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1 Introduction

This report investigates the performance of Krylov subspace methods with respect to their ap-
plication to the time domain modeling of electromagnetic fields. In particular they are applied
to photonic crystals. The results are compared with those obtained by the finite difference time
domain method, or FDTD for short.
Photonic crystals are dielectric materials with permittivities that are periodic in space [13, pp.
2]. The word ’photonic’ indicates that the quantity of interest is the electromagnetic field inside
the material and the word ’crystal’ is used by analogy with solid state physics, which deals with
periodic arrangements of molecules. Solid state physics is concerned with the position of electrons
whereas photonics is concerned with the electromagnetic field. In fact much of the formalism of
solid state physics can be applied to photonic crystals [13, pp. 4].
Photonic crystals are usually periodic in up to three dimensions and uniform in the nonperiodic
ones [13, pp. 5] and can be divided into three groups depending on the number of periodic dimen-
sions: one, two and three dimensional crystals. Their characteristic property is that they support
the propagation of electromagnetic waves but suppress waves with frequencies inside a certain
range, referred to as the photonic band gap [13, pp. 2], a property that is exploited in many
applications. An example is the Bragg mirror, a one-dimensional photonic crystal which consists
of slabs of materials with alternating dielectric constants and perfectly reflects any incident wave
with a frequency in the band gap [13, pp. 44]. Introducing defects into the structure that break
up the periodicity opens op many more applications [13, pp. 5].
The locations of the band gaps in the frequency spectrum and other properties of a photonic
crystal are dependent on its structure, see for example [13, pp. 46]. Because Maxwell’s equations
are exact on macroscopic scales and the parameters of the dielectric materials are well known it is
possible given a photonic crystal to model these properties prior to actual design and manufacture.
Therefore predictions from first principles can provide a valuable addition to physical experiments
[13, pp. 252]. However the complicated structures of photonic crystals make it impossible to solve
Maxwell’s equations analytically. As a consequence, numerical techniques are used to find the
band gaps, field patterns, transmission spectra and other properties of a given photonic crystal.
A distinction can be made between frequency domain methods and time domain methods. For
frequency domain methods the reader is referred to appendix D of [13]. This report is concerned
with time-domain techniques. These are flexible because, unlike frequency domain methods, they
do not assume that the time-dependence of the electromagnetic fields is harmonic [13, pp. 259].
This means that they can be used to determine the transmission coefficients for incident electro-
magnetic waves with many different frequencies in a single simulation run. This can be done by
simulating a photonic crystal with a pulse as a source and taking Fourier transforms [13, pp. 259]
Time domain methods are also suitable for problems in which dispersion occurs [13, pp. 259].
Many numerical techniques for Maxwell’s equations are based on the discretization of the spatial
domain into a grid [13, pp. 259]. The structure of this grid should be suitable for the discretization
of the spatial derivatives in Maxwell’s equations [2, pp. 2]. In this report the successful Yee grid
is used [20]. When Maxwell’s equations are approximated in terms of the values at the grid points
the result is a system of ordinary differential equations which must be solved in time [2, pp. 3].
Usually this is done by also discretizing the time axis and using a time stepping algorithm in which
the electric and magnetic fields are updated alternatingly. This is called the FDTD algorithm.
Simulations of photonic crystal often need to be highly accurate. It turns out that the error intro-
duced by the second order accurate spatial discretization is much higher than the error introduced
by the second order time discretization. Higher order methods for space discretization do exist
but are hard to implement [18, pp. 80]. Instead usually a very small spatial step size ∆x is chosen.
However the Courant–Friedrichs–Lewy condition implies that the time step size ∆t must then be
very small too [18, pp. 128] to ensure numerical stability. This is unnecessary for accuracy because
the error introduced by the time discretization is small anyway. However it does make simulations
of long time intervals [0, T ] very demanding in terms of simulation time on a computer. Therefore
there is a need for fast and accurate time integration methods. This report contributes to this
goal.
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An alternative is to use exponential time integration schemes [2], [12]. These are methods that
make use of the matrix exponential and that are unconditionally stable [2], [12]. This means that
the time step size is free from the CFL restriction. In addition, the error introduced by the time
discretization can be often controlled independently from the space discretization. These schemes
involve a so-called matrix exponential. This is a matrix function that can be defined and computed
in different ways. One way is the power series

eA =

∞∑
k=0

Ak

k!
.

Another classical definition is that, for any sufficiently smooth function f(x) and a matrix A,
f(A) is a polynomial in A such that it interpolates f(x) and possibly some of its derivatives
on the spectrum of A (see [6], [10] for exact definitions). The matrix exponential is extremely
useful in Applied Mathematics and used in applications ranging from electomagnetic modeling
to network analysis and public safety [5], [9]. Accordingly, there are many ways to compute
the matrix exponential [15]. A naive approach would be to diagonalize A by computing all its
eigenvalues and eigenvectors. Unfortunately this is unfeasible for the matrices of large size. An
important observation is that we actually do not need the matrix exponential as such but rather
its product with a given vector, i.e. its actions. Therefore Krylov subspace methods are used.
These are numerical linear algebra algorithms that are based on Gram-Schmidt orthonormalization
and project the matrix exponential series into the Krylov subspace. Modifications to the Krylov
subspace methods that will be explored in this report are the Arnoldi and shift-and-invert (SAI)
Arnoldi methods equipped with residual based stopping criteria.
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2 Maxwell’s equations

In this section the macroscopic Maxwell equations are introduced. The Maxwell equations describe
the interaction between the electric and magnetic fields. At the length scales of photonic crystals
the macroscopic Maxwell equations are practically exact [13, pp. 252].
Furthermore it will be seen that two-dimensional electromagnetic fields can be decomposed into
two sets of components that are described by two uncoupled sets of equations, the TEz mode
and the TMz mode. An advantage is that these are easily visualized. For three-dimensional
electromagnetic fields such a decomposition is not possible. However, many interesting phenomena
can be demonstrated for two-dimensional photonic crystals. Therefore we shall only consider
electromagnetic fields in the TMz mode.

2.1 Vector description of Maxwell’s equations

We start off with the macroscopic Maxwell equations in three dimensions and with source currents

∇ ·B(r, t) = 0,
∂B(r, t)

∂t
= −∇×E(r, t)−M′(r, t),

∇ ·D(r, t) = ρ,
∂D(r, t)

∂t
= ∇×H(r, t)− J′(r, t).

Here r is a vector that denotes the position and t denotes the time. J′ is the electric current density
and M′ is the nonphysical magnetic current density. E and H are the electric and the magnetic
field respectively and B and D are the magetic induction field and the electric displacement
current.
We adopt the constitutive relationships (relationships between the electromagnetic fields and the
material parameters) that are described in [13, pp. 6–8]. These are appropiate for the test
configurations that we will use to test numerical methods. The assumptions made there are
summarized in the following constitutive relationship

D(r, t) = ε0εr(r)E(r, t)

where εr is the relative electric permittivity and ε0 is the vacuum permittivity. The permittivity
is the quantity that is periodically variable throughout the photonic crystal. Therefore it depends
on position. The magnetic induction and magnetic field are related by

B(r, t) = µ0µr(r)H(r, t)

One of the assumptions on which these constitutive equations are based is that the materials are
isotropic: the permittivity and permeability do not depend on the direction of the applied fields.
In section (8) the anisotropic layer formulation of a perfectly matched layer will be described in
which tensors appear in these equations. Most dielectric materials that are used to construct
photonic crystals have a permeability that is approximately equal to the the vacuum permeability
µ0. Therefore in all simulations in this report µr will be set to one

µr = 1.

The electric current density consists of two components. We will allow for electric losses of the
form σ(r)E(r, t) and an independent source term given by J.

J′(r, t) = σ(r)E(r, t) + J(r, t).

Similarly we include magnetic losses σm(r)H(r, t) and an independent source term M

M′(r, t) = σm(r)H(r, t) + M(r, t)
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Magnetic losses are not physical but they are necessary for implementing a perfectly matched
layer and for the verification of the numerical methods. If we enter these terms into Maxwell’s
equations we obtain

∇ · µ0µr(r)H(r, t) = 0, µ0µr(r)
∂H(r, t)

∂t
= −∇×E(r, t)−M(r, t)− σm(r)H(r, t),

∇ · εr(r)E(r, t) =
ρ

ε0
, ε0εr(r)

∂E(r, t)

∂t
= ∇×H(r, t)− J(r, t)− σ(r)E(r, t). (1)

2.2 Maxwell’s equations in scalar form

Since our electric and magnetic fields are three dimensional vector fields we can decompose the
fields at each point in space and time into three components along the axes of the Cartesian
coordinate system. By doing so we obtain Maxwell’s equations in scalar form.
Writing out the curl of the electric field in (1) yields

∇×E =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣∣∣ = (
∂Ez
∂y
− ∂Ey

∂z
)x̂− (

∂Ez
∂x
− ∂Ex

∂z
)ŷ + (

∂Ey
∂x
− ∂Ex

∂y
)ẑ.

This results in the scalar equations

∂Hx

∂t
=

1

µ0µr
(
∂Ey
∂z
− ∂Ez

∂y
−Mx − σmHx),

∂Hy

∂t
=

1

µ0µr
(
∂Ez
∂x
− ∂Ex

∂z
−My − σmHy),

∂Hz

∂t
=

1

µ0µr
(
∂Ex
∂y
− ∂Ey

∂x
−Mz − σmHz).

Here all these values are defined for each point in space given by r and for each time t.
Writing out the curl of the magnetic field strength on the right-hand side of equation (1) gives

∇×H =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣∣∣ = (
∂Hz

∂y
− ∂Hy

∂z
)x̂− (

∂Hz

∂x
− ∂Hx

∂z
)ŷ + (

∂Hy

∂x
− ∂Hx

∂y
)ẑ.

This results in:

∂Ex
∂t

=
1

ε0εr
(
∂Hz

∂y
− ∂Hy

∂z
− Jx − σEx),

∂Ey
∂t

=
1

ε0εr
(
∂Hx

∂z
− ∂Hz

∂x
− Jy − σEy),

∂Ez
∂t

=
1

ε0εr
(
∂Hy

∂x
− ∂Hx

∂y
− Jz − σEz).

The remaining two equations are Gauss’s law for the electric fields and the magnetic fields

∇ · εr(r)E =
ρf
ε0
,

∇ · µr(r)H = 0.

In the spatial discretization using a Yee grid it turns out [18, pp. 78] that these two equations are
automatically satisfied if ρf = 0, which is the case for photonic crystals, see section (4).
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2.3 TMz mode

It is difficult to solve six equations simultaneously. However, if we assume that the EM fields are
homogeneous along the z-axis, in other words if we only consider the vector fields in the xy-plane,
then we can reduce the number of equations to be solved. This assumption renders all partial
derivatives in the z- direction zero and as a result the scalar equations can be decomposed into
two triplets of field components that only interact internally: (Hx, Hy, Ez) and (Ex, Ey, Hz).
We can split all sources and initial condition into two parts, calculate their separate solutions and
subsequently superimpose both solutions to obtain the solution for all components.
Following Schneider [17] these two are called the transverse magnetic (TMz) mode and the trans-
verse electric (TEz) mode. The former indicates that the magnetic field is perpendicular to the z
axis, with unknowns Hx, Hy and Ez and the latter indicates that the electric field is perpendicular
to the z-axis thus with unknowns Ex, Ey and Hz.
For simplicity we will only work with the TMz mode in this report, to reduce the number of
equations. However, a model for the TEz mode can easily be deduced in an analogous fashion.
To summarize, the components of the TMz mode are given by:

• Ez which varies only in the x-direction and y-direction.

• Hx and Hy which also only vary in the x-direction and y-direction.

