this RCM is showing for 

several drought statistics.  
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The impact analysis could identify for some RCM runs the significant influence of the driving GCM or the 

applied RCM on the drought statistics. Van der Linden and Mitchell (2009) already stated the possible 

influence the driving GCM or RCM has on the output of the RCM run. Van der Linden and Mitchell (2009) 

found that with a larger climate change, the GCM became more important than the RCM. Therefore the 

first future period (less climate change than the second future period) it can be expected that the RCM 

has a larger influence on the result than for the second future period where the GCM will be more 

important. However in this impact analysis this could not be confirmed.  

The RCM assessment found that most ENSEMBLES RCMs tend to underestimate the temporal variability 

of the SPI in the basin. Nikulen et al. (2011) found that the GCMs in ENSEMBLE all show a complex 

spatial structure of precipitation for Europe in the historical period. It seems that for most GCMs the 

precipitation extremes are overestimated for mountains and underestimated over surrounding slopes. 

The Meuse basin is a relatively small basin with enough elevation to affect the precipitation pattern in 

the basin. It could be that the GCMs are the reason that precipitation in the historical period is not 

simulated well for the RCM runs. The focus on similar results based on the same GCM or same RCM 

suggest that the used GCM and RCM can have influence on the drought statistics. Interestingly for the 

historical period no strong patterns are found for the drought statistics for RCM runs (with same RCM or 

same GCM), while strong patterns are identified for the two future periods. For example the GCM 

ECHAM5-r3 seems to underestimate the extremeness of the impact of climate change (below average 

projections), but for the historical period this influence of the GCM is not apparent. This should be 

interpreted as an influence of the emissions in the atmosphere: the main difference between the 

historical period and the future ones. Apparently the GCMs (see section 4.3.8) react differently to this 

change in amount of emissions and this difference is reflected in the drought characteristics. This is in 

line of expectations since each climate model will have a different structure and way of modeling 

physical processes.  

Methods 

The relative temporal SPI was introduced by Dubrovsky et al. (2009) and is applied in the research. 

Based on the different drought statistics it seems that this is a great way to compare different periods of 

time. Significant changes in the number of drought events and significant changes in the drought 

characteristics could be quantified. Preliminary results showed that applying the SPI and the relative 

temporal SPI to the same future period will result in a higher increase in number of events and more 

extreme characteristics for the relative temporal SPI. The fact that the relative SPI shows a larger change 

is logical considering the presumed more extreme future climate. The historical variability and mean is 

used to calculate SPI values when the variability is probably higher and the mean different for the future 

climate. In other words the relative temporal SPI has a larger range in values than the SPI. 

The relative spatial SPI is introduced in this study to make intra basin comparisons. The main question 

for this modification is what to use as reference point to make the SPI relative. In this research the area-

weighted average of the cell parameters are used as a reference point. This was chosen to be more 

preferred than the parameters of SPI basin or the parameters of one cell. The SPI basin is at a larger 

spatial scale than a cell, it is therefore likely that there will be a different kind of variability at this scale 

than at cell level. Therefore the SPI basin parameters are not preferred because the relative spatial SPI is 
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used at cell level. The parameters of one cell are less preferred since this will be less easy to interpret; 

the basin average will reveal which areas are above or below average for that basin. The main purpose 

of the relative spatial SPI is to make it possible to identify the spatial variations inside of the basin. The 

relative spatial SPI for the Meuse basin already showed that the drought frequency (based on the 

relative spatial SPI) were around the limits of drought frequency (one and zero). In other words it is a 

possibility that for a basin (with more variation in the basin) the drought frequency based upon relative 

spatial SPI will show values of one and zero. This would make this statistic less useful. There are other 

options for the same purpose. Vrochidou et al. (2012) introduced a modification of SPI: SN-SPI (spatially 

normalized SPI) to compare between areas. The normalization was based on the difference in annual 

precipitation. Bonaccorsi et al. (2003) utilized the principal component analysis (PCA) to determine the 

spatial variations in SPI values. The main advantage of the relative spatial SPI is that the spatial variation 

in drought frequency is determined. There is no normalization based on the annual precipitation 

needed. The PCA only identifies areas which are spatially related to each other, but it remains unclear 

how this should be interpreted for drought. However Santos et al. (2010) used the PCA for Portugal and 

found that the precipitation pattern was closely related with the temporal variability of SPI values over 

space. In other words it seems that the relative spatial SPI can be a complementary way of assessing the 

spatial structure of drought.  

