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A B S T R A C T

Because the free bands in the electromagnetic spectrum are
becoming scarce, numerous techniques have been developed
throughout the years to increase capacity. But studies have shown
that when the activity on the band is measured a lot of the seg-
ments are unused. The concept of Cognitive Radio is that it
can intelligently detect and utilize the unused segments when
available, without interfering primary users.

Sensing the spectrum for spectrum holes is one of the key
function of a cognitive radio. The limiting element in this pro-
cess is the Signal-to-Noise Ratio wall. Cross-correlation was pro-
posed as a solution for noise reduction in spectrum sensing. If
two receivers both receive the same wirelessly transmitted data,
they each will also contain some random noise. Correlation em-
phasizes shared signal properties (the transmitted data) and
filters the - for each signal unique - noise.

During the graduation period a cross-correlation architecture
was created and simulated in CλaSH. This is an at the Univer-
sity of Twente developed Hardware Description language, that
can create a formal description of digital logic and electronic
circuits, which can be mapped on a FPGA. It was necessary
that the resolution and the numbers of lags of the correlator
architecture could be adjusted without much effort, so that the
circuit could be easily analyzed. The goal of this research was
to find a relation between the resolution and number of lags of
the correlator and the necessary chip area, the maximum clock
frequency the correlation operation could be executed and the
sensitivity of the correlator.
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1
I N T R O D U C T I O N

The electromagnetic spectrum is a limited range of frequencies
that can be used to exchange data. To avoid interference, this
spectrum is segmented into smaller bands. Every band can be
used for different services, for instance FM-radio, TV broad-
casts, GSM, etc. Since the number of services is ever increasing
and every service needs spectrum, the number of free spec-
trum bands is becoming scarce. A consequence is that spec-
trum efficiency has become the main parameter for communi-
cation systems design. Therefore, throughout the years, several
(higher order) modulation schemes have been used. Although
these modulation schemes increase the communication capac-
ity, they also increase the power consumption of the device
[1]. For devices with limited available power like mobile ap-
plications, this can become problematic. Besides, high powered
transmitters are also unwanted with respect to global warm-
ing. A possible solution for the limits of segmentation of the
spectrum is Cognitive Radio (CR) (or Dynamic Spectrum Ac-
cess Networks (DSAN)).

1.1 cognitive radio

As stated above, free spectrum bands are scarce. Access to them
is either regulated by means of licenses or free (for instance,
the Industrial, Scientific and Medical (ISM) bands). Studies have
shown that when the activity on each band is measured, most
of the time many spectral segments are unused [2][3], as pre-
sented in Figure 1.

Figure 1: Spectrum measurement performed by Swisscom in Bern [4]
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2 introduction

It can be seen that only some frequencies within the GSM1800,
UMTS and ISM bands are partly used throughout a whole day,
whereas most of the frequency band is unused (denoted by the
blue color). A CR is a form of wireless communication which
exploits this by using the unused spectrum band (regardless if
it is a free band or a licensed one). The CR transceiver can intel-
ligently detect which spectral bands (channels) are in use and
which are not. Because of this, it will only use vacant bands and
move between these to avoid interfering with occupied ones.

The concept of Cognitive Radio, was coined by Joseph Mi-
tola III in [5], where he describes a self-aware extension to a
Software Defined Radio (SDR) [6]. A SDR is a multi-band ra-
dio which is capable of supporting multiple wireless interfaces
and protocols. Ideally, all aspects of a software radio are de-
fined in software. Figure 2 shows the CR framework proposed
in [7]. The radio hardware consists of a set of modules, namely:
an antenna, a RF section, a modem, an Information Security
(INFOSEC) module, a baseband processor and a user interface
(UI). The CR contains an internal model of its own hardware
and software structure. The Radio Knowledge Representation
Language (RKRL) frames is a language proposed in [8], which
defines a framework that offers the CR knowledge of context,
radio protocols, air interfaces, networks and user communica-
tions states.

Antenna

Equalizer Model

Variable Bindings

RF Modem INFOSEC Baseband UI

Modem, Equalizer, etc Protocol Stack, Control

Hardware

Software

Software Radio
Software Modules

Antenna RF Modem
INFOSEC

BasebandUI

Model-based reasoningRKRL frames
Cognition

Figure 2: Cognitive radio framework [8]
.

A CR is a SDR that employs model-based reasoning about
users, multimedia content and communications context. It senses
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the outside world to recognize the context of its communica-
tions tasks. To use the example presented in [9], the radio may
conclude that it is probably going for a taxi ride to a certain lo-
cation, based upon the knowledge the user just ordered a taxi
by voice. It can then tell the network its plan to move from its
present location to the new one. The network in turn will know
that this user will probably cross certain cells in the network in
the next thirty minutes or so.

This example shows that both the radio and the network
need a deep understanding of the context of the communica-
tion and the resources available. This kind of CR, in which ev-
ery possible parameter observable by the radio or network is
considered, is called a Full Cognitive Radio (or Mitola Radio)
[5]. Such a radio is still not realizable due its high technical
complexity and is thus considered as goal towards which a SDR
should evolve: a fully reconfigurable wireless transceiver which
adapts its communication parameters to network and user de-
mands automatically.

A basic realizable form of a CR is a SDR as applied to spread
spectrum communication techniques. Its main functions are
[10]:

- Spectrum sensing, Detect unused spectrum and share the
spectrum without harmful interference to other users.

- Spectrum management, Capture the best available spectrum
to meet the user communication requirements and man-
age the spectrum allocation among the users.

- Spectrum mobility, Maintain seamless communication re-
quirements during the transition to better spectrum

- Spectrum sharing, Provide a fair spectrum scheduling method
among coexisting CR users.

1.2 spectrum holes

Spectrum Sensing is a key physical layer technique for a CR.
It is defined as the task to find underutilized subbands of the
radio spectrum at a particular instant of time and geographic
location (i. e. spectrum holes)[11].

Spectrum holes can be distinguished in three categories, based
on their domain, viz.: Spatial, Time and Frequency.
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TX 1

TX 2

TX 3
f1

f2

f3

Figure 3: Spectrum holes in space: Three television towers which all
transmit signals at their own frequency.

Within its service area, a television tower will always com-
municate to its users at a certain frequency. Some of the area
around this tower will be fully utilized (as can be depicted by
the grey circles around the towers TX 1, TX 2 and TX 3 in Fig-
ure 3). Each tower will have its own frequency ( f1, f2 and f3).
This frequency can therefore not be used by secondary users
within transmitting range of the corresponding tower. How-
ever, when the secondary user moves outside the transmitting
range (in the white area around the towers), it will encounter
no problems and can fully reuse the frequency. When the sec-
ondary user moves, for example, from the area of TX 1 to TX
2, it becomes possible to reuse the frequency f1 in most part
of TX 2, since the frequency f1 is only used by TX 1 (As long
as the transmitting range of the secondary user doesn’t overlap
with the transmitting range of the tower). Within such system,
recovering spectrum holes in the spatial domain will be the ma-
jor concern.

Time

Spectrum hole in time Occupied time

Figure 4: Spectrum holes in time [11].

In contrast to spatial distribution of frequency use, temporal
distribution is used in systems that communicate discontinu-
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ous, but serve an entire area. Recovering spectrum holes within
the time domain will be the major concern for such a system.
This can be viewed in Figure 4, where the dark grey color shows
that only for certain amounts of time the subband of the spec-
trum is being used.

Figure 5: Spectrum holes in time and frequency. The green arrow
shows the dynamic spectrum access [11].

A third category of spectrum holes are the ones in the fre-
quency domain. A spectrum hole in frequency is defined as a
frequency band in which a transceiver can communicate with-
out interfering with any primary receivers. These kind of spec-
trum holes can be seen in Figure 1. The dynamic spectrum
access exploiting time and frequency holes, is presented as a
green arrow In Figure 5. This indicates a path the CR can follow
during communication.

In terms of occupancy, spectrum holes for each domain can be
categorized as follows:

- White spaces, these are free of interferers, with the excep-
tion of some natural or artificial noise sources (e.g. ther-
mal noises).

- Grey spaces, these are partially occupied by interferers as
well as noise.

- Black spaces, which are fully occupied by a primary user.

As stated before, the task of spectrum sensing is to find spec-
trum holes in the radio spectrum. The key limiting element of
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spectrum sensing is that it suffers from a Signal-to-Noise Ra-
tio (SNR) wall. This is a minimum SNR (the level of a signal to
be measured compared to the level of background noise), be-
low which a signal cannot be reliably detected. The SNR wall
is caused by the uncertainty in the noise level for energy detec-
tion. The decision whether a signal is present or not is based
on the difference between the measured power level and the es-
timated noise power level. The noise level will be composed by
the noise from the physical channel and noise from the receiv-
ing device. Because the antenna noise varies, for example, due
to varying weather conditions, the noise level can only be es-
timated with limited accuracy. Cross-correlation was proposed
as a solution for noise reduction in spectrum sensing [12].

1.3 organization thesis

This thesis is organized as follows. First, the basic idea behind
correlation will be presented in Chapter 2. The mathematical
definitions, the usage of and the difference between autocor-
relation and cross-correlation, hardware structures for corre-
lation and some optimization techniques are presented here.
In Chapter 3 the focus lies on different hardware description
languages and will give an introduction to the functional lan-
guage CλaSH. Chapter 4 will describe how CλaSH was used
to create a parametrizable complex multiplier, adder and cross-
correlation architecture. In Chapter 5 the created correlator ar-
chitecture will be analyzed for area utilization and timing con-
strains. Chapter 6 will contain the conclusions for this research
and the subjects that can be further explored by future research
is presented in Chapter 7



2
C R O S S - C O R R E L AT I O N

By using cross-correlation, the similarity between two input sig-
nals can be measured, while applying a time delay (or time-lag
in the digital domain) function to one of them. It can be consid-
ered as a kind of template matching. Cross-correlation is used
to increase the SNR in received signals, which can be used to
detect spectrum holes [13].

2.1 mathematical definitions

Discrete cross-correlation is quite similar to the dot product,
defined by Equation 1. It takes two equal-length sequences of
numbers and returns a single value by multiplying correspond-
ing entries and then summing those products.

~x ‚~y =
ÿ

i

xi ¨ yi , ~x def
= [x1, x2, ..., xn]

T (1)

The cross-correlation is often referred to as the sliding dot-product
of two inputs signals. Instead of returning a single number, one
of the inputs slides over time, which produces a new function.
(Eq. 2). The cross-correlation function is represented by the ’‹’
operator,

γ f g
def
= ( f ‹ g)d

def
=

8
ÿ

i=´8

f ˚i ¨ gd+i (2)

where f ˚ denotes the complex conjugate of f (a negation of the
imaginary part of the complex number). The cross-correlation
operation is similar in nature to the convolution (indicated with
the ’˙’ operator in Equation 3) of two functions, but with a time
reversal applied to one of the input. Their relation can be seen
in Equation 4.

( f ˙ g)n
def
=

8
ÿ

i=´8

f ˚i ¨ gd´i (3)

( f ‹ g)n = f ˚(´t)˙ g (4)

7
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2.2 autocorrelation

Autocorrelation is the cross-correlation of a signal with itself.
It can be used to find repeating patterns within the signal,
for instance the presence of a periodic signal which is buried
in noise. The estimated autocorrelation function is defined by
Equation 5.

γxx[j] =

$

’

’

&

’

’

%

N
ř

n=1
x˚

n ¨xn´j

σ2
x

, if j = 1..M.

0, otherwise.

(5)

σx =
1
N

N
ÿ

n=1

|xn|
2 (6)

By dividing by the variance σ2
x , which denotes how far a set

of numbers is spread out (Eq 6), the resulting γxx will be in
the range of [´1, 1]. Where 1 indicates perfect correlation (the
signals exactly overlap when time shifted by k) and´1 indicates
perfect anti-correlation.

Next, with the help of MATLAB an example of autocorrela-
tion will be presented to discover hidden periodic signal in a
noisy signal.

Listing 1: Autocorrelation example in Matlab

1 rng( ’ default ’); % Make the results

reproducable

2

3 N = 1000; % Number of samples to

generate

4 f1 = 1; % Frequency of the

sinewave

5 FS = 200; % Sampling frequency

6 n = 0:N-1; % Sampling index

7

8 x = sin(2*pi*f1*n/FS); % Generate sine

9 x = x + randn(1,N); % Add random noise to sine

10

11 [Yxx, lags] = xcorr(x, ’ coeff ’); % Calculate

autocorrelation Yxx

In Listing 1 (at line 8 and 9) random noise is added to a sine
function (with a frequency of 1Hz, sampled at 200Hz). This
noisy sine function x(n), can be viewed below in Figure 6.
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0 100 200 300 400 500 600 700 800 900
−4

−3

−2

−1

0

1

2

3

4

time

x
(n

)

Figure 6: Pure sinewave with added normal distributed noise.

Looking at the autocorrelated signal γxx in Figure 7, a peak
value of 1 at zero lag can been seen, which means that the
signals are perfectly correlated. This is always the case with
autocorrelation, since the correlation is between two verbatim
copies. Furthermore, the periodic signal which was obscured in
the noise becomes visible again. At its edges, γxx is slowly be-
ing attenuated by the fact that the number of samples is finite.
When shifted in time (cut off at one edge and padded with
zero’s on the other side) the similarities will thus decrease in
time.

Note that this is due the implementation of the xcorr function
in Matlab, where two N-size array are correlated. An alterna-
tive could be to correlate a 2N-size array with a N-size copy,
this results in an N-size γxx without the attenuated edges.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time lag

γ
x
x

Figure 7: The autocorrelated signal with a ’hidden’ sine function visi-
ble.

2.3 cross-correlation

As stated before, cross-correlation makes it possible to measure
the similarity between two signals. By utilizing this property, it
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becomes possible to increase the SNR from received (analog or
digital) data. The definition of the digital cross-correlation can
been seen in Equation 7.

