
Dealing with changes to shared
software components

by

Roland van Dijk

Thesis submitted in partial fulfillment for the degree of
Master of Science in Business Information Technology

Supervisors University of Twente
dr. Klaas Sikkel
dr. Chintan Amrit

External supervisors
ir. Jasper Laagland
ir. Johan te Winkel

ii

Preface

This thesis is the end product of my research project conducted at Topicus FinCare, a software
company located in Deventer in the Netherlands. Starting in August 2012 I have been working
on this project, with which I will conclude my master Business Information Technology at the
University of Twente. The thesis is, in a nutshell, about dealing with requirements change in an
agile, code sharing environment. But more on this in the next 100 or so pages...

I’m very thankful for the opportunity and freedom I got in the way I wanted to execute this
project and I hope the results in this thesis are of use for FinCare and Topicus, now or in the
near future. Thanks to my supervisors at Topicus FinCare, Jasper and Johan, for their open
mindset, constructive thinking and the spirited, friendly discussions. Also many thanks to Klaas
and Chintan, my supervisors at the university, for always giving honest and constructive feed-
back and their encouragements. I wish good luck to all of you and enjoy reading!

Roland van Dijk
February 2013

iii

iv

Management summary

Problem Software companies more and more reuse (parts of) software for a faster
time-to-market. Reusable components thus are valuable assets for any software company.
However, designing for reuse requires upfront investment and may not directly show
financial benefits. Moreover, when a company employs an agile development culture,
deadlines are tight and come in rapid succession. To continuously assure a high level of
quality, it is desired to have a stable product each time a new version of the product
is released. Stable products require stable components, which can be a paradox when
employing an agile development approach where software is built in short and frequent
iterations.

Purpose The goal of this study is to investigate how Topicus FinCare, the focal subject
of this study, can mitigate risks associated with changes to shared components.

Results From a literature study we abstracted a total of 28 risks of which we have
found 7 of relevancy for FinCare, categorized in 3 different solution domains. In the
domain of dealing with technical implications (1) maintaining stability of functionality
for core platform components and (2) the chance of some change unintentionally rippling
to another codebase/application are the main issues. In the domain of dealing with
organizational culture (3) usage of an immature platform in production, (4) a lack of
reusability of components and (5) technical debt are the main issues. Finally, in the
domain of dealing with communication and collaboration (6) having a bottleneck in the
development process and (7) a lack of communication about updates are the main issues.

Recommendations Based on interviews at Topicus and additional literature we pro-
vide a large number of best practices and mitigation approaches in our study, of which
the following are of direct value for FinCare and can be implemented most easily:

• Involve more people in the development of the shared codebase
• Have a simple, but clear communication policy when modifying components
• Occasionally let developers and analysts switch projects

Besides the above ‘low hanging fruits’, we found three important topics which will
become important for FinCare in the near future and which we found already relevant
for the interviewed units at Topicus. We recommend both Topicus and FinCare to:

• Develop a simple but consistent component development model where billing work
effort on shared components internally (across teams) is fair and externally (to
customers) is transparent

• Invest in visualization support for component usage by projects and applications
• Within business units employ a social self-regulating codebase, without strict code

ownership, where everyone can contribute and is responsible for their own modifi-
cations. Between business units, follow a producer-consumer paradigm.

v

vi

Contents

Preface iii

Management summary v

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Project background . 1
1.2 Definitions . 2

1.2.1 What is a product platform? . 2
1.2.2 What is a software component? . 3
1.2.3 What is a shared codebase? . 3
1.2.4 What is a SaaS delivery model? . 3
1.2.5 Summary . 4

1.3 Project scope . 5
1.3.1 The project’s case: health care claims platform 5
1.3.2 Codebase dependencies . 5
1.3.3 Product-line strategy . 6
1.3.4 Growth strategy of Topicus . 7
1.3.5 Summary . 7

1.4 Problem statement . 7
1.5 Relevancy for Topicus . 8

1.5.1 Unit A . 8
1.5.2 Unit B . 8
1.5.3 Unit D . 8
1.5.4 Summary of issues . 10

1.6 Project objectives . 10
1.7 Research questions . 10

2 Research approach 13
2.1 Introduction . 13
2.2 What is the risk of a changing requirement? . 13

2.2.1 Risks in general . 13
2.2.2 Software project risks . 14
2.2.3 Requirements risks . 15
2.2.4 Defining requirement changes . 15

vii

viii Contents

2.2.5 Requirements change risks and project performance 17
2.2.6 Conclusion . 19

2.3 What is working on a shared codebase? . 20
2.3.1 Development structures . 20
2.3.2 Shared codebases challenges . 22
2.3.3 Challenges of working with a shared codebase 22
2.3.4 Impact analysis . 25

2.4 Research approach . 27
2.4.1 Research questions . 27
2.4.2 Research construct . 28

2.5 Conclusion . 29

3 Literature study of case studies 31
3.1 Introduction . 31
3.2 Research approach . 31

3.2.1 Define scope . 31
3.2.2 Identify fields of research . 32
3.2.3 Define search terms . 32
3.2.4 Search . 32
3.2.5 Filter out doubles . 32
3.2.6 Cut down sample based on title+abstract 33
3.2.7 Cut down sample based on full text . 33

3.3 Results . 33
3.3.1 Volatile market . 34
3.3.2 Client influence . 34
3.3.3 Market pressure . 34
3.3.4 Business strategy . 35
3.3.5 Ambiguity . 36
3.3.6 Scope . 37
3.3.7 Scattered functionality . 38
3.3.8 Development of reusable components . 38
3.3.9 Communication and knowledge sharing 40
3.3.10 Experience in reuse . 41
3.3.11 Adoption a PLE approach . 41

3.4 Derived risks . 42
3.4.1 Risk of operating in a volatile market . 44
3.4.2 Risk of stakeholder influence . 44
3.4.3 Risk of time-to-market pressure . 44
3.4.4 Risk of evolving standards . 44
3.4.5 Risk of political aspects . 45
3.4.6 Risk of business philosophy focusing on short-term goals 45
3.4.7 Risk of business value thinking . 45
3.4.8 Risk of prioritizing of mainstream product 46
3.4.9 Risk of changing the business strategy . 46
3.4.10 Risk of reusing immature components . 46
3.4.11 Risk of unclear requirements . 46
3.4.12 Risk of different interpretations of artifacts 47
3.4.13 Risk of goal ambiguity . 47
3.4.14 Risk of scope widening . 47

Contents ix

3.4.15 Risk of scattered functionality . 47
3.4.16 Risk of delocalized plans/documents . 48
3.4.17 Risk of iteratively changing reuse components 48
3.4.18 Risk of changes in product line assets at the product level 48
3.4.19 Risk of enhancement to a cross-cutting concern 48
3.4.20 Risk of component granularity . 48
3.4.21 Risk of circular dependencies . 49
3.4.22 Risk of non-standardized configuration interfaces 49
3.4.23 Risk of early binding of build-level dependencies 49
3.4.24 Risk of making a composition by hand . 49
3.4.25 Risk of making an application/component reusable 50
3.4.26 Risk of heterogeneous communication . 50
3.4.27 Risk of centralization in group based collaboration networks 50
3.4.28 Risk of reuse experience level . 50

3.5 Conclusion . 50

4 Interviews 51
4.1 Introduction . 51
4.2 Goals . 51
4.3 Designing the interview . 51

4.3.1 Why interviews? . 51
4.3.2 Interview type . 52
4.3.3 Interpreting data . 52

4.4 Interview protocol . 53
4.4.1 Shared codebases challenges and requirements change 53
4.4.2 Heuristic . 53
4.4.3 Interview questions . 54

4.5 BTOPP-model . 54
4.6 The interviewed business units . 56

4.6.1 Unit A . 56
4.6.2 Unit B . 56
4.6.3 Unit C . 56

4.7 Interview results . 57
4.7.1 Unit A . 57
4.7.2 Summary unit A . 62
4.7.3 Unit B: issues . 64
4.7.4 Unit B: solutions . 69
4.7.5 Summary unit B . 74
4.7.6 Unit C . 76
4.7.7 Summary unit C . 79

4.8 Conclusion . 80

5 Casestudy: risks at FinCare 81
5.1 Introduction . 81
5.2 Bottom-up codebase analysis . 81

5.2.1 FinCare Products . 81
5.2.2 Teams and responsibilities . 82
5.2.3 Development process . 82
5.2.4 Architecture of FinCareClaim . 83
5.2.5 Technical architecture . 83

x Contents

5.2.6 Modules, components, packages and libraries 84
5.2.7 Visualizing the repositories . 85
5.2.8 Conclusions . 91

5.3 Relevant risks . 97
5.3.1 Introduction . 97
5.3.2 Discussion of risks . 97

5.4 Conclusion . 101

6 Finding suitable mitigation approaches 103
6.1 Introduction . 103
6.2 Mapping solutions/best practices to shortlist . 103
6.3 Discussion of mitigation approaches . 106

6.3.1 Questionnaire . 106
6.3.2 Dealing with technical implications . 107
6.3.3 Dealing with organizational culture . 110
6.3.4 Dealing with communication and collaboration 113

6.4 Conclusion . 118

7 Conclusion 119
7.1 Answering the problem statement . 119
7.2 Things you already can implement tomorrow . 121
7.3 Things to implement in the long term . 121
7.4 Scientific relevancy . 123
7.5 Validity . 124

Appendices 125

A Challenges versus change characteristics 127

B Interview protocol 129

C Questionnaire 131

Bibliography 139

List of Figures

1.1 Claim process . 5
1.2 Codebase dependencies . 6
1.3 Frameworks at unit D. 9

2.1 Project-driven development. 20
2.2 Component-driven development. 21
2.3 Product-driven development. 22
2.4 Feature-driven development. 23
2.5 Types of impact analysis methods abstracted (Lehnert, 2011). 26
2.6 Research construct. 29

3.1 Volatile market. 34
3.2 Client influence. 35
3.3 Market pressure. 35
3.4 Long-term versus short-term PLE. 36
3.5 Asset ambiguity. 37
3.6 Scope widening and requirement complexity increase. 37
3.7 Scattered and delocalized functionality. 38
3.8 Change propagation. 39
3.9 Knowledge questions. 39
3.10 Dispatcher role. 40
3.11 Knowledge sharing and reuse champion. 41

4.1 BTOPP model . 55
4.2 Codebase unit A . 57

5.1 High-level architecture of the FinCareClaim platform 84
5.2 Complete dependency graph of codebase at FinCare 89
5.3 Dependencies between assemblies . 90
5.4 NuGet dependencies between repositories . 91
5.5 Complete codebase dependencies of the FinCareClaim platform 92
5.6 FinCareClaim platform grouped per application 93
5.7 Logical coupling of FinCare repository . 94
5.8 Logical coupling of FinCare repository grouped by FinCareClaim applications . . 95
5.9 Logical coupling older than 1 year ago . 96

6.1 Causal relation diagram of dealing with technical implications 107
6.2 Causal relation diagram of dealing with organizational culture 111

xi

xii List of Figures

6.3 Causal relation diagram of dealing with communication and collaboration issues 114

A.1 Reuse challenges vs change characteristics . 128

List of Tables

2.1 Risk categorization . 14
2.2 Software change factors. 16
2.3 Software change factors according to theme. 16
2.4 Characteristics of requirement changes according to McGee (McGee, 2011). . . . 18
2.5 Characteristics of requirements changes according to Williams et al. (Williams

and Carver, 2010) . 19

3.1 Derived risks from industrial case studies . 43

4.1 Relation topics and interview directions . 54
4.2 Interview results: issues . 63
4.3 Interview results: solutions or best practices . 64
4.4 Interview results: desires . 64
4.5 Interview results: issues unit B . 75
4.6 Interview results: solutions or best practices unit B 75
4.7 Interview results: desires unit B . 76
4.8 Interview results: issues unit C . 79
4.9 Interview results: solutions unit C . 80
4.10 Interview results: desires unit C . 80

5.1 Mercurial repositories at FinCare . 85
5.2 Collapsed FinCareClaim-platform repository . 85
5.3 Color mapping . 86
5.4 Shared packages with degree higher than 1 . 88
5.5 Shared assemblies of FinCareClaim . 88
5.6 Risks according to Likelihood (L), Impact (I) and Relevancy (R) 102

6.1 NPS of problems dealing with technical implications 108
6.2 NPS of solutions dealing with technical implications 109
6.3 NPS of problems dealing with organizational culture 111
6.4 NPS of solutions dealing with organizational culture 113
6.5 NPS of problems dealing with communication and collaboration 115
6.6 NPS of solutions dealing with communication and collaboration 117

xiii

xiv List of Tables

- Chapter 1 -

Introduction

This research project has been carried out for Topicus FinCare, a software development company
located in the Netherlands. In this chapter we will introduce the company, give some basic
definitions, illustrate the research problem and formulate the problem statement.

§ 1.1 Project background

Topicus FinCare is an autonomous business unit from the PBT Holding (from now on just
Topicus) and has approximately 360 employees and 16 of such autonomous business units which
are run as investment centers. Topicus operates in all kinds of domains, including government,
health care, education and finance.

FinCare has 22 employees and consists of small software development teams, each working on
their own projects. They follow a lean, or ‘agile’ software development approach, which means
they build software in multiple iterations of approximately 4 weeks with few documentation and
close customer involvement. Each iteration results in a working prototype or sub-system of the
product which is demonstrated to the customer in order to check if the product is in compliance
with the customer’s wishes.

This project stems from a desire of FinCare to continuously assure code quality in a growing
organization which values their lean, agile culture very highly and has a natural tendency of
rejecting organizational overhead in order to achieve code quality assurance. This seemingly
paradoxical situation is the reason FinCare issued this project. They know they will evolve over
time, they know managerial ‘overhead’ might be inevitable if the organization grows bigger, but
is there a path where software quality is assured without making concessions to the existing
development culture? The situation is best illustrated by three examples which are typical for
FinCare projects:

First example Let’s assume we have multiple teams work on different projects, but they
all use functionality from a shared codebase. The customer of one of these teams has the
desire for some new functionality. In order to implement this the development team has to
modify core components located in their product platform. How do they make sure that this
new functionality doesn’t interfere with the product-specific components of the other solutions
offered by their SaaS delivery model?

Second example Assume a cost estimation has to be made for some new or changing feature
to a platform module. How can FinCare make sure they know all the work that has to be done

1

2 Chapter 1. Introduction

in advance? For FinCare knowing this is important since they mostly work with a fixed price
arrangement. Currently FinCare sometimes performs impact analysis to estimate the costs and
the work effort, but this gives no guarantees and still a lot of unforeseen work arises during the
project’s execution.

Third example At any moment in the development process new or changing requirements
may surface which need to be included in the development cycle. In the case of new requirements
at FinCare sometimes the cycle starts at the information analyst who identifies together with
the customer the requirement, translates it into a functional specification which is then further
analyzed and translated into a technical specification. Sometimes however, there is no techni-
cal specification made and the programmer starts coding right away. In the case of changing
requirements, the first two steps sometimes are skipped completely and a programmer directly
starts working on the implementation, without any functional specification. This of course can
lead to unforeseen problems. Perhaps it introduces undesired behavior in other components, or
it may conflict with existing (implemented or not) requirements.

In the examples a number of terms are used like platform, component and shared codebase.
Before we continue with describing the research problem, we give definitions of these terms.

§ 1.2 Definitions

1.2.1 What is a product platform?

Designing software in the very traditional way starts with defining requirements, creating a high-
level design and creating an architectural design before starting to work on the implementation.
The implementation process then encompasses creating the elements which are defined in the
architecture of the software solution.

A software architecture then is defined as: “the structure or structures of the system,
which comprise software elements, the externally visible properties of those elements and the
relationships among them” (Bass et al., 2003).

Nowadays, software is more and more created from existing software parts. Reusing previous
created software assets to create new software is intuitively more efficient than starting from
scratch. When a family of products is created based on a common base of components, we speak
of a product family. The common base of components then is called a product platform.

A product platform is defined as: “a set of subsystems and interfaces intentionally planned
and developed to form a common structure from which a stream of derivative products can be
efficiently developed and produced” (Muffatto and Roveda, 2002).

According to Muffatto and Roveda a product platform is strongly related to product archi-
tecture: “product architecture influences the development of a platform since, the more integrated
the product architecture is the more model-specifc its interfaces are and it is more difficult for
its subsystems to be shared with other models of a family [..] the product platform is a means
to give architectural complexity to products while contemporary exploiting some advantages of
modularization and standardization ” (Muffatto and Roveda, 2002).

For example, a bicycle manufacturer can have a cheap, a medium and high-end bicycle design
based on the same basic frame. The architecture of the bicycle describes what component goes
where and how the components relate to each other. Where do the lights go, where does the
saddle go, etc. The product platform then are all the components and how they relate to the
frame and the functioning of the bicycle. The product family are all the different types of
bicycles manufactured using the product platform.

1.2. Definitions 3

In software development employing a product platform is called software product line
engineering (SPLE) (Pohl et al., 2005). The advantages of SPLE with respect to one-off de-
velopment are shortened time-to-market, increased product quality and decreased costs. Most
SPLE approaches have a two-phased approach where first domain artifacts are created (do-
main engineering) after which application development begins to roll out different applications
supported by the domain artifacts.

1.2.2 What is a software component?

A software platform consists of assets which can be reused in other applications. Such assets
is in general what we call software components. More formally a software component is
defined as: “a distinguishable, inter-changeable piece of software which offers a coherent set
of functionality”. Or: ”A software component is a unit of composition with explicitly specified
provided, required configuration and quality attributes ” (Bosch, 2000). Another definition is
given by Szyperski et al.: “software components are binary units of independent production,
acquisition and deployment that interact to form a functioning system” (Szyperski et al., 2002).
For this study we will use the first definition of a component as stated by Bosch.

A software component is something different than a module. A module is defined as follows:
“Modules are units of implementation. Modules represent a code-based way of considering the
system. They are assigned areas of functional responsibility. There is less emphasis on how the
resulting software manifests itself at runtime. Module structures allow us to answer questions
such as: What is the primary functional responsibility assigned to each module? What other
software elements is a module allowed to use? What other software does it actually use?” (Bass
et al., 2003).

In this thesis we will often use the term reusable software components, which basically
are components (as defined above) which can be deployed as part of a product platform. Note
that there is a difference between domain artifacts from SPLE and reusable software components
in general. The first are components designed with the purpose to be deployed in a specific
product family as part of a product line engineering process. The latter is designed to be
reusable in general or in the context of a domain, not necessarily with the purpose to be part of
a specific product family.

1.2.3 What is a shared codebase?

A shared codebase is nothing more than those software components which are shared among
applications of a software development company. In practice a shared codebase is a mixture of
external developed components and internal developed components. To allow multiple teams
to simultaneously work on the shared codebase, collaborative software development nowadays
requires the use of repositories with version control (like GIT, SVN, CVS or Mercurial). This
enables developers branching of code, merging of deltas and reverting changes.

1.2.4 What is a SaaS delivery model?

After software is written, it has to get delivered to customers. There are a number of variations
here as how to achieve this, we will only shortly describe the main categories.

On-site software Software you buy on a disc and install on your PC falls under this category.
but also large ERP systems installed on some system. On-site software is software which is
installed and operated at the location of the customer.

4 Chapter 1. Introduction

Off-site hosting Software accessible (via the Internet) from a centralized location which is
maintained by some third party is off-site hosting. Application Service Providers (ASPs) are a
variant of this delivery model.

Software as a service (SaaS) Software as a Service is a delivery model ‘focused on exploiting
economics of scale by offering the same instance of an application (or parts thereof) to as many
customers, called tenants, as possible.’ (Mietzner et al., 2009). There are 3 variants of SaaS.
First, with single instance ‘all tenants use the same instance of the SaaS application. With
same instance is meant the same work flow, using the same code on the same infrastructure’
(Mietzner et al., 2009). Second with single configurable instance ‘all tenants use the same
instance of the SaaS application. However, the instance is configurable on a per-tenant basis.
Run-time configurations though configuration meta-data, e.g. configuration files’ (Mietzner et al.,
2009). Third, with Multiple instances ‘each tenant uses a different instance of a service
This requires separate code for each tenant, while it allows for more flexibility for customer
requirements’ (Mietzner et al., 2009).

1.2.5 Summary

Below is a summary of the definitions discussed in the previous sections.

Product platform A product platform is the abstract term for the collection of generic
software assets, their purpose and interrelations, which can be extended and reused to compose
new software applications.

Shared codebase A shared codebase is the actual collection of assets shared among different
software applications. A codebase repository is then is a digital working environment where
software developers can commit modifications to the shared assets and retrieve updates from.

Component A component, or software component, is a distinguishable, inter-changeable piece
of software which offers a coherent set of functionality.

Software as a service Software as a Service or SaaS is a delivery model of software where
customers are tenants of the same software solution. The solution can be configured for indi-
vidual wishes of tenants, but the core functionality in essence is the same for everyone. The
components which form and enable this functionality is what is called a SaaS platform.

Module A module is a unit of implementation. For example, in a SaaS platform a tenant
can have specific wishes regarding functionality. Functionality is then grouped in modules, for
example ‘user management’ for managing access rights of users or ‘financial reports’ for an
accountancy product. Modules can then switched on or off to give customers some level of
choice. Also, modules often have some level of configuration to customize the behavior of the
module.

Product-specific component A software platform can support multiple solutions, which all
can be SaaS platforms on their own. A product-specific component then is a component which
only contains functionality in the scope of a single or a subset of the solutions supported by the
platform.

1.3. Project scope 5

§ 1.3 Project scope

The examples illustrated in section 1.1 indicate a wide variety of issues related to changes during
software development in a setting where code is shared among projects and/or teams. However,
the given examples are very broad and generic, so we introduce a recent actual project at FinCare
which will be used as a case throughout this study. Throughout the study we will use fictitious
names for all products and customers.

1.3.1 The project’s case: health care claims platform

FinCare focuses on claims of health care products. In the Netherlands every citizen is obliged
to have a health insurance at a health insurance company. Dutch law enforces a free insurance
market meaning that clients must be able to switch between health insurance companies when
their contract expires. Health insurance firms therefore offer contracts of mostly 1 year after
which the client can switch if he/she desires so. Clients can choose between multiple levels of
insurance determining what treatments or products are covered by the health care plan. If a
client consumes a health product the health care provider usually doesn’t get the money directly
from the client. If the client’s health care plan covers the consumed product the health care
provider can claim the treatment at the insurance company. This is the market where FinCare
operates. They provide a platform which receives claims of care providers, processes them
and passes them to the health insurance company. The insurance company then can reject or
requests additional processing by the platform. This process is depicted in Figure 1.1.

Care provider
FinCare claim

platform

Health-care
insurance company

Customer

Sends claim

Sends processed claim

Consumes product/service

Returns feedback about claim

Pays

Insurance planHas Covers

Figure 1.1: Claim process

Currently FinCare has four separate products live in production for their corresponding
customers Careco and Medico. Both are intermediary firms which have a client-base of health
care providers. Careco focuses on so called ‘care groups’ and Medico focuses on pharmacies. A
care group can best be described as an alliance between different health care providers around a
specific treatment. The partners in these groups have arrangements for specific treatments and
receive a fixed amount of the total sum reserved for this treatment.

1.3.2 Codebase dependencies

The applications for Careco and Medico (called CarecoSoft and MedicoSoft respectively) both
run on different servers, but these servers contain instances which consist of modules from a
common codebase as well as application specific code. This is because both applications have
common functionality like for example sending invoices or health care provider management.

6 Chapter 1. Introduction

Their common functionality is bundled together in a platform called FinCareClaim. The com-
mon codebase consists of two layers. The first layer is the claim processing platform (FinCar-
eClaim), the second layer a collection of components used throughout FinCare. The second
layer contains two types of components, the so called ‘Force’ components and generic external
components. Both types are shared among all projects within FinCare. The Force components
some years ago were shared among multiple business units within the Topicus Holding, but for
FinCare this is no longer the case. They made their own copy of them and now have their own
version, altered such that merging them back is impossible. The dependencies are illustrated
in a simplified manner in Figure 1.2. Later on in this study the codebase is analyzed in more
detail.

Planned product

Currently live

CarecoSoft

MedicoSoft

FinCareClaim platform Generic components

Invoice module

Vektis module

[…]

Other FinCare
projects

FinCareClaim SaaS

Other packages

Force packages

FinCareAlpha

Figure 1.2: Codebase dependencies

1.3.3 Product-line strategy

FinCare is planning to expand their client-base by serving their platform to independent treat-
ment centers (outpatients clinics), first-line treatment centers (independent complexes containing
GP offices, physical therapy, etc.), geriatric rehabilitation centers and regional GP offices. Since
these clients are too small to pay for their own implementation, FinCare is developing a SaaS
solution for these clients called FinCareClaim SaaS.

Because FinCareClaim SaaS will be a SaaS solution, there is no need to compile a separate
instance of the claim platform and its modules. However, they will require a different front-end,
different data structures and perhaps some specific modules. FinCare expects that their current
framework will support this, but FinCare already experienced in other products that specific
product functionality can conflict with or introduce undesired effects in other applications. The
chance of this happening only increases when more teams and applications start using the shared
codebase.

1.4. Problem statement 7

1.3.4 Growth strategy of Topicus

Topicus has the philosophy that when a company grows too large, they lose their innovative
edge and productivity because of organizational overhead required to manage the development
process. Therefore they apply a general rule that whenever a business unit grows beyond 25
employees, they should split up in separate business units. FinCare has grown in three years
from a few employees to around 20 employees. Chances are high that in the next three years
they will split up. A potential problem with this is code ownership of code entities in a shared
codebase. Developers one day working physically together on shared functionality can become
physically separated and start working on totally different projects. When new functionality
is introduced which requires refactoring some parts of a shared codebase, how do developers
and business analysts know where to find the knowledge to conduct an impact analysis? How
are the responsibilities managed of these parts of the code? Instead of working together on
the general Force modules, FinCare made a copy of these components when they started as a
business unit and developed their own version which was never merged back with the original
repository. One could argue that this was a valid decision since the business units work on very
different products, but it may very well be the case that both business units develop code which
for both are valuable or even work on the same functionality without knowing from each other.

1.3.5 Summary

From the examples and background information above we can derive the following potential
issues for Topicus FinCare:

• In a software development environment with multiple teams, possibility spanning multi-
ple business units, working on products which make use of a shared codebase, a change
origination from a requirement change in one project can have a ripple effect to other
projects

• When not knowing the impact of a requirement change, it can introduce undesired defects

• Unforeseen work effort because of unforeseen effects can result in a too low cost estimation,
resulting in less financial margins for a release of a product.

• When splitting up FinCare in new business units in the future, not managing code own-
ership and responsibilities of the shared codebase can result in repositories deviating from
each other with both business units managing their own version of the once shared code-
base

§ 1.4 Problem statement

Based on the issues outlined above, the following problem statement is defined for this project:

Problem statement: How can FinCare mitigate risks associated with requirement changes
in an agile development environment where multiple projects share functionality located in a
shared codebase?

8 Chapter 1. Introduction

§ 1.5 Relevancy for Topicus

The problem statement is derived from the situation at FinCare, but these problems are also
relevant for other business units of Topicus. Three business units within Topicus were contacted
and asked how shared codebases play a role in their daily work to find out if involving them would
be relevant for this study. Below a small description of the different units and the situations
they face.

1.5.1 Unit A

Unit A develops and maintains 4 large educational tracking systems for primary education,
secondary education and higher education. These systems are used for administration, roster-
ing, grading and other back-office activities. Two systems have a shared codebase, the other
applications all have specific business logic. All applications do however make use of the so
called ‘COBRA’ codebase, which contains very generic components, but no business logic. Also,
the dependencies of all applications are managed by a shared component, which functions as
a configuration manager. Unit A employs the culture that everyone (all units of Topicus) can
use COBRA components, and everyone at unit A can commit modifications on COBRA and
modify components of COBRA. Also, unit A has the policy that at the end of the day a snapshot
of the current code is deployed in production. Of course they have a build server which tests
for errors using regression tests, but from time to time bugs propagate to other systems and
are not always noticed by developers. Besides this error prone situation, they have to main-
tain a lot of interfaces with external systems (mostly government systems). From time to time
API’s change on the side of these systems without proper up-front communication, resulting in
unstable products.

1.5.2 Unit B

Unit B develops health care chain applications for a divers set of health care providers. They
have a centralized component base with for example functionality to generate forms out of a
data model. Mainly the centralized component base contains front-end logic, but there also some
shared business logic components. Currently they have three systems using this framework, all
with a different customer base and all with planned expansions of their customer base. Two
other business units also make use of these components, moreover, they have commit privileges
on the repositories. From time to time they cooperate in refactoring components or in adding
new functionality. Mostly the party who is in need of the refactoring or new functionality takes
the initiative and invests in the effort. Unit B has had multiple occasions where modifications
on their shared codebase impacted other products and it always a difficult to assess what will
change in advance or to include all contingencies from other projects or business units.

1.5.3 Unit D

Unit D develops mid-office and back-offices for mortgage lenders or intermediaries. Unit D
has customers exclusively for a mid-office or back-office application, but also for both. In their
products they make a distinction between the Core product and the Shell. The core contains the
actual business logic of the application, while the shell consists of modules containing interfaces,
the front-end or other domain specific functionality. Unit D started with offering a mid-office
application and gradually extended their customer base. At one point they gained the prospect
of serving a high value customer, while their framework (supporting new extensions) was not yet
stable. Unit D decided to continue developing on the framework while also starting to work on

1.5. Relevancy for Topicus 9

Framework v2.2

Core

Module

Module

Module

Framework v2.1

Core

Module

Module

Module

Framework v1.2

Core

Module

Module

Module

Framework v1.1

Core

Module

Module

Module

Framework v2

Core

Module

Module

Module

Framework v3

Core

Module

Module

Module

Framework v1

Core

Module

Module

Module

Copy

Customer 1

Customer 2

Customer 3

Copy

Figure 1.3: Frameworks at unit D.

a copy of the framework to serve this high value customer. To prevent too much architectural
deviation unit D initiated a project to develop a stable framework merging all features of both
frameworks. However, another high prospect client was already knocking on the door. Unit D
currently is facing the challenge: do we pursue getting this client and start developing yet on
another framework, or do we wait and let the framework mature first? The situation is depicted
in Figure 1.3. The modules in the shell are often very client specific, their customers are rather
big and demand tailored integration in their IT landscape. Putting this kind of functionality in
the Core therefore is very hard.

10 Chapter 1. Introduction

1.5.4 Summary of issues

From the situations described above we can derive a number of issues relevant for Topicus:

• Code/component deviating from their intended purpose
• Deciding what to refactor for reuse
• Who is responsible for shared components?
• Managing dependencies among products
• Planning for additional products for which the frameworks should be used (or which the

framework should support)
• Testing strategy of core components
• Developing framework for specific customers

The issues at this stage were only collected during informative talks at the units, so no
formal data was yet collected. What we observed is that the FinCare, unit A and unit B share
more or less the same culture, but unit D is very conformed to formal processes (because of the
nature of their customer-base) and hence has a complete different culture. For the remainder
of the study, we keep the case of unit D in mind but we will not be focusing on exploring their
situation further.

§ 1.6 Project objectives

The primary objective of this project is to provide a solution for the problem statement for
FinCare. The problem statement asks for a risk mitigation approach. The first logical ob-
jective then would be to investigate what possible risks FinCare can be exposed to. This, of
course, in the context of requirements changes in shared codebase environment. After the risks
have been identified, the next logical task would be to find possible mitigation approaches for
them. Without making an explicit choice as to how to achieve this, the final step would be to
frame mitigation approaches in the context of FinCare and the FinCareClaim SaaS project as
introduced earlier. In summary the objectives are:

• Find the possible risks a company like FinCare can face from the perspective of require-
ments changes in a shared codebase environment.

• Find risk mitigation approaches to mitigate these risks

• Find potential issues for the FinCare and their codebase

• Evaluate what approaches would be suitable for FinCare to implement

§ 1.7 Research questions

The research objectives are operationalized into the following research questions:

1. What are the risks of a shared codebase environment with respect to changing require-
ments?

2. What mitigation approaches can be used to mitigate these risks?

3. What are the potential risks for FinCare?

1.7. Research questions 11

4. What risk mitigation approaches are suitable to implement by FinCare to mitigate the
potential risks?

In the next chapter we will formulate the research approach, based on a brief literature
review of risks and general challenges with regard to working on a shared codebase.

12 Chapter 1. Introduction

- Chapter 2 -

Research approach

§ 2.1 Introduction

The problem statement for this research is defined as: How can FinCare mitigate risks associated
with requirement changes in an agile development environment where multiple projects share
functionality located in a shared codebase? We operationalized the problem statement with 4
research questions where we respectively (1) search for possible risks, (2) search for possible
solutions, (3) assess what risks are relevant for FinCare and then (4) evaluate what solutions
are suitable for FinCare. In this chapter our research approach is stated, but first we will explore
terms like risks, changing requirements and working on a shared codebase. So in this chapter we
will:

• Give a definition of risks of changing requirements
• Describe general challenges of working on a shared codebase environment
• State the research approach

§ 2.2 What is the risk of a changing requirement?

2.2.1 Risks in general

According to Charette (Charette, 1989) there are two types of risks: speculative risks (or dy-
namic risk) and static risks. Speculative risks are risks having both profit and loss associated
with them whereas static risks only have losses associated with them. According to Charette
software projects have due with the first type of risks. A risk then is an event which can happen
with some uncertainty and the result can be either loss or profit. This loss or profit is something
which very much depends on someone’s point of view. One may view a situation in one context
very differently than in another context. Nevertheless, the uncertainty attribute indicates that
there is a chance associated with a risk. With uncertainty we mean that some information about
the system may be known but here is not enough knowledge about it to provide certainty. In
this context Charette (Charette, 1989) state three types of uncertainty:

• Descriptive or structural certainty: The absence of information relating to the iden-
tity of the variables that explicitly define the system under study

• Measurement uncertainty: The absence of information relating to the assignment of a
value to the variables used to describe the system

13

14 Chapter 2. Research approach

• Event outcome uncertainty: When the predicted outcomes and therefore their proba-
bilities cannot be identified

The attribute of uncertainty indicates that there is always a choice associated with a risk;
if there would be no choice, there would be no risk. In summary for this study we consider an
event, action or thing a risk if:

• There is a loss or profit associated with it
• There is uncertainty or a chance involved
• There is some choice involved

According to Charette (Charette, 1989), a risk can be classified according to three dimen-
sions: probability (or likelihood of occurrence), frequency and source. The probability and fre-
quency dimensions can be a numeric scale, whereas source is a nominal scale. Charette gives an
example classification using the probability and source dimensions as illustrated in Table 2.1.
The probability dimension here is made nominal and has the following values:

Known risks according to Charette (Charette, 1989) are ‘those that after thorough, critical,
and honest analysis of the project plan would illuminate as frequently occurring and with a high
probability of currently existing.’ He gives examples, which for software plans are then typical,
as lack of system requirements, overly-optimistic productivity rates and short schedules.

Predictable risks then are ‘those that experience dictates one may encounter with a high
probability’. In the same context of software project plans he gives examples as lack of timely
client approval, reviews and personnel turnover.

Unpredictable risks are, according to Charette, ‘those that could happen, but the likelihood
or timing of these events occurring cannot be projected very far in advance’. He gives examples
as funding availability, poor management and acquisition strategy change.

