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Abstract 

Banks estimate the creditworthiness of their counterparties by using credit rating models. 

These models are developed internally, using statistical methods. The input for the final 

model are certain characteristics (factors) of a counterparty, based on which the model 

returns a credit rating for this counterparty.  

 

During the model development, regression is performed on the factors to obtain the 

appropriate factor weights. In this thesis, we develop a method to quantify the uncertainty in 

these estimated weights.  

 

After the weights are fully determined, the performance of the model is checked, and – in 

particular – its discriminatory power. For this, the measure powerstat is used. Also for this 

measure we provide a method to quantify its uncertainty.  

 

Both methods are tested numerically and examples are generated for illustration purposes. 

Where possible, datasets from real model developments are used.  
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1 Introduction 

Currently, we are experiencing an economic crisis, following and caused by the banking crisis 

that started in 2008. This has prompted banks all over the world to pay more attention to 

their risk management: the managing of the risks a bank encounters on a daily basis.  

 

In order to identify the risks a bank faces, we have to look at its core functions. One of these 

core functions is granting loans. The party on the receiving end of this loan is called the 

counterparty. It can happen that the counterparty fails to meet its obligations following from 

the loan. The risk that this situation occurs is called credit risk (Basel Committee on Banking 

Supervision, 2000). 

 

Credit risk is the most important risk for a bank (Bessis, 2011), so it is of vital importance for 

banks to properly manage it. This is accomplished by maintaining a stringent acceptance 

policy, setting adequate prices for their financial products, and keeping a large enough 

capital buffer. For these tasks banks make use of credit ratings in order to rate their 

counterparties. These ratings reflect the creditworthiness of a counterparty: how likely is it 

that the counterparty will meet its financial obligations in full and on time (Standard & Poor's, 

2011). A counterparty with a strong capacity of meeting its financial commitments will be 

given a high rating, whereas a counterparty that is on the verge of default will get a low 

rating.  

 

Two types of ratings can be recognized: external and internal ratings. External ratings are 

ratings given out by independent rating agencies, such as Standard & Poor’s (S&P), Moody’s, 

and Fitch. These ratings are publicly available. On the other hand, internal ratings are only 

given out and used within a bank. In Rabobank’s case, it rates its counterparties internally and 

uses these ratings internally as well. Banks need internal ratings, as external ratings are only 

available for large counterparties (Hull, 2010). Also, the Basel Committee of Banking 

Supervision (the international supervisory authority for financial institutions) encourages 

banks to use internal models (Basel Committee on Banking Supervision, 2006). 

 

In order to have some more background for understanding the problems that will be 

addressed in this thesis, we first need to explain more on how the internal ratings are 

developed. This is done in 1.1. Then, in 1.2 we describe the two problems that will be 

addressed in this thesis. Finally, in 1.3 we give an overview of the outline of this thesis.  

1.1 Internal rating models 

In order to manage their credit risk in a sensible manner, Rabobank gives each of their 

(potential) counterparties a rating from one of the 21 rating classes it identifies. These classes 

are ordered from high to low creditworthiness.  

 

If a counterparty has a very low creditworthiness, it is likely that a default will occur. A default 

is defined by Basel II (the methodology for setting capital requirements for financial 

institutions) as the occurrence of one of the following events (Basel Committee on Banking 

Supervision, 2006): 
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- The bank considers that the obligor is unlikely to pay its credit obligations to the 

banking group in full, without recourse by the bank to actions such as realising 

security (if held). 

- The obligor is past due more than 90 days on any material credit obligation to the 

banking group. Overdrafts will be considered as being past due once the customer 

has breached an advised limit or been advised of a limit smaller than current 

outstandings.  

Rabobank uses this definition for defaults as well. It is used to determine whether a 

counterparty is in default. 

 

It is very important to a bank to correctly estimate the probability that a counterparty will 

default within the next year. This probability is called the Probability of Default (PD). The PD is 

used for the following important applications: 

- Determining whether a potential counterparty should be accepted as a client,  

- Pricing the financial products for this counterparty,  

- Computing the capital buffer that should be held in order to remain solvable in 

adverse situations.  

In order to estimate the PD for these applications, the internal ratings are used. Using a 

predetermined mapping, the ratings are simply mapped to a PD.  

 

In order to give each counterparty an internal rating, Rabobank (as any other bank) uses 

rating models. These models use certain characteristics of the counterparty (e.g. solvency 

ratio, history with Rabobank) as input factors. The output of a rating model is the internal 

rating for the counterparty.  

 

Two main types of rating models can be distinguished over the years (Sobehart & Keenan, 

2007). The fundamental models are based on Merton’s model (Merton, 1974). This model 

sees the counterparty’s equity as an option on its assets. As Merton’s model was based on 

some unrealistic assumptions, extensions followed quickly. The pending implementation of 

Basel II in the mid-nineties sped up the model refinements even further (Altman, 2006). The 

models that are currently used within Rabobank belong to the other type of rating models, 

the statistical models: those that determine the relationship between defaults and market 

information. Rabobank’s credit rating models can also be seen as an extension of the Altman 

Z-score (Altman, 1968): a score for the creditworthiness based on financial ratios. 

 

Rabobank develops its rating models internally. This is done using historical data (if available) 

for creating a statistical model, combined with expert input. To create a statistical model, two 

types of historical data are required: information on the characteristics of the counterparties, 

and information on the creditworthiness of the counterparties. The creditworthiness 

information can be either occurrences of defaults (or of non-defaults) or external ratings. As 

there is generally limited data available, experts are involved in the modelling process to 

adjust the statistical results according to their expertise.  

 

The rating models are reviewed on a regular basis. If a model’s performance is deemed 

insufficient, Rabobank redevelops the model including more recent data in order to create a 

better model (Rabobank, 2010). 
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1.2 Problem statement 

A rating model is developed using historical data combined with expert input. First, a 

statistical model is developed based on the historical dataset. Then, a panel of experts checks 

this model and may ask for some modifications. After finalizing the model, its discriminatory 

power (proficiency in discriminating between groups of different creditworthiness) is tested 

using the development dataset, or – if new data is available – a more recent dataset. We will 

go into further depth on the development of a rating model in a later chapter.  

 

These operations involve statistical estimations on finite datasets, so there is some 

uncertainty in these estimates. Quantifying this uncertainty can improve the model 

development methodology and the quality of the estimates. The problem of quantifying the 

uncertainty of statistical estimates appears in two stages of the model development process: 

during the estimation of the model, and during the testing of the discriminatory power of the 

model.  

 

Problem 1 

An important part of developing a rating model, is determining the weights for the factors 

that explain the creditworthiness of a counterparty. The weights that are obtained using 

regression, are presented to a panel of experts. It often occurs that these experts suggest an 

alteration in one or more of the weights. As the weights are estimated on a dataset, there 

might indeed be some freedom in changing these weights without affecting the statistical 

power of the estimate. But how much change is allowed? To answer this, we need to quantify 

the uncertainty in the weight estimates. 

 

Problem 2 

A rating model can be judged on a number of characteristics. One of those is the 

discriminatory power of the model. This is measured by the so-called powerstat. The higher 

the powerstat, the more discriminatory power the model has. By introducing a new factor, for 

example, the powerstat may be slightly increased. But is this increase significant? If this is not 

the case, we would not even bother increasing the complexity of the model. The uncertainty 

in the measured powerstat should therefore be quantified. Then we know how much increase 

in the powerstat indicates a significant improvement of the model.  

 

These two problems are addressed in this thesis. 

1.3 Outline 

In this thesis we investigate methods to quantify the uncertainty in two stages of the rating 

model development. For this, it is essential to be familiar with the rating model development 

process. Therefore, the (re)development of a PD model is explained step by step to give a 

better understanding of the modelling process. This is done in Chapter 2.  

 

In Chapter 3 we introduce a method to solve the first problem, as stated in 1.2. That is, a 

method is described that yields the interval over which a weight is allowed to be changed. In 

the following chapter (Chapter 4) the method is tested numerically and examples of 

applications of this method are given.  
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The second problem is addressed in Chapter 5. In this chapter a confidence interval is created 

for the powerstat by relating this measure to another measure: the divergence. Numerical 

applications of this method is given in Chapter 6.  

 

Finally, in Chapter 7 the conclusions are given, together with suggestions for further research.  
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2 Rating model development 

This chapter is devoted to giving a detailed insight in the process of (re)developing a credit 

rating model. This knowledge is needed as a basis for the following chapters.  

 

The core activity of a bank is giving out loans. Therefore, one of the most important risks a 

bank has to protect itself against is credit risk: “the potential that a bank borrower or 

counterparty will fail to meet its obligations in accordance with agreed terms” (Basel 

Committee on Banking Supervision, 2000). For Rabobank (as any other bank) it is therefore of 

vital importance to model the creditworthiness of its counterparties as well as possible.  

 

A part of this is modelling the Probability of Default (PD). This is an important input 

parameter for determining the capital buffer that the bank needs to cover the risk it takes 

and the losses it expects. Also, the PD is used to determine if a potential counterparty can be 

accepted as a client and which price should be asked for the financial products. Based on 

specific group characteristics – such as region, size, and industry – the total portfolio of the 

bank can be split into several portfolios. For each of these portfolios, a PD model can then be 

created.  

 

Regarding the international financial crisis of the last few years, a model redevelopment was 

needed for the model estimating the PD of commercial banks. Also, recently the PD model 

for Small and Medium Enterprises (SME) in Poland has been developed. This was done, 

following a special request of the Polish regulator. These two PD models and their 

development datasets will be used for illustration purposes throughout this chapter.  

 

In this chapter, we will first discuss the requirements and the approach for a rating model 

(re)development (section 2.1). The four steps of this approach will be discussed separately in 

the sections 2.2 to 2.5.  

2.1 Modelling starting points 

A rating model is developed based on expert input and – if available – historical data. This 

data contains observations. An observation is defined as a snapshot of all information 

available of a counterparty at some time in the past. This includes the qualitative and 

quantitative information, and the external creditworthiness information. These first two types 

of information contain the characteristics of a counterparty. Throughout a rating model 

development these characteristics are used as the explanatory factors of the creditworthiness. 

Since the quantitative factors are all financial characteristics, they will be referred to as 

financial factors.  

 

The goal of a rating model development is developing a model with financial and qualitative 

factors as input, that ranks counterparties in terms of creditworthiness. A rating model 

consists of two major layers: the ranking and the calibration (Rabobank, 2010). During the 

ranking stage, the score for a counterparty is determined as a linear combination of the 

factor scores. We will call this the model score. The weights of the factors are computed 

during the model development. The next stage is the calibration, in which the model score 

for a counterparty is first mapped to a PD. Subsequently this PD is mapped to a rating 
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category. Often, an estimate for the PD can be computed directly from the model score. For 

those models the calibration only involves a mapping from the PD to a rating category. 

 

New and redeveloped rating models should satisfy a number of requirements, as set by the 

regulator or Rabobank itself. We elaborate on these requirements in subsection 2.1.1. 

 

The type of creditworthiness information of the counterparties considered during the 

(re)development process depends on the number of defaults available in the dataset. It 

determines the modelling approach that will be used. We will focus on the two modelling 

approaches that use statistical analysis: the Good-Bad approach and the Shadow-Bond 

approach. These approaches differ in the statistical methods that are used for the model 

development. More on the modelling approaches is found in subsection 2.1.2. 

 

The process of a rating model (re)development can be divided into four steps. These are 

introduced in subsection 2.1.3. 

2.1.1 Requirements 

The new or redeveloped model should comply with both internal and external requirements. 

The external requirements are set by Basel II (Basel Committee on Banking Supervision, 2006) 

and De Nederlandsche Bank. These, and internal Rabobank requirements, are summarised in 

“General checklist PD models” (Rabobank, 2006). The most important ones are listed below.  

- Rating models should be based on historical experience and empirical evidence. The 

historical data should be representative for the portfolio to be rated. It is emphasized 

that neither historical data, nor expert judgement alone is a sufficient basis for the 

rating model development. A rating model should therefore incorporate both 

historical data and expert judgement.  

- The historical data on which the model is based should have a length of at least one 

business cycle, which is approximately five years.  

- The model needs to be accurate: its outcomes should agree with external ratings. 

- The model and its outcomes have to be robust. That is, the model should also 

perform well on other datasets than the development dataset and the estimated 

factor weights of the model should be stable.  

- The model has to be intuitive, so it should agree with the expert judgement.  

2.1.2 Good-Bad approach and Shadow-Bond approach 

A rating model is developed using expert input and – if available – historical observations. 

Preferably, the model should be based on data containing both default and non-default 

observations. In combination with expert input, statistical analysis is performed on the factors 

of both the defaulted and the non-defaulted counterparties in order to create a model based 

on those factors that discriminate best between the defaulted and non-defaulted 

counterparties. This is also known as the Good-Bad approach (Rabobank, 2010).  

 

In order to obtain a statistically strong model using the Good-Bad approach, it is necessary to 

have enough default and non-default observations. This requirement cannot always be met, 

however. This is the case for so-called low default portfolios – portfolios that hardly ever 
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experience a default. If the Good-Bad approach would be used on a low default portfolio, the 

few default observations would have an unjustifiable large influence in the model 

development.  

 

If there are too few observations to use the Good-Bad approach, we might choose to rely on 

expert judgement entirely for developing the rating model. But there is a middle way: the 

Shadow-Bond approach. A model that is built using this approach can be described as a 

“statistical model built to mimic external ratings” (Standard Chartered, 2008). So instead of 

basing the model on defaults and non-defaults, external ratings are used as the basis of the 

model development under the Shadow-Bond approach. An immediate natural question is 

then: why does Rabobank not use the external ratings directly, instead of developing a model 

that mimics them? We will give the main reasons for using the Shadow-Bond approach. 

- In general, external rating agencies do not share how they create their ratings. 

Therefore, developing an internal model gives more insight in how a rating is 

obtained. 

- An internal rating model allows for modifications to the rating due to expert input. 

This way, the bank’s own opinion on a certain counterparty can be incorporated in 

the rating for this counterparty. 

- Not all companies are rated by external rating agencies. An internal model can 

provide ratings for these counterparties as well. 

- Regulation requires banks to rely less on external ratings and encourages the use of 

internal rating models (Basel Committee on Banking Supervision, 2006). 

 

Whereas the observations used for the Good-Bad approach are split in two groups (default 

and non-default), the observations for the Shadow-Bond approach are divided over multiple 

groups. The number of groups corresponds to the number of external rating categories. 

Since these categories are ordered, statistical conclusions can be drawn on the relationship 

between creditworthiness and explanatory factors.  

 

Take for example a qualitative factor with scores on a scale of 0 to 10. Suppose that 

counterparties rated CCC, BB, and AAA, have an average factor score of 2, 6, and 10, 

respectively. This suggests that there is a positive relation between this qualitative factor and 

the creditworthiness of a counterparty. This factor is therefore likely to be included in the 

model. 

 

From this example we can also see that dividing the observations over more than two groups 

creates a finer granularity and might therefore make it easier to discover factors with some 

explanatory power.  

 

But the Shadow-Bond approach also has its disadvantages. Whereas the Good-Bad approach 

is based on observed defaults – which is direct creditworthiness information – the Shadow-

Bond approach uses external ratings that are supposed to represent the creditworthiness of a 

performing counterparty. This can be seen as “indirect” creditworthiness information and the 

dependent variable is thus of lesser quality.  

 

Furthermore, this approach is highly dependent on the quality of the external ratings. 

Suppose, for example, that the external ratings would be overly optimistic for very high and 
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very low rated counterparties, but overly pessimistic for counterparties with medium ratings. 

In that case, the ratings given by the model would show the same behaviour.  

 

Also, external ratings may be missing for some counterparties in the portfolio. This requires 

more representativeness adjustments to the set of observations (Rabobank, 2010).  

 

For the reasons mentioned above, the Good-Bad approach is preferred over the Shadow-

Bond approach. However, if there is not enough data available to use the Good-Bad 

approach, the Shadow-Bond approach provides a useful alternative, without completely 

relying on expert judgement. 

 

The commercial banks PD model will be redeveloped following the Shadow-Bond approach, 

since the commercial banks’ portfolio is a low default portfolio. The number of observations 

available for a model development based on the Shadow-Bond approach should be more 

than 100 (Rabobank, 2010). This is the case for the development dataset of the commercial 

banks model redevelopment. On the other hand, the Poland SME portfolio contains enough 

defaults for the Poland SME PD model to be developed following the Good-Bad approach. 

That is, the number of observations is at least 600 with 60 “bads”.  

2.1.3 Four modelling steps 

Following Rabobank’s guidelines for (re)developing a rating model (Rabobank, 2010), four 

steps can be distinguished in the process of developing a credit rating model. See Figure 1.  

 
Figure 1: The four steps of the rating model development.  

The first step in redeveloping a new rating model, is to gather as much data as possible. Also, 

the data is cleaned, that means that unusable data is removed. Since the resulting dataset 

(the development dataset) is not the same as the portfolio that it is supposed to represent, 

the representativeness of the development dataset needs to be checked by comparing it with 

the portfolio.  