Spatially aggregating SPI can be different due to using observational stations or a grid based dataset and 

the option between aggregating precipitation values and aggregating SPI values. Zhai et al. (2010) 

aggregate monthly SPI series based on grid cells. Jung and Chang (2012) used area-averaged monthly 

precipitation values to calculate the basin SPI. Fischer et al. (2013) used total precipitation of each basin 

to calculate the SPI. Based on these studies it seems that there is no preferred way of spatial 

aggregation.  In this research it is done by aggregating SPI series of the cells covering the basin.  

In this study the common sample period of 30 years is chosen to analyze the (possible) different 

climates. However this has implications on the results, on fitting the probability density function to the 

aggregated data. The SPI values below -2 (and above 2) should be used with care since there is less 

accuracy for the extremes values (Guttman, 1998). This holds for the normal SPI. The temporal 

modification causes a shift in the range of SPI values. For the relative temporal SPI the minimum (and 

maximum) values are still less accurate than the values more close to the average. In case of a more 

extreme climate the range of SPI values will also increase, due to a larger variation in monthly 

precipitation values compared to the historical period. This will make the extreme SPI values probably 

even less accurate. 

The drought events based upon cells are sometimes spatially related to each other. When at basin level 

a drought event is identified, there are probably 63 drought events based on cells. In this study this is 

not taken into account; the cell events are considered to be independent. This implies that the cell 

drought events are more related to each other than the results suggests. The drought events based on 

cells have another issue when describing the basin; there is a large difference in coverage of each cell. 

This can range from 600 km2 to only 2 km2. This difference in ‘importance’ is not taken into account for 

these drought events.  



64 
 

The error (and similarly the change) in the deficit-duration relation is analyzed in this study. The error 

(and change) value can be misleading due to two factors. Firstly for the extreme events (high duration 

and deficit) there is a high chance that no error is estimated. This will result in an estimate that is 

probably better than it should be. Secondly the cell based events are probably (spatially) related to each 

other influencing the error. I.e. multiple similar drought events are simulated, for what actually is one 

drought event. The weight for calculating the error (or change) will be higher than it should be. The 

change values have another limitation: an increase for short events can be offset by a decrease for 

longer event.  

Generalization of method 

Most drought statistics can be easily applied to different cases. However the possible limitation in 

applicability of the relative SPIs is already discussed. The number of drought events and their 

characteristics can be easily applied for different cases. The same holds for the correlation lengths. The 

main issue is the needed datasets. 

For this study the used datasets were at the same spatial resolution (around 25 km) and for most cases 

(two exceptions) at the same grid (same geographical distribution of basin in cells). The impact analysis 

is easier to perform when all the datasets are on the same grid; however a simple transformation (as 

applied in this study) can be applied to overcome this problem. The most important criterion for the 

datasets is that the same or similar spatial scale is used. This is mainly because the representation of 

physical processes at different spatial scales is different. The results will be influenced in a way that is 

difficult to quantify and a transformation is needed. Another limitation is that it is not uncommon that 

the observed dataset is a point-based datasets with precipitation series of rainfall stations. It is 

suggested to spatially interpolate these series to the same grid the RCMs are projected for easy 

comparison.  
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Chapter 6 Conclusions and recommendations 

6.1 Conclusions 

The research objective is formulated as: 

Develop and apply a method to assess the impacts of climate change on drought in the Meuse 

basin at different time scales  

Three research questions were formulated to reach this objective. A short answer for each research 

question is presented in this section.  

How can drought be assessed in a suitable way for climate impact analysis? 