Known Predictable Unpredictable
Lack of information
Lack of control
Lack of time

Table 2.1: Risk categorization

2.2.2 Software project risks

A software project risk is defined as ‘a set of factors or conditions that can pose a serious
threat to the successful completion of a software project’ (Wallace et al., 2004). According to
Wallace et al. we can distinguish between 6 dimensions of software project risks:

• Team risk. For example: frequent conflicts between development team members, team
members not familiar with the task(s) being automated

• Organizational environment risk. For example: lack of top management support for the
project, corporate politics, unstable organizational environment

• Requirements risk. For example: Incorrect system requirements, undefined project success
criteria, difficulty in defining the inputs and outputs of the system

• Planning and control risk. For example: Project milestones not clearly defined, lack of
‘people skills’ in project leadership

• User risk. For example: Lack of cooperation from users, conflict between users, users with
negative attitudes toward the project

2.2. What is the risk of a changing requirement? 15

• Complexity risk. For example: Immature technology, large number of links to other
systems required

According to Charette (Charette, 1989) if we want to classify risks of software engineering,
two main categories can be identified: those risks that deal with the process of developing
software and those that deal with the product itself. Within these categories the following types
of risks are defined:

• Acquisition risks: technical risks, schedule risks, cost risks, customer need risks
• Decision risks: operational risks, support risks

As one can see, the risk definitions have a fairly large overlap, but differ on the crucial point
that according to Wallace et al. software project risks pose a threat to the successful completion
of a project, whereas the definition of Charette also covers positive outcomes (dynamic risks
versus static risks). In the next sections we look at some more risk definitions.

2.2.3 Requirements risks

In the category of requirements risks of software project risks there are different listings of what
risks this category encompasses. We here give two examples of such listings.

Han and Huang (Han and Huang, 2007) discuss the following risks:

• Continually changing system requirements
• System requirements not adequately identified
• Unclear system requirements
• Incorrect system requirements

In a study by Wallace et al. (Wallace et al., 2004) the following listing is given :

• Incorrect system requirements
• Users lack understanding of system capabilities and limitations
• Undefined project success criteria
• Conflicting system requirements
• Difficulty in defining the input and outputs of the system
• Unclear system requirements
• System requirements not adequately identified
• Continually changing system requirements

In both listings requirements change is indicated as one of the risks of the ‘requirements
risks’ dimension of software project risks. Alternative terms of changing requirements used
in literature are requirements volatility, requirements creep, scope creep, requirements scrap,
requirements instability and requirements churn (Ferreira et al., 2011). These definitions are
also static risks. Next we define requirements changes.

2.2.4 Defining requirement changes

Since a requirements change is the topic of study for this project, we need to define what a
requirements change is. In the previous section we indicated where in the area of software
risks, requirements risks is located. We will define a requirement change according to the
characteristics a change has. We first will discuss how a software change in general is defined
and then discuss a number of classifications of requirements changes.

16 Chapter 2. Research approach

2.2.4.1 Software changes

A classification of software changes is provided by Buckley et al. (Buckley et al., 2005). They
propose a classification according to characterizing factors and influencing factors. An influ-
encing factor is a factor which influence the change mechanism whereas a characterizing factor
captures the essence of a change mechanism. An overview of the factors is given in Table 2.2.

Factor Characterizing factor Influencing factor
Time of change x x
Change type x x
Change history x
Degree of automation x
Activeness x
Change frequency x
Anticipation x
Artifact x
Granularity x
Impact x
Change propagation x
Availability x
Openness x
Safety x
Degree of formality x

Table 2.2: Software change factors.

When organizing the factors of Buckley et al. according to theme, we get the ordering as
shown in Table 2.3. The classifications complement each other and give a good indication of
what information about a software change can be captured.

Theme Factor
Temporal properties Time of change

Change history
Change frequency
Anticipation

Object of change Artifact
Granularity
Impact
Change propagation

System properties Availability
Activeness
Openness
Safety

Change support Degree of automation
Degree of formality
Change type

Table 2.3: Software change factors according to theme.

2.2. What is the risk of a changing requirement? 17

2.2.4.2 Requirement changes

In (Nurmuliani et al., 2004) the authors classify a requirement change according to change type,
the reason of the change and the origin of the change. Possible requirement changes then are
addition, deletion and modification. Possible reasons for a requirement change according to
(Nurmuliani et al., 2004):

• Defect fixing
• Missing requirements
• Functionality enhancement
• Product strategy
• Design improvement
• Scope reduction

• Redundant functionality
• Obsolete functionality
• Erroneous requirements
• Resolving conflicts
• Clarifying requirements

A classification of the source of a requirement change is given by McGee et al (McGee and
Greer, 2009). The authors identify 5 change domains:

• Market Differing needs of many customers, government regulations
• Customer organization Changing strategic direction, political climate
• Project vision Change to problem to be solved, product direction and priorities, stake-

holder involvement, process change
• Requirements specification Change of specification, resolution of ambiguity, inconsis-

tency, increased understanding
• Solution New technical requirements, design improvement, solution elegance

In a follow-up study by McGee (McGee, 2011) a classification for requirements changes is
discussed which is given in Table 2.4. Another classification of requirement changes is discussed
by Williams et al. (Williams and Carver, 2010) and given in Table 2.5. All these definitions
indicate that a requirement change can be really anything, from fixing a defect to the imple-
mentation of a new feature. The change doesn’t even have to come from within the boundaries
of the organization, changes by external parties can also be the source of a change.

2.2.5 Requirements change risks and project performance

2.2.5.1 Project outcome

According to Ferreira et al (Ferreira et al., 2009), risks of changing, or volatile requirements,
are those effects of the change which affects the project outcome, either indirect or directly.
This is in compliance with the earlier given definitions of software risks. Ferreira et al. state
based on their literature study and survey data that requirements volatility can increase the
job size, extend the project duration, cause major rework, affect other project variables such
as morale, schedule pressure, productivity and requirement error generation. Nurmuliani et al.
(Nurmuliani et al., 2004) state a number of studies which identify that requirements volatility
is one of the major problems for the software industry causing cost overrun and other major
difficulties during development (Nurmuliani et al., 2004).

2.2.5.2 Project life-cycle

What researchers agree on is that requirement changes can occur at different moments in the
life-cycle of a software project (Ferreira et al., 2009). For example, during development it is
general accepted that when requirements change they may introduce errors when developers

18 Chapter 2. Research approach

Characteristic Description/values
Trigger The trigger of the change. For example: change to busi-

ness case, increased customer understanding, new available
technology.

Domain Where the change comes from. For example: market, orga-
nization, vision, specification, solution.

Phase Project phase when change was identified. For example:
requirements, design, coding, acceptance test.

Discovery Activity Activity during which the change was identified. For exam-
ple: Provide business case, define goals, define requirements,
define architecture, specify test, implementation.

Project manager’s con-
trol

Project manager’s control of change identification. Can or-
dinarily be expressed as very low up to very high.

Stakeholders Number of stakeholders roles involved agreeing the change.
Cost Change cost expressed in days.
Value Business value to the customer. Can ordinarily be expressed

as very low up to very high.
Opportunity Is the change an opportunity or a defect.
Description Free text.

Table 2.4: Characteristics of requirement changes according to McGee (McGee, 2011).

implement the changes. This can happen when the requirements are ambiguous or when de-
velopers are uncertain about details of the requirements (Van Gurp and Bosch, 2002). Having
stable requirements therefore is very desirable.

2.2.5.3 Design erosion

According to Van Gurp and Bosch (Van Gurp and Bosch, 2002) changing requirements can also
lead to design erosion. Design erosion basically means that because of continuous evolution of a
system the design erodes; code is re-factored and parts of the architecture redesigned over time
because of changing requirements. Van Gurp and Bosch describe four problems causing design
erosion (Van Gurp and Bosch, 2002):

• Traceability of design decisions Common notations lack the expressiveness to express
concepts during design. Design decisions are therefore difficult to trace.

• Increasing maintenance cost Complexity of the system may cause developers to take
sub-optimal decisions when for example a more optimal decision would be too much effort.

• Accumulation of design decisions When design decisions are related to each other, a
revised decision can have the consequence that previous decisions, which determine the
current system, are affected as well resulting in a system incompatible with the require-
ments which is very expensive to fix.

• Iterative methods When designing an architecture it is the aim to design an architecture
which can accommodate change in the future. This may conflict with iterative design
approaches (e.g. ‘agile’ approaches), since requirements evolve during the development in
these approaches.

The impact of design erosion, or architectural decay, according to Williams et al. (Williams
and Carver, 2010) very much depends on when during the development a change is implemented.

2.2. What is the risk of a changing requirement? 19

Characteristic Description/values
Motivation The motivation of the change. For example: An enhance-

ment (to improve the system), defect (resulting from an er-
ror, fault or failure).

Source The origin of the change. For example: Resource constraint,
law/government regulation, policy, stakeholder request

Criticality/importance Consequence of making the change. For example: Risk,
time, cost, safety

Developer experience Indicates how well the developer(s) implementing the change
understand the system architecture. For example: Minimal,
localized, extensive

Category Classifies the type of change. For example: Corrective, per-
fective, preventative, adaptive

Granular effect The extend to which the change affects the architecture.
For example: Functional/module, subsystem, architectural,
system of systems

Properties If the change is static it affects logical structures of the soft-
ware, whereas a dynamic change affects the runtime struc-
ture.

Features Determine the impact of the change on functional require-
ments of the system. For example: Devices, data access,
data transfer, system interface, user interface, communica-
tion, computation, input/output.

Quality attributes Areas impacted when the change addresses a software qual-
ity attribute. For example: Usability, reliability, functional-
ity, portability, availability, maintainability, scalability, effi-
ciency.

Table 2.5: Characteristics of requirements changes according to Williams et al. (Williams and
Carver, 2010)

When late in the development cycle, the architectural complexity is likely to be higher, thus the
impact or required effort is expected to be higher also (Williams and Carver, 2010).

2.2.6 Conclusion

Definitions from literature of software risks, requirements risks and design erosion are all static
risks having a negative effect on the outcome of the software project. However, if we look at the
definition of a requirements change, the goal can also be to enhance parts of the system. In that
sense, the risk of some part of the system changing because of a requirements change with the
purpose of enhancing, or improving something is a dynamic risk. Therefore, we need a broader
definition of risks for this study. In this study a requirements change risk is regarded as an event
or thing with some uncertainty, where choice is involved and which may have either a positive
or negative effect on the outcome of the software project. The source of the change doesn’t
even have to be within the boundaries of the organization. A risk of a requirement change then
can be any mechanism triggered by the change having a positive or negative outcome on the
organization or the system. We expect that the risks are very diverse and exists on a business,
organizational, technical and people level as we can see from the challenges of working on a
shared codebase.

20 Chapter 2. Research approach

§ 2.3 What is working on a shared codebase?

2.3.1 Development structures

On what basis development teams are formed determines the structure and responsibilities of
the teams. From our study we learned that four different development structures can be dis-
tinguished: project-driven, component-driven, product-driven and feature-driven development.
We will discuss them below.

2.3.1.1 Project-driven development

Project-driven development is also called resource-pool or matrix management (Larman and
Vodde, 2009). In this organizational structure, people work in one or multiple project teams
of which the composition may shift over time. People here are considered more a resource and
based on their skills, expertise and availability, project teams are formed and assigned a role
within a project team. The scope of the project is usually large (months, not weeks). This
organizational structure is depicted in Figure 2.1. As can be seen, the actual products and
shared components are not shown in the figure, since the relation between them really depends
on the project’s scope. A project may be defined as developing some product, refactoring a large
component, building a set of new features, etc. This kind of structure can usually be seen in
the larger organizations.

Project A Project B Project C Project D Project C Project D Project E Project F

Period 1 Period 2

Figure 2.1: Project-driven development.

2.3.1.2 Component-driven development

Component-driven development is organized around, as the name implies, components. Teams
are given the responsibility and ownership of a component. The work distribution of development
of features and products is centralized via the role of managers who keep the overview of the
work. The concept of component-driven development is depicted in Figure 2.2. Features for
some product may encompass modifications across multiple components, hence the necessity of
a coordinator (Van der Linden, 2001).

2.3. What is working on a shared codebase? 21

Team 1 Team 2

Shared codebase

Component Component

Team 3

Component

Figure 2.2: Component-driven development.

2.3.1.3 Product-driven development

Teams in a product-driven development environment are completely responsible for one product
and its features. A product team is often lead by a product owner who is responsible for
client acquisition and the overall development of the product. Product teams are responsible
for the complete life-cycle of a product, including deployment and maintenance. Of course
the responsibilities outside the scope of development may be distributed to the customer or an
additional partner. This organizational structure is depicted in Figure 2.3.

2.3.1.4 Feature-driven development

The concept of feature teams is discussed in a book by Larman (Larman and Vodde, 2009), of
which we will discuss the contents below.

A feature team is a cross-functional, long-lived team who sequentially conduct the develop-
ment cycle of many customer features. The team is composed of around 6-8 persons each with
there one expertise, but without a permanent role. A feature team can exists of developers,
testers, analysts, architects and interaction designers, but the roles are not fixed. Developers
can do analysis, analysts can write code.

Feature teams are often compared with the phenomenon Scrum teams from the agile de-
velopment methodology world. A good Scrum team is a feature team, but a feature team is
not a Scrum team. Teams in a feature-development environment have the responsibility of the
complete life-cycle of a feature. The scope of a feature can be very broad (implement a number
of financial charts) to very small (implement a new pop-up). The team then fulfills all the func-
tions, making the requirements, designing, implementing and testing. A quote from the book of
how feature teams in Ericsson are employed:

“The feature is the natural unit of functionality that we develop and deliver to our
customers, and his is the ideal task for a team. the feature team is responsible

22 Chapter 2. Research approach

ComponentComponent Component ComponentComponent

Team 1 Team 2

Shared codebase

Product 1 Product 2

Figure 2.3: Product-driven development.

for getting the feature to the customer within a given time, quality and budget.
A feature team needs to be cross functional as it needs to cover all phases of the
development process from customer contact to system test, as well as all areas [cross
component] of the system which is impacted by the feature.”

The effectiveness of feature teams is claimed based on two basic arguments. The first is that
feature oriented development encourages learning and personal development. As a team you
are constantly deployed in another domain and/or product and as an individual you can switch
between roles in your team. This keeps people sharp and trained. Also, this leads to the second
argument, which is that features often span a number of components. Over the course of the
development cycle, different teams work on the same components, improving and adjusting each
other’s code.

2.3.2 Shared codebases challenges

The topic of this study is risks of requirements changes in a shared codebase environment. We
explored requirements risks in the context of project performance and in this section we will
discuss what working on a shared codebase implies.

2.3.3 Challenges of working with a shared codebase

Ghanam et al. (Ghanam et al., 2012) conducted an ethnographic study among a large number
of software teams working with and creating reusable components. According to Ghanam et al.

2.3. What is working on a shared codebase? 23

Team 1

Team 2

Shared codebase

Component

Component

Component
Feature backlog

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Figure 2.4: Feature-driven development.

the following challenges structure exists in these environments:

• Business challenges

– Business strategy To accommodate new products when the business strategy shifts
towards a new market segment, changes may be required to the platform which can
affect the support by the platform of other products.

– Product-driven/platform development
∗ Instability Some components may not be stable enough to be used in the plat-

form and causes problems among products, for example when they are updated
frequently or contain a lot of defects.

∗ Dominance of a mainstream product When there is one main revenue gener-
ating product, the priority of the development effort may be tightly coupled to the
need of that product. This may cause the platform to become under-engineered.

∗ Competing goals Business goal (for example: fast delivery) may conflict with
the adoption road map of the platform by products (technical road map).

• Organizational challenges

– Communication
∗ Among platform teams Required to (1) assign responsibilities to components

(2) resolving dependencies among components (3) agreeing on protocols and in-
ternal interfaces (4) synchronizing releases (5) arranging sharing of resources

∗ Between platform teams and application teams Product teams for example
need to no how to access platforms in order to integrate components

∗ In distributed development For example: physical separation of teams may
lead to communication deficiencies .

∗ Between business units See silo’s.

– Organizational structure

24 Chapter 2. Research approach

∗ Silos A silo can be seen as the result of an organizational structure where business
units or teams act as independent entities having their own local management
and no motivation to adhere to a centralized decision-making body or to share
information with other units.

∗ Decision-making On what organizational level should decisions regarding the
platform be made? Centrally or leave it up to the teams?

∗ Stakeholder involvement Who to involve in the decision-making process and
design of platform components?

– Agile culture
∗ Feature vs component teams Agile development is more focused on teams

having end-to-end responsibility of features whereas component based focuses on
teams working autonomously on some sub-system. From the research conducted
by Ghanam et al. it seemed that a combination of both was needed in order for
the subject company to be successful in adopting a platform strategy.

∗ Team autonomy The risk of having high autonomous teams together for a long
time is that they turn into silos.

∗ Business-value thinking When working in an agile environment, companies
tend to have a ‘deliver direct value for the business’ perspective. Moving to a
platform strategy then has zero visible value for customers, hence the organization
has to motivate teams and justify the investment required.

∗ Product ownership thinking Teams can be protective of their assets which
then makes the transition to a platform difficult.

∗ Agility versus stability Agile is focused on accommodating change, which may
cause trouble when also wanting a stable platform.

– Standardization
∗ Of documents When documentation standards are not consistent across team-

s/business units, people are less likely to refer to them
∗ Of practices Software reuse requires code conventions and testing standards in

order for developers to be willingly to reuse code of others.
∗ Of tools and technical solutions Reuse can be difficult if different version

control systems or testing platforms are used.
∗ Of acceptance criteria When components are proposed to be added to the

platform, standardization of acceptance criteria is required.

• Technical challenges

– Commonality and variability
∗ Reuse during development developers constant need to look for opportunities to

reuse and detect redundancy in the platform.
∗ Variation sources Variation required to support by the platform may have

different sources; for example business needs or customer needs.
∗ Cross-cutting concerns A change may be needed in not all products, but for

example a sub-set.
– Design complexity

∗ Different actors Variability can be driven by the business trying to target
different market segments.

2.3. What is working on a shared codebase? 25

∗ Requirement of combinations The requirement from the business to combine
components and services to build unique products.

∗ Requirement of maximizing reuse For example when designing a platform for
different hardware platforms, components must be as general in use as possible.
Developers must be agnostic to this aspect.

– Code contribution
∗ Accessibility/retrievability Visibility of assets, either code or documentation.
∗ Platform quality When different teams change different parts of a platform on

regular basis, quality of the platform may be affected. An audit program can
resolve this, but without standardization of acceptance criteria across teams and
business units this is difficult.

∗ Platform stability Changes, ideally, need to be tested against all products
which requires a technical solution where the build is forwarded to all environ-
ments.

– Technical practices
∗ Testing What should be tested in the platform and what in the context of the

specific applications? Should a change be tested on all instances of the platform?
∗ Continuous integration Updates need to propagate to all environments.
∗ Release synchronization Synchronizing releases of different components; what

component is supported by what version of other components?

• People challenges

– Resisting change Adopting a platform strategy may be difficult when people are
not seeing the value of the change, perceiving the change as irrelevant, or having to
make adjustments for the new work environment.

– Technical competency People need a specific set of skills to write platform code,
because it requires knowledge of reuse patterns and design paradigms.

– Domain knowledge Engineers need to have domain knowledge in other to make
decisions regarding what is important for the platform and what for a specific appli-
cation.

2.3.4 Impact analysis

When a requirement changes, conducting an impact analysis gives insight in the affected assets
which is valuable information when making a cost estimation of the work. However, there is
a lot of flavors of impact analysis. Below we discuss a classification, depicted in Figure 2.5
hierarchically.

• Source code
As can be seen in Figure 2.5 this type has the most available methods according to the
classification of Lehnert (Lehnert, 2011). Source code methods can be further classified in
the following subtypes:

– Call graphs
Focuses on analyzing source code and extracting method calls between source entities
and displaying these calls by means of a graph. This graph can then be used by
developers to estimate the propagation of a change.

26 Chapter 2. Research approach

Source code

Call graphs

Dependency
analysis

Program
slicing

Execution
traces

Explicit rules

Information
retrieval

Probalistic
models

History
mining

Combined
Technolgies

Other
technologies

Architectural
models

Requirements
models

Miscellaneous Files
and Artifacts

Combined scopes

Impact analysis
type

Figure 2.5: Types of impact analysis methods abstracted (Lehnert, 2011).

– Dependency analysis Different dependencies can exists between source code enti-
ties, such as control, data or inheritance dependencies. By means of static source code
analysis these methods compose graphs or a matrices to display the dependencies.

– Program slicing This approach is built upon dependency analysis. With slicing
a dependency analysis is conducted where the program code is stripped from all
statements which do not comply to the slicing criteria.

– Execution traces Dynamic analysis approaches which instead of analyzing static
code analyzes method calls at run-time and composing call graphs using dynamic
execution data.

– Explicit rules Techniques which statically analyzes code and based on a rule set
determine what possible code entities require change. For example, when an interface
changes all classes implementing this change need to change as well.

– Information retrieval Techniques which focus on the traceability between design
documents and code entities and themselves. For example, you can retrieve relevant
design documents by extracting meaningful words from design documents and use
their matching degree with code entities to prioritize the documents. Another exam-
ple is calculating the level of change of classes to investigate change patterns in an
architecture.

– Probabilistic models Models which for example can compute the probability an
entity is impacted by a change.

– History mining Data mining approaches which uses information of changes from
the past to predict change impact by for example looking at classes clustered by type
of change.

2.4. Research approach 27

– Combined technologies Analysis methods which use a combination of the types
described above.

– Other technologies Two methods which cannot be classified according to their used
technology.

• Architectural models
Sometimes source code is difficult to analysis or not available for the person conducting
the analysis. This category encompasses changes among UML models, logical models
which can model for example architectural decisions, or visualizations of change history
of software components. Also this category focuses on the impact among architectural
design documents. Most of the models used in this category requires the user to maintain
a certain model during the development to be able to conduct analysis.

• Requirements models These models focus on the change of requirements on the spec-
ification level of a software product. Models which can be applied in this context are for
example probability models, which can calculate the probability that some requirement
is affected by a change in some other requirements. Another example are use case maps,
which analyzes the impact of a change based on system scenarios. Also document index-
ing, which means linking requirements documents to certain keywords depending on its
semantic, can help in assessing the impact of a chance and prioritizing the impact.

• Miscellaneous files and artifacts An example of this category of analysis is extracting
co-changing files from CVS repositories by finding file clustered according their changes.
This approach can find non-trivial changes among otherwise non-related code artifacts.

• Combined scopes Endless combinations between the techniques discussed above can be
used to perform impact analysis. Examples are reflecting business process changes on
source code, tracing requirements to architecture or linking test cases, source code and
requirements.

§ 2.4 Research approach

In this section the research questions are further explained and defined in terms of goals, expected
outcomes, the relationship between the questions and where the results can be found.

2.4.1 Research questions

Q1: What are the risks of a shared codebase environment with respect to changing require-
ments?

We now know what a risk is, what a changing requirement is and what the risk of a changing
requirement implies. We also explored what working on a shared codebase yields and what
challenges are associated with this. What we do not know yet is what the risks are of changing
requirements with respect to working on a codebase. While we think that there is a large overlap
in issues of working on a shared codebase, we did not find any specific material addressing re-
quirements changes. So the first research question has as goal to find the general risks associated
with changing requirements in a shared codebase environment. We think that the best way for
this is to analyze industrial case studies for experiences of working with a shared codebase and
changing requirements. So for the first research question:

28 Chapter 2. Research approach

• Derive risks from practice by conducting a literature study of industrial case studies (chap-
ter 3).

Q2: What mitigation approaches can be used to mitigate these risks?

The second research question has the goal to analyze the approaches and techniques which
can be used to mitigate the risks from the first research question. We think that the best way
to find usable approaches is to directly look for best practices used within Topicus. So in order
to answer the second research question:

• Interview employees at different units in Topicus about issues, solutions and best practices
of working on a shared codebase (chapter 4).

Q3: What are the relevant risks for FinCare?

The third research question has the goal to take the risks from the first research question,
take the issues from the interviews at the business units of Topicus, study the organization,
goals and shared codebase to list potential issues for FinCare. This is done by:

• Conduct a case study at FinCare and find the most relevant risks for FinCare in terms of
impact and likelihood of occurrence (chapter 5).

Q4: What risk mitigation approaches are suitable to implement by FinCare to mitigate the
potential risks?

The final research question has the goal to frame the possible mitigation approaches in the
context of FinCare and recommend what approaches would be suitable to adopt by FinCare.
This is done by:

• Discuss for the most relevant risks the suitability of the solutions and best practices found
during the interviews in the context of FinCare (chapter 6).

2.4.2 Research construct

The research questions, the activities to answer them and the relations between them are illus-
trated in Figure 2.6.

2.5. Conclusion 29

Q1

Q2

Risks

Mitigation
approaches and

techniques

answers

Risks relevant for
FinCare

Literature study of
case studies

Interviews at
Topicus

results in

results in

Case study of FinCare

answers

framework for

used to formulate

Determining
suitability of

solutions
input for

input for

Q4

answers

Q3

answers

Recommendations

results in

Figure 2.6: Research construct.

§ 2.5 Conclusion

In this chapter we defined risk of a changing requirement and what yields working on a shared
codebase. Based on this, we formulated the research approach for this study.

30 Chapter 2. Research approach

- Chapter 3 -

Literature study of case studies

§ 3.1 Introduction

This chapter contains the literature study of risks of shared codebases as described in case
studies from literature. In the context of the thesis this literature study is to answer the second
research question from a theoretical and industrial perspective: what are the risks of a shared
codebase environment with respect to changing requirements?.

§ 3.2 Research approach

For the research approach we follow the first 8 steps of the approach of Wolfswinkel et al.
(Wolfswinkel et al., 2011) to organize the search for literature and the approach of Webster and
Watson. (Webster and Watson, 2002) for identifying relevant concepts. The first 8 steps of
Wolfswinkel et al. are: 1.1) define scope, 1.2) identify fields of research, 1.3) find corresponding
databases, 1.4) define search terms, 1.5) search, 1.6) filter out doubles, 1.7) cut down sample
based on title+abstract, 1.8) cut down sample based on full text. Step 1.9 (forward and backward
citations) will only be done if we do not find adequate material in the first place. Since the goal
of this literature study is not to have all published material available in the field included, we will
only perform this step to find additional material if necessary. Step 1.10 (verify final dataset) is
according to Wolfswinkel et al. done in research pairs, but since this is a solo project its a bit
unpractical to do this. Verifying the set here will be done by reading the full text and deciding
on the relevancy after analyzing its content. Step 2.1 and onward describe a grounded theory
approach to analyze the material which is far to rigor for this study. For this we will use the
approach of Webster and Watson. (Webster and Watson, 2002). All articles will be read and
categorized according to theme and concepts they address in other to find relations among the
material.

3.2.1 Define scope

In order to answer the research question, we are looking for case studies describing situations
where functionality is shared among multiple applications or projects in the form of a framework,
platform or other form of asset reuse. In the case studies we are looking for approaches used,
techniques applied, problems described and other relevant experiences from code reuse. Also we
are interested, but not exclusively, in how all this works in an agile environment because of the
agile culture of Topicus.

31

32 Chapter 3. Literature study of case studies

3.2.2 Identify fields of research

For the literature study we will look in published material (article and conference papers) avail-
able through the Scopus and WebOfScience databases.

3.2.3 Define search terms

From the goal of the literature study we abstract the following key topics: ‘code reuse’, ‘software
reuse’, ‘shared codebase’, ‘framework’ and ‘repository’. For all of these key topics we want a)
case studies in b) a collaborative setting in c) optionally an agile development environment. We
decided to split the search for articles in two distinct queries, one focusing on software reuse in
an agile or/and product line engineering setting and the other on shared repositories regardless
of development methodology. As for the knowledge domains, we both looked in the Computer
Science and Management Science domain in the period of 2000-2012 to find recent material. We
are not looking for fundamental theory, but recent industrial experiences.

3.2.4 Search

The resulting queries and their results are:

1 TITLE−ABS−KEY((”Code reuse ” OR ” so f tware reuse ” OR ” c o l l a b o r a t i v e develop ∗” OR ”
framework develop ∗” OR ” product l i n e e n g i n e e r i n g ” OR ” shared codebase ”) AND (”
case study ” OR ” a g i l e ”)) AND PUBYEAR > 1999 AND (LIMIT−TO(SUBJAREA, ”COMP”) OR
LIMIT−TO(SUBJAREA, ”BUSI”))

Listing 3.1: Reuse in PLE/agile context query in Scopus: 384 results

1 TS=((”Code reuse ” OR ” so f tware reuse ” OR ” c o l l a b o r a t i v e develop ∗” OR ” framework
develop ∗” OR ” product l i n e e n g i n e e r i n g ” OR ” shared codebase ”) AND (” case study
” OR ” a g i l e ”)) AND SU=(”COMPUTER SCIENCE” OR ”OPERATIONS RESEARCH MANAGEMENT
SCIENCE”) AND PY=(2001 OR 2002 OR 2003 OR 2004 OR 2005 OR 2006 OR 2007 OR
2008 OR 2009 OR 2010 OR 2011 OR 2000 OR 2012)

Listing 3.2: Reuse in PLE/agile context query in WoS: 206 results

1 TITLE−ABS−KEY((” r e p o s i t o r ∗” OR ” codebase ∗” OR ” v e r s i o n ∗” OR ” r e v i s i o n ∗”) AND (”
shar ∗” OR ” d i s t r i b u t ∗” OR ” c o l l a b o r a t ∗”) AND (” case study ”)) AND PUBYEAR >
1999 AND (LIMIT−TO(SUBJAREA, ”COMP”) OR LIMIT−TO(SUBJAREA, ”BUSI”))

Listing 3.3: Repository query in Scopus: 381 results

1 TS=((” r e p o s i t o r ∗” OR ” codebase ∗” OR ” v e r s i o n ∗” OR ” r e v i s i o n ∗”) AND (” shar ∗” OR ”
d i s t r i b u t ∗” OR ” c o l l a b o r a t ∗”) AND (” case study ”)) AND SU=(”COMPUTER SCIENCE”
OR ”OPERATIONS RESEARCH MANAGEMENT SCIENCE”) AND PY=(2001 OR 2002 OR 2003 OR

2004 OR 2005 OR 2006 OR 2007 OR 2008 OR 2009 OR 2010 OR 2011 OR 2000 OR 2012
)

Listing 3.4: Repository query in WoS: 459 results

3.2.5 Filter out doubles

Merged together and filtered for doubles the search yields 356 results in total. Merging and
removing doubles was done using Microsoft Excel. Doubles were removed based on title.

3.3. Results 33

3.2.6 Cut down sample based on title+abstract

In order to cut down the sample we read the titles and abstract and decided the paper to be
relevant for this literature study if the study is in industrial study where either:

1. Experiences with some applied technique to counter stated problems/issues with reuse/-
platform development are described

2. or general experiences with code reuse or shared codebases are described

Applying this heuristic was done in 2 iterations and resulted in 80 papers.

3.2.7 Cut down sample based on full text

A sample-set of 80 papers is a too large for the purpose of this study, so we scanned all 80 papers
briefly in full text to judge its relevancy. This resulted in a set of 30 papers. Papers rejected here
were full example poster papers, short papers, describing small-tools or prototypes in a merely
academic setting (e.g. not a proper industrial case study). The resulting set yields 30 papers
which were then read in detail and analyzed. After reading the full text, 4 more paper were
dropped because of irrelevant content for this literature study and 3 more because of duplicate
content.

§ 3.3 Results

The resulting papers read for this study provided very useful information, but we did not find
detailed case studies about working with a shared repository among different project teams.
That is, not in these terms. From reading the articles we noticed that authors use terms like
‘domain engineering’ or ‘shared software assets’ to describe what is essentially working on or
with the same source code, code base, or repository. Nevertheless, all articles discussed below
are industrial case studies which we categorized according to their focal topic:

• Benefits and misfits of product line engineering (PLE) (Mohagheghi and Conradi, 2008)
• Combining agile and PLE (Hanssen, 2011; Hanssen and Fægri, 2008; Noor et al., 2008)
• Using a reuse strategy (Ghanam et al., 2012; Otsuka et al., 2011; van Gurp et al., 2010;

Eaddy et al., 2008; Chapman and van der Merwe, 2008; Rothenberger, 2003)
• General development issues: changes (Schröter et al., 2012; Ramasubbu and Balan, 2010;

Gupta et al., 2010; Slyngstad et al., 2008; Perry et al., 2001), collaboration and commu-
nication (Beckhaus et al., 2010; Ponte et al., 2008; Munkvold et al., 2006)

We will not discuss the results according to those themes, but according to the concepts they
address in relation with changing requirements in terms of risks. The concepts were collected
iteratively while reading the articles using the method of Webster and Watson (Webster and
Watson, 2002). The following concept were found:

Concepts: Volatile market, client influence, market pressure, short-term versus long-term,
ambiguity, scope, scattered functionality, development of reusable components, communication
and knowledge sharing, experience in reuse, adoption of a PLE approach, and agile and PLE.

In the following sections we will discuss each concept and their relationship with changes and
associated risks.

34 Chapter 3. Literature study of case studies

3.3.1 Volatile market

External (outside of the company’s environment) events can be a cause of changes in require-
ments (Mohagheghi and Conradi, 2008). Examples of these external events are unpredictable
market conditions or customer demands. In a study by Mohagheeghi and Conradi (Mohagheghi
and Conradi, 2008) it is shown that if requirements change stem from those events, application-
specific components would be more affected then other components. This is most likely because
most external events stem from some specific customer instead for the whole market.

When the market operated in often has to deal with these kind of events, it is called a
volatile market. Operating in such a market can be a risk since in these markets it is of strategic
importance to be able to respond quickly to changing market conditions. When working with
a framework, concessions then have to be made. Developing reusable components now may be
of benefit later, but inhibits the ability to respond quickly to market changes. In a case study
by Hanssen (Hanssen, 2011) this has been dealt with by having several and frequent links to
customers. This allowed the company to quickly deduce market changes and adapt their strategy
accordingly. However, if these predictions are inaccurate, a highly reuse focused approach can
cause the company ‘enforcing wasteful effort related to adherence to reference architectures,
organizational overhead and reuse strategies’ (Hanssen and Fægri, 2008).

Market
changes

Product line
requirements

Product 1

Product 2

Product 3

Shared
components

Affect Based on Uses

Figure 3.1: Volatile market.

3.3.2 Client influence

Having a short rope with your customers thus can be beneficial, but client influence is also a
risk. In a study by Rothenberger (Rothenberger, 2003) it is shown that when the perceived value
of reuse by a customer is low, they have a higher chance to disagree with further investments
and planning of reuse activities. According to the authors this perceived value mainly depends
on ‘the effort that is invested up front in education about reuse benefits’ (Rothenberger, 2003).
Also, when a client’s budget and time constraints are directly reflected upon developers, lower
reuse rates were achieved (Rothenberger, 2003). In the study it was also shown that when
the system under development was of low operational importance for the client, it felt that it
should not affect other more critical projects. Hence, reuse or framework dependencies were
not favored. This is called ‘fear of interconnectivity’ (Rothenberger, 2003). When involving
clients in the development process, you therefore need to think about who to involve in the
decision-making process of your platform design (Ghanam et al., 2012).

3.3.3 Market pressure

When incorporating a reuse approach, market pressure influences and defines risks for companies.
For example, in a study by Ramasubbu and Balan (Ramasubbu and Balan, 2010), development
of product features having direct competition was significantly lower compared to development of
unique features to the company. The authors conclude that development teams were ‘particularly
sensitive to competitive pressures and wanted to stay ahead in the market by uniquely positioning

3.3. Results 35

Developer

Customer

Perceived value
of reuse

Software
organization

Budget and time
constraints

Reuse benefit
education

Affects

Reflect on

Reuse rate

DeterminesDetermines

Figure 3.2: Client influence.

the product’ (Ramasubbu and Balan, 2010). This pressure can be considered time-to-market
pressure, which can come either from within or outside the company.