 

After that, the Single Factor Analysis (SFA) is performed. From this analysis, we determine the 

stand-alone explanatory power of each factor. The goal of the SFA is to find the most 

important factors for explaining the creditworthiness of the counterparties. Also, the factors 

are transformed in preparation for the next modelling step.  

 

This next step is the Multi-Factor Analysis (MFA). The input of the MFA are the factors that 

were found to have the highest stand-alone explanatory power from the SFA. Using a 

regression method, the factor weights are determined. The choice of regression method 

depends on the available creditworthiness information: if observations are marked as either 

“default” or “non-default” (according to the Good-Bad approach), the logistic regression 

method is used. On the other hand, if external ratings are available as the creditworthiness 

Data 

collection 

Single 

Factor 

Analysis 

Multi-Factor 

Analysis 
Final stage 
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information (Shadow-Bond approach), linear regression is used to determine the factor 

weights. If the factor weights are determined, the model score can be computed for each 

counterparty as the weighted sum of the factor scores.  

 

Finally, in the last step of the model development, the model scores are linked to a Rabobank 

Risk Rating. After that, the model is tested regarding its robustness, its improvement 

compared to the old model (if an old model exists), and its compliance with the 

requirements. Also, a user acceptance test takes place. During this final test end-users of the 

model will use the model and give feedback on its performance. As the first three steps are 

most important for the rest of this thesis, we will discuss the final step of the model 

development only briefly.  

2.2 Dataset creation 

We mentioned before that the model is developed based on a dataset containing 

observations. An observation is a snapshot of all information available of a bank at a certain 

time. This includes the qualitative, financial and creditworthiness information.  

 

Before the data can be used for the model redevelopment, some data cleaning has to be 

done in order to create reliable observations. This is done according to the procedure as 

described in Rabobank’s guidelines for rating model development (Rabobank, 2010). 

Furthermore, it should be checked whether the cleaned dataset is representative for the 

whole portfolio. For example, if 90% of the counterparties in the portfolio of commercial 

banks is located in an industrialized country, a development dataset for the commercial 

banks PD model with only 30% of the observations located in industrialized countries would 

not be representative. 

2.2.1 Data cleaning 

The data cleaning process can be divided into two parts: the initial data cleaning and the 

factor data cleaning. The initial cleaning can be done without even looking at the qualitative 

and financial information. During the factor data cleaning, the qualitative information and the 

financial information are cleaned, since these types of information will be used as explanatory 

factors for the creditworthiness of an observation.  

 

During the initial cleaning, observations are removed if there is something wrong with their 

non-factor information. That is, observations can be removed for one or more of the 

following reasons: 

- The observation is never approved by the credit committee and is therefore not a 

valid observation. 

- Within 30 days, the observation is followed by another observation of the same 

counterparty. The two observations are very likely to have exactly the same factor 

information and are therefore essentially the same observation. In order not to double 

the weight of this observation, one (the oldest) should be removed. The limit of 30 

days is set by experts.  

- The counterparty observed enjoys parental support, which means that if the 

counterparty would have difficulties meeting its financial obligations, it can count on 
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the parent company for help. As the model is developed to rate stand-alone 

counterparties, counterparties with parental support should be removed from the 

dataset. 

- The observation needs to be recent enough. On the other hand, bank supervisors 

require rating models to be built on at least five years of data. Therefore, a time 

threshold should be set (by experts) and observations that are older than this 

threshold should be removed.   

Depending on the model to be developed and the dataset, additional restrictions to the 

observations can be made. Only if an observation matches all of the restrictions, it passes the 

initial cleaning process.  

 

We then focus our attention on the factor information. For the qualitative information, the 

cleaning is mainly restricted to correcting typographical errors. Since the qualitative factors’ 

scores are discrete, these errors are easily detected. Also for the financial factors the random 

errors should be corrected, although finding these errors is harder, for these factors’ scores 

are continuous. After this, the outliers are detected in the financial data and the observations 

with outliers are removed.  

 

Often the financial data contains missing values. In order to clean the missing values, the 

experts first split the financial factors into two categories: the regular factors and the 

exceptional factors. The regular factors are assumed to be filled for all observations. A 

missing value for a regular factor is therefore filled by interpolation or extrapolation if 

possible, and otherwise by the median of the factor. However, if more than 50% of an 

observation’s regular factors is missing, the observation is removed. The exceptional factors 

are factors of which experts believe that they will not be available for all observations. These 

factors will only be filled incidentally and missing values are therefore replaced by zeros.  

 

The financial factor information consists of the financial values as published by the 

counterparties. However, in predicting a counterparty’s creditworthiness, some financial ratios 

may be more informative than financial values. Consider for example the ratio “interest 

expenses over liabilities”. It makes sense that if a company has more liabilities, the interest 

expenses increase. But if the ratio “interest expenses over liabilities” increases, this may signal 

a negative effect on the creditworthiness. Therefore, after cleaning the financial information 

some useful ratios are computed. These ratios are also used as explanatory variables during 

the next steps of the model development. But first, a final cleaning step is required: if the 

denominator of a ratio value is zero, it is filled with the median of the ratio after the factor 

transformation (see 2.3.2). 

2.2.2 Representativeness 

Since the development dataset is only a part of all the data of the portfolio that is to be 

studied, the representativeness of the development dataset needs to be checked by 

comparing it with the portfolio.  

 

For the commercial banks PD model redevelopment, we compare the development dataset 

with the Rabobank’s portfolio of commercial banks. There are two geographical 
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characteristics for which the dataset is checked: region of risk and industrialization of the 

country of risk.  

 

For the first breakdown, the commercial banks’ portfolio observations and observations from 

the development dataset for the commercial banks PD model are split according to region. 

This breakdown recognizes five regions: Asia, Australia, Europe, Latin America, and the United 

States. It follows that the observations of the development dataset are spread over the 

regions in a similar way as the observations of the portfolio. This suggests that – with regards 

to the regions of risk – the development dataset is representative for the commercial banks’ 

portfolio. 

 

Another way of checking the representativeness of the development dataset, is splitting it in 

two groups: those in Industrialized Countries (IC) and those in Emerging Markets or 

Developing Countries (EM/DC). Also from this breakdown it follows that the development 

dataset for the commercial banks PD model is representative for the commercial banks’ 

portfolio. 

 

Similarly, other breakdowns can be used to check the representativeness of the development 

dataset. The choice of breakdowns depends on the portfolio. For example, the two 

breakdowns for the commercial banks’ portfolio as illustrated above are not informative for 

the Poland SME portfolio. All observations in this portfolio and in the development dataset 

for the Poland SME model are in Poland. Therefore, for both the region breakdown and the 

industrialization breakdown, 100% of the observations of both the portfolio and the 

development sample would be labelled “Europe” and “EM/DC”, respectively. For example, a 

breakdown based on the size of the company may be more informative for this portfolio.  

2.3 Single Factor Analysis 

Throughout the rest of this chapter we will label both the qualitative and financial factors and 

the financial ratios as “factor”, for simplicity.  

 

During the Single Factor Analysis (SFA) we test the explanatory power of each factor 

(qualitative and financial) on a stand-alone basis (Rabobank, 2010). That is, for each factor we 

check the discriminatory power of the model that is only based on that specific factor. Also, 

the factors that are to be included in the model, should be intuitive. So if experts expect a 

factor to have a positive effect on the creditworthiness (for example, the size of  a 

counterparty), this should be reflected by the data. If this is not the case, the factor is left out 

of the model development. Furthermore, during the SFA the factors are prepared for the 

Multi-Factor Analysis (MFA). This preparation includes a transformation to diminish the effect 

of outliers and to give the factor scores the same range: from 0 to 10. 

 

The goal of the SFA is to find a short list of important factors for explaining the 

creditworthiness of the counterparties. One may suggest using the reputable Principal 

Component Analysis (PCA) (Jolliffe, 2002) for finding these most important factors. This is not 

done, however. There are two main reasons for not using PCA during the SFA. Firstly, the SFA 

relies heavily on expert opinion. Based on tests of the factors on a stand-alone basis, the 

experts decide whether a factor should be included in the MFA. Using PCA does not yield 
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insightful results for the experts. Secondly, PCA already considers inter-factor relations. It 

delivers the combinations of factors that have most predictive power. But since the factors 

should be judged on a stand-alone basis, PCA cannot be used during the SFA.  

 

Throughout the rest of this chapter we will use four factors to illustrate the methods for 

model development. Two of these factors stem from the commercial banks model 

redevelopment (one qualitative and one financial) and the other two from the Poland SME 

model development (one qualitative and one financial). See Table 1 for these factors.  

 

Factor Model (re)development Financial/Qualitative? 

Total assets ratio Commercial banks Financial 

Market risk exposure Commercial banks Qualitative 

Debt service coverage ratio Poland SME Financial 

History with Rabobank Poland SME Qualitative 

Table 1: Four factors from two different model (re)developments that will be used for illustration 

purposes.  

2.3.1 Discriminatory power 

The discriminatory power of a factor (or model) is the factor’s (or model’s) ability to 

discriminate between different groups of creditworthiness. Statistics for measuring a factor’s 

(or model’s) discriminatory power are for example the Gini coefficient (Gini, 1912), the 

accuracy ratio (Engelmann, Hayden, & Tasche, 2003), and the area under the receiver 

operating curve (Sobehart & Keenan, 2007). But within Rabobank the powerstat is used, 

which is quite similar to the Gini coefficient and the accuracy ratio. We will therefore use the 

powerstat as explained in Rabobank’s guidelines (Rabobank, 2010) to measure the 

discriminatory power of a factor or model.  

 

In this chapter, we look at the powerstat from a practical point of view. The computation of 

the powerstat is therefore explained algorithmically. A more theoretical discussion of the 

powerstat can be found in Chapter 5. Also, during the SFA we want to compute the powerstat 

for a factor. We will therefore explain the computation of the powerstat using the factor 

scores. For computing the powerstat of a model, the model scores should be used instead.  

 

The powerstat compares the scores of a factor to the scores of a model with perfect 

discriminatory power. The closer the factor is to having perfect discriminatory power, the 

higher the powerstat. So if a factor has a high powerstat, its information is useful for 

estimating the credit rating. On the other hand, a factor that has the same score for all 

observations, has no discriminatory power at all and therefore has a powerstat value of zero.  

 

The powerstat is computed in the following way. First, all observations are ordered according 

to the factor score. When using the Good-Bad approach, a score is fixed and subsequently 

the proportion of bad observations with a lower or equal factor score (number of bad 

observations with a lower or equal factor score divided by total number of bad observations) 

is plotted against the proportion of all observations with a lower or equal factor score 

(number of observations with a lower or equal factor score divided by total number of 

observations). This is done for all possible scores, thus creating the power curve.  
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When the Shadow-Bond approach is used, there are no “bad” observations. The power curve 

is therefore constructed in a slightly different manner. For a fixed score, the sum of the PDs of 

observations with a lower or equal factor score is determined. This is divided by the sum of 

the PDs of all observations, thus determining the weighted proportion. This proportion is 

then plotted against the proportion of all observations with a lower or equal factor score than 

the fixed score, just as for the Good-Bad approach. Again, this is done for all possible scores, 

thus creating the power curve.  

 

To give some illustration, we consider the following example. Suppose we have a dataset of 

five observations. Of each observation we know the score for a certain factor, whether it is a 

default or a non-default, and also the PD corresponding to its external rating is known. 

Therefore, both the Good-Bad approach and the Shadow-Bond approach can be used. See 

Table 2. 

 

Observation Factor score Good (0) or Bad (1) PD 

1 2 1 0.2 

2 3 0 0.05 

3 4 0 0.2 

4 7 1 0.05 

5 8 0 0.1 

Table 2: Five fictional observations that are used to illustrate the computation of the powerstat under 

both the Good-Bad approach as well as the Shadow-Bond approach.  

We see that 60% of all observations have a factor score lower or equal to 4. Of the bad 

observations, 50% has a factor score that is lower or equal to 4. Therefore, the point (0.6,0.5) 

lies on the power curve (blue) in Figure 2. The rest of this power curve is created similarly.  

 

 
Figure 2: The power curve, the random model curve, and the crystal ball model curve for the data of 

Table 2 under the Good-Bad approach. 
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For the 60% of the observations with a factor score lower or equal to 4, the sum of their PDs 

is 0.45. The sum of all PDs in this dataset is 0.60, so the weighted proportion of observations 

with a factor score lower or equal than 4 is 0.45/0.60=0.75. Therefore, the point (0.6,0.75) lies 

on the power curve (blue) in Figure 3. The rest of this power curve is created similarly. 

 

 
Figure 3: The power curve, the random model curve, and the crystal ball model curve for the data of 

Table 2 under the Shadow-Bond approach.  

In addition to the power curve, also two other curves are shown in Figure 2 and Figure 3. One 

corresponds to the crystal ball model and the other to the random model. The crystal ball 

model is the model that the factor scores would follow if they had perfect discriminatory 

power. Using this model would be like having a crystal ball in which we could see the future 

(of the creditworthiness of the counterparties). So if the Good-Bad approach is used, the 

worst factor scores would be allocated to the defaulted observations. Indeed, we see in 

Figure 2 from the curve for the crystal ball model (red) that the two observations with the 

lowest factor scores are the only two bad observations. The curve consists of two parts: a part 

with a steep incline representing the bad observations, and a horizontal line representing the 

good observations. For the Shadow-Bond approach, if the factor scores follow the crystal ball 

model, the ordering of the factor scores corresponds exactly to the inverse ordering of the 

PDs.  

 

The random model is the model that the factor scores would follow if they had no 

discriminatory power at all. This model randomly allocates scores to the observations. 

Therefore, the score of an observation does not depend on the creditworthiness of the 

observation. The slope of the curve of the random model is therefore constant, yielding a 

straight line. In both Figure 2 and Figure 3 the curve of the random model is the straight, 

green line.  
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The powerstat is then computed using these three curves. It is the ratio of two areas: the one 

between the power curve and curve of the random model and the one between curve of the 

crystal ball and curve of the random model. The powerstat therefore reflects how close the 

power curve lies to the curve of the crystal ball model. If the power curve is identical to the 

curve of the crystal ball model, the powerstat reaches its maximum value of 1.  

 

For the commercial banks model redevelopment we specifically follow the financial factor 

“total assets ratio” and the qualitative factor “market risk exposure”. For the Poland SME 

model development, the two factors “debt service coverage ratio” and “history with 

Rabobank” are followed. The powerstat for each of these for factors is given in Table 3.  

 

Factor Model (re)development Powerstat 

Total assets ratio Commercial banks 0.534 

Market risk exposure Commercial banks 0.527 

Debt service coverage ratio Poland SME 0.357 

History with Rabobank Poland SME 0.347 

Table 3: The powerstat values for four explanatory factors.  

In general, the powerstat for a single factor is deemed “high” if it is above 0.30. Since this is 

the case for these four factors, they are very likely to be included in the next step of the 

model development process: the MFA.  

 

We can also see that the powerstat values for the Shadow-Bond approach are higher than 

those for the Good-Bad approach. This is generally the case. Therefore, the powerstat for the 

Shadow-Bond approach should be interpreted differently than the powerstat for the Good-

Bad approach. More on this difference in powerstat values will be discussed in 5.4.2.  

2.3.2 Factor transformation 

After selecting the factors that are deemed most important for explaining the 

creditworthiness of a counterparty, we may want to directly continue with the MFA. 

Theoretically, this can be done, but in order for the MFA to yield better and more insightful 

results, a factor transformation is required first. The reason for using this transformation is 

threefold (Rabobank, 2010): 

- Outliers in the data can have an unjustifiable large influence on the regression 

outcomes. Applying a transformation on the factors before the regression can 

diminish their effect. 

- Through transformation all factors can be given the same range. When regression is 

performed on these transformed factors, the resulting factor weights can be 

compared more intuitively. 

- Some factors initially have a score distribution that is inversely related to the 

creditworthiness. So for those factors, a higher score would correspond to a lower 

creditworthiness. The final model is required to be intuitive: higher model scores 

should belong to counterparties with higher creditworthiness. To be able to easily 

check this, all factors should be positively related to the creditworthiness as well. 

Therefore, a transformation is required for those factors that are inversely related to 

the creditworthiness. 
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These three goals of the transformation can be achieved by using an S-shaped function. As 

the logistic function has such a shape, logistic transformations are used for transforming the 

factors. See Figure 4 for the logistic transformation function.  

 

 

Figure 4: Logistic transformation function, in this case     and     . 

The formula for this transformation is: 

 ( )  
 

     (    )
 

The   and   in the above formula determine the horizontal translation and the steepness of 

the transformation. These two parameters are chosen such that the resulting logistic 

transformation function provides the best fit for the empirical distribution function of the 

factor scores. As the empirical distribution function is always monotone increasing,   will be 

negative for all score transformations. For those factors that are inversely related to the 

creditworthiness, the transformation is applied with    and   .  

 

The transformation is monotone, so the ordering of the observations according to their factor 

scores will remain the same. Therefore, the powerstat of a factor before transformation is the 

same as the powerstat of this factor after transformation. 