For the Maxwell equations this yields:

∂Hx

∂t
(x, y, t) =

1

µ0µr(x, y)
(−∂Ez

∂y
(x, y, t)−Mx(x, y, t)− σm(x, y)Hx(x, y, t)),

∂Hy

∂t
(x, y, t) =

1

µ0µr(x, y)
(
∂Ez
∂x

(x, y, t)−My(x, y, t))− σm(x, y)Hy(x, y, t)),

and

∂Ez
∂t

(x, y, t) =
1

ε0εr(x, y)
(
∂Hy

∂x
(x, y, t)− ∂Hx

∂y
(x, y, t)− Jz(x, y, t)− σ(x, y)Ez(x, y, t)).
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3 Maxwell’s equations for the TMz mode in dimensionless
form

In the previous section we have discussed Maxwell’s equations with their real physical units, with
given constants µ0 (4π × 10−7 V s

Am ) and ε0 (8.854 × 10−12 F
m ) in SI units. Since the orders of

magnitude of both the electric and magnetic fields are very small and differ significantly from each
other there could be inaccuracies during computations. Therefore we use a transformation which
scales the electric and magnetic field in such a way that the difference in magnitude is eliminated
and all variables are rendered dimensionless.
For now we will denote all variables in Maxwell’s equations with SI units with a subscript ’s’ and
the resulting dimensionless variables without a subscript. We start again with Maxwell’s equations
for the TMz mode in SI units:

∂Hxs

∂ts
(xs, ys, ts) =

1

µ0µrs(xs, ys)
[−∂Ezs

∂ys
(xs, ys, ts)−Mxs(xs, ys, ts)− σms(xs, ys)Hxs(xs, ys, ts)],

∂Hys

∂ts
(xs, ys, ts) =

1

µ0µrs(xs, ys)
[
∂Ezs
∂xs

(xs, ys, ts)−Mys(xs, ys, ts)− σms(xs, ys)Hys(xs, ys, ts)],

and

∂Ezs
∂ts

(xs, ys, ts) =
1

ε0εr(xs, ys)
[
∂Hys

∂xs
(xs, ys, ts)−

∂Hxs

∂ys
(xs, ys, ts)− Jz(xs, ys, ts) −σs(xs, ys)Ezs(xs, ys, ts)].

Next we introduce two scalar parameters: the typical length L in meters and the typical magnetic
strength H0 in A

m . These parameters act as normal units to which the rest of the variables are
scaled. They can be chosen freely but should be defined in a way which reflects the size of the
grid and the magnitude of the magnetic field. Sensible choices would be the length of one side of
the domain and the maximal value of the magnetic field that is reached during a simulation for
H0, if this quantity can be estimated.

We also use Z0, the impedance of vacuum, given by
√

µ0

ε0
and c0, the speed of light in vacuum,

given by 1√
µ0ε0

.

We transform our variabes with the following transformation as defined above

x =
1

L
xs, y =

1

L
ys, t =

c0
L
ts,

σ(x, y) = σs(xs, ys)Z0L, σm(x, y) = σms(xs, ys)Z0L, µr(x, y) = µrs(xs, ys), εr(x, y) = εrs(xs, ys)

Ez(x, y, t) =
1

H0Z0
Ezs(xs, ys, ts) Hx(x, y, t) =

1

H0
Hxs(xs, ys, ts)

Hy(x, y, t) =
1

H0
Hys(xs, ys, ts) J(x, y, t) =

L

H0
Jzs(xs, ys, ts)

Mx(x, y, t) =
L

H0Z0
Mxs(xs, ys, ts) My(x, y, t) =

L

H0Z0
Mys(xs, ys, ts)

Now we will rewrite the maxwell equations using these transformations. For readability we
introduce notations us = (xs, ys, ts) and u = (x, y, t) as well as rs = (xs, ys) and r = (x, y)

µ0µrs(rs)
∂Hxs

∂ts
(us) = −∂Ezs

∂ys
(us)−Mxs(us)− σms(rs)Hxs(us),

µ0µr(r)H0
∂t

∂ts

∂Hx

∂t
(u) = −H0Z0

∂y

∂ys

∂Ez
∂y

(u)− H0Z0

L
Mx(u)− H0Z0

L
σm(r)Hx(u),

and finally, using µ0c0 = Z0, we obtain

∂Hx

∂t
(x, y, t) =

1

µr(x, y)
[−∂Ez

∂y
(x, y, t)−Mx(x, y, t)− σm(x, y)Hx(x, y, t)]
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In the same manner we can derive that

∂Hy

∂t
(x, y, t) =

1

µr(x, y)
[
∂Ez
∂x

(x, y, t)−My(x, y, t)− σm(x, y)Hy(x, y, t)]

For the time derivative of Ez we get

ε0εrs(rs)
∂Ezs
∂ts

(us) =
∂Hys

∂xs
(us)−

∂Hxs

∂ys
(us)− J(us)− σs(rs)Ezs(us)

ε0εr(r)H0Z0
∂t

∂ts

∂Ez
∂t

(u) = H0
∂x

∂xs

∂Hy

∂x
(u)−H0

∂y

∂ys

∂Hx

∂y
(u)− H0

L
J(u)−H0Z0σs(rs)Ez(u)

Using that ε0c0 = 1
Z0

we get

∂Ez
∂t

(x, y, t) =
1

εr(x, y)
[
∂Hy

∂x
(x, y, t)− ∂Hx

∂y
(x, y, t)− J(x, y, t)− σ(x, y)Ez(x, y, t)].

For the Courant number which sets a relation between the step size in time and space of a grid
and is defined as Sc = c0∆ts

∆xs
we get

Sc = c0
∆ts
∆xs

=
Lc0
Lc0

∆t

∆x
=

∆t

∆x

Furthermore for a frequency ωs in SI units we get the following

ωs =
2π

Ts
=

2πc0
TL

=
c0
L
ω (4)
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4 Test configurations

In this section two photonic crystal configurations are presented that will be used to test numerical
methods in section (10).
As stated in section (1) photonic crystals are dielectric materials with permittivities that are peri-
odic in space [13, pp. 2]. They are often periodic in up to three dimensions and uniform in the non
periodic ones [13, pp. 5]. The configurations are required to be two-dimensional because we want
to test numerical methods by simulating electromagnetic fields in TMz mode. Photonic crystals
can consist of materials with many different permittivities and can even have continuously varying
permittivities. However, many interesting phenomena can already be demonstrated for photonic
crystals that are built from two dielectric materials.
One way to construct a two-dimensional photonic crystal out of two dielectric materials is to take
one of these materials and place cylindrical slabs of the other dielectric into it. We will call such a
dielectric cylinder a rod. Since photonic crystals are periodic, the arrangement of rods must also
be periodic. In other words, the rods must form a lattice. There are various ways to construct
two-dimensional crystal, see for example [13, pp. 72].
There is a wide range of interesting lattices. The prototypical example of a photonic crystal is a
square lattice of dielectric rods in a vacuum [13, pp. 68], but for example triangular lattices are
also widely used.
Recall from section (1) that photonic crystals have band gaps, frequency ranges for which electro-
magnetic waves cannot propagate through the photonic crystal. For frequencies outside the band
gap, electromagnetic waves propagate unhindered through the crystal and do not lose cohesion
due to scattering from the constituent structures of the photonic crystal [13, pp. 2].
Photonic crystals can also have defects, irregularities within the structure of the crystal, that
largely leave the periodicity intact but locally break it. This means that any mathematical meth-
ods that are based on periodicity are not strictly speaking applicable but usually the conclusions
based on these methods are still valid, see for example [13, pp. 58]. We will encounter point defects
and line defects in the remainder of this section as well as use them for as test cases. Examples
of point defects are a single dielectric rod that is reduced in size, has a different permittivity or is
absent altogether [13, pp. 87]. Line defects usually consist of a row or a column of rods that is
missing or altered in some way [13, pp. 88]. As we will see, line defects can be used to guide light.
There are generally no charges or currents present in a photonic crystal [13, pp. 2]. Therefore
the electromagnetic fields inside a photonic crystal are not generated by the crystal itself, that
is, photonic crystals do not radiate. The electromagnetic fields inside a photonic crystal usually
come from outside the photonic crystal. In most cases we will consider an electromagnetic wave
with one specified frequency. However sometimes a pulse that is comprised of a wide range of
frequencies is used.
We have chosen two simple settings, one with a point defect and one with a line defect, to test
our simulations.
The first is a square lattice of dielectric rods, which in its center has a point defect, in the form of
one column with a lower permittivity. The simulation will be initiated in a small circle in the point
defect, using a sine wave with a frequency inside of the crystal’s band gap. For longer simulations
we expect to see patterns as described in [13, pp. 81]. A simple illustration of this setting can be
seen in 1 a.
Next we will model a different square lattice of rods, containing a line defect. This will be achieved
by removing the middle row of the grid, as illustrated in 1 b. The system will again be initiated
in a small circle, this time in the middle of the line defect and again by using a sine wave from
within the band gap. Since the wave will be unable to propagate through the lattice it will be
channeled through the line defect.
The combination of multiple line defects can lead to more complex channels named waveguides
and allow for control of the direction of the flow of light.

We will also consider two other settings which will not be used for numerical testing, but which
do present interesting physical properties of photonic crystals.
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a b

vacuum

dielectric material

source location

Figure 1: The two test cases

One is the waveguide bend in a square lattice as depicted in Figure 2a. This scenario consists of
two line defects which intersect at a right angle to form a bend. A wave with a frequency inside
the band gap will be channeled through the bend, showing that the mechanism of a waveguide is
quite robust. There are also other ways to build a waveguide, such as using metallic walls [8, pp.
405] or guiding light through a dielectric fiber using the mechanism of total internal reflection [13,
pp. 87]. Interestingly, using photonic crystal waveguides, light can be guided through a region
that mostly consists of air [13, pp. 87]. An advantage of using a photonic crystal instead of a
conventional waveguide is that bends can be easily implemented [13][pp. 87].
The other setting is a line defect inside of a triangular lattice as shown in Figure 2b. You could
see the photonic crystal as having a surface, however, unlike the prototypical example of dielectric
rods in air discussed above, the roles of dielectric and air have been interchanged. The photonic
crystal now consists of air holes drilled into a dielectric. The advantage of a triangular lattice is
that it has a band gap for any plane wave since the band gaps for electromagnetic waves in the
TMz mode and TEz mode overlap. We will not be able to demonstrate this since we will only
implement the Maxwell equations for the TMz mode.

a b

Figure 2: The extra settings test cases
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Figure 3: the TMz Yee grid. The indices (m,n) are shown, not the spatial coordinates (m∆x, n∆y).

5 Discretization

5.1 Grid

In this section the TMz Yee grid, introduced in [20], is described.
Let (0, lx) × (0, ly) ⊂ R2 be the domain that is to be discretized. Set the number of grid points
Nx and Ny along the x-axis and y-axis. The spatial step sizes ∆x and ∆y are given by

∆x :=
lx

Nx + 1
∆y :=

ly
Ny + 1

.

An Ez node is a grid point at which a numerical approximation of the Ez component is defined.
The TMz Yee grid consists of the following sets of Ez,Hx and Hy nodes

GEz
:= {(m∆x, n∆y) : m ∈ {1, . . . , Nx}, n ∈ {1, . . . , Ny}},

GHx
:= {(m∆x, (n− 1

2
)∆y) : m ∈ {1, . . . , Nx}, n ∈ {1, . . . , Ny + 1}},

GHy
:= {((m− 1

2
)∆x, n∆y) : m ∈ {1, . . . , Nx + 1}, n ∈ {1, . . . , Ny}},

see figure 3. Note the spatial staggering of the nodes.
Although Ez, Hx and Hy are only approximated on GEz , GHx and GHy respectively, the spatially
discretized Maxwell equations introduced in the next section contain approximations of spatial
derivatives of Ez on GHx

and GHy
and spatial derivatives of Hx and Hy on GEz

. However these
approximations are expressed in terms of the numerical Ez, Hx and Hy fields at the corresponding
nodes.
Note that no nodes on the boundary have been included in this definition. The corresponding
fields are set to zero in the spatially discretized Maxwell equations.
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5.2 Space discretization of Maxwell’s equations

In this section Faraday’s equation for the Hx component is spatially discretized. Spatial discretiza-
tions of the other dimensionless Maxwell equation with the constitutive relationships from section
(2) can be found in the appendix. Faraday’s equation for the Hx component is given by

µr(x, y)
∂Hx(x, y, t)

∂t
= −∂Ez(x, y, t)

∂y
− (Mx(x, y, t) + σm(x, y)Hx(x, y, t)),

Central difference approximations to the derivative ∂Ez

∂y yield the following ODE’s

µr(m∆x, (n− 1

2
)∆y)

∂Hx

∂t
(m∆x, (n− 1

2
)∆y, t) = −Ez(m∆x, n∆y, t)− Ez(m∆x, (n− 1)∆y, t)

∆y

− (Mx(m∆x, (n− 1

2
)∆y, t)

+ σm(m∆x, n∆y)Hx(m∆x, n∆y, t)).