γxy[j] =

$

’

’

&

’

’

%

N
ř

n=1
x˚

n yn´j

σxσy
, if j = 1..M.

0, otherwise.

(7)

Imagine two receivers, both receiving the same wirelessly trans-
mitted data. Although they are both physically the same, they
will receive different raw data. This is because every antenna
will be interfered by some random environmental and thermal
noise. This noise can even be several times stronger than the ex-
pected data (take for example the very low power signals from
outer space that radio telescopes detect). Since receivers don’t
receive their data at exactly the same time, the peak value of
the correlation will be shifted.

Listing 2 shows an example of cross-correlation, in which the
same values for x are used as in Figure 6. The y(n) values are
generated using the same sine function as the x(n) values, but
with different noise added, simulating two receivers that re-
ceive the same signal, but added with some unique random
noise. Since separate antennas don’t receive the same signal at
exactly the same time, the y(n) values are shifted 30 units in
time with the lagmatrix function. When y(n) is shifted, it is cut
off at one edge and padded with NaN’s at the other side, these
are converted to 0’s in line 11.
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Listing 2: Cross-correlation example in Matlab

1 rng( ’ default ’); % Make the results

reproducable

2

3 N = 1000; % Number of samples to

generate

4 f1 = 1; % Frequency of the sinewave

5 FS = 200; % Sampling frequency

6 n = 0:N-1; % Sampling index

7

8 x = sin(2*pi*f1*n/FS); % Generate sine

9 y = x + randn(1,N); % Add random noise to sine

10 y = lagmatrix(y , 30); % Shift y 30 units in time

11 y(isnan(y)) = 0; % Filter out ’NaN’

12 x = x + randn(1,N); % Add random noise to sine

13

14 [Yxy, lags] = xcorr(x, y); % Calculate cross-

correlation Yxy

Looking at the results γxy in Figure 8, we can see a periodic
signal appearing which was first obscured by the random noise.
Additionally, note that the highest value of γxy isn’t at 0-lag,
but lies at ´30, which is the lag that was defined in Listing 2.
Furthermore, the peak that became visible with autocorrelation
is gone, since the correlation is between 2 signals which aren’t
exact copies (due to the fact that the added noise signals to two
receivers are uncorrelated with each other).

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time lag

γ
x
y

Figure 8: The cross-correlated signal of x and y.

2.4 cross-spectrum analysis

Cross-spectrum analysis provides a statement on how common
activity between two processes is distributed across frequency.
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The Wiener-Khinchin theorem states that the power spectral
density Γxx[ f ] is the Fourier transform of the corresponding
autocorrelation function γxx[τ] (Eq. 8 and Eq. 9)[14].

Γxx[ f ] = Ftγxx[τ]u =
8
ÿ

τ=´8

γxx[τ] e´2 π i τ f (8)

γxx[τ] = F´1
tΓxx[ f ]u =

8
ÿ

τ=´8

Γxx[ f ] e2 π i τ f (9)

Γxx[ f ] is a complex function of frequency. The same derivations
hold for the cross-correlation function γxy[τ], which forms a
Fourier transform pair with the cross power spectrum (or sim-
ply cross-spectrum) Γxy[ f ].

Fourier transform
X

Y
Fourier transform

C
ross-correlation

C
ross-correlation

Fourier transform

FX

XF Γxy[f]

γxy[τ]

Figure 9: The cross-spectrum Γxy[ f ] can be calculated, either by first
calculating the Fourier transform and then applying cross-
correlation, or vice versa.

To acquire the cross-spectrum Γxy[ f ], a Fourier transform
and a cross-correlation are calculated. The order of these op-
erations is interchangeable, as can be seen in Figure 9. There
are two main hardware structures to obtain the cross-spectrum
by digital cross-correlation, the FX-Correlator (FXC) and the XF-
Correlator (XFC). These two differ in the order in which the
cross-correlation (X) and the Fourier transform (F) (using the
fast Fourier transform (FFT)) are calculated [15].
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2.5 fx-correlator

The principle of an FXC can be viewed in Figure 10. Both re-
ceivers (the inputs of the ADCs) receive their data from the
same source S(t), but have their own unique noise (n1(t) and
n2(t)) added.

S(t) +

ncorr(t)
+

+

n1(t)

n2(t)

ADC

ADC

x[n]

y[n]

DFT

DFT

w[k]

w[k]

*

conj

C[f]

X[f]

Y*[f]S(t) +

ncorr(t)
+

+

n1(t)

n2(t)

ADC

ADC

x[n]

y[n]

DFT

DFT

w[k]

w[k]

*

conj

C[f]

X[f]

Y*[f]S(t) +

ncorr(t)
+

+

n1(t)

n2(t)

ADC

ADC

x[n]

y[n]

DFT

DFT

w[k]

w[k]

*

conj

C[f]

X[f]

Y*[f]S(t) +

ncorr(t)
+

+

n1(t)

n2(t)

ADC

ADC

x[n]

y[n]

DFT

DFT

w[k]

w[k]

*

conj

C[f]

X[f]

Y*[f]

1

2

...

K

Figure 10: Schematic view of a FXC [12].

The receiver outputs x[n] and y[n] are transformed by a Discrete
Fourier Transform (DFT) to obtain X[ f ] and Y[ f ]. Since this DFT
is calculated over N samples, the output of the DFT also con-
tains N samples (indicated by the bold lines). This is in con-
trast with its input, which receives each sample individually
and therefore it is necessary for the DFT to have some internal
memory. A window w[k] can be used to reduce the spectral
leakage that is caused by the finite time window in the DFT [16].
The vectors X[ f ] and Y˚[ f ] are element-wise multiplied to pro-
duce the cross-spectrum estimate C[ f ], also note here that this
operation needs N multiplications. To reduce the variance, the
calculations are repeated K times with new samples and the
results are averaged.

2.6 xf-correlator

The XF-correlator first estimates the cross-correlation function
γxy[τ], denoted by cxy[k] and estimating the cross-spectrum af-
terwards by taking the Fourier transform of cxy[k] to arrive at
C[ f ], as can be seen in Figure 11.
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Figure 11: Schematic view of a XFC [12].

The schematic view of a XFC in Figure 11 can be a bit decep-
tive, since it looks less complex than the FXC in Figure 10. This is
because the correlator CXY presented here is only an abstracted
view. An implementation of CXY is presented in Figure 12 [12].

* * *

* * * *

cXY [-2] cXY [0] cXY [2]

cXY [-3] cXY [-1] cXY [1] cXY [3]

x [n] x [n-1] x [n-2] x [n-3]

y* [n]y* [n-1]y* [n-2]y* [n-3]

Figure 12: The implementation of CXY [12].

This view might be rather intimidating, but when compared
to the definition (Eq. 2), it becomes quite straightforward. The
x[n] values at the top can be seen shifted through delays from
left to right, whilst the y[n] values are shifted from right to left
at the bottom. The values of x[n] and y˚[n] are individually mul-
tiplied. The result of this multiplication is then accumulated to
form the output cXY[k] (where cXY[k] for odd k’s are calculated
by the vertical connections and for even k’s by the diagonal
ones. Both parts need to be merged later on). Note that cXY[k] is
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a vector, which means the DFT doesn’t need memory elements
like the FXC.

The difference between the FXC and the XFC is that, within the
FXC the DFT is the most complex part and the correlator itself
is relatively simple. With the XFC it’s the other way around: the
DFT is quite simple, while the correlator is more complex.

The FX-correlator has a complexity of N ¨ log(N) in complex
multiplications and summations (which is dominated by the
DFT), while the XFC has a complexity of N2 (which is domi-
nated by the correlator). However, when the ADCs have a low
resolution (number of bits), the XFC has to perform a lot of
very simple Multiply-accumulate (MAC) operations, while in
the FXC each stage in an FFT may require more bits. For exam-
ple, when the resolution of the ADCs is just one bit, a multiplier
reduces to a simple XOR-gate. For low power consumption, it
may therefore be preferable to use an XFC.

Figure 13: The number of complex multiplications for the FXC and
the XFC for an M-point spectral estimate [12].

For an M-point spectral estimate, M points in the cross-correlator
need to be calculated. The number of complex multiplications
for the FXC and the XFC are presented for M = 1, 8, 64 & 256 in
Figure 13. The FXC seems to have a large computational advan-
tage with respect to the XFC (on a general purpose processor).

2.7 low resolution optimization

The basic operations that are performed by an XF correlator
are multiplication, time delay and integration. In most digital-
processing systems, a sufficiently large number of bits for quan-
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tization (rounding a signal, to represent it in digital form) and
processing is required to allow the digitization effects to be ig-
nored. However, a digital correlation spectrometer, in practical
sense, easily becomes too complex, unless a small number of
bits is used [17]. There are a couple of options within the quan-
tization process and the correlator which will lead to a much
less complex design, but with an acceptable loss in sensitivity.

The selection of a correlation scheme is a compromise be-
tween complexity and sensitivity. The sensitivity of a digital
correlator is proportional to its degradation factor d [18]. This
is a measure for the SNR decrease in case of Gaussian signals
(Eq. 10), which is caused by the quantization of the input sig-
nals and depends on the correlation scheme used.

d =
Output signal/noise ratio of digital correlator
Output signal/noise ratio of analog correlator

(10)

In [17], Bos presented the difference in degradation factor of
1, 2 and 3-bit correlators for different sample frequencies, with
respect to an analog (ideal) correlator. These can be seen in
Table 1. Note that the improvement from a 1 to a 2-bit correlator
is (relatively spoken) the highest improvement.

N (bits) fs d

1 2B 0.64
4B 0.74

2 2B 0.88
4B 0.94

3 2B 0.95

8 (analog) - 1

Table 1: The degradation factor d of the performance of a 1, 2 and
3-bit correlator with respect to an analog (ideal) correlator
for different sampling frequencies fs (two and four times the
bandwidth B) [17].

In a two-bit quantization scheme, the first of the two bits will
be used for sign representation and is assigned to 0 if the input
voltage is positive, and 1 when the input is negative.

When the input v lies within two transition levels (´V0 and
+V0), the level bit is assigned to 0. It will be assigned to 1, when
the input lies outside this range. The four possible output states
of the quantizer are assigned to the weighting factors ´n, ´1,
+1 and +n (Table 2).
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Input V: V ď ´V0 ´V0 ă V ď 0 0 ă V ď V0 V0 ă V
Sign bit 1 1 0 0
Level bit 1 0 0 1
ω ´n ´1 +1 +n

Table 2: Two-bit quantization scheme, with weighting factors ω [19].

Table 3 gives a view on all possible outcomes of the generated
products of two input voltages (which are quantized by the
above presented scheme) in the multiplier.

V1 State
´n ´1 1 n

V 2
St

at
e n ´n2 ´n n n2

1 ´n ´1 1 n
´1 n 1 ´1 ´n
´n n2 n ´n ´n2

Table 3: Generalized view of a two-bit multiplication table

The value of n can be freely chosen. In Table 4 the multipli-
cation table can be seen for n = 3, resulting in the following
weighting factors: ´3, ´1, 1, 3. This will result in a linear mul-
tiplier, since the step sizes between the weighting factors are
constant, hence 2. Choosing different values for n will not only
have an effect on the degradation factor, but also has the side-
effect that the multiplier will become non-linear.
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The low level products don’t have a significant effect on the
degradation factor, deleting them (Table 5) will not substan-
tially increase d, while the advantages in the hardware com-
plexity are considerable [19]. Emphasizing the high level prod-
ucts (˘n2) by assigning higher values to them, doesn’t have a
significant advantage [20].

V1 State
´3 ´1 1 3

V 2
St

at
e 3 ´9 ´3 3 9

1 ´3 ´1 1 3
´1 3 1 ´1 ´3
´3 9 3 ´3 ´9

Table 4: Two-bit multiplication
table, with n = 3.

V1 State
´3 ´1 1 3

V 2
St

at
e 3 ´9 ´3 3 9

1 ´3 0 0 3
´1 3 0 0 ´3
´3 9 3 ´3 ´9

Table 5: Two-bit multiplication
table, with n = 3
and low level products
deleted.

In Figure 14 the sensitivity of two-bit correlators (with differ-
ent values for n) with respect to an analog correlator (d) can
be seen. Note that the value of the transition voltage V0 in the
quantizator also is a sensitivity factor.

The difference in maximum relative sensitivity between n =
3 and n = 4 is negligibly small, but the hardware complexity
does make a difference. Since multiplying two 2-bit (n = 3)
numbers, will results in a 4-bit product and doing the same to
two 3-bit numbers (n = 4), will result in a 6-bit product. As
stated before, removing the low level products in the correla-
tion scheme has little influence on the sensitivity.
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Figure 14: Sensitivities of two-bit correlator as a function of V0 [19].
1: Full two-bit system, n = 2.
2: Full two-bit system, n = 3.
3: Full two-bit system, n = 4.
4: Low level products deleted, n = 3
5: Low level products deleted, n = 4
6: Only high level products retained.

These optimization methods presented here may seem dated,
as they mostly rely on research done decades ago. Since the
introduction of the Digital Signal Processor (DSP) (which are
microprocessors specialized in digital signal processing) high
resolution correlators became practically possible, leaving these
optimization techniques obsolete for the purpose of radio as-
tronomy where power is not the main concern. However, it’s
becoming interesting again to implement these methods on cur-
rent technologies. For instance, an antenna which correlates be-
yond the 100 GHz band will be really small (since the antenna’s
size is inversely proportional to the frequency), making it possi-
ble to implement multiple correlators, complete with antennas
on a single chip, provided that these optimization techniques
are used.
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H A D WA R E D E S C R I P T I O N L A N G U A G E S

A Hardware Description Language (HDL) is a language for for-
mal description of digital logic and electronic circuits. These
languages differ from software programming languages, since
they are used to describe the propagation of signals in time
and their dependencies. While many software programming
languages are procedural, HDLs have the ability to model multi-
ple parallel processes that automatically execute independently
of one another. The compiler of a HDL has as goal to transform
the code listing into a physically realizable gate netlist, this pro-
cess is referred to as synthesis. The most well known are VHSIC
Hardware Description Language (VHDL) [21] and Verilog [22].