 

For the transformation of the factor “total assets ratio” of the commercial banks model 

redevelopment, the least squares best logistic fit turned out to be         and        . 

The graphs of the empirical distribution function of this factor and the fitted logistic function 

are given in Figure 5. 
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Figure 5: The empirical cumulative distribution function (ECDF) for the factor “total assets ratio” in the 

commercial banks model redevelopment is given, together with the fitted ECDF. This fitted ECDF is the 

logistic transformation for the factor scores. In this case,         and        . 

Through this transformation, the range of the factor scores becomes [   ]. By multiplication 

with 10, this becomes [    ], which is the range used for all input factors of the MFA. For the 

four example factors (see Table 1) their transformed scores are computed and the histograms 

for these scores can be found in Appendix A. 

2.4 Multi-Factor Analysis 

During the Single Factor Analysis (SFA), the most important factors for explaining the 

creditworthiness of a model are identified. After transformation, these factors become the 

input for the Multi-Factor Analysis (MFA). During the MFA, the creditworthiness information 

is regressed on the factors in order to find the factor weights. The goal of the MFA is to find a 

model for the response variable based on the explanatory factors, while taking into account 

their interdependencies (Rabobank, 2010). The regression method that is used, depends on 

the modelling approach. If the Good-Bad approach is chosen, logistic regression is used. On 

the other hand, if the Shadow-Bond approach is chosen, linear regression is used. 

 

From the SFA, a list of   factors is obtained that are the input for the MFA. From these 

factors, there are    combinations possible for the final model. Using brute-force methods, 

all these combinations could be checked, but since   can be as large as 50, stepwise 

regression is applied. This is done for both approaches. Using this stepwise method, the 

model is built up step by step (Hosmer & Lemeshow, 2000). With each step, a new factor is 

added to the model. The first factor that is added, is the factor that – on its own – yields the 

model with the highest predictive power. The second factor is added by again choosing the 

factor that – in combination with the first factor – yields the model with the highest predictive 

power. This continues until no additional factor can be added that would significantly 
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improve the model. Also, a factor can only be added if its sign is intuitive: higher factor scores 

should correspond to lower PDs, so only a negative sign is allowed.  

 

The commercial banks’ portfolio does not contain many defaults, so according to 2.1.2 the 

Shadow-Bond modelling approach is applied for the commercial banks PD model 

redevelopment. On the other hand, the Poland SME portfolio contains enough defaulted 

observations to develop the Poland SME PD model using the Good-Bad approach. Using the 

development datasets for these two models, we will first discuss the MFA for the Shadow-

Bond approach (2.4.1) and then proceed with the Good-Bad MFA (2.4.2). 

2.4.1 Shadow-Bond MFA 

For the MFA under the Shadow-Bond approach, linear regression is used. This regression 

method assumes that the response variable   is a linear combination of the explanatory 

factor scores plus a noise component. So: 

                         

Here,   is an intercept,    denotes the factor coefficient for factor   with a factor score of   , 

     . The noise is  . The weights are estimated by minimizing the sum of all   . More on 

this method is explained in 3.4.1.  

 

When the Shadow-Bond approach is used, the response variable is not binary. In this case, 

the response variable follows from external ratings, which are mapped to a PD. The relation 

between the PD and the creditworthiness is assumed to be exponential (Rabobank, 2008). 

Then also,     (  ) and the creditworthiness are linearly related. Therefore,       (  ) for 

the linear regression. 

 

As the Shadow-Bond approach is used for the commercial banks model redevelopment, 

linear regression is used during the MFA. For example, we now perform a stepwise linear 

regression with only the factors “total assets ratio” (  ) and “market risk exposure” (  ) as 

input. The resulting model for estimating the PD for observation   (denoted by   ̂ ) is then 

given by: 

   ̂     (                         ) 

We see that “market risk exposure” is assigned a higher coefficient than “total assets ratio”. If 

we divide each coefficient by the sum of all coefficients, we obtain the relative weights. Often, 

it is more insightful to discuss relative weights, instead of coefficients. The weight for the first 

factor, “market risk exposure”, is in this case        (            )      , or 32%, and for 

the second factor, “total assets ratio”, is        (            )      , or 68%.  

 

By computing the estimates for the PD for all observations and using these as the model 

scores, we can compute the powerstat of the model. This is 0.746. The plot of the curves 

needed for the computation of the powerstat is given in Figure 6. 
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Figure 6: The curves needed for computing the powerstat of the two-factor model for commercial 

banks.  

As the SFA already showed, the factors “total assets ratio” and “market risk exposure” have a 

relatively high stand-alone discriminatory power. Combining these factors in a two-factor 

model gives a model with an even higher powerstat. Adding more factors may further 

improve the model. 

2.4.2 Good-Bad MFA 

When the Good-Bad modelling approach is used, the response variable is binary (“default” or 

“non-default”). It can be shown that in that case a linear model does not provide a good fit 

for the data. A more detailed explanation for this is given in 3.4.2. Therefore, another (non-

linear) regression model should be used. The logistic model is often used for regression on a 

binary response variable (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004) and therefore also 

used in this case. The logistic model has the following expression: 

 (   | )  
 

     (  (                    ))
 

By using maximum likelihood estimation, the   and          are estimated.  

 

The Poland SME model development is based on the Good-Bad approach. Therefore, the 

MFA is done using stepwise logistic regression. We now suppose that we only have the 

factors “debt service coverage ratio” (  ) and “history with Rabobank” (  ) as input factors for 

the regression. The estimated PD for observation   is then given by: 

   ̂  
 

     (  (                         ))
 

 

     (                        )
 

Again, the relative weights can be computed from the coefficients. The weight of the first 

factor, “debt service coverage ratio”, is        (            )      , or 56%, and the 
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weight of the second factor, “history with Rabobank”, is        (            )      , or 

44%.  

 

By computing the estimated PD for each of the observations of the development dataset and 

using this as model score, we can calculate the powerstat of this two-factor model. This is 

0.480. The plot of the curves needed for the computation of the powerstat is given in Figure 

7.  

 

 
Figure 7: The curves needed for computing the powerstat of the two-factor model for Poland SME. 

Again, the powerstat of the two-factor model is higher than the powerstats of the two factors 

separately. This suggests that adding more factors, may further increase the powerstat of the 

model. 

2.5 Final stage 

From the MFA a model is obtained for estimating the PD of an observation. During the last 

step of the modelling process this PD is mapped to a Rabobank Risk Rating (RRR). These 

RRRs are created for internal use, where R01 is the rating for counterparties with the highest 

creditworthiness, and R20 is the rating for counterparties with the lowest creditworthiness. 

The mapping from PD to RRR is done by creating buckets for the PD. For example, if the 

estimated PD for a counterparty falls between 0.4% and 0.5% – which are the boundaries of 

rating bucket “X” – the counterparty will be rated “X”. 

 

Furthermore, the model is tested regarding its robustness. That is, we check whether the 

estimated factor weights do not depend too much on the development dataset. This is done 

by reducing the dataset by a significant number of observations, thus creating a sample of 

the development dataset. The model is then computed using this sample. This is repeated for 
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multiple samples. If the model weights do not change too much, we can conclude that the 

model is robust enough (Rabobank, 2010).  

 

The last part of the final development stage is the User Acceptance Test. During this test, 

future end-users of the model use the model to rate counterparties. The users give feedback 

on the performance of the model. If necessary, some final adjustments can be made to the 

model, following this feedback.  
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3 The ellipse method – Theory 

In the previous chapter, the model development process is discussed. Now we look deeper 

into the modelling methodology and, specifically, the uncertainty of the model weights.  

 

A rating model bases the rating of a counterparty on a certain number of characteristics that 

are useful in explaining its creditworthiness. These are called the factors, and their scores 

range from 0 to 10. Examples are the size of the counterparty and the quality of its 

management. In order to develop a rating model, the weight of each factor should be 

determined. The model weights represent the relative influence of each factor on the final 

model score.  

 

These weights are obtained in the following way. First, some form of regression is performed 

on the explanatory factors and the perceived historical creditworthiness information (these 

could be default indicators or external PDs). The outcome of the regression is a specific 

coefficient for each factor. These coefficients are divided by the sum of all the coefficients to 

create the relative weights (as the coefficients are assumed to have the same sign and the 

same range). 

 

Next, the weights are presented to a panel of experts. It often happens that the experts are 

not entirely in agreement with the distribution of the weights and that they suggest a shift in 

weight for some of the factors. It is then necessary to check whether this weight change does 

not deteriorate the statistical power of the model. We concentrate on the case where the 

weight of only one factor needs to be changed. For changes in multiple weights 

simultaneously, more research is needed.  

 

As the weights are based on a finite dataset, they are estimates of the true weights and we 

can therefore imagine that there is some freedom in weight shifting. The question is, how 

much can these weights be changed? For determining this, we make use of two-dimensional 

elliptical confidence regions. Subsequently, we call this the ellipse method.  

 

The two-dimensionality of the analysis can be justified as follows. Suppose the weight of 

factor   is changed, according to the feedback of the experts. The weights of the other factors 

change then as well, but proportionalities among them remain the same. In terms of 

coefficients this means that only the coefficient of factor   changes, the other coefficients 

remain unchanged. It therefore makes sense to sum all the other coefficients, thus reducing 

the dimensionality of the coefficients to two: the coefficient of factor   and the sum of all 

other coefficients.  

 

In this chapter, the first section (3.1) discusses the general approach of the ellipse method. 

After that, we will discuss each of this method’s steps in more detail. Section 3.2 shows how 

the coefficients are translated into weights and back. Section 3.3 describes how the 

dimensionality of the set of coefficients for the multiple factor model is reduced to two 

dimensions. Section 3.4 continues with finding the covariance matrix for the two specific 

regression methods we use in our analysis. The last two sections consider the ellipse – the 

confidence region for a single factor coefficient and the sum of all other coefficients. In 

section 3.5 the ellipse equation is derived and in section 3.6 two intervals are computed from 
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this ellipse. These intervals show how much the factor coefficient is allowed to change, while 

still being statistically supported by the data. In order to better interpret the relation between 

the covariance matrix and the intervals, some additional analysis on the ellipse is performed 

in 3.7. 

3.1 General approach 

The goal of the method is to find out how much the coefficient of a single factor is allowed to 

change without affecting the statistical power of the model. For this, we could of course use 

the one-dimensional confidence interval, created from the Wald statistic as described by for 

example Hosmer and Lemeshow (Hosmer & Lemeshow, 2000). A change in coefficient is then 

allowed, as long as this changed coefficient is still in the confidence interval and thus 

statistically supported by the data. But changing one factor coefficient may require other 

coefficients to change as well. To see how much change is allowed if all other coefficients 

should remain unchanged, we need to look at a two-dimensional region instead of the one-

dimensional interval. 

 

As we are interested in the possible change of the coefficient of a single factor  , we sum all 

other coefficients, thus creating a grouping coefficient. This way, the set of coefficients for the 

model is reduced to two dimensions. This can be done for each factor  . The grouping factor 

coefficient that excludes the coefficient of factor   will be referred to as the remainder 

coefficient of factor  .  

 

Suppose the experts want to change the relative weight of factor  . As it is easier to work with 

coefficients instead of weights, we first compute how much the coefficient of factor   needs 

to change – while keeping all other coefficients fixed – in order to achieve this change in 

weight. How this is done is explained in section 3.2.  

 

Next, a covariance matrix can be derived for the factor coefficients, consisting of the variance 

of each factor coefficient and the covariance between each pair of factor coefficients. This 

covariance matrix depends on the regression method used to compute the coefficients. 

Using this matrix, a two-by-two covariance matrix can be created for each coefficient of 

factor   and corresponding remainder coefficient. From this covariance matrix, an ellipse 

equation can be found. This ellipse is the confidence region for a predetermined confidence 

level and two variables: the coefficient of factor   and the remainder coefficient of factor  . 

See Figure 8 below for the ellipse. The coefficient of factor   is placed on the horizontal axis, 

the remainder coefficient of the factor   is on the vertical axis. 

 

 
Figure 8: The confidence region of the coefficient of factor   and the remainder coefficient of factor  . 

𝑏𝑖 

𝑏𝑟 𝑖 
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The centre of the ellipse is formed by the coefficient and the remainder coefficient of factor  , 

as obtained via the regression. If we want the remainder coefficient of the factor to be fixed, 

the coefficient of factor   can be moved over the inner interval (red), without the estimate 

leaving the confidence region. If we allow the remainder coefficient to change (slightly) as 

well, the coefficient of the factor can be moved even more, that is, over the outer interval 

(blue).  

 

If we would naively construct a rectangular region with sides corresponding to the one-

dimensional confidence intervals, the region would have a lower confidence level than that of 

the individual confidence intervals (assuming that the coefficient of factor   and remainder 

coefficient of factor   are not perfectly correlated). This is shown in Appendix B. The outer 

interval, which gives the outer bounds of the confidence region, should therefore be wider 

than the one-dimensional interval. The inner interval might be wider or smaller, depending 

on the tilt of the ellipse. So it can be noted that neither of the inner and outer intervals 

correspond to the one-dimensional confidence interval for the coefficient of factor  , as the 

effect of the other coefficient values is taken into account as well. 

 

Considering the expert’s requirements, the approach is the following. First the suggested 

weight change is translated back to a change in coefficient. Then, we check whether this new 

coefficient lies in the inner interval. If this is the case, the coefficient and corresponding 

weight can be changed in the model, without changing other coefficients. Since this changes 

the sum of the coefficients, the other weights will change slightly as well, but 

proportionalities among them remain the same.  

 

On the other hand, if the new coefficient is outside of the inner interval, there are two 

alternative possibilities; it can either lie in the outer interval or outside it. If the new coefficient 

lies in the outer interval but not in the inner interval, the coefficient can be changed as 

proposed, but then further analysis will be needed to determine which other coefficient 

needs to be changed as well. This will move the estimate back into the confidence region. But 

if the new coefficient lies outside the blue interval, a new model analysis has to be done to 

determine how much the model changes and whether it is still a good model.  

3.2 Weights and coefficients 

In general, it is more insightful to represent a model in terms of its factor weights, instead of 

factor coefficients. As the weights of a good model all lie between zero and one and sum to 

one, it is easy to see the relative importance of an explanatory factor. However, as the 

weights depend on all estimated coefficients, the covariance matrix of the weights is harder 

to work with and far less insightful than the covariance matrix of the coefficients. Therefore, 

we need a method to translate a proposed change in weights into a proposed change in 

coefficients. Also, we should be able to represent the intervals in terms of weights, so a 

method to translate coefficients back into weights is needed as well.  

 

Define    as the coefficient for factor   and   
  as the model estimate for   , the true 

underlying coefficient for factor  . So the difference between    and   
  is that    is the 

coefficient for factor   used in the model (in practice, possibly as suggested by experts), and 
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  is the model coefficient for factor   as calculated using a regression method. Take    as the 

weight of factor  . Then    is computed as follows. 

   
  

∑   
 
   

 

Here,   is the total number of explanatory factors in the model. We define the changed 

coefficient for factor   as    ̃ and the changed weight for factor   as    ̃. 

 

We now consider the problem of translating a proposed change in weights into a change in 

coefficients. Suppose we have a model with weights   ,         and coefficients   , 

       . The experts prefer factor   to have a weight of   ̃ instead of   . The other weights 

should change while proportionally remaining constant. As we only want to change one 

coefficient – that is    – the others should remain unchanged, so   ̃     for     and also 

∑   ̃    ∑      . Then: 

   
  

∑   
 
   

 
  

   ∑      
  ∑  

   

 (
 

  
  )    

  ̃   
  ̃

∑   ̃
 
   

 
  ̃

  ̃  ∑      

  ∑  
   

 (
 

  ̃
  )   ̃ 

From this, it follows that: 

(
 

  ̃
  )   ̃  (

 

  
  )    

And subsequently: 

  ̃  
(
 
  
  )

(
 
  ̃
  )

    

 

(1) 

So from the current and the proposed weight the current coefficient can be converted to the 

proposed coefficient, using (1). 

  

If the intervals for a coefficient are determined, it is useful to present these in terms of 

weight. These can be found easily by using: 

  ̃  
  ̃

  ̃  ∑      

 

For   ̃ we plug in the upper and lower boundaries of the intervals.  

3.3 Grouping the coefficients 

If the experts are not content with one of the factor weights, it is interesting to see how much 

this weight can be changed so that it still remains supported by the data. In that case, only 

the behaviour of the coefficient in question is relevant, relative to the behaviour of the other 

coefficients. We can therefore group the effect of all other coefficients into one single 

coefficient: the remainder coefficient. This coefficient is denoted by      with      ∑       and 

therefore also      ∑      . 

 

Suppose we have a covariance matrix for all   explanatory factors. The covariance matrix for 

the quantities    and      can then also be found. Set   
  as the variance of the coefficient of 
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factor   and      as the covariance of the coefficients of factors   and  . Then the covariance 

matrix is as follows.  

[
 
 
 
   

 ∑    
   

∑    
   

∑  
 

   

 ∑ ∑     
        ]

 
 
 
 

 

If the covariance matrix for all the coefficients is well defined, this matrix will be well defined 

as well.  

