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ABSTRACT

In this thesis we search for indicative properties to predict trending topics. We do this through an
analysis of available tweet data, regarding an event that was discussed on Twitter. We analyse the
progression of the tweets throughout time, using the retweet graph. We only take the structure of
the graph into account for our analysis. We do not use any information with respect to the users
that produced the tweets. We find that the average degree and the fraction of users that are part
of the largest component are good indicators to consider for our purposes. We use this structural
analysis to construct a random graph model, that captures the end progression of a retweet graph for
a trending topic with only three parameters. We use this model to derive mathematical expressions for
the indicators in our model. Moreover, we perform a sensitivity analysis of the model with respect to all
three parameters. Also, we derive expressions to estimate the model parameters directly from available
tweet data. Through these parameter estimates, we test our model on the analysed datasets. From
these tests, we conform the indicators and find an indication of trending behaviour. Thus, our model is
well suited to simulate the progress of a retweet graph for a topic, in which a peak activity occurs.
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CHAPTER 1

INTRODUCTION

In this thesis we analyse the progression of the retweet graph of three tweet datasets. Based on this
analysis, we define a new random graph model, which is based on the superstar model by Bhamidi et
al. [8]. We then analyse this model and obtain expressions, which we use to derive estimations for the
parameters of the model. We also perform simulations using our model and compare these simulations
to the actual data.

Currently, social media play an important role in our society. Everywhere we look, we are confronted
with social media. Given the amount of interactions on these media, one can find large sets of data
on how people communicate with each other on-line. One of the interesting topics in this setting is the
detection of trends, since the topics people discuss online are an image of what interests the community.

During the last decade many studies have focused on social media. In this study, we focus on the
microblogging platform Twitter1. In Twitter users can post messages that consist of a maximum of 140
characters. These messages are called tweets. One can “follow” a user in Twitter, which places their
messages in the message display, called the timeline. However, social ties are directed in Twitter, thus
if user A follows user B, it does not have to mean that B follows A. People who “follow” you are called
“friends”. We refer to the network of social ties in Twitter as the friend-follower network. Further, one
can forward a tweet of a user to all their friends, which is called a retweet. Since Twitter is mainly used
for the distribution of news [31], it is a natural platform for trends to emerge. Twitter uses the following
definition for trending topics: “Topics that are immediately popular, rather than topics that have been
popular for a while or on a daily basis”2. In our study, we define a trending topic on Twitter to be a trend
if the popularity of that topic is shaped by both on-line actions and real-life events, e.g. the calamity in
Haren called “Project-X”. Many studies have focused on detecting these trends, for instance detecting
emergencies [28], earthquakes [18,46,50], the flu [4,41,47], availability of on-line services [40] or events
in sport events [32].

Early detection of trends in social media can be used for several purposes. Consider for instance the
first mentioned application, detecting emergencies. In case of a disaster like a flood or an earthquake,
warning people a few minutes in advance can save lives. Furthermore, looking at the spread of dis-
eases, catching an epidemic early can produce a large gain. Moreover, in case of riots, law-enforcement
can respond swiftly before matters spin out of control. Furthermore, the detection of trends also leads to
an insight on the way trends are formed. Understanding this process gives a great advantage in several
industries, e.g. in advertising.

In many current studies into trend behaviour, the focus is placed on content of the messages that
are part of the trend, e.g. by Lehmann et al. in [36]. Our work focuses on the underlying networks
describing the social ties between users of Twitter. In particular, we focus on the diffusion of topics
through retweets. We aim to derive a mathematical model that can predict the probability of a trend
occurring, using the current interactions in the social network. To the best of our knowledge, this is the
first study that has chosen this approach to the trend detection problem. Therefore, the goal of our work
is to answer the question:

How can we predict trending behaviour in Twitter using tweet based graphs?

To find an answer to this question, we investigate several characteristics of the tweet graphs, which
we base on our analysis of the progression in the datasets. Using the characteristics we find in these
datasets, we aim to derive a model that can simulate an outcome of the progression of a topic in Twitter.
We try to answer the following questions:

1www.twitter.com
2https://support.twitter.com/articles/101125-about-trending-topics
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i) Which graph characteristics can be used to model the progression of a topic?

ii) Can we formulate a model, using these characteristics, to obtain a model that generates a similar
final progression to that of a trending topic?

iii) Can we use this model to estimate a probability that a topic becomes trending?

iv) Can this estimate be validated by empirical data?

The lay-out of this thesis is as follows. First we describe the related research in Section 1.1. Second,
we describe and analyse the datasets we used in Chapter 2. Then, we state our random graph model in
Chapter 3 and analyse it in Chapter 4. Further, we use the theorems in Chapter 4 to derive predictions
for the parameters of our model in Chapter 5. Finally, we formulate our conclusions and discuss further
research opportunities in Chapter 6.

1.1 Related Work

The amount of literature regarding Twitter is vast. The overview we provide here is by no means com-
plete. Many studies have been performed to determine basic properties of the so-called “Twitterverse”.
Kwak et al. [31] analysed the follower distribution and found a non-power-law distribution with a short
effective diameter and a low reciprocity. Furthermore they found that ranking by follower and PageRank
both induce similar rankings. They also report that Twitter is mainly used for News (85% of the content).
Huberman et al. [26] investigated interaction within the Twitter network. They found that the network of
interaction within Twitter is not equal to the follower network, it is a lot smaller. Other aspects that are
studied are trust by Adali et al. in [1] and credibility by Castillo et al. [14].

Another aspect of Twitter that is investigated is the notion of influence within the social network
of Twitter. To rank influence, Yamaguchi et al. [54] define a ranking for Twitter users based on user-
tweet graph analysis. Cano et al. [13] analyse social influence in the Twitter graph through a semantic
profile. Ranking techniques are also used by Melville et al. [39] to find the viral potential of tweets.
Furthermore, Hoang and Lim [23] define a mutual dependency model to define item and user virality
and user susceptibility. They also derive an algorithm to determine the score related to these measures.
Subbian and Melville [48] describe a predictive order-based rank aggregation to predict influence in a
social network.

An important part of trending behaviour in social media is the way these trends progress through
the network. To determine this, data needs to be extracted from available sources through a sample
strategy. In [17], De Choudhury et al. search for the best sample strategy for the discovery of information
diffusion in Twitter. Many studies have been performed on data that has been acquired from Twitter. For
instance, Lerman and Ghosh [37] perform an empirical study on diffusion of information in Twitter and
Digg. Bhattacharya and Ram [9] study the diffusion of news items in Twitter for several well-known news
media and find that these cascades follow a star-like structure. This is confirmed by Cogan et al. in [16],
where they investigate conversations on two subjects in Twitter. They find that the related tweet graphs
structures range between stars and paths. Also, Zhou et al. [57] investigate the diffusion of information
on Twitter using tweets on the Iranian election in 2009. They find that cascades tend to be wide, not
too deep and follow a power law-distribution in their size. Furthermore, the cascade frequency does
not depend solely on the amount of nodes in the cascade. In [25], Hsu et al. define several models
for cascade size prediction. These models are based on participation of users, infection spread and
community detection. In [27], Hui et al. define a model for the diffusion of actionable information, based
on extracted cascades.

Another perspective on the diffusion of information in social media is obtained through analysing
content of messages. Using this approach, Sadikov and Martinez [45] investigate the propagation of
tags and URL’s through Twitter. They found that tags tend to travel to more distant parts of the network
and URL’s travel shorter distances. Furthermore, Wu et al. [52] investigate the decay of content in
Twitter and they find that short lived content is mostly negative, whereas longer lasting content is of a
more positive nature. Romero et al. [44] analyse the spread mechanics of content through hashtag use.
They derive probabilities that users adopt a hashtag.
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One of the factors of a trend is its progression. Above we have seen several studies that modelled
the progression as a whole. The following articles all focus on analysing or predicting one aspect of the
progression of a topic, more precisely, the number and the behaviour of retweets. In [53], Xu and Yang
analyse retweet behaviour to construct a model for retweet prediction. Hong et al. [24] add the content
of the tweet as an extra factor for their prediction. Another model, formulated by Kuldeep et al. [29],
uses a tweet topic model and the local retweet count of a user as factors for an apriori estimate of the
number of retweets. Then, in [56], Zhang et al. describe several predicting models. The first model they
describe uses the amount of followers that a user has to predict. The second model uses the separation
between users. The third and last prediction method they define is based on a K-Nearest neighbour
algorithm. Kupavskii et al. [30] design a machine learning algorithm to predict retweet cascade sizes.

Trends on Twitter can be divided in different categories. To achieve this, Zubiaga et al. [58] derive
four different types of trends, using 15 features to make their distinction. The trends are distinguished
as trends triggered by news, current events, memes or commemorative tweets. Lehmann et al. [36]
study different patterns of hashtag trends in Twitter. They also observe four different classes of hashtag
trends. A different approach is used by Budak et al. [12]. They extend the traditional definition of a
trend into two subsets, defining trends to be coordinated in a connected community and uncoordinated
if a user-graph of a trend consist out of multiple small graphs. They use their definition of trends to
determine trend detection algorithms for both types of trends. Rattanaritnont et al. [43] find they can
distinguish tweets based on four factors, which are cascade ratio, tweet ratio, time of tweet and patterns
in topic-sensitive hashtags.