3.1 vhdl

VHDL arose in the early eighties out of the United States Govern-
ments’s Very-High-Speed Integrated Circuits (VHSIC) program,
which was initiated in 1980. The goal of the program was to
develop a standard language for describing the structure and
function of digital Integrated Circuit (IC)s. VHDL allows designs
to be decomposed into sub-designs which can then be intercon-
nected.

VHDL borrows a lot from the Ada programming language
[23] in both concepts and syntax. This is due the fact that Ada
was also designed within the Department of Defense. Ada had
already been thoroughly tested during the design of VHDL. Thus,
to avoid re-inventing concepts of Ada, VHDL was based as much
as possible on Ada.

D Q

> RST

Figure 15: Symbolic view of a D flip-flop

As an introduction to the semantics and syntax of VHDL, a
small example of a D flip-flop is presented in Listing 3. The
schematics of this D flip-flop can be viewed in Figure 15. It

21
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captures the value of the D-input at the rising edge of the clock
signal. That value becomes the new Q-output. At other times
the output Q does not change unless it is reset by the RST
signal.

Listing 3: A VHDL example: D flip-flop

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3

4 -- Input / output definitions

5 entity d_ff_en is

6 port ( D, CLK, RST : in STD_LOGIC;

7 Q : out STD_LOGIC );

8 end d_ff_en;

9

10 -- Internal behavoir

11 architecture d_ff_ar of d_ff_en is

12 begin

13 process(RST, CLK)

14 begin

15 if RST = ’1’ then

16 Q <= ’0’

17 elsif rising_edge(CLK) then

18 Q <= D;

19 end if;

20 end process;

21 end d_ff_ar;

In Listing 3 the separation of the entity (line 5 - 8) and the
architecture (line 11 - 21) can be clearly seen. An entity describes
a hardware module and declares its input and output signals.
The architecture describes the internal behavior of the module.
An entity can have multiple and at least one architecture. Archi-
tectures can be described using a structural, data-flow, behav-
ioral or a mixed style.

3.2 verilog

The Verilog HDL was created by Phil Moorby at Gateway Design
Automation in 1983 and was initially intended as a simulation
language, but was used for synthesis later as well. Verilog be-
came an IEEE standard in 1995. The main difference with VHDL
is that Verilog has a syntax which is more similar to C [24]. In
contrast to VHDL it features loose typing, and is case sensitive.
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Verilog has very simple data types, while VHDL allows user-
defined types, which makes it possible for users to create more
complex data types.

To give an introduction on the syntax and semantics of Ver-
ilog, the D flip-flop example in Listing 3 has been translated to
Verilog as can been seen in Listing 4

Listing 4: A Verilog example: D flip-flop

1 module dff_sync_reset (

2 D , // Data Input

3 CLK , // Clock Input

4 RST , // Reset input

5 Q // Q output

6 );

7

8 // Input / output definitions

9 input D, CLK, RST ;

10 output Q;

11

12 reg Q; // Internal Variable

13

14 // Internal behavior

15 always @ ( posedge CLK)

16 if (~RST) begin

17 Q <= 1’b0; // Assign the 1-bit binary number 0 to Q

18 end else begin

19 Q <= D;

20 end

21 end

22

23 endmodule //End Of Module dff_sync_reset

Verilog has built-in predefined net types (like wire, wor, wand,
tri). Modeling a test bed in Verilog HDL takes relatively little
effort, since it was designed with features which are required
to model the system’s environment (like global variables) [25].
Verilog HDL also has gate and switch level modeling, enabling
Application-specific integrated circuit (ASIC) foundries to accu-
rately represent their cell libraries. A result of this is that Verilog
HDL is more used for ASIC design, whereas VHDL is more used
in Field-programmable gate array (FPGA)s.
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3.3 functional hdl’s

Both VHDL and Verilog have their valuable properties, they
do a good job describing hardware properties like timing be-
havior. However, they lack expressing higher level properties
such as parameterization and abstraction. Though concepts like
polymorphism were introduced to the 2008 standard of VHDL
[26], still no available VHDL synthesis tool can support this. A
"functional HDL" does focus on parameterization and abstrac-
tion. This leads to a more natural developing experience for a
programmer, since most of them are used to higher-order func-
tions, polymorphism, partial application, etc.

Most functional HDLs have the advantage of proving the equiv-
alence of two designs. This makes it possible to prove that a
highly optimized design has the same external behavior as the
simple design, from which the optimized design was derived.
Even though the first functional HDLs are even older than the
now most well known HDLs such as VHDL and Verilog, they
never achieved the same number of users in the end. The ben-
efits of a functional HDL might soon be widely acknowledged,
since today’s hardware has an ever increasing design and test
complexity and would result in exhaustive effort during test
phases, when using imperative HDLs.

3.4 cλash

The Computer Architectures for Embedded Systems (CAES) re-
search chair at the University of Twente has developed a func-
tional HDL called CλaSH [27], [28] & [29], [30] which is an
acronym for ’CAES Language for Synchronous Hardware’. It
is a functional HDL that borrows heavily from the functional
programming language Haskell [31] in terms of syntax and se-
mantics. Since CλaSH is a functional language, a program will
consist of functions and function application. Each function be-
comes a hardware component. Every argument will be an input
port and the computed result is the output port (which can con-
sist of several values). Each function application will become a
component instantiation and every result of each argument ex-
pression is assigned to a signal. As such, the output port of
the function will also be mapped to a signal, which is used
as the result of the application. Hardware descriptions written
in CλaSH can be translated to a functional net-list (where ev-
ery component and wire obtains a unique name) in Haskell.
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Since there are virtually no tools to process and analyze these
functional net-lists (and because it’s a huge amount of work to
create your own tooling), the net-lists are converted to VHDL
code by the CλaSH compiler. These can than be processed by
software tools like for instance Quartus II by Altera.

The basic premise of CλaSH is that all hardware designs can
be described as the combinatorial logic and memory of a Mealy
machine [32]

Combinatorial 
logic

Memory 
element

Input Output

Present 
state

New 
state

Figure 16: Schematic of a basic Mealy machine

In Figure 16 a graphical representation of a Mealy machine is
presented. The Mealy machine is a finite state machine which
generates an output and updates its state. The output value
is based on the current state and the current input. The basic
form of a Mealy machine in CλaSH can be seen in Listing 5. The
first line starts with the name of the function func followed by
the type specification operator (::). After this operator the type
of the function is declared. Every input type of the function
is separated by a arrow (Ñ), where the last type is always the
output type of the function. Thus, in this case the function func
requires two arguments as input, a State of a arbitrary type a
(where the keyword State indicates that a is stored in an register)
and another input of type Input. As output it generates a tuple,
which consist of a new State of the same arbitrary type as its
input State a and a certain Output type.

Listing 5: Logic of Mealy machine in CλaSH.

1 func :: State a Ñ Input Ñ (State a, Output)
2

3 func State state input = (State state1, output)
4 where

5 state1 = ...

6 output = ...

In Line 3 the types are linked to variable names, a State state
(which represents the memory element of the Mealy machine)
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and a certain list of input signals input are used as input. The
output of func will result in a tuple of a new state state’ and a
list of output signals output. The function func represents the
combinatorial logic and is the actual hardware that will be de-
scribed. At every clock cycle, the input signals and the values
from the memory element are fed into the combinatorial circuit,
which will result in an output signal and a new value state’ in
the memory element. The state of the design is modeled just as
a regular argument of the function.

To simulate such a Mealy machine using CλaSH, a function
simulate needs to be defined, which is shown in Listing 6. This
function maps the input over the combinatorial logic using the
state state. It simulates the clock, which makes sure that at every
clock cycle the function func is executed.

Listing 6: Simulation of a Mealy machine in CλaSH.

1 simulate _ _ [] = []

2 simulate func state (x:xs) = out : simulate func state1 xs
3 where

4 (state1, out) = func state x

The simulate function has three arguments, which are:

- A function func, which determines the functionality of
some hardware architecture. This is a formal parameter
of the function simulate. At every call of simulate the pa-
rameter func will be instantiated to the functionality of a
concrete hardware architecture. Since the function simu-
late has another function as a parameter, simulate will be
referred to as a ’higher order function’.

- A state state, that contains all the values in all memory
elements in the architecture. Please note that it is allowed
to use the apostrophe in a variable name. Thus, state’ is
not the same variable as state nor an operation on state.
Also, state may be a structured parameter, consisting of
several parts of memory elements instead of just a simple
Integer.

- A list of inputs. The function simulate consists of 2 clauses;
the difference lies in this third argument. The [] denotes
the empty list, which means that this clause of the func-
tion simulate will be chosen when it is fed an empty list.
When a non-empty list is given it will match the pattern
(x:xs) and the second clause will be selected. The colon ’:’
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breaks the list in the first elemens x and the rest of the list
xs (which is pronounced as the plural form of x, namely
x-es). The function uses x and gives the tail (xs) of the list
recursively to the next iteration of itself.

3.5 hardware design in cλash

To give an impression of the design process, a small example
of a MAC will be presented. This calculates the dot product of
two vectors ~x and ~y, which is mathematically represented by
Equation 11.

z =
n

ÿ

i=0

x i ¨ y i (11)

Let’s assume that there is only one multiplier and one adder
available in the hardware. This clearly means that a memory
element is needed here, to store the intermediate results of the
addition. This is called the accumulator acc, which is initially 0.
This is presented schematically in Figure 17.

acc

x

z+*
y

Figure 17: Schematic of MAC architecture.

Each clock cycle the inputs x i and y i are multiplied and
added to the value of the accumulator. This new value of acc
will be put back on the accumulator and the output. The func-
tion macc, which expresses this behavior is presented in Listing
7.



28 hadware description languages

Listing 7: MAC in CλaSH.

1 macc :: State Int Ñ (Int, Int) Ñ (State Int, Int)
2

3 macc State acc (x, y) = (State z, z)
4 where

5 z = acc + x * y
6

7 simulateMacc = simulate macc 0

Let’s take a closer look at this function. On the first line the
type of the function is defined. macc is a function which ex-
pects an Int (the previous state of acc) then a tuple (Int, Int) and
returns a tuple (State Int, Int), in which the first element corre-
sponds with the new state of acc. In line 2,3 and 4 the actual
MAC is defined.

This function can be simulated using the simulate function in
Listing 6. Since CλaSH is compatible with Haskell, the simula-
tion can be run with the widespread used Haskell compiler: the
Glasgow Haskell Compiler (GHC).

Listing 8: Test variable for Listing 7.

1 -- zip x and y to: [(2,1),(1,3),(4,-2),(-2,3)]

2 x = [2, 1, 4, -2]

3 y = [1, 3, -2, 3]

4 input = zip x y

Listing 8 shows the test variables used for simulation. The zip
function makes a list of tuples, such that each tuple contains
elements of both lists occurring at the same position. These can,
one tuple at a time, be fed to the macc during simulation. Listing
9 shows the results of the simulation in GHC.

Listing 9: Simulation results of Listing 7.

1 > simulateMacc input
2 [2,5,-3,7]

3.6 hardware synthesis

When the simulation of the algorithm is successful, the next
step will be to synthesize the hardware to an FPGA. This is for
instance realizable with the Quartus II sofware by Altera. In the
examples presented above the Int type were used, but since
the size of an Int is depending on the hardware it’s used (for
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instance a 32-bit or 64-bit platform) and that it’s required to
specify the exact size when describing hardware, it will be nec-
essary to change to a fixed size type. To give an example of the
synthesis, the smaller 4-bit D4 type is more practical.

Listing 10: 4-bit MAC in CλaSH.

1 {-# LANGUAGE Arrows #-}

2 module MAC where

3

4 import CLasH.HardwareTypes

5

6 type Int4 = Signed D4

7

8

9 macc :: State Int4 Ñ (Int4, Int4) Ñ (State Int4, Int4)
10

11 macc (State acc) (x, y) = (State z, z)
12 where

13 z = x * y + acc
14

15 maccL = macc ^^^ 0
16

17 {-# ANN maccL TopEntity #-}

In Listing 10 the final version of the MAC can be viewed. The
module CLaSH.HardwareTypes is loaded in line 4, which de-
fines a number of operations that can be used to build circuits.
Then the type Int4 is defined as a signed 4-bit value (In line
6. This type is then used in the type declaration of the macc
function (Line 9), leaving the body of macc (since Listing 7)
unchanged (Line 11 - 13). In line 15 the initial value of the ac-
cumulator is defined as 0 by the (^^^) operator (this operator is
part of the Arrows abstraction, which loaded in line 1). Finally,
the TopEntity annotation pragma is added to the description to
indicate that the maccL (the ’lifted’ version of macc) circuit is at
the top of the hierarchy.
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Figure 18: Register transfer level view in Quartus II of the MAC archi-
tecture.

The final step is now to generate the VHDL code from CλaSH
and load it into Quartus II. Figure 18 shows the Register Trans-
fer Level (RTL) view (a graphical representation of the synthesis
results) of the design in Quartus II. The 4-bit signed multiplier
and the 4-bit adder are clearly visible as well the 4 flip-flops
to store the 4-bit accumulator. The output of the adder is con-
nected to the inputs of the registers and vice versa. Note the
similarities with Figure 17.
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C R O S S - C O R R E L AT O R A R C H I T E C T U R E

In this chapter is described how CλaSH was used to construct
and simulate a complete correlator architecture. This correlator
basically consist out of multipliers and adders (or accumula-
tors), as can been seen from Equation 2. One of the goals of this
research is to find a relationship between the necessary chip
area and input size used in the correlator. It is therefor required
to build the correlator and all its building-blocks in a flexible
way, in which it is easy to change the resolution size.

4.1 signed number representation

The input data of a correlator implemented in a CR comes from
an antenna which generally uses an complex I/Q mixer to im-
prove the received data by canceling the unwanted (or image)
sideband. A schematic view of an I/Q mixer can be seen in
Figure 19.