3.4 Covariance matrix 

In this section, we discuss the covariance matrix for the factor coefficients derived by two 

regression methods: the linear model with Ordinary Least Squares (OLS) estimation and the 

logistic model with Maximum Likelihood Estimation (MLE). The second method is preferred if 

the response variable is binary, so if it can only have two outcomes (for example, for the 

Good-Bad modelling approach) (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004). In other 

cases, the linear model is used (for example, for the Shadow-Bond modelling approach).  

3.4.1 Linear model 

This model is of the form        where   is the dependent variable (for the Shadow-

Bond method,       (  )),   is a row vector of explanatory factors,   is a column vector of 

coefficients for the factors, and   is an error term. To find the OLS estimator of  , we need to 

use the available dataset of observations. The   that minimizes the sum of all   ’s is the OLS 

estimator for  . Using the data of the   observations, we get the following matrix notation of 

the model:  

       

Here,   is the     vector of dependent variables,   is a     vector of coefficients,   is a 

    matrix with each row containing the factor scores of one observation, and   is a     

vector of errors with mean 0. Minimizing the sum of   ’s is equivalent to minimizing    , 

which again corresponds to minimizing (    ) (    ). From this, the OLS estimator    

for   follows, which is    (   )     . The derivation is shown in Appendix C. 

 

It can be shown that    is an unbiased estimator for  : 

 (  )   ((   )     )  (   )     ( )  (   )         

Furthermore, we assume that the variance of   is given by    , where   is the identity matrix 

and   is fixed. This means that the   ’s have the same variance and are uncorrelated. We can 

then find the covariance matrix of the estimator   . First note: 

     (   )    (    )    (   )      

Then also: 

(    )(    )  (   )        (   )   

And therefore: 

   (  )  (   )     (   ) (   )     (   )     (   )     (   )   

This is the covariance matrix for the OLS estimator   .  

 

In order to say more on the uncertainty of   , the covariance matrix is indispensable. But for 

this matrix,    is needed. As the errors   are unobservable but necessary in the estimation of 
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  , they need to be substituted. Since    is an estimator for  , we find         as a 

natural substitute for  . It can then be shown that an unbiased estimator for    is given by  

   
   

   
 

Also, under the assumption that   is  -variate normal, it follows that (   )      is 

distributed as   (   ): it follows a chi-squared distribution with     degrees of freedom. 

Furthermore,    and   are distributed independently (Theil, 1971). This is required in section 

3.5.  

3.4.2 Logistic model 

For some applications the response variable is binary. This is for example the case under the 

Good-Bad modelling approach: an observation is either in default or not in default. Under the 

linear model, the conditional mean of this binary response variable ( ) is expressed as a linear 

equation in  :  ( | )    , where   denotes the factor coefficients. But now that   is binary, 

this conditional mean is restricted to lie between 0 and 1. Figure 9 shows how a linear and a 

non-linear model are fitted to a binary dependent variable.  

 
Figure 9: Binary dependent variable with a linear model (a) and with a non-linear model (b) for a single 

explanatory variable ( ). Figure from Heij et al. (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004). 

From the left side of Figure 9 we can see that the linear model would not provide a good fit 

for the binary response. Also, the linear model may yield theoretically inadmissible values: 

 ( | )    or  ( | )   . The model on the right side of Figure 9 seems to provide a better 

fit for the binary response. The S-shaped curve shows that this is not a linear model. Indeed, 

this logistic model has the following expression: 

  (
 ( | )

   ( | )
)     

This can be rewritten to: 

 ( | )  
 

      
 

Since   is either 0 or 1,  ( | ) has a value between 0 and 1. So, it can also be interpreted as 

 (   | ). Therefore,   can in turn be interpreted as a cumulative distribution function, if   

is defined as: 

 (  )  
 

      
 

(2) 
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If we would again use OLS estimation to estimate  , the error term for observation   is 

defined as        (   ). Note that    is a row vector of the factor scores for observation  . 

Since the response variable is binary, either       (   ) with probability  (   ) or 

     (   ) with probability    (   ). It follows that:  

   (  )   (   )(   (   )) 

It can thus be seen that the variance of    depends on    and the   ’s are therefore 

heteroscedastic, i.e.    (  ) is not identical for all  . But in order to use the conventional 

formulas for the standard error in the OLS results in this chapter, homoscedasticity is 

required. That is,    (  ) should be identical for all   (see Verbeek (Verbeek, 2004)). Since this 

is not the case, OLS cannot be used and we will therefore use another estimation method: 

Maximum Likelihood Estimation (MLE).  

 

When MLE is used,   is estimated from the available observation data. This means that the 

probability of observing the available observations is maximized. For observation  , the 

probability of      is  (   ). Similarly, the probability of      is    (   ). Denoting 

    (   ) we find the likelihood function  ( )of   under           : 

 ( )  ∏   
      

∏ (    )

      

 

The log-likelihood is then: 

    ( )  ∑    (  )

      

 ∑    (    )

      

 ∑     (  )

 

   

 ∑(    )    (    )

 

   

 

Maximizing this would yield the same result as maximizing the likelihood function. The   that 

maximizes     ( ) is the maximum likelihood estimator   . It can be found by solving 
 

  
    ( )   . 

 

  
    ( )  ∑

  
  

   
  

 

   

 ∑
    
    

 (    )

  

 

   

 ∑
  
  
    

 

   

 ∑
    
    

    

 

   

 

 ∑
     
  (    )

    

 

   

 ∑(     )  

 

   

   
 

(3) 

Here,    denotes  (   ), the density function of   as in (2). The next-to-last equality (3) is 

explained by the following:  

    (   )  
     

(       ) 
 

 

       
(  

 

       
)   (   )(   (   ))    (    ) 

By solving the first order conditions from (3), the    is found.  

 

In order to use the ellipse method on the obtained   , the covariance matrix is needed. Heij 

et al. (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004) showed that the inverse of the 

information matrix    evaluated at the     found by logistic regression is a good 

approximation for the covariance matrix of   . This    is given by: 

     [
      ( )

     
] 

So we have to find the second derivative to   of     . 

      ( )

     
 
 ∑ (     )  

 
   

   
  ∑  

 

   

   
   

  ∑    
   

 

   

  ∑  (    )  
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The covariance matrix of    is therefore given by: 

   (  )  (∑ (   
 ) (   (   

 ) )  
   

 

   

)

  

 

3.5 Constructing the ellipse 

In the previous sections we reduced a model with multiple factors to a two-factor model and 

created the covariance matrix for the coefficient of factor   and the remainder coefficient of 

factor   (the sum of all other coefficients). For these two coefficients, we can now construct a 

two-dimensional confidence region, using the covariance matrix. This region will be ellipse-

shaped, due to the different variances of the two coefficients. So if we find the equation for 

this ellipse, the confidence region will be uniquely defined. First, we derive the ellipse 

equation for the coefficients following from the linear regression model. We then extend this 

to the coefficients of the logistic regression model.  

3.5.1 Linear model 

In this subsection we discuss the derivation of the ellipse equation for the coefficients 

calculated by the linear model. Suppose we fix a factor   for whose coefficient and remainder 

coefficient this ellipse will be created. For this subsection, we will follow the explanation of 

Theil (Theil, 1971). 

 

Remember that the covariance matrix of    from the linear regression model was given by 

  (   )  , where   denotes the     data matrix. Using the method described in section 

3.3, we can create the two-by-two covariance matrix for the coefficient of factor   and the 

remainder coefficient of factor  . Denote this matrix by    .  

 

As   is symmetric and positive definite, there exist a non-singular matrix   such that 

        (for example, its Cholesky decomposition (Trefethen & Bau, 1997)). Introduce 

      in the following way: 

[
  
  
]   [

  
    

    
      

] 

Remember that   
  is the model estimate for   , the underlying “real” coefficient. If again   is 

assumed to be  -variate normal, it follows that [     ]
  is a random normal vector with zero 

mean and the following covariance matrix: 

   ([     ]
 )       ([  

         
      ]

 
)                (  )         

It follows that both      and      are independent and standard normally distributed. 

Therefore,   
    

  is distributed as     ( ). Also, remember that (   )   is distributed as 

    (   ) and that    and   are distributed independently. As it is known (see for example 

Zijp (Zijp, 1974)), if    and    are independent and both chi-squared distributed with    and 

   degrees of freedom respectively, then 

  
     
     

    (     ) 

So in that case,   follows an  -distribution with parameters    and   . This can be applied to 

our current situation as well.  
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([  

         
      ] 

  [
  
    

    
      

])

 
 

 
([  

         
      ] 

  [
  
    

    
      

])      ( )   

 

(4) 

Also,  

         (   ) (   ) (5) 

Combining (4) and (5), we can therefore say that 

 

   
([  

         
      ] 

  [
  
    

    
      

])    (     ) 

Using this, we can finally create a confidence region for    and     ; the coefficient and 

remainder coefficient of factor  .  

 (
   
   

(  
    )

  
   
  
(  
    )(    

      )  
   
   

(    
      )

 
     )    

Here,   is the chosen confidence level, for example 95%, and      is the corresponding 

critical value. Furthermore,     denotes the (   )th element of    . It is clear from the 

expression within the probability brackets, that the confidence region for the two coefficients 

is an ellipse around (  
      

 ).  

3.5.2 Logistic model 

As many models are developed using the logistic regression model, it is useful to extend the 

ellipse method to coefficients derived with this form of regression as well. The method for 

deriving the ellipse equation for coefficients of the logistic model is similar to the method for 

deriving the ellipse equation for coefficients of the linear model. An important difference is 

that the covariance matrix for the coefficients of the logistic model is an approximation, 

whereas the covariance matrix for the coefficients of the linear model is exact.  

 

From subsection 3.4.2 we found (the approximation for) the covariance matrix for the 

coefficients    derived with the logistic regression model.  

   (  )  (∑ (   
 ) (   (   

 ) )  
   

 

   

)

  

 

 

(6) 

It follows directly that this can only be an approximation of    (  ), as the right side of (6) 

also depends on   . But since it has been shown that this approximation converges in 

probability to the covariance matrix (Heij, De Boer, Franses, Kloek, & Van Dijk, 2004) and 

since in practice the dataset is large enough, we will use (6) as the covariance matrix.  

 

Again using the method as described in 3.3 the covariance matrix for the coefficient for factor 

  and the remainder coefficient can be created from the covariance matrix for all coefficients. 

This two-by-two covariance matrix is referred to as  . As   is symmetric and positive definite, 

there is a non-singular matrix   such that         (for example, its Cholesky 

decomposition (Trefethen & Bau, 1997)). Then, define       such that: 

[
  
  
]   [

  
    

    
      

] 

The MLE estimate for   follows an asymptotic normal distribution (Heij, De Boer, Franses, 

Kloek, & Van Dijk, 2004) so we can say that    is approximately normally distributed with 

mean   and covariance matrix as given above. Here, we will assume that    is indeed 
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normally distributed. Then [     ]
  is also normally distributed with mean zero and 

covariance matrix as given by: 

   ([     ]
 )       ([  

         
      ]

 
)            (  )       

Therefore,    and    are independent standardized normal variables. So   
    

      ( ). 

This can be written out as: 

  
    

  [  
         

      ] 
  [

  
    

    
      

]  [  
         

      ] 
  [

  
    

    
      

] 

Using this distribution, a confidence region can be created.  

 (   (  
    )

      (  
    )(    

      )     (    
      )

 
     

 )    

Again,   is the confidence level and     
  denotes the critical value. Also,      is the (   )th 

element of    . The confidence region is an ellipse around (  
      

 ).  

3.6 Deriving the intervals 

From the ellipse equations as found in section 3.5 we can now derive the intervals that 

illustrate the confidence we have in the estimates for the factor coefficients. For each 

coefficient, two intervals can be created. One of these intervals is nested in the other. This 

inner interval is the interval over which the coefficient in question can be moved without 

having to change any other coefficient. The other interval – the outer interval – shows the 

values the coefficient can have, that are still supported by the data. Changing the coefficient 

to a value that is outside the inner interval, but still inside the outer interval, requires a 

modification of at least one other coefficient as well.  

 

Remember that the regression estimates for    and      are given by   
  and     

 . We found 

that the ellipse equation for coefficients derived with the linear OLS regression is given by: 
   
   

(  
    )

  
   
  
(  
    )(    

      )  
   
   

(    
      )

 
      

For coefficients derived with the logistic MLE regression the ellipse equation is: 

   (  
    )

      (  
    )(    

      )     (    
      )

 
     

  

As these two equations both generate ellipses, we can generalize them to one ellipse 

equation and find the intervals from that equation. Also, as we are now trying to find 

coefficients (denoted by  ) instead of the real underlying parameter (denoted by  ), we write 

  instead of  . This general equation is then: 

 (  
    )

   (  
    )(    

      )   (    
      )

 
   (7) 

If the linear regression method is used,       (  
     ),       ( 

     ), and   

    (  
     ). If, on the other hand, the logistic regression method is used,           

 , 

           
 , and           

 . Throughout this section, ellipse equation (7) will be used.  

 

Now that the ellipse equation is known, the intervals for    can be calculated. The first interval 

can be found by fixing the remainder coefficient of the factor  . The second interval is 

computed by splitting the ellipse into two parts and finding the boundaries for    for both 

parts.  

3.6.1 Inner interval 

The inner interval is the smallest interval. If the experts suggest a changed coefficient that still 

lies within this interval, the change can be executed directly without having to change other 
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coefficients. Suppose the experts suggest changing the coefficient for factor  . Not changing 

any other coefficient implies that the remainder coefficient for factor   – which is the sum of 

all other coefficients – remains the same. So by fixing          
  the bounds for    around   

  

can be found. This is illustrated in Figure 10. 

 

 
Figure 10: The red interval is the inner interval. It is computed by fixing          

 . 

If we fix          
 , the ellipse equation will simplify to: 

 (  
    )

   (  
    )(    

      
 )   (    

      
 )

 
  (  

    )
    

Solving this quadratic equation for    yields two solutions; those are the boundaries of the 

inner interval. Thus, the inner interval is given by:  

[  
  

 

√ 
   
  

 

√ 
 ] 

The width of this inner interval is therefore   √ .  

3.6.2 Outer interval 

The outer interval is slightly wider than the inner interval. If the proposed changed factor 

coefficient lies outside the inner interval but within the outer interval, the change can be 

approved, but other factor coefficients may need to be changed as well. 

 

Computing the outer interval is done by splitting the ellipse equation into two parts. This split 

is shown in Figure 11, together with the outer interval.  

 

 
Figure 11: The blue interval is the outer interval. The line through the ellipse splits the ellipse in two 

parts.  

The ellipse is split in such a way, that every value for    corresponds to one value on each arc. 

(If there is a value for    that corresponds to two or more values on the same arc, the splitting 

𝑏𝑖 

𝑏𝑟 𝑖 

(𝑏𝑖
  𝑏𝑟 𝑖

 ) 

𝑏𝑟 𝑖 
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is not done correctly.) Therefore, the outer    values of each arc are also the outer    values of 

the ellipse. These values are found by determining the domain of the expressions for the arcs. 

In order to find the expressions for the arcs, (7) has to be rewritten in such a way that      is 

expressed in terms of   . This gives: 

      
 

  
(  
    )  

√(  
    )

 
(      )    

  
     

  

Note that these are actually two different expressions, due to the  -sign. In order for these 

expressions to be real, it should hold that (  
    )

 (      )      . Keeping in mind 

that          (as  ,  , and   follow from an equation for an ellipse) the interval for    

follows. The outer interval is therefore given by: 

[  
  √

   

      
   
  √

   

      
 ]  

[
 
 
 

  
  

 

√  
  

  

   
  

 

√  
  

  

 

]
 
 
 

 

The width of this interval is   √       .  

 

In order to check whether the inner interval is indeed smaller than the outer interval, we have 

to verify if indeed   √    √       . Note that if    , the two intervals would be 

identical. If, on the other hand,     then         (since   is strictly positive if (7) indeed 

defines an ellipse). It then follows directly that   √    √       . As both intervals are 

centred around   
 , the inner interval always lies within the bounds of the outer interval.  

3.7 Analysis of the ellipse and the intervals 

In order to better interpret the relation between the covariance matrix and the intervals, we 

now perform some additional analysis. 

 

The two intervals derived in 3.6 follow from the confidence region for the coefficient of factor 

  and the remainder coefficient of factor  . The shape of this region is an ellipse. As can be 

seen from Figure 8, the two intervals would be identical, if the major and minor axes of the 

ellipses would be parallel to the axes of    and     . If this is not the case (and assuming that 

   and      have a different variance), the ellipse is somewhat tilted. To get more insight in the 

ellipse and the intervals that follow from it, we need to know the cause of the tilt of the 

ellipse. The expression for the tilt ( ) is given by: 

  
 

 
     (

 

   
) (8) 

The derivation for this expression is given in Appendix D.  