Market pressure also may, according to the study by Gupta et al., lead to many perfective
changes later in the development cycle because of refactoring needs. In this case study this was
mainly because rules and business logic were complex and hard to maintain and hence needed
refactoring (Gupta et al., 2010).

This can also be seen when relying on standards for your product. Market pressure then
can force redesign if a standard change or forced adoption renders some feature incompatible, as
shown in a case study by Ramasubbu and Balan (Ramasubbu and Balan, 2010). Market pressure
can also be caused by political aspects, as stipulated by Ponte et al. (Ponte et al., 2008) where
in a case study the design phase of reusable components was led by political aspects instead of
technical aspects.

Market

Product feature
competition

Time to market
pressure

New/changing
standards

Refactoring/
redesign

Software
organization

Lead to

Figure 3.3: Market pressure.

3.3.4 Business strategy

As stipulated shortly with respect to a volatile market, planning and time-to-market pressure
from clients can be a risk for companies if it compromises their ability to deliver stable products
in the future (Hanssen, 2011). When developing products using a shared framework thinking
ahead of what functionality should be in this framework and what not can save time and resources
later. However, investing up-front is not always desirable if clients are pressuring for fast releases.
This is the dilemma of short-term versus long-term goals. In both situations change is dealt
with differently. In a short-term planning scenario, changes have to be incorporated in existing
deployed parts of the framework which can cause errors or conflicts in already deployed products.
However, companies can also choose to deploy different versions of frameworks to deal with this.
This of course leads to maintenance problems if more versions are maintained in parallel.

Choosing the right course of action for your shared asset development depends on the prod-
ucts you plan to deliver. When you have a lot of different clients in some product line with
their own wishes then the number of variation sources for shared assets increases. The more

36 Chapter 3. Literature study of case studies

actors involved, the higher the number of changes can be expected if all actors can influence the
development of the shared assets (Ghanam et al., 2012).

When designing or refactoring components for reuse, the development at some point needs to
be initiated. In a study by Ghanam it is shown that when one big client is involved, the reusable
assets may be developed based on this big client. This is called prioritizing on a mainstream
product. This is a risk if other customer’s implementations suffer from the design decisions from
this mainstream product (Ghanam et al., 2012).

A change of business strategy, for example to serve new markets, new customers is also a
risk if this requires a different vision on the shared assets (Ghanam et al., 2012). For example, if
at one point a long-term reuse strategy was employed, but later the company switches to a more
short-term planning, you have the risk of using a immature component for reuse. Short-term
versus long-term planning, agility versus stability or business-value thinking versus customer-
value thinking are all very prominent points of debate in the development of reuse assets.

The client in this dilemma is considered an external factor, but internal factors also play a
role here. For example, a company may have a business philosophy of focusing on short-term
goals preventing a company from adoption reuse in their projects (Sherif and Vinze, 2003). Also,
there can be the issue of product ownership thinking when development teams are protective of
their assets when moving to a reuse scenario (Ghanam et al., 2012).

Product 1

Product 2

Product 3

Shared
components

Shared
componentsTime

Product 3 Shared
components

Version 2

Version 3

Product 1

Product 2

Product 3

Product 3

Shared
components

Short-term PLE versus long-term PLE

Figure 3.4: Long-term versus short-term PLE.

3.3.5 Ambiguity

Developing reusable components requires clear requirements. If different parties want to use
some component, requirements from all parties need to be combined into a technical design
which satisfies all needs. Besides the fact that this may require concessions from all parties,
ambiguity or unclear requirements may cause errors in the implementation which then may
cause defects in products relying on this component. In a study by Gupta et al. it is shown
that unclear requirements in their case led to many perfective changes later in the development
cycle (Gupta et al., 2010).

Besides errors in the implementation, ambiguity in artifacts may cause different interpreta-
tions of the contents of the artifacts among actors. This may cause deviations in development
of components over time, as shown in a case study by Ponte et al. (Ponte et al., 2008). More
generally, ambiguity of goals between actors can lead to standardization disputes when artifacts
become the center of collaboration between actors. This problem can also exist internally if for
example different interpretations or goals exist of for example a planning or road-map (Ghanam

3.3. Results 37

et al., 2012).

Requirement

Interpretation 1

Interpretation 2

Shared
component

Shared
component

Conflicts/errors

Figure 3.5: Asset ambiguity.

3.3.6 Scope

When setting up components for reuse, they are often designed with some product scope in
mind. Widening this scope then can become a risk. In a case study performed at Fujitsu where
reusable components were developed, it was observed that ‘the scope of core asset creation
should not be excessively expanded before the product line development is sufficiently mature’
(Otsuka et al., 2011). A product line approach here was adopted because of the high expected
development costs and the necessity to have reusable components for future products.

This problem was also shown in a case study by van Gurp et al. (van Gurp et al., 2010)
where ’[because of scope widening], the platform and target products increase, the platform
has to support more and more potentially conflicting requirements’. In this study it is also
shown that besides widening the scope, decisions encompassing a system wide scope also poses
risks. When difficult design decisions in the product line platform are made addressing issues
of multiple current products, later development of products may be compromised because for
them an alternative solution would be better (van Gurp et al., 2010).

Product 1 Product 2

Product 1 Product 2

Product 3 Product 4

Shared components

Req. 1

Req. 2

Req. 3
Req. 1

Req. 2

Req. 3

Req. 5

Req. 4

Scope widening

Figure 3.6: Scope widening and requirement complexity increase.

38 Chapter 3. Literature study of case studies

3.3.7 Scattered functionality

Development of reusable components may encompass technical risks. In a study by Eaddy
et al. it was found that scattered functionality because of inheritance can cause problems for
developers when developing shared assets (Eaddy et al., 2008). For developers it may be difficult
to oversee all impact of changes in the inheritance tree when it is unclear what other products
may use this functionality.

Also, scattered functionality is difficult to deal with if changes are required at the product
level for some functionality (e.g., not implemented as a reusable component). Testing costs
then may increase if a platform-wide testing has to be executed (van Gurp et al., 2010). In
general, deploying ‘differentiating platform features’ is a risk because of this, if they depend on
components which require platform-wide testing when they are changed (van Gurp et al., 2010).

Of course there may be very legit reasons for scattering functionality, but for developers it is
often difficult to understand the plan behind this if plans are developed delocalized. This may
in a worse case scenario result in several incorrect modifications across the system (Eaddy et al.,
2008).

Component

Component Component

Component ComponentComponentComponent

Product 1

Product 2

Repository B

Repository A Located in

Located in

Figure 3.7: Scattered and delocalized functionality.

3.3.8 Development of reusable components

On a low technical level working with multiple people on the same artifacts yields two types
of problems: semantic conflicts and logical completeness. When working on the same files, you
need to merge your changes with the changes of others. This is called a semantic conflict. When
synchronizing a consistent build of a system you have to worry about dependencies shared across
multiple components in the system, which is called logical completeness. (Perry et al., 2001).
Merging or synchronizing files these days is not so much a technical concern; the first problem
is often dealt with by incorporating a version control system and the second problem can also
mostly be automated by build servers. However, on a functional level the challenge here is to be
able to foresee the effect of a merge or synchronization of shared components across products.

In a study of build-level components a number of issues with reusable components on imple-
mentation level are discussed. Issues stated here are: component granularity, component cou-
pling, circular dependencies, non-standardized configuration interfaces, early binding of build-
level dependencies, single build process definitions, configuration management for component
deployment and making a system composition by hand (de Jonge, 2005).

Editing a component which is shared among products may cause multiple files to change
can increase ‘code churn’ (Eaddy et al., 2008). When components span multiple products,
editing them yields a ‘crosscutting concern’. Having such concerns is a risk if they are rarely
documented. Without proper documentation top-down knowledge questions (like where are all

3.3. Results 39

Shared
Component

Product 1 Product 2 Product 3

Developer

Commit change

Change propagates
<code>

[..]
</code>

Figure 3.8: Change propagation.

the locations where function X is used) and bottom-up knowledge questions (like: what is this
piece of code for) (Eaddy et al., 2008) cannot be answered easily.

“What is this
piece of code for?”

Component

Component Component

Component ComponentComponentComponent

Product 1

Product 2 “Where is this function used?”

Top-down questions

Bottom-up questions

Figure 3.9: Knowledge questions.

Iteratively working on shared components is shown to be both beneficial and a risk. In
a study by Mohagheghi and Conradi (Mohagheghi and Conradi, 2008) it is shown that reuse
results in a lower fault density and code modification rate of those components over time. Also
the authors show that reused components had ‘significantly fewer post-delivery faults then non-
reused ones’ (Mohagheghi and Conradi, 2008).

Ramasubbu and Balan (Ramasubbu and Balan, 2010) show in a case study that a company
may use different strategies for different natures of change: incremental changes, modularity
changes, architectural changes, or radical changes. The company prioritized their attention
according the degree the changes affected modularity and architectural changes (Ramasubbu
and Balan, 2010).

In general four classes of changes are used in software literature: corrective, adaptive, per-
fective and preventive (Slyngstad et al., 2008). The type of change done on shared functionality
can be an indication of the risks involved. For example, according to Slyngstad et al. (Slyngstad
et al., 2008), a ‘scope change’ is related to perfective, adaptive and preventive changes whereas
an ‘incident’ relates to corrective changes. Scope changes then may require a more rigor and
coordinated effort between development teams whereas incidents are more locally handled. In
combination with test-driven development in this case study a defect density decrease of 36
percent per release was achieved (Slyngstad et al., 2008).

40 Chapter 3. Literature study of case studies

3.3.9 Communication and knowledge sharing

Developing components which are used among multiple products requires coordination, commu-
nication and knowledge sharing. Different collaboration patterns encompasses different risks in
a shared codebase environment.

In a study by Beckhaus et al. (Beckhaus et al., 2010) it is stated that when a collaborative
process is heterogeneous, a process has not yet been established and in the case study a negative
influence on performance then was observed. It is in general assumed that when knowledge
workers frequently exchange information and consult co-workers, processes are more efficient.
In this case study it was shown that in most cases of highly centralized collaboration networks
the ‘most central employees happen to execute the dispatcher role’ (Beckhaus et al., 2010). In
the case of issue tracking, this kind of centralization may introduce a bottleneck ‘since relying
on a key user for information exchange makes the entire issue tracking efficiency dependent on
his or her availability’ (Beckhaus et al., 2010).

Provide information Need information

‘Dispatcher’

Figure 3.10: Dispatcher role.

When collaborative processes are more formal, assets as for example framework road-maps
can be used reliably. In a more formal environment they can be expected to be updated often
and, when shared, can communicate the status of development for everyone in the organization,
even for customers (Hanssen, 2011). This highly depends on the implemented development
methodology, but also on the culture of the organization. If the company values direct face-to-
face communication over documentation, a more formal approach may not be favored despite
the benefits (Hanssen, 2011).

Also, incorporating a ‘reuse champion’ or in general the degree of promotion/emphasis of
reuse by a product/team leader affects the attitude of employees towards reusing functionality.
Giving trainings or incentives for reuse may influence the successful use of shared components
as well (Rothenberger, 2003). Having few incentives for projects to collaborate in the process
of tools selection or training schedules can make asset sharing between projects impractical
(Chapman and van der Merwe, 2008).

An organization structured in a project-centric way often is described as developing inde-
pendent one-offs according to the distinctive requirements of a customer. When working in the
context of a framework with reusable components or a product family, the development is more
focused around a certain degree of commonality stimulating software reuse. In a ‘project-centric’
company development of reusable assets often must be the side-product of the project, reducing
the incentives for a project to collaborate in a reuse effort among projects (Chapman and van der
Merwe, 2008).

As discussed before, having poorly documented crosscutting concerns makes it difficult for
employees to answer top-down and bottom-up knowledge questions. Also, without communica-
tion of plans among teams or within team developers may have difficulty understanding these
plans coherently which may cause incorrect modifications.

3.3. Results 41

Provide information Need information
Knowledge
repository

Reuse champion

Shares experiences Gives advice

Active communication

Figure 3.11: Knowledge sharing and reuse champion.

When development of a common platform is coordinated by some leading actor, the loss of
such an actor may cause actors in the network to go their own way (network unbundling) (Ponte
et al., 2008).

3.3.10 Experience in reuse

At the end of the day developers will write code, business analysts will produce documents and
team leaders have to distribute resources. The experience people have with these activities in
a shared codebase environment therefore is an important factor since it is one of the factors
determining the quality of the work. For a developer experience with reuse can be seen in the
appliance of reuse patterns, the understanding of the company’s reuse model, the knowledge
of component availability/capability (Rothenberger, 2003; Ghanam et al., 2012) and domain
knowledge in order to make decisions regarding what is important for the platform and what
for a specific application (Ghanam et al., 2012).

In a study by Sherif and Vinze (Sherif and Vinze, 2003) it is shown that having a reuse
champion (e.g. an experienced and visionary employee) may be of benefit. The main association
with benefits here is that a reuse champion can reduce the impact of having a reuse philosophy on
barriers to incorporate reuse. Also in this context, ‘active communication between asset creators
and asset utilizers’ and education and training proves to be of benefit (Sherif and Vinze, 2003).

3.3.11 Adoption a PLE approach

A product-line engineering (PLE) approach is something which has to grow within a company. A
company may adopt such an approach because of various reasons and implement it in a infinite
amount of ways. Also, every company is in a different situation when adopting a PLE approach,
making every case even more unique. In some cases PLE may reduce costs and improve quality,
but ‘rather only for those few projects visible at the beginning of the project’ (Otsuka et al.,
2011).

A proactive PLE approach requires upfront investments in a product line architecture on an
organizational level to do planning and scoping activities. The tension here is that a predefined
architecture puts constraints on the products an architecture can support. In a study by Tang
et al. it is stated that this requires developers to ‘shift from short-term thinking to think about
long-term benefits’ (Tang et al., 2010). In this case developers indicated that developers often
don’t like to be constrained. Also in this study it is stated that this risk can be mitigated by
communication the architectural design earlier with customers and developers to gain trust and
buy-in (Tang et al., 2010).

42 Chapter 3. Literature study of case studies

A reactive PLE approach then is able to deal more easily with changes from the market and
from within the business, but has the risks associated with a more ‘agile’ approach and PLE.

Moving from a situation with zero reuse to a situation where a reuse strategy is incorporated
is one thing, but in any case a situation where existing components need to be refactored or
gradually be made accessible for sharing is very likely. In a case study by Gupta et al. is shown
that making some components resuable may reduce the volatility of components, but may also
increase the amount of adaptive and preventive changes (Gupta et al., 2010).

In a study by Breivold et al. (Breivold et al., 2008) a number of recommendations are given
when moving to a PLE approach:

1. Improve risk management through constant progress measuring
2. Product managers for different products using the product line architecture should syn-

chronize needs
3. Define roles, responsibilities and ways to share technology assets
4. Perform the migration to product lines through incremental transitions
5. Ensure communication between technology core team and implementation team
6. Use tool support for dependency analysis
7. Use architecture documentation to improve architectural integrity and consistency
8. Carefully define variation points and realization mechanisms
9. Use the described method iteratively to handle software evolution

§ 3.4 Derived risks

From the above sections we can derive a number of risks which we listed in Table 3.1 and explain
them in simple words in section 3.4.1 and onwards.

3.4. Derived risks 43

Risk References
1 Risk of operating in a volatile market (Mohagheghi and Conradi, 2008;

Hanssen and Fægri, 2008; Hanssen,
2011)

2 Risk of stakeholder influence (Rothenberger, 2003; Ghanam et al.,
2012)

3 Risk of time-to-market pressure (Ramasubbu and Balan, 2010; Gupta
et al., 2010)

4 Risk of evolving standards (Ramasubbu and Balan, 2010)
5 Risk of political aspects (Ponte et al., 2008)
6 Risk of business philosophy focusing on

short-term goals
(Hanssen, 2011; Sherif and Vinze,
2003)

7 Risk of business value thinking (Tang et al., 2010)
8 Risk of prioritizing on mainstream

product
(Ghanam et al., 2012)

9 Risk of changing the business strategy (Ghanam et al., 2012)
10 Risk of reusing immature components (Gupta et al., 2010; Tang et al., 2010)
11 Risk of unclear requirements (Gupta et al., 2010)
12 Risk of different interpretations of arti-

facts
(Ponte et al., 2008; Ghanam et al.,
2012)

13 Risk of goal ambiguity (Ghanam et al., 2012)
14 Risk of scope widening (Otsuka et al., 2011; van Gurp et al.,

2010)
15 Risk of scattered functionality (Eaddy et al., 2008; van Gurp et al.,

2010)
16 Risk of delocalized plans (Eaddy et al., 2008)
17 Risk of iteratively changing reuse com-

ponents
(Mohagheghi and Conradi, 2008)

18 Risk of changes in product line assets
at the product level

(van Gurp et al., 2010)

19 Risk of enhancement to a cross-cutting
concern

(Eaddy et al., 2008)

20 Risk of component granularity (de Jonge, 2005)
21 Risk of circular dependencies (de Jonge, 2005)
22 Risk of non-standardized configuration

interfaces
(de Jonge, 2005)

23 Risk of early binding of build-level de-
pendencies

(de Jonge, 2005)

24 Risk of making a composition by hand (de Jonge, 2005)
25 Risk of making an application/compo-

nent reusable
(Slyngstad et al., 2008; Ramasubbu
and Balan, 2010)

26 Risk of heterogeneous communication (Beckhaus et al., 2010; Hanssen, 2011)
27 Risk of centralization in group based

collaboration networks
(Beckhaus et al., 2010)

28 Risk of reuse experience level (Rothenberger, 2003; Ghanam et al.,
2012; Sherif and Vinze, 2003)

Table 3.1: Derived risks from industrial case studies

44 Chapter 3. Literature study of case studies

3.4.1 Risk of operating in a volatile market

We speak of a volatile market when a software development company has to update their product
platform to move along with the latest technological developments in order to maintain her
market position. For example, let’s assume a company develops a social media platform for a
diverse customer base. In the domain of social media, technology develops rapidly so existing
technologies are updated often. To stay in business, the company always has to look around
for the latest technology developments to anticipate client’s wishes and market trends. This
however also means that their platform and all depending products often are exposed to change.

Possible indicators for this risk are:

• In the organization there are different applications with customers in a different sub-
domain, all based on a shared platform

• Product specific assets are depending on shared components
• Market changes can occur frequent and ripple fast through the organization

3.4.2 Risk of stakeholder influence

Stakeholders in the context of software development are defined as those actors with an interest
in the development of the software. Think of customers, suppliers, users and also developers.
We speak of stakeholder influence if for example a customer can directly contact a developer to
pass on a small feature request. If this feature requires changes on a software platform, this can
result in unexpected changes on other products. Stakeholders also can have influence by means
of budgetary restrictions what platform activities, which also are relevant for other customers.
Possible indicators for this risk are:

• Frequent, direct, informal customer contact
• A relationship with the customer where additional work can be discussed without any

formal process

3.4.3 Risk of time-to-market pressure

Let’s assume some component can be included in a platform and become available for all other
products, but this requires 2 weeks of additional development. The alternative is that the
component is not made generic and is directly released and available for one product, because
it is promised to the customer right now. This is an example of time-to-market pressure.

Possible indicators for this risk are:

• Fixed priced contracts where for the next number of months the features to deliver are
fixed.

• Short-release cycles
• High level of market competition
• A busy road-map

3.4.4 Risk of evolving standards

If standards of protocols or data formats are being used in a platform and such a standard
changes, the impact can be different for each product. This can for example be the case for a
platform of which the customer of one of the products decides to use a different encoding. If
this functionality only is implemented in a generic component, this can mean that a specific
component is to be written for this specific customer.

3.4. Derived risks 45

Possible indicators for this risk are:

• A large number of common or shared web-services where for data-communication some
data-standard is used

• Incorporated standards where external parties make decisions regarding the contents of
the standard

3.4.5 Risk of political aspects

Agreements between consortia made on a political level can influence the development of com-
ponents if these consortia make agreements on what standards or interfaces between systems
are required to be used. Or when they deviate from previous decisions.

Possible indicators for this risk are:

• Standards where external parties have more saying than you
• Consortia involved in the development of components which are part of the system

3.4.6 Risk of business philosophy focusing on short-term goals

With the development of a platform the design and implementation can be planned far ahead in
the future if you for example already know what products you expect to roll-out in the coming
2 or more years. A long-term vision means you have to invest a considerable amount of time
prior to releasing your software products. A short-term vision focuses more on being able to
release live products faster and distribute the development of the platform over a longer period
of time.

Possible indicators for this risk are:

• Short-release cycles
• Road-maps with a short scope
• Fixed-priced contracts
• Concessions are done with respect to platform design to achieve early product release

3.4.7 Risk of business value thinking

A strong mind-set of business value thinking is characterized by to what extend the direct
visibility of business value in terms of time and money is used in development decisions. For
example, let’s assume a software company faces the choice to serve a big customer right now
with a half-finished platform or continue developing the platform to make it more mature and
more stable. The first options generates clear, direct business value while the business value of
the latter is less certain.

Possible indicators for this risk are:

• Getting a customer now is favored over taking the risk of investing more first and then
roll-out the products

• Rather make the next deadline, and the next and the next than refactoring/improving
now

46 Chapter 3. Literature study of case studies

3.4.8 Risk of prioritizing of mainstream product

A mainstream product typically is a large, cash-cow product. We speak of prioritizing of a
mainstream product if for example during design or planning activities concessions are made
beneficial for this mainstream product, but which may have a negative result on other products.
This can happen if stakes are high. Think of concessions like resource allocations or not including
some functionality in the scope of other, less important, products.

Possible indicators for this risk are:

• There is a mainstream product to distinguish with relative high financial stakes
• Decisions about resource distribution are based on the mainstreamness of products

3.4.9 Risk of changing the business strategy

When during implementation of a new business strategy it is decided that some platform is
being rolled-out in a new market, this can have a significant impact on existing products. For
example when emerging requirements from the market are not yet supported by the platform.

Possible indicators for this risk are:

• Unstable market position
• Highly depending on external parties for technology or propositions

3.4.10 Risk of reusing immature components

A component which is still actively in development and which has not proved itself in practice
we call an immature component. Already (re)using these kind of components in production as
part of a software product line platform can be a risk.

Possible indicators for this risk are:

• The components shared among other applications are actively used while not fully matured

3.4.11 Risk of unclear requirements

When requirements are unclear it may not be upfront clear what modifications are required
on the platform in the near future. This may happen, for example if later in the development
cycle the intentions of certain requirements become apparent. Or when it becomes apparent
that some requirement has more impact on a product line platform after a client has signed a
fixed-price contract. This impact may for example include unexpected changes in other products
depending on the platform.

Possible indicators for this risk are:

• Separation of responsibilities in the requirement engineering activity
• Large products with large number of requirements
• Long iterations/large release scope

3.4. Derived risks 47

3.4.12 Risk of different interpretations of artifacts

When design artifacts like requirements, planning documents, or documentation of components
have to be used by other project teams there is a chance that elements from the artifacts are
misinterpreted. This may cause deviations in implementations, but also to differing expectations
of involved parties.

Possible indicators for this risk are:

• Distributed work over separate teams
• Design documents are shared
• Large development scope

3.4.13 Risk of goal ambiguity

Let’s assume a developer has build a component in a platform with a certain goal or purpose
in mind. Another developer wants to add a feature to this component for his project, which
conflicts or diverges from the goal the original developer had in mind. But, the other developer
does not know about the goals of the original developer and starts implementing the feature
according to his own ideas.

Possible indicators for this risk are:

• Large scope of work, large number of development teams
• Little documentation or communication of component’s design goals
• Little effort in keeping design documents up-to-date

3.4.14 Risk of scope widening

At a certain moment a customer is brought in for whom a new product is being developed on an
already existing platform. Because the business wants to offer this product to more customers
in the future, the platform is expanded with the consequence that new components must be
build and existing components require modifications.

Possible indicators for this risk are:

• Platform with mainly immature components
• High chance of new prospects with unique desires or from a different domain
• Platform is not yet at a financial break-even point

3.4.15 Risk of scattered functionality

If components from a platform are not located in the same repository or when certain function-
ality is implemented scattered across different components, we speak of scattered functionality.
Modifications on these components may potentially requite additional modifications in multiple
locations.

Possible indicators for this risk are:

• Platform components are spread across multiple repositories
• Core platform functionality is implemented across multiple components

48 Chapter 3. Literature study of case studies

3.4.16 Risk of delocalized plans/documents

When a platform road-map or planning is maintained at different locations, agreements have to
be made regarding how these documents are managed. For example, let’s assume the design of
an artifact of a new feature is scattered across multiple locations. How do you coordinate this?

Possible indicators for this risk are:

• Separation of work of system design across scattered teams
• Large scope of work
• No or poorly incorporated central storage of design documents

3.4.17 Risk of iteratively changing reuse components

If a component is build in multiple iterations, for example because the requirements of a platform
are not yet completely clear. These components can be exposed to a high level of change,
resulting in an unstable platform. This is an undesired situation if the product is already live.

Possible indicators for this risk are:

• Agile development methodology employed
• Fast time-to-market, business value thinking
• Using immature components in production

3.4.18 Risk of changes in product line assets at the product level

Functionality required for a specific product which will be implemented in components of a
platform or for which platform components have to be modified can have undesired affects on
other products of the platform.

Possible indicators for this risk are:

• High level of coupling between product-specific assets and platform assets

3.4.19 Risk of enhancement to a cross-cutting concern

The more overlapping functionality a shared component has with other components, the more
impact a modification on this component can have on the platform and its depending products.

Possible indicators for this risk are:

• Low level of modularity of components
• High level of coupling between platform components and product-specific components
• High number of hubs in the dependency graph of the platform

3.4.20 Risk of component granularity

Large components can be very incoherent, which makes them less suitable for reuse in a platform.
The bigger the components, the larger the chance that they may be affected as the result of a
modification.

3.4. Derived risks 49

Possible indicators for this risk are:

• Large components with low level of cohesion and low level of orthogonality
• Configuration of functional modules affect multiple components
• Functional modules are implemented as a collection of components

3.4.21 Risk of circular dependencies

Let’s assume component A utilizes functionality of component B and vice versa. The more
of these ‘circular dependencies’, the less modular the components become. Less modularity
render components less suitable for re(use) in a product line platform. A high level of circular
dependencies can make modifications or testing of components very difficult.

Possible indicators for this risk are:

• High level of circular dependencies in core platform components
• High level of circular dependencies between platform components and product-specific

components

3.4.22 Risk of non-standardized configuration interfaces

In the case of multiple products having multiple build or configuration interfaces, fast testing of
changes across multiple products may be hampered of there is no automated option to do this.
If two products use a different build-system (for example Imake and Automake) and executing
an install-command invokes different behavior on both systems, this can result in problems.

Possible indicators for this risk are:

• Different deployment or configuration technologies used for platform products

3.4.23 Risk of early binding of build-level dependencies

If external components are using hard-coded relative paths, it delimits the boundaries of usage
of the component and at what level of detail or granularity the location of the components are
defined. The more generic this is designed, the more flexible component can be utilized and the
harder modifications of dependencies are to work.

Possible indicators for this risk are:

• Hard-coded configuration on product-level of dependencies
• Dependencies are managed by hand

3.4.24 Risk of making a composition by hand

Releasing a product of a product line by hand can be very time-consuming if a lot of folders and
files have to be bundled together across multiple locations. The more complex this task, the
higher the chance errors are made when for example some file has been forgotten to transfer.

Possible indicators for this risk are:

• No automated compile and deployment technology used to compose a platform product

50 Chapter 3. Literature study of case studies

3.4.25 Risk of making an application/component reusable

Sometimes a product-specific component can contain functionality useful for other products. To
enable this component to be offered to other products, it has to be made available as a generic
employable component. Most of the time this requires refactoring of the component, with all
possible negative effects.

Possible indicators for this risk are:
• Large number of outdated classes or components which actually need a good refactoring

job for recent demands
• Tight coupling of classes or components

3.4.26 Risk of heterogeneous communication

If there is little to none communication or process defined as to how to deal with modifications
of platform components, al sorts of undesired things happen which may impact other products
without any checks or taking of responsibility.

Possible indicators for this risk are:
• No communication policy when updating platform code
• No defined process or definition of responsibilities regarding modifying platform code

3.4.27 Risk of centralization in group based collaboration networks

If knowledge questions regarding a platform always go via the same person it creates a bottle-
neck in the process. The dispatchment of changes or problems depends on the information
availability, the efficiency and the skills of a single person.

Possible indicators for this risk are:
• A central person of authority sitting on the shared code base
• A development culture where the central person is given the responsibility of designing

and maintaining the shared codebase

3.4.28 Risk of reuse experience level

When developers have a high level of experience with developing platform components, they can
more easier oversee the impact of modifications. Also, there is less chance of introducing errors
in other products. More experience may also reduce the risk of having less modular components,
hence more flexible components.

Possible indicators for this risk are:
• No knowledge sharing of platform components
• Junior developers with high level of design responsibilities towards platform components

§ 3.5 Conclusion

In this chapter we answer the first research question of this study: what are the risks of a shared
codebase environment with respect to changing requirements?. We conducted a literature study
of industrial case studies where we found 28 risks, each discussed with their possible indicators.

- Chapter 4 -

Interviews

§ 4.1 Introduction

The second main research question of this project is: What approaches or techniques can be used
to mitigate risks in an agile shared codebase environment?. In section 2.4.1 we stated that this
will be done by interviewing employees at Topicus in different roles from different projects at
different business units.

To answer this question, 8 interviews have been conducted among 3 different business units
of Topicus. In this chapter the goals of the interviews are stated, the design of the interview
questions is discussed (section 4.3) and the used interview protocol is described (section 4.4).
The results of the interviews can be found starting from section 4.5.

§ 4.2 Goals

From the interviewees, we want to know the following:

1. What issues with regard to a shared codebase and changing requirements do people en-
counter?

2. What is the daily practice of working with a shared codebase?
3. What have been the experiences with the daily practices?
4. What would people see differently in this regard?

§ 4.3 Designing the interview

Before formulating the interview questions, in this section some theoretical background is given
to justify the choice of conducting interviews. This is done by discussing what types of interviews
we can choose of and and how data then can be interpreted.

4.3.1 Why interviews?

For this project we want to assess common issues and approaches across different business units
based on experiences from the past. But we only partly know what kind of information we are
looking for. Also, we are not trying to prove some hypothesis and we are not interested in a
comparison of demographics. Taken together we think that a qualitative study design is the
most appropriate study design.

51

52 Chapter 4. Interviews

We can distinguish between the following qualitative study designs: case studies, comparative
studies, retrospective studies, snapshots, and longitudinal studies (Flick, 2009). Snapshots and
longitudinal studies are more focused on analyzing the effects behind some phenomenon, which
is not the topic of this study. Also, we are not so much interested in what business unit is better
than the other, but more what works well under what conditions. So a comparative study
would not suit this study well. Rather, the study should be designed as a combination between
a case study and a retrospective study. We want to analyze experiences from the past which
we will do with interviews among employees at Topicus. While we also could have chosen for
questionnaires, we agree with Lindlof et al. (Lindlof and Taylor, 2002) that “[interview’s] ability
to travel deeply and broadly into subjective realities” is something required for this study, since
we are in interested in the best practices from inside Topicus based on the experiences from
employees.

4.3.2 Interview type

There are a number of different types of interviews we can use for this study. Flick (Flick,
2009) states the following types: focused interview, semi-structured interview, expert interview,
problem-centered interview, ethnographic interview, narrative interviews and group interviews.
In this study we want to look for best practices which are stored in the actions and thoughts of
the employees. To get this information on paper, we need up-front knowledge of what kind of
information we can expect so directing questions can be asked. We are not interested in indi-
vidual episodically data, but situational experiences. However, these experiences are subjective
and thus still personal and we can expect that not everyone is willing to share these. Directing
follow-up questions as well as confronting questions for this purpose can a good tool to drill
deeper into the situation, but we must not focus on the individual too much to keep the focus
on the processes. So in summary, we need an approach which enables open questions while still
being able to focus on specific categories of information. Also we need to get into the thought
process of the individual, without focusing to much on the socially or biographically aspects.
Using Flick (Flick, 2009) we then conclude that a semi-structured interview approach seems the
way to go here.

A semi-structured interview is built around hypothesis directed open questions or on theory
based directed open questions. Usually this type of interviews is used in the reconstruction of
subjective theories. Problem with this approach is that interpreting the data can be difficult since
the resulting verbal data is mostly uncategorized and requires a lot of effort to transcribe and
analyze. It is a trade-off between getting significant comparable data (hence, closed questions)
or allowing for asking follow-up question based on answers of the interviewee.

4.3.3 Interpreting data

Interpreting transcriptions of (not only semi-structured) interviews can be done in different ways,
but mostly is done by coding. One of the most influential models for coding qualitative data is
the grounded theory approach (Lindlof and Taylor, 2002). Flick (Flick, 2009) discusses a number
of coding approaches like open coding, axial coding, selective coding and thematic coding. For
this study thematic coding or selective coding seem best, but the effort this will cost seems a bit
too much for the goals of this study. We will apply a pragmatic coding technique where using
5 colors the transcriptions are analyzed. In our transcriptions sentences can be marked Red to
indicate a problem, Green to indicate a chosen solution, Blue to indicate a wish or desire, Purple
to indicate an important statement and Orange to indicate important contextual information.
Then, in the side-line of the transcriptions near the marking the highlighted quote is summarized
in a few words.

4.4. Interview protocol 53

§ 4.4 Interview protocol

We conducted, audio recorded and transcribed 8 interviews among 3 different business units.
All interviews where conducted on-site and were semi-structured. The selection of candidates
was done via a snowball approach where via-via people where contacted and recommended
based on the desire of wanting to speak team-leaders, developers and analysts with experience
in working in shared codebase environment. All interviews lasted around 1 hour. A number
of standard questions were defined which at least should be asked and a listing of themes was
created before the first interview which was used to ask follow-up questions and starting point
for new questions. The design of this listing of themes is discussed in the next section. The used
protocol can be found in Appendix A.

Also, 1 pilot interview was done at FinCare to test the questions for completeness and to
practice conducting such interviews.

4.4.1 Shared codebases challenges and requirements change

The goal of this section is to determine what characteristics of requirements changes are relevant
in a shared codebase environment in terms of assessing the associated issues. We do this by
looking at the stated challenges from Ghanam et al. from section 2.3.2 and how they relate to
all the characteristics of change discussed in section 2.2.4.2.

4.4.2 Heuristic

The result is a table of characteristics linked to a number of challenges. We will use this as the
input for designing interview questions for this project. We used the following heuristics for this
assessment:

A challenge is related to a characteristic if

• the challenge’ severity is different for different values for a characteristic
• or the effectiveness of dealing with the challenge depends on the value of the characteristic
• or value of the characteristic depends on the challenge (its severity or when dealing with

it)

Applying this heuristic yields the result found in Appendix A. The top selection of both
dimensions of the table sorted by the number of matches based on the heuristic:

Sorted challenges:

1. Reuse
2. Continuous integration
3. Release synchronization
4. Testing
5. Cross-cutting concerns
6. Decision-making
7. Business-value thinking

8. Instability
9. Product ownership thinking

10. Standardization of documents
11. Requirement of combination
12. Platform quality
13. Platform stability
14. Business strategy

Sorted characteristics:

54 Chapter 4. Interviews

1. Criticality
2. Project phase
3. Manager’s control
4. Granular effect
5. Trigger/source

6. Domain
7. Developer experience
8. Motivation/opportunity
9. Time of change

10. Frequency

4.4.3 Interview questions

Based on the sorted challenges a semi-structured interview was designed. The used protocol
is included in Appendix B. In Table 4.1 a mapping is given of the different topics and the
concrete interview direction used in the interview sessions.