Detecting special topics in Twitter is a topic that has received much attention over the last years.
There are several types of detection known in the literature. The first is First Story Detection (FSD),
which aims to determine stories that are new in the datastream. Examples of this type of detection can
be found in [2], where Allen et al. show that using Trend Detection and Tracking as a start to derive
means for First Story Detection is impossible given the current tracking possibilities. Also Weng and
Lee [51] define a system for event detection in the text stream of Twitter using clustering of wavelet-
based signals. A second type of detection is peak or event detection. Below, we give some examples of
this type of detection. Becker et al. [7] use an online clustering mechanism to find real-world events in
a Twitter datastream. Ester et al. [19] derive several algorithms for trend detection in spatial databases.
Popescu and Pennacchiotti [42] define several machine learning models to detect controversial events
from Twitter streams. Lee and Kazutoshi [34] measure the regular tweet-activity in regions, which they
then use as a benchmark to detect irregularities in these regions. Last, we mention anomaly detection.
In [33], Lane and Brodley cast the anomaly-detection task in an instance-based learning framework. Lee
and Xiang [35] use entropy as a measure for anomaly detection, in particular for intrusion detection. Sun
et al. [49] define Neighbourhood formation in bipartite graphs which they then use to identify abnormal
nodes in the graph.

Some authors combine trends and retweet analysis. For instance, in [22] Heard et al. define a
two-step anomaly detection system. The first step is a Bayesian model to detect anomalous nodes.
For the nodes that are detected, the second step is to induce the retweet subgraphs for these nodes.
These subgraphs can then be analysed. Altshuler et al. [3] determine a lower bound for the success
probability of an online-campaign, using a scale-free distributed follow network. In [55] Yang et al. use
an adapted HITS algorithm and retweet graphs to detect trends. Li et al. [38] determine communities
in a dynamically evolving environment using a probabilistic setting. This setting can also be used to
determine the role of the nodes in the detected networks. Bhamidi et al. [8] propose a new random
graph model based on the preferential attachment model, analysed in [6] by Barabási and Albert. They
find that their model is well equipped to model giant components of retweet graphs.
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CHAPTER 2

DATA

In the following chapter we describe the datasets we used in this study and analyse them. These
datasets all contain tweets that have been acquired either using the Twitter Streaming API1 or the
Twitter REST API2.

Using REST API one can obtain tweets or users from the Twitter database. For instance if you
want the 20 most recent mentions of a specific user, you call the REST API using GET statuses/men-
tions timeline.

The other option is using the Streaming API. This API filters tweets from the actual stream of tweets
that Twitter parses during a day. Within this stream, one can filter on several objects. The first object
is follow, in which a comma separated list of user ID’s is specified. All tweets posted by the specified
users are posted as output. The second object is locations, in which a geo-located square is specified.
All tweets within this location are displayed as output. The third object is track for which a comma
separated list of keywords is specified. All tweets that contain one of these keywords are posted as
output.

There are several ways to use the API’s from Twitter. We use Python and its module tweetstream
in our study. The streaming API has a maximum amount of tweets that can be extracted from the total
data stream of Twitter3, however we have not experienced any difficulties acquiring our tweets since
the volume of tweets that we scraped stayed well below this threshold. We discuss several datasets,
namely the Project X -dataset, the Turkish-Kurdish-dataset and the WC speedskating-dataset.

In our analysis of the datasets, we use some well known and some less known definitions. Therefore,
we first cover the theoretic concepts that are considered required knowledge. Then, we describe the
properties that we found in each dataset.

2.1 Tweet graphs

In Twitter, several types of graphs based on tweets can be constructed. All tweets that are contained
in a dataset are depicted in some way in a so-called tweet-graph. This tweet-graph consists of two
components, i.e. the retweet graph and the reply graph. Since we want to model the progression of a
topic through the Twitter sphere, we are not interested in messages that are not retweeted or replied
on. Therefore we can omit these messages from the graphs we analyse.

2.1.1 Retweet graph

We first define the retweet graph (Gretweet = (V,Eretweet)). For this graph, we set V to be the set
of users who either retweet a message or whose message is retweeted. Since there is not a specific
format to formulate a retweet within Twitter, we restrict our analysis to a predetermined retweet setting.
We detect two ways of retweet behaviour. One of them is starting a message with ”RT: @A ...”, which
indicates that the user retweets a message by the user A. Another commonly used way of retweeting
is ending a message with ”... via @A”. We search our dataset for these types of tweets and display an
edge for every retweet in the dataset. We define an edge that indicates a retweet as follows:

e = (u, v) ∈ Eretweet ⇒ User v retweets a tweet of u.
V =

{
v | (u, v) ∈ Eretweet ∪ (v, w) ∈ Eretweet

}
1https://dev.twitter.com/docs/streaming-apis
2https://dev.twitter.com/docs/api/1.1
3See https://dev.twitter.com/docs/faq#6861
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We call the progression of a single message through the retweet graph a message tree. Notice that a
user may interact in multiple message trees. See Figure 2.1 for an example.

Figure 2.1: Example of a retweet graph.

2.1.2 Reply graph

We then consider the reply graph (Greply = (V,Ereply)). In this graph, we include all the conversations
between users in our dataset. In Twitter, a user can reply to a tweet of another user. Let ”Really looking
forward to this weekend!” be a tweet of user A. Then user B can reply to this message by sending
the tweet ”@A me too!”. We model this as an edge in the reply graph. The nodes in the reply graph
depict the users that sent the tweets. Therefore we define V of our reply graph as the set of users that
participate in one of the discussions. The directed edge set E contains all replies that are in our dataset.
More formally:

e = (u, v) ∈ Ereply ⇒ User u replies to user v.

V =
{
v | (u, v) ∈ Ereply ∪ (v, w) ∈ Ereply

}
Since the reply graph of a topic is always much smaller than the retweet graph and replies mostly occur
on a very local scale, we do not consider the reply graph in our analysis.

2.1.3 Graph analysis

There are many different ways to compare graphs with each other. In this section we explain which
measures and distributions we use to analyse and compare the retweet graphs. Our definitions may
vary from more well-known definitions, e.g. the definition of a giant component. This is a result of the
fact that we use the program Gephi as a tool to analyse the dynamical progression of the graphs. Let
G denote the undirected version of the graph G. If both (u, v) and (v, u) are contained in G, they are
combined to one edge (u, v) in G. This means that both message trees depicted in Figure 2.1, indicated
in grey and black, form one component. Before we introduce the different properties of the graphs that
we consider, we first introduce two basic definitions.

Definition 2.1.1 (Giant component (GC)). The largest component of the graph G is called the Giant
component.

Note that, due to this definition, the component that is called the giant component can change over
time. We shall see that this occurs in every dataset that we discuss in this thesis.

Definition 2.1.2 (Distance). Let d(u, v) denote the distance between nodes u and v and let Pu,v denote
a path from u to v in G, then

d(u, v) = min
Pu,v∈G

{|Pu,v| | Pu,v is a path from u to v in G}.

One of the properties we derive for every graph is the degree distribution. Since we use directed
graphs, we calculate the in-degree distribution, the out-degree distribution and the degree distribution.
The second aspect is the distribution of component sizes. We derive the components of a graph using
the NetworkX module of Python. To derive these size distributions, we consider the undirected version
of the graph, G.

8



2.1.4 Centrality measures

There are many ways to determine the importance of a node in a graph. The measures that are involved
with these techniques are called centrality measures. In the following we describe several measures we
use in our study.

Definition 2.1.3 (Eccentricity). The eccentricity, denoted by ε, of a node v in a graph G = (V,E) is
defined as the longest distance to another node in G,

ε(v) = max
u∈V

d(v, u).

Definition 2.1.4 (Graph diameter). In words, we define the diameter d of a graph G to be the length of
the longest shortest path p in G. More formally

d = max
v∈V

ε(v)

2.2 Project-X dataset

First, the Project-X -dataset contains tweets related to an event that occurred in the Netherlands. A
Facebook event was made public, which eventually lead to large riots at the location of that particular
event. The dataset was obtained by Twitcident for analysis of this phenomenon. A general overview of
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Figure 2.2: Normalized tweets for total en filtered dataset.

the dataset is given in the second column of Table 2.1. First the tweets with the keywords like ”project
x haren” and ”feestbook feest” were acquired, using the earlier mentioned API’s. At a later time, some
extra keywords were added to obtain more tweets concerning the event. For more information on the
retrieval of these tweets, we refer the reader to Twitcident4. Since this dataset contains many tweets, we
decided to filter the dataset on two hashtags. These hashtags are #projectx and #projectxharen. The
characteristics of this filtered dataset are shown in the last column of Table 2.1. Although this selection
greatly reduces the number of tweets that we analyse, the progression of percentage of tweets per hour
does not change significantly. It can therefore be concluded that the distribution of the volume of the

4www.twitcident.com
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tweets in this dataset is similar for a narrow or a broad scope on the tweets of this subject. In Figure
2.2 we show the amounts of tweets per hour for both versions, normalized on the maximum number of
hourly tweets.

normal filtered
first tweet 2012-09-17 11:36:18 2012-09-17 11:36:18
last tweet 2012-09-26 06:23:14 2012-09-26 04:32:15
tweets 739672 41283
users 255884 22072
retweets 368413 25832

Table 2.1: Characteristics of Project X dataset

2.2.1 Dataset analysis

In Section 2.2 we described the Project-X dataset. We use the information from this dataset as input
for Gephi, a graph visualisation program. We analyse the growth of the retweet graph on an hourly
scale. In Figure 2.3(a), we show the amount of tweets that appeared during an hour. The red line is the
hourly amount of tweets, which corresponds to the right axis. On the left axis, we display the cumulative
number of tweets with a blue line. In Figure 2.3(b) we depict the growth of the size of the node set
and the edge set of the retweet graph. We see that both lines grow in a similar pattern throughout the
progression.
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Figure 2.3: Progression of the retweet graph of Project-X .

The dash-dotted grey vertical lines in Figure 2.3 indicate times for which we analyse the properties of
the graph more extensively. We have chosen six of such points in time. The first is an early progression
of G (at 19-9-2012 12:00). Then, we analyse several moments during the peak activity. We chose the
start of the peak (at 21-9-2012 7:00), just before the largest peak (at 21-9-2012 19:00), the end of the
largest peak (at 22-9-2012 5:00) and the end of the peak activity (at 23-9-2012 0:00). Lastly we analyse
G at the end of our dataset (26-9-2012 4:32). We chose these points in time because the graph has
grown considerately in these intervals.