 

In order to find an interpretation for the ratio   (   ), we need to go back to the 

covariance matrix for the factor coefficients. Recall that from this matrix, a two-by-two 

covariance matrix could be created for each set of estimated coefficients   
  and     

 . It 

consists of variances and covariances: 

[
   (  )    (       )

   (       )    (    )
] 

Its inverse, which is used to create  ,  , and   for the ellipse equation, is given by: 
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   (  )     (    )     (       )
  [

   (    )     (       )

    (       )    (  )
] 

We can now use these values to find the ratio   (   ). Remember that  ,  , and   were 

computed differently for the coefficients derived by linear regression than for those derived 

by logistic regression. For linear regression we have: 

 

   
 

   
      

   
       

 
   

       

 
    

       
 

 
   
  

   
  
 
   
  

 

As the      
  with         are the entries of the inverse of the two-by-two covariance 

matrix, we obtain: 

 

   
 

     (       )

   (    )     (  )
 

The same result follows for the coefficients derived by logistic regression: 

 

   
 

    
    
 

   
    
  

   
    
 

 
    

       
 

     (       )

   (    )     (  )
 

Plugging this into (8) gives: 

  
 

 
     (

     (       )

   (    )     (  )
) 

(9) 

It can therefore be seen that the larger the covariance between the two coefficients, the 

bigger the angle over which the ellipse is tilted. Also, the smaller the difference in variances, 

the bigger the angle. In the extreme case, if the variances of    and      are equal, then the 

ellipse will be tilted over an angle of     radians, or    .  

 

If the angle of the tilt of the ellipse is large, this does not necessarily mean that the difference 

in width between the inner and outer interval is large as well. This difference strongly 

depends on the shape of the ellipse as well. This is illustrated in Figure 12 and Figure 13, 

where both ellipses have the same tilt but a different shape. 

 

 

 

 
Figure 12: The confidence region of the coefficient of factor   and the remainder coefficient of factor  . 

The difference between the width of the two intervals is small.  

𝑏𝑟 𝑖 
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Figure 13: The confidence region of the coefficient of factor   and the remainder coefficient of factor  . 

The difference between the width of the two intervals is large. 

In order to find out what determines the difference in width of the inner and outer interval, 

we divide the width of the outer interval by the width of the inner interval. The bigger the 

difference between the two intervals, the larger this ratio will be. Recall that the width of the 

inner interval is given by   √  and that of the outer interval by   √       . The ratio of 

these widths is therefore given by: 
 

√  
  

  
 

√ 

 √
 

  
  

  

 
 

√  
  

   

 

It follows that the higher the value of the ratio       , the larger the difference in intervals. 

By again using the expressions for  ,  , and  , we obtain for the coefficients found by linear 

regression: 
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(10) 

For logistic regression, the same result follows: 
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    (       )

   (    )     (  )
 

 

(11) 

The right side of (10) and (11) looks familiar; in fact, it is the square of the correlation   : 

    
   (       )

√   (    )     (  )

 

Note that this    is the correlation between the coefficient of factor   and the remainder 

coefficient of factor   (the sum of all other coefficients). It follows that the ratio of the widths 

for the intervals of factor   can be written as   √    
 . So the more    and      are 

correlated, the bigger the difference between the width of the inner interval and the width of 

the outer interval.  

𝑏𝑟 𝑖 
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4 The ellipse method – Application 

In the previous chapter we developed a method to create intervals for the estimated factor 

coefficients of the rating model. These intervals can be used to provide more insight in how 

much the development data supports the possible changes to the coefficients as suggested 

by experts. The method that creates these intervals is called the ellipse method. This name 

refers to the shape of the confidence region that is used for creating the intervals.  

 

The ellipse method works as follows. First, a specific factor   is chosen for whose coefficient    

the intervals are required. All the other coefficients are summed and this coefficient is called 

the remainder coefficient of the factor  , denoted by     . As the covariance matrix for the 

coefficient values is known, the two-by-two covariance matrix for    and      can be created. 

Using this two-by-two matrix, an ellipse-shaped confidence region can be made for    and 

    . From this confidence region, two intervals follow. These are illustrated in Figure 14.  

 

 
Figure 14: The confidence region of the coefficient of factor   and the remainder coefficient of factor  . 

In Figure 14, the inner interval (red) is the interval over which    can be changed – possibly 

following experts’ recommendations – without having to change any other coefficients. The 

inner interval contains all the values to which    may be changed, that are statistically 

supported by the data. If    is changed to a value that is outside the inner interval, but inside 

the outer (blue) interval, at least one other coefficient has to change as well. For changing 

more than one coefficient simultaneously, similar but more elaborate analysis is needed, 

which is outside the scope of this thesis.  

 

In this chapter, we will provide numerical background for the theory of the previous chapter. 

First, we will verify by means of Monte Carlo simulation that the created ellipses are indeed 

confidence regions. This is done in 4.1. From these ellipses, the intervals are created. To see if 

these intervals are useful in practice and to give some illustration of the method, we use the 

ellipse method on “real” development datasets: datasets that are used for the development 

of rating models for Rabobank. This is described in 4.2. Also, in order to give an idea of how 

the ellipse method works on highly correlated factors, an example of a two-factor model is 

created in 4.3, consisting of two factors with a relatively high correlation. For Rabobank, the 

Matlab implementation of the ellipse method is explained in Appendix E. 

4.1 Checking the confidence region 

The intervals that are created using the ellipse method rely on the ellipse being the 

confidence region for    and     . In addition to the mathematical derivation in 3.5, we also 

𝑏𝑖 

𝑏𝑟 𝑖 
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show numerically that this ellipse is indeed the required confidence region. This is done to 

confirm the correctness of the derivation and to show that sufficiently good results are 

achieved by using an approximation for the covariance matrix of the coefficients that follow 

from logistic regression.  

 

The coefficients          are actually estimates for the “real” underlying parameters 

        . Therefore, an interpretation for the  -confidence region around (       ) is that 

(       ) lies within this region with a confidence level of  . We use this interpretation for the 

numerical tests. For this, a Monte Carlo method is used. For this type of method, many 

random simulations are performed. In this case the following steps were taken:  

1. A   is fixed and based on this   a “universe” of many random observations is 

generated.  

2. A random sample is taken from all the observations in the universe.  

3. On this sample,   is estimated.  

4. Using the covariance matrix of  , an ellipse is created around (       ) (  is 

predetermined). 

5. We check if (       ) lies within this ellipse.  

6. The steps 2 to 5 are repeated many times.  

It is important to note that the number of observations in the universe is far more than the 

number of observations per sample.  

 

Figure 15 gives an illustration of this Monte Carlo method.  

 

 
Figure 15: Illustration of the Monte Carlo method that is used to check if the ellipse is indeed a 

confidence region for    and      (estimated with linear regression). The blue dot is  , and the orange 

dots are the estimates   for  . The corresponding ellipse is drawn around each estimate.  
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In Figure 15 the blue dot represents  . For this plot, only 10 Monte Carlo iterations are 

performed. Each iteration provided an estimate   (orange dots) and the corresponding ellipse 

around  . It can be seen that in all cases   lies within the ellipse.  

 

Depending on the modelling approach used for the model (re)development, either linear or 

logistic regression is used. The covariance matrix for the coefficient estimates following from 

linear regression is defined differently from the covariance matrix for the coefficient estimates 

following logistic regression. We will therefore perform the Monte Carlo simulations on both 

regression methods separately.  

4.1.1 Linear regression 

First, we discuss the results for the linear regression method. This regression method is used 

if the response variable is not binary, which is the case if the Shadow-Bond modelling 

approach is applicable. Similar to Figure 15, the estimates   and underlying parameter   are 

plotted in Figure 16. The ellipses are not plotted for clarity reasons (there are 10000 Monte 

Carlo simulations). The confidence level was set to be 95%.  

 

 
Figure 16: The blue dot is  , and the orange dots are the estimates  , found by linear regression. 

It followed that for 10000 Monte Carlo simulations of 2000 observations each, the percentage 

of ellipses around   for which   was inside the ellipse was 95.04%. We can see these 

simulations as two-sided binomial tests with the outcome “  in ellipse” as success. If we set 

 (            )      as null hypothesis and  (            )     ) as the alternative 

hypothesis, the outcome 95.04% out of 10000 binomial tests has a p-value of 86%. The p-

value is the probability of obtaining a result that is at least as extreme as the one observed, 

assuming the null hypothesis holds. We can therefore safely assume that the ellipse indeed 

defines a confidence region with confidence level 95%. 
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4.1.2 Logistic regression 

Now, the same is done for the other regression method: the logistic regression. This method 

is used when the Good-Bad modelling approach is applicable. This is the case if the response 

variable is binary, for example if its answers can only be “default” or “non-default”. Again, we 

use 10000 Monte Carlo simulations and plot the estimates   and the  . See Figure 17.  

 

 
Figure 17: The blue dot is  , and the orange dots are the estimates  , found by logistic regression. 

For 10000 Monte Carlo simulations of 2000 observations each, 95.25% of the ellipses 

contained  . By again regarding these simulations as binomial tests and taking null 

hypothesis  (            )      and alternative hypothesis  (            )     , we can 

find the p-value for the outcome of 95.25% for 10000 tests. This p-value is 26%. This is high 

enough to safely assume that the ellipse indeed defines a 95% confidence region.  

 

By comparing the scales of Figure 16 and Figure 17, something else can be noticed. 

Apparently, the confidence regions for the coefficients obtained by logistic regression is 

much larger than the regions for the coefficients obtained by linear regression. This follows 

from the difference in dependent variable for linear regression and logistic regression. As the 

dependent variable is binary for the logistic regression, it gives less information regarding the 

creditworthiness than the dependent variable for linear regression, which has more 

answering categories. Therefore, the variance of the factor coefficients is higher for those 

derived by logistic regression. So it can also be expected that the intervals around 

coefficients derived from logistic regression are wider than those for coefficients derived 

from linear regression. The results of the next section will confirm this.  

4.2 Interval examples 

If a statistically developed rating model is presented to the experts, they may suggest 

modifications of the factor coefficients. To see how much the modifications are supported by 
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the data, two intervals are created per coefficient. The inner interval shows the values that the 

coefficient is allowed have, under the condition that the other coefficients remain the same. 

The outer interval contains all the values the coefficient might be changed to that are still 

statistically supported by the dataset.  

 

To provide some more illustration, the intervals are created for models based on the datasets 

for the commercial banks and Poland SME PD model (re)developments. 

4.2.1 Intervals for the commercial banks model redevelopment 

For the commercial banks model redevelopment the Shadow-Bond approach is used, 

including the linear regression. Through stepwise regression, ten factors are selected and 

estimates for their coefficients are found. For each coefficient, we can then create an ellipse. 

These are depicted in Figure 18.   

 

 
Figure 18: The ellipses for the coefficients of the ten factors that are included in the model for 

commercial banks.  

The values on the axis of Figure 18 do not denote    and      for fixed  , but the   depends on 

the ellipse we look at. Actually, this plot is a combination of the ten plots of individual 

ellipses. The dotted line goes through the centres of all ellipses. It makes sense that this is a 

line, since   
      

  – the sum of all estimated coefficients – is the same for each  .  

 

When we look at the minor axes of the ellipses in Figure 18, we can see that five of them are 

relatively wide, whereas the other five are relatively thin. This difference can be related to the 

types of factors considered. In general, the variance of the scores for the financial factors is 

higher than that for the qualitative factors. This makes it easier to identify the different 

groups of creditworthiness. Therefore, the coefficients for the financial factors can be 

estimated more precisely, leading to a lower variance for their factor coefficients. This is 
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reflected in the shape of the ellipses for the coefficients of the financial factors: they are 

“thinner” than those for the coefficients of the qualitative factors, since their coefficient value 

is already quite precise and can therefore not change too much.  

 

It can be seen from Figure 18 that the ellipses that form the confidence regions for each    

and      are not very tilted. That is, except for one ellipse, their major and minor axes are 

almost parallel to the    and      axes. The reason for this can be found in the number of 

factors and the weak correlation between the factor coefficients. In this case,    (    ) is 

much larger than    (  ), which reduces the angle of the tilt of the ellipse (see (9) in 3.7).  

 

Since it is more insightful to discuss factors’ contributions in terms of weights, instead of 

coefficients, the intervals for the coefficients are translated to intervals in terms of weights 

(see 3.2). For the ten factors used in the commercial banks model, the intervals (in weighs) are 

given in Table 4.  

 

  Inner interval Outer interval 

Factor number Weight Lower weight Upper weight Lower weight Upper weight 

1 20.8% 17.2% 24.1% 16.3% 24.9% 

2 12.8% 8.7% 16.6% 8.5% 16.7% 

3 12.7% 10.9% 14.4% 10.9% 14.5% 

4 12.6% 10.8% 14.2% 10.6% 14.4% 

5 12.0% 10.2% 13.7% 10.2% 13.7% 

6 8.5% 6.4% 10.5% 6.4% 10.6% 

7 7.5% 4.2% 10.6% 3.9% 10.9% 

8 7.4% 3.8% 10.6% 3.8% 10.6% 

9 3.3% 1.3% 5.3% 1.3% 5.3% 

10 2.4% 0.4% 4.3% 0.2% 4.4% 

Table 4: The inner and outer intervals for the factor weights of the commercial banks model.  

It can be seen that the inner and outer intervals for each factor weight do not differ much. As 

a matter of fact, for the factors 5, 8, and 9 the inner and outer intervals are (almost) identical. 

From 3.7 we can therefore conclude that the correlation between each coefficient and its 

remainder coefficient is small.  

4.2.2 Intervals for the Poland SME model development 

For the Poland SME model development the Good-Bad approach is used. This includes 

performing a logistic regression. Eight factors are included through stepwise regression and 

for each of these factors the coefficient in the model is estimated. The ellipses for these factor 

coefficients are depicted in Figure 19. 
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Figure 19: The ellipses for the coefficients of the eight factors that are included in the model for Poland 

SME. 

Again, the dotted line goes through the centres of all ellipses. From these ellipses, the inner 

and outer intervals for each factor coefficient can be created, and these can be translated in 

terms of weights. The inner and outer intervals for the weights of the eight factors used in the 

Poland SME model are given in Table 5. 

 

  Inner interval Outer interval 

Factor number Weight Lower weight Upper weight Lower weight Upper weight 

1 18.6% 13.4% 23.2% 13.2% 23.3% 

2 16.2% 8.0% 23.1% 7.6% 23.4% 

3 14.8% 7.0% 21.4% 6.6% 21.7% 

4 12.3% 6.8% 17.1% 5.8% 17.8% 

5 10.6% 4.0% 16.5% 3.4% 16.9% 

6 10.6% 6.8% 14.2% 6.4% 14.5% 

7 9.6% 2.1% 16.1% 1.6% 16.4% 

8 7.2% 2.5% 11.5% 1.5% 12.4% 

Table 5: The inner and outer intervals for the factor weights of the Poland SME model. 

From Table 5 we see that the intervals for the factor weights are relatively wide. This means 

that there is quite some freedom in modifying the factor weights, statistically supported by 

the dataset. An explanation for these intervals being wider than those in Table 4 can be 

found in considering the type of dependent variable used for logistic regression (as used for 

the Poland SME data). This variable is binary and thus contains less information than the 

dependent variable for linear regression (as used for the commercial banks data), which has 

more than two answering categories. As there is less information available on the 

creditworthiness of the observations, there is more uncertainty in the estimated weights for 
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the explanatory factors. Therefore, the intervals for coefficients estimated by logistic 

regression are in general larger than those for coefficients estimated by linear regression.  

 

Similar to the intervals for the factor weights of the commercial banks model, the differences 

between the inner and outer intervals for the factors weights of the Poland SME model are 

small. This can also be seen from Figure 19. The major and minor axes of most ellipses are 

not rotated very much, compared to the    and      axes.  

4.3 High correlation example 

From the examples in 4.2 we see that in practice the differences between the inner and the 

outer intervals are small. This follows from the low correlation between the coefficients of the 

factors. A cause for this low correlation between the factor coefficients is the low correlation 

between the factors. Highly correlated factors are in general not incorporated in the model. If 

two factors have a high correlation, either one is omitted from the model or the two are 

combined into one new factor (Rabobank, 2010). Also, the large number of factors in the 

model reduces the correlation between factor coefficients and their remainder coefficients.  

 

So in order to investigate the effects of a strong correlation, we synthetically create a model, 

consisting of only two factors, preferably with a relatively high correlation. Therefore, two 

factors from the commercial banks model are chosen – one financial and one qualitative – 

that have a correlation of 0.21. This is relatively high for two factors of different types that are 

allowed to both be included in the commercial banks rating model.  

 

Now, a model is built consisting of only these two factors using linear regression. The model 

coefficients have a high (as in: close to -1) correlation of -0.85. Note that this is the 

correlation between two factor coefficients, whereas we saw that 0.21 denotes the correlation 

between the factors itself. This high correlation of -0.85 follows from the (relatively) high 

correlation between the factors, and also from the fact that these two are the only two factors 

in the model. The ellipse for the two factor coefficients is given in Figure 20. 
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Figure 20: The confidence region for the two factor coefficients (the only two factors in the model).  