Topic Interview directions
Background interviewee Ask about current position and responsibilities
Change handling activities Ask what kind of changes come across, how does

the process looks like
Change representation Ask about documentation of changes
Reuse Try to get a picture of the platform layout, goal

of the platform and components
Continuous integration Try to get a picture of the general development

approach
Release synchronization Ask how the release cycle looks like
Testing Ask about the chosen testing techniques and

what is tested
Cross-cutting concerns Get a picture of the relations/dependencies

among the different products
Decision-making Ask who makes or can make platform related

decisions
Instability Ask if and how often there is platform instability
Product ownership thinking No explicit question
Standardization of documents No explicit question
Requirement of combination No explicit question
Platform quality No explicit question
Platform stability No explicit question
Business strategy Ask what the expected road-map for the prod-

ucts is
Requirement of maximum reuse No explicit question
Accessibility Get a picture of the knowledge sharing activities

of components

Table 4.1: Relation topics and interview directions

§ 4.5 BTOPP-model

In this section we define the structure used to discuss the results from the interviews. The basic
assumption here is that interviewees mention aspects related to a particular organizational
perspective. Garcia et al. (Garcia et al., 2007) define 4 perspectives for reuse in the context of
defining a maturity model for reuse adoption. These perspectives are: organizational, business,
technological and process.

4.5. BTOPP-model 55

According to Garcia et al. the organizational perspective includes all “activities directly
related to management decisions to setup and manage a reuse project” (Garcia et al., 2007).
The business perspective includes all “issues related to the business domain and market decisions
for the organization” (Garcia et al., 2007). The technology perspective includes all “development
activities in the software reuse engineering discipline and factors related to the infrastructure and
technological environment” (Garcia et al., 2007). And finally the process perspective includes
all “activities that support the implementation of the engineering and the project management
practices.” (Garcia et al., 2007).

These categories were also used by Lucredio et al. (Lucrédio et al., 2008) in the context of a
case study identifying key factors in adopting a reuse program. the categories were not strictly
defined, but used to structure the aspects found from the study. Organizational factors: soft-
ware organizations and team size, project team experience, software reuse education, rewards
and incentives, independent reusable asset development team. Business factors: product family
approach, kind of software developed, application domain. Technological factors: software de-
velopment approach, programming language, repository systems usage. Process factors: quality
models usage, systematic reuse process, kind if reused assets, origin of the reused assets, previous
development of reusable assets, specific function in the software reuse process, software reuse
measurement, software certification process, configuration management of reusable assets.

In 1991 a model by Scott-Morton was introduced to model the relation between organization
(structure, culture), business strategy, technology (employed IT landscape) people (skills, ex-
perience) and the business processes (management practices, procedures) (Scott-Morton, 1991).
The model is depicted in Figure 4.1.

Business
processes

(management,
practices,

procedures)

Business
strategy

Technology

Organization
(structure,

culture)

People (skills,
experience)

Figure 4.1: BTOPP model

To structure the results of the interviews we use the categories of Scott-Morton, but we give
them slightly different meanings based on the interpretation of Garcia et al. and Lucredio et al.
by putting the categories in a more software product line development perspective.

• Business aspects: activities and issues related to the business domain and market of the
software product lines

• Organizational aspects: activities and issues related to setting up and managing the
shared codebase of a software product line.

• Process aspects: activities and issues related to development and maintenance of the
shared codebase and thus indirectly the individual software products.

56 Chapter 4. Interviews

• People aspects: activities and issues related to the skills and experiences of the people
involved in the development of the software product line.

• Technology aspects: activities and issues related to the technical environment required
for supporting the development and maintenance of a software product line.

§ 4.6 The interviewed business units

The 8 interviews have been transcribed and coded according to problems, solutions, contextual
remarks, wishes and generalized statements. As said before, to structure the results, the coded
elements have been structured according to the BTOPP-model as discussed in section 4.5. We
tried to find themes or aspects raised by the interviewees and discuss them using statements
from the interviews. In the interviews we distinguish between the business units A, B and C.
Their cases and situations are briefly discussed below.

4.6.1 Unit A

At unit A one team leader and one senior developer have been interviewed. The components
at unit A can be described according to 3 levels. The first level really is a shared component
base for everyone. It is called ‘COBRA’ and it holds around 1000 generic components with
a total of 110.000 lines of code. These components can be further structured in a number
of modules. These modules include functionality like: forms, data-panels, bootstraps, web-
services, database handling, pdf-conversion, reporting services, security, database migration,
web-components for the front-end and a number common functionality like for example logging.
Besides COBRA there are a number of separate components for handling interfaces with external
(mostly government) systems. The third level is codebase shared among two of their products
from the same domain. This codebase consists of common functionality of the products which
is not shared outside of the scope of the two products. The structure as described above is
depicted in Figure 4.2.

4.6.2 Unit B

For unit B one lead architect, two team leaders, one developer and one analyst have been
interviewed, spanning 3 different projects. The codebase does not have a component repository
as unit A has, yet a distinction can be made between generic modules, domain specific modules
and generic components.

4.6.3 Unit C

At unit C one analyst has been interviewed. Unit C, in contrast with unit B and A, is more
involved in one-off projects than SaaS projects like the other two units. Still their codebase
consists of components which are reused (or redeployed) in their projects, but not shared like
unit A or utilized to have a SaaS platform like unit B.

4.7. Interview results 57

COBRA-components

Product AProduct A Product BProduct B Product CProduct C Product DProduct D

Shared code-base

Products

Instances

Clients

Common modules

Shared code-base

Figure 4.2: Codebase unit A

§ 4.7 Interview results

In this section we present the found aspects from the interviews across the three business units.
The aspects have been structured according to the BTOPP model from section 4.5: business
aspects, organization aspects, process aspects, people aspects and technology aspects.

4.7.1 Unit A

4.7.1.1 Business

Different domains Having multiple products in different domains can cause a clash about
stakes. In unit A customers from different sub-domains are served with the same kind of appli-
cation. Still, they have separated the projects and work on a separate codebase to allow separate
domain concerns to be implemented and allow the products to exists in different life-cycles.

Who pays? When multiple projects are using and developing on a shared codebase, someone
has to pay the bill. In unit A development on a shared component is payed from the budget of
the project doing the development. An interviewee of unit A about this:

“Sometimes you just start shifting hours. As long as there are multiple persons who
work on the components, it does not matter that much. Every project has someone
who edits the shared stuff. [..] but, sometimes yes, the hour distribution among
projects is not fair.”

Another interviewee at unit A about this topic:

“Product A has the most up-to-date component library. This is logical, since this
project uses the most and is under active development. We often have the discussion

58 Chapter 4. Interviews

that additions to components are from a desire from project A, but these additions
can also be beneficial for other projects. We are getting money for this from our
customers, so the resources come solemnly from project A. This is sometimes very
unfair. [..] It keeps important refactoring activities and updates from happening.”

Legal aspects When sharing components among different business units, it must be made
clear who legally is the owner of the component. For Topicus this is especially important since
all units are registered as separate companies under the holding Topicus, hence created assets
are not automatically legally owned by everyone in the holding.

4.7.1.2 Organization

Cross-cutting concerns A downside of sharing code among multiple projects is that editing
something on a shared component can break something in another project. According to one
interviewee at unit A this can be a risk since the impact of a change is not always known and
you always have to deal with desires from multiple angles. On this topic one interviewee of unit
A says:

“You just can’t make major changes [when working with shared components]. If I do
a commit on COBRA and [product A] is having a release tomorrow and thus have
made their own branch of COBRA, I can easily have broken something on [product
B] with that commit. But since [product A] now works on a different branch, the
bug can be introduced unnoticed in [product B].”

But he also says:

“[..] in the end we all are very pragmatic and fortunately smart enough not to
make compromises which may cause problems in the future. In practice, we do
not encounter that much problems in that regard. [..] A design is made from the
team where the change originates from and if there is even the slightest hint that
something may be impacted you check the impact.”

Responsible person In unit A there is a central person who took it upon himself to be the
responsible person for the shared codebase. In unit A there is an active discussion about if this
requires versioning of the codebase, having release cycles for the shared codebase, testing of
releases and back-patching.

Outsourced service desk In unit A the service-desk and implementation of the products
at customers is out-tasked to a third-party. This is done deliberately to have a more strict
separation of responsibilities. The number of clients for unit A is rather large, which makes
having a number of levels of responsibilities between end-user and development teams a necessity.
The third-party handles incoming bug reports and judges them as relevant or critical or not and
if required passes the report on to unit A. There a dedicated person can pass a report on to a
project teams as a bug or a feature request. An interviewee of unit A on this topic:

“As a software development organization, we like it not having to deal with everyday
end-user problems of customers. With all due respect, most of the time the issues
they raise are really not that relevant. However, we notice that having a helpdesk as
a buffer is more handy if you can actually walk to them for for example clarification
about an issue. The helpdesks of our products are located in different cities, making
that impossible.”

4.7. Interview results 59

The downside of the outsourced service desk is that sometimes when a bug is small and easy
to fix, the layers of communication can cause misunderstandings and a long time-to-fix. One
interviewee indicated that having a support-desk on the same floor is so easy, since within a few
steps a developer is reached and the problem can be solved.

Gatekeeper One interviewee, who is a team leader at unit A, indicated that he as a team
leader is the gatekeeper for updates. When a developer wants to update a library for a project,
the team leader enforces the approach that the developer has to convince the team leader of
the necessity of the update. Also, the dedicated person in unit A is the central person who
people confer with before pushing important updates, thus serving as a sentinel for the shared
codebase. An interviewee about him:

“He marked himself as the owner of the codebase. [..] He sees the most, if not all,
updates on the components. This means that you directly have some level of quality
check on the shared codebase.”

4.7.1.3 Process

Release-cycle Most products at unit A have a release-cycle of 4 releases per year. Four weeks
prior to a release the product is put on an acceptation server. The implementation partner then
is responsible for testing the release. If the release is accepted, the release is placed on the
production server for the customer.

Also, every day a snapshot of the code is placed on a test server. The test server is nor-
mally only used internally for the software developers, but when a product is immature and
under active development, the customer can have access to the test server for fast feedback and
demonstrations of the latest developments. When the first stable production release has been
done, customers usually no longer have access to the test servers. To still allow fast customer
feedback and demonstrations of the latest features, unit A has employed a simulation environ-
ment for their products. The reason for not allowing customers anymore on their test servers is
also that after the first stable production release the customer base is expected to grow. Also,
acquisition and implementation of customers then becomes the responsibility of the implementa-
tion party. Allowing customers who were not involved in the initial release to be closely involved
in the development process then does not make sense. Sometimes this still is done, but it all
depends on Service License Agreement (SLA) the parties signed. One interviewee on this topic:

“In general we can give everyone access to [the test environment]. When customers
are running the production release, they don’t have their own copy of their data on
the test server. So, if we want them to test something we only can do that by giving
them access to our [simulation environment].”

The downside of the 4 releases per year is that when issues are found on the acceptation server
during testing, patches have to be done directly on the acceptation server. The development
branch is already 2 months ahead of the acceptation version, so the codebase is frozen. The
same interviewee at unit A about this:

“After the release on the acceptation server is the moment the customer can actu-
ally start testing the product. This also means that findings have to be patched
directly on the acceptation environment. The code on this environment is frozen,
so changes can only be done regulated. For couplings with other systems this some-
times is difficult. From that moment you just cannot make large changes. Also,
this is the moment they start testing with their own data. For customers in the

60 Chapter 4. Interviews

production-phase who want custom couplings with their systems this approach can
be problematic.”

Life-cycle of products In unit A they have the case that two products have the same code-
base and also use COBRA-components. One of the two products, product A is relative mature
and stable. the other product, product B, is very young, serves a different domain but is for the
most part based on the same code. The difference according to one interviewee at unit A:

“When you are in the same life-cycle with all customers from a domain, you have
to maintain different dependencies. From the perspective of [product A], you can’t
just start patching. There has to be a RFC (Request for Change) which must be
approved. Then only a patch on the production server may be done. For [product
B] still a lot of customers are just going live, it is a fairly immature product so more
patches are required. But since both products use the same codebase, this requires
coordination among the two teams.”

Different domains When products depend on the same codebase, but are operational in
different domains, terminology difference between the domains may cause issues. In unit A
issues like naming table attributes or generic labels for forms were mentioned.

Internal collaboration At unit A the teams of product A and B meet once every 4 weeks to
discuss spanning issues between the two projects. For small issues having separate teams coming
together once a month may be insufficient, since their is a mental barrier to just walk over to
the other side to ask someone personally. It only works when in-between two meetings you can
have regular ’coffee’-moments to discuss small issues while waiting at the coffee machine. This is
one of the reasons they have an issue with an external implementation partner who is physically
located somewhere else. To mitigate this to some extend, unit A often has an database expert
from the implementation partner on-site.

Knowledge about components At unit A is was also said that there is not much knowledge
sharing about components. Components are created and used from the perspective of a single
project and forgotten after a while. One interviewee on this topic:

“Your own project uses [the component], but it is not like people are actively pro-
moting that they have created a new component. Not like: hey listen, we have a new
component here, go use it. It has to fit of course, but knowing about the existence
of certain components, that could be improved.”

The interviewee also has a suggestion as to how to achieve this:

“I want more knowledge sharing, not only of components, but also of applications.
[..] you should have demonstration session or knowledge sharing session, spanning
all projects. Showing, last month we did this and that, this is what it can do. If
you’d like to use it, you can find it in COBRA.”

Testing At unit A testing is done using unit tests, regression tests and Selenium tests. Both
interviewees said that they regarded the coverage of the unit tests very low. Selenium tests are
usually meant for front-end testing of interfaces to see if for example by clicking thus button if
some information is displayed on the screen at the correct place. unit A uses Selenium differently,

4.7. Interview results 61

they use it to automatically access all pages and follow all links and just see if no stack-traces
occur. The unit tests are seldomy made and if they are made, then only for a specific project.
An interviewee on test-cases:

“We have test cases in the projects, but rather only if the developer’s felt like to do
so, then maybe he wrote one.”

There are no corporate policies or standards as to what to unit test and what not. Some
core components have unit tests however, but not much. The selenium tests and unit tests are
run automatically when a daily snapshot release is build. Some functionality is tested using
regression tests, which basically means that a number of scenario’s are executed when releasing
a new version of the product.

Communication of changes An issue raised at unit A is that changes sometimes are not
communicated well. A specific problem here is that an issue on a shared component may already
be fixed or being fixed at one project, but another project is also starting on a fix. Or sometimes
it already may be solved by a team without communication this.

4.7.1.4 People

Pigheaded developers Developers can be pigheaded about solutions instead of pragmatic.
One interviewee about this on the context of sharing experiences with developers in knowledge
sharing sessions:

“[..] the discussion sometimes can linger on, we just have a couple of pig-headed
people here who think like: well, why don’t you just do this here. And they then
cannot see that such a solution may not be pragmatic.”

4.7.1.5 Technology

Interfaces and web-services At unit A a lot of custom interfaces are maintained with
systems from the IT landscape of customers. An interviewee at unit A about this:

“Every [customer], because they are rather large, they want their own custom-made
additions. these additions are often related with integration of the product with their
IT landscape. This often means a lot of small projects to implement small interfaces
with their local systems.”

Another interviewee at unit A about this:

“For product A we look at the client’s systems and create and maintain a lot of
interfaces with them. I do not favor this, what happens often is that one specific
web-service is build for one system of one school. Currently we have 30 customers.
And eventually I expect we will have around 50 customers, so with every school
having multiple systems you can calculate the number of interfaces. They all look
the same, but differ always on some points. So what happens when a new interface
is build, a previous similar looking one is copy-pasted and edited.”

For a new product they want to do things differently as the interviewee explains:

“For the new projects we have said, we develop one set of web-services and that is all
[customers] have at their disposal. Often they just want to extract information from
the system, so if we design our web-services such that everything can be extracted,
no customer-made interfaces are required.”

62 Chapter 4. Interviews

Libraries Large common libraries have high potential to break down projects. These libraries
are often external libraries who are not maintained in-house, but still can have regular new
versions releases. At unit A when a new version of such a library is released, the central
component contact usually initiates such updates. He then looks around at other projects to
see what the impact of the update will be and he just makes sure that the transition to the new
version goes well. It can happen that the impact beforehand is underestimated and that small
updates may escalate to large issues. There is no formal approach used here, the developers rely
on experience and skills. A wish for a new version of some library may also come from a project
it-self, but in all cases a convincing case has to be made as to what the new update will bring
to new all products. The number of fixes and new features in a new version may be marginal,
but often it is wise to stay up-to-date. Old, outdated libraries on which still a lot of products
depend are much more difficult to migrate to a new version than updating a more up-to-date
library. This for example happens at unit A when an old library is used in a production release
and a new version is used in the development environment. An interviewee on this topic:

“Updating a common library is a lot of work and making a selection of updates for a
patch is really hard. [..] when you get a [library X] update, you also have to update
[library Y]. [..] so, that is one of the down sides of this approach. I’d rather see that
we release more often, once per month, maybe more. But we can’t, because of our
SLA.”

Databases At unit A having different database technologies in production may require the
same query to be written twice in a different notation. The reason for having different database
technologies in place is a legacy issue, but something they still have to deal with. This sometimes
makes it difficult to create components, since different query notations need to be supported.

Access rights One of the issues of shared functionality is that you don’t want to specify
customer-specific access rights in the shared components them selves. At unit A they therefore
generalized the access rights of functionality and separated it from the components.

4.7.2 Summary unit A

4.7.2.1 Issues

In Table 4.2 we abstracted the issues from the interviews and related them to the risks from
section 3.4.

BTOPP-element Issue Associated risks
Business Different domains 1, 5

Who pays? -
Legal aspects -

Organization Cross-cutting concerns 15, 19
Responsible person 27
Outsourced service desk 2, 5
Gatekeeper 27

Process Release-cycle 2, 5, 18
Life-cycle of products 10
Different domains 19
Internal collaboration 16, 26, 27
Knowledge about components 16, 12
Testing 18, 19

4.7. Interview results 63

BTOPP-element Issue Associated risks
Communication of changes 26

People Pigheaded developers -
Technology Interfaces and web-services 4, 19

Libraries 19
Databases 19
Access rights 19

Table 4.2: Interview results: issues

4.7.2.2 Solutions or best practices

In Table 4.3 solutions or best practices are listed abstracted from the interviews.

BTOPP-element Solution/best practice Associated risks
Business - -
Organization - Dedicated person for shared components. 26

- Other units can have read-access on codebase,
but no commit rights.

13, 15, 17, 18, 19

- Two-layered bug-reporting structure. 2
- Third-party implementation partner. 2, 26
- Testing across products responsibility of im-
plementation partner.

-

- Separation of development, support and im-
plementation in different organizational parties
enforces separate responsibilities.

26

Process - Getting know-about of of new components or
features by looking over the shoulders of people
outside your project.

13

- End-user meetings for collective feedback. -
- Make branch of shared codebase before a re-
lease.

18

- Prevent from doing small patches on produc-
tion.

17, 18

- Prevent releasing new features or sub-sets of
features before a new ‘big’ release.

-

- In early development stage give customer ac-
cess to a test environment for fast feedback.

-

- Later in development stage give customer ac-
cess on simulation environment.

-

- Everyone can edit/add new COBRA-
components.

27

- Expert on-site of implementation partner for
fast feedback of technical details.

-

- Scheduled monthly meeting with developers
cross-projects.

13

People - COBRA is ‘of, by and for everyone’, creating
social self-regulating system.

26, 27

Technology - Selenium to test front-end of products. 10, 18, 19
- Unit tests for testing of core-web-services. 10, 18, 19

64 Chapter 4. Interviews

BTOPP-element Solution/best practice Associated risks
- COBRA with generic components for everyone
to use.

-

- Automatic nightly snapshot builds with auto-
mated running and reporting of unit tests and
selenium tests.

10, 18, 19

Table 4.3: Interview results: solutions or best practices

4.7.2.3 Desires

BTOPP-element Desire Associated risks
Business A clear policy on how to bill work on shared

code
25

Organization When working with other organizational units,
working in the same physical location is pre-
ferred

10, 11, 13, 15, 19

Process - More awareness that when large modifications
are done, this can have an impact besides your
own project scope

26

- More knowledge sharing sessions about both
components and applications

13, 17, 25

- More communication when someone is chang-
ing a shared component

26

People -
Technology More information of coming updates on external

components
19

Table 4.4: Interview results: desires

4.7.3 Unit B: issues

4.7.3.1 Business

Different domains Also in unit B there is a difference in the domains and how things work.
Unit B delivers two (but not only) products in the health care domain, one for health care
chains and one GP offices. For the latter a break down is much critical than for the first. One
interviewee about this:

“The GP office software is for emergency situations. The health care chain software
is, well, if it breaks down you make a note and call the help desk the next day. [..]
These customers are less faster angry. Which can make you a little slack sometimes.”

Volatile market When operating in a volatile market, making extensive test cases and in-
vesting in components is very difficult to justify financially. One interviewee explains:

“You often have the feeling that we can spent 3 months to make everything perfect
but if then only one customer uses the function then a total refactor may be required
because some new laws or regulations.”

4.7. Interview results 65

4.7.3.2 Organization

Management pressure A down-side of shared components in the same domain is that the
effort to utilize some component in a product can be underestimated. One interviewee of unit
B on this:

“For example, our director comes from another unit and says: I have seen they do
this and that, we can have roughly the same by tomorrow. [..] Yes, you can if you
have all the component around it also and use them the same way as they do, which
we don’t. ”

He therefore argues about more a focus on modular units of functionality in such a way that
these units really can be moved around. The reason for this is also commercial:

“If we would focus more on modules, more on cohesion of components which also have
a front-end implementation than [utilizing] them would be a lot easier. Components
[instead of these modules] are really born from a technical perspective. Developers
think in components, customers think in modules.”

4.7.3.3 Responsible person

One of the issues raised is that it is difficult to say exactly who is responsible for what component.
One interviewee on this:

“I can’t pinpoint who’s responsible for what component, this requires close knowledge
of what is happening to the components.”

This indicates that knowing who to go to for some issue regarding a component starts with
knowing what components are under edit and from what context. One of the solutions could be
to assign one person to be the gatekeeper of the codebase, but this might not comprehensible
as the same interviewee indicates:

“We have too many components to really have a single person responsible for all
components.”

Another interviewee on this:

“[One responsible person] may give you a lot of overhead and planning hassle, for
example if the responsible person of some component is very busy with his own
project, so then he should schedule some time for sometimes very some estimations.”

Another interviewee on component-based developing:

“Within a project-based structure, working dedicated on components is impossible.
I can’t say to my boss, hey I’m going to spend 3 weeks on that component. [..] We
sometimes have the discussion about making people responsible for some component,
but often a deadline is approaching and such activities go to the background, because
my project has to be finished so I dont have time to make my components fancier.”

66 Chapter 4. Interviews

Justifying updates When in a situation like unit B which has a product with for example 7
propositions, putting updates on the table is hard to justify for customers. Refactoring activities
required to enable the use of a newer library version which is not directly related to a new feature
can be seen as either an ‘investment’ in the platform or ‘innovation’ or ‘maintenance’ activities.
Topicus is a company who really wants to stay competitive, lean and transparent. Showing
where money is spent on is very important. But Topicus also wants to be innovative, trying out
new things, being bold. As one interviewee put it:

“The big question is, what are the benefits for the customer. Not so much probably.
But I think [the update] is really cool.”

He also describes he in his role of lead architect tries to instruct the developers:

“What we try to learn our developers is: if the update is interesting then you should
be able to explain to your product manager why. For example, because in the last
period there were 10 bug reports on this topic. [..] I really have a heart for the
technical side, but I need to be able to justify it.”

4.7.3.4 Process

Knowledge about components One interviewee indicated that knowing about component
usage is not trival:

“As a product owner, I dont have the knowledge of who is using what component.
For the development teams this is something they should know. In general they
know who is actively using components, because you see the commits coming along.
But being 100 percent sure people are the only one using some component, no.”

Incorporating components If another team has some component available for reuse and
you want to incorporate this component in your own project, you have to make an estimation
regarding the expected amount of work and if the functionality you require can be met by the
components. One interviewee on this:

“We expected that integrating the component was easy, now we have discovered that
we still have to develop a lot on an application specific level.”

Refactoring There is a strong call-out for more refactoring, but the bottom-line is that in
practice little refactoring is done. Refactoring can have the purpose of cleaning-up some part of
the codebase, or to abstract some functionality and turn it into a generic component. The latter
often causes the first to happen, but not the other way around. To have time and resources
allocated for making a component tidy and generic, it has to have a direct purpose for some
project. Outside of project’s scope, the pressure is just to high to spent time on refactoring.
Searching for opportunities for reuse is a spontaneous activity.

Justifying update Another aspect of justifying updates is that internally you must be able to
explain why a component for something is required. For functionality regarding some standard
this is much easier than for other kinds of functionality:

“The thing where there is a standard for everyone agrees on, that has to be put in
a component right away.”

4.7. Interview results 67

The kind of functionality where this accounts for mostly are standards for communication.
Sometimes the justification for some modification is very legit, but still can cause problems:

“[Product A has an interface using [component X]. [Product B] also has [component
X], but we needed just a little more interfaces some more abstraction, and that was
not always communicated as well as it could have been.”

Cross-crossing concerns In unit B they work a lot with interfaces. This basically means
that between users who use share some components the responsibility starts and ends by means
of an interface, serving as a design contract.

“For some time we have been working with interfaces, so we have components which
work with interfaces. This means that regardless of the person behind the interface,
as long as it delivers this and that functionality, I don’t care about the implementa-
tion.”

But this approach also has a down-side:

“This means a lot of hassle, you always carefully have to think if you modify some-
thing, who uses this interface, what else may change. Sometimes we even discover
that two different interfaces have the same implementation”

Something what makes finding out the impact of a change even more harder are bugs which
are used as a features by other teams:

“What you also see very often is that someone communicates that a bug has been
fixed and that another group calls out saying, hey, we made use of that, that ’bug’
actually helped us.”

Of course this is a very specific situation, but it happen so now and then at unit B that new
features affect shared components and other products. An interviewee about updating some
components shared with another business unit:

“Problems with not communicating become bigger if you dont say in advance hey
this and that is changed. [..] For the form component we had the situation that
[Unit C] suddenly did an update. We used that components, they didnt know.”

Another interviewee on this:

“Very speaking example, I even dont know the exact situation if we mailed or they
did. I think it was us, there was no more response and then suddenly something
breaks down. Then you have an escalation, which happens sometimes. and you find
yourself sitting with the project leaders, shit, how are we solving this.”

And yet another:

“When updating code from each other, sometimes the other is not aware of the
update and the impact. So you need to communicate with each other.”

Testing Testing at unit B is done merely only on end-product functionality, so shared com-
ponents don’t have dedicated tests.

“We rarely test on components. We always test the end-resulting functionality for
our customers.”

68 Chapter 4. Interviews

Vision of components For a large set of components which can independently be put into
action, it is difficult to maintain a coherent vision. One person at unit B about this:

“[..] you notice that it is difficult to keep 30 marbles in a wheelbarrow together.”

There is little vision of the components, where does it go to, why is it here. An interviewee
on this topic:

“[..] that there is no thinking about, what is the general direction for this component,
is it still relevant, is it logical to put this functionality in this component, shouldn’t
we have made two separate components from this components long ago?”

Another interviewee at unit B on this:

“Biggest problem is a difference in vision of what the goal is of some change. But
also the impact on somebody elses project. Communication is vital here. ”

4.7.3.5 People

Interests In order to have innovation, in order to keep your platform fresh and evolving you
need people who outside their job have an interest in the technology. In unit B most of the
developer are, for Topicus, ‘old’, meaning that they are aged around 30. The result is that most
developers are settling, starting a family and having less time and interest in spending additional
time at home at their computer. One interviewee about this:

“We dont have the nerds, the gurus here, not many people who hobby at home and
look for latest updates.”

Mental barrier There seem to be a mental barrier to communicate outside of the comfort
zone of, not only developers, but also architects and analysts. In unit B, teams are sitting on
opposite sides of the building, but in an open space with no doors. Still, staying at your desk and
fixing it yourself is favored over walking to the other guy to ask something personally. Unit B
works together with unit C on some components, hence sometimes communication is inevitable.
One interviewee about this collaboration:

“Fixing it yourself is often done without communicating, because it is just a little
faster. Even of the other guy is just 5 minutes walking”

Another interviewee on this:

“Problems internally can be easy solved by walking to the other side. But if you
need code from each other, you cant just start editing it. There is the risk of doing
it yourself.”

Domain knowledge When not knowing what issues customers encounter every day, how can
make the right functional decisions?

“There is a lack of understanding about the domain. They have the freedom, but
they lack confidence with respect to functional modifications.”

4.7. Interview results 69

4.7.3.6 Technology

Component configuration For a SaaS delivery model flexible component configuration is
important since it allows product-specific behavior without the need of implementing lots of
product-specific components. However, the down-side of this is that it is hard for administrators
to maintain, since the number of configuration options can explode. One interviewee on this
topic:

“Configuration becomes more and more an issue to be able to flexible deploy compo-
nents. [..] Which means you want flexible configuration. but if you have 5 parame-
ters and an average project uses 20-25 shared components, it just is not manageable.
Also, it makes it really hard to explain to the administrators. It really is a wish from
a developers perspective, for administrators it can be a hell.”

Communication standards

“For communication standards, different interpretations of the standard are very
maintenance sensible. Updates on the data happen very often and are, of course,
never communicate, leaving us to discover such changes by ourselves.”

Splitting components In an environment where time-pressure is high, splitting components
with the intention to merge them back later can easily grow into two very deviated components.

Email It was mentioned multiple time that email is a bad communication media for commu-
nication about changes on shared components. The main reason is that in email often a lot of
information is hidden and you do not get instantaneously get feedback from your peers. Also,
email is a very discriminating medium, since people are explicitly included and excluded. How
do you know and decide who is interest in knowing about some update? And even if you would
know, what are you communicating? Do you peers have any saying in the update?

“An email about an update is sent onto a mailing list for developers. It reaches
everyone, but therefore it may be not specific enough for people to act.”

4.7.4 Unit B: solutions

4.7.4.1 Business

Transparency For unit B, transparency about license expenditure is important. All cus-
tomers pay a license fee for the products, which means that when money is spent on new
features, all parties must agree with the additions to some extend. Sometimes, a feature request
comes from a particular client. For unit B it is then the task to put this request on the table and
get the other customer enthusiastic for this feature. The vision of unit B is that the products
will always stay service oriented and as little as possible custom additions for clients will be
done. One interviewee on this:

“We always announce what we have on our release planning, so if they have some
issues with it, they can give input. But of course, it has to fit in our vision. [..]
It happens that a customer wants a custom interface with some system, fine you
pay for it, but we also start looking if there are other clients who want the same
functionality. [..] Strategically this is smart since we make clear that we don’t just
start spending license money on custom features.”

70 Chapter 4. Interviews

On the contents of the license another interview says:

“In our license we say that we have a financial part for maintenance work, for example
when a new version of a framework comes out and we want to go along with this new
functionality. [..] Also, changes in law and regulations can ripple through which may
force us to do some additional work [..] From the license they pay us they have the
right for 2 major releases each year with a few weeks of work. [..] For new features
for one customer, we often just put it in our application, so that it becomes available
for other clients as well.”

Future vision At unit B, a road-map for their products is maintained with the scope of 2
years. The road-map broadly states the vision of the products. The road-map is a lively asset,
meaning that it is adapted to recent events and propositions, but more importantly, it is shared
with customers.

Benefits

“My experience is that we until now, which has always been the direction we want
to be in, we mainly benefit from the components. [..] We mainly see the benefits
which are created because there has been a project which said Ill invest in this”

Another interviewee on this:

“I think the time investment required to make a component good reusable outweighs
the benefits. Just fixing it only for your project seems faster now, saves time on the
short run, but it does not in the long run. [..] Some domain generic component really
won’t change much over the years, like persondata. Customers just pay a certain
amount of money and in return want a fixed set of functionality. They don’t care if
you put that in 10 components and merge it with your project or make it available
for other applications. ”

4.7.4.2 Organization

Other units Unit B works closely works together with unit C on some components. The two
units both have read and write access on parts of each other codebases.

Gatekeeper Every product-line has its own main-developer who decides what frameworks are
going to be used. One of the interviewees described himself as a central authority on the main
architecture of all applications:

“I’m a central person who actually sees both sides of the story and sees hey, we can
reuse something here”

Cost sharing As mentioned before at unit A, it is difficult to determine who pays for the effort
of working on shared components. Unit B regularly has strategic and operational meetings with
customers to openly discuss the directions of platform. When some new feature pops up, it is
put on the table before the customers. If there is enough support by all customers, the feature
gets implemented and the costs are shared.

4.7. Interview results 71

4.7.4.3 Process

Incorporating components How components are used to build applications is something
which evolves over time. As one interviewee puts it:

“For [our new project] we have 20 balls, before we made 5 applications with 4 balls,
now we make 1 application with 20 balls.”

But, as a number of interviewees point out, the negative side of reuse always overshadows
the positive side. One interviewee on this topic:

“It it not always a nice fit. But often enough a fit which is usable and workable and,
more importantly, something you don’t have to build yourself.”

And another interviewee:

“Sometimes reuse can be disappointing. When refactoring something, making it
available for reuse, you must be able to abstract the functionality such that you are
left with a piece of software which actually is of practical use. what happens is that
it turns into something too abstract to use.”

The choice to start using components or to reuse existing pieces of technology can both be
because of hard requirements or a design principle. However, in unit B there is not really a vision
on how to use components. The initiative always has to come the perspective and dedication of
a project to make something available for other projects as well.

“If you only have to look from the perspective of your own project, the discussion
becomes a lot easier. You don’t have any overhead, you don’t have to take into
account the opinion of others.”

The discussion becomes easier when there is a clear mutual benefit for the teams to invest
in a reusable component.

“Between teams or units interfaces with the outside world are good starting points
for spotting reuse opportunities. ”

Developing for reuse, without a clear up-front benefit is also pointed out by yet another
developer.

“When looking back, things are always decided with the knowledge of then. But the
notion that in the end it is always financed from the perspective of a project. [..]
Developing on a component is always from the perspective of a project. Component
dedicated development often does not have a direct result. In general we dont do
things that do not have a direct result.”

Yet another interviewee on this:

“Afterwards making a component available for reuse has the downside that the orig-
inal application still very much needs it.”

72 Chapter 4. Interviews

Emails We stated earlier that email can be a bad way of communicating about updates.
However, they can also be very useful. some quote on email is used in unit B:

“Mostly emails are just send crisscross about who is working on what. Most easy
way to discover who is using something is just to break it. ”

“Emails are only send for large updates”

“Emails are probing: where can I find framework X: ah on this and this branch.”

“When changing some component, we put it on the mailing-list.”

“Sending an email often is sufficient, sometimes you discover that months ago some-
one sent an email regarding an issue, but then an email has been sent and you can
you refer to it.”