A*sin(ω0*t)

A*cos(ω0*t)

I

Q

ADC

ADC

Figure 19: Schematic view of an I/Q mixer.

The in-phase I and quadrature Q output will be fed to the
correlator and can be interpreted as complex data with a real
and imaginary part. Since a cross-correlator uses multiplication
and complex data samples, the output can result in negative
products (e.g. j2 = ´1), it is therefore necessary to use a signed
number representation. One of the most used signed number
encodings is the two’s-complement number system.

31
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In a two’s-complement number system, the value of each bit
is a power of two, but unlike unsigned numbers, the most sig-
nificant bit’s value is the negative of the corresponding power
of two. The definition of a two’s-complement number system
can be seen in Equation 12, where v is the value of an n-bit in-
teger, consisting of
an´1, an´2, ..., a1, a0, with ai P t0, 1u.

v = ´an´12n´1 +
n´2
ÿ

i=0

ai2i (12)

The most significant bit has a value of ´2n´1 which also
determines the sign of the number. Using n-bits, all integers
from ´2n´1 to 2n´1 ´ 1 can be represented. Note that, to repre-
sent 2n´1, a n + 1-bit number is needed. For instance, 810 can-
not be represented in a 4-bit two’s-complement number (hence,
10002‘s = ´810). One extra bit is then required: 010002‘s = 810.

Bit inversion

x y

y / y 
_

Sub / Add
___

Cout C in

x ± y

0 for addition
1 for subtraction

Adder

Figure 20: Adder/subtractor architecture for two’s-complement num-
bers. [33]

The main advantage of a two’s-complement number system
is that basic arithmetic operations like addition and subtraction
are identical to those for unsigned numbers. Signed multipliers
needs some modification, but they will also be able to handle
unsigned numbers. This will be explained later on.

Normally, complementing is performed for converting sub-
traction to addition. Complementing a two’s-complement num-
ber consist of inverting each single bit, and incrementing the
result with 1. Which means that every time a complementation
is performed, an adder is needed. This can be quite some over-
head, luckily, it is possible to combine an adder and subtractor
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in a single circuit, where the desired operation can be simply
selected by an extra input line, mitigating the complementa-
tion disadvantage. Figure 20 shows the required elements for a
two’s-complement adder/subtracter.

4.2 implementing addition/subtraction

In CλaSH, a set of n bits will be presented as a Vector of type
Bit with size n, (denoted by xBityn1) where the least significant
bit is the last bit in the vector.

To add two binary numbers, many different implementations
are known. The most simple form is the ripple carry adder,
which is shown in Figure 21.

FA FA FA FA

A A A AB B B B0 01 12 2n-1 n-1

S0S1S2Sn-1Sn

Cn-1 C0C1C2
0

Figure 21: A ripple carry adder.

Note that the output vector S is one bit larger then the in-
put vectors A and B. With a small adjustment, the standard
ripple carry adder can be converted to an adder/subtraction
circuit. Shown in Figure 22. When subtraction is selected, the
XOR elements are used to complement all bits in vector B. Since
complementing a two’s-complement number also requires in-
crementation, the selection bit (which is High when selecting
subtraction) is fed to the (Carryin) input of the adder.

1 Which is actually notated in CλaSH as: Vector Dn Bit
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FA FA FA FA

mode: Sub / Add
___

A A A AB B B B0 01 12 2n-1 n-1

S0S1
S2Sn-1Sn

Cn-1 C0C1
C2

vasC

Figure 22: Ripple carry adder/subtractor.

Figures 21 and 22 clearly show a repeated pattern of compo-
nents. This property can be utilized in CλaSH, where this com-
ponent can be defined. Using higher order functions, these com-
ponents can be chained together to form the full circuit. The
declaration of this adder/subtracter-component (vasC) (which
was represented by the components in the dotted box in Fig-
ure 22) can be viewed in Listing 11.

Listing 11: Implementation of vaddsub_component in CλaSH.

1 vasC :: Bit Ñ (Bit, (Bit, Bit)) Ñ (Bit, Bit)
2 vasC mode C (A, B) = (C1, S)
3 where

4 (C1, S) = fullAdd C (A, hwxor mode B)
5

6

7 fullAdd :: Bit Ñ (Bit, Bit) Ñ (Bit, Bit)
8 fullAdd C (A, B) = (C1, S)
9 where

10 C1 = hwxor C1 C2

11 (C2, S) = halfAdd S1 C
12 (C1, S1) = halfAdd A B
13

14

15 halfAdd :: Bit Ñ Bit Ñ (Bit, Bit)
16 halfAdd A B = (C, S)
17 where

18 S = hwxor A B
19 C = hwand A B

The vasC function expects a mode bit, which determines the
addition or subtraction operation, a carry-in bit C and a tuple
of two bits (A, B) as its input. The result will be a tuple of the
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carry-out bit with the calculated sum (C1, S). The body of the
function (Line 4) is pretty straightforward as its consist of a full-
adder and an XOR port. For completeness, the declarations of
the fullAdd and halfAdd are also given in Listing 11.

The adder/subtraction component can now be chained by
the vchain function. The vchain function is more or less a com-
bination of the standard vzipWith and vfoldl/r functions. It per-
forms a function f on multiple input vectors and produces an
output vector (like vzipWith), but the calculation of the next el-
ement of the output vector depends upon the result from the
previous constituent part of the output vector (like vfoldl/r). Fig-
ure 23 shows a schematic representation of the vchain function.

ffff

y0y1y2yn-1

zn

x0x1x2xn-1

z0z1z2zn-1

Figure 23: Schematic representation of the vchain function.

The implementation of the vchain function can be found in
Listing 12. This looks a bit deceptive since a vzipWith with a
certain function f is used on the vector xs and a seemingly
empty vector zs. However, the zs vector is filled with the input
argument z0 on the first instantiation, with z1 on next instanti-
ation of the chain and so on. Remembering that Haskell uses
lazy evaluation (which delays the evaluation of an expression
until its value is needed), which makes this usage of vzipWith
completely valid. The output vector ys gets filled with each in-
stantiation of the chain. The vreverse function is used here to
correct the order of the vector, since the least significant bit (the
one on which function f first needs to be performed) is the last
element of the vector.
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Listing 12: Implementation of vchain function in CλaSH.

1 vchain f z xs = (z1, (vreverse ys))
2 where

3 res = vzipWith f (z +> zs)2 $3 vreverse4 xs
4 (zs, ys) = vunzip res
5 z1 = vlast zs

Although the vchain function can be a bit tricky to under-
stand, using it is quite straightforward. The function f in Fig-
ure 23 can simple be substituted by the vaddsub-component
function (vasC). This way the input of the chain (the xs in Fig-
ure 23) corresponds to the inputs of the vasC function: A, B and
mode. The zs of Figure 23 matches with the carry bit C of vasC
and the output ys will corresponds to the sum S.

Listing 13 shows the implementation of the vaddsub function.
The type of the function vaddsub is given in Line 1, the first
argument is of the type Bit, the second and third argument are
a Vector of type Bit with a length n. The output is a Vector of
type Bit with length n + 1.

These three input arguments represent: a mode bit to select
between addition or subtraction and two bitvectors (as and bs).
The result is a vector cs (Line 3).

In Line 5 the essence of the function can be seen, where the
function vasC together with the mode-bit are ’chained’. The mode
is also used as initial value (the second argument of the vchain
function), which would correspond to z0 in Figure 23. The input
of the chain consist of the vzip of the bitvectors as and bs, which
is described in Line 6.

2 Add an element at the start of the vector
3 The $ operator is used to avoid parenthesis. Anything appearing after will

be used as input to the function left.
4 Reverse the order of the Vector
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Listing 13: Implementation of vaddsub function in CλaSH.

1 vaddsub :: Bit Ñ xBityn
5 Ñ xBityn Ñ xBityn+1

2

3 vaddsub mode as bs = cs
4 where

5 (_, cs) = vchain (vasC mode) mode input
6 input = vzip (sE as) (sE bs)
7

8 sE as = (vhead as) +> as
9

10 (<+>) = vaddsub Low

11 (<->) = vaddsub High

In Line 6 the two input vectors as and bs are sign-extended
by the function sE (which puts the first element of as in front
of it, as can been seen in Line 8), to fix overflow errors. These
occur when the magnitude of the addition exceeds the repre-
sentation limits. For example, when the sum of two positive
numbers yields a negative result, or if the sum of two negative
numbers results in a positive result. The overflow errors can be
anticipated by a circuit, but this will be larger then just adding
another full adder to the initial circuit.

In lines 10 and 11 two operators are defined, deducting the
addition of two vectors from ’vaddsub Low as bs’ to: ’as <+> bs’,
omitting the mode bit. This is possible in Haskell, because:

func1 arg1 arg2 arg3 = func2 arg1 arg2 arg3 (13)

is equivalent to:

func1 = func2 (14)

The created adder/subtracter architecture will be used as a
component for a MAC, which will in turn be used as a build-
ing block for the eventual correlator design.

5 Which will be declared in CλaSH as: Vector Dn Bit.
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4.3 baugh-wooley two’s compliment multiplier

This section will describe how a complex multiplier was created
using CλaSH. During this thesis the following notation will be
used:

A Multiplicand an´1, an´2, ...a1, a0

B Multiplier bn´1, bn´2, ...b1, b0

P Product (Aˆ B) p2n´1, p2n´2, ...p1, p0

The product of two numbers can be calculated by summing
up their partial products. Every ith partial product bit is formed
by the AND of each ith multiplier bit with each multiplicand
bit (bi ¨ A ¨ 2i). A 4-bit example can been seen below:

a3 a2 a1 a0

b3 b2 b1 b0 ˆ

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1 0
a3b2 a2b2 a1b2 a0b2 0 0

a3b3 a2b3 a1b3 a0b3 0 0 0 +

p7 p6 p5 p4 p3 p2 p1 p0

When multiplying two’s-complement numbers, there lies a
difficulty in the signs of the multiplicand and the multiplier.
Consider two n-bit numbers A and B, both encoded as a two’s-
complement number (Equation 12). The product P = Aˆ B can
be given by Equation 15.

P =´ pm+n´12m+n´1 +
m+n´2

ÿ

i=0

pi2i = Aˆ B

=

(
´an´12n´1 +

n´2
ÿ

i=0

ai2i

)
ˆ

´bn´12n´1 +
n´2
ÿ

j=0

bj2j


=an´1bn´122n´2 +

n´2
ÿ

i=0

n´2
ÿ

j=0

aibj2i+j
´

2n´1
n´2
ÿ

i=0

aibn´12i
´ 2n´1

n´2
ÿ

j=0

an´1bj2j

(15)

This indicates that the final product is obtained by subtract-
ing the last two positive terms from the first two terms. But,
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instead of using subtraction, addition can be used if the two’s-
complement of the two last terms is taken. This can be viewed
in Equation 16.

P =

(
an´1bn´122n´2

)
I

+

(
n´2
ÿ

i=0

n´2
ÿ

j=0

aibj2i+j

)
II

+

(
2n´1

n´2
ÿ

i=0

aibn´12i

)
III

+

(
2n´1

n´2
ÿ

j=0

an´1bj2j

)
IV

(16)

The final product P = Aˆ B can then be obtained by simply
adding all the terms [34].

A schematic representation of this Baugh-Wooley multiplier
can be seen in Figure 24. Where two n-bit two’s-complement
numbers A and B are multiplied to produce the 2n-bit prod-
uct P.
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BBBBBBBB

BBBBBBBB

BBBBBBBB

0 0 0 0
0 0 0 0

0

0

0

1

1

......

I

II

III

IV

Figure 24: Schematic representation of a Baugh-Wooley multiplier.

Each cell of the Baugh-Wooley multiplier can be seen as a
chainable 1-bit multiplier and will all have the same architec-
ture, as can been seen in Figure 25. They basically consist out
of a full adder, an XOR gate and an AND gate. The result of the
AND gate can be inverted (to a NAND gate) with the XOR gate
using the Config input to realize the complement operation in
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Equation 16. The Config input is not shown in Figure 24, but the
dark-grey cells depict a high Config input, whilst the light-grey
cells mark a low Config input. This Config bit is fixed for every
cell.

FA

Figure 25: Schematic representation of a Baugh-Wooley cell.

The CλaSH implementation of a Baugh-Wooley cell (bw_cell)
from Figure 25 is rather straightforward and can be viewed in
Listing 14. In Line 1 can be seen that the function needs 5 inputs
of type Bit (corresponding to Config, a, b, Carryin (c) and Sumin
(s) in Figure 25) and its result will be a 2-tuple of bits (Carryout
(c1) and Sumout (s1)).

Depending on the Config input (cfg), the output of the the
AND gate (1-bit multiplication) will be complemented (Line 5).

Listing 14: Implementation of a Baugh-Wooley cell in CλaSH.

1 bw_cell :: Bit Ñ Bit Ñ Bit Ñ Bit Ñ Bit Ñ (Bit, Bit)
2

3 bw_cell c f g a b c s = (c1, s1)

4 where

5 (c1, s1) = fullAdd c (s, hwxor c f g (hwand a b))

From a schematic point of view, the Baugh-Wooley multiplier
is a two dimensional structure (note, Figure 24) consisting of
identical cells. A row of these cells corresponds to a partial
product, as can been seen in Figure 26.
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BBBBBBBBbi bi bi bi

an-1 a2 a1 a0

sumn-1 sum1sum2
cn-1 c2 c1 c0

c'n-1 c'2 c'1 c'0sum'n-1 sum'2 sum'1 sum'0 = pi

cfgn-1 cfg2 cfg1 cfg0

0

Figure 26: Schematic representation the partial product (a row of
Baugh-Wooley cells).