The literature study showed the preference for using RCM projections run with different emission 

scenarios, GCMs and RCMs. Furthermore for each impact analysis there is the need to assess the quality 

of the RCM projections by comparing them with an observed dataset. The SPI method is a relatively easy 

index to identify drought events. One of the findings of this research is that to make the SPI useful for 

climate impact analysis, the SPI calculations for the future periods should be based on the historical 

calculations (apply historical probability density functions). In this way the possible difference in climate 

is taken into account. To assess basin-wide changes the SPI series are spatially aggregated to the basin 

level. To assess variation of drought in the basin the SPI is modified to a spatially relative SPI. The spatial 

structure can be investigated with this modified SPI. Temporal and spatial correlograms are made to 

assess the temporal and spatial correlation of SPI series. The SPI series can be used to identify the 

number of drought events and to calculate the average and standard deviation of the characteristics 

(duration, deficit and intensity) of these events. Deficit-duration relationships are investigated.  

How well are the climate model simulations in simulating drought? 

Multiple criteria were developed to assess how well the simulations simulate the observed drought. 

These criteria concern the number of drought events, the characteristics (duration, deficit and intensity) 

of these events, the deficit-duration relation, the temporal and spatial correlation and the spatial 

structure of drought in the river basin. Not one RCM performs well for all these criteria (and all time 

scales). Overall there was an underestimation of the temporal variability which relates to more events 

with less extreme characteristics (duration and deficit). The spatial structure was quite well to poor 

simulated by one RCM of the thirteen RCM projections. The other projections show a large error in 

simulating the spatial structure. Overall there was a poor estimation of the spatial correlation, but some 

RCM runs performed well. 
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What are the impacts of climate change on drought in the Meuse basin? 

Based on the (weighted) average of thirteen RCM projections for two future periods it was shown that 

for most time scales there will be a significant increase (≥10%) in the number of drought events. For all 

time scales there was a significant increase in the drought characteristics (duration, deficit and 

intensity). Especially the variation in intensity increases dramatically for all time scales. Only for SPI-6 

(probably related to stream flow) there was a significant change in temporal variability (an increase of 

20 %). The spatial variability decreases for all time scales indicating drought events that affect a larger 

area. However there is inherently uncertainty in these projections and thus these statements. Probably 

the most important source of uncertainty lies in the lack of using multiple emission scenarios in the 

impact analysis. Furthermore for most statistics and most RCMs the projection shows a (large) error 

between the simulated value and the observed one. However this uncertainty could not be further 

quantified. The RCMs however simulated the average intensity and its standard variation extremely 

well. So it could be argued that for this statistic the projections have less uncertainty. The spread in 

projections for the future periods also show how much certainty there is in the average projection.  

Objective 

Based on the following paragraphs it can be concluded that a method has been developed and applied 

to assess the impact of climate change on drought in the Meuse basin. The method identifies the 

number of drought events, its characteristics, temporal variability, spatial variability and spatial 

distribution of drought in the basin on multiple time scales. Using multiple RCM runs with different 

GCMs and RCMs a range of possible impacts is provided. The (weighted) average proves to be a useful 

way to assess the general trend in these projections and to assess the impacts of climate change on 

drought.  
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6.2 Recommendations 

Based on this study the following is recommended. The drought assessment could be made more 

comprehensive by applying a hydrological model to the RCM output. In this way the hydrological 

drought can be appropriately analyzed. Adding and applying possible socio-economical scenarios and 

using a different drought index, it could be possible to analyze the impact of climate change on socio-

economical drought.  

The different time scales relate to different physical conditions in this particular river basin. However for 

this river basin such study has not yet been applied. It would be interesting to establish these 

relationships (time scale with physical conditions) for this particular basin for a better interpretation of 

the results in this study. Furthermore the next step could be focusing on particular seasons of interest. 

For example the growing season in this basin is probably affected by the groundwater level in the basin. 

Some time scales will relate to this phenomenon and in this way the impact analysis can be more 

interesting for this particular area of interest. The meteorological drought is caused not only by the lack 

in precipitation; it can also be affected by other factors. The main other factor is evapotranspiration 

which is largely determined by temperature. However it is still under debate how to incorporate these 

factors in the analysis. The obvious and probably one of the easier ways is applying the SPEI method 

(Vicente-Serrano et al., 2010). In this way the change in temperature, which is a well-established fact, is 

taken into the impact analysis.  