It can be seen that the ellipse in Figure 20 is very tilted. This is caused by the small difference 

in the variance compared to the high covariance of the two factor coefficients. Also, the high 

correlation between the coefficients causes a big difference in width of the inner and the 

outer intervals for the coefficients. These are given – in terms of weights – in Table 6.  

 

 Inner interval Outer interval 

Factor Weight Lower weight Upper weight Lower weight Upper weight 

1 73.5% 72.8% 74.2% 72.0% 74.8% 

2 26.5% 24.8% 28.1% 23.1% 29.6% 

Table 6: The inner and outer intervals for the factor weights of the two-factor model.  

In this case, it can be seen that for both factors, the width of the outer interval is almost twice 

that of the inner interval. Remember from 3.7 that the ratio of the widths of the outer interval 

and the inner interval can be computed directly from   , the correlation between the factor 

coefficients    and      (here,    and   ). The expression for this ratio is given by   √    
 . 

Plugging in          yields a ratio of 1.90. This confirms that the width of the outer interval 

is almost double that of the inner interval. Note that the widths of the intervals in terms of 

coefficients (instead of weights) will have a ratio of exactly 1.90.  

 

We see that if we create a model consisting of only two factors that are relatively strongly 

correlated, their coefficients have a very high correlation. This high correlation between the 

factor coefficients causes a big difference in the widths for the outer and the inner intervals.  
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5 Powerstat & divergence – Theory 

In Chapter 3 we developed a method to quantify the uncertainty of the factor weights that 

are calculated using regression. When all factor weights are approved by experts, we have 

obtained a model that can give a score to an observation, based on qualitative and financial 

information (factors). The next step in the rating model development is to check some of this 

model’s characteristics. In this chapter, we would like to quantify the uncertainty for one of 

the statistics used for these checks: the measure for the discriminatory power of the model.  

 

After developing a rating model, it is sensible to compare the model predictions with the 

observed reality – within the development sample itself – and to check how well the model 

can discriminate between observations with different levels of creditworthiness. This model 

characteristic is called the discriminatory power. Also, after using the model for some time, 

this test can be performed on a set of new observations, thus testing if the model is still up-

to-date.  

 

The performance measure for the discriminatory power that is most often used by Rabobank, 

is the powerstat (a precise definition is given in 5.1.1). We already introduced the powerstat in 

Chapter 2. However, in this chapter we will discuss the powerstat from a more theoretical 

point of view.  

 

The powerstat of a model has a value between -1 and 1. The higher the powerstat, the better 

the discriminatory power of the model. But from a statistical point of view, a single powerstat 

value contains little information. It is therefore useful to also provide a confidence interval for 

the powerstat, indicating the interval in which the model’s powerstat should lie with a certain 

level of confidence.  

 

By modifying the model (for example, by adding an extra factor) a higher powerstat can be 

obtained. One may think: “the higher the powerstat, the higher the discriminatory power of 

the model”. But to be able to say that the modification leads to a significant change in the 

powerstat, the new powerstat should be outside the confidence interval of the old powerstat. 

So only when the new powerstat is higher than the upper bound of the confidence interval of 

the old powerstat, we can conclude that the new model has a significantly higher powerstat. 

This way, the confidence interval of the powerstat can be used to check whether the effort of 

modifying the model is paid back in terms of a higher discriminatory power.  

 

It is not obvious how to calculate the confidence interval for the powerstat, especially from 

the way it is defined (algorithmically). Instead, we use an alternative measure for the 

discriminatory power: the divergence. Numerical results suggest that under normality 

assumptions these two measures are equivalent, but no formal proof is given yet. If these two 

measures are indeed equivalent, this would enable the extension of some desirable 

properties of the divergence to the powerstat – including the creation of a confidence 

interval.  

 

In this chapter, we first give an introduction of the powerstat and the divergence (section 5.1). 

We proceed with the proof of the equivalence of the two measures in section 5.2. After this, 

the confidence interval is created in section 5.3. Also, in this section another application of 
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the equivalence of the two measures is given: a new interpretation of the powerstat. 

Throughout this chapter, it is assumed that an observation is either “good” (non-default) or 

“bad” (default), thus following the Good-Bad modelling approach. The other approach – the 

Shadow-Bond approach, where observations are divided over more than two groups 

according to their external rating – is not considered. In section 5.4 the main reasons for this 

are given.  

5.1 Introduction to powerstat & divergence 

In this section, we introduce the two performance measures powerstat and divergence. They 

will be the key players in this chapter, so a proper introduction is required. We start with the 

measure that is most often used in practice: the powerstat.  

5.1.1 Powerstat 

The powerstat is a performance measure for the discriminatory power and has much in 

common with the well-known Gini coefficient (Gini, 1912). The Gini coefficient is usually used 

for measuring the income dispersion in a country. The coefficient is close to 0 if all 

inhabitants have almost the same income. On the other hand, the Gini coefficient reaches its 

maximal value 1 if one person gains all the income of the whole country. As many countries 

aim for income equality, a high Gini coefficient is interpreted as a negative result. 

 

Similar to the Gini coefficient, the absolute value of the powerstat ranges between 0 and 1. 

But whereas one in general tries to minimize the Gini coefficient, the powerstat is maximized. 

This is because the powerstat is used to measure the discriminatory power of a rating model. 

Therefore: the higher the powerstat, the better the model.  

 

We now focus on the computation of the powerstat. Let    denote the model score of a 

good observation,    the model score of a bad observation, and    the model score of an 

arbitrary observation (good or bad). Similarly, let    denote the distribution function of   ,    

that of   , and    that of   . For a given score   the following expressions should hold.   
 (    )    ( ) (12) 

 (    )    ( ) (13) 

If we assume that the number of observations is infinite, the Probability of Default (PD) is 

known, as this equals the observed default frequency. We therefore have: 

 (    )    ( )  (    )  ( )       ( ) (14) 

Note that (14) is a linear combination of (12) and (13).  

 

In order to be able to link the powerstat with the divergence, some assumptions are needed 

in this chapter. We assume that both the model scores of the good and bad observations are 

normally distributed with mean and standard deviation       , and       , respectively. So it 

follows that   ( )   (       ) and   ( )   (       ). Also, it is safe to assume that the 

model scores of the good observations and those of the bad observations are independently 

distributed. The probability of having an observation (good or bad) with model score lower 

than (or equal to)   follows then from (14): 

 (    )    ( )  (    )  (       )      (       ) 
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For computing the powerstat, the area under the power curve is needed. The power curve is 

an example of a probability-probability plot (P-P plot): one cumulative distribution function is 

plotted against another cumulative distribution function. For the power curve, these are    

and    – the cumulative distribution functions of the model scores of the bad observations 

and the model scores of all observations (good and bad), respectively. So for a certain score   

the probability of a bad observation having a model score worse than (or equal to)   is 

plotted against the probability of an arbitrary observation having a model score worse than 

(or equal to)  . This is illustrated in Figure 21.  

 

 
Figure 21: The power curve is obtained by plotting the cumulative distribution function of model 

scores of bad observations (  ) against the cumulative distribution function of model scores of all 

observations (  ). 

For the computation of the powerstat, two other curves are needed in addition to the power 

curve. These are the curves corresponding to the crystal ball model and the random model. If 

we were able to exactly predict which counterparties survive and which would default – as if 

we had a crystal ball – we would have the best model possible. For example, if there are 100 

defaults in 1000 observations, the 100 worst model scores would be given to the 100 

defaulting counterparties. The curve would first be a straight line with slope            , 

and then continue as a horizontal line.  

 

The random model is the model that has no discriminatory power at all. The model scores are 

distributed independently of the creditworthiness of the counterparties i.e.         . The 

curve of this model is therefore a straight line with slope        .  

 

The power curve and the curves of the crystal ball model and random model are given in 

Figure 22.  
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Figure 22: The power curve is given in green. The red and blue curves represent the crystal ball model 

and the random model, respectively. 

The powerstat (denoted by   ) is computed as a ratio of two areas. The area between the 

power curve and the curve for the random model is divided by the area between the curve 

for the crystal ball model and the curve for the random model. So the closer the power curve 

lies to the curve for the crystal ball model, the higher the powerstat. This can be expressed 

mathematically by:  

   
       
       

 
      

    
 

(15) 

Here,     is the area under the power curve,     is the area under the curve for the crystal 

ball model, and     represents the area under the curve for the random model, which is 

always ½. The area under the curve for the crystal ball model     is equal to       .  

 

In order to compute the area under the power curve, we first need its mathematical 

expression. Since the power curve is the relation between the distribution functions for the 

model scores of the bad observations and all observations, this is given by:  

     (  )    (  
  (  )) 

The area under the power curve is then: 

    ∫  (  )   

 

 

 
(16) 

Then, (16) can be plugged into (15) to compute the powerstat. 

5.1.2 Divergence 

The discriminatory power of a model can also be measured by the so-called divergence 

(Siddiqi, 2006). It is based on the distance between the two mean model scores, relative to 

the standard deviations of both distributions. This means that the smaller the overlap 

between the two distributions, the higher the divergence. The divergence can only yield a 
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sensible result if the model scores for the good and bad observations are normally 

distributed. Under the same normality assumptions as given in subsection 5.1.1, the 

divergence is computed by: 

  
 (     )

 

  
    

  

From this expression it follows that if the distributions for the model scores of the good and 

bad observations are further apart, the divergence is higher. Also, if the standard deviations 

are smaller, the divergence increases as well. This is illustrated in Figure 23: the larger the 

difference in the means or the smaller the variances, the smaller the overlap in the 

distributions of the model scores for the good and bad observations.  

 

 
Figure 23: The model score distributions for bad (left) and good (right) observations.  

It is clear that the divergence is very easy to compute, and this property will be used later in 

this chapter.  

5.2 Equivalence of the performance measures 

The powerstat and divergence are both performance measures for the discriminatory power 

of a rating model. From numerical tests, we noticed that for a model with a higher powerstat, 

the divergence is also higher. Conversely, a model with a lower powerstat also has a lower 

divergence. These tests therefore suggest that there might be an equivalence relation 

between the powerstat and the divergence. In this section, we would like to answer the main 

question “Can the powerstat be mapped one-to-one to the divergence?”. But before diving 

into this, we go back to the expression for the divergence: 

  
 (     )

 

  
    

  
(17) 

It can be seen that the divergence is independent of the PD. Furthermore, if      , (17) 

simplifies to: 
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(     )

 

  
 

From these remarks, the main question can be split into the following subquestions of 

increasing complexity: 

1. Is the powerstat independent of the PD? 

2. Is the mapping from powerstat to divergence one-to-one if the distributions have 

identical standard deviations? 

3. Is the mapping from powerstat to divergence always one-to-one? 

The main question can only be answered with “yes” if this is also the answer to all the 

subquestions. As the third subquestion is the same as the main question, the main question 

is automatically answered after answering all subquestions. This is done in the following 

subsections. 

5.2.1 PD independence 

In this subsection, we check whether the powerstat is independent of the PD. If this is not the 

case, we know for sure that a one-to-one mapping from powerstat to divergence does not 

exist. Recall that the powerstat is computed by: 

   
      

    
  (18) 

Here,     denotes the area under the power curve. The expression for     is given in (16). 

Figure 24 shows a graphical representation of this area. 

 

 
Figure 24: The blue area is the area under the power curve. 

However, since we want to show that the powerstat is independent of the PD (which appears 

only in the distribution function of the model scores of all observations), it is better to write 

the probability of an arbitrary observation having a model score lower than (or equal to)   as 

a function of the probability of a bad observation having a model score lower than (or equal 

to)  . That is: 
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  (  )    (  

  (  ))   (19) 

If we compute the area under     (  ) by integrating     (  ) with respect to   , we obtain 

the area as shown in Figure 25.  

 

 
Figure 25: The red area is the area bounded by the power curve, the vertical axis, and the horizontal 

line     . 

Comparing Figure 24 and Figure 25, we can see that the blue area of Figure 24 can also be 

computed by subtracting the red area of Figure 25 from the total area. So, using (16) and (19) 

the area under the power curve can also be obtained by: 

       ∫  
  (  )   

 

 

  
 

(20) 

We expect the PD-term in (18) to cancel out the effect of the PD in the integral computing 

the area under the power curve, as given in (20). We start with this area.  

      ∫  
  (  )    

 

 

  ∫  (  
  (  ))    

 

 

   (    )∫ (   (        )      )   

 

 

    ∫ (   (        )      )   

 

 

    (    )∫ (   (        )      )   

 

 

   ∫      

 

 

   (    )∫ (   (        )      )   

 

 

 
 

 
    

Plugging this in (15) gives: 
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 (       (    )∫ (   (        )      )   
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        ∫ (   (        )      )   

 

 

 
 

(21) 

This shows that the powerstat is indeed independent of the PD. The first subquestion can 

therefore be answered with “yes”. 

5.2.2 Identical standard deviations 

Now, we suppose the good and bad observations have the same standard deviation,  . The 

mean can be different, however. The expression for the divergence can then be simplified to: 

  
(     )

 

   
 

For rewriting the expression for the powerstat in (21), the following basic rules for shifting to 

the standard normal distribution can be used. 

 (      )   (
   

 
    ) 

   (      )       (     )    

The expression for the powerstat becomes:  

       ∫ (   (       )     )   

 

 

     ∫ (   (      )  
     
 

    )    

 

 

 

Since the normal distribution function is always positive and monotone increasing, it follows 

that the powerstat and the term   (     )    can be mapped one-to-one. Furthermore, 

because     , we know that     (i.e.   implies  ) and   | |. Also, the normal density 

function is symmetric, so it follows that   ( )     (  ). Therefore, the divergence implies 

the absolute value of powerstat. So if      , then      and   |  |. 

 

In practical applications, the sign of the powerstat is known. In general, credit rating models 

are built in such a way that a higher model score corresponds to higher creditworthiness. 

Therefore, the powerstat is supposed to have a positive sign. We can therefore assume that 

the sign of the powerstat is known and therefore   |  | can be generalized to     . It 

follows that, if the standard deviations of the model score distributions are identical, there is 

a one-to-one relation between the powerstat and the divergence. So also the second 

subquestion can be answered with “yes”.  

5.2.3 General case 

Now we suppose that       . The expression for the powerstat is then:  

       ∫ (
  
  
   (      )  

     
  

    )    

 

 

 

For simplicity, define   and   such that:         and   (     )   . Then: 

       ∫ (     (      )       )   

 

 

 

The divergence can also be expressed in terms of   and  .  
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 (     )

 

  
    

    
  

    
 

In order to prove that      and   |  | also hold in the general case, we need to show 

that if       then |   |  |   |; and that if |   |  |   |, then      .  

 

First, the expression for the powerstat is transformed by applying the transformation 

     (      ). This yields: 

       ∫  (        )  
 

√  
   

  

   

 

  

 

      (    √    ) 

        (
 

√     
    )    

 

(22) 

The second equality in the equation above follows from regarding the integral as an 

application of Bayes’ theorem (Ross, 2010). That is, consider the independent variables   and 

 , both standard normally distributed with distribution function   and density function  . 

Then: 

 (      )  ∫   (    )    ( )  

 

  

 ∫  (        )  
 

√  
   

  

   

 

  

 

It is known that a linear combination of independent normally distributed random variables is 

also normally distributed (Ross, 2010). Therefore, it follows that      is normally distributed 

with mean 0 and standard deviation √    . Therefore,   (      ) can also be written as 

 (    √    ). This leads to the above expressions for the powerstat.  

 

By the symmetry of the normal density function, the powerstat is negative for positive values 

of   √     and positive for negative values of   √    . Also, from this symmetry it 

follows that   (  √    )     (   √    ). It is therefore sufficient to only consider the 

positive powerstat. 

 

Going back to what we need to show, we assume that there are values of   ,   ,   , and   , 

such that      . This means that –√     √  , which in turn implies: 

 
|  |

√    
 
  

|  |

√    
 
    

(23) 

If we would plug this into (22), we see that |   |  |   |.  

 

Conversely, if we assume |   |  |   |, then again (23) follows. Note that both the left and 

right side of the inequality are negative. Note that:  

   (  
| |

√    
)

 

 

From this, it follows that      .  

 

We showed that       |   |  |   | and that |   |  |   |       , so |  |   . This 

is the desired result. It has now been proved that – under the assumptions made –       

and    |  |. 
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Table 7 illustrates the mapping between the powerstat and the divergence. 

 

Powerstat Divergence 

Positive Negative  

0 0 0 

0.1 -0.1 0.032 

0.2 -0.2 0.128 

0.3 -0.3 0.297 

0.4 -0.4 0.550 

0.5 -0.5 0.910 

0.6 -0.6 1.417 

0.7 -0.7 2.148 

0.8 -0.8 3.285 

0.9 -0.9 5.411 

1 -1   

Table 7: Values for the powerstat and the corresponding values of the divergence.  

5.3 Applications of the equivalence 

As shown in the previous section, the performance measures powerstat and divergence are 

equivalent. The divergence is calculated from a nice tractable formula involving the means 

and variances, so one can expect the it is possible to calculate its confidence interval. Because 

of the equivalence between powerstat and divergence, we can now create a confidence 

interval for the powerstat as well.  

