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Abstract

Granular materials are widely used in industrial processes and the lack of understanding of the
physics, specific for the behaviour of granular materials, makes it difficult, for example, to effec-
tively design industrial facilities. This thesis takes a closer look at the behaviour of the compaction
of a sand bed under different conditions; namely different ambient pressures and different shock
strengths. This shock is achieved by releasing a ball from a specific distance and letting it swing
against the side of a container filled with loosely packed sand.

The pressure difference above and below the sand and the drop of the sand bed were measured,
and the maximum pressure reached during the experiments together with the behaviour of the
decay of the pressure were analysed. The data shows that the compaction of the sand is very
dependent on the release distance of the ball and thus the shock strength; the compaction is
larger for larger deviations of the ball. Surprisingly it also depends on the ambient pressure inside
the container, but to a lesser extent. It can be concluded that the compaction of the sand bed
level both depends on the deviation of the ball and the ambient pressure inside the container.
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Chapter 1

Introduction

Granular materials, such as sand, are very complex materials, they behave very differently from
solids, liquids or gasses. A granular material can be considered as an additional state of matter
because it can display both fluid-like and solid-like properties. One example is sand: Sand behaves
like a solid when it is used in sand sculpture, is a liquid when looking at an hourglass and is in the
gaseous state when in a sandstorm [6]. Because of the unique properties of granular materials, a lot
of research has been done in this field, but granular materials are still very poorly understood [7].

Granular materials are widely used in industrial processes and the lack of knowledge of the physics
that is specific for the behaviour of granular materials, makes it difficult, for example, to effectively
design industrial facilities. A lot of research has gone into investigating the flow behaviour of
granular materials [9], soil deformation during compacting [4], effect of gravity on the granular
materials, which can be used to analyse the photos of planets [5], and so on. But still a lot of more
research is needed to completely understand the behaviour of granular materials.

In this study the interaction between fine grains and the surrounding interstitial gas in a loosely
filled granular bed is studied, during compaction. Earlier work by Royer et al at the university
of Chicago [8] and Caballero et al. at the university of Twente [1], have confirmed the importance
of the dynamic coupling between gas and granular motion. These research groups studied the
formation of a granular jet which formed after dropping a solid sphere into a bed of loose fine
sand. They discovered that, unlike the jet formed in fluid systems, the granular jet consist of
two components. However the fluid jet models are of limited use for this more complex process
involving the interaction between the sand an the interstitial air [8].

The research carried out at the University of Twente is similar to the research described in this
thesis. A container filled with fine loose sand was used to study the behaviour of the compaction
of a sand bed at atmospheric and lower pressures when an object is thrown against the side of the
container. The theory and model used for the analysis of the data will be discussed in chapter 1.
A more extensive description of the research and the results will follow in the theory, respectively
chapter 3 and 4. This report will be wrapped up with a conclusion in chapter 5.
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Chapter 2

Theory

In the experiments a container filled with very fine sand is used, which will be called a (porous)
bed. The bed of a porous medium can be seen as a material with many capillary pores, which
are parallel and run completely through the bed. The flow through such a porous medium is
characterised with a constant, the permeability κ of the bed. The permeability is a measure of the
ability of a porous medium to allow fluids to pass through it [10], i.e. the permeability is large when
fluids can easily pass through the medium. In the first section an equation for the permeability
will be introduced, and compared to measurements of the permeability of the bed in experiments
prior to the experiments described in this report.

The change in the pressure difference after closing the air flow will be described next. This section
will treat the theory of the pressure build up inside the system when air flows through a porous
medium, and how this pressure build up will slowly go back to zero after the flow is stopped. In
the last section a full model for the air flow and the pressure change inside the container, both as
a function of time, will be treated. This al happens after the collapse of a loosely filled granular
bed.

2.1 Permeability

In 1856 Darcy wrote a paper in which he introduced equation (2.1), now called Darcy’s law. He
found that the flow rate in a porous bed is proportional to the pressure drop over a given distance
and inversely proportional to the viscosity of the fluid [10].