As mentioned in section (5.1) any terms that refer to nodes on the boundary are set to zero.

5.3 Matrix formulation of the space-discretized Maxwell equations

Definition of vectors

The spatially discretized Maxwell equations constitute a system of ODE’s that can be written in
matrix form. To this end the Hx components on GHx , Hy components on GHy and Ez components
on GEz

are collected in vectors hx(t), hy(t) and ez(t) respectively which are put into a vector

y(t) :=


hx(t)

hy(t)

ez(t)


The nodes are distributed over a two-dimensional domain. However the numerical field components
associated with the nodes are put into vectors that have only a single index. Clearly we need
to define some way of assigning indices to nodes in a two-dimensional grid. We give the node
corresponding to some particular field component with the smallest x-coordinate and y-coordinate1

the index 1 and count in the y-direction. After exhausting a column of nodes we continue with the
next value of x, count in the y-direction and so on. Therefore Hx node (m∆x, (n− 1

2 )∆y) ∈ GHx ,
Hy node ((m− 1

2 )∆x, n∆y) ∈ GHy
and Ez node (m∆x, n∆y) ∈ GEz

have indices

i := (m− 1)(Ny + 1) + n,

j := (m− 1)Ny + n,

k := (m− 1)Ny + n,

in hx(t), hy(t) and ez(t) respectively. These indices are shown next to the nodes in figure 3. The
number of Hx, Hy and Ez nodes is given by

nhx := Nx(Ny + 1),

nhy := (Nx + 1)Ny,

nez := NxNy,

respectively. Note that the definition symbol is used because this is a definition of these variables.
The number of nodes is determined by the definition of the Yee grid. So Hx node (m∆x, (n −
1
2 )∆y) ∈ GHx

, Hy node ((m− 1
2 )∆x, n∆y) ∈ GHy

and Ez node (m∆x, n∆y) ∈ GEz
have indices

i, nhx
+ j and nhx

+ nhy
+ k in the vector y(t) respectively.

1Obviously this node exists in a TMz Yee grid.
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System of ordinary differential equations

In the appendix it is shown that the spatially discretized Maxwell equations can be written in the
following form

d
dthx(t)

d
dthy(t)

d
dtez(t)

 =


Pµr,x 0 0

0 Pµr,y 0

0 0 Pεr


−1


−Σx 0 K

0 −Σy L

−Kᵀ −Lᵀ −Σz




hx(t)

hy(t)

ez(t)

−


Mx (t)

My (t)

J (t)




(5)
It is easy to see that this is a system of the form y′ = Ay + b. Here Mx(t), My(t) and J(t) are
vectors that contain the values of the magnetic and electric (free) source currents at the nodes
in GHx , GHy and GEz respectively. Pµr,x, Pµr,y and Pεr are diagonal matrices with the relative
pemeabilities at the Hx and Hy nodes and the relative permittivities at the Ez nodes as diagonal
elements. Σx, Σy and Σz are diagonal matrices with the dimensionless (magnetic) conductivities
at the diagonal elements. K and L can be described using the Kronecker product

K = −(∆y)−1(INx
⊗ANy

) L = (∆x)−1(ANx
⊗ INy

).

The (n+ 1)× n matrix An that appears in this system is given by

An =



1 0 · · · 0 0

−1 1 0 0

0 −1
. . .

...

...
. . . 1 0

0 0 −1 1

0 0 · · · 0 −1


.
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6 FDTD

In this section the FDTD method, introduced by [20], is described. Both the FDTD method and
the Krylov subspace methods discretize the spatial derivatives of the electric and magnetic fields
using the staggered Yee grid as described in section (5). What sets the two methods apart is
that the FDTD method also discretizes the time whereas Krylov solves the system of spatially
discretized Maxwell equations using matrix exponentials.
From Maxwell’s equations we know that the rate of change of the electric field depends on the
spatial derivatives of magnetic field and that the rate of change of the magnetic field depends on
the spatial derivatives of the electric field.
The FDTD method incorporates this interaction by using a leapfrog scheme, which means that the
discretized magnetic components and the electric components are defined on alternating points in
time. More specifically the electric field is defined on Te := {ti : ti = t0 + i∆t, i ∈ N} and the
magnetic field on Th := {ti−0.5 : ti−0.5 = t0 + (i − 0.5)∆t, i ∈ N}, provided the initial conditions
are given for time t0.
This entails that the value of the magnetic field at time ti+0.5 is obtained by linear extrapolation
using the value of ti−0.5 and its derivative at time ti which is related to the electric field at that
time by Faraday’s equation. If we implement this time discretization for the dimensionless Maxwell
equations we obtain

Hx(m∆x, n∆y, ti+0.5) = Hx(m∆x, n∆y, ti−0.5) +
∆t

µr(m∆x, n∆y)
[− 1

∆y
(Ez((m+ 0.5)∆x, n∆y, ti)

− Ez((m− 0.5)∆x, n∆y, ti))−Mx(m∆x, n∆y, ti)− σm(m∆x, n∆y)Hx(m∆x, n∆y, ti)]

The only problem is that Hx is not defined at time ti in the FDTD scheme but its value is
required in the conductivity term. Therefore we use linear extrapolation to approximate this
value: Hx(m∆x, n∆y, ti) ≈ (Hx(m∆x, n∆y, ti+0.5) + Hx(m∆x, n∆y, ti−0.5))/2. This results in
the explicit equation

Hx(m∆x, n∆y, ti+0.5) =
2µr(m∆x, n∆y) + σm(m∆x, n∆y)∆t

2µr(m∆x, n∆y)− σm(m∆x, n∆y)∆t
Hx(m∆x, n∆y, ti−0.5)

+
2∆t

µr(m∆x, n∆y)
2µr(m∆x, n∆y)− σm(m∆x, n∆y)∆t

[−Ez((m+ 0.5)∆x, n∆y, ti)− Ez((m− 0.5)∆x, n∆y, ti)

∆y
−Mx(m∆x, n∆y, ti)]

Conventionally the FDTD method is implemented by looping over all the nodes of the Yee-grid
and updating them in the way listed above [18], [17]. However we have implemented FDTD using
the matrix equations from the previous chapter.
As a result we obtain

hx(ti+0.5) = (2Pµr +∆tΣx)−1(2Pµr −∆tΣx)hx(ti−0.5)+2∆t(2Pµr +∆tΣx)−1[Kez(ti)−Mx(ti)]

hx(ti+0.5) = (2Pµr
+ ∆tΣy)−1(2Pµr

−∆tΣy)hx(ti−0.5) + 2∆t(2Pµr
+ ∆tΣy)−1[Lez(ti)−My(ti)]

ez(ti+1) = (2Pεr+∆tΣz)
−1(2Pεr−∆tΣz)ez(ti)+2∆t(2Pεr+∆tΣz)

−1[−Kᵀhx(ti+0.5)−Lᵀhy(ti+0.5)−J(ti+0.5)]

6.1 Stability of the update equations

The update equations must be numerically stable. Roughly stability means that approximation
errors are not magnified as the simulation runs. An numerically unstable algorithm tends to quickly
diverge to infinite values. A necessary condition for the stability of a time discretization scheme
is the Courant-Friedrichs-Lewy conditions [4], [18, pp. 128]. Roughly it assumes that during one
time step of the simulation the EM fields of the analytical solution cannot propagate any further
than the spatial step of the simulation. It is easy to see that it should be necessary that any part of
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the initial conditions that influence a particular point in space and time in the analytical solution
should also be able to propagate to this point in the numerical grid in the requisite number of time
steps. Note that the Courant-Friedrichs-Lewy condition is only a necessary condition for stability
and not a sufficient one. Also it is allowed that the fields propagate much faster in the numerical
grid than in the physical domain.2 Symbolically the Courant-Friedrichs-Lewy condition states for
a grid where ∆x = ∆y that

∆t

∆x
=

1√
2

where all quantities are dimensionless.

2Of course this will add to the error term. However in the update equation a division is performed with respect
to the spatial step size. Any terms that have propagated too fast in the grid have also propagated over large
distances so their size will usually be small.
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7 Krylov subspace methods for exponential time integra-
tion

In this section we will introduce several Krylov subspace methods that can be used for exponential
time integration. The Krylov subspace is a vector space which is defined for an n by n matrix A
and an n-dimensional vector v as follows:

Km(A,v) := {v,Av,A2v, . . . ,Am−1v} (7)

In this section we will show some methods that use the Krylov subspace to approximate the action
of a matrix function of A on v. In the case that the matrix function is the exponent of A it can
be used to solve system of equations of the form

dy

dt
= Ay, y(0) = v, (8)

where y : R→ Rn is a vector function. The analytical solution of this equation is

y(t) = eAtv.

The methods introduced will approximate the solution y(t) with an accuracy based on the residual
of the solution. So they do not discretize in time but give an approximation of the exact solution
of (8).
First the Arnoldi algorithm will be introduced which is the main algorithm which will be used in
all methods. After that, methods for solving (8) will be described but also for similar equations
with constant and time dependent source currrents.

7.1 The Arnoldi method

The Arnoldi method as described in [16] is an algorithm that uses the Gram-Schmidt procedure
to construct an orthonormal basis for the Krylov subspace (7). The algorithm constructs a matrix
Vm whose columns are the orthonormal basis vectors of (7). It also constructs a matrix Hm+1,m

that relates A and Vm in the following way:

AVm = Vm+1Hm+1,m (9)

Here Vm is an orthonormal basis for the Krylov subspace of order m, Hm+1,m is upper-Hessenberg
which means that if i > j + 1 the value of hi,j = 0. So Hm+1,m has one diagonal below the main
diagonal and below that all the values are zero. Note that this equation does not describe a
recursive algorithm.
The Arnoldi algorithm that constructs these matrices is depicted in pseudo code below in (10).

(1) β = ‖v‖2
(2) v1 = v

β

(3) for j = 1, 2 . . .m do
(4) w = Avj
(5) for i = 1, 2 . . . j do
(6) hi,j = w · vi
(7) w = w − hi,jvi
(8) end for
(9) hj+1,j = ‖w‖2
(10) if hj+1,j = 0 stop
(11) vj+1 = w

hj+1,j

(12) end for

(10)
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After studying the algorithm you will notice that the matrix Hm+1,m is constructed in such a
way that the following formula will hold.

Avi =

i+1∑
j=1

hj,ivj

The new vector Avi will be a linear combination of the first i orthonormal vectors out of the basis
for Ki(A,v) with an additional vector vi+1 which is orthonormal to the preceding i vectors.
Let hi be column i of Hm+1,m, then this equation can be written in the following form.

Avi = Vm+1hi

In hi now only the first i + 1 entries can have a nonzero value so Hm+1,m is indeed upper-
Hessenberg. This equation can now be generalized even further to get equation (9) as follows.

AVm = A[v1v2 . . .vm] = Vm+1[h1h2 . . .hm] = Vm+1Hm+1,m

The matrix Hm+1,m has only zero values on row m+1 except for hm+1,m, this term is the norm of
Avm after orthogonalizing it with respect to the first m columns of Vm. The expectation is that
this term will approach zero for increasing m. This is because the columns of Vm are a basis for
Km(A,v) and the factor Amv will converge to a certain eigenvector of A with a big eigenvalue.
This can be seen as follows, let v be a linear combination of eigenvectors of A

v =

k∑
i=1

αiyi,

where yi are eigenvectors with corresponding eigenvalues γi, and αi are constants. Then we get
the following representation for Amv

Amv =

k∑
i=1

αiA
myi =

k∑
i=1

αiγ
m
i yi

So the eigenvector with the largest eigenvalue will become dominant and Amv will converge to this
eigenvector. The part of Amv that is orthogonal with respect to the last m vectors of Km+1(A,v)
is therefore expected to approach zero.
Because hm+1,m is the only nonzero value of row m + 1 of Hm+1,m formula (9) can easily be
written into the following form.