 

Also, the equivalence of the powerstat and divergence makes way for another welcome 

addition to the current use of the powerstat. The powerstat is often used in practice, but it is 

difficult to interpret its meaning. In the previous section we found an alternative expression 

for the powerstat, which makes the interpretation easier.  

 

We will elaborate on these two points in the following subsections. 

5.3.1 Creating the confidence interval 

In the above we assumed that the number of observations was (close to) infinite. However, in 

practice we are always dealing with a limited sample of observations. In that case, the 

computed powerstat and divergence are – to some extent – dependent on the sample. It 

therefore makes sense to compute a confidence interval around the powerstat or divergence 

value. That way, the uncertainty in the value for the powerstat or the divergence is quantified.  

Since the expression for the divergence is very clear-cut, we first find a confidence interval for 

this measure. Using the one-to-one mapping from the divergence to the powerstat, we can 

then compute a confidence interval for the powerstat as well.  

 

Recall that the expression for divergence is: 

  
 (     )
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Creating a confidence interval for the divergence is not very straightforward. Instead, we first 

find the confidence interval for  √   , so for  
     

√  
    

 

     

(The given name    stems from the similarity with the signal-to-noise ratio,     (Lupton, 

Gunn, & Szalay, 1999).) The variances of the model scores for the good observations and the 

model scores of the bad observations,   
  and   

  respectively, can be estimated by   
  and   

 , 

respectively, which are given by: 

  
  

 

    
∑(       )

 

  

   

  

  
  

 

    
∑(       )

 

  

   

  

Here,    and    are the number of bad and good observations, respectively. Furthermore,    

and    denote the sample means, where             and             are the model 

scores for the good and bad observations, respectively.  

 

As   
  and   

  can be found directly from the data, it is more convenient to find the confidence 

interval for   ̂ first, where   ̂ is defined as: 

  ̂  
     

√  
    

 

 

Since   
  and   

  are consistent estimators, they almost surely converge to   
  and   

  (Taboga, 

2012). The confidence interval for   ̂ will therefore give a good estimate for the confidence 

interval for   .  

 

The expression for   ̂ is closely related to the test statistic in Welch’s t-test (Welch, 1947). For 

this test statistic a distribution is known, which we can use in constructing the confidence 

interval for   ̂. With Welch’s t-test, one can test whether the means of observations from two 

independent groups are the same. The standard deviations are not assumed to be equal. 

Because of this, the number of degrees of freedom is computed in a slightly complicated 

manner.  

 

The test statistic for Welch’s t-test is given by: 
(     )  (     )

√  
       

    

  

The sample difference between the mean of the good model scores and the mean of the bad 

model scores is given by      . Welch’s statistic follows a t-distribution with the number of 

degrees of freedom (  ) computed as follows (Pan, 2002): 

   
(
  
 

  
 
  
 

  
)
 

  
 

  
 (    )

 
  
 

  
 (    )

 

Using the t-distribution, we can then fix a confidence level   (for example      ) such 

that: 
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Here,  (   )  ⁄     is the critical value for a t-distribution with    degrees of freedom. This can 

be rewritten such that:  
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This yields a  -confidence interval for   ̂. It can be seen that an increase in the number of 

observations decreases the width of the interval. An infinite number of observations would 

yield an “interval” of width 0, thus consisting of only   ̂. Because of the presence of    and 

   in the expressions for the boundaries, it follows that the width of the confidence interval 

also depends on the observed default frequency.  

 

Since   ̂ converges to   , the confidence interval for    can be approximated by the one 

for    ̂. In turn, the confidence interval for the divergence can be obtained from that of the 

  , since we know that        . Set         as the lower bound and         as the upper 

bound obtained for   . As the mapping from    to the divergence is not one-to-one (due to 

the squared value of   ), some care needs to be taken in transforming the confidence 

interval for    to a confidence interval for the divergence. Three cases can be identified. 

1. Both           and          ; 

2. Both           and          ; 

3.           and          . 

For the first two cases, the lower bound is given by             (        
          

 ) and the 

upper bound by           (        
          

 ). This upper bound is the same for the third 

case, but the lower bound is then         , as 0 lies within this third confidence interval.  

 

From (22), the powerstat can be expressed in terms of    as well: 

       (      )    (24) 

It follows from this expression that    can be mapped one-to-one to the powerstat. Because 

of this, the confidence interval for the powerstat follows easily from the confidence interval 

for   . By plugging in the lower and upper bound for the   -interval, the upper and lower 

bound for the powerstat interval, respectively, can be found. In Figure 26 the width of the 

confidence interval for the powerstat is plotted against the number of observations and the 

PD.  
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Figure 26: The width of the confidence interval for the powerstat, plotted against the number of 

observations and the PD (which is assumed to be the same as the observed default frequency). 

For clarity, the corresponding contour plot is given separately in Figure 27. 

 

 
Figure 27: Contour plot for the width of the confidence interval for the powerstat, plotted against the 

number of observations and the PD (which is assumed to be the same as the observed default 

frequency). 

It can be seen from Figure 26 and Figure 27 that the width of the interval decreases if the 

number of observations increases or if the PD increases. If the PD increases, there are 
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relatively more bad observations that can be used for model estimation. The powerstat can 

therefore be estimated better, leading to a smaller width of its confidence interval.  

5.3.2 Interpretation of the powerstat 

Recall that the powerstat is a measure used to check the discriminatory power of a model. 

For computing the powerstat, the area under the power curve is needed. The power curve is 

obtained by plotting the distribution function of the model scores of the bad observations 

against the distribution function of the model scores of all observations. The powerstat is 

then computed from (18).  

 

If we can assume that the model scores of the good and bad observations  are both normally 

distributed, we showed in (24) that the expression for the powerstat can be rewritten to:  

       

(

 
     

√  
    

 

    

)

  

Using the identity  ((   )      )   (     ), this can in turn be rewritten to: 

       (         √  
    

 )  
 

(25) 

The second term containing the normal probability can be interpreted as the probability of 

the model score of a bad observation being higher than the model score of a good 

observation. This is not desirable, so this term should be as small as possible. The smaller this 

probability, the larger the powerstat, as can be seen from (25). Figure 28 shows the relevant 

distributions.  

 
Figure 28: The blue graph is the distribution of the model scores of the bad observations, the green is 

that of the model scores of the good observations, and the red graph is the difference distribution. The 

filled area represents the probability of a bad observation having a higher model score than a good 

observation. For this figure we set:     ,     ,         and       . 
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In Figure 28, the distributions of the model scores of the good and bad observations are 

shown in green and blue, respectively. Also, the difference function of the two distributions is 

plotted (red). If the difference in model scores is negative, the model score of a bad 

observation is higher than the model score of a good observation. The filled area therefore 

represents the probability of a bad observation having a higher model score than a good 

observation.  

 

If the distributions of the model scores of the good and bad observations would be the same, 

then the probability of a bad observation having a higher model score than a good 

observation, would be exactly ½. That means, that a probability higher than ½ follows from a 

model that consequently rates bad observations higher than good observations. To “punish” 

for this behaviour, we may compute the measure     (     )⁄ , which is negative in case 

the model rates bad observations higher than good observations. This measure ranges from 

– ½ to + ½ . Since it is more insightful to have a measure ranging from – 1 to +1, this 

measure can be calibrated to: 

    (     )      (         √  
    

 )    
(26) 

This is exactly (25), the expression for the powerstat. 

 

Using  (     )     (     ) we can rewrite (26) as: 

       (     )    (     )       (27) 

It follows that the powerstat can also be interpreted as twice the probability of a bad 

observation having a lower model score than a good observation, minus 1. The powerstat can 

thus be seen as a linear transformation of the probability of a bad observation having a lower 

model score than a good observation. This direct relation between the powerstat and the 

probability of a bad observations having a lower model score than a good observation, is a 

new addition to the interpretation of the powerstat.  

 

Table 8 shows several powerstat values and the corresponding probabilities of a bad 

observation having a lower model score than a good observation.  

 

Powerstat  (     ) Powerstat  (     ) 

-1 0 0.1 0.55 

-0.9 0.05 0.2 0.60 

-0.8 0.10 0.3 0.65 

-0.7 0.15 0.4 0.70 

-0.6 0.20 0.5 0.75 

-0.5 0.25 0.6 0.80 

-0.4 0.30 0.7 0.85 

-0.3 0.35 0.8 0.90 

-0.2 0.40 0.9 0.95 

-0.1 0.45 1 1 

0 0.50   

Table 8: Powerstat values and the corresponding probability of a bad observation having a lower 

model score than a good observation.  
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Suppose for example that we have two models; for model 1  (         )       and for 

model 2  (         )      . Since  (     )    would hold for a model with perfect 

discriminatory power, we expect the second model to have more discriminatory power than 

the first. From (27) (and Table 8) it follows that          and         , which indeed 

confirms that model 2 has more discriminatory power than model 1.  

5.4 Shadow-Bond powerstat 

An alternative for the Good-Bad modelling approach, is the Shadow-Bond approach. For the 

Good-Bad approach, the response variable of the observations is binary: an observation is 

either good (non-default) or bad (default). On the other hand, when the Shadow-Bond 

approach is used, the response variable is the rating category that an external rating agency 

classifies the observation in. The response variable is still discrete, but with more than two 

possibilities.  

 

Throughout this chapter, only the Good-Bad approach is considered. There are two main 

reasons why the method for creating a confidence interval for the powerstat cannot be 

applied to the Shadow-Bond approach, these are explained in 5.4.2. But first, the 

computation of the powerstat for the Shadow-Bond approach is discussed in subsection 

5.4.1. 

5.4.1 Powerstat computation for Shadow-Bond approach 

For the computation of the powerstat for both the Good-Bad approach and the Shadow-

Bond approach three curves are needed: the power curve, the curve of the random model, 

and the curve for the crystal ball model. Remember that the powerstat is defined as the ratio 

of the area between the power curve and the curve of the random model and the area 

between the curve of the crystal ball model and the random model. See also Figure 29. 

 

 
Figure 29: The power curve, the curve of the random model, and the curve of the crystal ball model, 

using the Good-Bad approach. 
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When using the Good-Bad approach, for each score   the proportion of bad observations 

with a lower model score than   is plotted against the proportion of all observations with a 

model score lower than  .  

 

As there are more than two response categories when the Shadow-Bond approach is used, 

these curves should be created differently. When using the Shadow-Bond approach, for each 

score   the sum of the PDs (associated with the external ratings) of observations with a lower 

model score than  , divided by the sum of the PDs of all observations, is plotted against the 

proportion of observations with a model score lower than  . The rest of the computation of 

the powerstat is identical to that for the Good-Bad approach.  

5.4.2 No confidence interval for Shadow-Bond approach 

There are two main reasons that the proof of this chapter, leading to a confidence interval for 

the powerstat under the Good-Bad approach, cannot be extended to the Shadow-Bond 

approach. These reasons will be discussed in this subsection.  

 

The creation of a confidence interval for the powerstat for the Good-Bad approach, required 

proving the one-to-one relation between the absolute value of the powerstat and the 

divergence. The expression for the divergence is: 

   
(     )

 

  
    

  

The subscripts   and   refer to the model scores of the bad observations and the model 

scores of the good observations, respectively. In this case, there are only two groups of 

observations: the “goods” and the “bads”. For the Shadow-Bond approach, there are more 

groups. External rating agency Standard & Poor’s would, for example, identify 22 different 

rating categories (Standard & Poor's, 2011). From the definition of the divergence, it is not 

clear how this increased number of groups would be incorporated. We may sum all pairwise 

divergences, or multiply all pairwise divergences, or sum only the pairwise divergences for 

the consecutive groups, etc. So since the Shadow-Bond divergence is not clearly defined, the 

divergence and powerstat cannot be linked for the Shadow-Bond approach, and the proof of 

section 5.2 cannot be extended to the Shadow-Bond powerstat.  

 

Another reason for the difficulties in finding a confidence interval for the powerstat for the 

Shadow-Bond approach can be found by considering the difference between the powerstat 

for the Good-Bad approach and the powerstat for the Shadow-Bond approach. Figure 30 

shows the graphs for creating the powerstat for the Shadow-Bond approach.  
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Figure 30: The power curve, the curve of the random model, and the curve of the crystal ball model, 

using the Shadow-Bond approach. 

When we compare Figure 29 and Figure 30, it can be seen at first glance that the curves for 

the crystal ball model for both approaches are very different. The curve of the crystal ball 

model for the Good-Bad approach consists of two parts: a line with a very steep incline and a  

horizontal line. On the other hand, the curve of the crystal ball model for the Shadow-Bond 

approach is quite close to the power curve and is smoother than its Good-Bad counterpart. 

Because of this, the area between the power curve and the curve of the crystal ball model for 

the Shadow-Bond approach is much less than this same area for the Good-Bad approach. 

Recall that the powerstat is computed as the ratio of two areas: the area between the power 

curve and the curve of the random model, and the area between the curve of the crystal ball 

model and the curve of the random model. Thus, it follows that the powerstat is in general 

higher for the Shadow-Bond approach than for the Good-Bad approach. However, models 

based on the Shadow-Bond approach do not necessarily have a higher discriminatory power 

than models based on the Good-Bad approach. Therefore, the value of the powerstat should 

be interpreted differently according to the approach used.  

 

This suggests that the powerstat for the Shadow-Bond approach and the powerstat for the 

Good-Bad approach can in fact be interpreted as two different measures for the 

discriminatory power of a model. Extending properties (such as the confidence interval) from 

one to the other may therefore not be as straightforward as one can expect based on the 

similar names.   
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6 Powerstat & divergence – Application 

In the previous chapter we developed a method to compute a confidence interval for the 

powerstat: a measure for the discriminatory power of a model. The better a rating model can 

discriminate between good and bad observations, the higher its powerstat. But from a 

statistical point of view, a single powerstat value contains little information. It is therefore 

desirable to create a confidence interval for the powerstat, which increases the understanding 

of the uncertainty of this powerstat value. In this chapter, we will provide numerical 

background for the theory of the previous chapter. 

 

First, we recapitulate how the confidence interval for the powerstat is created. In order to 

create a confidence interval for the powerstat (  ), we first needed to link it to another 

measure for the discriminatory power of a model: the divergence ( ). This is done by linking 

both measures to a third one:   . This    is given by: 

   
     

√  
    

 

 

We derived the following two relations: 

        
        (      )    (28) 

As    and    converge to    and   , respectively (Taboga, 2012), we approximated    by   ̂: 

  ̂  
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By using Welch’s t-test (Welch, 1947), a confidence interval for   ̂ is created: 
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As   ̂ also converges to    (which follows from the definition of    ̂ and the convergence of 

   and   ), this confidence interval for   ̂ can be used as confidence interval for   . By using 

(28), the confidence interval for the powerstat can also be obtained. 

 

In order to use the divergence, we had to assume that the model scores for the good and 

bad observations are normally distributed. In 6.1 we check whether this is indeed the case. 

Also, in 5.3.1 we created the confidence interval for the powerstat. In 6.2 we use a numerical 

approach to confirm that this is indeed a confidence interval for the powerstat. To give an 

example of this confidence interval, we use the development data of a recently developed 

model (the Poland SME PD model) in 6.3. For Rabobank, the Matlab implementation of this 

method is explained in Appendix F. 

6.1 Normality of the model scores 

In order to find an equivalence relation between the powerstat and the divergence, we had to 

base the powerstat on the same assumptions as the divergence. Therefore, both the model 

scores of the bad observations and the model scores of the good observations are assumed 

to be normally distributed. In order to apply the results of this equivalence relation to the 
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models used in practice, it is useful to check if the model scores of the good observations 

and the model scores of the bad observations in a real development dataset are indeed 

(close to) normally distributed.  

 

Note that the method of the previous chapter only applies to the computation of the 

discriminatory power of models, not individual factors. These factors are often not normally 

distributed, so the derivation of the previous chapter would not apply.  

 

For testing the normality of the model scores, three different development datasets are 

available. All three were used in developing a rating model for Rabobank using the Good-Bad 

approach. For each dataset, we have two sets of model scores: the model scores for the good 

observations and the model scores for the bad observations. In order to test whether these 

model scores are normally distributed, a Jarque-Bera test is performed (Jarque & Bera, 1980). 

This test uses the skewness ( ) and the kurtosis ( ) of the empirical distribution and compares 

this with the skewness and kurtosis of a normal distribution. The Jarque-Bera test statistic (  ) 

is: 

   
 

 
(   

(   ) 

 
) 

If   (the number of observations) is large enough,    follows a chi-squared distribution with 

two degrees of freedom. If we set the confidence level at 95%, this means that the critical 

value for    is 5.99. For the three development datasets, the value for    is given in Table 9.  

 

Development dataset Good / Bad JB value 

1 
Good 88.81 

Bad 0.874 

2 
Good 544.76 

Bad 29.49 

3 
Good 24.82 

Bad 1.746 

Table 9: The values for the Jarque-Bera test statistic for three different datasets.  