Q = −κA
µ

∆P

∆L
, (2.1)

where Q is the flowrate in m3/s, A the crossectional area in m2, µ the dynamic viscosity of the
fluid (Pa·s), ∆P the pressure drop (Pa) and ∆L is the length over which the pressure drop occurs
(m).

After Darcy proposed his law, Kozeny developed a model for the permeability of porous medium
which consists of a series of parallel capillaries. But since the capillary pores are in reality far
from completely straight, the model had to be changed. After many adjustments, for example to
account for the irregular path the flow takes through the medium, Carman came with a modified
equation for the permeability [10]. This resulted in the Carman-Kozeny equation for the special
container of uniform spheres [8]:

κ =
d2(1 − φ)3

180φ2
, (2.2)

where κ is the permeability in m2, d is the diameter of the grains (m) and φ is the packing fraction
of the sand grains.
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Before determining the permeabilities, it is important to explain the introduction of the packing
fraction φ of a granular material in the previous formula. Most materials are highly irregular in
shape and the results of a measurement can change if the particles are flipped or turned. So it
is convenient to use a sphere with the same volume as the granular particles. For these spheres
the packing fraction of the material can be calculated. The packing fraction is a measure of the
volume occupied by granular particles, and is defined as the volume occupied by the solid phase
divided by the total volume [2].

The sand used in the experiments consists of grains with a diameter between 20 and 60 µm with
a packing fraction of 0.41. Inserting this into equation (2.2), yields a permeability which lies
between 3.3 · 10−12 and 3.0 · 10−11 m2. The permeability is mainly determined by the presence of
the smallest grains in the sand and will therefore be closer to the lower value of the permeability.
This was confirmed by an experiment, conducted at the University of Twente. In accordance with
the latter, the permeability of the sand bed used in the experiments is 5·10−12 ± 1·10−12 m2 with
no dependence on the bed height [3].

2.2 Flow through a porous bed

A schematic of the flow through the bed is shown in Figure 2.1. The air flows through two porous
media before reaching the top of the container. The first is a porous plate (thickness Hp and
permeability κp) which supports the sand and distributes the air evenly over the area, the second
porous medium is the sand (thickness Hs and permeability κs).

Sand,Ks

Q

Q

Hs

Hp

Hs

Hp

ΔPs

ΔPpPlate, Kp

Figure 2.1: Schematic of the flow Q through the plate and the sand, with permeabilities κp and κs,
respectively. Here Hp is the height (m) and ∆Pp the pressure difference (Pa) over the plate, Hs the height
(m) and the ∆Ps the pressure difference (Pa) over the sand.

The flow rate in the two media can be calculated with Darcy’s Law. The permeability of the plate
should also be included, because the permeability is much smaller than that of the sand. This
gives the following two equations for respectively the plate and the sand:

Q = −κpA
µ

∆Pp
Hp

, (2.3a)

Q = −κsA
µ

∆Ps
Hs

. (2.3b)

Because of the continuity equation (flow in = flow out) the total pressure difference below the
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Figure 2.2: Example of the pressure difference decay in time, after the stop of the air flow through the
sand.

plate and above the sand is:

∆P = ∆Pp + ∆Ps = −QµHp

Aκp
− QµHs

Aκs
= −Qµ

A

(
HP

κp
+
Hs

κs

)
, (2.4)

by rewriting equation (2.4) the flow Q becomes:

Q =
∆PAκpκs

µ(Hsκp +Hpκs)
. (2.5)

If the air flow is cut off, the pressure difference between the bottom of the plate and the top of the
sand will go to zero after 10 to 30 seconds, depending on the ambient pressure in the container,
an example of such a decay can be seen in figure 2.2. An equation for the decay can be derived
with the use of Darcy’s Law and the mass flow through the sand, the result of which can be seen
in equation (2.6). The derivation of this equation can be found in appendix A.

∆P = ∆P ∗e−t/τ , with
1

τ
=

κpκs
Hsκp +Hpκs

ρ0ART

µV1M
, (2.6)

with ∆P ∗ the initial pressure difference, τ the decay time, V1 is the starting volume of the air
above the sand (m3), M the mass of the sand (kg), T is the temperature in K, ρ0 is the density
of air at constant pressure and temperature (kg/m3) and R is the gas constant (J/mol·K) .