AVm = VmHm,m + hm+1,mvm+1e
T
m (11)

Here Hm,m is Hm+1,m without row m+ 1.
Under the assumption that hm+1,m will converge to zero the following equation will hold for large
m.

AVm ≈ VmHm,m (12)

If m is large enough, i.e. hm+1,m is small, this equation says that A times a vector out of the
Krylov subspace will approximately be a vector out of the Krylov subspace again. When the
algorithm breaks because hm+1,m = 0 this equation is exact and Vm is also base for Krylov
subspaces of higher order than m.
We will now extend this concept to functions of matrices which are defined as follows, this definition
can be found in [10]. Let [λ1, λ2, . . . , λq] be the eigenvalues of A let pi be the multiplicity of λi
and let f(x) be a given function. Then a function f(A) can be defined as a polynomial for which
f and its derivatives f (1), f (2) . . . f (pi−1) exist for each λi.
So if A times a vector out of the Krylov subspace is approximately again a Krylov subspace vector
then this concept will hold for f(A), which is a polynomial of A, too.

f(A)Vm ≈ Vmf(Hm,m)
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This can be seen simply if f(A) = A2 as follows using (12):

A2Vm ≈ AVmHm,m ≈ VmH2
m,m.

The matrix exponent is defined as a power series in A so eA is a polynomial and we have that:

eAVm ≈ Vme
Hm,m . (13)

Some theorems about the error of this estimation are given in [11]. It turns out that this approx-
imation is quite accurate for m << n.

7.2 Numerical solution of y′ = Ay

In this chapter the Krylov subspace is used to give an approximation of the solution of the equation
y′ = Ay. Also an expression for the residual of this approximation is given.
If the initial value of y on t = 0 equals v then the analytical solution is as follows.

y(t) = etAv

Now let Vm be an orthonormal basis for Km(A,v) constructed by the Arnoldi algorithm. Addi-
tionally let β be the norm of v. Then v = βVme1, where e1 is the first identity vector, holds.
And so:

y(t) = etAVmβe1

This gives the next approximation ym(t) for y(t):

y(t) ≈ ym(t) = Vme
tHm,mβe1 = Vmum(t) (14)

With um(t) defined as:
um(t) := etHm,mβe1

The approximation ym(t) needs to estimate the differential equation so the residual rm(t) is de-
fined as follows:

rm(t) := Aym(t)− y′m(t) (15)

With the use of (11) and (14), (15) can be written in a simpler form.

rm(t) = Aym(t)− y′m(t)
= AVmum(t)−Vmu′m(t)
= (VmHm,m + hm+1,mvm+1e

T
m)um(t)−VmHm,mum(t)

= hm+1,mvm+1e
T
mum(t)

= (hm+1,meTmum(t))vm+1

|rm(t)| = |hm+1,meTmum(t)|

(16)

So the residual is proportional with hm+1,m and the size of the mth entry of um(t)

7.3 Extension to y′ = Ay + b

This section deals with the equation y′ = Ay + b. This will be done by using Krylov subspace
and the Arnoldi algorithm. The analytical solution of this differential equation is derived here.

y′ = Ay + b
(y + A−1b)′ = A(y + A−1b)
y(t) = etA(v + A−1b)−A−1b
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A problem of this solution is that the action of two matrix functions has to be calculated and
that A−1 might not exist. This can be avoided by the φ-operator as in [2]. This operator is an
iteration on ex and its definition is given here.

φi+1(x) :=
φi(x)− φi(0)

x
φ0 := ex

φ1(x) =
ex − 1

x
= 1 +

x

2!
+
x2

3!
+ . . .

With the use of this operator we can rewrite the analytical solution of y′ = Ay+b to the following
form.

y(t) = tφ1(tA)(Av + b) + v (17)

This solution can be approximated in the same way as in the preceding chapter using the Arnoldi
algorithm. This will be done on the Krylov space Km(A,Av + b). If β is chosen as the norm of
Av + b then y(t) can be approximated as follows.

y(t) ≈ ym(t) = Vmtφ1(tHm,m)βe1 + v = v + Vmum(t)

With um(t) defined as:
um(t) := tφ1(tHm,m)βe1

The advantage of using φ1 instead of the matrix exponential is that the effect of A−1 on b does not
have to be calculated. This would be additional work and this representation is also defined if A−1

does not exist. The approximation of φ1(Hm+1,m) is just slightly different from the approximation
of the matrix exponential so this does not pose a problem.
The residual of this approximation is defined as rm(t) := Aym(t)− y′m(t) + b. To transform this
expression into an easier one it will come in handy to calculate the derivative of um(t) first. This
will be done by rewriting this expression to a matrix exponential form.

um(t) = H−1
m,m(etHm,m − Im)βe1

u′m(t) = etHm,mβe1

= Hm,mum(t) + βe1

Now a formula for the residual will be derived.

rm(t) = Aym(t)− y′m(t) + b
= Av + AVmum(t)−VmHm,mum(t)−Vmβe1 + b
= Av + (VmHm,m + hm+1,mvm+1e

T
m)um(t)−VmHm,mum(t)− b−Av + b

= (hm+1,meTmum(t))vm+1

|rm(t)| = |hm+1,meTmum(t)|

(18)

This is the same expression as the residual of the method introduced in section 7.2.

7.4 The SAI method

The Arnoldi method uses a basis for Km(A,v), a disadvantage here is that this subspace will
approximate the eigenvectors with bigger eigenvalues better. This is contra productive because
the smaller eigenvalues will be of more value in the approximation of y(t) as t gets larger. This
is because every eigenvalue can be associated with the exponent of that eigenvalue times t in the
matrix exponential, when the real part of an eigenvalue is larger than another it will approach
zero faster. In this context large can be understood as a bigger negative value. When the Krylov
method approximates these large eigenvalues better this is not efficient, the shift and invert (SAI)
method is developed to counter this effect.
The SAI method uses the Arnoldi algorithm on the matrix (I− γA)−1 instead of A. This is the
matrix A with a shift in the main diagonal and then inverted. Applying the Arnoldi algorithm on
Km((I− γA)−1,v) gives the next expression.

(I− γA)−1Ṽm = ṼmH̃m,m + h̃m+1,mṽm+1e
T
m
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This can be rewritten in the following way:

ṼmH̃−1
m,m = (I− γA)Ṽm +(I− γA)h̃m+1,mṽm+1e

T
mH̃−1

m,m

Ṽm
1
γ (I− H̃−1

m,m) = AṼm − 1
γ (I− γA)h̃m+1,mṽm+1e

T
mH̃−1

m,m

AṼm = Ṽm
1
γ (I− H̃−1

m,m) + 1
γ (I− γA)h̃m+1,mṽm+1e

T
mH̃−1

m,m

We now define Hm,m := 1
γ (I− H̃−1

m,m) and Vm := Ṽm.

With this Hm,m we can approximate the solution of y′ = Ay + b similar to the last two chapters.
There are some changes to the approximation procedure. The most important one is that the
Arnoldi algorithm has to construct a basis for Km((I−γA)−1,v). In order to do this the product
w = (I− γA)−1vi has to be calculated m times. When the size of A is very large the calculation
of the action of (I−γA)−1 is a very demanding task. That is why solving these systems iteratively
is a good option. For more details we refer to [2].
In addition, the expression of the residual in the SAI method changes slightly, this can be derived
similar to and .

rm(t) = 1
γ (I− γA)h̃m+1,mvm+1e

T
mH̃−1

m,mum(t)

=
h̃m+1,m

γ (eTmH̃−1
m,mum(t))(I− γA)vm+1

This expression is the same for the case of approximating y′ = Ay with the use of etHm,m as the
case of approximating the solution of y′ = Ay + b with the use of φ1(tHm,m).

The SAI method and eigenvalues

The SAI method is designed for matrices with stiff spectrum, because the normal Krylov approx-
imation is known to converge slowly for these types of matrices. A stiff spectrum means that the
matrix has eigenvalues with both very small and large real part. The problem of a stiff spectrum
is that the Krylov subspace will converge to the larger eigenvalues. These eigenvalues are of less
importance when approximating a solution with the matrix exponential because they converge to
zero faster than the smaller eigenvalues. A measurement for the spreading of the eigenvalues is:

<(λn)−<(λ1)

<(λ2)−<(λ1)

Where the distinct real parts of the eigenvalues λi are sorted in increasing order. So this quantity
gives the quotient between the largest gap between two eigenvalues and the gap between the
smallest eigenvalues.
Now we will look what will happen to the eigenvalues of A if the SAI algorithm is applied. Suppose
yi is an eigenvector of A with corresponding eigenvalue λi, also suppose that the eigenvalues can
be complex valued.

Ayi = λiyi
γAyi = γλiyi
(I− γA)yi = (1− γλi)yi
(I− γA)−1wi = 1

1−γλi
wi

In the last step the fact is used that if β is an eigenvalue of B, then β−1 is an eigenvalue of B−1.
Here wi is an eigenvector corresponding to the eigenvalue 1

1+γλi
. Also if A is nonsingular it has an

eigendecomposition and only nonzero eigenvalues. Then A can be represented as TDT−1, with
T the eigenbasis of A and D containing the corresponding eigenvalues. Then we have:

(I− γA)−1 = (T(I− γD)T−1)−1 = T(I− γD)−1T−1

So the vector wi corresponds to column i of T.
Seen the physical context of A in the Maxwell equations the A has to be negative semi definite,
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therefore all the eigenvalues of I− γA are nonzero hence it is nonsingular.
When λi = x+ yi is an eigenvalue of A then the new eigenvalue becomes:

1− γx+ γyi

(1− γx)2 + (γy)2

Both the real part and the absolute value of the imaginary part of the new eigenvalue lie between
0 and 1. So the spreading of the eigenvalues will probably be smaller and so the system will
converge faster. For more information about the effect of this transformation on the eigenvalues
we refer to [19].
For matrices without stiff spectrum the normal Krylov method can usually better be used. This is
because the advantages of the faster converging can be countered by the additional computational
work that is needed.

7.5 Practical issues when using Krylov subspace methods

In this section some issues for the practical use of the Krylov subspace methods introduced above
will be discussed. A useful stopping criterion will be introduced, and methods for restarting the
algorithm will be discussed for speeding up the algorithm.

Stopping criterion

One of the important issues when using Krylov subspace algorithms is how long you continue
expanding the Krylov basis. If you continue expanding if you already can make a good approxi-
mation it is a waste of computational work. Conversely, if the dimension of the basis is too small
the approximation is not good enough. So a good stopping criterion is needed. In this report
we will use residual based stopping criterions. We have already derived the residual of both the
normal Krylov subspace method and the SAI method. Before giving a stopping criterion based on
the residual we will first explain how the residual is correlated to error. The error ε is the difference
between the exact solution and the approximation, the residual is the error of the approximation
or a measure of how good the approximation solves the original equation. So when the equation
y′ = Ay is used, the error and residual are defined as follows:

em(t) := y(t)− ym(t), rm(t) := Aym(t)− y′m(t),

here m is the dimension of the Krylov subspace. Now the derivative of the equation of the error
can be rewritten into a form that correlates it to the residual.

e′m(t) = y′(t)− y′m(t)
= Ay(t) + Aym(t)−Aym(t)− y′m(t)
= A(y(t)− ym(t)) + rm(t)
= Aem(t) + rm(t)

So the error is an inhomogeneous differential equation in A so evaluating this term is even more
difficult then estimating y(t). At t = 0 we know the exact solution so the residual and the error
are zero at that point. So if the inhomogeneous term rm(t) is small the error will be small too.
[3] gives a lot of information on the estimation of this error term.
Because the residual is closely related to the error it can be used as a stopping criterion for the
estimation of the matrix exponential. The following measure will be used as a stopping criterion
while expanding the Krylov basis:

‖rm(t)‖
‖v‖

=
‖rm(t)‖

β

At every step of the Arnoldi algorithm this measure, the relative residual, can be evaluated.
Because the residual can be very small at a certain time, the L2 norm can be estimated over
several time steps in the interval (0, t].
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Choosing the proper t value

Assume we have to find y(t) of (8) for t ∈ [0, T ]. Then one can plot the CPU time needed to
approximate y(t) against t.
In this plot one would see a convex shaped function. So taking a large step will take more CPU
time then taking two smaller steps to arrive at the same t. This suggests it may be efficient
to restart the Krylov algorithms to reduce the CPU time. Restarting is the process of first
estimating y(t1) = eAt1v and then using y(t1) to approximate the next time step to t2 with
y(t2) = eA(t2−t1)y(t1) using Km(A,y(t1)). This can be done for finitely many time steps. If the
step size is chosen in an efficient way this process can be used to speed up the estimation of the
matrix exponent using Krylov subspace methods.
When one calculates the fraction of CPU time and t one can choose the minimum value of this
fraction. The t value corresponding to this minimum will use the least CPU time compared to the
simulation step it takes, this is an optimal t value. This optimal t value can be used to simulate
(8) over larger time gaps by taking time steps.