“Often such emails are not being send at all. Then some of your dependencies is
being updated and suddenly your application is broken”

“Internal in Topicus warning someone about a pending update is not hard. But with
unit C sometimes a mail conversation of over 10 mails can sprout, which is not really
efficient.”

Development cycle While every team at unit B can follow its own course, there are some
similarities between the teams with respect to the development process. First of all, when adding
some new functionality a scope definition is made of 2 pages maximum in size. Based on this
scope definition, which contains the basic outlines for some piece of work with the scope of
approximately 2 weeks, sometimes a functional specification is made. One interviewee on this:

“Building from scope definitions instead of functional designs allows you to think
outside the box of your project. A functional design is always product specific.”

Another interviewee on design documents:

“It is a bit the culture of Topicus, we dont do it the formal way. You dont have to
deliver that technical design and get an approval form your boss, thats not how we
do things. Maybe we went a little bit too far with that.”

In general, no technical designs are made. While some interviewees mention the added
value of them, they regard the activity as too time-consuming and already outdated as the
development starts. Also, in contrast with unit A, no snapshot releases are done of components.
Unit B works with strict versioning of its components.

Every week they have a scheduled meeting with all developers of the unit. They spent an
hour or something looking at results and messages of the code quality tool Sonar.

User feedback Unit B has regularly strategic and operational meetings with customers to
discuss the planning and directions of the products. Release planning is shared with customers.

“If they have suggestions, they can say so, but it has to stay in the vision we have
of the product. [..] Customer comes with feature request, we put it on front of the
others.”

4.7. Interview results 73

Also customers can submit a RFC (Request for Change) in a tool called Clienttell. Protopics
has a service-desk for these kind of things. There a person judges if something is a bug or a
feature.

At unit B they use a tool called UserEcho to get direct feedback from end-users. This tool is a
small web-form in the application where end-users can submit suggestions and report problems.
For these kind of issues they stimulate developers to spend 2 hours each day to pick up small
items and fix them.

Responsibility When sharing code, the one working on the issue and updating some com-
ponent should do the modifications and have the responsibility. Consumers of the component
then can work on their own branch. Or, if required, consumers just make their own branch in
the repository and work from there.

Other units Large components-libraries with common functionality are shared between two
units B and unit C. Collaboration on components is done via interfaces. Implementation is their
concern, as long as the interface contract is fulfilled. This requires actively seeking contact with
people using and working on other components when modifications are done.

“You can’t test for modifications on a generic component for all applications. This
will require you to test for all products on the platform. Without unit tests, you
can’t just set up 5 different products and test it yourself.”

Release cycle Unit B currently follow a cycle of releasing a new version of an application
every 1-2 months. They want to work towards a slightly longer release cycle of 4 releases per
year, as unit A. The products are releases in 3 steps, each with their own lead time. Internally,
the latest version is released on a test server in the form of daily snapshot. The next step is
to release to an accept environment, where customers can have test the latest version. At a
scheduled moment, the version of the accept environment is brought live in production.

Code quality time Every Friday at unit C, they have one hour scheduled to do some main-
tenance on their codebase. This hour is meant to be used as some quality time for the codebase.

4.7.4.4 People

Responsibility At unit B employees are relative more older, senior than the average of Top-
icus. According to one interviewee, this means you can rely on developers to take their own
responsibilities:

“I expect people to take their responsibility when changing some component, without
having a policy as how to deal with such an update. I trust them to do the correct
things.”

Domain knowledge For developers to have some affinity with the domain and issues end-
users experience, unit B is sending out employees to customers:

“I try to give employees affinity with the domain, but we are not there yet. I want
them to know what is going on in the domain, what do people expect, how do they
want to be supported. [..] Starting next year, everyone has an on-site experience day
at one of our customers. With the goal to come up with some kind of innovation.”

74 Chapter 4. Interviews

4.7.4.5 Technology

Web-services Communication components are not that volatile, only if a real new WSDL
version is required. So, putting common web-services in components is a good best practice,
since they require relative few maintenance. The real problems happen with interpretation of
data, which mostly is product specific.

Default behavior Some simple tip for default behavior of making some functionality generic
available:

“If you edit code other people are using, making it so that by default nothing changes
is a safe best practice.”

4.7.4.6 Testing

At unit B there are not much unit tests. There are some unit tests for database transactions, but
unit B mostly relies on regression testing and whatever encountered during development. They
are planning to use Selenium tests for the front-end, but this only works for products which
are not much actively under development since Selenium tests are a lot of work to maintain.
There is no testing on web-services, but there is some testing on data communication since third
parties may suddenly change their interpretation of a standard or protocol.

Another employee states that components usually only are tested from the perspective from
projects. This means in practice that product-specific functionality is tested, but components
are only tested implicitly. Sometimes, for example a communication components, have dedicated
tests, but this is rare. Yet another employee states the following regarding testing:

“My experience is that when a unit test fails, people directly act upon it so it really
has a function. But my experience is also that the product quality is improving
constantly, without us really needing to invest in it. [..] For some errors it is ok that
they exist. You should only judge the impact of errors which actually occur. An
occasional incident which requires a few extra days to fix then is acceptable.”

Regarding testing frameworks:

“If all teams use different testing frameworks, you cant use their tests because they
wont run in your environment ”

Regarding testing on shared components:

“You cant test for modifications on a generic component for all applications. This
will require you to test for all products on the platform. Without unit tests, you
cant just set up 5 different products and test it yourself.”

4.7.5 Summary unit B

Below a summary of the issues, best practices and desires from unit B.

4.7.5.1 Issues

BTOPP-element Issue Associated risks
Business Different domains 14, 17, 18

Volatile market -

4.7. Interview results 75

BTOPP-element Issue Associated risks
Organization Management pressure 7, 5

Justifying updates 13, 16
Responsible person 26, 27

Process Knowledge about components 13, 18, 19, 25
Incorporating components 6, 7, 25
Refactoring 17, 25
Justifying updates 13, 16
Cross-cutting concerns 19, 15
Testing 10, 18, 19
Vision of components 12, 13, 14

People Interests -
Mental barrier 26
Domain knowledge -

Technology Component configuration 20, 22
Communication standards 19
Splitting components 15
Email 26

Table 4.5: Interview results: issues unit B

4.7.5.2 Solutions or best practices

BTOPP-element Solution/best practice Associated risks
Business Transparency 2, 8, 18

Future vision 13, 14
Benefits 6, 25

Organization Other units 13, 15, 17, 18, 19
Gatekeeper 13, 15, 26, 28
Cost sharing 8, 18

Process Incorporating components 6, 7, 25
Emails 26
Development cycle 12, 13, 14
User feedback 2, 8, 18
Responsibility -
Other units -
Product planning -
Release cycle -
Code quality time -

People Responsibility 28
Technology Web-services

Default behavior
Testing 10, 18, 19

Table 4.6: Interview results: solutions or best practices unit B

4.7.5.3 Desires

76 Chapter 4. Interviews

BTOPP-element Desire Associated risks
Business A general vision as to how to structure and de-

sign packages.
17, 25

Organization - Clearity about responsibilities 10, 13, 17, 26
- Physically located close to other users of your
code

10, 11, 13, 15, 26

- Read and write-access on the repositories for
everyone, but with adequate quality control

13, 15, 17, 18, 19

- A contact person for certain components 26, 27, 28
Process - Actively spot platform opportunities 25

- More refactoring on components 20, 25
- More knowledge sharing on technical level 13, 25
- More communication about updates 10, 17, 19, 25
- More unit tests and more knowledge as to how
to structure and approach testing

19

- Knowing about upcoming changes more in ad-
vance

10, 17, 19, 25

People More curiosity for new or updated technologies -
Technology Focus more on modular units of functionality

instead of dozens of components
25

Table 4.7: Interview results: desires unit B

4.7.6 Unit C

4.7.6.1 Business

Scope of the work For one product a contract is signed for 3 months. A technical design
then is made and broken down into smaller pieces of work. The developers make the technical
designs, the functional design are made by analysts.

Product vision The interviewee states that customers often don’t have an elaborated vi-
sion for their products, so what happens is that Unit C develops a vision based on the basic
requirements they get from their customers. The interviewee on this:

“In the end customers don’t supply us with that much feedback, because customers
don’t really know what they want. They can come up with some requirements,
but we fill in the blanks. But what you want to prevent is that a) they think
they get functionality forced down their throat and b) that they are thinking to get
functionality which integrates poorly because we made it so generic. [..] We work
out the larger picture, the vision.”

Breathing space and resource allocation In order to be able to conduct some refactoring
for reuse, investing in designing for reuse in advance or other reuse activities, there has to be
room in the planning, resources must be allocated.

“I think that some breathing space has to be created to realize reuse activities.
Because of us having a lot of deadlines now, we don’t really have the time to tackle
these things.”

4.7. Interview results 77

“In the end, the planning appears to be ill-estimated. You always need additional
time to tackle unforeseen issues. You end up spending less time on this then actually
should be the case.”

So, since the scope of the work is rather short, there are always deadlines. If you then have
the intention to do some additional work to make components available for others, you only
increase your technical debt.

“This is always the dilemma with projects and components. You always start on
something for a component and at one moment a deadline comes up and you end up
not finishing up the work you wanted to do for the component.”

Just allocating more resources is not that simple. You impact other teams in their planning
and you need support from the upper management, which is not easy to get if the direct benefit
is clearly there.

“Big projects require the approach of an internal project. Often now, somebody
needs something for a component and start building it himself. But in an internal
project there are more people involved whom benefit from it. [..] but such projects
do not happen, because of the deadlines and the fact that in the past this always have
been done from the separate product teams. [..] The directors of Care, JeugdZorg
and Protopics should come together and say, OK, lets free up 2 weeks to tackle this
components across the projects.”

“I have functional demands, I want a stable and fast product. But developers say, yes
but with the components we have now we can’t do that, so we need to rewrite. Then
I say I want some additional functionality. So, then it has to become an internal
project where we have to involve people from other teams, resulting in pressure on
other deadlines. That’s what happens now. [..] What you need is reserving resources
in advance for these kind of activities.”

4.7.6.2 Organization

Of interest At unit C, knowledge about components is concentrated around a few people.
This is simply because not everyone is interested in components; they don’t need it for their job.

“Not everyone is required to work with all other component. A component is used
intensively by a distinct group of developers. ”

Responsible person When developing on a shared codebase, you often want to consult with
peers for advise on some modification. However, how do you know who to go to? Does that
person even have time? The most obvious solution then would be to have a single person
responsible for one or more component. As the interviewee puts it:

“With bigger components I’d like to have a leader of the component. A component
manager who keeps track of who is working on what component. If you then are
updating something you should first come to him and discuss what the impact and
risks are.”

78 Chapter 4. Interviews

Sharing between units The interviewee explains how in practice sharing of code actually
works between business units. From the outside it seems units share code, but in reality the
code may be similar, but it is located and developed on different locations and never merged
together.

“I don’t know exactly what units use our code, but [another unit] uses the form
component, [another unit] also. And I think they probably also use the patient
record component. The communication component is I think also used by [another
unit]. [..] But this is not strange, since they are all spin-offs from the same unit,
so they have a large overlap in codebase. [..] For the form component they all have
their own branch, so they work on their version. [..] They never pull in updates from
us.”

To tackle the responsibility problem, he argues for a component core-team:

“About the whole component story, I don’t know how it is in the world of open-source,
but there you often have a core group who oversees the development contributions
made by others. I think that is a very interesting structure for the components. A
core team and everyone can contribute. The core team than decides what comes in
the shared codebase.”

4.7.6.3 Process

Development process The interviewee on the development approach at unit C:

“The development approach is not really that structured. What I try to aim at is to
start with an analysis phase with a prototype, then create a design and then start
developing. You then break down the work into smaller pieces, pick a piece, create
a functional design for it and continue.”

Shared stakes Unit C shares a number of components with unit B. Both units are depending
on these components, hence they have a mutual interest in keeping them stable. The interviewee
on this:

“For [some project] we have in our unit, together with unit B, the patient record
components. Also we have components like patients, employees, organization struc-
ture and the communication module. And of course the form component, which unit
B is going to use. And we are going to add a new process component.”

Email Communication about updates is done via email or walking around. But, as the inter-
viewee point out, it is the responsibility of the developers to decide what to communicate and
to whom:

“Differs per developer if an email is send regarding an update. I leave that to them.
The developer should judge the situation, he should look up who has been modifying
the code and send those persons and email. Or he could go to them and ask who is
using the component and to what extend it can be modified.”

4.7. Interview results 79

Own responsibility As with the communication of updates, initiating some refactoring or
initiating up-front development for reuse relies on bottom-up initiatives:

“For refactoring you just need to make time. I often say to my developers, if some-
thing needs refactoring, just do it.”

And also with respect to writing unit tests, the judgment call lays with the developers:

“I expect from a developer that they write a unit test for everything they build. Yes
as much as possible, I don’t think it happens that way, but as much as possible. And
of course we do a lot of functional testing using regression testing.”

4.7.6.4 People

No interview result here for this unit.

4.7.6.5 Technology

Testing Testing is done by automated unit tests which are automatically invoked by the build
server. Besides unit tests, prior to a release regression testing is done following a test script.
Some web-services are also tested using unit tests.

4.7.7 Summary unit C

4.7.7.1 Issues

BTOPP-element Issue Associated risks
Business - No breathing room for reuse activities 3, 6, 7, 25
Organization -
Process - Plannings are ill-estimated 3, 6

- Effort of incorporating some component diffi-
cult to estimate

25

- When sharing code across units, code is often
branched, but never merged back

15, 16

People Components are not of interest for everyone 12, 13
Technology -

Table 4.8: Interview results: issues unit C

4.7.7.2 Solutions

BTOPP-element Solution/best practice Associated risks
Business - Develop your own product vision 8, 14, 18
Organization
Process - When sharing code across units, work on your

own branch
17, 18

- With respect to communicating changes and
writing unit tests for components, that it the
responsibility of the developers involved

26

80 Chapter 4. Interviews

BTOPP-element Solution/best practice Associated risks
- Components and web-services tested using unit
tests and regression tests

19

People - -
Technology - -

Table 4.9: Interview results: solutions unit C

4.7.7.3 Desires

BTOPP-element Desire Associated risks
Business - Support from the top for resource allocation

for reuse activities
6, 7, 8

Organization - Component-core team 26, 27, 10, 13, 17,
19

- Component leaders 26, 27, 28
Process - -
People - -
Technology - -

Table 4.10: Interview results: desires unit C

§ 4.8 Conclusion

In this chapter we give analyzed issues, solutions/best practices and desires from 3 business units
at Topicus with respect to working on a shared codebase and dealing with changing requirements.
The results as presented in this chapter answers the second research question of this study: What
approaches or techniques can be used to mitigate risks in an agile shared codebase environment
better?. In the next chapters we will use these results to find suitable approaches to implement
at FinCare.

- Chapter 5 -

Casestudy: risks at FinCare

§ 5.1 Introduction

At this moment we have identified the risks of a shared codebase environment with respect to
changing requirements (chapter 3) and we have learned how other units at Topicus work with
a shared codebase and what problems they encounter (chapter 4). The next step is to identify
what risks are relevant for FinCare, which is the third research question: What are the relevant
risks for FinCare?. In this chapter we answer this question by doing the following:

1. Conduct a bottom-up analysis of the codebase. During the interviews at Topicus we
learned that assessing the complexity and nature of the codebase based just on the tacit
knowledge of employees from interviews is very difficult. In order to draw conclusions on a
technical level, a more detailed analysis is required. The results can be found in section 5.2.

2. Make a short list of the most relevant risks. This is done based on the knowledge gained
from the bottom-up codebase analysis, the experience gained during our period at FinCare
the last months and informal talks with employees at FinCare and based on feedback talks
with the supervisors of this study. The result can be found in section 5.3.

§ 5.2 Bottom-up codebase analysis

To find out what risks, issues and approaches are relevant for FinCare we conducted a case study
on the codebase of FinCare with the FinCareClaim SaaS project as a focal point. In this chapter
we discuss the organization, goals and shared codebase underlying this project. An introduction
of the case can be found in section 1.3.

5.2.1 FinCare Products

FinCare currently has 4 main projects: CarecoSoft Lite, FinCareAnalysis, FinCareCalc and
FinCareClaim. the first 3 are products, the last one is a platform consisting of 4 products.

FinCareAnalysis FinCareAnalysis is an analysis product for health care providers to analyze
claims and their relation with the conducted work at a health care facility in detail. The
application gives insight in the complex structure of treatments and the distribution of the
financial claims over the internal organization of the health care provider.

81

82 Chapter 5. Casestudy: risks at FinCare

FinCareCalc FinCareCalc is a back-office application for health care insurance providers to
process health care claims. The application checks incoming claims for insurance conditions and
automatic auditing procedures.

FinCareClaim FinCareClaim is a SaaS platform for health care providers. The platform
supports the claim process for health care providers by means of a highly customizable process
which supports automatic checks and controls, status overviews and audit reports. The platform
currently knows 4 products: FinCareAlpha, MedicoSoft, CarecoSoft and FinCareClaim.

CarecoSoft Lite CarecoSoft Lite is a web-portal for general practitioners (GP’s) which in
essence does the same as CarecoSoft, but CarecoSoft Lite is only a web-interface, the back-office
is the responsibility of a third-party.

5.2.2 Teams and responsibilities

At FinCare there are 22 employees. Of these 22 employees, there is 1 director, 1 HR/PR em-
ployee, 2 GUI-designers, 1 overall senior developer and 1 BI-engineer. The remaining 16 employ-
ees can roughly be distributed as follows: FinCareAnalysis (4), FinCareCalc (2), FinCareClaim
(7), CarecoSoft Lite (3). Every team has a team leader, but the FinCareClaim platform has
two main responsible persons, one for MedicoSoft and FinCareClaim, one for FinCareAlpha
and CarecoSoft. However, in the FinCareClaim SaaS project the roles are not that strict, the
work is distributed depending on who has time and the expertise for a particular aspect. The
GUI-designers and BI-engineer move from team to team depending on where they are needed.
The senior developer can be seen as the gatekeeper of the central codebase. He is responsible for
maintaining the central packages, he helps in complicated implementation issues and in general
is a contact point for technical questions from the developers. The roles in the teams are also
not that strict, team leaders do customer acquisitions and develop code, analysts can make work
break downs give demo’s and write code as well. The roles are flexible, everyone brings in their
own expertise and has the freedom to explore in other areas.

5.2.3 Development process

Topicus and also FinCare develop using an development style based on agile practices. FinCare
mostly works with fixed-price contracts. In such a contract a number of maximal billable hours
for a particular type of work is signed up-front and billed afterward. These items may include
for example ‘innovation’, ‘maintenance’, ‘support’, ‘implementation costs’ or ‘development’. De-
pending on the customer and the life-cycle of the product the items may differ. For example,
for CarecoSoft Lite there is little real development and more maintenance work. For FinCar-
eAnalysis and FinCareClaim SaaS this is different, here FinCare is making an investment in
developing the product and releasing it to customers via tailored priced contracts. Depending
on the wishes of the individual customers, addition implementation effort is done and negotiated
for each individual contract.

This means that for new features requirements are specified in financial terms up-front
and signed by both parties. In traditional agile development methodologies, requirements are
iteratively specified in close cooperation between customer and software supplier. While close
customer contact is something which FinCare values, iterative specification of requirements is
not the basis and more done in the longer run in terms of months rather than weeks. During
development small issues or requests may be included, but the feature planning stays mostly
untouched.

5.2. Bottom-up codebase analysis 83

At FinCare no agile practice is followed by the book, rather a number of agile practices are
incorporated. Scrum-boards are utilized, but no planning poker. Releases are planned using
sprints, but only for production releases, not for internal development. A daily stand-up meeting
is not required, because in the teams everyone has a good idea of what needs to be done. No item
back-log with user stories is used, but rather a feature list with rough functional specifications.
So Scrum is not really used, but neither is development done ad-hoc. It sort of follows it course
and team leaders can fill in the blanks as they see fit.

Bug reporting and planning is done in Mantis and Redmine. Teams usually have a weekly
meeting to make a work break-down for the coming period and discuss the previous period.
Releases are done in terms of 4-6 weeks. Functional designs are only made for the larger features,
but only if there seems to be a necessity to do so. Technical designs are very sporadically made.
Having a release-cycle of test to accept to live is common, but the scope and timing of the
releases may differ. After a release sometimes a demo is given, but not always. Feedback from
the customers always comes after a production release, sometimes after an acceptation release,
but it depends of the feedback given face-to-face or via for example phone or email.

5.2.4 Architecture of FinCareClaim

We have drawn a high-level architecture of the FinCareClaim platform in Von-Neumann notation
which can be found in Figure 5.1. As said before the FinCareClaim platform consists of
4 applications: FinCareClaim, FinCareAlpha, CarecoSoft and MedicoSoft. Each application
consists of 3 main parts in a MVC (Model-View-Controller) layout. Each application has a
webapplication, a service and a datamodel. Through the webapplication customers can access
dataviews, download invoices and audit reports and initiate a number of processes. In the
architecture this are the basic functions as modeled at the web application layer.

In the figure a number of modules are drawn: GrouperModule, FactuurModule, Certifi-
catenModule, AccessControlModule, VecozoModule, COVModule, VektisModule, ExportMod-
ule, ZorgeenhedenModule. It was indicated that these modules are shared among all applica-
tions. Some support communication with external systems as indicated by arrows drawn outside
the FinCareClaim-platform scope.

In the center of the diagram a control process box is drawn which depicts the core functional-
ity of the FinCareClaim platform. The core business of the FinCareClaim platform is to process
health care claims. These claims can come in from multiple sources and trigger a process. A
process is a sequence of events which are chained in a tree-like structure, since some event may
invoke different branches in the process. Modeling a process is done in the WorkflowManager
where using events as building blocks some process is created. Events may also be triggers which
‘listen’ for some condition and are triggered when the condition is met.

Events may be anything, for example data conversion, control procedures, generating reports.
It all depends on the type of declaration, the customer or the date. The events are generic little
applications written in plain C#.NET.

The last block in the diagram is the Queue. The queue is used when for example some event
is invoked to generate a batch of invoices, which may be triggered from the web application.

5.2.5 Technical architecture

All applications are written in C#.NET. The source code of the applications is managed by
Mercurial subversion control. The repository top-level is illustrated in Table 5.1. A .NET
application is called a compiled solution and a solution is a collection of assemblies or .NET
projects. Every assembly can include packages, which can be compiled solutions outside the
scope of the current solution or external packages and references to other assemblies in the same

84 Chapter 5. Casestudy: risks at FinCare

Control processControl process

Generate
overview

page

Generate
overview

page

Configure
workflow

Configure
workflow

Download
report

Download
report

VECOZOVECOZO

Customer’s ISCustomer’s IS

GrouperGrouper DISDIS

ClaimClaim

Dot.ForceDot.Force

Claim(s)

EDP WebportalEDP Webportal

Internal data modelInternal data model

Generate
report

Generate
report

Events

Triggers

Pdf file page

Report request

Contract
management

Contract
managementDownload

invoice

Download
invoice

Pdf file

FactuurModuleFactuurModuleGrouperModuleGrouperModule

data

Report moduleReport module

Report pdf

ZorgEenhedenModuleZorgEenhedenModule

Contract/rates
module

Contract/rates
moduleWorkflow managerWorkflow manager

PatientsPatients

Claim(s)

CertificatenModuleCertificatenModule

AccessControlModuleAccessControlModule

VecozoModuleVecozoModule COVModuleCOVModule

VektisModuleVektisModule

ExportModuleExportModule

Queue

Send invoicesSend invoices

Figure 5.1: High-level architecture of the FinCareClaim platform

solution. Having an assembly in the scope of the current solution means that you have direct
access to the source code and can compile it. A package on the other hand is outside of the
scope of the solution and hence cannot be directly edited. If we look inside the repository of
the FinCareClaim platform we see a list of 69 folders, most of them representing an assembly.
A snapshot is given in Table 5.2.

The declaratiegeneratie, FinCareAnalysis, CarecoSoft Lite and force.facts repositories all are
built up in the same way.

5.2.6 Modules, components, packages and libraries

For this study we are interested in the shared codebase. From the repository structure alone, we
cannot directly see what is what. In the declaratiegeneratie repository for example, 4 different
applications exist. Of which assemblies are they composed? What assemblies do they share? Is
there any sharing between the assemblies of FinCareClaim and the other applications outside
the declaratiegeneratie repository?

We learned that an assembly can be recognized by the *.csproj files in the folder, which

5.2. Bottom-up codebase analysis 85

Repository Project
cubseservice BI cubeservice
declaratiegeneratie FinCareClaim platform
FinCareAnalysis FinCareAnalysis project
FinCareAnalysis selenium FinCareAnalysis selenium tests
force.facts Reporting dashboard
Medico selenium Selenium tests for MedicoSoft
CarecoSoft Lite CarecoSoft Lite project
CarecoSoft Lite selenium Selenium tests for CarecoSoft Lite
CarecoSoft selenium Selenium tests for CarecoSoft

Table 5.1: Mercurial repositories at FinCare

Repository Project
cubseservice BI cubeservice
declaratiegeneratie FinCareClaim platform (69)

Careco.NabetalingOpAchterstandswijken
Certificaten
Declaratiegeneratie
Declaratiegeneratie.CustomConfiguration
Declaratiegeneratie.Engine.Bundels
[..]
NContract.WebService.Stub
NControl.Webservice.Stub
Releasenotes
Scripts
Testen
WSDLS

FinCareAnalysis FinCareAnalysis project
FinCareAnalysis selenium FinCareAnalysis selenium tests
force.facts Reporting dashboard
Medico selenium Selenium tests for MedicoSoft
CarecoSoft Lite CarecoSoft Lite project
CarecoSoft Lite selenium Selenium tests for CarecoSoft Lite
CarecoSoft selenium Selenium tests for CarecoSoft

Table 5.2: Collapsed FinCareClaim-platform repository

is a C# project file for Microsoft Visual Studio. Here a number of references exist, a project
reference (an assembly in the current solution) and a reference to a package (pre-compiled
external solution).

We therefore define a package as outside of the active solution located solution and we define
a component as a single assembly in the scope of the active solution. A module is an assembly
which has a clear, isolated function in or between applications.

5.2.7 Visualizing the repositories

Using Gephi (Bastian et al., 2009) and some self-written small-tools a number of network graphs
in the open GEXF file format have been created to visualize the internal structure of the codebase

86 Chapter 5. Casestudy: risks at FinCare

and allow for detailed analysis of the topology. In Figure 5.2 the complete repository dependency
graph is given. In this graph nodes represent all individual components and packages of the five
repositories. We gave every component package colors as depicted in Table 5.3.

Repository/type Color

FinCareClaim platform .
FinCareAnalysis .
CarecoSoft Lite .
Force.facts .
Cubeservice .
NuGet packages .

Table 5.3: Color mapping

When giving a first glance at Figure 5.2 it seems that the codebase is a complete mess where
everything is entangled. In other words, we don’t know what we see here. The nodes have been
given a size according to their network degree (sum of in- and outgoing links) and we see that
there is a clear clustering of assemblies around a set of approximately 10 packages. Also, all
applications seem to have a part which is highly entangled and a part which is more isolated.
If we remove the packages and look at the assemblies only, we get the graph as depicted in
Figure 5.3.

Here we can see that force.facts assemblies are only included in the FinCareAnalysis project,
but between the repositories there are no links anymore. This is hardly surprising, since this is
the role of the packages. In Figure 5.4 we grouped the repositories and switched the packages
back on.

Now we have a very interesting picture where we can see that there seem to be a group of
packages shared by all repositories and packages shared by a subset of the repositories. For
further analysis we listed all the packages and mapped them to the repositories. This mapping
can be found in Table 5.4.

Package Degree
FedZorg.Facturen 18 x
Common.Logging 6 x x x x x
Force.Basics.NHibernate 5 x x x x
Iesi.Collections 5 x x x x
NHibernate 5 x x x x
NHibernate.Mapping.Attributes 5 x x x x
Spring.Aop 5 x x x x
Spring.CodeConfig 5 x x x x
Spring.Core 5 x x x x
Spring.Data 5 x x x x
Spring.Data.NHibernate32 5 x x x x
NLog 5 x x x x x
Force.Basics.NLog 5 x x x x x
Force.Basics 5 x x x x
Force.Basics.Workflow.Core 4 x x x
Newtonsoft.Json 4 x x x x
Force.Basics.NHibernate.Spring 4 x x x x

5.2. Bottom-up codebase analysis 87

Package Degree
Quartz 4 x x x x
Spring.Services 4 x x x x
NHibernate.Caches.SysCache 4 x x x x
elmah.corelibrary 4 x x x x
Force.Basics.Mvc3 4 x x x x
Spring.Web 4 x x x x
Spring.Web.Mvc3 4 x x x x
RhinoMocks 4 x x x x
Force.Basics.AccessControl.Core 4 x x x
Force.Basics.Workflow.AccessControl.Core 3 x x x
FedZorg.Certificaten 3 x x
SharpZipLib 3 x x
Common.Logging.NLog20 3 x x x
Atlas 3 x x x
Autofac 3 x x x
elmah 3 x x x
jQuery 3 x x x
jQuery.UI.Combined 3 x x x
Modernizr 3 x x x
T4MVC 3 x x x
FedZorg.Vektis 3 x x
Force.Basics.AsciiIo 3 x x
FedZorg.Vecozo.Declareren 2 x
FileHelpers-Stable 2 x x
Microsoft.Web.Infrastructure 2 x x
Boo 2 x x
Boo-Compiler 2 x x
FileHelpers 2 x x
RhinoDSL 2 x x
Rhino-Etl 2 x x
FedZorg.Cov 2 x x
NHibernate.Logging 2 x x
System.Data.SQLite.x64 2 x x
Glimpse 2 x x
Glimpse.Elmah 2 x x
Glimpse.Mvc3 2 x x
glimpse-dependencies 2 x x
Mvc3Futures 2 x x
MvcContrib.Mvc3-ci 2 x x
NHibernate.Glimpse 2 x x
jQuery.Validation 2 x x
NVelocity 2 x x
T4MVCExtensions 2 x x
jQuery.jqGrid 2 x x
Spring.Template.Velocity 2 x x
Rx-Main 2 x x
Spring.Scheduling.Quartz 2 x x
EntityFramework 2 x x

88 Chapter 5. Casestudy: risks at FinCare

Package Degree
jQuery.vsdoc 2 x x

Table 5.4: Shared packages with degree higher than 1

Before drawing any conclusions we first zoom in into the FinCareClaim platform. The ques-
tion we have here is what packages and assemblies are shared between the different application
inside the platform. The complete codebase dependencies of FinCareClaim are depicted in Fig-
ure 5.5. The large dots represent the main components of the individual application. Still, the
graph is rather cluttered. So, we used simple regular expressions to group the applications, for
MedicoSoft we used for example: (.∗)MedicoSoft(.∗). The result is the graph as depicted in
Figure 5.6.

From the graph we abstracted a list of assemblies and their in- and out-degree which can be
found in Table 5.5.

Assembly In Out FClaim MSoft CSoft FAlpha
Declaratiegeneratie 6 0 x x x x
Declaratiegeneratie.Engine.Facturen 4 0 x x x x
Declaratiegeneratie.Export 4 0 x x x x
FedZorg.Facturen 4 0 x x x
Declaratiegeneratie.Engine.Zorgeenheden 4 0 x x x x
Declaratiegeneratie.Engine.Bundels 4 0 x x x x
Declaratiegeneratie.Zorgaanlevering 3 0 x x
Declaratiegeneratie.Engine.HIS 3 0 x x x
Declaratiegeneratie.Web.Area.Beheer 2 0 x x
Declaratiegeneratie.Workflow 2 0 x x
Declaratiegeneratie.Koppeling.NContract 2 0 x x
Declaratiegeneratie.AccessControl 2 0 x x
Declaratiegeneratie.Koppeling.CarecoSoft Lite 2 0 x
Declaratiegeneratie.Lucene 2 0 x
Declaratiegeneratie.WebApplication.Area.Testpages 1 0 x
Declaratiegeneratie.Smtp 1 0 x
Declaratiegeneratie.CustomConfiguration 1 0 x
Declaratiegeneratie.Koppeling.Twinfield 1 0 x
Declaratiegeneratie.Koppelingen.Grouper 1 0 x
Declaratiegeneratie.Koppeling.SHL 1 0 x
Declaratiegeneratie.Koppeling.FinCareAnalysis 1 0 x
Declaratiegeneratie.Zorgaanlevering 0 26 x
Declaratiegeneratie.Zorgaanlevering.Tests 0 19 x

Table 5.5: Shared assemblies of FinCareClaim

From the table and the figure we can recognize a number of modules from the high-level archi-
tecture (GrouperModule, FactuurModule for example in the form of respectively the Declaratiegen-
eratie.Koppelingen.Grouper and Declaratiegeneratie.Engine.Facturen assemblies). Since they
are assemblies, they may be edited from the active solution. The next question then is, from
the components we have found to be part of the shared codebase of the FinCareClaim platform:
which have a high chance having impact on another component when modified?

To analyze this we created a small-tool which mines the commit-messages from the Mercurial
repositories and by using association rule learning techniques (Han and Kamber, 2006) we tried
to find the relation between assemblies. The idea is based on logical coupling (Gall et al., 1998)
and item-set calculation for determining traceability links between repository assets (Kagdi
et al., 2007).