2.3 The model

In this section we will introduce the model, which describes the pressure inside, just above and
below the sand and the pressure difference ∆P in time. This is after the sand collapses a distance
H in this experiment, this is caused by the shock. The model is an 1D simplification of the
pressures, thus the pressure differences in the y-direction are neglected. The starting pressure
inside the container will be called the ambient pressure. The collapse will give rise to a pressure
difference between the bottom and top of the sand. The pressure difference can be modelled with
the diffusion equation [2].

d∆P

dt
= D

d2∆P

dx2
, with D =

κP0

µ(1 − φ)
, (2.7)

with D the diffusion constant in m2/s and P0 the ambient pressure in Pa.
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The bed drops a distance dH at time t = 0, where this drop is caused by, for example, a tap on the
side of the container. The packing fraction of the sand will than change by ∆φ. The time scale of
the compaction (<30ms) is much smaller than the diffusion time of air in a granular medium, but
much larger than the time set by the speed of sound in air. This means the compaction process
can be treated as isothermal (PV = constant). This will make it easier to determine the initial
conditions in the next section.

Sand, P

dH

H
s

P ,V22 22

P ,V11

x

y

Figure 2.3: Schematic of the setup model, with dH the drop of the sand, H the starting height of the
sand. P1, V1 and P2, V2 are respectively the pressure and volume above and below the sand, the pressure
inside the sand is Ps.

2.3.1 Initial conditions

The initial pressure beneath the sand at the starting time is still equal to the ambient pressure.
This is a result of the drop happening so fast that the air has no time to leave the sand. Thus the
initial pressure difference is zero:

∆P2,i = 0. (2.8)

The pressure difference above the sand can be determined by using the fact that the compaction
process is isothermal and very fast. The volume of air above the sand is V1 and the sand drops a
distance dH. Thus the new air volume is V1 + AdH and the initial pressure difference above the
sand is:

∆P1,i =
P0V1

V1 +AdH
− P0, (2.9)

with P0 the ambient pressure in the container (Pa), A the cross-sectional area in m2 and dH the
drop of the sand in m.

Inside the sand it is a little more complicated since the packing fraction of the sand has to be
taken into account. The packing fraction of the sand decreases but the volume occupied by the
sand grains stays the same. The equation of the volume before and after the compaction can be
seen below

φ0AH = φafterA(H − dH). (2.10)

From this expression the packing fraction φafter after the collapse can be expressed in terms of
φ0,

φafter =
φ0H

H − dH
. (2.11)
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The packing fraction is a number between the zero and one, thus the fraction of the interstitial
air is equal to 1−φ0. Again by using the fact that the process is isothermal the initial pressure
difference inside the sand can be calculated:

P0(1 − φ0)AH = (∆P2,i + P0)(1 − φafter)A(H − dH), (2.12)

which gives the following equation for the initial pressure difference inside the sand

∆Ps,i =
P0(1 − φ0)H

(H − dH) − φ0H
− P0. (2.13)

An example of the initial conditions can be seen in figure 2.4.

P2,i

,

Ps,i

P1,i

x0 H-dH

Figure 2.4: Example of the initial conditions inside the container in the x-direction. The pressure below
x=0 corresponds with the starting pressure P2,i, between the zero and H − dH is the starting pressure
inside the sand Ps,i and for x larger than H − dH is the pressure above the sand P1,i.

2.3.2 Boundary conditions

The boundary conditions can be determined by using Darcy’s law and the mass flow rate inside
the system. There are two equations for the flow rate, at coordinate x. The first equation is the
classic equation for the mass flow rate,

dm

dt
= Aρq

∣∣∣∣
x

= Aρ
κ

µ

dP

dx

∣∣∣∣
x

, (2.14)

with ρ the mass density of the substance in kg/m3. The second equation for the mass flow rate is
derived from the ideal gas law,

dm

dt
=

V

RT

dP

dt
, (2.15)

with R the ideal gas constant (J/mol·K). By setting these two equations equal to each other and
inserting the formula for the mass density, which can be simplified because ∆P is small,