Complex eigenvalues

If σ and σm as introduced in section 5 are equal to zero, the matrix A is equal to a diagonal ma-
trix times a skew-symmetric matrix. A skew-symmetric matrix has purely imaginary eigenvalues.
A is similar to this skew-symmetric matrix and so has the same eigenvalues, thus A has purely
imaginary eigenvalues. Also if σ and σm are nonzero the system will still have complex eigenvalues
but this time the oscillations, that result from the imaginary part, will be damped.
Complex eigenvalues always come in pairs with their conjugates. So when the matrix H is calcu-
lated with an odd dimension one of the eigenvalues of H has to be a wrong representation of the
eigenvalues of A. Therefore it is a good choice to consider only the even Krylov dimensions. This
will save the CPU time of evaluating the relative residual for the odd dimensions.

7.6 Solving ODEs using the Krylov subspace

The Krylov subspace can also be used for solving ODEs of the following form:

y′ = Ay + α(t)g, y(0) = 0

The vector g is a constant here. The method described below is introduced in [1]. This method is
based on reducing the error of an approximation yk(t) to y(t). This residual is refined by solving
small systems of ODEs generated by the Arnoldi algorithm. The residual rk(t) is defined as:

rk(t) = Ayk + α(t)g − y′k

We claim that rk(t) = ρ(t)r̄k with r̄k a constant vector. This will be shown later. Let y0 = 0 then
r0(t) = α(t)g.
Now use the Arnoldi algorithm on the space Km(A, rk) to get:

AVm = VmHm,m + hm+1,mvm+1e
T
m

Now let ek(t) = y(t)− yk(t), then solving the next system will give the exact solution of ek(t):

e′k(t) = Aek(t) + ρk(t)r̄k e(0) = 0 (19)

A derivation of the ODE with a similar error term is given in chapter 7.5. We want to estimate
ek(t) by ẽk(t) = Vmu(t). Putting this into equation (19) we get:

Vmu′(t) = AVmu(t) + ρk(t)r̄k
VT
mVmu′(t) = VT

m((VmHm,m + hm+1,mvm+1e
T
m)u(t) + ρk(t)r̄k)

u′(t) = Hm,mu(t) + e1ρk(t)
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This small system is easily solvable with a standard ODE solver. Now we get that yk+m =
yk + Vmu(t) and can derive the next residual term rk+m(t).

rk+m(t) = Ayk+m + α(t)g − y′k+m

= Ayk + AVmu(t) + α(t)g − y′k −Vmu′(t)
= ρk(t)r̄k + AVmu(t)−Vm(Hm,mu(t) + ρk(t)e1)
= (hm+1,meTmu(t))vm+1

So r̄k+m = vm+1 and ρk+m(t) = hm+1,meTmu(t).
This procedure can also be applied to Km((I − γA)−1, r̄k) in this case the residual term would
change slightly into:

rk+m(t) = (
h̃m+1,m

γ
eTmH̃−1

m,mu(t))(I− γA)vm+1

The procedure can be repeated until the residual is small enough.
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8 Perfectly matched layer boundaries

In this section the perfectly matched layer boundary is introduced. Recall that in section 5 the
boundary nodes are set to zero. This models a perfect electric conductor, in which E = 0 [17, pp.
25] and which perfectly reflects incident electromagnetic waves [8, pp. 396]. This is inappropri-
ate for domains which model a region of free space or a chunk of a photonic crystal. The most
advanced method for modeling the suitable absorbing boundaries is the perfectly matched layer
[17, pp. 305]. It separates the domain and the PEC boundary by a conducting material which
attenuates the reflected electromagnetic waves [8, pp. 392]. Jumps or gradients in conductivity
usually result in some reflection [8, pp. 396] but the perfectly matched layer is constructed so that
this does not occur [7].
Perfectly matched layers can be seen as an analytic continuation [14]. There are several formu-
lations of perfectly matched layers of which the uniaxial anisoptropic medium, introduced in [7],
is used in this report. Its name derives from the anisotropic (tensor valued) permittivities and
permeabilities that are used in the layer. These make it necessary to use an alternative set of
ODEs. The permittivities and permeabilities are set so that analytically there is no reflection.
However the discretization does result in some reflection. This is minimized by ramping up the
conductivity gradually.
We shall now describe the alternative set of ODEs. The boundary is divided into two regions,
as depicted in figure 4, one of which has a surface perpendicular to the x-axis and the other to
y-axis. We use the approach of [7] to describe these alternative ODEs, which are most succinctly

a b c

Figure 4: this figure shows three regions of the layer. a depicts the y-boundary, b the x-boundary
and c the cornerpoints, the regions where the x- and y-boundary overlap.

expressed in the frequency domain. We will first show an example of how the time domain and
frequency domain descriptions of Maxwell’s equations are related. We start off with Ampere’s
equation in the absense of source currents

∂Ez
∂t

=
1

εr
[
∂Hy

∂x
− ∂Hx

∂y
− σEz]

Next we assume that Ez can be written as the real part of Ez(x, y)eiωt which results in

∂Hy

∂x
− ∂Hx

∂y
= iωεr(1 +

σ

iωεr
)Ez

According to [7] no reflection occurs at the interface between the domain and the PML layer if
the three equations of the TMz mode are given in the PML layer by −∂Ez

∂y
∂Ez

∂x
∂Hy

∂x −
∂Hx

∂y

 =

 sy
sx

sx
sy

sxsy

 iωµrHx

iωµrHy

iωεrEz
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Here sx is associated with the x-boundary and sy with the y-boundary as depicted in figure 4 and
they assume the following values

sx =

{
1 + σx

µriω
if (x, y) ∈ x-boundary

1 if (x, y) 6∈ x-boundary
sy =

{
1 +

σy

µriω
if (x, y) ∈ y-boundary

1 if (x, y) 6∈ y-boundary

σx and σy are associated with their boundaries and must be of the form that they are constant
along the y or x direction respectively. We furthermore have made the choice to set µr = εr = 1.
This is will not influence the test domain since the boundary is reflectionless. The equations are
physical in the sense that they satisfy Maxwell’s equations but a material with these constitutive
parameters has not been constructed yet [7]. In the areas where sx or sy are 1, namely the
areas outside the x-boundary, y-boundary and cornerpoints for Hx, Hy and Ez respectively, the
equations have the same form as in section 2. At all other points the equations have a more
complicated structure. It is hard to transform them directly into the time domain. Therefore the
dummy variables Gx, Gy and Dz are introduced. They are defined as follows

Gx =
sy
sx
Hx Gy =

sx
sy
Hy Dz = sxEz.

The Maxwell equations become

−∂Ez
∂y

= µr
∂Gx
∂t

∂Ez
∂x

= µr
∂Gy
∂t

∂Hy

∂x
− ∂Hx

∂y
= εr

∂Dz

∂t
+ σyDz (20)

and we obtain the following set of auxiliary differential equations

µr
∂Gx
∂t

+ σxGx = µr
∂Hx

∂t
+ σyHx (21a)

µr
∂Gy
∂t

+ σyGy = µr
∂Hy

∂t
+ σxHy (21b)

εr
∂Dz

∂t
= εr

∂Ez
∂t

+ σxEz (21c)

8.1 Matrix description of alternative set of ODEs

In this section the matrix description of the spatially discretized Maxwell equations in the PML
layer is given. We set εr = 1 and µr = 1. The spatially discretized Maxwell equations (20) are
given by

∂gx
∂t

= Kez (22a)

∂gy
∂t

= Lez (22b)

∂dz
∂t

= [−Kᵀ −Lᵀ]h−Σy
zdz (22c)

and the spatially discretized auxiliary differential equations (21) are given by

∂hx
∂t

=
∂gx
∂t

+ Σx
xgx −Σy

xhx

= Kez + Σx
xgx −Σy

xhx

(23a)

∂hy
∂t

=
∂gy
∂t

+ Σy
ygy −Σx

yhy

= Lez + Σy
ygx −Σx

yhy

(23b)

∂ez
∂t

=
∂dz
∂t
−Σx

zez

= [−Kᵀ −Lᵀ]h−Σy
zdz −Σx

zez.
(23c)
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Here Σi
j is the diagonal matrix of σi’s defined on the GHx , GHy and GEz grids for j = x, y, z. The

next step is to introduce a new y

y =
[

hx hy ez gx gy dz
]>

The matrix for y′ can be constructed using (22) and (23):

y′ =


−Σy

x K Σx
x

−Σx
y L Σy

y

−Kᵀ −Lᵀ −Σx
z −Σy

z

K
L

−Kᵀ −Lᵀ −Σy
z

y

This equation holds for all grids, but the size of the matrix can be significantly reduced if the vari-
ables gx, gy and dz are only defined for the points on the x-boundary, y-boundary and cornerpoints
respectively. The other nodes are updated using the standard Maxwell equations.

8.2 PML for FDTD

Discretizing both the spatial and temporal derivatives in (20), using notation similar to section 6,
we obtain the following difference equations

gx(ti+ 1
2
) = gx(ti− 1

2
) + ∆tKez(ti)

gy(ti+ 1
2
) = gy(ti− 1

2
) + ∆tLez(ti)

dz(ti+1) = (2 + ∆tΣy
z)−1(2−∆tΣy

z)dz(ti) + 2∆t(2 + ∆tΣy
z)−1[−Kᵀ −Lᵀ]h(ti+ 1

2
)

and discretizing (21) results in

hx(ti+ 1
2
) = (2 + ∆tΣy

x)−1(2−∆tΣy
x)hx(ti− 1

2
)

+ (2 + ∆tΣy
x)−1[(2 + ∆tΣx

x)gx(ti+ 1
2
)− (2−∆tΣx

x)gx(ti− 1
2
)]

hy(ti+ 1
2
) = (2 + ∆tΣx

y)−1(2−∆tΣx
y)hy(ti− 1

2
)

+ (2 + ∆tΣx
y)−1[(2 + ∆tΣy

y)gy(ti+ 1
2
)− (2−∆tΣy

y)gy(ti− 1
2
)]

ez(ti+1) = (2 + ∆tΣx
z )−1(2−∆tΣx

z )ez(ti) + 2(2 + ∆tΣx
z )−1[dz(ti+1)− dz(ti)].

Again we have set εr = µr = 1.
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9 Verification of FDTD

To verify our model we use source currents to determine an analytical solution as described in
appendix 2. We use two different tests: First we determine the order of convergence for both
spatial and temporal refinement. Next we calculate the order of convergence for only temporal
refinement and calculate both the order of convergence as well as the relative error. Note that for
the temporal order of convergence we cannot use the analytical solution as a reference since the
total error will still converge towards the spatial error.
Both tests have been done on a 1 × 1 grid. We have used a solution that is a superposition of
two spatial patterns f(x, y) = x(x − 1)y(y − 1) and g(x, y) = sin(πx) sin(πy). Corresponding to
the former spatial pattern we use the functions αx(t) = e−t,αy(t) = 1

1+t and αz(t) = sin(t) for

Hx, Hy and Ez respectively. For the latter we use βx(t) = 1
2 ,βy(t) = ln(t+ 1) and βz(t) = cos(t).