The result of the association rule analysis is depicted in Figure 5.7. In this figure the bigger
the nodes, the larger the number of associations. Still, the graph is a bit cluttered because there

5.2. Bottom-up codebase analysis 89

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Lucene

Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.VIPLive

Declaratiegeneratie.Mail.Zorggroepen

FedZorg.Facturen

FedZorg.Facturen

Declaratiegeneratie.WebService.EDP.VerrichtingenLive

Declaratiegeneratie.WebService.EDP.Verrichtingen
Declaratiegeneratie.Engine.Zorgeenheden.Tests

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Koppeling.Premezis.Mock

Declaratiegeneratie.Mosadex.FieldtestService

Declaratiegeneratie.Koppeling.DotForce

Declaratiegeneratie.Koppeling.SHL.Mock

Declaratiegeneratie.Koppeling.SHL

Declaratiegeneratie.Service.NCasso

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Zorgaanlevering.NCasso

FedZorg.Facturen.Tests

Declaratiegeneratie.Service.Ksyos

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.Twinfield.Test

Declaratiegeneratie.Koppeling.Twinfield

Declaratiegeneratie.WebApplication.KSYOS.Base

Declaratiegeneratie.AccessControl

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.Workflow

FedZorg.Facturen.Database.Scripts

Declaratiegeneratie.Export
Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.Koppeling.VIPLive

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication.Zorggroepen.Base

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.CustomConfiguration

Declaratiegeneratie.WebApplication.KSYOS

Declaratiegeneratie.Export

Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.NCasso.Data

HAP.Webservice.Stub

NContract.WebService.Stub

Declaratiegeneratie.Zorgaanlevering.Tests

Declaratiegeneratie.Zorgaanlevering.NCasso

Declaratiegeneratie.Service.EDP

Declaratiegeneratie.Koppeling.DotForce
Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.WebService.EDP.Verrichtingen

Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.RegressieTestTool

Calculus.NabetalingOpAchterstandswijken

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.CustomConfiguration

Declaratiegeneratie.Smtp

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.Lucene

Declaratiegeneratie.WebApplication.NCasso.Data

Declaratiegeneratie.Service.Zorggroepen

Declaratiegeneratie.WebService.EDP.ZorgtrajectenLive

Declaratiegeneratie.Zorgaanlevering.SoapTool

DotForce.Webservice.Stub

Declaratiegeneratie.Test

Declaratiegeneratie.Zorgaanlevering.Vektis

Declaratiegeneratie.Web.Area.KSYOS

Declaratiegeneratie.Koppeling.DotForce.Test

Declaratiegeneratie

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Smtp

Declaratiegeneratie.WebApplication.Data

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.WebApplication.WebService.Test

Declaratiegeneratie.Fixtool

Declaratiegeneratie.Koppeling.SHL

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Mosadex.FieldtestService.Test

Declaratiegeneratie.Mosadex.FieldtestService

Declaratiegeneratie.WebApplication.EDP

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.Koppeling.Twinfield

NControl.Webservice.Stub

Declaratiegeneratie.Mail.Zorggroepen

Declaratiegeneratie.Zorgaanlevering.EDP

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Web.Area.Beheer

DotForce.Umcu.DbcGrouperSimulatie

DbcDot.BoomVersies

DbcDot.Execution

DbcDot.GrouperTree

DbcViewer.AccessControl

DbcViewer.Parsing

DbcViewer.Persistence

DbcDot.Webservice

DbcDot.Afsluitregels

DbcViewer.LDAP.AccessControl

DbcViewer.Mock

DbcViewer

DotForce.Lpsolve.Cli

DotForce.LpSolve

DotForce.TyperendeTrajecten

DbcDot.Execution.Cli

DbcDot.ExecutionService

DotForce.Controle.Voorbereiding

DotForce.Importer.Boombestanden

DotForce.Controle.Voorbereiding

Force.Basics.Rhino

InitDataOntbrekendeZa

DotForce.Web

DbcDot.Koppeling.DotMonitor

DbcDot.Webservice

DotForce.Controle.Execution

DotForce.Controle

DotForce.ForceEdp.Koppeling

DotForce.iThese

DotForce.Modules

Force.Basics.Web.Mvc

DotForce.Controle

InsertIntMessageQueue

DbcDot.BoomVersies

DbcDot.DotMonitor

DbcDot.Afsluitregels.Test

DbcDot.Importer

DbcViewer.Mock

DotForce.Test.Helper

InitDataOntbrekendeZa.Cli

DbcDot.Etl.Forms

DbcDot.Importer

DbcDot.Engine.Execution

DotForce.Controle.Service.Test

DotForce.Controle.Service

DotForce.Test.Helper

DotForce.ForceFacts.PeriodiekeAanvraag.Service

Force.Basics.Rhino

Dotforce.Controle.Execution.Test

DbcDot.Afsluitregels

DbcDot.GrouperTree

DotForce.Controle.Service.Cli

Force.Basics.Web.Mvc

Force.Basics.Web.Mvc.Tests

DotForce.Kansberekening.Test

DotForce.Kansberekening

DotForce.Controle.Execution

DbcViewer.LDAP.AccessControl

DbcDot.ExecutionService

DotForce.Importer.Boombestanden

DbcDot.Execution

DotForce.Kansberekening

DbcViewer.Silverlight

DotForce.LpSolve

DotForce.Umcu.DbcGrouperSimulatie

DotForce.ForceEdp.Koppeling

DotForce.Web.Test
DotForce.Web

DotForce.Modules

DotForce.TyperendeTrajecten

DbcDot.Koppeling.DotMonitor

DbcViewer

DbcDot.Importer.Cli

DotForce.LpSolve.Test
DbcDot.Web

InitDataOntbrekendeZa

DotForce.Modules.Cli

DbcViewer.AccessControl

DotForce.iThese

DbcViewer.Parsing

DbcViewer.Persistence

DotForce.Controle.Service

RapportageDashboard.WebApplication.Old

RapportageDashboard.AccessControl

RapportageDashboard.Koppeling.ReportService

RapportageDashboard.WebApplication.Data

RapportageDashboard.Koppeling

RapportageDashboard

RapportageDashboard.Koppeling

RapportageDashboard.Services.PeriodiekeAanvraag

RapportageDashboard.WebApplication

RapportageDashboard.AccessControl

RapportageDashboard.WebApplication.Test

RapportageDashboard.Koppeling.ReportService

TestProject1

RapportageDashboard

RapportageDashboard.WebApplication

Rapportages.Services.PeriodiekeRapportage

RapportageDashboard.WebApplication.Data

RapportageDashboard.Test

CubeService.WebCubeService.Data

CubeService.Data

CubeService.Test

Declaratieverwerking.Twinfield

Declaratieverwerking

Calculus.WebApplication.Data

BI.AdoMD

Calculus.Vip.WebService.Client

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten

Declaratieverwerking.Engine

Declaratieverwerking.MT940

Declaratieverwerking.Process

Declaratieverwerking.Smtp

Declaratieverwerking.Vecozo

Declaratieverwerking.Zorgaanlevering

Declaratieverwerking.WebApplication

Calculus.Vip.WebService.Server.Mock

Calculus.WebApplication.Data

Declaratieverwerking.Reporting.Koppeling

Declaratieverwerking.Twinfield

Declaratieverwerking.Services.BeoordelenDeclaratieBerichten

BI.AdoMD

Declaratieverwerking.Engine

Calculus.zg.WebService.Server

Declaratieverwerking.Database.Scripts

ZipVecozoBestand

ChangePasswordSHA256

Declaratieverwerking.Vecozo.Test

Declaratieverwerking.Database.Scripts

Declaratieverwerking.Workflow.Test

Declaratieverwerking.Vecozo

CustomFunctions

Declaratieverwerking.MT940.Test

Declaratieverwerking.Zorgaanlevering.Test

Declaratieverwerking

Declaratieverwerking.Zorgaanlevering

Declaratieverwerking.Smtp

Importer

Declaratieverwerking.ReportService.Client

Calculus.zg.WebService.Server.Test

Declaratieverwerking.Rapportage

Declaratieverwerking.Test

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten

BI.AdoMD.Test

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten.Test

Calculus.Vip.WebService.Client.Test

Declaratieverwerking.Reporting.Koppeling

Declaratieverwerking.MT940

Calculus.Vip.WebService.Server.Mock

Calculus.Vip.WebService.Client

Declaratieverwerking.MSMQInstaller

Declaratieverwerking.Process

Declaratieverwerking.WebApplication.Test

Declaratieverwerking.AccessControl

Declaratieverwerking.WebApplication

Declaratieverwerking.Workflow

FedZorg.Vecozo

Calculus.WebApplication

Common.Logging

FedZorg.Vektis

Force.Basics

Force.Basics.AccessControl.Core

Force.Basics.AsciiIo

Force.Basics.BusinessRules

Force.Basics.NHibernate

Force.Basics.Workflow.AccessControl.Core

Force.Basics.Workflow.BusinessRules

Force.Basics.Workflow.Core

Iesi.Collections

NHibernate

NHibernate.Mapping.Attributes

Spring.Aop

Spring.CodeConfig

Spring.Core

Spring.Data

Spring.Data.NHibernate32

FedZorg.Certificaten

FedZorg.Vecozo.Declareren

FileHelpers-Stable

Lucene.Net

SharpZipLib

Microsoft.AspNet.Mvc

Microsoft.AspNet.Razor

Microsoft.AspNet.WebApi

Microsoft.AspNet.WebApi.Client

Microsoft.AspNet.WebApi.Core

Microsoft.AspNet.WebApi.WebHost

Microsoft.AspNet.WebPages

Microsoft.Net.Http
Microsoft.Web.Infrastructure

Newtonsoft.Json

Common.Logging.NLog20

Force.Basics.NLog

NLog

SignalR.Client

Boo

Boo-Compiler

FileHelpers

Force.Basics.NHibernate.Spring

RhinoDSL

Rhino-Etl

Atlas

Autofac

FedZorg.Cov

Mail.dll

Microsoft.AspNet.WebApi.SelfHost

NHibernate.Logging

Quartz

RazorEngine

Spring.Services

System.Data.SQLite.x64

NHibernate.Caches.SysCache

Force.Basics.ClieOp03

FedZorg.Vecozo.Cov3

elmah

elmah.corelibrary

Force.Basics.Mvc3

Glimpse

Glimpse.Elmah

Glimpse.Mvc3
glimpse-dependencies

Mvc3Futures
MvcContrib.Mvc3-ci

NHibernate.Glimpse

Spring.Web

Spring.Web.Mvc3

AspNetWebApi

CrystalQuartz.Remote

Force.Basics.Workflow.WebApplication

jQuery

jQuery.UI.Combined
jQuery.Validation

json2

Modernizr

NVelocity

SignalR

SignalR.Hosting.AspNet

SignalR.Hosting.Common

SignalR.Js

SignalR.Server

T4MVC

T4MVCExtensions

RhinoMocks

SignalR.Hosting.Self

jQuery.jqGrid

Spring.Template.Velocity

Declaratiegeneratie.WebApplication.Ncasso.Data

.nuget

Rx-Main

Rx-Core

Rx-Interfaces

Rx-Linq

Rx-PlatformServices

FedZorg.DbcOnderhoud.Grouper

jQuery.LiveQuery
T4MvcJs

NHibernateProfiler

Spring.Scheduling.Quartz

WebActivator

DocumentFormat.OpenXml

EntityFramework

jQuery.vsdoc

Knockout.Mapping

knockoutjs

MicrosoftWebMvc

Mvc2Futures

MvcContrib

RapportageDashboard.WebApplication-old

NUnit

Spring.Testing.NUnit

Common.Logging.NLog

Gallio

Force.Basics.Twinfield

Force.Basics.MT940

Common.Logging.Elmah

Elmah.MVC

Spring.Messaging

WatiN

DotNetZip

Figure 5.2: Complete dependency graph of codebase at FinCare

is no clear distinction between the application. Therefore we again grouped the assemblies by
the web-application, service and data components. The result can be found in Figure 5.8.

So, what do we see in Figure 5.8? The red nodes represent the different applications. The
more blue the other nodes, the more they are the associated with another component or a set
of components when a file of such a component is edited. Also, the thicker the arrow between
two nodes, the stronger the association. We can observe a number of things:

• There is a very strong bi-directional association between CarecoSoft and MedicoSoft.
• The FinCareAlpha application is not visible in the graph. This is because they have a

90 Chapter 5. Casestudy: risks at FinCare

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Lucene

Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.VIPLive
Declaratiegeneratie.Mail.Zorggroepen

FedZorg.Facturen

Declaratiegeneratie.WebService.EDP.VerrichtingenLive

Declaratiegeneratie.WebService.EDP.Verrichtingen

Declaratiegeneratie.Engine.Zorgeenheden.Tests

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Koppeling.Premezis.Mock

Declaratiegeneratie.Mosadex.FieldtestService

Declaratiegeneratie.Koppeling.DotForce

Declaratiegeneratie.Koppeling.SHL.Mock

Declaratiegeneratie.Koppeling.SHL

Declaratiegeneratie.Service.NCasso

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Zorgaanlevering.NCasso

FedZorg.Facturen.Tests

Declaratiegeneratie.Service.Ksyos

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.Twinfield.Test

Declaratiegeneratie.Koppeling.Twinfield

Declaratiegeneratie.WebApplication.KSYOS.Base

Declaratiegeneratie.AccessControl

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.Workflow

FedZorg.Facturen.Database.Scripts

Declaratiegeneratie.Export

Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.Koppeling.VIPLive

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication.Zorggroepen.Base

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.CustomConfiguration

Declaratiegeneratie.WebApplication.KSYOS
Declaratiegeneratie.Export

Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.NCasso.Data

HAP.Webservice.Stub

NContract.WebService.Stub

Declaratiegeneratie.Zorgaanlevering.Tests

Declaratiegeneratie.Zorgaanlevering.NCasso

Declaratiegeneratie.Service.EDP

Declaratiegeneratie.Koppeling.DotForce

Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.WebService.EDP.Verrichtingen

Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.RegressieTestTool

Calculus.NabetalingOpAchterstandswijken

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.CustomConfiguration

Declaratiegeneratie.Smtp
Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.Lucene

Declaratiegeneratie.WebApplication.NCasso.Data

Declaratiegeneratie.Service.Zorggroepen

Declaratiegeneratie.WebService.EDP.ZorgtrajectenLive

Declaratiegeneratie.Zorgaanlevering.SoapTool

DotForce.Webservice.Stub

Declaratiegeneratie.Test

Declaratiegeneratie.Zorgaanlevering.Vektis

Declaratiegeneratie.Web.Area.KSYOS

Declaratiegeneratie.Koppeling.DotForce.Test

Declaratiegeneratie

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Smtp

Declaratiegeneratie.WebApplication.Data

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.WebApplication.WebService.Test

Declaratiegeneratie.Fixtool

Declaratiegeneratie.Koppeling.SHL

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Mosadex.FieldtestService.Test

Declaratiegeneratie.Mosadex.FieldtestService

Declaratiegeneratie.WebApplication.EDP

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.Koppeling.Twinfield

NControl.Webservice.Stub

Declaratiegeneratie.Mail.Zorggroepen

Declaratiegeneratie.Zorgaanlevering.EDP

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Web.Area.Beheer

DotForce.Umcu.DbcGrouperSimulatie

DbcDot.BoomVersies

DbcDot.Execution

DbcDot.GrouperTree

DbcViewer.AccessControl

DbcViewer.Parsing

DbcViewer.Persistence

DbcDot.Webservice

DbcDot.Afsluitregels

DbcViewer.LDAP.AccessControl

DbcViewer.Mock

DbcViewer

DotForce.Lpsolve.Cli

DotForce.LpSolve

DotForce.TyperendeTrajecten

DbcDot.Execution.Cli

DbcDot.ExecutionService

DotForce.Controle.Voorbereiding

DotForce.Importer.Boombestanden

DotForce.Controle.Voorbereiding

Force.Basics.Rhino

InitDataOntbrekendeZa

DotForce.Web

DbcDot.Koppeling.DotMonitor

DbcDot.Webservice DotForce.Controle.Execution

DotForce.Controle

DotForce.ForceEdp.Koppeling

DotForce.iThese

DotForce.Modules

Force.Basics.Web.Mvc

DotForce.Controle

InsertIntMessageQueue

DbcDot.BoomVersies

DbcDot.DotMonitor

DbcDot.Afsluitregels.Test

DbcDot.Importer

DbcViewer.Mock

DotForce.Test.Helper

InitDataOntbrekendeZa.Cli

DbcDot.Etl.Forms

DbcDot.Importer

DbcDot.Engine.Execution

DotForce.Controle.Service.Test

DotForce.Controle.Service

DotForce.Test.Helper

DotForce.ForceFacts.PeriodiekeAanvraag.Service

Force.Basics.RhinoDotforce.Controle.Execution.Test

DbcDot.Afsluitregels

DbcDot.GrouperTree

DotForce.Controle.Service.Cli

Force.Basics.Web.Mvc

Force.Basics.Web.Mvc.Tests

DotForce.Kansberekening.Test
DotForce.Kansberekening

DotForce.Controle.Execution

DbcViewer.LDAP.AccessControl

DbcDot.ExecutionService

DotForce.Importer.Boombestanden

DbcDot.Execution

DotForce.Kansberekening

DbcViewer.Silverlight

DotForce.LpSolveDotForce.Umcu.DbcGrouperSimulatie

DotForce.ForceEdp.Koppeling

DotForce.Web.Test

DotForce.Web

DotForce.Modules

DotForce.TyperendeTrajecten

DbcDot.Koppeling.DotMonitor

DbcViewer

DbcDot.Importer.Cli

DotForce.LpSolve.Test

DbcDot.Web

InitDataOntbrekendeZa

DotForce.Modules.Cli
DbcViewer.AccessControl

DotForce.iThese

DbcViewer.Parsing

DbcViewer.Persistence

DotForce.Controle.Service

RapportageDashboard.WebApplication.Old

RapportageDashboard.AccessControl

RapportageDashboard.Koppeling.ReportService

RapportageDashboard.WebApplication.Data

RapportageDashboard.Koppeling

RapportageDashboard

RapportageDashboard.Koppeling

RapportageDashboard.Services.PeriodiekeAanvraag

RapportageDashboard.WebApplication

RapportageDashboard.AccessControl

RapportageDashboard.WebApplication.Test

RapportageDashboard.Koppeling.ReportService

TestProject1

RapportageDashboard

RapportageDashboard.WebApplication

Rapportages.Services.PeriodiekeRapportage

RapportageDashboard.WebApplication.Data

RapportageDashboard.Test

CubeService.Web

CubeService.Data

CubeService.Data

CubeService.Test

Declaratieverwerking.Twinfield

Declaratieverwerking

Calculus.WebApplication.Data BI.AdoMD

Calculus.Vip.WebService.Client

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten

Declaratieverwerking.Engine

Declaratieverwerking.MT940

Declaratieverwerking.Process
Declaratieverwerking.Smtp

Declaratieverwerking.Vecozo

Declaratieverwerking.Zorgaanlevering

Declaratieverwerking.WebApplication

Calculus.Vip.WebService.Server.Mock Calculus.WebApplication.Data

Declaratieverwerking.Reporting.Koppeling

Declaratieverwerking.Twinfield

Declaratieverwerking.Services.BeoordelenDeclaratieBerichten BI.AdoMDDeclaratieverwerking.Engine

Calculus.zg.WebService.Server

Declaratieverwerking.Database.Scripts

ZipVecozoBestand

ChangePasswordSHA256

Declaratieverwerking.Vecozo.Test

Declaratieverwerking.Database.Scripts
Declaratieverwerking.Workflow.Test

Declaratieverwerking.Vecozo

CustomFunctions

Declaratieverwerking.MT940.Test

Declaratieverwerking.Zorgaanlevering.Test

Declaratieverwerking

Declaratieverwerking.Zorgaanlevering

Declaratieverwerking.Smtp

Importer

Declaratieverwerking.ReportService.Client

Calculus.zg.WebService.Server.Test

Declaratieverwerking.Rapportage

Declaratieverwerking.Test

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten

BI.AdoMD.Test

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten.Test

Calculus.Vip.WebService.Client.Test

Declaratieverwerking.Reporting.Koppeling

Declaratieverwerking.MT940

Calculus.Vip.WebService.Server.Mock

Calculus.Vip.WebService.Client

Declaratieverwerking.MSMQInstaller

Declaratieverwerking.Process

Declaratieverwerking.WebApplication.Test

Declaratieverwerking.AccessControl

Declaratieverwerking.WebApplication

Declaratieverwerking.Workflow FedZorg.Vecozo

Calculus.WebApplication

Declaratiegeneratie.WebApplication.Ncasso.Data

.nuget

RapportageDashboard.WebApplication-old

Figure 5.3: Dependencies between assemblies

separate branch in the repository.
• There are a number of assemblies which have a high number of associations:

– Engine.Facturen
– Declaratiegeneratie
– Engine.Bundels

5.2. Bottom-up codebase analysis 91

Force.Basics.BusinessRules

Force.Basics.NHibernate

Force.Basics.Workflow.AccessControl.Core

Force.Basics.Workflow.BusinessRules

Force.Basics.Workflow.Core

Iesi.Collections

NHibernate

NHibernate.Mapping.Attributes

Spring.Aop

Spring.CodeConfig

Spring.Core

Spring.Data

Spring.Data.NHibernate32

FedZorg.Certificaten

FedZorg.Vecozo.Declareren

FileHelpers-Stable

Lucene.Net

SharpZipLib

Microsoft.AspNet.Mvc

Microsoft.AspNet.Razor

Microsoft.AspNet.WebApi

Microsoft.AspNet.WebApi.Client

Microsoft.AspNet.WebApi.Core

Microsoft.AspNet.WebApi.WebHost

Microsoft.AspNet.WebPages

Microsoft.Net.Http

Microsoft.Web.Infrastructure

Newtonsoft.Json

Common.Logging.NLog20

NLog

SignalR.Client

Boo

Boo-Compiler

FileHelpers

Force.Basics.NHibernate.Spring

RhinoDSL

Rhino-Etl

Atlas

Autofac

FedZorg.Cov

Mail.dll

Microsoft.AspNet.WebApi.SelfHost

NHibernate.Logging

Quartz

RazorEngine

Spring.Services

System.Data.SQLite.x64

NHibernate.Caches.SysCache

Force.Basics.ClieOp03

FedZorg.Vecozo.Cov3

elmah

elmah.corelibrary

Force.Basics.Mvc3

Glimpse

Glimpse.Elmah

Glimpse.Mvc3

glimpse-dependencies

Mvc3Futures

MvcContrib.Mvc3-ci

NHibernate.Glimpse

Spring.Web

Spring.Web.Mvc3

AspNetWebApi

CrystalQuartz.Remote

Force.Basics.Workflow.WebApplication

jQuery

jQuery.UI.Combined

jQuery.Validation

json2

Modernizr

NVelocity

SignalR

SignalR.Hosting.AspNet

SignalR.Hosting.Common

SignalR.Js

SignalR.Server

T4MVC

T4MVCExtensions

RhinoMocks

SignalR.Hosting.Self

jQuery.jqGrid

Spring.Template.Velocity

Rx-Main

Rx-Core

Rx-Interfaces

Rx-Linq

Rx-PlatformServices

FedZorg.DbcOnderhoud.Grouper

jQuery.LiveQuery

T4MvcJs

NHibernateProfiler

Spring.Scheduling.Quartz

WebActivator

DocumentFormat.OpenXml

EntityFramework

jQuery.vsdoc

Knockout.Mapping

knockoutjs

MicrosoftWebMvcMvc2Futures

MvcContrib
NUnit Spring.Testing.NUnit

Common.Logging.NLog

Gallio

Force.Basics.Twinfield

Force.Basics.MT940

Common.Logging.Elmah

Elmah.MVC

Spring.Messaging

WatiN

DotNetZip

FedZorg.Facturen

Common.Logging

Group (4 nodes)

Force.Basics.NLog

Group (93 nodes)

FedZorg.Vektis

Group (83 nodes)

Force.Basics

Group (18 nodes)

Force.Basics.AccessControl.Core

Group (55 nodes)

Force.Basics.AsciiIo

Figure 5.4: NuGet dependencies between repositories

– Engine.Zorgeenheden
– Web.Area.Beheer
– Zorgaanlevering

If we go back to Table 5.5 we can see that the 6 components with a high number of asso-
ciations are used by mostly all applications. Hence, there is a very high change that the other
applications are impacted, since the components are highly volatile. The second interesting
thing is the strong bi-directional association between CarecoSoft and MedicoSoft. We created
another graph where we only look at commits from 1 year ago and further in the past. The
result can be found in Figure 5.9.

5.2.8 Conclusions

From the bottom-up analysis of the codebase we can conclude the following:

• There is a large overlap of components between all applications of FinCare. From all the
shared applications, almost all packages are used by applications from the FinCareClaim
platform. From the packages a distinction can be made between really the core packages
and sub-domain specific packages.

• In the FinCareClaim platform there a number of modules which are tightly coupled to the
platform’s applications in terms of both logical and semantic dependencies.

92 Chapter 5. Casestudy: risks at FinCare

Declaratiegeneratie.Lucene

Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.VIPLive

Declaratiegeneratie.Mail.Zorggroepen

FedZorg.Facturen

FedZorg.Facturen

Declaratiegeneratie.WebService.EDP.VerrichtingenLive

Declaratiegeneratie.WebService.EDP.Verrichtingen

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Koppeling.SHL

Declaratiegeneratie.Service.NCasso

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Zorgaanlevering.NCasso

Declaratiegeneratie.Service.Ksyos

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Koppeling.Twinfield

Declaratiegeneratie.WebApplication.KSYOS.Base

Declaratiegeneratie.AccessControl

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.Workflow

Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.WebApplication.Zorggroepen.Base

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.WebApplication.KSYOS

Declaratiegeneratie.Export

Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.NCasso.Data

Declaratiegeneratie.Zorgaanlevering.Tests

Declaratiegeneratie.Zorgaanlevering.NCasso

Declaratiegeneratie.Service.EDP

Declaratiegeneratie.Koppeling.DotForce

Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.WebService.EDP.Verrichtingen

Declaratiegeneratie.WebService.EDP.Zorgtrajecten

Declaratiegeneratie.WebApplication.KSYOS.Data

Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.CustomConfiguration

Declaratiegeneratie.Smtp

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.WebApplication.NCasso.Data

Declaratiegeneratie.Service.Zorggroepen

Declaratiegeneratie.WebService.EDP.ZorgtrajectenLive

Declaratiegeneratie.Web.Area.KSYOS

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.WebApplication.EDP

Declaratiegeneratie.Zorgaanlevering.Zorggroepen

Declaratiegeneratie.Mail.Zorggroepen

Declaratiegeneratie.Zorgaanlevering.EDP

Common.Logging

FedZorg.Vektis

Force.Basics

Force.Basics.AccessControl.Core

Force.Basics.AsciiIo

Force.Basics.BusinessRules
Force.Basics.NHibernate

Force.Basics.Workflow.AccessControl.Core

Force.Basics.Workflow.BusinessRules
Force.Basics.Workflow.Core

Iesi.Collections
NHibernate

NHibernate.Mapping.Attributes

Spring.Aop

Spring.CodeConfig

Spring.Core Spring.Data

Spring.Data.NHibernate32

FedZorg.Certificaten

FedZorg.Vecozo.Declareren

FileHelpers-Stable

Lucene.Net

SharpZipLib

Microsoft.AspNet.Mvc

Microsoft.AspNet.Razor

Microsoft.AspNet.WebApi

Microsoft.AspNet.WebApi.Client

Microsoft.AspNet.WebApi.Core

Microsoft.AspNet.WebApi.WebHost

Microsoft.AspNet.WebPages

Microsoft.Net.Http

Microsoft.Web.Infrastructure

Newtonsoft.Json

Common.Logging.NLog20

Force.Basics.NLog

NLog

SignalR.Client

Force.Basics.NHibernate.Spring

Atlas

Autofac

FedZorg.Cov

Mail.dll

Microsoft.AspNet.WebApi.SelfHost

NHibernate.Logging

Quartz

RazorEngine

Spring.Services

NHibernate.Caches.SysCache

Force.Basics.ClieOp03

FedZorg.Vecozo.Cov3

elmah

elmah.corelibrary

Force.Basics.Mvc3

Glimpse

Glimpse.Elmah

Glimpse.Mvc3

glimpse-dependencies

Mvc3Futures

MvcContrib.Mvc3-ci

NHibernate.Glimpse

Spring.WebSpring.Web.Mvc3

AspNetWebApi

CrystalQuartz.Remote

Force.Basics.Workflow.WebApplication

jQuery

jQuery.UI.Combined

jQuery.Validation

json2

Modernizr

NVelocity

SignalR

SignalR.Hosting.AspNet

SignalR.Hosting.Common

SignalR.Js

SignalR.ServerT4MVC

T4MVCExtensions

SignalR.Hosting.Self

jQuery.jqGrid

Spring.Template.Velocity

jQuery.LiveQuery

T4MvcJs

Figure 5.5: Complete codebase dependencies of the FinCareClaim platform

• The MedicoSoft and CarecoSoft applications are tightly coupled in terms of mutual de-
pendencies and logical dependencies between the core assemblies.

5.2. Bottom-up codebase analysis 93

T4MvcJs

Spring.Template.Velocity

jQuery.LiveQuery

jQuery.jqGrid

SignalR.Hosting.Self

T4MVCExtensions

SignalR.Js

SignalR.Server

T4MVC

SignalR

SignalR.Hosting.AspNet

SignalR.Hosting.Common

NVelocity

json2

Modernizr

jQuery.UI.Combined

Force.Basics.Workflow.WebApplication

jQuery.Validation

jQuery

AspNetWebApi

Spring.Web

Spring.Web.Mvc3
NHibernate.GlimpseCrystalQuartz.Remote

Glimpse.Elmah

glimpse-dependencies

Mvc3Futures
MvcContrib.Mvc3-ci

elmah.corelibrary

Force.Basics.Mvc3

Glimpse

Glimpse.Mvc3

Force.Basics.ClieOp03

RazorEngine

elmah

FedZorg.Vecozo.Cov3

NHibernate.Logging

Microsoft.AspNet.WebApi.SelfHost

Quartz

Spring.Services

Autofac

Microsoft.Net.Http

FedZorg.Cov

SignalR.Client

Force.Basics.NHibernate.Spring

Atlas

Microsoft.AspNet.WebPages

Force.Basics.NLog

Microsoft.AspNet.WebApi.Core

NLog

Microsoft.AspNet.WebApi.WebHost

Newtonsoft.Json

NHibernate.Caches.SysCache

Microsoft.AspNet.WebApi.Client

Common.Logging.NLog20

Microsoft.AspNet.Razor

Declaratiegeneratie.WebApplication.Area.Testpages

Lucene.Net

SharpZipLib
Mail.dll

Microsoft.AspNet.WebApi

Microsoft.Web.Infrastructure

Microsoft.AspNet.Mvc

Declaratiegeneratie.Smtp

Spring.Core

Spring.Data

Spring.Data.NHibernate32

FedZorg.Certificaten

FedZorg.Vecozo.Declareren

FileHelpers-Stable

Declaratiegeneratie.CustomConfiguration

Force.Basics.Workflow.AccessControl.Core

Iesi.Collections

NHibernate

NHibernate.Mapping.Attributes

Spring.Aop

Spring.CodeConfig

Declaratiegeneratie.Koppeling.Twinfield

Force.Basics.NHibernate

Force.Basics.Workflow.Core

Force.Basics.Workflow.BusinessRules

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.Workflow

Declaratiegeneratie.Koppelingen.Grouper

Declaratiegeneratie.Koppeling.SHL

Force.Basics.AccessControl.Core

Force.Basics.AsciiIo

Force.Basics.BusinessRules

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.AccessControl

Declaratiegeneratie.Koppeling.DotForce

Zorggroepen

Declaratiegeneratie.Koppeling.VIPLive

FedZorg.Vektis

Force.Basics

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.HIS

Declaratiegeneratie.Export

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Lucene

FedZorg.Facturen

Common.Logging

Declaratiegeneratie.Zorgaanlevering.Tests

Declaratiegeneratie

NCasso

FedZorg.Facturen

KSYOS

Declaratiegeneratie.Engine.Zorgeenheden

Force.EDP

Declaratiegeneratie.Engine.Bundels

Figure 5.6: FinCareClaim platform grouped per application

94 Chapter 5. Casestudy: risks at FinCare

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

DotForce.Controle.Service

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.Service.EDP

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen

Declaratieverwerking

DotForce.Controle.Execution

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie

Declaratiegeneratie.Service.NCasso

Declaratiegeneratie.Service.Zorggroepen Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels

FedZorg.Facturen

Declaratiegeneratie.Export

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Bundels

Calculus.WebApplication.Data

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.EDP

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Web.Area.VIPLive

Declaratiegeneratie.WebApplication.Ncasso.Data

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering

Declaratieverwerking.WebApplication

Declaratiegeneratie.Service.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Zorgaanlevering.NCasso

Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie

DotForce.Web

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.Ncasso.Data

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.WebApplication.Data

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie

DbcViewer.Persistence

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Zorgeenheden

Scripts

Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.Service.Zorggroepen

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden

Figure 5.7: Logical coupling of FinCare repository

5.2. Bottom-up codebase analysis 95

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

DotForce.Controle.Service

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen

Declaratieverwerking DotForce.Controle.Execution

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Facturen

DotForce.Controle.Execution DotForce.Web

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie

Declaratiegeneratie.Service.Zorggroepen Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels

FedZorg.Facturen

Declaratiegeneratie.Export

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Facturen Declaratiegeneratie

Calculus.WebApplication.Data

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.WebApplication

Declaratiegeneratie.WebApplication.Area.Testpages

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Engine.Zorgeenheden

Declaratieverwerking.WebApplication

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.Web.Area.Beheer

DotForce.Controle.Service DbcViewer.Persistence

DotForce.Controle.Service DotForce.Web

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

Declaratiegeneratie.Koppeling.NContract

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.Web.Area.VIPLive

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.Engine.Bundels

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Service.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Facturen Declaratiegeneratie

Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie.WebApplication.Zorggroepen

Declaratiegeneratie.Web.Area.Beheer Declaratiegeneratie

DotForce.Web

DotForce.Controle.Execution DbcViewer.Persistence

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.Ncasso.Data

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie Declaratiegeneratie.sln

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

FedZorg.Facturen Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie

Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie.Zorgaanlevering

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie.Zorgaanlevering Declaratiegeneratie

Declaratiegeneratie.WebApplication.Data

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie

DbcViewer.Persistence

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie.Engine.Zorgeenheden

Scripts

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

Declaratiegeneratie.Service.NCasso Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie.Engine.Zorgeenheden

DotForce.Web DbcViewer.Persistence

NCasso

Zorggroepen

EDP

Figure 5.8: Logical coupling of FinCare repository grouped by FinCareClaim applications

96 Chapter 5. Casestudy: risks at FinCare

DbcDot.Afsluitregels

Declaratiegeneratie.WebApplication.Base Declaratiegeneratie

Calculus.WebApplication.Data Calculus.Vip.WebService.Server.Mock

DbcViewer.Persistence DbcViewer.Silverlight

DbcDot.Execution DbcViewer.Silverlight

Declaratieverwerking.WebApplication Calculus.Vip.WebService.Client

Declaratiegeneratie.WebApplication Declaratiegeneratie.Zorgaanlevering

DbcViewer.Silverlight.sln

Calculus.WebApplication.Data Calculus.Vip.WebService.Client

Declaratiegeneratie.WebApplication.NCasso Declaratiegeneratie

DotForce.Controle.Service

DbcDot.Webservice DbcViewer.Persistence DbcViewer.Silverlight

Calculus.WebApplication.Data Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client

Declaratieverwerking.WebApplication Calculus.WebApplication.Data Calculus.Vip.WebService.Server.Mock

Declaratiegeneratie.WebApplication.Zorggroepen Declaratiegeneratie

Declaratiegeneratie.WebApplication Declaratiegeneratie

DotForce.Controle.Execution

DotForce.Controle.Execution DotForce.Web

Declaratiegeneratie.WebApplication.Data Declaratiegeneratie

Declaratieverwerking.WebApplication Calculus.Vip.WebService.Server.Mock

DbcViewer.Web

DotForce.Controle.Service DotForce.Web DbcViewer.Persistence

Declaratieverwerking.WebApplication Calculus.WebApplication.Data

DbcDot.GrouperTree

Declaratiegeneratie.Engine.Facturen Declaratiegeneratie

DotForce.Controle.Execution DotForce.Controle.Service DotForce.Web

FedZorg.Facturen
Declaratiegeneratie.Export

DbcViewer DbcViewer.Silverlight

Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client

Declaratiegeneratie.WebApplication

Declaratiegeneratie

Declaratiegeneratie.Service

Declaratieverwerking.WebApplication Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client.Test

Declaratieverwerking.Engine.BeoordelenDeclaratieBerichten

Declaratieverwerking.WebApplication Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client

Calculus.WebApplication.Data

DbcViewer DbcViewer.Persistence

DbcViewer.Parsing

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie.WebApplication.Zorggroepen

Calculus.Vip.WebService.Server.Mock

Declaratiegeneratie.Engine.Zorgeenheden

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie.WebApplication

DotForce.Controle.Execution DotForce.Controle.Service

Declaratieverwerking.WebApplication Calculus.Vip.WebService.Client.Test

DbcViewer.Parsing DbcViewer.Silverlight

Declaratieverwerking.Process

DotForce.Controle.Service DbcViewer.Persistence

DotForce.Controle.Service DotForce.Web

Calculus.Vip.WebService.Client.Test Calculus.Vip.WebService.Client

Calculus.Vip.WebService.Client

Declaratiegeneratie.WebApplication.Base Declaratiegeneratie.WebApplication

Declaratiegeneratie.WebApplication.Data Declaratiegeneratie.WebApplication

Declaratiegeneratie.WebApplication.Area.Financieringen.HA.Simple

Declaratiegeneratie.WebApplication.Area.Financieringen.HA.Simple Declaratiegeneratie

DotForce.Controle.Execution DotForce.Web DbcViewer.Persistence

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie.WebApplication.NCasso

Declaratiegeneratie.Engine.Facturen

Declaratiegeneratie.WebApplication.Area.Testpages Declaratiegeneratie

DbcDot.Webservice

Declaratiegeneratie.Engine.Bundels

DbcDot.Webservice DbcViewer.Silverlight

DbcViewer DbcViewer.Persistence DbcViewer.Silverlight

DbcViewer

Declaratieverwerking.WebApplication

Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client.Test

DbcDot.Webservice DbcViewer.Persistence
DotForce.Web

DotForce.Controle.Execution DbcViewer.Persistence

DotForce.Controle.Execution DotForce.Controle.Service DbcViewer.Persistence
DbcViewer DbcDot.Webservice DbcViewer.Silverlight

DbcViewer.Web DbcViewer.Silverlight

Calculus.WebApplication.Data Calculus.Vip.WebService.Client.Test

DbcViewer DbcDot.Webservice DbcViewer.Persistence

Declaratiegeneratie.Workflow

DbcDot.Execution DbcDot.Webservice

Calculus.WebApplication.Data Calculus.Vip.WebService.Server.Mock Calculus.Vip.WebService.Client.Test

DbcDot.Execution

Declaratiegeneratie.sln

Declaratiegeneratie.WebApplication.Zorggroepen.Data Declaratiegeneratie

Declaratiegeneratie.WebApplication.Base Declaratiegeneratie.Zorgaanlevering

DbcViewer DbcDot.Webservice

Declaratiegeneratie.Zorgaanlevering

DbcDot.ExecutionService

Declaratiegeneratie.WebApplication.Data

Calculus.Vip.WebService.Client.Test

Declaratiegeneratie.WebApplication.Ncasso.Data Declaratiegeneratie

DbcViewer.Persistence

Declaratieverwerking

Scripts

Declaratiegeneratie.WebApplication.Base Declaratiegeneratie.WebApplication.Data

DbcDot.Execution DbcViewer.Persistence

Declaratiegeneratie.Engine.Bundels Declaratiegeneratie

Declaratiegeneratie.WebApplication.Base

Declaratiegeneratie.Web.Area.Beheer

Declaratiegeneratie.WebApplication.Area.Testpages

DbcViewer.Silverlight

Declaratiegeneratie.Engine.Zorgeenheden Declaratiegeneratie

DotForce.Web DbcViewer.Persistence

Declaratieverwerking Calculus.WebApplication.Data

NCasso

Zorggroepen

Figure 5.9: Logical coupling older than 1 year ago

5.3. Relevant risks 97

§ 5.3 Relevant risks

5.3.1 Introduction

In this section we discuss the risks from section 3.4 and assess their relevancy. The goal is to make
a short list which then can be used to find suitable mitigation approaches. We define relevancy
in terms of the dimensions impact and likelihood of occurrence. We have each dimension a value
on a 5-point ordinal scale (very high, high, medium, low and very low).