From Table 9 we can see that         in four cases. This means that in those cases we can 

reject – with 95% certainty – the null hypothesis that the model scores are normally 

distributed.  

 

This would suggest that the results from the previous chapter cannot be used in practice. To 

see if there is some lenience in this, we plot the each empirical model score distribution 

together with a normal distribution. This normal distribution is the normal distribution that 

has the same mean and standard deviation as the empirical model score distribution. These 

plots can be found in Appendix G.  

 

It can be seen that the model score distributions deviate most from the normal distributions 

around the extreme model scores. An important reason for this, is that the model scores are 

bounded, as they are a linear combination of factor scores that all have a bounded range of 

[    ]. Other than that, the empirical distributions follow the normal distribution quite closely. 

Therefore, the results of the previous chapter can still be applied to practical data, provided 

that they are used with caution. 
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For extreme powerstat values (close to -1 or 1) in particular, the confidence interval may not 

hold. That is because these extreme powerstat values are almost fully determined by the tail 

behaviour of the distributions for the model scores of the good and bad observations. And as 

we noticed, the empirical model score distributions deviate most from the normal 

distributions around the extreme model scores.  

6.2 Checking the confidence interval 

In 5.3.1 we developed a confidence interval for the powerstat. To check whether the 

constructed interval is indeed the interval in which the powerstat lies with a confidence level 

of   (predetermined, here we will use      ), we use a Monte Carlo method. For this 

method, a large number of datasets is generated. Each dataset consists of good and bad 

observations with model scores that are generated from normal distributions. For each 

dataset the 95% “confidence” interval for the powerstat can be computed, using the method 

described in 5.3.1. As it needs to be checked whether this interval is really a confidence 

interval, we will refer to it as “interval”. 

 

In order to check whether the interval is a confidence interval for the powerstat, the “real” 

powerstat needs to be computed. This can be done, as the underlying model parameters are 

known. Also, the interval described in 5.3.1 is computed. Note that for this computation only 

 ̅ ,  ̅ ,   ,   ,   , and    are required, which are all available for each individual dataset. 

Then, we check for each dataset whether the powerstat lies within the interval. If the interval 

is indeed a 95% confidence interval, the expectation is that in 95% of the datasets the 

powerstat will lie in the interval.  

 

This Monte Carlo check is performed for different values of the powerstat. These different 

powerstat values are created by varying      . Each Monte Carlo check is performed on 

100000 datasets of 5000 observations. The results for negative powerstat values are similar to 

those for the positive powerstat values. Therefore, only the results for the positive powerstat 

values are shown.  

 

Powerstat % of dataset intervals containing 

the powerstat 

P-value of outcome when: 

     (              )      

0 94.99% 89% 

0.1 94.96% 57% 

0.2 95.08% 24% 

0.3 94.95% 47% 

0.4 94.97% 67% 

0.5 95.01% 88% 

0.6 95.02% 77% 

0.7 95.05% 46% 

0.8 94.99% 89% 

0.9 94.93% 31% 

Table 10: For different powerstat values, we determine for how many datasets the interval contained 

the powerstat. Also, the p-value for the observed outcomes is given.  
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It can be seen from Table 10 that the values in the second column are very close to 95%. 

Whether this is close enough to conclude that the confidence level is indeed 95%, can be 

checked statistically. Each Monte Carlo dataset can be considered as an independent 

binomial test. There are two possible outcomes: either the powerstat lies within the interval 

constructed on the dataset (success), or outside of it (failure). We can define the null 

hypothesis as: 

     (              )      

The alternative hypothesis is subsequently defined as: 

     (              )      

Then, the p-values can be computed for the observed number of successes out of 100000 

tests. These are given in the third column of Table 10. As the p-values are all large enough, it 

can be concluded that the interval developed in 5.3.1 indeed yields a confidence interval for 

the powerstat.  

6.3 Confidence interval example 

To get some more feel for the powerstat and its confidence interval, we compute these 

values for a recently developed model; the Poland SME PD model. This model develops a 

rating system for the probability of default for small and medium enterprises in Poland. The 

observed default frequency is between 1% and 5%. The powerstat for this model is computed 

to be 0.5901, which is quite high for a model developed using the Good-Bad approach. We 

vary the number of observations – while keeping the distribution parameters fixed – to create 

different confidence intervals. The confidence level is fixed at 95%. The results are given in 

Table 11.  

 

Number of observations Lower bound Upper bound Width interval 

150 0.2261 0.8265 0.6004 

500 0.4039 0.7365 0.3326 

1000 0.4622 0.6979 0.2357 

2000 0.5016 0.6685 0.1669 

5000 0.5353 0.6409 0.1056 

10000 0.5517 0.6264 0.0747 

Table 11: Lower and upper boundaries for the 95%-confidence interval for the powerstat (0.5901) for a 

varying number of observations. The width of the interval is also given. 

Increasing the number of observations also increases the lower bound and, at the same time, 

the upper bound decreases. This narrows the width of the confidence interval. It can be seen 

that for 500 observations, the confidence interval was 0,3326 wide. For 2000 observations, the 

width decreased to 0,1669. Note however, that while the number of observations increased 

by a factor 4, the interval width was only cut in half. This effect is due to the   √  factor in 

the expression for the interval bounds for   . Furthermore, the non-linear transformation 

      is the reason that                  .  
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7 Conclusions 

In this chapter we give some concluding remarks on the methods developed in this thesis: 

the ellipse method for quantifying the uncertainty in the factor coefficients found by 

regression, and the method for deriving a confidence interval to quantify the uncertainty in 

the powerstat. Also, we give some suggestions for further research. 

7.1 Conclusions for the ellipse method 

A credit rating model uses a number of characteristics of the counterparty as input. These are 

called the factors. Some factors are more important than others in estimating the 

creditworthiness of a counterparty, and therefore get a higher coefficient in the model. These 

coefficients are estimated on a dataset. The ellipse-method describes a method to create a 

two-dimensional (ellipse-shaped) confidence region for each factor coefficient, where the 

second additional dimension represents the combination of all other coefficients. 

 

With this ellipse-shaped region two intervals can be found per factor coefficient, both 

centred around the coefficient that is estimated by regression. The inner interval shows how 

much the coefficient is allowed to change, if all other coefficients should remain unchanged. 

On the other hand, the outer interval shows the possible changes for the factor coefficient, if 

at least one other coefficient is allowed to change as well.  

 

Using numerical tests, we were able to ascertain that the ellipse is indeed a confidence 

region. This was also the case for the ellipse for the coefficients derived by logistic regression, 

where the covariance matrix had to be approximated.  

 

From the example data we saw that in practice the difference between the inner and outer 

interval was relatively small. This is a consequence of the relatively high number of factors 

included in the model and the low correlation between the factors. Then, the correlation 

between one coefficient and the sum of all other coefficients is quite small. We showed that 

the ratio of the widths of the outer and inner intervals is directly related to this correlation, 

where a small correlation yields a ratio close to 1 (similar widths).  

7.2 Conclusions for powerstat & divergence 

When testing the performance of a credit rating model, very often the powerstat is used for 

measuring its discriminatory power. But as this powerstat can only be computed based on a 

finite number of observations, it makes sense to construct a confidence interval for this value 

to increase the understanding of it. 

 

However, a confidence interval for the powerstat cannot be created directly from its 

definition. Instead, we use another measure for the discriminatory power: the divergence. 

This divergence is computed from a tractable formula based on only the means and the 

variances, and therefore we are able to construct its confidence interval. By linking the 

powerstat to the divergence, we can extend the properties of the divergence, including the 

confidence interval, to the powerstat.  
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We first showed that – just like the divergence ( ) – the powerstat (  ) is independent of the 

PD. Next, starting with a special case, we showed that the following relations hold in general: 

     and   |  |. Since the sign of the powerstat is in practice always positive, these 

relations imply a one-to-one mapping from the powerstat to the divergence. 

 

An additional application of the equivalence between the powerstat and the divergence 

resulted in a new interpretation of the powerstat. It turned out that the powerstat is linearly 

related to the probability of a good observation having a higher model score than a bad 

observation.  

 

In order to link the powerstat to the divergence, we have to assume that the model scores of 

the good observations and those of the bad observations are both normally distributed. 

Using a real development dataset, we checked this assumption for the model scores of the 

observations. It followed that in general, the empirical distributions of the model scores do 

not deviate too much from a normal distribution. The exceptions are in the tails of the 

distributions: for extreme model scores, the empirical distributions are not comparable to 

normal distributions. A reason for this is that the model scores are bounded. Since the 

confidence intervals of extremely high or low powerstat values (close to -1 or 1) are strongly 

influenced by the tail behaviour of the model score distributions, we suggest that the 

confidence interval is used with caution for these powerstat values.  

7.3 Suggestions for further research 

In order to extend the knowledge on the topics considered in this thesis, we have some 

suggestions for further research.  

 

The ellipse for coefficients derived by logistic regression was based on an approximation of 

the covariance matrix. Even though we showed in 4.1 that the computed ellipses are indeed 

confidence regions and therefore perform well, further research may yield an exact 

covariance matrix. This may improve the confidence region as well.  

 

Furthermore, during the discussion of the ellipse method the primary focus was on providing 

more insight in the situation of changing one factor coefficient. To extend this method to 

changing multiple coefficients simultaneously, more research is needed.  

 

As was pointed out in 5.4, a confidence interval could only be created for the powerstat of a 

model based on the Good-Bad approach, not for the powerstat of a model based on the 

Shadow-Bond approach. Since quite a number of models is based on the Shadow-Bond 

approach, further research on the creation of a confidence interval for the Shadow-Bond 

powerstat may be useful.  
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9 Appendices 

A Histograms for the factor examples 

 
Figure 31: The histogram of the “total assets ratio” factor scores for the development dataset for the 

commercial banks model redevelopment. 

 
Figure 32: The histogram of the “market risk exposure” factor scores for the development dataset for 

the commercial banks model redevelopment. 
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Figure 33: The histogram of the “debt service coverage ratio” factor scores for the development 

dataset for the Poland SME model redevelopment. 

 
Figure 34: The histogram of the “history with Rabobank” factor scores for the development dataset for 

the Poland SME model redevelopment. 
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B The naive confidence region 

If we have two estimated parameters, a naive confidence region could be formed by the 

rectangle with sides corresponding to the two one-dimensional confidence intervals. 

Suppose have two parameters,    and   , whose one-dimensional confidence intervals 

(denoted by    and   ) have confidence levels    and   , respectively. The rectangle can thus 

be defined by: 
[(     ) |            ] 

The probability of (     ) lying in the rectangle is therefore given by  (            ). It 

then follows that: 

 (            )     (            )   (            )   (            )
    (            )   (            )     (      )     

Similarly, we can derive that  (            )    .  

 

If we set      , it is clear that the rectangular region has a lower confidence level than  . 

For a confidence region with confidence level  , it should hold that the projection of this 

region onto the axes of    and    lies outside of the bounds defined by    and    for at least 

one of    and   . 

  



Appendices 

 

 

74 

 

C The linear OLS estimator 

In this appendix, we will show the derivation of the ordinary least squares estimator    for the 

linear model. In matrix notation, this model is given by: 

       

If there are   observations and   explanatory factors, then   is a     vector,   a     

matrix,   a     vector, and   a     vector.   contains the dependent variables, whereas   

contains the independent variable values.   

 

The   that minimizes     is the OLS estimator   . We can write: 

    (    ) (    )                    

The derivative of     to   is then given by: 

            

Setting this derivative to zero, yields   . So: 

   (   )      

This is the linear OLS estimator. 
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D Computing the tilt of an ellipse 

We will now derive the expression for the angle of the tilt of an ellipse, denoted by  . This is 

required for the analysis in 3.7.  

 

Notice that for a tilted ellipse an alternative set of axes ( ̃  ̃) can be defined, such that the 

ellipse is not tilted with respect to these axes. These alternative axes are therefore parallel to 

the major and minor axes of the ellipse. Therefore,   is equal to the angle between the   axis 

and the  ̃ axis. See Figure 35.  

 

 
Figure 35: An ellipse with an alternative set of axes ( ̃  ̃) parallel to the major and minor axes of the 

ellipse.  

As relation between the two sets of axes can thus be seen as a standard rotation, the 

following equations hold: 

{
    ̃       ̃     
    ̃       ̃     

   (29) 

If we locate the centre of the ellipse at (   ) for simplicity, the ellipse equation in terms of   

and   is given by: 

                 (30) 

The fixed coefficients for the equation are given by  ,  , and  . By plugging (29) into (30), we 

obtain the equation in terms of  ̃ and  ̃.  

 ̃ [                       ]   ̃ ̃[(    )             ]
  ̃ [                       ]    

Since the ellipse is not tilted with regards to the ( ̃  ̃) axes, the  ̃ ̃ term should be zero. So: 
(    )                

From this, it follows that: 

  
 

 
     (

 

   
) 

The expression for the tilt of the ellipse can therefore be expressed in terms of  ,  , and  .  

𝑥 

�̃� 

𝑦 
�̃� 

𝜃 
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E Matlab implementation of the ellipse method 

The ellipse method is implemented in Matlab, a computational software program. Matlab is 

the program of choice for the statistical work on rating model (re)developments. Therefore, 

by implementing the ellipse method, it can be used directly during the next model 

(re)development.  

 

A Matlab function is created which can create the inner and outer intervals for each factor 

coefficient in the model. Also, the ellipses can be plotted. The name of this function is 

functionEllipseMethod. Its input is the following: 

- v_dependent: Vector containing the dependent variable for each observation. So 

this is either a binary variable for the logistic regression, or the logarithm of the PD 

corresponding to the external rating for linear regression.  

- m_data: Matrix with the factor data for each observation. Each column corresponds 

to the factor scores of a factor that should be incorporated in the model.  

- s_method: String indicating the regression method that should be used: linear for 

linear regression and logit for logistic regression.  

- s_intercept (optional): String indicating whether an intercept should be used: on 

if yes, off if no.  

- plotplease (optional): Variable indicating if a plot of all the ellipses should be 

made. If this is required, the variable should be set to 1, otherwise to 0 (default). 

- conflevel (optional): Variable with the confidence level of the confidence region 

(ellipse). This variable can only have values within the range (   ). Its default value is 

0.95.  

The output of functionEllipseMethod are four matrices of the same size. They each 

have two columns (for the upper and lower boundaries) and the number of rows is equal to 

the number of factors in the model. The output consists of the following items: 

- int_in: The matrix with the lower bound (first column) and upper bound (second 

column) of the inner interval for each factor coefficient. 

- int_out: The matrix with the lower bound (first column) and upper bound (second 

column) of the outer interval for each factor coefficient. 

- int_in_wt: The matrix with the lower bound (first column) and upper bound 

(second column) of the inner interval for each factor weight. 

- int_out_wt: The matrix with the lower bound (first column) and upper bound 

(second column) of the outer interval for each factor weight. 

 

The factor data that is used as input should only be the scores of factors that are allowed to 

be incorporated in the model. It may therefore be useful to first perform a stepwise 

regression on all factors to identify those that form the final model.  
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F Matlab implementation of the powerstat confidence interval 

In order to facilitate the use of the confidence interval for the powerstat, the method to 

create this interval is implemented in Matlab. Matlab is the program used for developing the 

credit rating models, so it makes sense to implement the creation of the confidence interval 

in this program.  

 

The Matlab function that is currently used for computing the powerstat is called 

powerstatisticConform. It is now extended under the new name 

powerstatisticConform_ConfInt. The input is not changed, but one output element is 

added: the confidence interval. The input arguments are: 

- v_score: Vector with the model/factor scores. 

- v_PD: Vector with the creditworthiness information (either binary or the logarithm of 

the PD). 

- s_plots (optional): String that will be used as the title of the plot of the power curve, 

random curve and crystal ball curve. If this is empty or no, there will be no plot.  

- v_weights (optional): Vector with the weight of each score. Default is a vector with 

ones.  

- s_logP (optional): String indicating whether the logarithmic powerstat needs to be 

computed.  

The output is the following: 

- p: Value of the powerstat.  

- v_posNeg: Vector with two entries: the percentages of the positive part (above the 

random curve) and negative part (below the random curve) of the power curve. 

- v_ConfInt: Vector with two entries: the lower and upper bound of the confidence 

interval of the powerstat.  

 

The confidence interval for the powerstat can only be created if the vector with 

creditworthiness information only contains 0’s and 1’s. If this is not the case, the interval 

returns NaN: not a number.  

 

By default, a confidence level of 95% is used for the confidence interval. If required, this level 

can be changed directly in the code. In line 149 the variable conflevel can then be set to 

the required level of confidence.  
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G The empirical model score distributions 

 
Figure 36: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the good observations in the development dataset of model 1.  

 

 
Figure 37: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the bad observations in the development dataset of model 1. 
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Figure 38: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the good observations in the development dataset of model 2. 

 

 
Figure 39: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the bad observations in the development dataset of model 2. 
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Figure 40: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the good observations in the development dataset of model 3. 

 

 
Figure 41: The empirical model score distribution together with the normal distribution with the same 

mean and standard deviation for the bad observations in the development dataset of model 3. 