Thus we have an analytical solution of the form:

Hx(x, y, t) = sin(πx) cos(πy)e−t + x(x− 1)(2y − 1)
1

2

Hy(x, y, t) = cos(πx) sin(πy)
1

1 + t
+ (2x− 1)y(y − 1) ln(t+ 1)

Ez(x, y, t) = sin(πx) sin(πy) sin(t) + x(x− 1)y(y − 1) cos(t)

The tests are done for εr = 2 and µr = 3.
For the first test we have used ∆t = ∆x√

2
. For a number of nodes N per side this results in spatial

step sizes given by ∆x = ∆y = 1
N+1 . We then compared the solutions for different step sizes

at time t = 20
201
√

2
. As can be seen in figure 5 we get a second order of convergence towards the

analytical solution.

Figure 5: Plot of number of nodes along one side of the grid vs. relative error. As a reference we
included a graph of the form a10−2N . Since the plot of relative errors is parallel to the reference
line we conclude that there is second order convergence

For the second test we have used 100 × 100 nodes. As can be seen in 6 we have a second order
convergence.
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Figure 6: Plot of convergence factor vs. time step. The convergence factor approaches 4 thus
indicating that we have a second order convergence

The relative error in respect to the analytical solution is given by the following values:

k 0 1 2 3 4 5 6 7
rel. error (×10−5) 0.8419 0.7798 0.7643 0.7604 0.7594 0.7592 0.7591 0.7591

Here ∆t is given by 1
2k101

√
2
. From this we conclude that the error created by spatial discretization

is dominant. This justifies the choice of as large as possible time steps.
From now on we will assume the correctness of the FDTD method and now we can construct
accurate reference solutions for testing the Krylov methods.
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method ∆t
‖eref−e‖
‖eref‖

‖href−h‖
‖href‖ CPU (s)

FDTD 1.25× 10−4 3.22× 10−4 1.86× 10−4 76
6.25× 10−5 7.97× 10−5 4.61× 10−5 152
3.13× 10−5 2.00× 10−5 1.15× 10−5 304
1.56× 10−5 5.00× 10−6 2.90× 10−6 610

Krylov 3.03× 10−7 230

Table 1: Results for point defect on 275× 275 grid.

10 Results

In this section we present the results of simulations of the test cases. The test cases are described in
section (4). The implementation of PML for Krylov still lacks second order convergence. Therefore
we have not included numerical test results for the FDTD and Krylov PML implementation.
Recall that for Krylov to work properly the functions that describe the sources have to be of the
form J(x, y, t) = f(t)g(x, y), see section (7.6).

Rectangular lattice with a point defect

This test case consists of a square lattice with 7 × 7 dielectric rods. Recall from section (3) that
when transforming the Maxwell equations into dimensionless form a typical length L needs to
be chosen to which the other variables are scaled. We set L equal to the length of the physical
domain. So the dimensionless domain has length 1. Nx denotes the number of grid points along
the x-axis. The resulting spatial step size is given by ∆x = 1

Nx+1 .
The lattice constant [13, pp. 32] is given by a = 25 nodes. Each ’box’ contains a dielectric rod
with radius r = 0.38a∆x and with permittivity εr = 8.9 . Furthermore we include a boundary of
b = 50 nodes on all sides. The resulting grid size is therefore 275× 275 nodes.
The defect consists of the middle rod which has the same radius as the other rods, but a different
relative permability εr = 6.052. The regions in between the rods have the vacuum permittivity ε0.
The system is initiated in the middle rod by an additive dimensionless source given by spatial
component g(x, y) = e(−2000((x/L−0.5)2+(y/L−0.5)2)) and time component f(t) = 400 cos(ωt). Note
that the source has a spatial component because we have decided to make it a sharply peaked
function instead of true point source in order to make the numerical discretization of the source
more smooth. The scalar in front of the cosine has been chosen in such a way that the resulting
fields will not exceed a value of 1, which is possible since the specific magnetic field strength
H0 can be chosen arbitrarily, see section (3). This could be demonstrated by transforming the
dimensionless fields back into the physical fields, however, we do not show it in this report.
To get a frequency inside of the band gap of the rectangular lattice we choose a frequency inside
the band gaps determined in [13, pp. 68]: ωs ≈ 0.42·2πc0

as
. Here as denotes the lattice constant in

SI units. Using the methods of section (3) this frequency can be transformed into dimensionless
form. Combining as = a

L = a
Nx+1 , (4) and ωs yields

ω =
2π0.42(Nx + 1)

â
.

Note that â is the length of a side of a ’box’ in grid points, not its dimensionless length. A rough
schematic of this scenario is included below in figure 7.
The Krylov subspace methods and FDTD-scheme are compared at time t = 0.80. A refer-
ence solution is calculated using the FDTD scheme with second order convergence and with
∆t ≈ 6.67 × 10−6, the results are listed in table 1. The data in the last two rows of the FDTD
results have been calculated directly based on the assumption of second order convergence and
does not come from a simulation. This has been done because the Krylov time integration already
turned out to be faster and more accurate at that point. eref and e are respectively the reference
solution for the electric field and the computed electric field, href and h are the same for the
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Figure 7: square lattice with point defect. The grey circles indicate rods of dielectric material,
with εr 6= 1. The white regions have the vacuum permittivity ε0. Nx and Ny are the number of
grid points along the x-axis and y-axis respectively. b is the width of the boundary layer. a is the
distance between the centers of adjacent rods. r is the radius of a rod. The point defect consists
of a missing rod at the center of the lattice. The source is intialized at the center of the lattice.

method ∆t
‖eref−e‖
‖eref‖

‖href−h‖
‖href‖ CPU (s)

FDTD 2.50× 10−4 9.08× 10−4 5.74× 10−4 383
1.25× 10−4 2.29× 10−4 1.48×10−4 784
6.25× 10−5 5.65× 10−5 3.68×10−5 1558

Krylov 2.33× 10−7 1340

Table 2: Results for point defect on 550× 550 grid.

magnetic field. The relative error of the Krylov solution is calculated over both the electrical
and the magnetic field. For the FDTD method this has been done for the electric and magnetic
fields separately. The resulting relative errors cannot be added to obtain the relative error over
y. However, this is an upper bound. Of course each of the relative errors over e and h is a lower
bound for the relative error over y. The Krylov solution is calculated over 10 timesteps with
∆t = 0.08. The method used is slightly more general than the one used in section (7.6). It is
described in [1]. In this case the vector values of the function g(t) belong to a two-dimensional
subspace in Rnhx+nhy+nez . The estimation is restarted every 20 Krylov subspace dimensions, and
the tolerance is set to 10−8.
The same test is done for the same grid structure but with a = 50, b = 100 and a grid size of
550 × 550. The reference solution is computed with the same time step ∆t ≈ 6.67 × 10−6. The
results are listed in table 2. Here the Krylov solution is calculated with the same parameters as
described above.
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Figure 8: The resulting field pattern of the electric field in the first scenario. Positive values are
red, negative values are depicted as blue. We see an evanescent [13, pp ./52] wave, however the
system has not reached a steady state yet.

Line defect

For our line defect we have used two sets of square lattices with 15×9 dielectric rods. Recall from
section (5) that this means that there are 9 rows along the y-axis and 15 columns along the x-axis.
However the 5th of the 9 lines is missing. This means that we are modeling a line defect. The
specific length L has again been chosen to be equal to the length of the physical domain along the
x-axis. This means that the dimensionless length of the domain is given by L := 1. The lattice
constant is given by a = 20 nodes, the radius is given by r = 0.2a∆x and εr = 8.9 . Around the
domain a boundary with a width of a single node is defined.
This results in a grid size of 302× 182 nodes. We initiate the system with the similar pulse as in

the previous test configuration with g(x, y) = e
(−((x−0.5)2+(y·Lx

Ly
−0.5)2)/10)

. Here Lx denotes the
physical length in x-direction and Ly the same in the y-direction. The time component is given

by f(t) = 400 · cos( 2π0.37(Nx+1)
a t) using a bandgap frequency determined by [13, pp. 68]. A rought

schematic of this scenario is included below in figure 9. Snapshots are taken at time t = 225
303
√

2
,

a reference solution is calculated using FDTD with ∆t = 1.139 × 10−6. The results are listed in
table 3. Here the Krylov algorithm is carried out in 8 timesteps and restarted every 20 dimensions.
The first result of the Krylov solution is with a tolerance of 10−8, the second one with a tolerance
of 1.

method ∆t
‖eref−e‖
‖eref‖ CPU (s)

FDTD 5.83× 10−4 3.10× 10−3 21
2.92× 10−4 7.70× 10−4 42
1.46× 10−4 1.92× 10−4 84
7.29× 10−5 4.81× 10−5 168
3.64× 10−5 1.20× 10−5 336

Krylov 3.24× 10−8 253
1.63× 10−5 233

Table 3: results for line defect on 302 grid
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Figure 9: square lattice with a line defect. The grey circles denote rods of dielectric material,
with εr 6= 1. The white regions have the vacuum permittivity ε0. Nx and Ny are the number of
grid points along the x-axis and y-axis respectively. b is the width of the boundary layer. a is the
distance between the centers of adjacent rods. r is the radius of the rod. The line defect consists
of a missing line of rods. The source is intialized along a section of the line defect.

Figure 10: The resulting electric field of the line defect in a square lattice. We can see that the
waves propagate only in the waveguide. In the crystal they decay exponentially.
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Other scenarios

The other two settings have been included without further analysis and technical discription, thus
only with visual results.
Both settings have been calculated using a sine wave with a frequency in the band gap. Also, in
both cases a PML boundary has been included, which allows for longer simulations.
Figure 11 shows the result of a waveguide bend. Figure 12 depicts the triangular lattice with a
line defect.

Figure 11: The resulting electric field of a waveguide bend. It can be seen that the transmission
in the waveguide is almost not hindered by the bend.

Figure 12: Electric field pattern of the triangular lattice with a line defect. The dielectric material
is shown in this picture in orange. Note that the waves propagate only in the line defect and
around the crystal.
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11 Conclusions

The purpose of this research is to compare Krylov subspace methods and the FDTD scheme for
time-domain simulations of photonic crystals. In order to do this we have discretized Maxwell’s
equations using the Yee grid to get a spatial discretization of the form:[

h′(t)
e′(t)

]
= A

[
h(t)
e(t)

]
+ α(t)g,

where the vector h denotes the magnetic field and the vector e denotes the electric field.
We have compared the time integration of this equation for a few different scenarios using both
the FDTD scheme and Krylov subspace methods.
In tables 1, 2 and 3 you can see the results of FDTD and Krylov simulations of a few different
scenarios and for a number of grid sizes. It is clear from this data that Krylov subspace methods
are way more efficient than FDTD if a high accuracy is needed. In table 3 it can be seen that
FDTD can be faster when there are no high demands on the accuracy. We know from section
9 that in the case of a Yee grid space discretization the error is dominated by the spatial error.
In simulations based on the Yee grid there is therefore no real need for high accuracy in time
integration. Krylov subspace methods allow one for a slightly higher time discretization error to
perform the time integration much faster.
One of the disadvantages of Krylov subspace methods in comparison to the FDTD scheme is that
they need some tuning before working properly. There are several parameters that can be chosen
like the restarting time and restarting dimension. These are parameters that can greatly influence
the simulation speed and, although there are systematic methods to choose their proper values,
this requires additional effort. In comparison the only input parameter that the FDTD scheme
requires is ∆t, and if it is chosen small enough then the FDTD method is guaranteed to work.
On the other hand, a drawback of the FDTD scheme is that it does not provide an error estimate,
i.e. several simulations with different time step sizes are needed to estimate the error of the time
discretization. On the other hand, the Krylov methods do provide the residual value. The residual
can be seen as a backward error and a reliable estimate of the true unknown error [3]. Apart
from the standard Yee scheme with reflecting boundary conditions we have also implemented a
perfectly matched layer absorbing boundary condition. It was implemented correctly with second
order convergence for the FDTD scheme, however time limitations of this project did not allow us
to get it working properly for the Krylov subspace methods. This could be a subject for further
research.
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1 Appendix: detailed space discretization of Maxwell’s equa-
tions and derivation of the matrix formulation of the re-
sulting system

In this section a detailed description is given of the space discretization of the Maxwell equations.
Furthermore the matrix description of the space-discretized Maxwell equations (5) is derived.