5.3.2 Discussion of risks

#1 Risk of operating in a volatile market The teams in general have short lines with
their customers. This means that when there are market changes, the news and effect ripples
very fast to FinCare. Also, a volatile market is the core value proposition for the customers of
FinCare. Their products are based around managing complex and changing business rules in the
health care domain. However, while it may impact the individual products, it does not affect the
shared codebase that much. Rather, the products have a wide variety of configuration options
to capture these kind of changes. So the likelihood is very high, but the impact is medium,
hence the overall relevancy is high.

Likelihood: Very high. Impact: Medium. Relevancy: High.

#2 Risk of stakeholder influence The lines with customers are short. Customers com-
municate frequently with not only the product owners, but also with analysts and sometimes
developers. Changes therefore can easily slip into the development cycle this way making the
likelihood high. The impact would be high if this caused a lot of additional work to be done
which would affect code quality. But at FinCare everyone is smart enough to know how to
balance customer relations and code quality. They know when to say no. Nevertheless, the
commercial aspect is still very important. Saying yes to some additional feature because of the
prospect of strengthening the relation can have impact on other products, and with the current
customer relations that is a realistic scenario. We think however that this is managed very well
at FinCare, hence the impact is low giving this risk a medium relevancy.

Likelihood: High. Impact: Low. Relevancy: Medium.

#3 Risk of time-to-market pressure One of the reasons customers like to work with Topi-
cus is that they are fast and flexible. But because of their iterative development approach, there
is always a deadline on the horizon where the teams are expected to deliver a new release. For
FinCareClaim SaaS new customers are already on the horizon, promises made, so the pressure
is high. The impact would be high if for that reason design choices are made which compromises
the quality and re-useability of the codebase. Because FinCare mostly works with fixed price
contracts, the functionality to implement in the next couple of releases for the large part is fixed.
Additional work then always asks for compromises.

Likelihood: High. Impact: High. Relevancy: High.

#4 Risk of evolving standards The products of FinCare use a number of standards, which
may change, but the chances of this happening are very low. If a standard changes, the impact
of the change very much depends. The standards with the most impact have the least chance
to change. For the rest, the products can deal with a lot of changes with small adjustments or
utilize configuration options.

Likelihood: Very low. Impact: Medium. Relevancy: Low.

98 Chapter 5. Casestudy: risks at FinCare

#5 Risk of political aspects In the health care domain from time to time laws and regu-
lations may change, which may affect all products at FinCare. For these kind of changes, the
flexibility of the configuration of the work-flow manager can capture such changes. While some
developments can have a severe impact on the products, the impact is medium for the shared
codebase.

Likelihood: High. Impact: Medium. Relevancy: Medium.

#6 Risk of business philosophy focusing on short-term goals For the frameworks at
FinCare there is an attitude to do some investment up-front to have a stable product, but when
the first customer(s) come into sight, the focus shifts to delivering the product. For FinCare-
Claim SaaS some customers are on the horizon, and the product is parallel being implemented
for these customer and for further customers. Having short release cycles and a road-map with
a short scope does not stimulate careful platform planning and design for reuse. Concessions
on the design, less refactoring, more potential code-smells then can be the result. Less is the
risk of loosing the financial investment when the roll-out after the invest-period proves not to
be profitable, but since they have a number of good prospects the impact is medium. This can
change however if the number of products to deliver increases.

Likelihood: Very high. Impact: Medium (now). Becomes more important if the amount of
products increases. Relevancy: Medium (now).

#7 Risk of business value thinking This risk is relevant if there is an attitude towards reuse
and platform design that it should be convenient in both effort and financial terms. At FinCare
there is little focus on achieving high levels of reuse, while there may be enough opportunity.
This is because framework code refactoring or reuse for other applications than yourself does
not directly show any benefit. In that sense, the likelihood for this risk is high for FinCare.
The impact is also high, since the number of products to manage only will increase over time.
FinCare is attracting a good number of new prospects, hence if no time is spent on designing
for reuse it may jeopardize the quality of the codebase in the future.

Likelihood: High. Impact: High. Relevancy: High.

#8 Risk of prioritizing on mainstream product This risk becomes relevant when there
is a clear platform with one mainstream product. The FinCareClaim platform not really has
a main-stream product, so in that sense the risk has a low relevancy. However, from the per-
spective of all the packages combined, the FinCareClaim platform as a whole compared to the
other products has a relative large stake in the shared codebase. The more important FinCar-
eClaim becomes financially for FinCare, the more there is chance that fixes, updates or other
modifications are done from a perspective of FinCareClaim, but which affect the other products.

Likelihood: Low. Impact: Low. Relevancy: Low now, increases with financial stakes of the
FinCareClaim platform.

#9 Risk of changing the business strategy FinCare has a stable position in the market,
but they cannot afford to sit still. However, aggressive marketing is not required. There are a
good number of prospects and stable customers. Also, there is little depending on third parties
which FinCare has to follow.

Likelihood: Very low. Impact: Medium. Relevancy: Low.

#10 Risk of reusing immature components The main modules of FinCareClaim have
been under development for 2-4 years. They reached a level of maturity where they are reusable
and stable. So prematurely reusing them is not an issue. It may be an issue for events, since

5.3. Relevant risks 99

they are constantly under change, but this is on such a low-level scale that it is comprehensible.
The likelihood of this happening is medium, since modifications on them are made from time
to time, but no heavy re-designs. The impact of the external packages on this topic is more
difficult to predict, since you then would have to know the ‘maturity’ of all the used packages.
While from time to time these packages are updated which can cause some daily frustrations,
the impact seems manageable.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

#11 Risk of unclear requirements Because FinCare has relatively small teams (3-5 per-
sons), and because requirements are used only inside teams, lack of clarity about requirements
are easily resolved. Also the scope of requirements is small since the iterations are short, hence
there is little material to have lack of clarity about. So therefore the relevancy of this risk of
low.

Likelihood: Low. Impact: Low. Relevancy: Low.

#12 Risk of different interpretations of artifacts Level of collaboration outside the
business unit is relatively low. Internally, there of course is plenty of discussing about documents
and other artifacts, but uncertainties are easily solved by shouting around or walking to the
responsible person next door.

Likelihood: Low. Impact: Low. Relevancy: Low.

#13 Risk of goal ambiguity While the teams are small, there is no clear component-level
documentation as to what sub-systems or packages’ functions are. Also the shared components
are managed mostly by a single-person, increasing the risk that the knowledge stays only with
the same person. Yet, the problem is easy to resolve by walking to the person who knows more
about the component. So, therefore the relevancy is medium.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

#14 Risk of scope widening FinCare’s products are not all equally mature and clients are
attracted as much as they can find. Customers are not rejected because a product is not mature
yet, but rather because the capacity is not there. Scope widening therefore can be a risk if
because of the scope widening new functionality is added without looking at well-designed reuse
options. Yet, everyone is capable enough to deal with this and scope widening happens in small
steps. So therefore this is a risk of medium relevancy.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

#15 Risk of scattered functionality Difficult to say. There are different repositories next
to each other, but if you look at the NuGet packages, the relevant ones also editable directly
from solutions. So some packages are both available as compiled packages and as source-code in
the solution. In that sense there is scattered functionality. But mostly the shared functionality
is centralized, so we think there is little scattered functionality.

Likelihood: Low. Impact: Low. Relevancy: Low.

#16 Risk of delocalized plans There is a shared document network drive, but the structure
here really is chaotic. Besides that, this disk is terribly slow. So when design documents are
created or other documents relevant for others, they are stored locally, emailed to relevant
persons and sometimes put on the network disk.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

100 Chapter 5. Casestudy: risks at FinCare

#17 Risk of iteratively changing reuse components In the FinCareClaim SaaS platform
a number of core modules are used by the two main applications CarecoSoft and MedicoSoft.
These modules are modified on a very regular basis. Hence, inside the platform the risk is
already fairly high. On top of that, a large number of packages are shared among the different
projects. Most of these shared packages are used by the FinCareClaim platform. updating such
a package, from the viewpoint of whatever project, has a very high chance if impacting the
FinCareClaim platform.

Likelihood: Very high. Impact: High. Relevancy: High.

#18 Risk of changes in product line assets at the product level Last-minute changes
are common, but for crucial moments, for example at the offspring of a release, a separate
branch is created to prevent other products to break down. So in that sense the risk of things
going horribly wrong is low. However, during development changes at product assets with an
ripple effect to product line assets are very common. The impact in terms of introducing bugs is
manageable, but the impact on code quality and performance is higher. Overall, we think this
is a risk of medium relevancy.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

#19 Risk of enhancement to a cross-cutting concern In terms of mutual change, there
is a tight coupling between FinCareClaim core components and the application-specific compo-
nents. Also, from the packages shared between applications, the FinCareClaim platform uses
almost all of them. Hence, updating such a package from the perspective of FinCareClaim has a
very high chance of having an impact on other applications. So, cross-cutting concerns can easily
pop-up in a tightly coupled codebase, but currently the number of real cross-cutting concerns
are low. The main cross-cutting concern is the workflow-manager and the logging functionality.
If these are updated, the impact is very high, but the chances of this happening are not that
high.

Likelihood: Medium. Impact: Very high. Relevancy: High.

#20 Risk of component granularity We did not conduct an analysis on the granuarity
level of the components, so the relevancy is unknown.

Likelihood: ?. Impact: ?. Relevancy: ?.

#21 Risk of circular dependencies We did not conduct an analysis on the circular depen-
dencies of the components, so the relevancy of this risk is unknown. However, we learned that
C#/.Net does not allow circular dependencies due to the way it handles compilation. So, it is
safe to say that this a low risk.

Likelihood: Very low. Impact: Very low. Relevancy: Very low.

#22 Risk of non-standardized configuration interfaces Deployment configuration is
standardized in templates which are easy to use and is managed by visual studio. While there
are always daily issues, there are not really problems here.

Likelihood: Very low. Impact: Very low. Relevancy: Very low.

#23 Risk of early binding of build-level dependencies NuGet packages are automat-
ically build and updated in the solution via a Visual Studio plug-in. This is all managed by
Visual Studio, so this risk has a very low relevancy.

Likelihood: Very low. Impact: Very low. Relevancy: Very low.

5.4. Conclusion 101

#24 Risk of making a composition by hand Builds are done automatically by Visual
Studio for development or Jenkins for testing. Still, a release at a customer site can involve
custom work like transferring files manually to the correct places. This however has nothing to
do with the shared codebase, hence this risk is not relevant.

Likelihood: Medium. Impact: Medium. Relevancy: Very low.

#25 Risk of making an application/component reusable Currently at FinCare there is
little effort being put in making components reusable, so it is not really a relevant risk. Rather
maybe a missed opportunity.

Likelihood: Low. Impact: High. Relevancy: Medium.

#26 Risk of heterogeneous communication Between teams there is little communication
and definition of any process regarding modifying shared packages, so at first sight this would
seem a highly relevant risk. However, since the work is comprehensive and the guys involved
are skilled, there is no real formal process required. The impact increases with the size of the
codebase which increases with the number of products.

Likelihood: Medium. Impact: Medium (now). Increases with the size of the shared codebase.
Relevancy: Medium (now).

#27 Risk of centralization in group based collaboration networks At FinCare updates
on packages are all done by the senior developer. He can be seen as the gatekeeper. This
means that when there are problems, he suddenly can become very busy. There is little formal
documentation or planning as to what packages are going to get updated. Sometimes there is
email communication about an update, a shout around or he walks around, but what normally
happens is that an update is just pushed and any problems fixed on the spot. The risk is
therefore highly relevant since there is a fair chance that the work, the amount of packages to
manage becomes incomprehensible.

Likelihood: High. Impact: High. Relevancy: High.

#28 Risk of reuse experience level Because of the centralization of responsibility of the
shared code, there is little knowledge sharing on the packages part. So other people without any
experience, get very little chance to gain experience outside their project scope. Also, between
the teams there is no reuse opportunity seeking. Teams work on their own products and while
they work in the same implementation language, people don’t come together cross-teams to
see hey, can we reuse this and that in our application. In irregular intervals (say 1-2 months)
there is a meeting with all developers where usually some general topic is taken to discuss with
everyone. This kind of meetings are opportunities to share knowledge.

Likelihood: Medium. Impact: Medium. Relevancy: Medium.

§ 5.4 Conclusion

In table 5.6 we listed and sorted the risks according to relevancy. There are 6 risks with a high
relevancy and two with a medium relevancy which may become more relevant in the future. We
take these 8 risks as the shortlist:

• Risk of iteratively changing reuse components
• Risk of enhancement to a cross-cutting concern
• Risk of time-to-market pressure

102 Chapter 5. Casestudy: risks at FinCare

• Risk of business value thinking
• Risk of operating in a volatile market
• Risk of centralization in group-based collaboration networks
• Risk of business philosophy focusing on short-term goals
• Risk of heterogeneous communication

This shortlist answers our third question of this study: What are the relevant risks for
FinCare?. In the next chapter we will relate the shortlist to the mitigation approaches found in
the interviews to find suitable mitigation approaches for FinCare.

Risk L I R
17 Risk of iteratively changing reuse components VH H H
19 Risk of enhancement to a cross-cutting concern M VH H
3 Risk of time-to-market pressure H H H
7 Risk of business value thinking H H H
1 Risk of operating in a volatile market VH M H
27 Risk of centralization in group based collaboration networks H H H
6 Risk of business philosophy focusing on short-term goals VH M ↑ M ↑
26 Risk of heterogeneous communication M M ↑ M ↑
5 Risk of political aspects H M M
2 Risk of stakeholder influence H L M
13 Risk of goal ambiguity M M M
14 Risk of scope widening M M M
16 Risk of delocalized plans M M M
18 Risk of changes in product line assets at the product level M M M
28 Risk of reuse experience level M M M
25 Risk of making an application/component reusable L H M
10 Risk of reusing immature components M M M
8 Risk of prioritizing on mainstream product L L L ↑
4 Risk of evolving standards VL M L
11 Risk of unclear requirements L L L
12 Risk of different interpretations of artifacts L L L
15 Risk of scattered functionality L L L
9 Risk of changing the business strategy VL M L
24 Risk of making a composition by hand M M VL
22 Risk of non-standardized configuration interfaces VL VL VL
23 Risk of early binding of build-level dependencies VL VL VL
21 Risk of circular dependencies VL VL VL
20 Risk of component granularity ? ? ?

Table 5.6: Risks according to Likelihood (L), Impact (I) and Relevancy (R)

- Chapter 6 -

Finding suitable mitigation approaches

§ 6.1 Introduction

Up until now we have identified possible risks associated with requirements changes in a shared
codebase environment (chapter 3), we have investigated how different units at Topicus work on
a shared codebase (chapter 4) and from the risks we have made a shortlist of the relevant ones
for FinCare (chapter 5). In this chapter we will answer question 4 of this study: What risk
mitigation approaches are suitable to implement by FinCare to mitigate the potential risks? We
will do this in three steps:

1. Map solutions and best practices from interviews to the shortlist.
2. In-depth discuss best practices and solutions.
3. Determine suitability of approaches for FinCare

§ 6.2 Mapping solutions/best practices to shortlist

From the interviews we have found a number of best practices of working on a shared codebase
and dealing with changing requirements. In this section we try the map these best practices to
the risks from the shortlist.

Risk of iteratively changing reuse components (#17) From the interviews we learned
that the following solutions can mitigate this risk:

• In the case of sharing components with other business units, give other units only read
rights and no commit rights.

• When sharing code across units, work on your own branch.
• Prevent doing small patches in a production environment.
• Have clarity about responsibilities of components.
• Have more knowledge sharing sessions about both the available components and the latest

developments for all applications.

This risk is about changing a component shared among applications in consequent iterations.
What can go wrong here is that one project team can directly affect the codebase of other project
teams. Also, iteratively changing means that the component is in active development, volatile,
hence its functionality may be unstable.

103

104 Chapter 6. Finding suitable mitigation approaches

Dealing with this risk seems to ask for clear responsibilities, code ownership and knowledge
sharing about the contents and activities with respect to the codebase. There are two assump-
tions related to this. The first is that if someone is responsible for a component, modifications
are supervised by this person and any contingencies are managed centrally. The second assump-
tion is if you know enough about all components, you automatically have the required insight
to foresee the impact of changes, hence you can prevent negatively affecting other’s code.

We think that for teams working according to agile principles like the interviewed units, iter-
atively changing components is common practice and therefore implicitly a very highly relevant
risk. So the real problem in this situation is not the iteratively changing itself, but rather that
updates from one day to the other can ripple to another project’s codebase. To prevent this,
versioning your components and consciously releasing them in versions seems a better and more
direct solution. Interviewees at unit A indicated actively thinking about doing this and unit B
already does so.

Risk of enhancement to a cross-cutting concern (#19): From the interviews we learned
that the following solutions can mitigate this risk:

• In the case of sharing components with other business units, give only read access and no
commit rights.

• In the case of sharing components with other units, it is preferred to work physically in at
least the same building.

• Use selenium tests to guarantee front-end stability and unit tests for core components and
core web-services to guarantee core component stability.

• Make automatic nightly snapshot builds on the development environment with automatic
execution of tests.

• Have more information about upcoming updates on external components.
• Implicitly test shared components using regression tests.
• Have a core component team responsible for development and maintenance of the shared

codebase.
• Have more information in advance about upcoming changes.
• Have more communication about updates on the shared codebase.
• Have more unit tests and more knowledge as to how to structure and approach testing.

The most direct problem associated with this risk is the same for the previous risk. When
a cross-cutting concern is updated, it has a very high change to ripple through the codebase to
other applications if the cross-cutting concern is implemented in a shared component.

Since a cross-cutting concern is more a technical problem than the previous risk, the solution
of relying on automatic and implicit testing is logical. Knowing about upcoming updates or
having someone responsible for a component does not directly help to mitigate this risk, but it
supports the development process which indirectly helps mitigating this risk.

Risk of time-to-market pressure (#3) From the interviews we did not found any direct
best practices regarding this risk.

The first problems related to this risk is an increase of technical debt. Technical debt
is a metaphor used to describe the incremental postponed work for short-term gain in agile
development environments (Brown et al., 2010). The second problem underlying this risk is
employing a platform in production while its components are still immature and a decrease of
re-usability of platform components.

6.2. Mapping solutions/best practices to shortlist 105

Risk of business value thinking (#7) From the interviews we learned that the following
solutions can mitigate this risk:

• Have a vision on asset reuse.
• Get support from top management for resource allocation for reuse activities.

The problem with business value thinking are the same as with the previous risk, but have
a different cause. Business value thinking has directly to do with the culture and management
support for resources spent on platform development. When there is no support from top
management to spent time on platform development (making components reusable, refactoring,
updating), project teams will simply not spent time on it if there it is not in the scope of meeting
their own project goals.

Risk of operating in a volatile market (#1) The main problem associated with this risk
is having to adapt your products because of changes in the market. From the interviewees no
concrete solutions for this problem were discussed. However, as indicated before, for FinCare
the aspects of this risk which have an impact on the codebase are dealt with using the workflow
manager (process configuration). So while the risk is highly relevant, a good solution is already
available for FinCare. We therefore exclude this risk.

Risk of centralization in group based collaboration networks (#27) From the inter-
views we learned that the following solutions can mitigate this risk:

• Everyone can edit COBRA components.
• COBRA is of, by and for everyone, creating a social self-regulating system.
• Have a contact person for certain components.
• Have a core component team responsible for development and maintenance of the shared

codebase.

For this risk the associated problem is having a bottleneck in the development process on the
shared codebase. The solutions all suggest to spread the responsibility of the shared components.
For example to allow editing on the shared codebase by everyone, relying on a social self-
regulating system to assure code quality. The problem with this approach is that it is difficult to
know who is working on what component and what components are used where. This is tackled
by the suggestion of some interviewees to have a contact person for a number of components.
We think that making this person responsible for the component is not a good idea, rather he
should be the expert for some components, to whom people can go to for help or information.

Risk of business philosophy focusing on short-term goals(#6) From the interviews we
learned that the following solutions can mitigate this risk:

• The positive side of having a actively developed shared codebase are always overshadowed
by the the negative aspects or experiences. Having more awareness of why there is a
codebase stimulates reuse, design for reuse and common ground for resource allocation.

• Support from top management for resource allocation for platform development.

The problems with business value thinking are the same as risk 3 and 7. But, as with risk
7 the cause is slightly different. A business philosophy is more abstract than time-to-market
pressure and business value thinking and has more to do with the prevailing development culture,
the ‘mind-set’ of the teams. Support from top management then is a logical and important

106 Chapter 6. Finding suitable mitigation approaches

solution, but if there is no culture of ‘having and investing in reusable assets is something we
value highly’, then there still will be a lot of technical debt, usage of immature components and
lack of reuseability. Multiple interviews mention that the negative stories of reuse, the obvious
stigmas of ‘what’s in it for us’, ‘costs a lot of time’, ‘no direct visible value’ overshadow the
benefits, which for products with a SaaS delivery model are very large.

Risk of heterogeneous communication(#26) From the interviews we learned that the
following solutions can mitigate this risk:

• Have a dedicated person for shared components.
• Separate development, support and implementation in different organizational parties to

enforce separate responsibilities.
• Give everyone write permissions to to the component to support a social self- regulating

system.
• Have a gatekeeper for codebase modifications.
• Send emails when updating some component.
• Have self-responsibility for communicating changes and writing of unit tests.
• Have more awareness that when large modifications are done, this can have an impact

besides your own project scope.
• Have more communication when someone is changing a shared component.
• Be physically located close to other users of your code.
• Have a contact person for important shared components.
• Have a core component team.
• Have a component leader.

The main problem behind this risk is that there is no communication about updates resulting
in less time and thus opportunity for developers to anticipate for the change. The solutions
scream all the same: either have no process and rely on the awareness and professionalism of
your developers to inform people when updating components or have a clear policy of what to
communicate to whom when updating some shared component, depending on who is responsible
for components. The notion of wanting a component leader or some core component team sounds
more like a lack of process than a direct solution.

§ 6.3 Discussion of mitigation approaches

From the shortlist of risks and the mapped mitigation approaches we notice that a requirement
change on a shared codebase encompasses 3 solution domains: dealing respectively with technical
implications, organizational culture and communication and collaboration issues. In this section
for each of these solution domains we will:

• Give a causal diagram to show the relation between solutions, problems and risks.
• Discuss to what extend the solutions can help in solving the problems, supported by results

from a questionnaire conducted at FinCare.
• State recommendations both for FinCare and Topicus.

6.3.1 Questionnaire

In the next sections causal diagrams will be used to show the relation between solutions, problems
and risks. For each problem and solution we have defined one or more statements which we asked

6.3. Discussion of mitigation approaches 107

everyone at FinCare to evaluate according to a 5 point Likert scale. For each statement we will
show the Net Promoter Score (NPS) which is the net percentage of positive (totally agree and
agree) minus the percentage of negative (totally disagree and disagree) scores. The detailed
results for each statement can be found in Appendix C.

6.3.2 Dealing with technical implications

The technical implications are the every day issues when updating code from a shared codebase.
For FinCare two risks are associated with this: the risk of iteratively changing reuse components
and the risk of enhancements to a cross-cutting concern. Three problems are related to these
risks: lack of stability of component functionality, unintentionally rippling of changes to other
applications and a lack of knowledge about the impact of a change. In Table 6.1 we see a lot
of support for the associated statements, indicating that this already currently are issues for
FinCare.

The direct solutions from the interviews for this are versioning of components and writing
unit tests for core platform components and web-services. In section 2.3.4 we also gave an
overview of different impact analysis methods, which indirectly also helps dealing with the
associated problems. The relation between solutions, problems and risks is given in a causal
relation diagram depicted in Figure 6.1.

Risk of
iteratively

changing reuse
components

Risk of
enhancement to
a cross-cutting

concern

Coverage of unit
tests of web

services

Coverage of unit
tests of core
components

Chance of change
unintentionally

rippling to other’s
codebase/

applications

Lack of stability
of functionality
of a component

Versioning of
components

+

+

+-

-

-

-

Conducting
impact analyis

of change

Lack of
knowledge of

impact of
change

+

-

+

Figure 6.1: Causal relation diagram of dealing with technical implications

6.3.2.1 Versioning

Versioning components yields two things: 1) it ensures that changes do not directly ripple to
other applications and 2) it enforces to plan ahead for modifications on components. Both

108 Chapter 6. Finding suitable mitigation approaches

Problem Statement NPS
Dealing with technical implications
Chance of change uninten-
tionally rippling to other’s
codebase

Components which I use are often updated by oth-
ers outside my project team.

60,00%

Conducting impact analysis of
change

When I push a modification to a component I’m
certain that no defect is introduced in another ap-
plication.

-57,14%

Lack of knowledge of impact
of a change

When I push a modification to a component I’m
certain of the impact for other applications.

-42,86%

Table 6.1: NPS of problems dealing with technical implications

make sure that components in some version are stable; they will only change when their version
is updated. Currently versions are given to NuGet packages, but just giving a component a
version number is not enough to assure code stability. As indicated by (Stuckenholz, 2005),
version numbering alone are not expressive enough. Only when a consistent component release
model is used stating when a change should trigger a new version, versioning contributes to
component stability.

6.3.2.2 Testing

In all interviewed units, it is the responsibility of the individual developer to write unit tests
when they think it is necessary. For the interviewed units there doesn’t seem to be a testing
policy. The result is that interviewees found it difficult to estimate how much test coverage
there is. Also, multiple interviewees indicated that the test coverage is low and more testing is
always better. However, making the trade-off between writing extensive unit tests and finishing
the bugs and features for some upcoming release mostly results in the latter.

Having complete code coverage does not seem to be a requirement, most developers are
smart and pragmatic enough to tackle bugs and problems fast enough. However a desire seems
to be to have at least automated unit tests for the core components for a platform. What units
do now is rely on regression testing (following a test script to test a list of test cases), which
then indirectly invokes the components.

6.3.2.3 Impact analysis

Visual Studio allows for dependency analysis, but only from the active solution. It never enables
you to show the complete picture. From all the methods above, at FinCare only call graphs
and to some degree dependency analysis is utilized, but as said only from the perspective of the
active solution. With the diagrams from chapter 5.2 we were able to get much more insight in the
internal structure from the code than from all tools available for Mercurial and Visual Studio.
Techniques like execution traces, program slicing and probabilistic models are not relevant for
FinCare and Topicus, but history mining and architectural models are. Visualizing architectural
changes and decompositions can give fast insight in the impact of requirements changes on a
shared codebase. For Ecplise and Java experimental tools like Ariadne exist which focus on
visualizing socio-technical dependencies (de Souza et al., 2007).

6.3. Discussion of mitigation approaches 109

Solution Statement NPS
Dealing with technical implications
Component versioning Versioning components is a good approach to as-

sure component stability.
70,59%

Coverage of unit tests of web
services

Striving for complete code coverage of shared web
services is a good approach to prevent unintended
effects in web services in other applications.

37,50%

Coverage of unit tests of core
components

Striving for complete code coverage of unit tests
for core components is a good approach to assure
stability.

37,50%

Conducting impact analysis
of change

When modifying a component I’d like to know bet-
ter what applications use this component.

58,82%

Table 6.2: NPS of solutions dealing with technical implications

6.3.2.4 Producer-consumer

Within the Topicus holding, small groups of units may collaborate on shared components. In
theory all units should be able to share components with each other, but since 1) units use
different implementation languages, 2) units use different repository software (central version
control like Mercurial, SVN or GIT) and 3) units do not standard have read-access to each
other’s repositories, there is little sharing of functionality in general.

Also, the incentives for sharing with everyone are low. Units operate in different domains,
have different customers, units are separate companies working rather isolated from each other,
so why should they? Topicus is a lean company, overhead is a black term. Having to make
agreements about working on code together smells like overhead, so we don’t want it; that is the
overall tenancy. One unit, unit A, has solved this by saying: hey you can use our components,
but we give no guarantees, it is your responsibility if you use them. But since they not actively
communicate about changes, or advertise the nice components they have built, only one unit is
using some of their components.

Unit B on the other hand actively works together with unit C and with FinCare on some
functionality. Between unit B and C there is merging of code in both directions. There are some
occasional frustrations, but overall it goes well. So, why does this work? Because unit B and C
visibly have an overlap in functionality, they share domain-specific assets in which both have a
stake. However, the components they share are generic for their application domain only. For
generic components suitable for all domains, without any relation between two units, the other
units would 1) either not know about such component or 2) don’t want to hassle of coordination
between the units and build it themselves.

We argue that units should be able to publish and advertise domain-generic and overall-
generic components in an easy way for other units to reuse. Units should be stimulated to version
components and ‘release’ them. Consumers of the components should be (automatically) notified
and make their own judgment as to pull the update or not. The responsibility of using such
components lays with the consumer, the producer only should develop with the intention to keep
components as generic as possible, provide documentation and advertise the goals and purpose
of the component. This involves little overhead, but a lot of reuse opportunity. Currently, there
is no such mind-set in Topicus. A pity, since it would bring together a lot of knowledge and
stimulate innovation. For more on reuse models, see (Fichman and Kemerer, 2001) and (Bosch,
2001).

110 Chapter 6. Finding suitable mitigation approaches

6.3.2.5 Recommendations for FinCare

Firstly, we think that releasing components in versions is a common practice which can greatly
reduce any ripple effects for the FinCareClaim platform and enforces a slightly more structured
approach in developing a software product line. In Table 6.2 a high NPS (70,59%) is given for
the associated statement, so there is already agreement that component versioning is a good
idea.

Secondly, we stated that having unit tests for all core components with a high level of
coverage is a good idea since it is reduces the risk of unintentionally breaking something down
in another application. In that respect, the results from the questionnaire are less positive (NPS
of 37,50%). A few respondents commented that having high levels of unit tests is always better,
but not always feasible or really necessary. So this should be a situational judgement. The
same response was received with regards to unit testing web services. Currently FinCare has
no sharing of components with other units, so the solutions related to that are not relevant for
FinCare, but rather for Topicus as a whole. In short:

• Incorporate component versioning for the core platform components
• Strive for a high coverage level of automatic unit tests on the core platform components

6.3.2.6 Recommendations for Topicus

• Stimulate sharing of components by incorporating one type of version control for all busi-
ness units in the holding, for example mercurial or GIT.

• Stimulate sharing of components by giving all units read-access of all repositories.
• Have units ‘deliver’ generic, sharable components in versions. The policy should be simple:

others can use components, updates are communicated to all consumers and units should
intent always to make components as generic as possible, but the responsibility is with the
consumer. Consumers must be able to fork their own version at all times.

6.3.3 Dealing with organizational culture

Three risks are related to organizational culture and have very much to do with each other: risk
of time-to-market pressure, risk of business value thinking and the risk of business philosophy
of focusing on short-term goals. The reason they are related is because they all have the
same underlying problems: the usage of immature platform in production, lack of reusability of
components and technical debt.

From the results of the questionnaire we see that there is disagreement about the immaturely
using a platform in production: 6 agree, 4 neutral and 6 disagree giving a NPS of 0,00%. There
is medium agreement about the reusability of the components (NPS 50,00%) and low agreement
about the existence of technical debt (NPS 23,53%). This supports our statement that currently
the problems are comprehensible, but from our analysis of the codebase we found that due to
the high level of coupling of the FinCareClaim applications, the relevancy will increase with the
size of the platform and the number of supported applications.

From the interviews we found 3 solutions for these problems: propagation of a positive
attitude towards reusable assets, support from top management for resource allocation and a
fair and transparent billing of platform activities. The relation between solutions, problems and
risks is given in a causal relation diagram depicted in Figure 6.2.

6.3.3.1 Propagation of positive attitude towards reusable assets

Cost transparency For work on a shared codebase it is difficult to be both transparent
about costs to your customers and fairly distribute costs among teams. We see two kind of cost

6.3. Discussion of mitigation approaches 111

Problem Statement NPS
Dealing with organizational culture
Usage of immature platform
in production

At FinCare a platform is put into production too
soon, with too many open issues.

0,00%

Lack of reusability Components at FinCare are reusable and directly
employable in other projects.

50,00%

Technical debt At FinCare refactoring and code cleaning is pushed
forward or postponed a lot.