To assess the spatial structure in the basin multiple (complementary) options are found in this research. 

The relative spatial SPI could also be used to project the lowest relative spatial SPI values over the basin. 

This will probably reveal a similar pattern to the introduced drought frequencies plots. Another option is 

plotting the parameter of the used probability density function that describes the standard deviation of 

the function as a measure of variability in the basin. The temporal variability in the basin is in that way 

assessed. The application of the relative spatial SPI should be assessed by applying a similar study to a 

basin with larger spatial variability (for example a similar climate but a larger basin).  

Further research and knowledge is needed to assess the spatial extent of each drought event. It remains 

unknown how the spatial extent could be measured by using the SPI values. For example when there is a 

drought event: will the neighboring cells with a value between minus one and zero be incorporated in 

the drought event? Technically these cells are not experiencing drought yet, however it could be well 

argued that these cells are strongly related to each other.  

The relative temporal SPI could also lose its applicability for larger climate changes as discussed in the 

discussion section. Therefore it is suggested to conduct further research in the applicability of this SPI 

modification for a different river basin that is subject to larger climate changes. 
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A. SPI calculation 

The full computational procedure as presented by Edwards (1997) is described below. The gamma 

distribution is defined by its probability density function: 

 
      

 

      
                  

 

Eq. (A.1) 

                        
                        
                             
 

                
 

 

                       

 

Eq. (A.2) 

Where   is the real value representing the aggregated precipitation values. This probability density 

function will be fitted to a frequency distribution of precipitation totals. Thom (1966) provides the 

maximum likelihood solution to estimate    and  : 

 

   
 

  
      

  

 
   

 

Eq. (A.3) 

 
   

  

  
 

 
Eq. (A.4) 
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Eq. (A.5) 

                             

                       

                                       

The SPI values in this research are calculated with the software package Matlab (2012a) where the best 

estimates are calculated by the so-called gamfit function. This function provides the parameters with 

the most likely estimate. The parameters (          ) are used to find the cumulative probability of 

monthly precipitation. The cumulative probability is given by:  

 
               

 

         
      

 

 

           
 

 

 

 

Eq. (A.6) 

Letting        the equation above becomes the incomplete gamma function: 
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Eq. (A.7) 

The gamma function in Matlab (2012a) is described by the function gamcdf which uses the same 

formulas as described. The gamma function is undefined for x = 0, therefore the cumulative probability 

becomes: 

                  
Eq. (A.8) 

where   is the probability of a zero. Thom (1966) stated that   can be estimated by dividing the number 

of zeros in the precipitation series by the number of precipitation values. This estimate is used in this 

research.  The cumulative probability (    ) is transformed to the standard normal random variable   

with mean zero and a variance of one. 
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B. R-squared and F values 

For the temporal and spatial fits the goodness-of-fit is assessed by the   value and the significance of 

the fit is based on the F-value. 

Temporal correlation 

Historical period 

   SPI-3 SPI-6 SPI-12 

EOBS 0.95 0.87 0.93 

RCM1 0.90 0.88 0.70 

RCM2 0.95 0.69 0.81 

RCM3 0.94 0.89 0.84 

RCM4 0.94 0.80 0.76 

RCM5 0.97 0.91 0.87 

RCM6 0.95 0.86 0.80 

RCM7 0.97 0.90 0.82 

RCM8 0.96 0.86 0.79 

RCM9 0.79 0.81 0.82 

RCM10 0.83 0.74 0.64 

RCM11 0.86 0.82 0.80 

RCM12 0.91 0.85 0.84 

RCM13 0.96 0.87 0.84 

Table B-1 The    values, bold values are below 0.8. Temporal correlation (2000)  

  SPI-3 SPI-6 SPI-12 

EOBS 89.02 104.72 195.78 

RCM1 60.85 38.46 10.49 

RCM2 14.16 4.42 18.36 

RCM3 10.50 20.82 27.99 

RCM4 12.47 8.70 16.10 

RCM5 23.26 25.80 188.67 

RCM6 14.21 11.54 20.30 

RCM7 22.65 23.09 147.63 

RCM8 21.07 7.23 8.92 

RCM9 2.19 6.96 15.03 

RCM10 5.62 4.04 5.42 

RCM11 11.38 18.91 19.52 

RCM12 7.11 13.07 33.02 

RCM13 17.10 17.03 28.53 
Table B-2 The F values, bold values are below 9.5. Temporal correlation (2000) 
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Future period 2050 