ρ =
P0 + ∆P

RT
≈ P0

RT
, (2.16)

into equation (2.14) will give the following two boundary conditions:

dP1

dt
=

A

V1

κP0

µ

d∆P

dx

∣∣∣∣
x=H−dH

(2.17)
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and

dP2

dt
=

A

V2

κP0

µ

d∆P

dx

∣∣∣∣
x=0

. (2.18)

With these initial conditions and boundary conditions the model can simulate the pressure differ-
ence above and below the sand in time. The porous plate, with a permeability ten times smaller
than the sand, is taken into consideration by adding a piece of porous material with a thickness
Hp to the bed. An example of the pressure development can be seen in figure 2.5. The pressure
difference below the sand starts at zero and rises slowly, and after it reaches a maximum the
pressure difference goes back to zero, the equilibrium value. The pressure difference above the
sand starts at the minimum value ∆P1,i and returns slowly to the equilibrium.

0 5 10 15
−200

−100

0

100

time (s)

Δ
P

(P
a

)

P
2

P
1

Figure 2.5: Example of the pressure difference above and below the sand as a function of time. The
pressure above the sand, P1 will start at at a pressure below zero, the pressure below the sand P2 starts
at zero and will rise.
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Chapter 3

Experimental aspects

In this chapter the experiment will be discussed. This includes the experimental setup used for the
measurements and its properties, and the preparation prior to these experiments. Measurements
have been done for the height of a sand bed as a function of the deviation of a ball at normal
pressure and for the height of the sand as a function of different ambient pressures.

3.1 Experimental setup

The setup used for the experiments can be seen in Figure 3.1. The sand in the setup contains
grains of a diameter between the 20 and 60 µm and has a density of 2.21 ± 0.04 g/cm3. The angle
of repose for this material is 26◦, if the sand is at an angle larger than the repose angle the sand
will start to slide. The sand is poured into a container, made of perspex, with square sides of 14
cm and the sand bed has a depth of approximately 40 cm. The pouring of the sand will result
in a packing fraction of 46%, however the packing fraction changes to 41% after fluidisation [1].
Fluidisation is the process of introducing an air flow to the bottom of the container. The sand
will start to ”boil” like water and after slowly closing the air flow the sand will settle in a looser
packing compared to the starting situation.

The ball used as the impacting object is a steel ball with a diameter of 5 cm. The pressure
difference below and above the sand is measured using two highly sensitive differential pressure
sensors (Sensirion SPD2000-L) and the data is collected using LabView.

Because the setup will be used to measure the pressure above and below the sand and the height
of the sand before and after the ball hits the side of the container, the setup must meet certain
criteria:

• The contact time of the ball has to be small.

• No air can leave the setup during the experiment.

• The sand should drop as uniformly as possible.

The contact time of the ball has to be small for the energy has to be introduced to the system as
fast as possible. Naturally the setup has to be airtight for measurements at ambient pressure (and
at lower pressures) or else the pressure change during the drop of the sand can not be measured
correctly. Also the height of the impact will have an influence on the drop of the sand, it is likely
that the shock wave will be distributed more uniformly before it reaches the surface of the sand
if the ball is placed very low. This will also be discussed in the next section.
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ΔP

dy

ΔP

reference

Figure 3.1: The setup used for the experiments. The ball is a distance dy away from the object. The
container is filled with sand and the pressure is measured both in the top and bottom part of the setup
with respect to a reference container that is initially brought to the same ambient pressure as the setup.

3.2 Execution

The first step was determining how to set up the experiment to meet up with the criteria. First a
tennis ball filled with small copper balls was used as the impact object, however the contact time
of the ball during impact was too long. The little copper balls also shifted during the impact,
which made the impact irregular.This led to the conclusion that a solid ball was necessary. Next
the optimal impact height of the ball had to be determined. Measurements were done for three
different impact locations; at sand level, halfway the filling height of the sand and at the bottom of
the container. It was concluded that the ball should make contact at the bottom. At this level the
shock of the impact will distribute more evenly inside the sand before reaching the surface, thus
the surface will drop more evenly. Also, the vibrations of the container will have less influence on
the sand surface if the impact point is lower.