2.2.1.1 Growth of the giant component

We see that the giant component in the retweet graph contains the majority of vertices. This is in
accordance to Ardon et al. [5], in which they define that a trend occurs when multiple communities
merge in the progression of a subject. More intuitively, when components merge and become denser,
the fraction between the number of edges and the number of nodes |E||V | becomes larger. Therefore, we
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may suspect that this fraction is an important indicator. We analysed the progression of this indicator,
which is depicted in Figure 2.4(a). We see that for the giant component of the graph there is an interval
when this fraction exceeds 1, indicated by the dash-dotted grey lines. Interestingly this is also the time
when the fraction of nodes and edges that are contained in the giant component increases significantly,
which can be seen in Figure 2.4(b). We shall call the moment that |EGC ||VGC | exceeds 1 the densification of
the giant component.
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Figure 2.4: Progression for properties of the retweet graph of Project-X.

We then analyse the visualisations (see Figure 2.5) of this interval, which is between 19-9-2012
23:00 and 20-9-2012 0:00. The colouring of the nodes and edges is based on the components of the
latest graph. In these figures, we see that several components, coloured in black, of the earlier graph
(Figure 2.5(a)) are connected an hour later (in Figure 2.5(b)).

(a) 19-9-2012 23:00 (b) 20-9-2012 0:00

Figure 2.5: Densification of the retweet graph of Project-X.
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Using Gephi, we can focus on multiple properties of the graph we analyse. We restrict our attention
to the following properties and centrality measures: degree distributions (overall, in and out), component
size distribution and eccentricity. Both Figures 2.5 and 2.6 indicate that the two largest components
merge together forming a GC in the retweet graph. All other properties of the graph do not change
significantly in this hour.
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Figure 2.6: Distributions during the densification of the retweet graph of Project-X.

2.2.1.2 Growth during the peak

Then we switch to another change in the graph. We compare properties of the graph at the start of
the peak with the properties at the end of the largest peak, see Figure 2.7. We see that for all degree
distributions the slop is similar before and after the peak. This is easily explained by the large growth
of the retweet graph in this time, which is directly evident when we look at Figures 2.3(a) and 2.3(b).
However, there is one striking difference. The eccentricity score for the nodes after the peak are twice
as high as the scores before the peak. Therefore, by joining the components, the paths that can be
walked in the graph become twice as long.

Summarizing our findings, we see that our dataset has a densification of the amount of edges w.r.t.
the amount of nodes in its progression. Also the eccentricity score, being the longest shortest path in
the graph, increases after the peak. We thus want to derive a model that governs these aspects. With
respect to the trend definition we use, this dataset can clearly be considered as a trend.

2.3 Turkish-Kurdish dataset

The second dataset contains tweets regarding demonstrations in the Netherlands that were related
to the Turkish-Kurdish conflict in Turkey. To obtain the tweets from Twitter, these and other Dutch
words were used: koerden, turken, rellen, museumplein and amsterdam. In Table 2.2 we describe the
characteristics of the dataset. For a more detailed description of the dataset we refer the reader to [11]
by Bouma et al.
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Figure 2.7: Properties during the peak.

info
first tweet 2011-10-19 16:00:02
last tweet 2011-10-27 09:43:18
tweets 9655
users 3255
retweets 3547

Table 2.2: Characteristics of Turkish-Kurish dataset

2.3.1 Dataset analysis

If we compare Figures 2.8(a) and 2.3(a), we see that the Turkish-Kurdish dataset has many peaks, that
mostly occur during the evening. Therefore, the development of the retweet graph is more regular than
the development of the Project-X retweet graph.
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Figure 2.8: Progression of the retweet graph of the Turkish-Kurdish dataset.

Again, we analyse the growth of the giant component in this dataset. We find that the giant com-
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ponent immediately has the densification property, mentioned earlier. However, on 21-10-2011 the
progression of |E||V | drops below 1 again, see Figure 2.9(a). This is a result of the fact that the largest
component of the graph at that time is a different component than the eventual giant component. This
component, located at the upper right of Figure 2.8(b), is indicated in purple. In Figure 2.9(b) we see
the size of the giant component with respect to the size of the total retweet graph. Notice that these
percentages drop both at the start of 24-10-2011 and at the start of 26-10-2011, indicating that at these
times, the rest of the graph grows faster than the giant component. Furthermore, the giant component
in this graph never contains more than 35% of the nodes in the graph, which is a clear distinction with
the Project-X dataset. Given our trend definition, this dataset can be called a trend.
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Figure 2.9: Progression for properties of the retweet graph of the Turkish-Kurdish dataset.

2.4 WC speedskating dataset

The last dataset consists of tweets that were scraped using the Twitter -API during the 2013 World
Championship Speedskating for single distances, that took place in Sochi in Russia. We filter the
Twitter stream on the hashtags #wkafstanden, #sochi, #sotsji. In Table 2.3 we show the characteristics
of this dataset.

info
first tweet 2013-03-21 08:54:59
last tweet 2013-03-25 08:46:50
tweets 3439
users 429
retweets 416

Table 2.3: Characteristics of WC speedskating dataset

2.4.1 Dataset analysis

The last dataset, containing the tweets regarding the WC speedskating 2013, is somewhat a combina-
tion of the first two datasets with respect to the distribution of the tweet volume. Although it has multiple
peaks in its progression, as can be seen in Figure 2.10(a), one of these peaks is clearly the largest.
Furthermore, the largest component, indicated in black in Figure 2.10(b), is very close to a tree-like
structure.

This fact is also indicated in Figure 2.11(a), since the fraction |E||V | just surpasses 1 at the end of the
progression. This happens during the largest peak of the progression. Furthermore, at the beginning
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Figure 2.10: Progression of the retweet graph of the WC speedskating dataset.

of the progression the largest component is not the component indicated in black. It is the component
indicated in light blue at the top of Figure 2.10. Lastly, the percentage of nodes that is contained in the
giant component at the end of the progression is around 45%, which is similar to the Turkish-Kurdish
dataset. Using our trend definition, we do not consider this dataset to contain a trend.
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Figure 2.11: Progression for properties of the retweet graph of the WC speedskating dataset.
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CHAPTER 3

MODEL

In this chapter we describe our model for trend analysis, which we base on our analysis of the Project-X
dataset. We found that during the peak activity, the average degree of a node grows. Furthermore the
fraction of edges per node is larger than one in the progression of the giant component of the retweet
graph ( |EGC ||VGC | > 1). Recall that this observation is referred to as the densification of the retweet graph.

We use a dynamic random graph setting for our model, since it is most suitable for our situation. We
base our model on the superstar model of Bhamidi et al. [8]. For the sake of simplicity of the model
we neglect the friend-follower network of Twitter. Furthermore, every user can, in theory, retweet any
message sent by a public user, which also supports our simplification. Before we state our model and
derive its properties, we first introduce some background.

3.1 Random graph models

This section contains the models we use in our work and states the setup of these models and their
properties.

3.1.1 Preferential attachment model

1/10

1/10

1/10

2/10

2/10

3/10

Figure 3.1: Example of preferal attachment scheme,
where m = 1.

The first model we describe was extensively
studied by Barabási and Albert [6] and it is
referred to as the Preferential Attachment
(PA) model. The model starts with an undi-
rected graph G0 of n0 nodes. Then at ev-
ery time step t a new node with m edges is
added to the graph. The graph at time n in
which we add m edges is denoted by Gnm.
Since we don’t allow self-loops or multiple
edges, it holds that m ≤ n0. The edges of
the new node are connected to the existing
graph using a PA scheme, that is the proba-
bility of attaching a new edge to a node i of
degree δi is

πi =
δi∑
j δj

.

In Figure 3.1 we show an example of the different probabilities (indicated in red) with which the node
with the dotted edge can join a specific node in the graph.

Recall that δv denotes the degree of a node v. The PA scheme, that starts with a single vertex with
a loop, yields a graph with a power-law degree distribution, shown by Bollobás et al. in [10]. They
derive this equation as follows. First the authors obtain the distribution of the sum of the first k degrees,
which they use to obtain the expectation of #n

m(k), defined as the number of vertices of the graph with
in-degree k and total degree d = k +m. Finally they prove that E [#n

m(k) | Gtm] is a martingale and use
the Azuma-Hoeffding inequality to derive the following degree distribution:

P (δv = d) =
2m(m+ 1)

d(d+ 1)(d+ 2)
.
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If the network G0 is connected, then the final graph will contain just one component. However, if
G0 consists of multiple components, there are several possibilities. If m = 1 the graph will remain
disconnected. If m ≥ 2 then the nodes that are added to the graph can connect the graph into one giant
component. In our setting of retweet networks, it is most realistic to assume m = 1, since a person can
only retweet one message at a time. However, in reality several components of the retweet graph can
merge over time, thus this model needs to be adjusted to fit our needs.

3.1.2 Superstar model

Bhamidi et al. [8] define a model for undirected graphs that they call the superstar model. It seeks to
model the retweet graph of a subject in the Twitter sphere. They found that this undirected graph can
be modelled as a random graph using an extension of the PA model. At stage n, attach a new node vn
to the graph. We attach this node to the root v0, with probability q, or attach the node to a node from
{v1, . . . , vn−1} following the PA scheme, with probability 1− q.

3.2 Model definition

At the start of the progression, we have a graph G0. For now, we will assume that G0 consists of a
single node, however, this does not have to be the case. Since the graph evolves over time, we denote
the graph process as {Gt, t = 0, 1, . . .}. At every time t there occurs one out of three arrival types to
Gt−1, indicated in Figure 3.2, following the distribution given in Table 3.1.

type 1:

type 2:

type 3:

Figure 3.2: Arrival types to Gt.