   SPI-3 SPI-6 SPI-12 

RCM1 0.95 0.81 0.81 

RCM2 0.92 0.84 0.96 

RCM3 0.98 0.93 0.82 

RCM4 0.95 0.88 0.81 

RCM5 0.97 0.72 0.84 

RCM6 0.88 0.94 0.71 

RCM7 0.94 0.86 0.84 

RCM8 0.79 0.90 0.71 

RCM9 0.93 0.68 0.90 

RCM10 0.94 0.86 0.73 

RCM11 0.75 0.89 0.82 

RCM12 0.97 0.83 0.85 

RCM13 0.95 0.82 0.74 

Table B-3 The    values, bold values are below 0.8. Temporal correlation (2050)  

  SPI-3 SPI-6 SPI-12 

RCM1 15.66 9.59 22.38 

RCM2 8.05 5.91 159.84 

RCM3 36.16 29.15 21.45 

RCM4 13.59 18.34 20.09 

RCM5 22.84 5.39 27.03 

RCM6 4.73 34.08 15.34 

RCM7 11.65 7.69 30.02 

RCM8 4.16 12.45 5.80 

RCM9 9.46 3.12 66.78 

RCM10 12.33 7.30 11.10 

RCM11 3.25 20.41 20.67 

RCM12 26.16 11.03 21.88 

RCM13 14.32 7.70 13.10 
Table B-4 The F values, bold values are below 9.5. Temporal correlation (2050) 
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Future period 2095 

   SPI-3 SPI-6 SPI-12 

RCM1 0.80 0.85 0.61 

RCM2 0.89 0.81 0.75 

RCM3 0.93 0.58 0.80 

RCM4 0.93 0.67 0.95 

RCM5 0.91 0.81 0.80 

RCM6 0.92 0.84 0.84 

RCM7 0.94 0.80 0.97 

RCM8 0.88 0.80 0.91 

RCM9 0.80 0.65 0.84 

RCM10 0.92 0.55 0.47 

RCM11 0.95 0.91 0.85 

RCM12 0.98 0.91 0.73 

RCM13 0.95 0.82 0.85 

Table B-5 The    values, bold values are below 0.8. Temporal correlation (2095)  

  SPI-3 SPI-6 SPI-12 

RCM1 4.58 13.31 53.67 

RCM2 5.56 4.74 17.00 

RCM3 9.54 1.96 22.21 

RCM4 9.68 2.96 468.47 

RCM5 7.40 6.87 91.68 

RCM6 8.68 9.18 21.57 

RCM7 11.42 4.28 293.26 

RCM8 4.81 4.37 51.05 

RCM9 4.42 2.59 20.02 

RCM10 7.94 1.15 32.06 

RCM11 16.36 24.95 30.10 

RCM12 48.47 25.19 12.73 

RCM13 14.32 7.68 27.18 
Table B-6 The F values, bold values are below 9.5. Temporal correlation (2095) 

 

 SPI-3 SPI-6 SPI-12 

   358 355 349 

  2 2 2 

              sig. level of 0.90 9.50 9.50 9.50 

              sig. level of 0.96 24.5 24.5 24.5 

              sig. level of 0.99 99.5 99.5 99.5 
Table B-7 F threshold values. Based on   = 120 since Haan (2002) has no higher value: F threshold values could be expected 
to be a bit higher for a higher    
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Spatial correlation 