3.2.1 Atmosperic pressure

A series of experiments was done for different initial deviations of the ball at one atmosphere. The
deviation ranged from 15 to 35 centimetres (dy, fig. 3.1) and the ball hit the surface at a height
of 10.5 centimetres (center of the ball). A high speed camera was used to record the compaction
of the sand bed and the movement of the ball, where the latter was used for the calculation of the
speed of the ball at impact. The high speed camera has a Makro-Planar 1:2.8 lens with a focal
length of 60 mm.

The sand has to be fluidised before the start of every experiment. First the valves connected to
the setup and the top of de container should be open. Next an air flow was introduced to the
sand. The sand will start to ”boil” like water. After a few seconds of fluidisation the air flow was
gradually cut off and all the valves and the top were closed. The sand will settle, preferably every
time at the same height, and the experiments can begin.

The pressure below and above the sand was measured for different deviations, simultaneously,
the drop of the sand was recorded by a high speed camera. The measurements were triggered by
a manual trigger, which was pressed when the ball was released. The analysis of the data and
results will be discussed in the next chapter.
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3.2.2 Lower pressures

In these experiments the pressure was lowered below one atmosphere, this was done using a vacuum
pump. The container was brought to a maximum of 0.95 bar beneath atmospheric pressure. The
vacuum pump draws out the air from below and above the sand. A complete vacuum can not be
created for the setup, but for these experiment this will be sufficient.

The first step of the experiment was opening every valve and fluidising the sand by flowing air
through the bottom of the container. Next, the valve connected to the outside had to be closed
before turning on the vacuum pump. After slowly reaching the desired pressure the experiment
could be continued at a reduced ambient pressure, of course after closing every valve.
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Chapter 4

Results

This chapter will present the analysis of the high-speed movies of the compaction of the sand and
the pressure difference inside the container. But first it is important to discuss the methods used
for the analysis of the data, to get more insight in the process of the analysis.

4.1 The analysis

4.1.1 Sand surface

A Matlab program was written to analyse the videos which recorded the drop of the sand. The
most important part of the analysis is the use of the Hough transform function in Matlab. The
Hough function is used to detect linear lines in an image, which is used to determine the sand
surface. It is also possible for this function to only detect lines arranged in a specific way. This
orientation can range from −90◦ to 90◦, with −90◦ being the horizontal. In this container a range
of −90◦ to −86◦ was used.

To make it easier for Matlab to determine the surface of the sand, the sand is centred and the
casing and the ball are removed from the image with the use of a crop. Next a linear fit is used
to determine the height of the Hough line, because it is possible that the Hough line does not
start completely at the left of the image. The slope of the sand can change a bit during the drop,
this means the starting point of the line could suddenly rise halfway the movie. This error is
compensated by keeping the slope of the fit constant after the analysis of the first image. An
example of the Hough line and its fit can be seen in figure 4.1, the program is quite accurate in
determining the surface of the sand.

Figure 4.1: The sand surface determined by Matlab, with blue the linear fit and red the Hough line.
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4.1.2 Impact speed

The speed of the ball at impact is also estimated with the use of Matlab and by recording the
movement of the ball before and during impact with a high speed camera. The function ginput
is used to determine the position of the ball in every image. This function makes it possible to
determine the side of the ball by clicking on that position, ginput will then give the x- and y-value
of that point. By doing this for every image of the recording and plotting the y-position against
the time, the speed of the ball can be determined by calculating the slope of the plot. An example
of such a plot can be seen in Figure 4.2.
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Figure 4.2: Plot of the y-position of the ball in time, with the endpoint the y-position of the ball just
before it hits the container.

4.2 Atmospheric pressure

An example of the time evolution of the height of the the sand bed, for two different initial devi-
ations of the ball, can be seen in Figure 4.3. Each colour represents three different measurements
and the double analysis1 with Matlab,. Figure 4.3(a) and figure 4.3(b) are the measurements
of the drop with a deviation of 15 cm and 20 cm, respectively . It can be seen that, when the
deviation is larger, the sand drops more, and the sand will also start to vibrate. Note that these
vibrations are absent in figure 4.3(a). The different measurements match quite well, especially in
the beginning of the measurement, thus the measurements are very reproducible.
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Figure 4.3: Measurements of the height of the drop dH of the sand bed during compaction for two
different deviations of the ball (a) 15 cm and (b) 20 cm, the colours in the plot represent the different
measurements.