For these arrival types, we use two parameters. The first parameter is λ, which is defined as the
ratio of the rate of arriving messages (λm) to the rate of arriving retweets (λr). The second parameter
is p, which is defined as the probability that a new retweet introduces a new node to the retweet graph.
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Possible arrival types:


T1: a new message tree w.p. λ

λ+1 .

T2: a retweet with a new user w.p. p
λ+1 .

T3: a retweet with a known user w.p. 1−p
λ+1 .

Table 3.1: Distribution of arrivals to Gt.

Once the type of a new arrival is known, we must determine the source node of a retweet (for both
T2 and T3 arrivals) and choosing a target node of a retweet (for a T3 arrival).

First we discuss how a source node is chosen. Every message tree in Gt has a given probability that
an arriving retweet joins its progression, this probability is proportional to the size of the message tree.
Remember that these message trees do not have to be individual components in Gt, as is indicated in
Figure 2.1. We define the probability that a retweet joins the message tree Ti (denoted by pTi ) as

pTi =
|Ti|∑

Tj∈Gt |Tj |

where we define |Ti| as the number of nodes in the progression of that message tree. Therefore, if
two message trees get joined during the growth of the graph, this fact does not influence their size.
Notice that the probabilities pTi have to be updated each time an object (either a node or an edge) is
added to the graph. After the message tree has been chosen, a node in this message tree is chosen
as the source node following the superstar attachment scheme [8], using a third model parameter q.
One could introduce a different superstar parameter qTi for every tree Ti. This way one could easily
implement specific properties of the user that starts the message tree, e.g. his/her number of followers.
For the sake of simplicity, we choose a uniform value of q for all message trees.

After a source node is chosen, a target node has to be chosen for a T3 arrival. We choose the
target node by randomly selecting a target node from all nodes in Gt−1, with the exception of the earlier
chosen source node, to prevent self-loops.

In Table 3.2 we present an overview of the declared parameters of the model.

notation description
λ rate of fraction between retweets and new messages
p probability to join new edge to a new vertex
q superstar parameter of the model

Table 3.2: Parameters of the model.

Parameters for extensions of the model
notation description
λr Inter-arrival rate of new retweets
λm Inter-arrival rate of new messages
qTi extension to superstar parameter for message tree Ti

Table 3.3: Parameters for extensions of the model.
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CHAPTER 4

MODEL ANALYSIS

In this chapter, we analyse the model stated in Chapter 3. We analyse several aspects of the model.
First we derive some expressions that give an insight in the overall growth of the graph. Then we obtain
an expression for the distribution of component sizes and derive expressions for the size of the giant
component.

4.1 Growth of the graph

In this section we analyse how the graph grows over time. First, we derive expressions for the average
degree in the graph Gt. We use two properties of our model that we formulate in two lemma’s. The first
of which provides an insight in the distribution of arrival types.

Lemma 4.1.1 (Distribution of arrival types). Consider the graph Gt, then the distribution of the number
of arrivals of type Ta, denoted by Y , is distributed as follows

Y ∼ Bin (t,P (arrival = Ta)) .

Proof. In the setup of our model an event happens at every time step. The probability that this event is of
the type Ta is P (arrival = Ta). Since these events are i.i.d., it holds that Y ∼ Bin (t,P (arrival = Ta)).

In the next lemma, we analyse the the distribution of the number of T3 arrivals in between the arrivals
of two nodes to the graph Gt.

Lemma 4.1.2 (Distribution in between new users). We consider the time between the arrival of node
i− 1 and node i to Gt. We state that the number of arrivals of T3 is distributed as the number of failures
in,

Xi ∼ Geo
(

1− 1− p
λ+ 1

)
.

Thus,

E [# T3 arrivals between i and i+ 1 nodes] =
1−

(
1− 1−p

λ+1

)
1− 1−p

λ+1

=
1− p
λ+ p

. (4.1)

Proof. Consider that the i − 1-th node just arrived at the graph. At every next time step we can add
either a T1, T2 or T3 arrival to the graph. The probability of a T3 arrival occurring is 1−p

λ+1 and therefore
the probability that a T1 or T2 arrival occurs is 1 − 1−p

λ+1 . Let us consider an arrival of T1 or T2 as a
success. Then the number of T3 arrivals that occurs before a success is distributed as a geometric
random variable with parameter 1 − 1−p

λ+1 . The expectation of the number of failures of a geometric
random variable with parameter p̄ is given by

E [# failures] =
1− p̄
p̄

.

Thus the number of T3 arrivals is distributed as a geometric random variable with parameter 1 − 1−p
λ+1

and has the expectation given in Equation 4.1.
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The average degree is one of the aspects through which we give insight to the growth of the graph.
In Theorems 4.1.3 and 4.1.4 we derive the expectation and the variance of the average degree in Gt,
given the graph has just accumulated it’s n-th node.

Theorem 4.1.3 (Expected average degree). We consider a graph Gt, in which the n-th node has just
arrived. Then

E
[
|E|
|V |
| |V | = n

]
=

1

λ+ p
− 1− p
n · (λ+ p)

. (4.2)

Proof. We derive the expected average degree of a node v in Gt conditioned on the number of nodes
in the graph.

E
[
|E|
|V |
| |V | = n

]
=

E [|E| | |V | = n]

n
,

=
E [# T2 arrivals on [0, t] | |V | = n] + E [# T3 arrivals on [0, t] | |V | = n]

n
(4.3)

We investigate the time of arrival of the n-th node. Thus at that time, we had n arrivals of T1 or T2. Let
Xj denote the type of the j-th arriving node. It follows that

Xj =

T1 w.p.
λ
λ+1

p
λ+1+

λ
λ+1

= λ
λ+p .

T2 w.p.
p
λ+1

p
λ+1+

λ
λ+1

= p
λ+p .

Therefore using a similar reasoning as Lemma 4.1.1, the distribution of the number of T1 arrivals follows
a binomial distribution with parameters n and λ

λ+p and the distribution of the number of T2 arrivals follows
a binomial distribution with parameters n and p

λ+p . Consequently the expected number of T1 and T2
arrivals are

E [# T1 arrivals on [0, t] | |V | = n] = n · λ

λ+ p
. (4.4)

E [# T2 arrivals on [0, t] | |V | = n] = n · p

λ+ p
. (4.5)

Then we calculate E [# T3 arrivals]. Using Lemma 4.1.2, the number of arrivals of T3 between i and
i + 1 nodes, denoted by Xi, follows a geometric distribution with parameter 1 − 1−p

λ+1 . Furthermore, we
know that,

E [# T3 arrivals between i and i+ 1 nodes] =
1− p
λ+ p

.

Since we have n− 1 of these transitions from 1 node to n nodes, we find

E [# T3 arrivals on [0, t] | |V | = n] = (n− 1) · 1− p
λ+ p

. (4.6)

Using (4.5), (4.6) and (4.3) we find

E
[
|E|
|V |
| |V | = n

]
=

n · p
λ+p + (n− 1) · 1−pλ+p

n
,

=
1

λ+ p
− 1− p
n · (λ+ p)

. (4.7)

Theorem 4.1.4 (Variance of average degree). We consider a graph Gt, in which the n-th node has just
arrived. Then,

var
(
|E|
|V |
| |V | = n

)
=
n · p · λ+ (n− 1) (1− p) (λ+ 1)

n2 · (λ+ p)
2 . (4.8)
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Proof. Using Theorem 4.1.3, we find

var
(
|E|
|V |
| |V | = n

)
=

var (|E| | |V | = n)

n2
,

=
var (#T2 + # T3 | |V | = n)

n2
,

=
var ( # T2 | |V | = n) + var ( # T3 | |V | = n)

n2
. (4.9)

We then define {# T2 | |V | = n} = Y and {# T3 | |V | = n} =
∑n−1
i=1 Xi, in which Y ∼ Bin

(
n, p

λ+p

)
,

using the reasoning before Equation 4.4 and Xi ∼ Geo
(

1− 1−p
λ+1

)
by Lemma 4.1.2. Using this in

Equation 4.9, we find

var
(
|E|
|V |
| |V | = n

)
=

n · p
λ+p ·

λ
λ+p + (n− 1) · var (Xi)

n2
,

=

n · p
λ+p ·

λ
λ+p + (n− 1) ·

1−p
λ+1

(1− 1−p
λ+1 )

2

n2
,

=

n · p
λ+p ·

λ
λ+p + (n− 1) ·

1−p
λ+1

(λ+p
λ+1 )

2

n2
,

=
n · p · λ+ (n− 1) (1− p) (λ+ 1)

n2 · (λ+ p)
2 . (4.10)

Using this formula, we find that limn→∞ var
(
|E|
|V | | |V | = n

)
= 0 and it converges with rate 1

n .

A different aspect we discuss is the expected number of edges per message tree in Gt. Again, we
derive the expectation and the variance in Theorems 4.1.5 and 4.1.6 respectively.

Theorem 4.1.5 (Expected number of edges per message tree). We consider the graph process at time
t and derive the following expression for the expected number of edges per message tree (root-node of
a superstar progression)

E
[
|E|
|T |

]
= λ−1 ·

(
1−

(
1

λ+ 1

)t)
, (4.11)

where |T | denotes the number of message trees in the graph Gt.

Proof. Since all discussions that arrive are T1 arrivals and all retweets that arrive are T2 and T3 arrivals,
we use Lemma 4.1.1 and find that the number of T2 and T3 arrivals follows a binomial distribution with
parameters t and P (T2 arrival) + P (T3 arrival) = 1

λ+1 . When the amount of arrivals of T2 and T3 in
Gt are known, the number of arrivals of T1 is also known (namely t minus the number of T2 and T3
arrivals). The amount of message trees is the number of arrivals of T1 plus one for the message tree in
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G0. Using this we find

E
[
|E|
|T |

]
= E

[
# T2 and T3 arrivals on [0, t]

# T1 arrivals on [0, t] + 1

]
,

=

t∑
i=1

i

t− i+ 1
·
(
t
i

)
·
(

1

λ+ 1

)i
·
(

λ

λ+ 1

)t−i
,

=

t∑
i=1

i

t− i+ 1
· t!

i! (t− i)!
·
(

1

λ+ 1

)i
·
(

λ

λ+ 1

)t−i
,

=

t∑
i=1

t!