By looking at the above schematic, the input types of the
function bw_row can be defined. A row of bw_cells needs 5 input
vectors of length n:

- One for representing the multiplicand (as)

- One for representing every Carryin (cs)

- One for every Sumin (sums) (notice in Figure 24 that the
sums bits are propagated vertically, which means that for
every row, the most significant bit of the sums is discarded
and a 0 is put in front of the vector), a vector of config
bits, which tells each bw_cell if it needs to complement
its output or not (with the exception of the last partial
product, this vector will thus contain: ă 1, 0, ..., 0, 0 ą)

- And finally, a vector which contains n copies of bi (bis),
where i is the row number.

The output is a 2-tuple (since each cell in Figure 26 has 2 out-
puts) of bitvectors with length n, consisting out:

- The carryout vector (cs1)

- The sumsout vector (sums1).

The row of cells also output a single Bit, which is the partial
product (pi) of row i. These inputs and output corresponds to
the type declaration of bw_row in Lines 1 to 2 in Listing 15.
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Listing 15: Implementation of bw_row in CλaSH.

1 bw_row :: (xBityn, xBityn, xBityn) Ñ (xBityn, xBityn) Ñ

2 ((xBityn, xBityn, xBityn), Bit)
3

4 bw_row (as, cs, sums) (c f g, bis) = ((as, cs1, sums1), pi)

5 where

6 lsums = Low +>>6 sums
7 res = vzipWith57 bw_cell c f g as bis cs lsums
8 (cs1, sums1) = unzip res
9 pi = vlast sums1

The body of the function bw_row is shown in Lines 6 to 9 in
the above Listing. The 5 input vectors (cfg, as, bis, cs and lsums,
with the last being sums with a Low in front of it (Line 6)) are
zipped using the function bw_cell (Line 7). This results in the
vector of 2-tuples res, which can be unzipped to the carryout
vector (cs’) and the sumout vector (sums’). The partial product
(pi) is equivalent to the most significant bit of the sum output
(sums1) (Line 9).

Since every partial product requires a 3-tuple of (as, cs, sums)
and also generates a 3-tuple (as, cs1, sums1) (in addition to an ele-
ment of the final product P), the partial product can be chained.
This can be viewed in Figure 27, notice the similarities with
Figure 24.

The chaining is done within the vmult function, which de-
scribes a complete Baugh-Wooley multiplier, this can be seen
in Listing 16. As expected the function requires two bitvectors
of length n (as and bs) and produces a 2n-bit vector (ps) (Line 1).

First some preparations are executed, In Line 4 the initial
value for the Carryin and Sumin are generated, which is a vector
with n elements of Low (named ls). This is done by the vcopyn
function, which copies a certain value n times. In Line 5 the
vcopyn function is mapped on vector bs, resulting in a n-by-n
vector bis, where each ith row consist of n copies of bi. Every
row of bis (along with cfg) will be used as input for the bw_row,
as can been seen in Figure 27. Line 6 shows a function cell_config
which generates a n-by-n bit vector, which contains a Config bit
for every cell.

6 Add an element at the start of the vector, while leaving the length
unchanged (i.e. the last element will be discarded).

7 Makes a list, which its elements are calculated from the function and the
elements of the 5 input lists.
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bw_row

bw_row

bw_row

bw_row

___

Figure 27: Partial products being chained.

After these preparations, the partial products (bw_row) are
chained together in Lines 7 and 8, according to Figure 27. Using
(as, ls, ls) as initial value and iterating on the zipped values of
cfg and bis. This chain results in a vector P0, which corresponds
with the values pn´1 to p0 in Figure 24.

Listing 16: Implementation of a signed multiplier in CλaSH.

1 vmult :: xBityn Ñ xBityn Ñ xBity2n

2 vmult as bs = ps
3 where

4 ls = vcopyn n Low

5 bis = vmap (vcopyn n) bs
6 c f g = cell_config as
7 ((_, cs, ss), P0) = vchain bw_row (as, ls, ls)
8 (vzip c f g bis)
9 (_, P1) = vchain fullAdd High

10 (vzip cs (High +>> ss))
11 ps = P1 <++>8P0

12

13 (¨) = vmult

8 concatenates two vectors.
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Next, the elements of the last Carryout vector (the one on the
bottom of Figure 27) will be added (by chaining it with the
fullAdd function) to the last Sumout vector (again, shown at the
bottom of Figure 27), in lines 9 and 10. Resulting in a vector P1
(p2n´1 to p2n´m´2 in Figure 24). Finally, P1 is concatenated with
P0, (Line 11) to result in vector P, the product of A and B.

Finally, in Line 13 the function vmult is deducted to the oper-
ator ’¨’, which lets the syntax of multiplying two Vectors be as
simple as:

1 ps = as ¨ bs

4.3.1 Complex multiplier architecture

There are basically two substitution algorithms for calculating
the product of two complex numbers. The first one is shown in
Equation 17. This algorithm requires four multiplications, one
addition and a subtraction. (Please note that the notation of
complex numbers also contains a plus symbol, but this is not
an actual addition. Complex numbers are stored as a tuple of
two Vectors of type Bit.)

P + jQ = (A + jB)ˆ (C + jD)

P + jQ = AC + jAD + jBC + j2BD
P + jQ = (AC´ BD) + j(AD + BC)

(17)

The implementation in CλaSH is really straightforward (List-
ing 17). The function vcmult takes two tuples consisting of two
bitvectors of length n and produces a tuple of two bit vectors of
length 2n + 1 (Line 1 and 2). The function which describes the
real part of product (P) is shown in Line 6, the imaginary part
(Q) is shown in Line 7.

Listing 17: Implementation of a signed complex multiplier in CλaSH.

1 vcmult :: (xBityn, xBityn) Ñ (xBityn, xBityn) Ñ

2 (xBity2n+1, xBity2n+1)

3

4 vcmult (as, bjs) (cs, djs) = (p, qjs)
5 where

6 p = (as ¨ cs) <-> (bjs ¨ djs)
7 qjs = (as ¨ djs) <+> (bjs ¨ cs)
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The second algorithm for calculating the product of two com-
plex numbers was discovered by Gauss in 1805 [35] and can be
viewed in Equation 18 and requires only three multiplications,
but three additions and two subtractions.

P + jQ = (A + jB)ˆ (C + jD)

k1 = C ¨ (A + B)
k2 = A ¨ (D´ C)
k3 = B ¨ (C + D)

P + jQ = (k1 ´ k3) + j(k1 + k2)

(18)

Every addition increments the length of the result and every
multiplication doubles the length. Therefore, the implementa-
tion of the function vcmult2 (Listing 18) shows some syntactic
overhead to produce a result of length 2n + 1.

Listing 18: Implementation of a signed complex multiplier in CλaSH.

1 vcmult2 :: xBityn, xBityn) Ñ (xBityn, xBityn) Ñ

2 (xBity2n+1, xBity2n+1)

3

4 vcmult2 (as, bjs) (cs, djs) = (vtail p, vtail qjs)
5 where

6 k1 = (sE cs) ¨ (as <+> bjs)
7 k2 = (sE as) ¨ (djs <-> cs)
8 k3 = (sE bjs) ¨ (cs <+> djs)
9 p = (vtail k1) <-> (vtail k3)

10 qjs = (vtail k1) <+> (vtail k2)

Just as in the other algorithm in Listing 17, does the Gauss
algorithm takes two 2-tuples of bitvectors with a size n to create
the result, which is a 2-tuple bitvector of size 2n+ 1. The helper
variables k1, k2 and k3 are defined in Lines 6 to 8. Note that the
left argument of the multiplication is sign extended to a size of
n + 1 by the function sE (which was defined in Listing 13). This
is necessary since the right argument (the sum of two vectors)
of the multiplication has length n + 1 and the multiplication
architecture needs two vectors of the same size. In Line 9 the
real part of the product (p) is described and in Line 10 the
imaginary part (qjs).

Since the complexity of the multiplication architecture in-
creases exponentially when increasing the length (resolution)
of the vectors, the second algorithm seems the best choice when
working with larger vectors, because it uses one multiplier less.
However, adding two n-bit numbers, will result in an n + 1-bit
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number. Since the ’¨’-operator requires two vectors of the same
length, one of the inputs needs to be sign extended, which leads
to more complex hardware, because not an n-bit multiplier is
required here, but an n + 1-bit one.

The focus of this research is particularly on lower resolution
systems. So further investigation how the architecture scales on
lower resolutions, with regards to the necessary chip area and
the maximum frequency is welcome.
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Figure 28: Comparison between the necessary area of both complex
multiplication methods

In Figure 28 the comparison between the two algorithms,
with respect to the necessary area can be seen. The two algo-
rithms are compared by mapping them on an FPGA using the
Quartus II software. The chosen FPGA architecture was the Al-
tera Cyclone IV series, because of its widespread use and rela-
tively large size.

Surprisingly the first algorithm seems to have a slight ad-
vantage over Gauss’s algorithm, up to a bit vector size of 8
bits. After that, the Gauss algorithm has an increasing advan-
tage over the first algorithm with respect to the required area.
This is probably due the fact that the Gauss’s algorithm uses a
multiplier with 1-bit more resolution, which can have a bigger
impact on the complexity then using an extra multiplier (when
applied to lower bit vector sizes), like the first algorithm does.

Next, the maximum frequency feasible to compute the com-
plex multiplication in a single cycle is a valuable criteria, which
can be seen in Figure 29.
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Figure 29: Comparison between the maximum frequency of both
complex multiplication methods

Again, the first algorithm has a slight advantage on Gauss’s
algorithm, up to 6 bits. After that the differences become marginal.
Although the advantages are not that significant, the first algo-
rithm seems to be the best choice.

A operator symbol will be defined for the first algorithm, as
can be shown in Listing 19. This will deduct the complex mul-
tiplication of two tuples to: ’(as, bs) <˚> (cs, ds)’.

Listing 19: Defining a operator symbol for complex multiplication in
CλaSH.

1 (<*>) = vcmult

4.4 implementing cross-correlation

The adder and multiplication circuits described in the previ-
ous paragraphs will be used as building blocks for the even-
tual cross-correlation algorithm. In Figure 30 can be seen how
the complete cross-correlation circuit is constructed. A complex
data sample xs is fed from the top left to the chain of uss (which
consists of tus0, us1, ..., usn´1u). The ys sample is fed to the reg-
isters vss registerbank (consisting out tvs0, vs1, ..., vsn´1u) in the
opposite direction at the bottom right.
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The behavior of the correlator corresponds to Equation 2.
Each opposing element of uss and vss is multiplied using the
complex multiplication function ’<˚>’ (Listing 19).

The result of this multiplication is accumulated (Σ) and stored
in the CXY register bank. CXY thus holds the result of the corre-
lation operation. Internally it consists of two parts, the even val-
ues (CXYe, which consists out of tCXYe0 , CXYe1 , ..., CXYen´1u) and
the odd values (CXYo consisting out tCXYo0 , CXYo1 , ..., CXYonu).
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Figure 30: Schematic view of the corralator architecture.

The data types used in this circuit are defined in Listing 20.
The input type of xs and ys is a Sample (Line 6) which consist
of a tuple of two Vectors of type Bit with a size Size. The type
Lag (Line 4) represents the number of lags (which is basically,
the number of odd CXY outputs). Every usi and vsi register is of
the same Sample type as the input. This means that the register-
banks uss and vss are both of type xSampleyLag. The output
of the complex multiplication (<˚>) is a tuple of bit-vectors of
size 2n + 1, which corresponds with the type MSample (Line 7).
The CSize type describes the output size of the accumulator
and thus each element of CXY and the output of the correlator.
The register-banks CXYe and CXYo are of type xCSampleyLag and
xCSampleyLag+1 respectively.
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Listing 20: Types used in the cross-correlator architecture.

1 type Size = n
2 type MSize = 2*n + 19

3 type CSize = c
4 type Lag = L
5

6 type Sample = (xBitySize, xBitySize)

7 type MSample = (xBityMSize, xBityMSize)

8 type CSample = (xBityCSize, xBityCSize)

4.4.1 Accumulator

As described earlier, in order to correctly represent the sum,
every addition increases the size of the output vector. Which
means that when a number gets accumulated n times, its vec-
tor size also increases with n bits. This is a very unpractical
property for an accumulator to have, because our hardware ar-
chitecture size cannot grow and thus has to be fixed. Therefor
a complex adder which leaves the size of the bit-vectors unaf-
fected was created. This can be viewed in Listing 21. Note that
the type of the two input arguments is the same as the output
argument (Line 1).

Listing 21: Accumulator function in CλaSH.

1 (Σ) :: (xBityn, xBityn) Ñ (xBityn, xBityn) Ñ (xBityn, xBityn)

2

3 (Σ) (as, bs) (cs, ds) = (ps, qs)
4 where

5 ps = vtail (as <+> cs)
6 qs = vtail (bs <+> ds)

The accumulator function (Σ) uses the addition operator (<+>),
which was described in Listing 13. It discards the first element
by using the vtail function (in Lines 5 and 6), this way the out-
put remains the same size as the input. To still have the neces-
sary accuracy, the samples from the multiplier of type MSample
are sign extended to the much bigger CSample type by using
the ms2cs function, as can been seen in Figure 31.

9 In CλaSH this would be notated as: Succ (n :+: n)
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Figure 31: Sign extending a MSample to a CSample.

The CλaSH description of the ms2cs function is presented in
Listing 22. It takes a argument of type MSample and puts out
a CSample type (as can be viewed in the type declaration in
Line 1).

Listing 22: Converting a MSample to CSample by sign extension.

1 ms2cs :: MSample Ñ CSample
2

3 ms2cs (as, bs) = (as1, bs1)

4 where

5 t = vcopyn (CSize - MSize) (vhead as)
6 t1 = vcopyn (CSize - MSize) (vhead bs)
7 as1 = t <++> as
8 bs1 = t1 <++> bs

In lines 5 and 6 two vectors (t and t’) are created. They will
only contain several copies of the first element of the inputs as
and bs, and therefore the actual sign extension. Their size is de-
fined by CSize´MSize. When they are concatenated (using the
(<++>) function) with as and bs in Lines 7 and 8 the size of the
output vectors as’ and bs’ results in: CSize´ MSize + MSize =
CSize.