1.1 Space discretization of Maxwell’s equations

The dimensionless Maxwell equations for the TMz mode with the constitutive equations of section
2 are given by

µr(x, y)
∂Hx(x, y, t)

∂t
= −∂Ez(x, y, t)

∂y
− (Mx(x, y, t) + σm(x, y)Hx(x, y, t)), (26)

µr(x, y)
∂Hy(x, y, t)

∂t
=
∂Ez(x, y, t)

∂x
− (My(x, y, t) + σm(x, y)Hy(x, y, t)), (27)

εr(x, y)
∂Ez(x, y, t)

∂t
=
∂Hy(x, y, t)

∂x
− ∂Hx(x, y, t)

∂y
− (J(x, y, t) + σ(x, y)Ez(x, y, t)). (28)

Discretization of Faraday’s equation for the Hx component for nodes not near the
boundary

In this section central differences are applied to Faraday’s equation for the Hx component (26) on
the set GHx of Hx nodes. This cannot be done for all Hx nodes in the same way because for some
Hx nodes the standard central difference expression refers to missing Ez nodes on the boundary.
This is the case for Hx nodes that are located half a spatial step ∆y above the bottom boundary
of the domain or below the top boundary

Bb,Hx
:= {(m∆x,

1

2
∆y) : m ∈ {1, ..., Nx}} ⊂ GHx

,

Bt,Hx
:= {(m∆x, (Ny +

1

2
)∆y) : m ∈ {1, ..., Nx}} ⊂ GHx

.

The remainder of Hx nodes, which are not located next to the boundary of the domain, is given
by the proper subset

IHx
:= {(m∆x, (n− 1

2
)∆y) : m ∈ {1, ..., Nx}, n ∈ {2, ..., Ny}} ⊂ GHx

.

Central difference approximations to the derivative ∂Ez

∂y in Faraday’s equation (26) at the Hx

nodes in IHx yield

µr(m∆x, (n− 1

2
)∆y)

dHx

dt
(m∆x, (n− 1

2
)∆y, t) = −Ez(m∆x, n∆y, t)− Ez(m∆x, (n− 1)∆y, t)

∆y

− (Mx(m∆x, (n− 1

2
)∆y, t)

+ σm(m∆x, (n− 1

2
)∆y)Hx(m∆x, (n− 1

2
)∆y, t)),

(29)

for m ∈ {1, ..., Nx} and n ∈ {2, ..., Ny}. Central difference approximations are second order
accurate. This fact is derived using Taylor series in textbooks in numerical analysis.
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Discretization of Faraday’s equation for the Hx component near the boundary of the
domain

Suppose that the boundary of the domain is a perfect electric conductor. Then for Hx nodes next
to the bottom boundary of the domain (the set Bb,Hx

) we obtain using central differences and
setting to zero boundary nodes

µr(m∆x,
1

2
∆y)

dHx

dt
(m∆x,

1

2
∆y, t) = −Ez(m∆x,∆y, t)

∆y

− (Mx(m∆x,
1

2
∆y, t) + σm(m∆x,

1

2
∆y)Hx(m∆x,

1

2
∆y, t)),

(30)

where m ∈ {1, ..., Nx}, and for Hx nodes next to the top boundary (the set Bt,Hx
) we obtain

µr(m∆x, (Ny +
1

2
)∆y)

dHx

dt
(m∆x, (Ny +

1

2
)∆y, t) =

Ez(m∆x,Ny∆y, t)

∆y

− (Mx(m∆x, (Ny +
1

2
)∆y, t)

+ σm(m∆x, (Ny +
1

2
)∆y)Hx(m∆x, (Ny +

1

2
)∆y, t)),

(31)

where m ∈ {1, ..., Nx}.

Discretization of Faraday’s equation for the Hy component

In this section central differences are applied to Faraday’s equation for the Hy component (27) on
the set GHy

of Hy nodes. Similar to the case for Hx this cannot be done automatically because
the boundary Hy have been set to zero. This is the case for the subset of leftmost Hy nodes and
the subset of rightmost Hy nodes

Bl,Hy
:= {(1

2
∆x, n∆y) : n ∈ {1, ..., Ny}} ⊂ GHy

,

Br,Hy := {((Nx +
1

2
)∆x, n∆y) : n ∈ {1, ..., Ny}} ⊂ GHy .

The proper subset of Hy nodes that do not lie next to the boundary is given by

IHy := {((m− 1

2
)∆x, n∆y) : m ∈ {2, ..., Nx}, n ∈ {1, ..., Ny}} ⊂ GHy .

Central difference approximations of ∂Ez

∂x in Faraday’s equation (27) on IHy yield

µr((m−
1

2
)∆x, n∆y)

dHy

dt
((m− 1

2
)∆x, n∆y, t) =

Ez(m∆x, n∆y, t)− Ez((m− 1)∆x,∆y, t)

∆x

− (My((m− 1

2
)∆x, n∆y, t)

+ σm((m− 1

2
)∆x, n∆y)Hx((m− 1

2
)∆x, n∆y, t))

(32)

for m ∈ {2, ..., Nx} and n ∈ {1, ..., Ny}. Similar to the case for Hx, equation (32) cannot be used
for Hy nodes in GHy

\ IHy
. For the leftmost Hy nodes (Bl,Hy

) we have

µr(
1

2
∆x, n∆y)

dHy

dt
(
1

2
∆x, n∆y, t) =

Ez(∆x, n∆y, t)

∆x

− (My(
1

2
∆x, n∆y, t)

+ σm(
1

2
∆x, n∆y)Hy(

1

2
∆x, n∆y, t),

(33)
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for n ∈ {1, ..., Ny}, and for the rightmost nodes (Br,Hy )

µr((Nx +
1

2
)∆x, n∆y)

dHy

dt
((Nx +

1

2
)∆x, n∆y, t) = −Ez(Nx∆x, n∆y, t)

∆x

− (My((Nx +
1

2
)∆x, n∆y, t)

+ σm((Nx +
1

2
)∆x, n∆y, t)Hy((Nx +

1

2
)∆x, n∆y, t),

(34)

for n ∈ {1, ..., Ny}.

Discretization of Ampere’s equation

Central difference approximations of the spatial derivatives in equation (28) for the set GEz
of Ez

nodes yield

εr(m∆x, n∆y)
dEz
dt

(m∆x, n∆y, t) =
Hy((m+ 1

2 )∆x, n∆y, t)−Hy((m− 1
2 )∆x, n∆y, t)

∆x

−
Hx(m∆x, (n+ 1

2 )∆y, t)−Hx(m∆x, (n− 1
2 )∆y, t)

∆y

− (J(m∆x, n∆y) + σr(m∆x, n∆y)Ez(m∆x, n∆y, t))

(35)

for m ∈ {1, ..., Nx} and n ∈ {1, ..., Ny}. The central difference expressions are defined for all Ez
nodes and we do not need to make any modifications.

1.2 Matrix formulation of the space-discretized Maxwell equations

Definition of vectors

The system of ODE’s (29) to (35) can be written in matrix form. To this end the Hx components
on GHx

, Hy components on GHy
and Ez components on GEz

are collected in vectors hx(t), hy(t)
and ez(t) respectively which are put into a vector

y(t) :=


hx(t)

hy(t)

ez(t)


The nodes are distributed over a two-dimensional domain. However the numerical field components
associated with the nodes are put into vectors that have only a single index. Clearly we need
to define some way of assigning indices to nodes in a two-dimensional grid. We give the node
corresponding to some particular field component with the smallest x-coordinate and y-coordinate3

the index 1 and count in the y-direction. After exhausting a column of nodes we continue with the
next value of x, count in the y-direction and so on. Therefore Hx node (m∆x, (n− 1

2 )∆y) ∈ GHx
,

Hy node ((m− 1
2 )∆x, n∆y) ∈ GHy and Ez node (m∆x, n∆y) ∈ GEz have indices

i := (m− 1)(Ny + 1) + n,

j := (m− 1)Ny + n,

k := (m− 1)Ny + n,

in hx(t), hy(t) and ez(t) respectively. The number of Hx, Hy and Ez nodes is given by

nhx := Nx(Ny + 1),

3Obviously this node exists in a TMz Yee grid.
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nhy := (Nx + 1)Ny,

nez := NxNy,

respectively. Note that the definition sign has been used to define the symbols, the number of
grid points follows from the definition of the Yee grid. So Hx node (m∆x, (n − 1

2 )∆y) ∈ GHx
,

Hy node ((m− 1
2 )∆x, n∆y) ∈ GHy

and Ez node (m∆x, n∆y) ∈ GEz
have indices i, nhx

+ j and
nhx + nhy + k in the vector y(t) respectively.

System of ordinary differential equations

We will show that the system of ODE’s (29) to (35) can be written in the following form
d
dthx(t)

d
dthy(t)

d
dtez(t)

 =


Pµr,x 0 0

0 Pµr,y 0

0 0 Pεr


−1


−Σx 0 K

0 −Σy L

−Kᵀ −Lᵀ −Σz




hx(t)

hy(t)

ez(t)

−


Mx (t)

My (t)

J (t)




(36)
Here Mx(t), My(t) and J(t) are vectors that contain the values of the magnetic and electric (free)
source currents at the nodes in GHx

, GHy
and GEz

respectively. Pµr,x, Pµr,y and Pεr are diagonal
matrices with the relative pemeabilities at the Hx and Hy nodes and the relative permittivities at
the Ez nodes as diagonal elements. Σx, Σy and Σz are diagonal matrices with the dimensionless
(magnetic) conductivities at the diagonal elements. In the sections that follow we shall construct
K and L using the Kronecker product.

Matrix description for central differences in one dimension

In this section we will make a start with the derivation of the matrices K and L that are used in
the system of ODE’s (36). Let F : [0, L] 7→ R be a differentiable function. Let the number N of
grid points be given. The spatial step size is given by

∆x =
L

N + 1
.

Let the set of grid points be
P := {m∆x : m ∈ {1, ..., N}}.

Central differences can be applied to the derivative of F at points in between grid points

dF

dx
((m+

1

2
)∆x) ≈ F ((m+ 1)∆x)− F (m∆x)

∆x
,

for m ∈ {0, ..., N}. Let F (0) = F ((N + 1)∆x) = 0. Let f ∈ RN+1 be a vector that contains the
values of F at all half-way points in between grid points and in between the first and last grid
point and the boundary of the domain. The following matrix-vector product approximates the
derivative of f

df

dx
=



dF
dx ( 1

2∆x)

dF
dx ( 3

2∆x)

dF
dx ( 5

2∆x)

...

dF
dx ((N − 1

2 )∆x)

dF
dx ((N + 1

2 )∆x)


≈ (∆x)−1



1 0 · · · 0 0

−1 1 0 0

0 −1
. . .

...

...
. . . 1 0

0 0 −1 1

0 0 · · · 0 −1





F (∆x)

F (2∆x)

...

F ((N − 1)∆x)

F (N∆x)


(37)

We will use the symbol An for a matrix of the form that appears in this matrix-vector product.
It has dimensions (n+ 1)× n. In this case n = Nx.

38



Matrix description of central difference approximations to ∂Ez

∂y

In this section we will continue with the derivation of the matrices K and L that are used in
the system of ODE’s (36). We will first derive the matrix K. You can see in the system that
the matrix K relates the vector dhx

dt to the vector ez. This is a matrix that contains the central

difference approximations (29), (30) and (31) at the set GHx of Hx nodes to the ∂Ez

∂y derivative

that appears in Faraday’s equation for the Hx component (26). The discussion in the previous
section can be applied to the nodes in the set GHx . This discussion shows that the central
difference approximations to ∂Ez

∂y at nodes in a column along the y-axis of the grid only depend
on values of Ez at nodes in this column and not in any other column. Hence the central difference
approximations to ∂Ez

∂y at all nodes in GHx
can be determined separately for each column of Hx

nodes. These are one-dimensional problems that can be solved as in the previous section. As a
result the matrix that approximates ∂Ez

∂y at all Hx nodes consists of Nx blocks (for the Nx columns

of Hx nodes) of ANy
as defined under equation (37) centered around the diagonal. The diagonal

structure ensures that there is no interaction between different columns. The matrices ANy have
dimensions (Ny+1)×Ny because each column of Hx nodes contains Ny+1 Hx nodes, however the
central difference approximations at these nodes depend on only Ny nonzero Ez nodes, because
the boundaries of the grid have been set to zero. Here is the equation

∂ez
∂y

(t) :=



∂
∂yez,1(t)

∂
∂yez,2(t)

...