(i− 1)! (t− i+ 1)!
·
(

1

λ+ 1

)i−1
· 1

λ+ 1
·
(

λ

λ+ 1

)t−i+1

·
(

λ

λ+ 1

)−1
,

=
1

λ+ 1
·
(

λ

λ+ 1

)−1
·

t∑
i=1

(
t

i− 1

)
·
(

1

λ+ 1

)i−1
·
(

λ

λ+ 1

)t−i+1

,

=
1

λ
·
t−1∑
j=0

(
t
j

)
·
(

1

λ+ 1

)j
·
(

λ

λ+ 1

)t−j
,

=
1

λ
·

(
1−

(
1

λ+ 1

)t)
, (4.12)

which completes the proof. Furthermore as t→∞,
(

1
λ+1

)t
→ 0. Therefore

lim
t→∞

E
[
|E|
|T |

]
= λ−1. (4.13)

As we shall see in Chapter 5, this expression is very useful for the parameter estimation. Using a
similar argument, we can also derive the variance of the number of edges per message tree.

Theorem 4.1.6 (Variance for number of edges per message tree). Given Gt we find that the variance
for the number of edges per message tree is,

var
(
|E|
|T |

)
=

1

λ

 t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

− 1

λ
·

(
1−

(
1

λ+ 1

)t)2
 .

(4.14)

Proof. We obtain this equation as follows

var
(
|E|
|T |

)
= var

(
# T2 + # T3 on [0, t]

# T1 on [0, t]

)
,

= E

[(
# T2 + # T3 on [0, t]

# T1 on [0, t]

)2
]
− E

[
# T2 + # T3 on [0, t]

# T1 on [0, t]

]2
. (4.15)

In which E
[

# T2 + # T3 on [0,t]

# T1 on [0,t]

]
is already known by Theorem 4.1.5. Therefore, we only need to de-

rive an expression for the first term. We also use the proof of Theorem 4.1.5 as an outline to derive
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E
[(

# T2 + # T3 on [0,t]

# T1 on [0,t]

)2]
, in which we also use Lemma 4.1.1.

E

[(
# T2 + # T3 on [0, t]

# T1 on [0, t]

)2
]

=

t∑
i=0

(
i

t− i+ 1

)2

· P (i arrivals of T2 or T3 on [0, t]) ,

=

t∑
i=0

(
i

t− i+ 1

)2

·
(
t
i

)(
1

λ+ 1

)i(
λ

λ+ 1

)t−i
,

=

t∑
i=1

(
i

t− i+ 1

)2

· t!

i! (t− i)!
·
(

1

λ+ 1

)i
·
(

λ

λ+ 1

)t−i
,

=
1

λ+ 1
·
(

λ

λ+ 1

)−1
·

t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)
·
(

1

λ+ 1

)i−1
·
(

λ

λ+ 1

)t−i+1

,

=
1

λ
·

t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)
·
(

1

λ+ 1

)i−1
·
(

λ

λ+ 1

)t−i+1

. (4.16)

Combining this with Theorem 4.1.5 and Equation 4.15 we find

var
(
|E|
|T |

)
= E

[(
# T2 + # T3 on [0, t]

# T1 on [0, t]

)2
]
− E

[
# T2 + # T3 on [0, t]

# T1 on [0, t]

]2
,

=
1

λ
·

t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)
·
(

1

λ+ 1

)i−1
·
(

λ

λ+ 1

)t−i+1

−
(

1

λ

)2

·

(
1−

(
1

λ+ 1

)t)2

,

=
1

λ

 t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

− 1

λ
·

(
1−

(
1

λ+ 1

)t)2
 .

Since Equation 4.14 does not provide a good insight in the rate of the convergence of var
(
|E|
|T |

)
, we

derive this rate of convergence as follows. First we rewrite the summation in Equation 4.14.

t∑
i=1

i

t− i+ 1
·
(

t
i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

,

=

t∑
i=1

(
t+ 1

t− i+ 1
− 1

)
·
(

t
i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

,

=

t∑
i=1

t+ 1

t− i+ 1
·
(

t
i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

−
t−1∑
j=0

(
t
j

)(
1

λ+ 1

)j (
λ

λ+ 1

)t−j
,

= E
[

t+ 1

t− X̃ + 1

]
− 1 +

(
1

λ+ 1

)t
.
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Where X̃ ∼ Bin
(
t, 1
λ+1

)
. We then standardize the expectation in this last equation,

E
[

t+ 1

t− X̃ + 1

]
= E

 t+ 1(
t

λ+1 − X̃
)

+ λ·t+λ+1
λ+1

 ,
= E

 (t+1)(λ+1)√
λt

λ+1√
λt
·
(

t
λ+1 − X̃

)
+ λ·t+λ+1√

λt

 ,
= E

 (t+1)(λ+1)√
λt

Z̃ + λ·t+λ+1√
λt

 ,
=

(t+ 1) (λ+ 1)

λt+ λ+ 1
· E

[
1

√
λt

λt+λ+1 · Z̃ + 1

]
.

Within the function 1√
λt

λt+λ+1 ·Z̃+1
we define a(λ, t, Z̃) = Z̃ ·

√
λt

λt+λ+1 . In this expectation, we distinguish two

possibilities, namely |a| > 1 and |a| < 1. We then split the equation into two parts as follows:

E

[
1

√
λt

λt+λ+1 · Z̃ + 1

]
= E

[
1|a|≥1

(
1

√
λt

λt+λ+1 · Z̃ + 1

)]
+ E

[
1|a|<1

(
1

√
λt

λt+λ+1 · Z̃ + 1

)]
.

The first term of this expression goes to 0. Using the second term, we argue that var
(
|E|
|T |

)
goes to 0

as t → ∞ at rate 1
t . By the central limit theorem (CLT) we know that Z̃ D−→ Z ∼ N(0, 1) for t → ∞.

Therefore we replace Z̃ with Z. Furthermore, we omit 1|a|<1. We then take the MacLaurin Series,

E

[
1

√
λt

λt+λ+1 · Z + 1

]
= E

1−
√
λt

λt+ λ+ 1
· Z +

( √
λt

λt+ λ+ 1
· Z

)2

−

( √
λt

λt+ λ+ 1
· Z

)3

+ . . .

 .
We rewrite this equation using

−E

∣∣∣∣∣
√
λt

λt+ λ+ 1
· Z

∣∣∣∣∣
3
 ≤ E

−( √
λt

λt+ λ+ 1
· Z

)3

+

( √
λt

λt+ λ+ 1
· Z

)4

− . . .

 ≤ E

∣∣∣∣∣
√
λt

λt+ λ+ 1
· Z

∣∣∣∣∣
3
 .

Furthermore, using Hall [21], we find that that E
[
|Z̃|p

]
→ E [|Z|p] for p > 0 under the CLT, we find

E

∣∣∣∣∣
√
λt

λt+ λ+ 1
· Z

∣∣∣∣∣
3
 =

∣∣∣∣∣
√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π
.

Using these equations, we derive bounds for E
[

1√
λt

λt+λ+1 ·Z+1

]
,

1 + E

( √
λt

λt+ λ+ 1
· Z

)2
− ∣∣∣∣∣

√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π
,

≤ E

[
1|a|<1

(
1

√
λt

λt+λ+1 · Z + 1

)]
,

≤ 1 + E

( √
λt

λt+ λ+ 1
· Z

)2
+

∣∣∣∣∣
√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π
,

= 1 +
λt

(λt+ λ+ 1)
2 +

∣∣∣∣∣
√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π
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We use these equations to find the limit of the variance for t→∞,

lim
t→∞

var
(
|E|
|T |

)
= lim

t→∞

1

λ

E
[

t+ 1

t− X̃ + 1

]
− 1 +

(
1

λ+ 1

)t
− 1

λ
·

(
1−

(
1

λ+ 1

)t)2
 ,

≈ lim
t→∞

1

λ

 (t+ 1) (λ+ 1)

λt+ λ+ 1
· E

[
1

√
λt

λt+λ+1 · Z + 1

]
− 1 +

(
1

λ+ 1

)t
− 1

λ
·

(
1−

(
1

λ+ 1

)t)2
 ,

= lim
t→∞

1

λ

 (t+ 1) (λ+ 1)

λt+ λ+ 1
·

1 +
λt

(λt+ λ+ 1)
2 +

∣∣∣∣∣
√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π

− 1 +

(
1

λ+ 1

)t
−

1

λ
·

(
1−

(
1

λ+ 1

)t)2
 ,

=
1

λ

(
λ+ 1

λ
(1 + 0 + 0)− 1 + 0− 1

λ
(1− 0)

)
,

=
1

λ

(
λ+ 1

λ
− λ+ 1

λ

)
= 0.

We also find that E
[

t+1
t−X+1

]
converges with rate 1

t since,

lim
t→∞

t · (t+ 1) (λ+ 1)

λ · t+ λ+ 1
·

(
E

[
1

√
λt

λt+λ+1 · Z + 1

]
− 1

)

= lim
t→∞

t · (t+ 1) (λ+ 1)

(λt+ λ+ 1)
·

 λt

(λt+ λ+ 1)
2 +

∣∣∣∣∣
√
λt

λt+ λ+ 1

∣∣∣∣∣
3

· 2
√

2

π

 ,

=
(λ+ 1)

λ2
,

is a constant. And since this expectation in the equation converges with rate 1
t , so does the variance.