4.4.2 Cross-correlator architecture typing

In Listing 23 the type declaration of the function ccc can be seen,
which describes the input and output arguments of the cross-
correlation architecture. The first argument (a 4-tuple of Vectors)
of the cross-correlation function is annotated with the State key-
word (Line 2 to 5), which indicates that those four Vectors will
be connected to memory elements. The first two Vectors are the
uss and vss register-banks, the other two together represent the
CXY register-bank (Fig 30). The second argument is the actual
input, the two Samples xs and ys (Line 6).
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Listing 23: Type of the cross-correlator function in CλaSH.

1 ccc ::

2 State (

3 xSampleyLag, xSampleyLag, -- (uss, vss)

4 xCSampleyLag+1, xCSampleyLag -- (CXYe, CXYo)

5 ) Ñ

6 (Sample, Sample) Ñ -- (xs, ys)

7 (State (

8 xSampleyLag, xSampleyLag, -- (uss’, vss’)

9 xCSampleyLag+1, xCSampleyLag -- (CXYe’, CXYo’)

10 ),

11 (xCSampleyLag+1, xCSampleyLag))

The output consist of a tuple, where the first part (Line 7

to 10) is identical to the first input argument. This contains all
the updated content for the memory elements. The second part
is the actual output of the cross-correlation (Line 11), i. e. the
updated values of the CXY registers.

4.4.3 Cross-correlator architecture description

The description of the cross-correlation function ccc can be viewed
in Listing 24.The new content of register-banks uss and vss are
described in Lines 4 and 5. The xs value is added to the begin-
ning of uss and ys to the end of vss. The afss and agss in Lines 6

and 7 describe the output of the complex multiplier. Note that,
afss is the complex multiplication between xs in front of (note
the ’+>’-operator) uss and vss in front of ys (making both vec-
tors one element larger than uss’ and vss’). agss is on the other
hand the complex product between uss’ and vss’ (using the ’+»’-
operator), this way afss represents the odd number of complex
multiplications in Figure 30 and vss’ the even ones.



52 cross-correlator architecture

Listing 24: Architecture of a cross-correlator in CλaSH.

1 ccc (State (uss, vss, cxye, cxyo)) (xs, ys) =

2 (State (uss1, vss1, c1
xye, c1

xyo), (c1
xye, c1

xyo))

3 where

4 uss1 = xs +>> uss
5 vss1 = vss <<+ ys
6 a f ss = vzipWith (<*>) (xs +> uss) (vss <+ ys)
7 agss = vzipWith (<*>) uss1 vss1

8 a f ss1 = vmap ms2cs a f ss
9 agss1 = vmap ms2cs agss

10 c1
xye = vzipWith (Σ) a f ss1 cxye

11 c1
xyo = vzipWith (Σ) agss1 cxyo

12

13 cccL = ccc ^^^ (uss_init, uss_init, cxye_init, cxyo_init)
14

15 {-# ANN cccL TopEntity #-}

First every MSample in afss and agss gets upscaled to a CSample,
by mapping the ms2cs function on them (Line 8 and 9). Both
upscaled complex products (a f ss1 and agss1) are then added
to the CSample registers c1xye and c1xyo by ’zipping’ them with
the previous value of the output state (cxye and cxyo), using the
accumulator function (Σ) (Line 10 and 11).

Line 15 tells the compiler that the function cccL is the TopEn-
tity, which indicates that it’s at the top of the circuit hierarchy.
In Line 13 the memory elements of ccc are filled with their ini-
tial values, using the lift function (^^^). These values are de-
clared in Listing 25.
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Listing 25: Generating the initial values of the registerers of a cross-
correlator circuit.

1 uss_init = vcopyn Lag (t, t)
2 where

3 t = (vcopyn Size Low)

4

5 cxye_init = vcopyn (Lag + 1) (t, t)
6 where

7 t = (vcopyn CSize Low)

8

9 cxyo_init = vcopyn Lag (t, t)
10 where

11 t = (vcopyn CSize Low)

To construct the initial values of the registers, the vcopyn func-
tion copies the complex number (t, t) (Line 1, 5 and 9)) ’Lag’-
times (Line 1 and 9) or ’Lag+1’-times (Line 5). The tuple (t, t)
describes a Sample type (Line 3) or a CSample type (Line 7 and
11) with value 0 + j0.

4.4.4 Non-complex multiplier

Since not every cross-correlator will need the ability to handle
complex data, it is also sensible to analyze a non-complex (in-
teger) cross-corelator. The correlator architecture of Listing 24

can be fairly easily adapted for this. First, the input data needs
to be converted to a non-complex type. This can bee seen in
Listing 26. Note that the size of the output of the multiplier is
now 2n instead of 2n + 1.

Listing 26: Types used in the cross-correlator architecture.

1 type MSize = 2*Size
10

2

3 type Sample = xBitySize
4 type MSample = xBityMSize
5 type CSample = xBityCSize

The description of the cross-correlator barely changes. Be-
cause of the benefits of using higher order functions, the com-
plex multiplication operator ’<˚>’ can be interchanged with the
normal multiplication operator ’¨’. The accumulator function is
switched to the more simple ’;’-operator, which is presented in
Listing 27.

10 In CλaSH this would be notated as: Size :+: Size
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Listing 27: Accumulator function in CλaSH.

1 (;) as bs = cs
2 where

3 cs = vtail (as <+> bs)

The function ms2cs’ (Listing 28) can be used to convert a real
MSample type to a real CSample type (Line 1). Its body is basi-
cally the same as ms2cs in Listing 22, but instead it handles only
one vector (as) instead of 2-tuple.

Listing 28: Converting a real MSample to a real CSample by sign ex-
tension.

1 ms2cs’ :: MSample Ñ CSample
2

3 ms2cs’ as = as1

4 where

5 t = vcopyn (CSize - MSize) (vhead as)
6 as1 = t <++> as

4.4.5 Simulation

Because the two vectors CXYe and CXYo represent the odd and
even correlated samples in the circuit, they need to be merged
together. This is done during simulation of the circuit, which
is done in Haskell, outside the CλaSH environment, where the
limitations of CλaSH don’t apply. This means that it is possi-
ble to utilize techniques such as lists and recursiveness during
simulation. Before the CXY vectors will be merged, they will be
converted to two lists which both holds signed integers (using
the standard function bv2s and f romVector). They will then be
merged by the merge function, displayed below in Listing 29.

Listing 29: merge function.

1 merge [] bs = bs
2 merge as [] = as
3 merge (a:as) (b:bs) = a : b : merge as bs

merge requires two lists (which can differ in size) as input
and puts the first element of both lists (a and b in Line 3) next to
each other in a new list and then recursively calls itself with the
remaining list. If one of the lists becomes empty, the elements
of the non-empty are just concatenated to rest (Lines 1 and 2),
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resulting in a list with size that is equal to the sum of the sizes
of the two input arguments (2 ¨ Lag + 1).

The final step in designing the cross-correlator architecture is
to verify if it works as expected by checking if it generates the
right data. The code that was used to simulate the architecture
is presented in Listing 30.

Listing 30: Simulating the correlator.

1 re = [..., ...]

2 im = [..., ...]

3

4 input = zip re im -- Complex Sample

5

6 CXY = simulate cccL $ zip input input
7

8 (CXYe, CXYo) = unzip $ toSigned CXY

9

10 C1
XYe = map fromVector CXYe

11 C1
XYo = map fromVector CXYo

12

13 outputdata = zipWith merge C1
XYe C1

XYo

The first two lines present the real and imaginary part of
the input signal, of which a complex Sample is constructed by
zipping both (Line 4). In Line 6 two copies of the input sam-
ple will be fed to the correlator architecture (cccL) using the
simulate function. Thus, the architecture functions as an auto-
correlation circuit here. The output of the simulation is stored
in CXY and casted to a signed Integer in Line 8. Both parts of
CXY are then converted from a vector to a list (Lines 10 and 11)
by mapping the standard fromVector function over them. The
output data consists of both parts of the CXY merged together
by zipping CXYe and CXYe with the merge function (Line 13).
Note that, every time a sample is fed to the correlator, the out-
put register CXY is updated. This results in the list outputdata, in
which every element chronically corresponds to a value these
CXY registers have had.

The outputted data was manually verified for correctness,
which showed that the architecture works properly. The next
step is generating the VHDL-files and do a post-simulation in
Quartus II by Altera. The results will be presented in the follow-
ing chapter.





5
A R C H I T E C T U R E A N A LY S I S

The analysis of cross-correlator architecture will be done by
mapping it on a Cyclone IV FPGA by Altera, using the Quar-
tus II v11.1 software. In this chapter the results for the area
utilization analysis, timing analysis and the case study for the
sensitivity are presented, for both the complex correlator and
the non-complex variant.

5.1 area utilization

The utilization of the area on an FPGA is measured in the num-
ber of registers and Logic Element (LE)s used. LEs are the small-
est logic units in FPGAs. Each LE of the Cyclone IV consist of a
four-input Look-up table (LUT) which can implement any func-
tion of four variables [36]. Next to a LUT, every LE also features
a programmable register to store data and some components
to chain multiple LEs together in different directions, as can be
seen in Figure 32.

4-input 
LUT

D

>
ENA

CLRN

Q

clk
ena

aclr

Register chain 
connection

sload sclear

Data1
Data2

Data3

Data4

Carry in

Register chain
output

Local routing

Row, column and 
direct link routing

Row, column and 
direct link routing

Figure 32: Schematic view of a Cyclone IV LE in normal mode [36].

The goal of the area utilization analysis is to find what the
relation is between the number of LEs needed for the architec-
ture for different number of lags and input vector size in the
correlator.

57
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5.1.1 Area utilization for complex correlator

The number of LEs will probably increase linearly with each
lag. Since with every lag, two input registers (us and vs), two
complex multipliers (<˚>), two accumulators (Σ) and two out-
put registers (CXY) are added to the correlator architecture (Fig-
ure 33).

us
cXY cXY 

vs

Figure 33: With every increase of lag, the architecture increases.

The estimate of the increase in size of the architecture (∆Θ)
with every added lag can therefore be formulated as:

∆Θnc « 2δuv
n + 2Xn + 2σc + 2δCXY

c (19)

Where n indicates the number of bits (or resolution) of the
input vector (Size in Listing 20) and c correspondes to the res-
olution of the output vector of the correlator (CSize in Listing
20). δuv

n represents the number of LEs which are needed for the
input register us or vs, Xn stands for the size of the complex
multiplier (in LEs), σc depicts the number of LEs needed for the
correlator output and δCXY

c indicates the size of the output reg-
ister CXY (in LEs).

For every part of Equation 19 the estimation for the necessary
number of LEs can now be formulated. The input registers us
and vs are both of the same size, which corresponds to:

δuv
n = δus

n = δvs
n = 2n (20)

This will be 2n, since both registers store a complex sample,
which needs a real and an imaginary part. The estimation of
the size of the output registers δCXY

c is given by:

δCXY
c = 2c (21)
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This will also be a complex sample, but it depends on the
size of the output vector c.

To find the relationship between the number of input bits
used against the size of the accumulator σ, some post-simulation
was done in Quartus II. The results can be seen in Figure 34.

D2 D3 D4 D5 D6 D7 D8
0

5

10

15

Accumulator input resolution

N
u

m
b

e
r 

o
f 

lo
g

ic
 e

le
m

e
n

ts

Figure 34: Necessary area for accumulator architecture.

Where the ˝ shows the measured data and the dotted line
shows the linear estimation. From this the following relation
can be extracted:

σc = 4(c´ 1) (22)

Tests have shown that Equation 22 holds up beyond c ą D256.

The number of LEs that are needed for the complex multiplier
will depend on the the size of its internal components: its multi-
pliers (χ), adders (τ+) and subtracters (τ´) (note that, the adder
and subtracter will have a size depending on 2n, since they add
up the multiplier results, as can be seen in Listing 17):

Xn = 4χn + τ+
2n + τ´2n (23)

Therefore it is necessary to analyze each internal component
to give an estimated relationship on the total size. The relation
between the adder/subtracter architecture and the used bit vec-
tor size, can be seen in Figure 35. The ˝ shows the measured
data, while the dotted line shows the linear estimation.

The dotted line shows a linear relation, which results in the
following estimation:

τ+
n = τ´n « r2.2n´ 2s (24)

This estimation holds for a big n (n ą D256), but occasionally
has - for unclear reasons - a small deviation (as can be seen at
n = D4 in Figure 35), but these are always within a reasonable
margin of only a couple LEs.
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Figure 35: Necessary area for the adder/subtracter architecture.

And finally, the impact which the input vector has on the size
of the multiplier (χ) is shown in Figure 36. The ˝ shows the
measured data and the dotted line the quadratic interpolation.
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Figure 36: Necessary area for the multiplier architecture.

From the estimation that was used for the dotted line, the
following relation can be derived:

χn « r2n2
´ 0.75n´ 1s (25)

This relation holds for vectors above n > D256 (with an esti-
mation error of ´3, 98%).

Based on the previous relations, it will be possible to derive
a relation for the complete complex correlator architecture size
against it’s number of lags and input vector size. Which will
results in:

ΘLnc « (2L + 1) ¨ (δuv
n + Xn + σc + δCXY

c ) (26)
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Where L represents the number of lags in the correlator (which
corresponds with Lag in Listing 20), meaning that 2L + 1 will
indicate the number of complex multipliers, accumulators or
input & output registers in the architecture. Equation 26 thus
not only gives a relation between the necessary LEs and the in-
put vector size, but also between the number of lags and the
required area.

To verify the relations, the actual required area for the com-
plex correlator architecture was produced by a fitter report of
Quartus II. The graph of Figure 37 shows the synthesis results
for the number of necessary LEs against the number of lags for
different input resolutions.
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Figure 37: Necessary area for the complex correlator architecture for
different input bit vector sizes and nummber of lags.