1The three measurements were analysed twice in Matlab. This to minimize the possibility that Matlab did not
determine the correct surface of the sand.
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The previous two figures are only two of the seven measurements, that have been done for different
deviations of the ball, ranging from 8 cm to 32 cm. The height of the drop dH of the sand as a
function of the deviation can be seen in figure 4.4. The plot shows that the height of the drop of
the sand bed is linear with the deviation of the ball and that the sand will drop more when the
deviation is larger.
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Figure 4.4: Maximum drop, dH, as a function of the deviation, dy, of the ball.

The time it takes for the height of the sand bed to drop to its final value and the collapse velocity
of the sand were also analysed, the results of which can be seen in 4.5. The collapse velocity was
estimated from the minimum slope of the dH versus the curves (see figure 4.3). The drop dH
of the sand grows larger with a larger deviation, but the conditions remain the same, so it can
be expected that the drop of the sand will take longer for larger deviations. This is confirmed
in figure 4.5(a), unfortunately nothing can be said about the relation between the time and the
deviation, because the data points are too widely spread. Fortunately the collapse velocity could
be measured more accurately. The behaviour of the collapse velocity of the sand for different
deviations can be seen in figure 4.5(b), this show a nice linear behaviour.
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Figure 4.5: Analysis of the data of the drop of the sand, with (a) the time it takes for the sand to drop
to a minimum and (b) the speed of the drop of the sand for different deviations

The pressure difference inside the container, that is to say, above and below the sand bed, was
also measured during the experiment. Five examples of these measurements can be seen in figure
4.6, each colour representing a different measurement. The five lines above the dotted line are
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the measurements below the sand. The pressure starts at zero and rises to a maximum, after
which it goes to zero again. The lines below the dotted line are the measurements above the sand,
these reach a minimum value very fast and subsequently slowly returns to zero pressure difference.
Inside the figure is a close-up of the first second of the experiment. This shows that the pressure
also vibrates for larger deviations, which is a result of the vibrations of the sand bed as a whole
(see figure 4.3(a)). The decay of the pressure, both below and above the sand, is governed Darcy’s
law and can be fitted with an exponential. The fits are displayed as red dashed lines.
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Figure 4.6: Pressure difference inside the container for different deviations of the ball, with the expo-
nential fit, error margins and close up. The lines above the dotted line (at ∆P = 0) are the pressure
measurements below the sand bed, those below the dotted line are the measurements above the sand.

Figure 4.6 also shows that the maximum absolute pressure difference is larger for larger deviations.
This is a result of a larger heigth of the drop of the sand, i.e. a larger volume increase above the
sand. These maximum pressure differences are plotted in figure 4.7(a) and show a linear relation
with the drop of the sand. The inverse decay constants 1/τ were also calculated and are shown in
figure 4.7(b), they do not fluctuate significantly.This was expected because the decay time τ does
not depend on the height of the drop of the sand dH, see equation (2.6).
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Figure 4.7: Analysis of the data of the pressure differences, with (a) the absolute maximum pressure
difference reached during the experiments and (b) the inverse decay time 1/τ as a function of the drop
dH, below and above the sand. Here the blue error boxes and the blue linear fit correspond to the upper
part of the setup, i.e. above the sand bed (p1), whereas the red ones pertain to the lower part of the
setup, below the sand bed and the porous plate.
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4.3 Lower pressures

In this part of the research the pressure inside the container, the ambient pressure P0, is varied
while the deviation of the ball is held at a constant distance of 29 cm. After the fluidization
procedure the air is slowly removed from the container, if this happens slowly enough the packing
fraction of the sand will not change and the conditions will remain the same. First the height of
the drop of the sand bed for different pressures is measured, the results of which can be seen in
figure 4.8. The height of the drop is smaller for smaller pressures and the change in the height of
the drop is much smaller compared to the maximum height of the drop when varying the deviation
of the ball.
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Figure 4.8: The maximum drop of the sand, dH, as a function of the ambient pressure, P0, inside the
container. The deviation of the impacting ball has been fixed to the constant value of 29 cm.