4.2 Component size distribution

In this section we assume that Gt consists of m connected components (C1, C2, . . . , Cm) with known
respective sizes (|C1|, . . . , |Cm|). We aim to derive expressions for the distribution of the component
sizes after the first arrival to Gt. To do this, we first derive the probabilities that components merge.

Lemma 4.2.1. Given a graph Gt, we can derive the probability that components Ci and Cj merge given
that a T3 arrival occurs next.

P (components j and i join | T3 arrival) =
2 · |Ci| · |Cj |
|V |2 − |V |

. (4.17)

Furthermore it holds that

P (components merge | T3 arrival) =
2 ·
∑
k |Ck| ·

∑
l>k |Cl|

|V |2 − |V |
(4.18)

Proof. In this proof all probabilities are conditioned on the event that there is a T3 arrival. We omit
this conditioning for brevity. Consider all components (in short comp.) to be urns and all nodes in the
components as balls in the corresponding urn. Using this interpretation we can express the desired
probability as the amount of outcomes when selecting two balls from two different urns, divided by the
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total number of options. When Ci and Cj merge, we have |Ci| · |Cj | possible outcomes to get the desired
balls from urns i and j. All possible combinations of selecting two balls form all urns are(

|V |
2

)
=

|V |!
2! · (|V | − 2)!

=
|V | · (|V | − 1)

2
=
|V |2 − |V |

2
.

Thus we obtain to Equation 4.17. Moreover, we can join any two components Ck and Cl. The total
amount of possibilities for this event to occur is

∑
k |Ck| ·

∑
l>k |Cl|. Therefore, we also find the following

probability

P (components j and i join | components merge) =
|Ci| · |Cj |∑

k |Ck| ·
∑
l>k |Cl|

.

Then by using the multiplication formula, we obtain

P (comp. j and i join | comp. merge) ·P (comp. merge) = P (comp. merge, comp. j and i join) . (4.19)

Using this expression, combined with the two probabilities found earlier, we find the probability that two
components of Gt merge on the next arrival.

P (components merge) =
P (components merge, components j and i join)

P (components j and i join | components merge)

=

2·|Ci|·|Cj |
|V |2−|V |
|Ci|·|Cj |∑

k |Ck|·
∑
l>k |Cl|

=
2 ·
∑
k |Ck| ·

∑
l>k |Cl|

|V |2 − |V |
(4.20)

This completes the lemma.

We use these probabilities to derive expressions for the distribution of the sizes of the components
of Gt+1.

Lemma 4.2.2. The distribution of the sizes of the components of Gt+1, given Gt is as follows,

component sizes of Gt+1 :


|C1|, . . . , |Ci|, |Cj |, . . . , |Cm|, 1 w.p. λ

λ+1

|C1|, . . . , |Ci|+ 1, |Cj |, . . . , |Cm| w.p. p
λ+1 ·

|Ci|
|V |

|C1|, . . . , |Ci|+ |Cj |, . . . , |Cm| w.p. 1−p
λ+1 ·

2·|Ci|·|Cj |
|V |2−|V |

|C1|, . . . , |Ci|, |Cj |, . . . , |Cm| w.p. 1−p
λ+1 ·

|Ci|2−|Ci|
|V |2−|V |

(4.21)

Proof. There are three types of arrivals, which we will discuss separately. First at a T1 arrival, which
occurs w.p. λ

λ+1 , we create a new component, thus the new distribution of component sizes is

Gt+1 = {C1, . . . , Cm, Cm+1} ,

in which |Cm+1| = 1.
Then we consider a T2 arrival, which occurs w.p. p

λ+1 . We now add a node to an existing component
Ci w.p. |Ci||V | . Thus the probability that we add the new node to Ci is p

λ+1 ·
|Ci|
|V | .

Last, we consider a T3 arrival. In this case we have two options. The new edge can either join two
components, or join two nodes that are already in one component. For the first case, we take Equation
4.17 from Lemma 4.2.1 to derive the probability that Ci and Cj join as

P (Components Ci and Cj merge) = P (T3 arrival) · 2 · |Ci| · |Cj |
|V |2 − |V |

=
1− p
λ+ 1

· 2 · |Ci| · |Cj |
|V |2 − |V |

.

Then for the second case, we use a similar reasoning as the proofs in Lemma 4.2.1. The number of
ways a T3 arrival links two nodes that are already connected in a component, say Ci, is |Ci| (|Ci| − 1).
Therefore with probability |Ci|

2−|Ci|
|V |2−|V | the component size does not change.
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Finally we check if these last two cases cover all possibilities. The second term in our summation is
equal to the summation in Equation 4.20. Therefore, we simplify the following equation:∑

i

[
|Ci|2 − |Ci|

]
+ 2 ·

∑
i

|Ci|
∑
j>i

|Cj | =
∑
i

|Ci|2 − |V |+ 2 ·
∑
i

|Ci|
∑
j>i

|Cj |

=
∑
i

∑
j

|Ci||Cj | − |V |

= |V |2 − |V | (4.22)

4.2.1 The case p=1: a Pólya process

So far we attempted to derive expressions for the distribution of the component sizes for Gt, given the
current distribution. Another option is to derive the distribution of the component size as a whole. For
this analysis we need the notion of exchangeability.

Definition 4.2.3 (exchangeable random variables). Let X1, X2, . . . , Xk be a sequence of random vari-
ables. This sequence is called exchangeable if and only if for every permutation σ of 1, 2, . . . , k it holds
that,

P
(
Xσ(1) = xσ(1), Xσ(2) = xσ(2), . . . , Xσ(k) = xσ(k)

)
= P (X1 = x1, X2 = x2, . . . , Xk = xk) . (4.23)

Thus the joint probability distribution of the sequence is the same, regardless of the order of the events.

If we then assume that p = 1 in our model, we can use the infinite generalized Pólya process
(analysed by Chung et al. in [15]), which uses two parameters, γ and p̄. It is defined as follows,

Definition 4.2.4 (infinite generalized Pólya process). For fixed parameters γ ∈ R, 0 ≤ p̄ < 1, begin with
a bin containing one ball and then introduce balls one at a time. For each new ball, with probability p̄,
create a new bin and place the ball in that bin; with probability 1 − p̄, place the ball in an existing bin,
such that the probability that the ball is placed in a bin is proportional to xγ , where x is the number of
balls in that bin.

Also, we define fi ∝ g(i) as fi = c (1 + o(1)) g(i) for some constant c. Let fi denote the fraction of
bins that contain i balls, then

fi ∝ i−(1+ 1
1−p̄ ). (4.24)

Equation 4.24 is derived in [15] by first calculating a recurrence relation between fi and fi−1. This
recurrence is then used to determine Equation 4.24.

Returning to our model, we take p = 1. In this situation message trees in our model cannot be
combined. Therefore we only have arrivals of T1 and T2. Consider every message tree as a bin
and every user inside the message tree as a ball. Adding a new ball to a bin then is equivalent to
adding a retweet to a message tree and adding a new bin with a ball in it is equivalent to adding a
new message tree to the progression. Since the probability that a particular bin is chosen depends
on the number of balls in that bin, we choose γ = 1 and the probability of an addition of a new bin is
p̄ = P (T1 arrival) = λ

λ+1 . Thus our model is equivalent to an infinite generalized Pólya process with
parameters γ = 1 and p̄ = λ

λ+1 if p = 1. Then, by using Equation 4.24 and the fact that p̄ = λ
λ+1 , we find

fi ∝ i−(2+λ) (4.25)

Thus the component size distribution follows a power-law distribution with parameter 2 + λ when p = 1.
We can compare these results to simulations using the model. The measure that we use in this com-
parison is the complementary cumulative density function (CCDF) of the component size distribution,
defined as

F (x) = P (X > x) = 1− P (X ≤ x) = 1− c ·
x∑
i=0

fi. (4.26)
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In which c is a constant such that c ·
∑∞
i=0 fi = 1. We execute 5 runs with λ = 3

4 , p = 1, q = 0.95. In
these runs we use 3 stop criteria for n, being n = 1000, n = 10000 and n = 100000. Notice that the
parameter q does not influence the component size. The results of these runs are depicted in Figure
4.1. In this Figure, we use the black line to indicate the value of the CCDF using Equation 4.26. We see
that as n increases, the outcome of the runs follows a line with the same slope as the black line, which
supports our statement. The lines do not overlap exactly because we used a normalized form of fi in
Figure 4.1, whereas Equation 4.25 states that fi is proportional to that function.
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Figure 4.1: Complementary Cumulative Density Function for fi.

4.3 Size of the giant component

The ultimate goal of our analysis is to derive an expression for |EGC|
|VGC| . Through Lemma 4.2.2 we can de-

rive the probability distribution for the size of the largest component for a small graph. Below, we derive
the possible outcomes for G3 and use them to form the probability distribution of the giant component
size. We find that,

G3 ∼



{1} w.p. (1−p)3

(λ+1)3
,

{2} w.p. 3p(1−p)2+2λ(1−p)2

(λ+1)3
,

{3} w.p. 3p2(1−p)+ 7
3λp(1−p)

(λ+1)3
,

{4} w.p. p3

(λ+1)3
,

{1, 1} w.p. λ(1−p)2

(λ+1)3
,

{2, 1} w.p.
11
3 λp(1−p)+2λ2(1−p)

(λ+1)3
,

{2, 2} w.p.
2
3λp

2

(λ+1)3
,

{3, 1} w.p.
7
3λp

2

(λ+1)3
,

{1, 1, 1} w.p. (1−p)λ2

(λ+1)3
,

{2, 1, 1} w.p. 3λ2p
(λ+1)3

,

{1, 1, 1, 1} w.p. λ3

(λ+1)3
.