The results in the graph don’t go beyond an input resolution
of D9 and 10 lags, because around this point the synthesizing
procedure became too time consuming. The results needed up
to a day of calculation time on a modern desktop PC, while the
relation found between the necessary LEs and the number of
lags used was clearly linear.

Tests have shown that the estimated error (ε) of the calcu-
lated results with respect to the measured synthesis results is
between the ´2% and 3.3% (and on average 0.61%). The es-
timation of ΘLnc was tested for a large architectures with a
L = D256 and an input resolution of D9, which still seems
to hold.

ε =
ΘLncestimated ´ΘLncmeasured

ΘLncmeasured

¨ 100% (27)
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Surprisingly, while this error margin holds for even very large
correlator architectures, the estimated necessary area for n =
D2 is a lot bigger then actual necessary area calculated by Quar-
tus II (ε « ´19%). This is probably due the fact that Quartus II
can utilize a lot of optimization algorithms when such small
vectors are used.

The FPGA that was used for during synthesizing was the Cy-
clone IV (type: EP4CGX150DF31C7 by Altera) features 149.760
LEs and 508 I/O pins. By using Equation 26, we can calculate
that a correlator architecture with 10 lags, an input resolution
n of D8 and a output resolution c of D19 needs:

Θ10,8,19 « (2 ¨10+ 1) ¨ (δuv
8 +X8 + σ19 + δCXY

19 ) = 14.238 LEs (28)

Which is roughly around 10% of the available LEs. But when
looking at the number of I/O pins that are necessary:

PLnc « 2 ¨ δuv
n + (2L + 1) ¨ δCXY

c + r (29)

The number of necessary pins is depended on the 2 input
pins δuv

n , the output pins δCXY
c (which depend on the number of

lags) along with some non-data pins (needed for power-supply
and clocks), which is indicated by r. The number of pins that
are necessary for δuv

n and δCXY
c are equal to the amount of LEs

needed in Equation 20 and 21. Unfortunately P10,8,19 would be
around 830 pins, which is more than the chosen FPGA has. In
Figure 38 the needed pins for different input resolutions and
number of lags can be seen. The horizontal line at 508 pins
shows the number of pins available.
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Figure 38: Necessary pins for the complex correlator architecture for
different input resolutions and nummber of lags.

5.1.2 Area utilization for non-complex correlator

The area utilization relationship for the correlator architecture
which uses only real bit vectors, can be derived from Equa-
tion 26. The complex multipliers (Xn) will be interchanged for
non-complex ones (χn). The area usage of χ was analyzed in
Equation 25.

ΘLncR « (2L + 1) ¨ (δuv
nR

+ χn + σcR + δCXY
cR ) (30)

The size of the input registers will be halved with respect to
their complex peers, due to the fact that they only store the real
part:

δuv
nR

= δus
nR

= δvs
nR

= n (31)

The same reduction holds for the output registers δCXY
cR , which

depends on the size of the output vector c.

δCXY
cR = c (32)

Finally the relationship between the output vector size and
the number of necessary LEs of the accumulator (σcR) needs to
be analyzed. The measured results are presented in Figure 39,
where the ˝ shows the measured data and the dotted line the
linear interpolation as usually.
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Figure 39: Necessary area of the accumulator σcR for different input
bit vector sizes.

The linear estimation that was used in the above plot was:

σcR = 2(c´ 1) (33)

This relation was tested to hold up exactly, even to very big
input vector sizes (up to D256). Again, to see how every com-
ponent congregates in the whole of Equation 30, the Quartus II
software was used to generate the actual amount of necessary
chip-area. The results can be seen in Figure 40.

Figure 40: Necessary area for the non-complex correlator architecture
for different input bit vector sizes and nummber of lags.

Tests have shown that the estimated error is between the
´1.5% and 1.5%:

εR =
ΘLncRestimated

´ΘLncRmeasured

ΘLncRmeasured

¨ 100% (34)
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As with the complex correlator architecture, this error margin
holds for quite large circuits, but not for n = D2. Where εR «

´17.2% on average.

The number of necessary pins for the non-complex correlator is
given by:

PLncR « 2 ¨ δuv
nR

+ (2L + 1) ¨ δCXY
cR + r «

PLnc

2
(35)

Figure 41 shows the necessary pins for the non-complex cor-
relator architecture for different input resolutions and number
of lags. The horizontal line indicates the number of available
pins in the used Cyclone IV. As can be seen, all result shown
here will fit.
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Figure 41: Necessary pins for the non-complex correlator architecture
for different input resolutions and nummber of lags.
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5.2 timing analysis

Critical path analysis involves the analysis of the longest register-
to-register paths in the architecture. It was performed with the
TimeQuest Timing Analyzer in Quartus II. A testbench was cre-
ated which embedded the correlator architecture within a ’bed’
of registers. This way the longest register-to-register path is
from the input till the output. This is schematically shown in
Figure 42.
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Figure 42: Schematic view of a testbench for a timing analysis.

5.2.1 Critical path analysis for complex correlator

The results of complex correlator architecture analysis can be
viewed below in Figure 43.
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Figure 43: Maximum clock rate for input vector sizes D2 to D9, for a
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5.2 timing analysis 67

There are a couple of things that can be noticed from the
graph. First, increasing the lag size of the correlator seems to
have little effect on the maximum clock frequency that correla-
tor operation can be executed. This is due to the fact that every
MAC operation can be executed in parallel, since it does not
depend on results from other MACs. For some unclear, reasons
the plot of D2 also show a rather great drop at 7 lags. The plots
for input sizes D7, D8 and D9 stops after a lagsize of 7, this is
because the design doesn’t fit on the FPGA anymore (Although
there is still area available, there are no more pins left). The
tooling can still give information about the number of LEs nec-
essary, but is unable to do a timing analysis, because it uses a
model of an actual FPGA.

If we take the average of each input size we can show the
decrease in clock rate for every input vector size. These results
can be viewed in Figure 44, where the ˝ shows the measured
data and the line the interpolation.
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Figure 44: Average maximum clock rate for different input vector
sizes.

The estimated interpolation function that was used in the
above plot was1:

Φn « min(282 ¨ n´
2
3 , fmax) (36)

Where Φn is the maximum clock rate possible at input vector
size n. The clock rate is specific for specific FPGAs, indicated
by fmax (the maximum clock rate of an Cyclone IV is 250 MHz).
This estimation was confirmed to be correct up to a input size
of D32.

1 This estimation was calculated with the help of the EzFit toolbox for Matlab.
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5.2.2 Critical path analysis for non-complex correlator

The same analysis was done for the non-complex correlator.
The results can be viewed below, in Figure 45. Again, the de-
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Figure 45: Maximum clock rate for input vector sizes D2 to D8, for a
different number of lags.

viation is rather small when increasing the number of lags. The
two smallest input vector sizes D3 and especially D2 do follow
a somewhat uneven course. But when considering that the max-
imum frequency is cut off at fmax = 250MHz, the derivation
don’t seem so worse. To show the decrease in maximum clock
rate for every input vector size, the average of each input size
is taken. The results are shown in Figure 46. The non-complex
correlator seems to have some advantage over the complex one,
this is off course not surprising since the MAC (which is by far
the most significant factor in the maximum clock frequency) is
a lot smaller in the non-complex circuit.
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Figure 46: Average maximum clock rate for different input vector
sizes.
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As usual, the ˝ shows the averaged measured data, and the
line shows the exponential interpolation, for which the follow-
ing estimation was used2:

ΦnR « min(382 ¨ n´
7

10 , fmax) (37)

The results seem to hold up to a correlator circuit with an input
vector size of D32.

5.3 case study : spurious free dynamic range

To give an extensive analysis of the sensitivity of the correlator
architecture would be a time consuming task. The sensitivity
depends on a lot of factors such as the certain types of noise
factors, the distribution of the spectral density function of these
noise factors, the bandwidth of the input data, the accuracy
of the Analog to Digital Converter (ADC), among many others.
Given the time limitations during this research, this analysis
was limited to a case study, where the Spurious-Free Dynamic
Range (SFDR) of the architecture for various input and lag sizes
were calculated.
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Figure 47: The SFDR example viewed on a single-sided amplitude
spectrum.

The SFDR is the strength ratio of the fundamental signal to the
strongest spurious signal in the output. An example is showed
in Figure 47. The SFDR is measured in Decibels (dB).

2 This estimation was calculated with the help of the EzFit toolbox for Matlab.
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During this case study the SFDR of the cross-correlator ar-
chitecture for different resolution and lag sizes was calculated.
First two signals were created in Matlab, a noisy sine (s) and a
noisy cosine (c):

1 rng( ’ default ’); % Reproducable results

2

3 v = ... % Input resolution

4 N = 512; % Number of samples

5 f1 = 32; % Frequency of the sinewave

6 FS = 1024; % Sampling frequency

7 n = 0:N-1; % Sampling index

8

9 bound = 2^(v-1)-1; % Maximal number

10 % presentable by v bits

11

12 s = bound * sin(2*pi*f1*n/FS); % Generate sine

13 s = s + bound/20 * randn(1,N); % Add random noise

14

15 c = bound * cos(2*pi*f1*n/FS); % Generate cosine

16 c = c + bound/20 * randn(1, N); % Add random noise

Both signals are multiplied with bound, which indicates the
greatest number that can be represented by a v-bit two’s-complement
number. This way the eventual signal spans the complete am-
plitude band of the input vector and can be easier quantized
to a lower bit resolution. The amount of noise that is added to
both signals is depended on bound, which results in a constant
SNR (of 13 dB). The quantization is then simply done by:

1 rs = round(s); % Quantize Sine

2 rc = round(c); % Quantize Cosine

The arrays rs and rc will contain the newly quantized signals
with a resolution of v bits. These can then be converted to bit
vectors (bs and bc) with a resolution of v:

1 bs = dec2bit(rs, v);

2 bc = dec2bit(rc, v);

These are converted to a Haskell compatible type, which can
then be fed to the architecture during simulation:

1 input = zip ss cs -- Complex Sample

2 output = simulate cccL $ zip input input

Zipping the vectors ss and cs results in a complex vector
input. Which is used for both inputs of the correlator architec-
ture (cccL), thus letting the design serve as a autocorrelation cir-
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cuit. To see how the frequency activities are distributed across
the frequency band, the Fourier transform of the output of the
correlator architecture will be taken, which results in the power
spectral density function or spetrum (As stated by the Wiener
Khinchin theorem, Eq. 8). The results of this casestudy can be
found in Appendix A.





6
C O N C L U S I O N S

I started this graduation project by a literature research and
getting familair with functional programming, especially the
with the CλaSH language. I first described a simple ripple-carry
adder/subtracter circuit. The gained experience was then used
to build a flexible signed multiplier architecture. Flexible in the
sense that it works for vectors of any given length (as long as
they are both the same size). This multiplier architecture was
used (along the adder/subtracter circuit) to create a signed
compmlex multiplier. It was shown (in Section 4.3.1) that the
classic complex multiplication algorithm had a slight advantage
on the Gauss algorithm at smaller bit vector sizes.

The complex multiplier architecture was incorporated in the
MAC circuit alongside a accumulator. The MAC was used as a
fundamental building block of the correlator architecture. Which
was also created to be as flexible as possible, meaning that the
size of the input data will determine the size of the complete
correlator architecture. This way the architecture can be easily
analyzed for different input sizes and number of lags.

In Chapter 5 the created complex and non-complex correla-
tor architectures were analyzed. The relation between the nec-
essary number of LEs with respect to the input resolution and
number of lags were given by Equations 26 and 30. But the
number necessary LEs didn’t seem to be the biggest bottleneck
in the architecture, this was the number of needed I/O pins.
The relation between number of needed pins with respect to
input resolution and number of lags was presented by Equa-
tions 29 and 35. And a relation between input resolution and
the number of lags with respect to the maximal frequency at
with the correlation operation can be performed, was given by
Equations 36 and 36.
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F U T U R E W O R K S

As is common with most master theses, the work done dur-
ing this graduation period is not fully finished and thus leaves
room for future work. This chapter holds some suggestions on
which further research can be based.

7.1 case study : spurious free dynamic range

As is presented in Appendix A, the simulation results of the
case study for the SFDR contained some errors, which I was
unable to solve within the given time. This leaves the SFDR case
study open for future research. The case study should result in
definition of the relation between the SFDR with respect to the
correlator input resolution and the number of lags used. Which
can then be used (by - for instance - developers working on a
SDR) to choose the right configuration for the corralator, based
on the available LEs and the required speed and sensitivity.

7.2 power analysis

Analyzing the power consumption of the correlator architec-
ture can be categorized in two types of analysis: Passive power
consumption and Dynamic power consumption analysis. The
first one will give an indication about the power consumption
of the architecture when it’s idle. This most likely will just be
a certain constant value, which is depended on the number of
LEs used.

The dynamic power dissipation on the other hand, is the to-
tal power that is consumed with every toggle of internal bits.
Giving insight in the power consumption on active usage. This
is of course dependent on the input data, which needs to be a
realistic set. The data used in the Case-study which analyzed
the SFDR value for different configurations (Section 5.3), could
be used for instance.

After successful synthesizing the architecture, Quartus II gen-
erates a post-synthesis description of the design in VHDL and a
SFD file, which holds information on the delays in circuit. This
data can then be used in a post-synthesis simulation in Mod-
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elSim by Altera. The inputdata for the case-study needs to be
converted to a ModelSim compatible data-type, that can be used
as input for the post-synthesis simulation. The simulation will
result in a Value-Change Dump (VCD) file, which contains all
the signal toggles that occurred during simulation. This file can
in turn be imported in Quartus II, which can process the switch-
ing activities for each signal and produce a dynamic power con-
sumption report.