∂
∂yez,Nx−1(t)

∂
∂yez,Nx(t)


≈ (∆y)−1



ANy
0 · · · 0 0

0 ANy 0 0

...
. . .

...

0 0 ANy
0

0 0 · · · 0 ANy


ez(t)

where

∂

∂y
ez,i(t) :=



∂Ez

∂y (i∆x, 1
2∆y, t)

∂Ez

∂y (i∆x, 3
2∆y, t)

...

∂Ez

∂y (i∆x, (Ny + 1
2 )∆y, t)


.

The matrix in this matrix-vector product is the matrix K in equation (36) multiplied by −∆y.
The derivative in the symbol ∂ez

∂y should be seen as part of the notation. Only the derivatives

inside the vectors ∂
∂yez,i are true derivatives. It is a vector of derivatives evaluated at the GHx grid

points, not a derivative of a vector. 0 represents a (Ny + 1)×Ny zero matrix. We can summarize
the matrix description of central differences to ∂Ez

∂y using the Kronecker product

∂ez
∂y

(t) ≈ (∆y)−1(INx ⊗ANy )ez(t).

We will not yet express dhx

dt (t) in terms of ez(t) but we will save this for a later section.

Matrix description of central difference approximations to ∂Ez

∂x

We will now derive the matrix L. You can see in the system of ODE’s (36) that the matrix L

relates the vector
dhy

dt (t) to the vector ez(t). This is a matrix that contains the central difference

approximations 32 to 34 at the set GHy
of Hy nodes to the ∂Ez

∂x derivative that appears in Faraday’s
equation for the Hy component (27). The matrix that we obtain again looks a bit like the one-
dimensional matrix An. The difference is that Hy nodes corresponding to a single row in the
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x-direction are spread Ny elements apart instead of 1 in the vector hy. The central difference
approximations to the ∂Ez

∂x derivative at the first row of Hy nodes (thus for n = 1) are given by

∂ez,1
∂x

:=



∂
∂xEz(

1
2∆x,∆y, t)

0
...
0

∂
∂xEz(

3
2∆x,∆y, t)

0
...
0

∂
∂xEz(

5
2∆x,∆y, t)

0
...
...
0

∂
∂xEz((Nx −

1
2 )∆x,∆y, t)

0
...
0

∂
∂yEz((Nx + 1

2 )∆x,∆y, t)

0
...
0



≈ (∆x)−1



R1 0 · · · 0 0

−R1 R1 0 0

0 −R1
. . .

...

...
. . . R1 0

0 0 −R1 R1

0 0 · · · 0 −R1



ez(t)

(38)

where 0 is a Ny × Ny zero matrix and R1 is a Ny × Ny matrix (there are Ny rows of Hy nodes
and Ny nonzero Ez nodes in each row) defined as

R1 :=


1 0 · · · 0

0 0 0

...
. . .

...

0 0 · · · 0

 .

The vector
∂ez,1

∂x has length nhy
and its indexing has been performed in the same way as in hy. All

elements corresponding to nodes not in the first row of GHy
have been set to zero. For the second

row of Hx nodes we obtain a similar pattern. The higher y-value results in a shift downwards and
to the right in the matrix R1, which results in a matrix R2 that is used in the same way and has
the same dimensions as R1. R2 is defined as

R2 :=


0 0 · · · 0

0 1 0

...
. . .

...

0 0 · · · 0


We add the resulting vector

∂ez,2

∂x to the vector
∂ez,1

∂x . The resulting sum can be expressed in
terms of ez(t) by replacing R1 in equation (38) by R1 + R2. This replaces the zero values at the
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elements corresponding to the second row of Hy nodes with central difference approximations to
the derivative ∂Ez

∂x at the second row of Hy nodes. We can do the same thing for all rows. If

we add the vectors
∂ez,1

∂x ,
∂ez,2

∂x , · · · , ∂ez,Ny

∂x and the matrices R1,R2, · · · ,RNy (there are Ny rows

of Hy nodes) for all rows then we get a a vector ∂ez

∂x and a matrix R that equal to the identity

matrix INy
with dimensions Ny ×Ny . The central difference approximation of ∂Ez

∂x can then be
more tersely described using the kronecker product

∂ez
∂x

(t) = (∆x)−1(ANx
⊗ INy

)ez(t)

The matrix ANx ⊗ INy that appears in this matrix-vector product is the matrix L multiplied by

∆x in the system of ODE’s (36).
dhy

dt will be expressed in terms of ez in a later section.

Matrix description of central difference approximations to
∂Hy

∂x and ∂Hx

∂y

In the preceding sections we have derived the structure of the matrices K and L. In the system
of ODE’s we proposed that the central difference approximation to the derivatives

∂Hy

∂x and ∂Hx

∂y
that appear in Ampere’s equation can be described by matrices −Kᵀ and −Lᵀ. These relate the
vector dez

dt (t) to the vectors hx(t) and hy(t). Consider the first column (with m = 1) of Ez nodes.
Again using the results for the one-dimensional case we obtain the following matrix description of
the central difference approximation to the derivative ∂Hx

∂y (t) on the first column of Ez nodes

∂hx,1
∂y

(t) =



∂
∂yHx(∆x,∆y, t)

∂
∂yHx(∆x, 2∆y, t)

...

∂
∂yHx(∆x, (Ny − 1)∆y, t)

∂
∂yHx(∆x,Ny∆y, t)


≈ (∆y)−1



−1 1 0 · · · 0 0

0 −1 1 0 0

...
. . .

. . .
...

0 0 −1 1 0

0 0 · · · 0 −1 1


h̃x(t)

Here h̃x is the first column of Hx nodes. Note that we are approximating derivatives of Hx,ex

at Ez nodes but that these approximations are expressed in terms of numerical Hx values at the
Hx nodes. The matrix that appears in this matrix-vector product has dimensions Ny × (Ny + 1)
(there are Ny Ez nodes and Ny + 1 Hx nodes in each column). Note that it is equal to −Aᵀ

Ny
.

The derivation of the matrix description of the central difference approximations to the derivative
∂Hx

∂y on all Ez nodes is very similar to the derivation of the matrix K so we will not repeat it here.
The result is

∂hx
∂y

(t) = (∆y)−1(INx ⊗ (−ANy )ᵀ)hx(t).

The derivation of the matrix description of the central difference approximations to the derivative
∂Hy

∂x is very similar to the derivation of the matrix L so we will again not repeat it here. The
result is

∂hy
∂x

(t) = (∆x)−1((−ANx
)ᵀ ⊗ INy

)hy(t).

We have now shown that the system of ODE’s can be written in the form (36).

Matrix description of central difference approximations to the Maxwell equations
using the Kronecker product

In this section we will describe the central difference approximations to the Maxwell equations
using the Kronecker product. They are given by

dhx(t)

dt
= (Pµr,x)−1(−(∆y)−1(INx

⊗ANy
)ez(t)−Mx(t)−Σxhx(t))
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= (Pµr,x)−1(Kez(t)−Mx(t)−Σxhx(t)),

dhy(t)

dt
= (Pµr,y)−1((∆x)−1(ANx

⊗ INy
)ez(t)−My(t)−Σyhy)

= (Pµr,y)−1(Lez(t)−My(t)−Σyhy),

dez(t)

dt
= (Pεr )−1((∆x)−1((−ANx

)ᵀ ⊗ INy
)hy(t)− (∆y)−1(INx

⊗ (−ANy
)ᵀ)hx(t)−

− J(t)−Σzez(t))

= (Pεr )−1(−Kᵀhx(t)− Lᵀhy(t))− J(t)−Σzez(t)).
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2 Using source currents to generate arbitrary field patterns

In this section we would like to determine the set of source terms necessary for an arbitrary
electromagnetic pattern. The only assumptions necessary is that the time and spatial component
of the field are seperable. We start off with the dimensionless Maxwell equations for the TMz

mode:

µr
∂Hx

∂t
= −∂Ez

∂y
−Mx (39a)

µr
∂Hy

∂t
=
∂Ez
∂x
−My (39b)

εr
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
− J (39c)

Solving these equations for Mx, My and Ez would essentially yield the source current needed to
obtain the analytical solution to arbitrary Hx,Hy,Ez, at least if our initial conditions match these
values. Thus if we implement the source currents in our discretized model we should obtain the
wanted field patterns.
With our discretized model we have that:

ht+0.5 = ht−0.5 + ∆t(Ahe
t
z + vth) (40a)

et+1 = et + ∆t(Aeh
t+0.5 + vt+0.5

e ) (40b)

with hq = (hqx, h
q
y).

Using 39 and 40 it is clear that we need to relate vh and ve to the source currents Mx, My, Ez,
since the matrices Ah and Ae take care of the Maxwell equations without source current and
conductivities

vthx
(i) = −Mx

µr
(x(i), y(i), t) (41a)

vthy
(i) = −My

µr
(x(i), y(i), t) (41b)

vte(i) = − J
εr

(x(i), y(i), t) (41c)

Here i denotes the i’th index in the vector and x(i) and y(i) it’s coordinates. The vh is given by
(vhx

; vhy
) Now we use the equation of the courant number without dimensions:

∆t = Sc∆x (42)

this results in:

∆tvhx
(i, t) = Sc∆x(

∂Ez
µr∂y

+
∂Hx

∂t
)(x(i), y(i), t) (43a)

∆tvhy
(i, t) = Sc∆x(− ∂Ez

µr∂x
+
∂Hy

∂t
)(x(i), y(i), t) (43b)

∆tve(i, t) = Sc∆x(
∂Ez
∂t

+
∂Hx

εr∂y
− ∂Hy

εr∂x
)(x(i), y(i), t) (43c)

2.1 Analytical solution for harmonic spatial patterns

we want to derive an analytical solution for any given wave pattern defined by

Hx = Hx0
bx(t) (44a)

Hy = Hy0by(t) (44b)

Ez = Ez0a(t) (44c)
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where:
Hx0 = sin(πx) cos(πy) (45a)

Hy0 = cos(πx) sin(πy) (45b)

Ez0 = sin(πx) sin(πy) (45c)

We choose a rectangular 1× 1 grd with a number of N evenly distributed nodes (excluding the
boundary) as our domain. Thus the analytical solution satisfies the conditions for a superconductor
boundary.
Substituting 44 into 43 and using that ∆x = 1/(N + 1) we get:

∆tvhx(i, t) =
Sc

(N + 1)
Hx0(x(i), y(i))(

π

µr
a(t) + b′x(t)) (46a)

∆tvhy (i, t) =
Sc

(N + 1)
Hy0(x(i), y(i))(− π

µr
a(t) + b′y(t)) (46b)

∆tve(i, t) =
Sc

(N + 1)
Ez0(x(i), y(i))(a′(t) +

π

εr
(by(t)− bx(t))) (46c)

2.2 Analytical solution for polynomial spatial patterns

To prevent the solution being an eigenvalue we determine a second solution of the form:

Hx = x(x− 1)(2y − 1)βx(t) (47a)

Hy = (2x− 1)y(y − 1)βy(t) (47b)

Ez = x(x− 1)y(y − 1)α(t) (47c)

We use the same grid and therefore get a solution:

∆tvhx
(i, t) =

Sc
(N + 1)

x(i)(x(i)− 1)(2y(i)− 1)(
1

µr
α(t) + β′x(t)) (48a)

∆tvhy
(i, t) =

Sc
(N + 1)

(2x(i)− 1)y(i)(y(i)− 1)(− 1

µr
α(t) + β′y(t)) (48b)

∆tve(i, t) =
Sc

(N + 1)
(x(i)(x(i)−1)y(i)(y(i)−1)α′(t)+

2

εr
(βx(t)x(i)(x(i)−1)−βy(t)y(i)(y(i)−1)))

(48c)
Since the solutions given in 46 and 47 can be super imopsed also every linear combination of

solutions for different a, b, α, β will satisfy the equations, if we use the same linear combination for
our vh and ve’s.
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