Historical period 

   SPI-1 SPI-3 SPI-6 SPI-12 

EOBS 0.90 0.83 0.66 0.60 

RCM1 0.84 0.79 0.70 0.71 

RCM2 0.95 0.93 0.88 0.86 

RCM3 0.95 0.91 0.89 0.89 

RCM4 0.94 0.92 0.90 0.82 

RCM5 0.83 0.74 0.74 0.70 

RCM6 0.91 0.89 0.89 0.81 

RCM7 0.83 0.73 0.73 0.69 

RCM8 0.65 0.60 0.69 0.50 

RCM9 0.84 0.80 0.85 0.60 

RCM10 0.79 0.59 0.46 0.28 

RCM11 0.91 0.86 0.81 0.71 

RCM12 0.83 0.80 0.80 0.77 

RCM13 0.81 0.83 0.77 0.73 

Table B-8 The    values, bold values are below 0.8. Spatial correlation (2000)  

  SPI-1 SPI-3 SPI-6 SPI-12 

EOBS 16635 9519 5048 3906 

RCM1 8976 6594 4257 4127 

RCM2 29841 20523 9888 7532 

RCM3 28711 15327 11134 11978 

RCM4 23898 16629 14850 6718 

RCM5 12963 7895 6433 4826 

RCM6 16645 12078 13351 8232 

RCM7 12989 7815 6260 4687 

RCM8 2266 1677 2405 761 

RCM9 9529 7028 8625 2250 

RCM10 5597 2610 1793 1125 

RCM11 18302 12834 8135 4800 

RCM12 8835 8471 7534 5852 

RCM13 10336 9510 5549 4272 
Table B-9 The F values, spatial correlation (2000) 
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Future period 2050 

   SPI-1 SPI-3 SPI-6 SPI-12 

RCM1 0.90 0.88 0.86 0.81 

RCM2 0.89 0.82 0.79 0.69 

RCM3 0.93 0.92 0.91 0.90 

RCM4 0.93 0.91 0.88 0.85 

RCM5 0.86 0.78 0.67 0.58 

RCM6 0.89 0.90 0.89 0.81 

RCM7 0.79 0.69 0.69 0.55 

RCM8 0.85 0.84 0.85 0.64 

RCM9 0.88 0.85 0.72 0.62 

RCM10 0.79 0.68 0.42 0.40 

RCM11 0.90 0.82 0.74 0.71 

RCM12 0.87 0.84 0.80 0.68 

RCM13 0.72 0.69 0.76 0.81 

Table B-10 The    values, bold values are below 0.8. Spatial correlation (2050)  

  SPI-1 SPI-3 SPI-6 SPI-12 

RCM1 14278 11282 9266 6011 

RCM2 14800 7753 6156 3426 

RCM3 21207 17678 14855 11766 

RCM4 19074 15724 11201 9629 

RCM5 15012 9794 6516 4316 

RCM6 11338 15981 13508 7187 

RCM7 9628 5807 5148 3238 

RCM8 7252 6794 7632 2066 

RCM9 13520 8559 4099 2604 

RCM10 7044 3827 1644 1926 

RCM11 19026 9819 5985 4839 

RCM12 11050 8169 6495 4160 

RCM13 6996 6476 7445 7936 
Table B-11 The F values, spatial correlation (2050) 
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Future period 2095 

   SPI-1 SPI-3 SPI-6 SPI-12 

RCM1 0.90 0.89 0.87 0.74 

RCM2 0.86 0.90 0.84 0.80 

RCM3 0.84 0.56 0.49 0.79 

RCM4 0.93 0.88 0.88 0.85 

RCM5 0.90 0.85 0.85 0.81 

RCM6 0.89 0.86 0.87 0.86 

RCM7 0.89 0.78 0.62 0.41 

RCM8 0.86 0.89 0.85 0.61 

RCM9 0.78 0.77 0.67 0.57 

RCM10 0.81 0.77 0.72 0.52 

RCM11 0.82 0.88 0.81 0.74 

RCM12 0.87 0.84 0.79 0.73 

RCM13 0.71 0.69 0.76 0.81 

Table B-12 The    values, bold values are below 0.8. Spatial correlation (2095) 