7.3 non-linear multiplier

In Section 2.7 some ideas for low resolution optimization where
coined. By using a non-standard quantization scheme in combi-
nation with the assignment of weighting factors to the possible
output states of the quantizer, a non-linear multiplier can be
created. This multiplier won’t have the characteristics of a nor-
mal multiplier and thus will have some peculiar, but still deter-
ministic output. An advantage this multiplier will have over an
ordinary one, is that it’s much smaller area-wise and probably
much faster, but this comes at a cost of the accuracy of the out-
put [19]. Future research can be done by looking what the influ-
ence is on the number of LEs used, the maximum frequency of
which the correlator operation can be performed, the accuracy
(degradation factor) of the output and the power consumption:

- When changing the weighting factors in the quantization
scheme.

- When choosing a different boundary value n in the weight-
ing factors (´n, ´1, +1 and +n in a 2-bit quantization
scheme).

- When disabling the low level products (Table 4 and 5).

- When emphasizing the higher level products (although
the influence on the degradation factor was already cov-
ered in [20]).

7.4 hardware folding

There are some drawbacks of the designed correlator architec-
ture, one is that it becomes rather large when increasing the
input vector size or the number of lags. As shown in Figure 43,
after some point the architecture does not fit any more on the
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(relatively large) Cyclone IV FPGA. Another disadvantage is that
synthesizing the design at that point is quite a time consum-
ing task (it takes a relatively large circuit more than a day to
synthesize on a modern desktop PC).

When looking at Figure 30, it’s easy to see that the correla-
tor architecture consists out of somewhat cascaded components
(the components are accentuated by Figure 33). This property
can be utilize by implementing hardware folding in the architec-
ture. A schematic view of the idea can be viewed in Figure 48.
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Figure 48: Schematic view of an hardware folded cross-correlator ar-
chitecture with only one MAC.

As can be seen from the above schematic, folding the cor-
relator structure is not so straightforward as one would first
assume. Both inputs of the correlator (ys and xs) are connected
to both ends of the architecture. The input Samples will travel
trough a certain amount of delays (registers) before reaching
the MAC. These delays need to be preserved in the folded ar-
chitecture, since they are a key element in the correlation op-
eration. To still be able to implement hardware folding, some
mechanism is required which every clock-cycle selects the cor-
rect two samples from the registerbanks uss and vss and feeds
them to the right MAC (in the above schematic, only one MAC
remained after folding) and the answer is put in the correct
output register of CXY. This is done by the Input and Output
Selection Controllers.
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The main advantage is that the number of LEs used will be
cut down, as can be seen by Equation 38 below:

Θρ
Lnc « (2L + 1) ¨ (δuv

n + σc + δCXY
c ) + ρ ¨ Xn + γ (38)

Where ρ represents the number of MACs used in the design
and γ is the added overhead in LEs due to the Input and Out-
put selection Controllers. This decrease comes off course with
a downside, implementing folding means that the correlation
operation now takes several clock-cycles. The maximum fre-
quency the correlation operation can be performed is given by:

Φρ
n «

Φn ¨ ρ

2L + 1
´ λ (39)

Where λ is the latching time delay overhead as result of the
folding.

7.5 i/o pins reduction

In section 5 was described that the bottleneck in fitting the cor-
relator architecture on the FPGA was the number of available
pins. It would therefore be wise to implement a circuit in which
not every output bit needs it’s own pin, but instead sends mul-
tiple bits over one pin. One option to realize this can be by us-
ing Low-Voltage Differential Signaling (LVDS), which is a high
speed and low-power communication system (that is also fea-
tured in most of the FPGAs by Altera).

D R

V1

V2

Figure 49: Schematic view an LVDS system.

The binary data at the input of D will be transfered through
a buffer to the lines V1 and V2. If the input data is a logic 0
than V1 = V2 = Vcm (a certain common-voltage). When the
input data is a logic 1, V1 becomes larger and V2 becomes
smaller, the input of the receiver R becomes V1 ´ V2. The sig-
nals are differentially transfered, making the system insensitive
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of common-noise. The influence of common-noise is that the
common-voltage gets shifted, but as these get shifted for V1 as
well for V2 the differential voltage between them stays the same.
Because the system is barely influenced by noise it can perform
at low-power, which enables it to perform at high speed.

7.6 fxc

This graduation research concentrated purely on a XFC, but it
is also sensible to analyze a FXC. To check how the relations for
an FXC hold for a certain input resolution and number of lags,
with respect to the necessary LEs, the maximum frequency the
correlation operation can be performed, the sensitivity and the
power dissipation. And how the FXC holds against the XFC. This
should lead to an answer to question when a FXC is an better
choice over a XFC or vice versa for certain situations.

7.7 implementing on actual fpga

Everything researched in this thesis is purely theoretical, but to
see if all these relations presented in Chapter 5 hold up on an
actual FPGA is most likely a wise thing to verify.

7.8 algebraic data types

In Section 4.4.4 the proceedings to convert a complex correla-
tor architecture to a non-complex one are presented. These are
quite small actions, but ideally the top-level entity should pick
the right functions for the MAC operation based on the type
of the input data (complex or not). This can be realized when
implementing an algebraic data type into the architecture on
which the complex and non-complex Sample are based upon.

7.9 comparing design to vhdl correlator

The correlator architecture that was build during this gradua-
tion period was written in the relatively new HDL CλaSH. One
of the first questions that would arise when CλaSH is presented
at the outside world, would be "how does it relates to VHDL?".
To give an answer to this question a correlator architecture
could be created with VHDL and analyzed and compared to the
one written in CλaSH. This will be of course quite some work,
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but when the results favor for CλaSH, it will be a significant
selling point.

7.10 n by m multiplier

The Baugh-Wooley multiplier that was created is only able to
multiply two vector which both have the same length. But if
one input signal could be expressed in lesser bits than the other,
it would be more efficient if the multiplier could also operate
on two vectors of different length. Note that the analysis on
the two complex substitution algorithms which was done in
Section 4.3.1 should be reconsidered. Gauss’s algorithm is more
likely to have a advantage over the standard algorithm, when
sign extending one signal isn’t necessary anymore.
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R E M A R K S O N C λ ASH

As noted before, CλaSH is an functional HDL created by the
CAES research chair at the University of Twente, which was de-
veloped only a few years ago in 2009. So this graduation re-
search is still one of the first ’bigger’ projects conceived in this
relatively new language. First of I like to say that this project
was also my introduction to functional programming. During
this graduation period I’ve therefore learned a lot about solv-
ing problems in a ’functional’ way. Learning to think in new
form of abstractions and discovering new ways to represent
programs and to think about languages. Which are in my opin-
ion valuable insights which I can benefit from in my future
career (even if this only involves solving problems in a impera-
tive languages). I immediately loved the charm of Haskell and
its often very clean and elegant solutions to otherwise complex
problems. Although my impressions of CλaSH are generally
positive, I did had some remarks and suggestions which I have
obtained during my experiences working with it. These I would
like to present in this Section.

8.1 recursion

I started out by learning the basics of Haskell and made some
assignment used in the Functional Programming course. I soon
realized that for basic problem you almost get forced to use
higher-order functions, polymorphism and recursion, which will
result in some beautifully compact code, like for instance my
first sum fuction, which calculates the sum of a list:

1 sum [] = 0
2 sum (x:xs) = x + sum xs

or reverse, which reverses a list:

1 reverse [] = []

2 reverse (x:xs) = reverse xs ++ [x]

But in CλaSH recursion is not available and this is quite a
shortcoming, since it’s such an important concept of functional
programming. The vectors used in CλaSH need to be finite and
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must have a constant length. Although there are some types
of recursion that simple cannot be implemented to hardware,
implementing recursion over finite vectors should be realizable,
because number of needed hardware elements depends on a
known size.

8.2 type system

During this thesis a lot of Listings were found which featured
type declarations. Like for instance the code of the accumulator:

1 (Σ) :: (xBityn, xBityn) Ñ (xBityn, xBityn) Ñ (xBityn, xBityn)

2

3 (Σ) (as, bs) (cs, ds) = (ps, qs)
4 where

5 ps = vtail (as <+> cs)
6 qs = vtail (bs <+> ds)

The type declarations (Line 1) are quite easy to understand,
the function Σ needs two tuples (each consisting two vectors
of type Bit and Length n) and the result will also be a tuple
of the same type. But unfortunately the type declaration in the
actual code are a bit polluted from certain type constrains. This
is what the actual function looks like:

1 (Σ) :: (n ~ Succ (Pred n),
2 IntegerT n,
3 IsPositive n ~ True,
4 Not (IsLT (Compare (Succ n) n)) ~ True) =>

5 (xBityn, xBityn) Ñ (xBityn, xBityn) Ñ (xBityn, xBityn)

6 (Σ) (as, bs) (cs, ds) = (ps, qs)
7 where

8 ps = vtail (as <+> cs)
9 qs = vtail (bs <+> ds)

In this example the type constrains overhead consist of ’only’ 4
lines, but I came across much bigger examples (one of themb
even expanded over several pages). The constrains here have
the following meaning:

Line 1: n = n + 1´ 1

Line 2: n is an integer type

Line 3: n ă 0

Line 5: !(n + 1 ă n)
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As a programmer you don’t want to be bothered with such
trivial overhead to your functions, certainly not in a language
that is as beautifully compact as Haskell. These type constrains
are of course necessary (you may not define a list of length ´1)
but belong within the type declaration of the vector type, not
at function level.

8.3 vcopyn

To keep the listings with code clear and simple, I presented the
vcopyn function as following:

1 t = vcopyn Dn x

Which means that the value x is copied Dn times to create
the vector t (resulting in: <x, x, ..., x>). But in reality the function
would have to be declared as:

1 type N = Vector Dn a
2

3 t = vcopyn (undefined :: N) x

The function vcopyn needs a vector of a certain length. So we
first need to declare a new type N, which is a Vector of length
Dn of an arbitrary type a (which could basically be anything).
The line "undefined :: N" creates a new bottom value of type N
(A vector of length Dn with undefined content of type a). The
length of this undefined vector will be used as the number of
times x will be copied. This comes - from a programmer’s point
of view - across as unnecessary and impractical.





L I S T O F S Y M B O L S

‹ cross-correlation operator
˙ convolution operator
γxx[j] Discrete autocorrelation function
γxy[j] Discrete cross-correlation function
Γxx[ f ] Power spectral density function
Γxy[ f ] Cross power spectral density function
F Fourier transform
F´1 Inverse Fourier transform
d Degradation factor
´V0, +V0 Transition levels in quantization scheme
ω Weighting factors in quantization scheme
A Multiplicand
B Multiplier
P Product (A ¨ B)
L Number of lags used in correlator
n Input resolution size of correlator
c Output resolution size of correlator
ΘLnc Size of the complex correlator architecture
ΘLncR Size of the non-complex correlator architecture
δus

n Size of one complex input register us (which is an
element of uss)

δus
nR

Size of one non-complex input register us (which is
an element of uss)

δvs
n Size of one complex input register vs (which is an

element of vss)
δvs

nR
Size of one non-complex input register us (which is
an element of uss)

δCXY
c Size of one complex output register

δCXY
cR Size of one non-complex output register

Xn Size of the complex multiplier
χn Size of the multiplier (which is a component of the

complex multiplier)

85



86 remarks on cλash

τ+
n Size of the adder (which is a component of the com-

plex multiplier)
τ´n Size of the subtracter (which is a component of the

complex multiplier)
σc Size of the complex accumulator
σcR Size of the non-complex accumulator
PLnc Number of I/O pins necessary for the complex corre-

lator architectrue
PLncR Number of I/O pins necessary for the non-complex

correlator architectrue
r Represents the required number of non-data pins

(power-supply, ground, clocks)
Φn The maximum clock rate possible at which the com-

plex correlator operation can be perfomed
ΦnR The maximum clock rate possible at which the non-

complex correlator operation can be perfomed
fmax The maximum achievable frequency of the FPGA



A
A P P E N D I X A : C A S E S T U D Y S F D R R E S U LT S

In Section 5.3 the steps for the SFDR casestudy were described.
In this Appendix the results of this casestudy will be presented.
Beginning with an example of a graph of the spectral density
function for a correlator with an input resolution of 32 bits and
64 lags. This can be seen below in Figure 50.
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Figure 50: Example spectral density graph of a correlator with input
resolution of 32-bits and 64 lags.

The fundamental peak at 32 Hz can be clearly seen, also the
spur at 96 Hz, resulting in a SFDR of: 10 ¨10 log( f nd

spur ) = 4.55
dB. Also the effect of the number of lags is clearly visible. 64
lags means for the correlator architecture that it has 2 ¨ lags +
1 = 129 MACs and thus also 129 output registers. Since the FFT
operation doubles this amount, we can see 158 vertices (dots)
in the graph, which means that increasing the number of lags,
the accuracy will improve. So if the number of lags is as small
as 2, the only information that can be fetched from the spectral
density function is, that a ’certain peak’ is found (Figure 51).
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Figure 51: Spectral density graph of a correlator with input resolution
of 32-bits and 2 lags.

In Figure 52 the impact of increasing the number of lags for
different input vector sizes can be seen.
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Figure 52: SFDR Results for different input vectors and lags.

When looking at the above graph, we can observe different
things. First, up to 16 lags, a great improvement in the SFDR
can be seen, but after that the lines become quite straight. So,
increasing the number of lags, does make the data more re-
liable - in the sense of estimating the place in the frequency
band where peaks occur. Another observation is that the input
resolution of D4 up to D7 seem to have the biggest SFDR. Where
the SFDR of larger resolutions (D1 till D32) won’t be larger than
around 4dB. Which is quite surprising, since it contradicts with
Equation A.5 that Mark Oude Alink presented in [37]:

SFDRADC « 8.07b + 3.29[dB] (40)

Where b represent the number of bits used. This equation
states that the SFDR for an input resolution of 32 bits should
be around 281.69 dB. Which indicates that its highly likely that
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there exist (at this point unclear) errors in the simulation. Unfor-
tunately due limitation in available time, I’m unable to correct
the simulation and run it again (running the simulation alone,
would take several days). So with some pain in my heart I’m
forced to push this section to the future works (Chapter 7).
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