And thus, we can calculate the probability distribution of the giant component size for G3:

|VGC| | G3 ∼



1 w.p. (1−p)3+λ(1−p)2+(1−p)λ2+λ3

(λ+1)3
,

2 w.p. 3p(1−p)2+2λ(1−p)2+ 11
3 λp(1−p)+2λ2(1−p)+ 2

3λp
2+3λ2p

(λ+1)3
,

3 w.p. 3p2(1−p)+ 7
3λp(1−p)+

7
3λp

2

(λ+1)3
,

4 w.p. p3

(λ+1)3
.
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Figure 4.2: Probabilities for Giant Component in G3.

In Figure 4.2 we find four plots that indicate the probability that the giant component has a given size.
On the x-axis and the y-axis we display several values for λ and p, the z-axis displays the probability that
the giant component is of the size indicated in the caption of the figure. We clearly see that in Figure
4.2(a) that the giant component has size 1 for low values of p and that this probability increases as λ
goes to 0. In Figure 4.2(d) we see that the giant component has size 4 if p is large and λ is low. Then
Figure 4.2(c) indicates that the giant component is of size 3 when p is approximately 0.7 and λ is low.
Finally, we see in Figure 4.2(b) that the giant component has size 2 if p is low for low λ values and that
this probability becomes higher when λ increases. Thus, the giant component gets larger for low values
of λ. The same holds for larger values for p.

Another strategy to derive an estimate for the size of the giant component is using the distribution of
component sizes. In this estimate we assume that all T3 arrivals occur after all nodes have arrived to
the graph. However, we cannot use this estimate as a bound for the size of the giant component. We
show this by the following example. Consider two moments in time, s and t. We assume s ≤ t. Let Gs
contain two components i and j of size 1, thus |Csi | = |Csj | = 1. Furthermore we assume that |V s| = 5
and |V t| = 20. Using Lemma 4.2.1 we know that,

P (i and j merge at time s) =
2 · |Csi | · |Csj |
|V s|2 − |V s|

=
2

20
.

Similarly we know,

P (i and j merge at time t) =
2 · |Cti | · |Ctj |
|V t|2 − |V t|

=
2 · |Cti | · |Ctj |

380
.

Thus we conclude:

|Cti | · |Ctj | = 19 =⇒ P (i and j merge at time s) = P (i and j merge at time t) ,

|Cti | · |Ctj | < 19 =⇒ P (i and j merge at time s) > P (i and j merge at time t) ,

|Cti | · |Ctj | > 19 =⇒ P (i and j merge at time s) < P (i and j merge at time t) .

Therefore, we can only use this approach to obtain an estimate of the size of the giant component,
without knowing if it is larger or smaller than the actual value.
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CHAPTER 5

THE MODEL IN PRACTICE

In this chapter we describe how we obtain estimates for the parameters from available tweets. Then,
we use these expressions to perform a numerical verification of the expressions in Chapter 4. Subse-
quently, we analyse the sensitivity of the parameters to changes through simulations. Finally, we test
the performance of the model with respect to the datasets that we discussed in Chapter 2.

5.1 Deriving parameter estimators

In this section we derive expressions which can be used to estimate the parameters λ, p and q of our
model. First we derive an expression to estimate λ. Using Theorem 4.1.5, we know that |E||T | goes to
λ−1 as t→∞. Thus, we estimate λ as follows,

λ̂ =
|T |
|E|

. (5.1)

Second, we derive an expression for p̂. Since we already have an expression for λ̂, we can combine
this expression with Theorem 4.1.3 to obtain,

|E|
|V |

=
1

λ̂+ p̂
− 1− p̂

|V | ·
(
λ̂+ p̂

)
(
λ̂+ p̂

)
· |E| = |V | − 1 + p̂

p̂ · |E| − p̂ = |V | − λ̂ · |E| − 1

p̂ =
|V | − |T | − 1

|E| − 1
(5.2)

Third, we derive an expression for q̂. In this expression let ET denote the set of edges that have a
root node of a message tree as a source node. Then from the definition of the superstar model [8], we
derive the estimator

q̂ =
|ET |
|E|

. (5.3)

Notice that we can obtain the needed numbers (|E|, |T |, |V | and |ET |) directly from a dataset of
tweets. In Section 5.4 we estimate the parameters using the tweets that have been posted. Since more
tweets arrive over time in our datasets, the parameter estimates vary over time.

5.2 Verification through simulation

In this section, we connect the output of our model to the theoretic values found in Chapter 4. For this
analysis we set all parameters and compare the results of multiple runs with the equations we found. In
this section, we start a simulation with G0, containing only one node.

We set λ = 1
3 , p = 3

4 and q = 19
20 . Since Theorems 4.1.3 and 4.1.4 are conditioned on the number

of nodes in the graph, we stop the simulation if |V | = n. Using Theorems 4.1.3 and 4.1.4, we find
theoretical values for several values of n (indicated by the green solid and dotted lines in Figure 5.1(a)).
In the same figure, we depict the average value (blue line) and its standard deviation (red dotted lines)
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for 50 simulations of our model with the predefined parameters. These simulations are executed for
multiple values of n.

Similarly, we use Theorems 4.1.5 and 4.1.6 with several values for t. Again, we set λ = 1
3 , p = 3

4 ,
q = 19

20 and simulate 50 runs and depict the results in Figure 5.1(b). During these simulations, we
used the number of time steps t as a stop criterion for the simulation. For values above t = 1000, we

cannot numerically determine the values corresponding to Theorem 4.1.6, since
(

t
k

)
gives too large

numbers for large values of t.
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Figure 5.1: Theoretical and simulated values for 50 runs.

In Figure 5.1 we find that the simulated results and the theoretical results are consistent. For the
simulation results of E

[
|E|
|V | | |V | = n

]
we find that they lie below the theoretical values, this can be

explained by the following: In our simulation, when we try to join an edge to the graph, we check if
that edge already exists, since we do not allow multiple edges. If the new edge already exists, we do
nothing. Since we do not distinguish this in the theoretical case, there are more edges in this graph
which gives a higher average degree. As time progresses, there are more possibilities for edges to join
the graph, which induces a lower probability that we try to join an existing edge to the graph.

5.3 Sensitivity analysis

Another interesting aspect is to know if the output can be changed dramatically by a slight change in the
parameters. With this analysis we test the robustness of the model and we gain insight in the relation
between the parameters. We perform this analysis in this section by fixing two out of three parameters
and executing multiple runs using various values for the third parameter. Again, we start the simulations
with a graph G0, consisting of one node. For this analysis we execute multiple simulations using our
model, again we perform 50 runs. The results that we display in this section are the average values of
all individual runs for the given parameters.

The fixed values are λ = 1
3 , p = 0.75 and q = 0.95. For the analysis we take λ ∈ { 13 ,

2
3 , 1,

4
3 ,

5
3 , 2},

p ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1} and q ∈
{0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1}. We compare the results on five measures. These
measures are |E||V | ,

|EGC|
|VGC| ,

|VGC|
|V | , |EGC|

|E| and the diameter.

In Figures 5.2 and 5.3 we compare the measures |E||V | and |EGC|
|VGC| . First, in Figures 5.2(c) and 5.3(c),

we find that the outcomes are similar for all different values of q. Then in Figure 5.2(b) we see that the
values for |E||V | range from 0.7 to 1.2, so there is a transition from a tree-like structure to a denser structure
when p is lower than 0.65. Furthermore, the outcomes are consistent through time for high values of p.
Also, the results for p = 1 are less than 1 for all t, as shown in Figure 5.3(b). In Figures 5.2(a) and 5.3(a)
we see that different values for λ can also give a wide range of outcomes for the both measures. Here
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Figure 5.2: Analysis for measure |E||V | .
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Figure 5.3: Analysis for measure |EGC|
|VGC| .
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Figure 5.4: Analysis for measure node percentage in GC.
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Figure 5.5: Analysis for measure edge percentage in GC.
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Figure 5.6: Analysis for diameter.

it also holds that for low λ, |E||V | and |EGC|
|VGC| are large. Thus we may conclude that these measures heavily

depend on the values for p and λ.
The next two measures correspond to the size of the giant component of the graph, which are

depicted in Figures 5.4 and 5.5. Again, we see that λ and p are the most decisive parameters. When p
approaches 1, the fraction of nodes and edges in the GC drop significantly as t grows. Again for q the
results are consistent for all values of q as t grows. However, the values are not differ considerately for
lower values of t.

For the last measure, the diameter, we find that it grows over time for all parameters, regardless of
their values. For q all outcomes are similar, see Figure 5.6(c). For p, we see that if p is smaller than 0.9
the diameter increases more rapidly as t grows, which is indicated in Figures 5.6(b). This also holds for
λ when it is lower than 1 (Figure 5.6(a)).

5.4 Prediction using the estimates

For every hour in the progression of a dataset, we determine the tweets that were posted until this time.
Using these tweets we estimate the parameters using Equations 5.1, 5.2 and 5.3. Then we use our
model to build a graph to the same size as the end progression. We then calculate the properties of
these predicted progressions. For every hour, we perform 50 of these predictions, of which we present
the average results. Furthermore, we compare the properties of some simulations to the properties in
the actual dataset. The observations and conclusions we state in this section are based on a combined
figure of the estimates, the normalized number of tweets and the properties. Since these figures are
hard to comprehend, we present the figures separately.

5.4.1 Project-X dataset

In Figure 5.7 we display the parameter estimates at certain moments using the tweets that are available
up to that time. At the start of the progression, the estimate of λ decreases significantly. This means that
there are more retweets arriving compared to new discussions. This time coincides with the forming of
a large component. Lastly we see that the estimates of all parameters are very stable after the peak in
the dataset, since the largest part of the graph is already visible at that time.

The results of the simulations are displayed in Figure 5.8. The most remarkable in Figure 5.8 is
the decrease of the predicted values for |VGC ||V | and |EGC ||VGC | during 22-9. This decrease coincides with the
increase of p̂ that occurs just before the peak. This can be explained as follows: A higher value of p̂
causes less a lower probability of merging components in the simulation, which has a smaller expected
giant component size as a consequence.