When taking a look at the collapse velocity of the sand in figure 4.9(b), it can be concluded that
the speed of collapse does not change significantly for lower pressures. Also the time the bed takes
to reacht the compact state is almost constant for different ambient pressures, as can be seen in
figure 4.9(a). Thus the collapsing process does not change significantly when the ambient pressure
is varied.
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Figure 4.9: Analysis of the data of the drop of the sand, with (a) the time the drop of the sand takes
and (b) the collapse velocity of the sand as a function of the ambient pressure P0.
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The pressure difference inside the container was also measured during these experiments, the
results of which are shown in figure 4.10. The lines above the dotted line at zero pressure difference
are the measurements below the sand, the lines below the dotted line are the measurements above
the sand. The vibrations of the container and the sand are again visible in the close up. However
in this experiment the vibrations are smaller when the pressure is lowered, probably because there
is less air available to vibrate. These measurements are very similar to the pressure measurement
in the previous section, but there is one difference which is easily spotted; the decay time τ of the
exponential is different.
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Figure 4.10: Pressure difference inside the container for different ambient pressures inside the container,
with the exponential fit, error margins and close up. The lines above the dotted line (at ∆P = 0) are the
pressure measurements below the sand, below the dotted line are the measurements above the sand.

That the decay time τ is different can be seen in figure 4.11(b), where it is observed that 1/τ is
larger at higher ambient pressures. This can be explained with equation (2.6), in which 1/τ is
found to be linear with the ambient pressure, which is confirmed in figure 4.11(b). The behaviour
of the maximum pressure difference is also different than in the previous section. Figure 4.11(a)
shows that the maximum pressure difference is an exponential function (a ∗ exp(b ∗ x) + c). If
the drop of the sand did not change for different pressures, the data would have shown a linear
dependence. But since the drop does change, this behaviour will be different. Also the maximum
pressure difference goes to zero for lower pressures, because the amount of air in the system will
also decrease.
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Figure 4.11: Analysis of the data of the pressure measurements, with (a) the absolute maximum pressure
difference reached during the experiments and (b) the inverse decay time 1τ as a function of the ambient
pressure P0, below and above the sand. Blue corresponds to the upper and red to the lower part of the
setup.
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4.4 Final result

Ideally the results of all the pressure measurements would collapse into two single pressure lines
(above and below the sand) when the data is non-dimensionalized. The pressure can be made
dimensionless by multiplying it with H/(P0dH), the time will be non-dimensionalized when mul-
tiplying it with κP0/H

2µ(1 − φ). The end result is shown in figure 4.12. The data does indeed
collapse quite nicely into two lines. The two lines contain the data of the two different experi-
ments. The orange lines are the pressures below the sand, the blue lines are the pressures above
the sand. The collapsed lines of the simulated data of the model are also included in this figure,
these are the purple dotted lines. The shape of these two lines looks very similar to the experi-
mental data, the only difference is the maximum pressure below the sand, which is much larger
than the experimental data.

0 2 4 6 8
−1

−0.5

0

0.5

1

t κP 0

H
2
µ(1−φ0)

∆
P

H
P

0
d
H

∆p 1
∆p 2

Figure 4.12: The non-dimensionalized pressure differences inside the container for different deviations
and different ambient pressures. The blue and the orange lines are the measured pressure differences
inside the container, the two purple lines are the pressure differences calculated by the model.
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Chapter 5

Discussion and conclusion

When a ball is impacted against the side of a container which contains loosely packed sand at
ambient pressure, the sand level will drop over a distance dH. This height of the drop will be
larger when the ball is released from a larger distance and will grow linearly with a larger release
distance. It is plausible that the height of the drop will reach a maximum, thus that the height
of the drop will stop growing beyond a certain threshold deviation. This maximum was however
not explored, because the container could not handle larger impacts of the ball. Also it would be
interesting to research the height of the drop of the sand for different initial packing fractions.