  SPI-1 SPI-3 SPI-6 SPI-12 

RCM1 13208 10991 9441 5944 

RCM2 9481 12742 6657 4541 

RCM3 11386 3862 2764 6658 

RCM4 21944 11395 10159 8028 

RCM5 21663 14596 11981 6382 

RCM6 12104 8868 9513 7914 

RCM7 14480 9154 5636 2930 

RCM8 8338 9774 6249 1071 

RCM9 6466 5073 3262 2247 

RCM10 4831 4153 3127 774 

RCM11 11886 15368 9809 7206 

RCM12 11836 9571 7839 5454 

RCM13 6988 6466 7443 7928 
Table B-13 The F values, spatial correlation (2095) 

 

 All SPIs 

   1953 

  2 

              sig. level of 0.90 9.50 

              sig. level of 0.96 24.5 

              sig. level of 0.99 99.5 
Table B-14 F threshold values. Based on   = 120 since Haan (2002) presents no higher value.F threshold values could be 
expected to be a bit higher for a higher    
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C. All temporal and spatial correlograms 

This appendix presents the correlograms (temporal and spatial) of all RCMs and the SPIs with its 

exponential fit. The choice of no temporal correlogram and fit for SPI-1 is presented and discussed.  

No temporal length for SPI-1 

The SPI-1 is not selected to be fitted with an exponential fit. This is based on the observed SPI-1 dataset.  

The correlation value of SPI-1 on lag 1 is near zero and negative, which indicates that there is no 

correlation on this lag. From a physical point of view it seems not logical that a significant correlation 

value will occur; if on lag 1 there is no correlation the other lags are just derivatives of this lack in 

correlation. Figure C-1 shows how SPI-1 is correlated on larger lags. It seems like a correlogram of a 

random dataset. Furthermore the fit is based on negative values and this seems not logical since the 

positive correlation length is an indication of how the positive temporal correlation is. This last point of 

discussion is the main reason and a solid one to reject the SPI-1 for calculation of a temporal correlation 

length. 

 

Figure C-1 All the correlation values up to lag 25 for the observed dataset 
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Temporal correlograms 

Historical period 

  
EOBS RCM1 

  
RCM2 RCM3 

  
RCM4 RCM5 
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RCM6 RCM7 

  
RCM8 RCM9 

  
RCM10 RCM11 
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RCM12  RCM13 
Figure C-2 All temporal fits and the data points the fits are based on. (2000) 
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Future period 2050 

  
RCM1 RCM2 

  
RCM3 RCM4 

  
RCM5 RCM6 
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RCM7 RCM8 

  
RCM9 RCM10 

  
RCM11 RCM12 
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RCM13  
Figure C-3 All temporal fits and the data points the fits are based on. (2050) 
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Future period 2095 

  
RCM1 RCM2 

  
RCM3 RCM4 

  
RCM5 RCM6 
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RCM7 RCM8 

  
RCM9 RCM10 

  
RCM11 RCM12 
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RCM13  
Figure C-4 All temporal fits and the data points the fits are based on. (2095) 
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Spatial correlograms 

For each RCM there are four plots. The EOBS spatial fits are presented in chapter 4. Since there are 13 

RCMS, three periods and 4 plots for each period, there are 156 correlograms that could be shown. 

Therefore only the best and worst fits (based on the    value) will be shown, for each period and SPI. 

Historical period 

SPI-1 

  
Best RCM-2 Worst RCM-8 
 

SPI-3 

  
Best RCM-2 Worst RCM-10 
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SPI-6 

  
Best RCM-4 Worst RCM-10 
 

SPI-12 

  
Best RCM-3 Worst RCM-10 
Figure C-5 All best and worst fits (2000) 
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Future period 2050 

SPI-1 

  
Best RCM-3 Worst RCM-13 
 

SPI-3 

  
Best RCM-3 Worst RCM-5 
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SPI-6 

  
Best RCM-3 Worst RCM-10 
 

SPI-12 

  
Best RCM-3 Worst RCM-10 
Figure C-6 All best and worst fits (2050) 
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Future period 2095 

SPI-1 

  
Best RCM-4 Worst RCM-13 
 

SPI-3 

  
Best RCM-2 Worst RCM-3 
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SPI-6 

  
Best RCM-4 Worst RCM-3 
 

SPI-12 

  
Best RCM-4 Worst RCM-8 
Figure C-7 All best and worst fits (2095) 
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D. Example deficit-duration error plot  

To get a better understanding of the how the relative errors are calculated the following plots are 

shown. The absolute error for each duration value (only when possible) is calculated and plotted in 

Figure D-1. The total relative error is plotted in the figure; this value summarizes the plot to one value. 