Although the predicted values of these measures underestimate the real values in the dataset (indi-
cated by the black line in Figure 5.8), they already indicate that the giant component is going to be of a
considerate size and is denser than a tree-like structure. The results that are displayed after 22-9 are
almost identical to the actual graph, since the largest part of the graph is already visible at that time.
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Figure 5.7: Progression of the parameter estimates using the tweets that are available until the indicated
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Figure 5.8: Project-X simulations using data that is available to that time (standard deviations are
indicated in red).

We compare the result of the prediction of the graph with the actual graph for four different times,
namely the early progression (19-9-2012 12:00), the densification (20-9-2012 0:00), the start of the
peak (21-9-2012 7:00) and the middle of the peak (21-9-2012 19:00). First, we consider the simulated
progression of the graph at 19-9-2012 12:00, displayed in 5.9. Due to the high value of p̂, we see that
the in-degree (Figure 5.9(a)) and the component-size distribution (Figure 5.9(c)) do not coincide at all
the dataset values. If p̂ has a high value, components do not merge often, resulting in many small
components. The out-degree (Figure 5.9(b)) appears to resemble the dataset well, with the exception
of the outliers in the dataset.

Then, in the comparison of the dataset with the simulation for the densification at 2012-9-20 0:00
(see Figure 5.10), we find that the in-degree and the component size are a lot better with respect to the
early progression simulation. Still, the in-degree in the simulation is significantly lower than in the actual
dataset. The size of the giant component has increased significantly and is with its 60% a lot closer to
the actual 80% in the dataset.

Next we display a comparison with the start of the peak (2012-9-21 7:00) in Figure 5.11. we find that
only the component size distribution improves with respect to our last estimate. All other distributions
perform less than at the densification.
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Finally, at the simulation at the middle of the peak (2012-9-21 19:00), displayed in Figure 5.12, we
see a decrease in the accuracy of all the distributions with respect to earlier simulations. This underlines
the performance of the simulation seen in 5.8.

Thus we see that our model indicates that a large component is going to be present in the final pro-
gression the Project-X tweets. Also the out-degree distribution of the graph is similar for the simulations
and the actual dataset. The predictive power of the in-degree distribution is a lot less, this is an aspect
of the model that needs improvement.
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Figure 5.9: Comparison of Project-X and simulation using estimates from 2012-9-17 18:00
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Figure 5.10: Comparison of Project-X and simulation using estimates from 2012-9-20 0:00
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Figure 5.11: Comparison of Project-X and simulation using estimates from 2012-9-21 7:00
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Figure 5.12: Comparison of Project-X and simulation using estimates from 2012-9-21 19:00
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5.4.2 Turkish-Kurdish dataset

In Figure 5.13 we display the parameter estimates using the tweets available. Again, at the time that the
’other GC’ appears, we see a significant change in the estimate of λ. However, this time, also p changes
significantly. When we consider the trends in the estimates of λ and p, we find that if λ increases, p
decreases. We also find that during every peak in the dataset, the estimate of λ and p change. However,
the estimate of q has a very stable progression throughout time. Again, like in Figure 5.7, the estimates
stabilize after the last peak.
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Figure 5.13: Progression of the parameter estimates using the tweets that are available until the indi-
cated time (standard deviations are indicated in red).

The results of the simulations are displayed in Figure 5.14. At the start of the progression, the size
of the giant component is highly overestimated. The average degree however, is highly underestimated.
Furthermore, the predicted measures display several jumps in their progression. We found that these
jumps occur during the peak activity in the dataset. Since this dataset has many peaks in its progression,
it is not surprising to see that the predictions vary over time.
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Figure 5.14: Turkish-Kurdish simulations using data that is available to that time.

Then, we compare the first run at the time of the densification (2011-10-20 1:00) with the actual
dataset. This is displayed in Figure 5.15. Like in the simulations of the Project-X dataset, the in-degree
is underestimated. The out-degree distribution looks more alike, with the exception that the outliers in
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the dataset do not appear in the simulations. We also find that the giant component in our simulation is
much larger than the actual giant component.
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Figure 5.15: Comparison of the Turkish-Kurdish dataset and simulation using estimates from 2011-10-
20 1:00

5.4.3 WC speedskating dataset
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Figure 5.16: Progression of the parameter estimates using the tweets that are available until the indi-
cated time (standard deviations are indicated in red).

In Figure 5.16 we display the parameter estimates using the tweets available. For q, all estimates
are very close to 1, which indicates a very star-like structure in the graph, recall that this is the case
for this dataset (see Figure 2.10). In this dataset we also see that if λ increases, p decreases. There
is however one remarkable fact in the progression of λ. Just after the second peak in the dataset, the
value of λ increases shortly, but directly thereafter it decreases again. This indicates that during the
second peak of tweets first some components were merged, which was followed by a lot of separate
messages.

The results of the simulations are displayed in Figure 5.17. Overall we see that the size of the giant
component is underestimated greatly, until the dataset follows the progression of the actual tweets.
However, the prediction of the average degree is very good. Since this average degree is close to 1 and
we underestimate it slightly, the fact that we underestimate the component size is expected.
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Figure 5.17: WC speedskating simulations using data that is available to that time
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

In this chapter we formulate the conclusions of our study and discuss aspects that can be investigated
further.

6.1 Conclusions

In this thesis, we aimed to derive predictions for trending behaviour in Twitter. We obtained several
datasets and used them to investigate which characteristics could be used to model the progression
of a topic. Using these characteristics, we formulated a model that can simulate a final progression
of a topic using three parameters, being λ, p and q. We derived expressions, which could be used
to estimate the parameters using tweet data. Then, we used this model and the available datasets
to see how our model performed in comparison to the actual datasets. We find that our model gives
reasonable predictions with respect to the average degree in the giant component, which we defined
as the largest component in the graph. However, with respect to the size of the giant component, the
results vary among the datasets we used.

Since we found that a trend is a progression in which multiple communities are linked together, both
the average degree of the giant component and the size of the giant component are properties that
our model must be able to predict. Furthermore, we found that the parameters λ and p are the most
influential for the end progression of the graph. Since p has a direct influence on the size of the giant
component, this is the most decisive parameter with respect to the prediction of trends.

There is one aspect to the prediction of trends that our model does not capture, namely the size of
the end progression of a topic. With the addition of this fact, our model can be used for the prediction of
trends. Therefore, we conclude that if we develop a way to estimate the size of a retweet graph after a
trend, we answered all our research questions in Chapter 1.

6.2 Discussion

In this section we discuss directions for further research in order to improve the current model, which
we have not yet included due to the given timeframe. We have considered three datasets in this study.
To gain a better insight in the model it is wise to validate it using more datasets. Also, a suggestion for
further research into the progression of a single retweet tree is made.

6.2.1 Improvements to the model

In the plots, where we compare the performance of the model with the actual progressions, we see that
the in-degree distribution does not match. A way to improve this is to use a preferential attachment
mechanism when a target node is chosen. We have tried to include a mechanism based on the in-
degree in our model, but it lowered the eccentricity scores considerably. Other options have not been
explored so far.

In our work, we use five properties of the graph to compare the real graph with the simulated graph.
However, from the assumption that trends emerge as the graph gets denser over time, another measure
that could be considered is the clustering coefficient of a node in the network and how this evolves over
time. Using this measure will provide a more detailed insight in how the graph becomes denser. In the
current version, we cannot distinguish local and global density, using this measure adds to this insight.
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The next addition to the model is a time aspect. In our model, we only look at additions in the graph
without measuring the time between these additions. We suggest three different ways to extend the
model, so that it incorporates a time aspect. The first way to implement this, is to estimate λm and λr
directly (see Table 3.3 for their definitions). This provides more insight in the inter-arrival times of the
messages and retweets, which can be used to add a time-aspect to the current model, by assuming
both the retweet and the message processes are Poisson processes. The second option is to add the
notion of novelty, like Gómez et al. in [20]. We suggest two possibilities to incorporate this. First, in
addition to the fact that PTi is chosen using the size of the message tree Ti, one could introduce the
novelty of the message tree at time t nTi,t that indicates the last time an edge was added to the message
tree Ti (denoted by tTi ),

nTi,t = τ t−tTi , τ ∈ [0, 1] .

The probability that a tree is chosen can then depend on a weighted selection between novelty and size

pTi = w1 ·
nTi,t∑

Tj∈Gt nTj ,t
+ w2 ·

|Ti|∑
Tj∈Gt |Tj |

.

Second, the probability that a tree is chosen can depend on a combination of novelty and size

pTi =
nTi,t∑

Tj∈Gt nTj ,t
· |Ti|∑

Tj∈Gt |Tj |
.

The third aspect is to change the parameters to be time-varying. As can be seen in Figures 5.7, 5.13
and 5.16, the parameters values change over time. Capturing this effect in the model, could improve its
output.

In this thesis we have not been able to derive exact equations for the size of the giant component
for large values of t. A way to derive such an expression could be to write the model as a two-phase
branching process. In this setting the first phase captures the merging of components and the second
phase is the branching process that models a single retweet tree. This second phase could be based
on the branching process mentioned in [8].

6.2.2 ‘Delayed’ superstar model

In the data we saw that some of the trees, the original message is not the root of the superstar, but
this role is fulfilled by a retweeter of that original message, see Figure 6.1(b). We call this a ‘delayed’
superstar progression. In Figure 6.1 we display an example of both types of progressions. The superstar
node is indicated by a red circle around the node. The first node of the progression is indicated by
a white “1” in the node. These differences arise because we consider directed graphs, instead of
undirected graphs as in [8].

1

(a) superstar

1

(b) ‘delayed’ superstar

Figure 6.1: Examples of superstar and ‘delayed’ superstar progressions.
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