The collapse velocity of the sand shows a nice linear behaviour as a function of the deviation of
the ball, which is in correspondence with the linear behaviour of the height of the drop of the sand
bed for different deviations.

During these experiments the pressure difference above and below the sand was also measured.
This behaviour corresponds nicely with the pressure profile predicted by the model. The maximum
pressure difference also shows a nice linear behaviour for different drops, as expected from the
model. The inverse decay constant 1/τ shows no dependence on the drop of the sand, which
agrees with the theory; the equation for the decay constant does not depend on the magnitude of
the height drop.

After these experiments the ambient pressure inside the container was varied while the deviation
of the ball was held constant. It was expected that the height of the drop would be constant for
different pressures and that the height of the drop would depend primarily on the magnitude of
the shock against the container. But the data shows that the drop becomes somewhat smaller
for smaller ambient pressures, thus indicating that the height of the drop does depend on the
ambient pressure. However, it is still unclear why this happens. Further experiments are required
to understand this behaviour.

As in the previous experiments, the pressure difference above and below the sand was also mea-
sured. The decay constant is linear with the ambient pressure, which is expected from the theory,
which stated that the decay constant is inversely proportional with the ambient pressure.

But the most important result is the collapse of all the pressure difference data. The data for
all different deviations and all different ambient pressures collapses into a single line, when non-
dimenionsonliazed. The shape of this line corresponds to that of the line predicted by the model.
The final conclusion that the height of the drop of the sand bed is not only dependent on the force
of the impact, but also, surprisingly, dependent on the ambient pressure inside the container.
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Appendix A

Decay of the pressure difference

In this appendix the equation for the decay of the pressure difference will be derived, with the
use of Darcy’s law and the mass flow through the sand. A schematic of the setup used for the
calculations can be seen in figure A.1.

Sand, Ks

P1

V ,P2 2

Figure A.1: The setup used in the experiments. The bottom of the container is closed and there is a
pressure difference ∆P between P2 and P1. Below the sand is a volume V2 of air at a pressure P2 = P1+∆P
that slowly flows through the sand bed. The top of the container is left open, and P1 = P0 (1 bar).

The flow rate of the air was already calculated in chapter 2, the result is,

Q =
∆PAκpκs

µ(Hsκp +Hpκs)
. (A.1)

The mass flow of the air through the sand is equal to the density of the air ρ0 in kg/m3 (at
constant pressure and temperature) times the flow rate, with the flow rate from equation (A.1):

dm

dt
= ρ0Q =

ρ0∆PAκpκs
µ(Hsκp +Hpκs)

. (A.2)

The pressure below the setup is P2 = P1 + ∆P , the following equation is obtained by inserting
the pressure in the ideal gas law PV = nRT , with n = m/M :

(P1 + ∆P )V2 =
mRT0
M

, (A.3)

with n the number of moles gas, m the mass of the air (kg) and M the molar mass of the air
(kg/mol), T0 the temperature (K) and R the gas constant (J/K·mol).
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By differentiating equation (A.3) with respect to time, the pressure above the sand, P1, will
disappear from the equation because it is a constant. This will give the following equation,

d∆P

dt
V2 =

dm

dt

RT0
M

. (A.4)

Thus a second equation for the mass flow can be determined:

dm

dt
=
d∆P

dt

V2M

RT0
(A.5)

Setting these two equations, (A.2) and (A.5), equal will give the following equation:

dm

dt
=

ρ0∆PAκpκs
µ(Hsκp +Hpκs)

=
d∆P

dt

V2M

RT0
. (A.6)

Rewriting equation (A.6) will give the following differential equation:

d∆P

∆P
= − κpκs

(Hsκp +Hpκs)

ρ0ART0
µV2M

dt (A.7)

The solution of the differential equation is:

∆P = ∆P ∗e−t/τ , with
1

τ
=

κpκs
Hsκp +Hpκs

ρ0ART

µV2M
(A.8)

With ∆P ∗ the initial pressure difference and τ the decay time of the equation.
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