This are the values used to assess the RCMs. The table below shows the amount of events outside of the 

range of the plot (these are events that could not be analyzed). The change is calculated similarly; the 

mean error (blue line) can however become negative. 

 
Figure D-1 RCM1 the absolute error (blue line) and for the last duration values the amount of events the absolute error is 
based on. For example for duration 11 there is no RCM event simulated and thus no absolute error calculated 

Table D-1 The drought events out of range of the deficit-duration plots. These events could not be compared with each other 
since the event had a different duration. 

 # drought events above max duration Mean duration Mean deficit 

E-OBS 0 0 0 

RCM 8 14 -18.19 
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Figure D-2 RCM1 the absolute error (blue line) and for the last duration values the amount of events the absolute error is 
based on. For example for duration 11 there is no RCM event simulated and thus no absolute error calculated 

Table D-2 The drought events out of range of the deficit-duration plots. These events could not be compared with each other 
since a different duration value. 

 # drought events above max duration Mean duration Mean deficit 

E-OBS 28 22.07 -20.18 

RCM 0 0 0 
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Figure D-3 RCM1 the absolute error (blue line) and for the last duration values the amount of events the absolute error is 
based on. For example for duration 11 there is no RCM event simulated and thus no absolute error calculated 

Table D-3 The drought events out of range of the deficit-duration plots. These events could not be compared with each other 
since a different duration value. 

 # drought events above max duration Mean duration Mean deficit 

E-OBS 9 48.56 -58.22 

RCM 43 27.93 -35.47 
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Figure D-4 RCM1 the absolute error (blue line) and for the last duration values the amount of events the absolute error is 
based on. For example for duration 11 there is no RCM event simulated and thus no absolute error calculated 

 

Table D-4 The drought events out of range of the deficit-duration plots. These events could not be compared with each other 
since a different duration value. 

 # drought events above max duration Mean duration Mean deficit 

E-OBS 8 88.63 -105.24 

RCM 0 0 0 
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E. All available ENSEMBLES RCM runs 

Table E-1 All ENSEMBLES RCMs runs available (http://ensemblesrt3.dmi.dk/extended_table.html) 

 

 

Institute Scenario Driving GCM Model Resolution 
C4I A2 ECHAM5 RCA3 25km 

CNRM A1B ARPEGE Aladin 25km 

A1B ARPEGE_RM5.1 New 
ens.mb. to 2100 

Aladin 25km 

KNMI A1B ECHAM5-r3 RACMO 25km 

A1B ECHAM5-r1 RACMO 50km 

A1B ECHAM5-r2 RACMO 50km 

A1B ECHAM5-r3 RACMO 50km 

A1B MIROC RACMO 50km 

OURANOS A1B CGCM3 CRCM 25km 

SMHI A1B ECHAM5-r3 RCA 50km 

A1B BCM RCA 25km 

A1B ECHAM5-r3 RCA 25km 

A1B HadCM3Q3 RCA 25km 

MPI A1B ECHAM5-r3 REMO 25km 

METNO A1B BCM HIRHAM 25km 

A1B HadCM3Q0 HIRHAM 25km 

C4I A1B HadCM3Q16 RCA3 25km 

UCLM A1B HadCM3Q0 PROMES 25km 

ETHZ A1B HadCM3Q0 CLM 25km 

HC A1B HadCM3Q0 HadRM3Q0 25km 

A1B HadCM3Q3 HadRM3Q3  25km 

A1B HadCM3Q16 HadRM3Q16  25km 

DMI A1B ARPEGE HIRHAM 25km 

A1B ECHAM5-r3 DMI-HIRHAM5 25km 

A1B BCM DMI-HIRHAM5 25km 

ICTP A1B ECHAM5-r3 RegCM 25km 

VMGO A1B HadCM3Q0 RRCM 25km 

GKSS A1B IPSL CLM 25km 