23,53%

Table 6.3: NPS of problems dealing with organizational culture

Risk of time-to-
market pressure

Risk of business
value thinking

Risk of business
philosophy focusing
on short-term goals

Support from top
management for

resource
allocation

Usage of
immature

platform in
production

Technical debt

Lack of
reusability of
components

Propagation of
positive attitude
towards reusable

assets

- +

Fairness and
transparency of

billing of platform
activities

Figure 6.2: Causal relation diagram of dealing with organizational culture

transparency problems.
The first is cost transparency for customers. In the case of a software platform with multiple

products each with their own group of tenants, how do you bill costs on a component shared
among the products? If you are very transparent on the billable hours, customers can argue
that they don’t want to pay for work effort which is not directly related to the features and
service activities they signed for. Customers don’t care about the very generic setup of your
codebase which makes it easier to roll-out new products. In order to make sure that there is
a clear budget for platform work, regardless of who (some customer or developer) initiated the
work, there must be a dedicated budget for this payed via the license fees. To customers, it
must be made clear that this is just what makes a SaaS solution cheaper in the long run.

The second transparency problem is transparency of cost sharing among project teams. What
happens in practice is that work effort on a component is initiated from a particular project,
because they need some modifications for their product. From that point, all work effort which
also is of benefit for other project teams is done by the initiating team. This means that they
ought to pay for the work effort as well. It comes right from their budget, hence it impacts
their project performance. If there is no equal give-and-take among teams of this kind of work
effort on the shared codebase, the cost distribution can becomes unfair. Teams are less willing

112 Chapter 6. Finding suitable mitigation approaches

to invest actively in generic code for sharing if other teams don’t do it. Business units must
have a clear hour billing policy for internal investments in platform code.

Reuse opportunities New functionality is constantly written and it is very doubtful that
every method written is completely unique in what functionality it offers. Duplicated function-
ality is a fact, even more in a situation where business units work individually next to each
other. Spotting reuse opportunities therefore could be a very resourceful activity, both in terms
of knowledge and time, both inside a business unit and between business units. From interviews
we learned that in a unit having regular sessions with developers from different teams already
stimulates this, as long as it is a recurring item. In unit A everyone can contribute to the shared
codebase, but since there is little knowledge sharing about what is already available, generic
made components stay anonymous and the number of contributions grows larger and larger, of
which the larger part is never reused.

Opportunity for reuse has two categories: reuse of application modules (e.g. a user manage-
ment module) and reuse of generic components (e.g. a automatic form generator from a database
structure). For the first, the opportunity is easier to spot and often a better case can be made to
allocate resources. Also, advertising of such components is not required since they are only used
in some project or product-family. For the second category, a case is harder to make because of
the refactoring reasons stated earlier. Also, these components are easier forgotten if not actively
used by other products.

We think that the everyone-can-contribute attitude of unit A is good for the second category
of reuse, with the addition that newly added components are discussed in plenary sessions to
get feedback from others and advertize its existence. For the first category, the everyone-can-
contribute attitude is not important, rather you must look at your domain and try to spot
generic opportunities in the desires and feedback customers provide. This is something unit B
currently actively does, unit A has this outsourced to its implementation partner.

6.3.3.2 Support from top management

From the interviews we learned that time spent on refactoring is found to be ‘too little’. We
argue that this is because of self-preserving reasons. Refactoring is only initiated when it di-
rectly benefits the product someone is working on. Otherwise, because of the short release cycles
and tight planning (or lean development), there is always something directly beneficial for the
product to do. Moreover, refactoring of shared components implies that you are taking a risk
affecting and breaking down other applications outside the scope of your own project and spend-
ing project resources on other projects. In a culture where costs are transparent to customers
and time-to-market is fast, this discourages refactoring. Who pays for reuse effort? Support
from top management is needed allow resource allocation for platform development.

6.3.3.3 Recommendations for FinCare

For FinCare ‘top management support’, or ‘cost-transparency’ are not direct usable solutions.
Cost transparency is not always feasible when you are happy enough to get some customer to
sign a new contract for a few months, which is the case for FinCare often enough. Their products
are not in the life-cycle phase like the products of unit A and B where cost transparency is easier
to achieve because of the supplier bargaining power of the units.

In the questionnaire (see Table 6.4) when asked about hour billing respondents did not
indicate really any problem here. Rather we would say this is something to consider in the near
future when products of FinCare have a more stable position in the market.

6.3. Discussion of mitigation approaches 113

Solution Statement NPS
Dealing with organizational culture
Propagation of positive atti-
tude towards reusable assets

I would like to see a more positive attitude with
respect to reusable components.

5,88%

Support from top manage-
ment for resource allocation

Enough time is available for personal initiatives to
improve components.

6,25%

Fairness and transparency of
billing platform activities

I can honestly justify hours spent on components. 54,55%
Towards customers hours spent on components can
be justified in good fashion.

42,86%

Table 6.4: NPS of solutions dealing with organizational culture

But we would say that there should be more collaboration between the teams. There is
no active reuse opportunity seeking cross-projects and project teams know little about each
other’s road maps, while they certainly have an overlap in their codebase. While there is no real
agreement about the desire for a more positive attitude with respect to reusable components
(NPS 5,88%), there also is low agreement with respect to enough room for initiatives (NPS
6,25%). We therefore suggest the following:

• Try to, in collaboration with each other, regularly and actively find reuse opportunities
spanning the different applications. For example, by making it an agenda point for plenary
sessions or developer meetings. Also, share newly created components with each other.
Present them, discuss them. Make sure resources are made available to allow development
of such components.

• Allow more time and freedom for refactoring and uncoupling of FinCareClaim-components.
Currently they are tightly coupled, actively under change and form a risk since they are
the core functionality.

• Involve more people in the development and maintenance of the NuGet packages
• Propagate the planning and road maps of products more actively to everyone in the unit.

Since the scope may be medium in size, it is important to communicate it as fast as
possible. Any contingencies on a higher, product design level can be anticipated on faster.
Also, knowing what the other project teams are up to makes it easier to bring up ideas for
the shared codebase.

6.3.3.4 Recommendations for Topicus

• Develop a Topicus-wide policy for billing non-project dedicated hours as part of a stan-
dardized SaaS delivery model. Stimulate sharing of experiences of hour logging/billing
for refactoring or, non-project dedicated efforts. How to bill this, have a healthy business
model and still be transparent to customers?

6.3.4 Dealing with communication and collaboration

Two risks are related with dealing with communication and collaboration issues: the risk of cen-
tralization in group-based collaboration networks and the risk of heterogeneous communication.
The underlying issues here are the amount of bottleneck in the development and the amount
of communication about codebase updates. The relations of the solution for these issues are
depicted in a causal relation diagram in Figure 6.3. From we the questionnaire we see that there
is disagreement with respect to communication and collaboration. While the NPS values (see

114 Chapter 6. Finding suitable mitigation approaches

Table 6.5) are rather neutral, this is because the number of agrees and disagrees counter each
other (see Appendix C) rather well.

Risk of
centralization in

group-based
collaboration

networks

Social self-
regulation of

codebase

Bottleneck in
development

process

Number of core
components with
a contact person

Risk of
heterogeneous
communication

Lack of
communication
about updates

Lack of time and
opportunity to
anticipate for

changes

+

-

-

Clearness of
communication

policy for
component

updates

Awareness of
responsibilities of

working on a shared
codebase in terms of

communication

-

-

+

+

Amount of people
who can contribute

to the codebase

Having a
gatekeeper or

platform
champion

+

+

+

Figure 6.3: Causal relation diagram of dealing with communication and collaboration issues

6.3.4.1 Social self-regulation of codebase

Social self-regulation of the codebase means that you rely on the professionalism and skills
of developers to assess the impact of some modification and handle accordingly. Also, it is
considered professional to spot reuse opportunities and take initiative to make the team or
other teams aware. This only works in an environment where everyone has write access on the
shared components. All this requires communication guidelines (what to communicate when to
whom) and awareness of responsibilities. Also, a central person of authority, a reuse champion or
a codebase gatekeeper should have the role of expert, checking for quality. Such a person should
not have end-responsibility for the codebase, that should always be with the team or developer

6.3. Discussion of mitigation approaches 115

Problem Statement NPS
Dealing with communication and collaboration
Bottleneck in development
process

Modifications on components are always done by
the same person.

-12,50%

I know who to notify when I modify a component. -7,69%
I always notify the correct people when modifying
a component.

-8,33%

When a component is modified, people inform each
other well.

-25,00%

Lack of time and opportunity
to anticipate to changes

When a component is modified I have enough time
in advance to deal with the potential impact of the
change.

31,25%

Table 6.5: NPS of problems dealing with communication and collaboration

conducting the modification. This is a rather vague solution, but we will try to explain below
by discussing the mentioned aspects.

6.3.4.2 Contact person for components

If there is a central person of authority sitting on the shared codebase, units must be careful. A
central, senior person can be a champion in the sense that other developers follow his example
and come to him for advice and help. However, if this single person alone is responsible for the
design and implementation of the reusable assets, then there is the risk of a bottleneck in the
development process. A single person dictating the interests of all applications is an unhealthy
situation. Rather, an advisory role and stimulating reuse from a code quality perspective is
favored.

6.3.4.3 Communication

When a requirement changes, a component is updated, a web-service is altered, other applica-
tions and people may depend on it and thus are affected. Informing them then is not only a
courtesy, but also may be vital to the business if some application becomes defect because of
the change. The question then is, to whom to communicate the change, when and what to say.
Not everyone may be interested in the change, you might not even know who is interested. Even
if you would know everyone in the organization who would be interested in knowing about the
change, what to communicate? Can they respond, do they have a saying in the change? When
to communicate, before the change? After?

Also, from the interviews we learned that mental and physical barriers prevent good lines
of communication. Having to walk to ‘the guy in the next room’ is a large enough barrier not
to communicate. Having to walk 5 minutes to the next building to check something before
changing something is a large enough barrier not to communicate, or inefficiently spent time in
composing and responding to email.

Regardless of the nature of the change, three important elements seem coming back: knowing
who to communicate to, by what means and what to communicate. The first question can be
answered by 1) knowing what application and assets are affected by the change and 2) knowing
who works with/on these assets. The second question is a matter of personal preference or unit
culture or can be, combined with question 3, part of a unit’s policy of communicating change.

Not only when actually making the change communication is desired, but also in advance.
Knowing when updates can be expected so that teams can prepare. Also, communication of

116 Chapter 6. Finding suitable mitigation approaches

plannings allow teams to probe for the change, asking around about it. On a more higher level,
communicating road-maps of applications allows teams to design for reuse.

6.3.4.4 Knowledge sharing

From the interviews we learned that knowledge sharing is a topic which is central to the issues
regarding a shared codebase. Having a good platform to share knowledge then is a requirement.
Questions here are, what platforms are suitable to incorporate? What knowledge do we want
to share? Who is responsible to provide what information? This is a broad domain outside the
scope of this project. We only acknowledge the importance of having a company-wide policy
to stimulate knowledge sharing by making resources available to facilitate this. For Topicus a
centralized knowledge sharing solution may not be optimal, because different groups of units
with an interest in each other may have different knowledge sharing desires. Rather groups of
units must be able to use their own knowledge sharing platform. This must be stimulate from
the top and experiences shared with other units. Important knowledge sharing for knowledge
intensive industry like software development is the location of expertise (Faraj and Sproull,
2000). Interviewees indicated that knowing who is using what component is an important, but
often difficult to answer question.

6.3.4.5 Project structures

Units at Topicus are mostly organized in product-driven development teams. Teams are dedi-
cated for a long time on a specific product or set of products. There are also teams working in a
more project-driven fashion and for example at Unit D a combination of component-driven and
project-driven development is used.

We think that feature-driven development has a very high potential for the more larger units
of Topicus, like unit B. The issues with working on a shared codebase there are communica-
tion or responsibility issues. The first thought than is to organize teams around modules or
components, like component-driven development. We see that this can result in team lock-in
and organizational overhead, something which may be fine for a unit like Unit D but in general
is not something which fits the culture Topicus embraces. With feature-driven development,
knowledge sharing, communication lines and responsibilities are implicitly defined.

The situation described above is typical for the units A, B and FinCare and can be labeled
as a product-driven development structure. Unit B considers to move towards a component-
driven structure, since it allows for clear responsibilities and resource allocation. We argue that
this is a bad idea, since the scope of the modules are to small for this and it implies a level of
coordination which does not fit in the culture of Topicus.

Rather, we would say that the feature-driven development structure is better and far more
suitable for unit B. the most important attribute of feature-driven development is that knowledge
sharing becomes implicit, since people work on different applications over time. We think that
such a structure only works when a unit is medium sized, so for FinCare this would not work.

6.3.4.6 Recommendations for FinCare

Firstly, in chapter 5 the risk of heterogeneous communication was given a medium relevancy,
with the potential to increase in the future. The application portfolio and the codebase are
comprehensible at the moment, so a contact person for components or a strict communication
policy are not directly needed. Still, respondents from the questionnaire that having contact
persons is a really good idea (NPS 70,59%) and also a simple but clear communication policy
would be an improvement (NPS 82,35%).

6.3. Discussion of mitigation approaches 117

Solution Statement NPS
Dealing with communication and collaboration
Social self-regulation of code-
base

Everyone should be able to modify components as
their own responsibility.

-52,94%

Contact person for core com-
ponents

A contact person for each component is required in
order to have clear lines of communication.

70,59%

Communication policy A simple but clear communication policy for com-
ponent updates would be an improvement.

82,35 %

Awareness of responsibility There is enough awareness about the responsibili-
ties of working with components.

50,00%

Table 6.6: NPS of solutions dealing with communication and collaboration

Secondly, in the questionnaire there is agreement about giving everyone write-access and be
self-responsible when editing components (NPS -52,94%), indicating that this is not a favored
approach. Yet, respondent did agree that there is enough awareness of responsibility (NPS
50,00%).

We argue that, (1) since there is a medium risk for having a bottleneck in the development
process and (2) there is lack of good communication when updating components, just involving
more people in the development of the shared codebase contributes to solving both problems.
To assure code quality, the role of a central authority must be preserved as quality controller,
as an expert and not as the single person responsible for the codebase. In short:

• Have a simple but clear communication policy when updating packages. For example,
when updating a component, small or large, communicate it to all developers, analysts
and team-leaders a few days in advance.

• Involve more people in the development of the shared codebase.
• When growing larger as a unit, avoid strong separation and lock-in of teams. Implement

aspects of the feature-driven development paradigm to keep knowledge spreading. Full-size
feature teams might, due to the size of the current projects teams be feasible. But why
not rotate developers and analysts once in a while?

6.3.4.7 Recommendations for Topicus

• Stimulate sharing of experiences of knowledge sharing between units. A discussion about
how to facilitate knowledge sharing is going on at a lot of units, but a centralized solution
may not be the silver bullet. Knowledge sharing needs to be tailored for the needs of groups
of units who have an interest in each other. So as a start a small group of units need to start
working together, for example in the Care-domain. Central here are knowledge questions
like: who is responsible for some component, who is using some component, who is working
on some component, what components are available for reuse, where is the documentation
of some component located, what is the planning road map for some product, etc.

• Stimulate active development of shared components, but by different people by imple-
menting elements of the feature-driven development paradigm. Avoid component-driven
development. While the responsibilities may be clearer, it does not stimulate active refac-
toring, fresh ideas about shared code and in general the knowledge of what is located in
the shared codebase. Teams and people can become locked-in. As long as there are good
knowledge sharing facilities, the risks associated with updating cross-cutting concerns can
be mitigated.

118 Chapter 6. Finding suitable mitigation approaches

• Avoid centralization in the development cycle of shared components. Authority persons
should have an advising and quality checking role, but should not have responsibility of
the design of the shared functionality. That lays with the project team.

• Have a simple but clear unit-wide policy as what to communicate and to whom when
updating shared components

• Invest in facilities to enable fast finding out what applications use what components
• Groups of units with close collaboration on the same code need to be located at least

physically in the same building

§ 6.4 Conclusion

In this chapter we have mapped the best practices/solutions form the interviews to the shortlist
of most relevant risks for FinCare. While discussing this mapping we found that the relation be-
tween the solutions and risks can be grouped into three solution domains (dealing with technical
implications, dealing with organizational culture and dealing with communication and collab-
oration), each with their own causal relations. We discussed the suitability of the solutions
according to these solution domains in the context FinCare and stated our recommendations as
well as general recommendations for Topicus.

- Chapter 7 -

Conclusion

§ 7.1 Answering the problem statement

The problem statement for this study is: How can FinCare mitigate risks associated with require-
ment changes in an agile development environment where multiple projects share functionality
located in a shared codebase?. In chapter 2.4 we define 4 research questions to answer this
problem statement. The first research question is: What are the risks of a shared codebase
environment with respect to changing requirements?

We answered this question by conducting a literature study of industrial case study in the
period of 2000 and 2012 to find recent issues form practice. The result is a list of 28 risks
covering a very broad range of topics on a organizational, process and technical level.

In the second research question we look for techniques, best practices, approaches to deal with
these risks: What mitigation approaches can be used to mitigate these risks?. We answered this
question by conducting 8 interviews in 3 different business units at Topicus. In these interviews
we identified issues, solutions and desires the interviewees have with respect to working on a
shared codebase and dealing with changes.

In order to answer the third research question (What are the relevant risks for FinCare?)
we conducted an in-depth analysis of the codebase and the FinCare products and created a
shortlist of the most relevant risks for FinCare. This resulted in a list of 7 risks:

• Risk of iteratively changing reuse components
• Risk of enhancement to a cross-cutting concern
• Risk of time-to-market pressure
• Risk of business value thinking
• Risk of centralization in group-based collaboration networks
• Risk of business philosophy focusing on short-term goals
• Risk of heterogeneous communication

The final research question is: What risk mitigation approaches are suitable to implement
by FinCare to mitigate the potential risks?. To answer this research question we took the
solutions we got from the interviews and related them to the shortlist. In section 6.3 we structure
and elaborate on the suitability of these solutions. As the final result for this study and also
for answering the actual problem statement, we structured the risks accordingly to 3 solution
domains: dealing with technical implications, dealing with organizational culture and dealing
with communication and collaboration.

119

120 Chapter 7. Conclusion

Dealing with technical implications The risk of iteratively changing reuse components and
enhancements to cross-cutting concerns both encompass problems dealing with the technical
implications of some requirements change. The two main issues for FinCare are stability of
functionality for components (the core components of the FinCareClaim platform for example)
and the chance of some change unintentionally rippling to another codebase/application.

For the first issue component versioning seems a good best practice to use for FinCare. Ver-
sioning forces to plan ahead and is a self-protecting mechanism to prevent changes to directly
ripple through other products, so it also addresses the second issue. Besides component ver-
sioning, making sure that all core components and shared web-services have a high level of unit
test coverage also prevents for unintentional ripple effects. A high level of unit test coverage
on a product level seems tedious for an organization like FinCare, but for core components this
can help dealing with the impact of a modification on a shared component from a project’s
perspective on another project.

Besides these two solutions (component versioning and testing) we also think that having
some direct method available to conduct bottom-up impact analysis helps mitigating these two
risks. One of the big questions developers have is which applications use which components.
To solve this, FinCare must have a tool available which shows the interdependency of the
components between applications/projects spanning all repositories.

Dealing with organizational culture On a business and organizational level, three risks
were found to be relevant for FinCare: risk of time-to-market pressure, risk of business value
thinking and the risk of a business philosophy focusing on short-term goals. All risks can be
related to the following problems: usage of immature platform in production, lack of reuseability
of components and technical debt. We found three solution directions for these three problems.

The first is a requirement for the organization to actively propagate a positive attitude
towards reusable assets. The reason this is important is that if there is no culture of ‘having
reusable assets is a good thing and we know that this takes an investment upfront with no clear
direct results’, there is a high chance it will never happen.

Secondly, to encourage this attitude top management needs to plan for resource allocation
and must support work effort required to develop good platform assets. The third point relates
to this. Because of the project-driven development approach, work effort on a shared codebase
always comes for the larger part because some project initiates it because of their own local
needs. Hence, they need to spent their project resources on it. If there are no incentives for a
project team to invest in some feature to be available for other projects as well, they will only
do the required work to meet their own project demands. So thirdly, to solve this, a fair and
transparent hour billing system is required where teams can spent time on other projects.

The remaining question here is how to bill this to customers. We think that platform
activities are both an investment and part of the reason why a SaaS solution is cheaper for
customers than a one-off software solution. Depending on where in the life-cycle a platform is,
the money should come from a different source. If the platform is immature and customers are
few (like FinCareClaim SaaS at FinCare), platform effort is an investment for the business unit.
For the products from unit B from the interviews, platform effort is billed via their licenses.
Their customer-base is more stable, larger and thus unit B can afford to project their own
product vision and structure their income model accordingly. We think that this is a problem
FinCare will encounter in the near future.

Dealing with communication and collaboration The risk of centralization in group-based
collaboration networks and the risk of heterogeneous communication all have to do with com-
munication and collaboration problems. The main mechanism underlying the first risk is the

7.2. Things you already can implement tomorrow 121

amount of bottleneck in the development process. If there is one person sitting on the shared
codebase, work on shared components needs to pass through that person first. If there is an
issue with shared components, you need to go to that person. Depending on the responsibilities
such a person has, this can hamper the development process of all projects.

For FinCare this mechanism is only partly relevant, since the work is currently comprehensi-
ble. However, it can become a high risk in the future because of the mechanism underlying the
second risk: communication about updates. At FinCare updates on components just happen
and there is little communication about them. Updates are done by this central person, hence
there is little knowledge about what is really happening on the shared codebase. We there-
fore think that FinCare should involve more people in the development of the shared codebase.
So a social self-regulating system of the codebase, with a central authority (or gatekeeper or
champion) with the role of expert and quality manager.

§ 7.2 Things you already can implement tomorrow

The answer to the problem statement is quite long, so what are the things both Topicus and
FinCare can already do tomorrow? What are the ‘low hanging fruits’? First of all, we think
that most issues are currently comprehensible for FinCare. But we do see these risks already of
relevancy for the interviewed units. And since these units are larger than FinCare, we think that
when FinCare grows larger and when their codebase increases in size, the issues will become more
relevant. Implementing all recommendations at once might not be feasible, but the following
three solutions are easy to implement and can already be done tomorrow:

Involve more people in the development of the shared codebase Currently the de-
velopment of the shared codebase is centralized. Involving more people is easy to do and has a
number of benefits. First of all, fresh insights and ideas are brought in when other people are
involved in the development of the shared code. Secondly, there is more knowledge sharing of
share components if more people are involved in the development. Thirdly, if the central person
drops out or is unavailable, the work is not compromised.

Have a simple, but clear communication policy when modifying components Cur-
rently, when components are updated, there is little communication. Having simple rules as to
what to communicate, to whom and when increases the opportunity developers have to take the
impact of the modifications into account.

Incorporate (elements of) feature-driven development Currently, teams at FinCare
follow a project-driven development approach. Without documentation policies, active reuse
opportunity seeking and communication of codebase enhancements there is little knowledge
sharing between teams. Therefore we think that occasionally having developers and analysts
switch to other project teams may already improve this.

§ 7.3 Things to implement in the long term

Some recommendations require additional research before they can be implemented. We think
the following recommendations should be the implemented in the long term for both FinCare
and Topicus.

122 Chapter 7. Conclusion

Component development model Within business units employ a social self-regulating
codebase, without strict code ownership, where everyone can contribute and is responsible for
their own modifications. Do this by:

• Giving everyone read and write access on all components.
• Using strict versioning for all components. For each version change:

– Send an update to all developers when a component or package is updated to a new
version.

– Plan updates on important components a week in advance and send an email to
everyone to inform about the upcoming update.

• Involving more people in the development of shared components. A single person should
not have all the responsibility over components.

• Strive for complete unit test coverage for important components.
• Monitoring of changes to the shared codebase and feedback by senior developers.
• Giving all developers and analysts the option to switch projects every few months.

Between business units, follow a producer-consumer paradigm. Units should give read access
rights to other units of their components. This means that all units should use the same
repository technology (either GIT, SVN or Mercurial). Producers of components should always
design for reusable components and communicate changes to consumers. Consumers themselves
are responsible for using some component and updating it.

Platform billing model Interviewees indicated that internally billing of work on a shared
codebase can be unfair and hamper refactoring/investing in the shared codebase. Externally, to
customers, this work effort is difficult to bill in a transparent way. The rationale behind this is
as follows:

• From the perspective of the first customers, a starting-up SaaS solution is often a tailored
solution

• Delivering software using a SaaS at some point requires a transition from tailored-offering
to mass-offering

• With a small customer base, new features or refactoring effort on platform components are
initiated from desires from a single or just a few customers. Customers bargaining power
then is high. Platform effort is directly billed to customers, since other customers do not
want to pay for features they don’t need.

• With a large customer base, supplier bargaining power is much higher. Hence, the supplier
can follow its own product road map. New features are added based on customer feedback
and made available through a standardized pricing model.

• Depending on the stage of the SaaS solution, different licensing models are offered to
customers.

• In all cases developed features or improvements must be paid for. Depending on the
development stage of the SaaS solution, work effort is then either paid directly from the
licensing fees, from the contract with individual customers or from an upfront investment
by the supplier.

• If there is no agreement among product teams in the earlier stages of platform development
as what kind of efforts is paid by the company (making components reusable for instance)
and what is covered by licenses, refactoring and making components reusable is hampered.
Also, if different products follow different licensing models, internal hour billing can be
unfair if for one team these costs are covered by the license, whereas for other teams this
is not covered at all. Why would such a team contribute to the shared codebase?

7.4. Scientific relevancy 123

Therefore we think that this requires a Topicus wide consistent component development
model which should include the following elements a number of standardized licensing models
for SaaS products for the different stages a SaaS product can be in. Important here is that
these licensing models should show the difference between custom work and general platform
effort. Custom work should never be included in the standard license fee, since other customer
don’t want to pay for features they don’t have or get. First of all, standardized licensing
models should make it easier for business units to acquire customers, since you can make a more
stronger case with transparent and proven business models. It prevents units to reinvent the
wheel. Secondly, it makes billing of work effort to the shared codebase more transparent and
fair, both to customers as among different teams.

Component usage visualization A very important knowledge question which came up dur-
ing the interviews and during the case study at FinCare is what applications use what compo-
nent. For our case study at FinCare we developed some small tools to visualize the interdepen-
dency between applications and components. We strongly think that these kind of visualizations
can help developers and analyst quickly see who is using what component. This is useful when
either analyzing the impact of some modification, or when looking for information regarding a
component. Future research on what level of view is of most value for developers and analyst,
finding out what the best way is to technically implement this can be very valuable for Topicus.

Feature-driven development We state that adopting elements of feature-driven can increase
knowledge sharing and overall quality of a shared codebase. However, feature-driven develop-
ment can be implemented in numerous shapes and forms. Future research is needed to find out
what the best practices are, what the best way is to implement this paradigm within Topicus.

§ 7.4 Scientific relevancy

With respect to the scientific relevancy of this study, first of all, in chapter 3 we conducted
a literature study of case studies with respect of working in a shared codebase environment.
The list of 28 risks we identified is in our opinion a very valuable addition to the challenges
as identified by (Ghanam et al., 2012). On this topic there is little scientific material available
describing actual practical experiences. Our list, based on a wide variety of good industrial
studies, can be used for companies to understand the issues and mechanisms underlying working
with and on a shared codebase.

Secondly, also of scientific relevancy are the results from the interviews. We conducted 8
semi-structured interviews at 3 different business units of Topicus. From this we abstracted
in-depth issues and best practices on a business, organizational, process, people and technical
level. For software companies with a comparable agile development culture, the best practices
and described experiences from the interviewees give insight in how people work and deal with
every day issues.

Thirdly, we showed that in a shared codebase environment bottom-up code visualization
can be very valuable. This kind of analysis can give insight in the complex interdependency of
software assets on a level of abstraction relevant to find out what applications are using some
component. This is a knowledge question developers and analysts at Topicus indicated is very
difficult to answer with the current development tools available.

124 Chapter 7. Conclusion

§ 7.5 Validity

Having stated the conclusion we will discuss some points which may affect the validity of this
study. The first point is the completeness of the risks we have identified from the literature
study. The risks have been identified from industrial case studies published in the period of
2000 and 2012. Hence, we excluded any ground theoretical studies published on the topic of
product-line engineering, which was a very active research field in the period 1990-2000. At the
time we did the literature study, we did not know that, but nevertheless we think the list of risks
was sufficient for the purpose of this study. Also, only having included recent material makes
the results more relevant for a young company like Topicus. The only thing we know we really
missed are issues with respect to having a SaaS delivery model.

The second validity point is the unequal spread of interviewees from the business units. From
unit A we interviewed 2 people, 5 from unit B and 1 from unit C. This may have caused the ideas
from unit B to be more prominently all over the page, because there simply is more material from
that unit. Still, diversity among the interviewees was high (different roles, different projects)
and we did follow a semi-structured approach so we adjusted questions depending on what we
heard during the interview. Also, we think that each interview provided new insights and since
we don’t draw any conclusions based on the number of people mentioning some aspect, the
results are valid enough for this study.

The third validity point has to do with the creation of the shortlist of risks. We did not
conduct any formal interviews within FinCare, rather we based the risk analysis on the experi-
ences or observations we gained by just being around. We sat down a couple of times for some
explanation about the setup of the codebase, but we don’t have any empirical data to support
the determination of impact, likelihood and relevancy besides our own observations and the
results from the bottom-up codebase analysis.

The fourth validity point also is about the shortlist. We created a shortlist of risks based
on impact and likelihood which combined determined the relevancy of some risk for FinCare.
In the discussion on each risk in section 5.3 we try to explain why a risk has a ‘high’ or ‘very
low’ impact or likelihood of occurrence and how this relates to relevancy, but it remains a bit
arbitrary, since it mainly is a subjective approach.

The fifth validity point is that the problems and solutions from the interviews are not directly
related to requirement changes. We think a large number of these problems and solutions are
more general challenges of working on a shared codebase. We tried, by relating them to the
risks from the literature study, to filter for those solutions which are related to volatility of
components caused by changes. Nevertheless, the line between what is a general challenge with
respect to working on shared codebase and what is a risk of changing requirement is very thin.

The sixth validity point is that we state that most risks currently are comprehensible for
FinCare, but that the relevancy may increase when FinCare and their codebase grows larger.
In our introduction we briefly stated that Topicus follows a strategy where units are encouraged
to split up when they grow larger than 25 people. When FinCare is split up in the near future
it is arguable that a lot of these risks will become of lower relevancy because the scope of the
work, again, becomes surveyable. We argue that while this may the case, this will only work for
the FinCareAnalyse product, since they are relatively uncoupled from the other applications.
All products depending on the FinCareClaim platform on the other hand are strongly coupled,
hence the risks will stay highly relevant.

Finally we think that, despite these validity points, our recommendations still make a strong
case. They come directly, first-hand, from experiences from within the organization. They
represent problems which are not uncommon in the field of software engineering, about which
little scientific data is available so where learning about the latest best practices is very valuable.

Appendices

125

- Appendix A -

Challenges versus change characteristics

127

128 Appendix A. Challenges versus change characteristics

business strategy

instability

dominance of a mainstream product

competing goals

among platform teams

between platform teams and application teams

in distributed development

between business units

silos

decision-making

stakeholder involvement

feature versus component teams

team autonomy

business-value thinking

product ownership thinking

agility versus stability

of documents

of practices

of tools and technical solutions

of acceptence criteria

reuse

variation sources

cross-cutting concerns

different actors

requirement of combination

requirment of maximazing reuse

Accessability

Platform quality

Platform stability

Testing

Continuous integration

Release synchronization

ti
m

e
 o

f
ch

an
ge

/d
is

co
ve

ry
 a

ct
iv

it
y

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

18

ch
an

ge
 t

yp
e

/c
at

e
go

ry
1

1
1

1
1

1
1

7

ch
an

ge
 h

is
to

ry
1

1
1

1
1

1
1

1
1

1
1

1
1

13

Fr
e

q
u

e
n

cy
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
16

tr
ig

ge
r/

so
u

rc
e

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

20

d
o

m
ai

n
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
20

p
h

as
e

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
25

m
an

ag
e

r'
s

co
n

tr
o

l
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

23

st

ak
e

h
o

ld
e

rs
0

co
st

1
1

1
1

1
1

1
1

8

va
lu

e
1

1
1

1
1

1
1

1
8

M
o

ti
va

ti
o

n
/o

p
p

o
rt

u
n

it
y

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
19

d
e

sc
ri

p
ti

o
n

0

cr
it

ic
al

it
y

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

26

d
e

ve
lo

p
e

r
e

xp
e

ri
e

n
ce

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

20

gr
an

u
la

r
e

ff
e

ct
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
22

p
ro

p
e

rt
ie

s
0

fe
at

u
re

s
0

q
u

al
it

y
at

tr
ib

u
te

s
0

8
9

6
6

7
7

7
7

7
10

5
1

5
10

9
7

9
4

4
4

13
7

10
5

9
8

8
9

9
11

12
12

Figure A.1: Reuse challenges vs change characteristics

- Appendix B -

Interview protocol

Describe current position

1. How would you describe your current position?

2. In what projects are you involved?

3. What is your role in these projects?

Describe perception of a requirements change

4. How would you describe a requirements change?

Shared functionality

5. For the projects you work on, is there a shared codebase and how is it used?

6. Can you explain the inter-dependencies of the components and products of the codebase?

The process of handling a changing requirement

7. Could you describe how the development process looks like?

Dealing with changes on shared components

8. What problems do you encounter when implementing changes on the shared codebase?

Testing

9. Could you describe how products are tested?

10. If you would have to estimate, how much unit-test coverage is there?

Knowledge sharing

11. Do you think the amount of knowledge sharing is sufficient?

Documentation

12. What kind of documentation is used during development?

129

130 Appendix B. Interview protocol

Chosen solutions

13. How do you mitigate problems encountered during development on a shared codebase?

Recommendations

14. What would you like to see differently with respect to working on a shared codebase?

Reuse challenges

1. Reuse
2. Continuous integration
3. Release synchronization
4. Testing
5. Cross-cutting concerns
6. Decision-making
7. Business-value thinking

8. Instability
9. Product ownership thinking

10. Standardization of documents
11. Requirement of combination
12. Platform quality
13. Platform stability
14. Business strategy

Change characteristics:

1. Criticality
2. Project phase
3. Manager’s control
4. Granular effect
5. Trigger/source

6. Domain
7. Developer experience
8. Motivation/opportunity
9. Time of change

10. Frequency

- Appendix C -

Questionnaire

We distributed a questionnaire at FinCare containing 23 statements about the problems and
solutions as presented in section 6. We asked everyone at FinCare to rate the statements
according to a 5 point Likert scale. Below the results are displayed.

Statement: Versioning
components is a good
approach to assure
component stability.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

10

.

4

.

9

.

3

.
1

. 0. 0.

#
pa

rt
ic

ip
an

ts

Statement: Striving for
complete code coverage of
shared web services is a good
approach to prevent
unintended effects in web
services in other applications.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.0.

8

.

6

.

1

.

1

.

1

.

#
pa

rt
ic

ip
an

ts

131

132 Appendix C. Questionnaire

Statement: Striving for
complete code coverage of
unit tests for core
components is a good
approach to assure stability.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.1 .

2

.

3

.

4

.

5

.

4

.

5

.

4

.

2

. 1. 1.

#
pa

rt
ic

ip
an

ts

Statement: When
modifying a component I’d
like to know better what
applications use this
component.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

10

.

2

.

10

.

3

.
1

.
1

. 0.

#
pa

rt
ic

ip
an

ts

Statement: I would like to
see a more positive attitude
with respect to reusable
components.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

1

.

4

.

8

.

4

. 0. 0.

#
pa

rt
ic

ip
an

ts

133

Statement: Enough time is
available for personal
initiatives to improve
components.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

1

.

4

.

7

.

4

. 0.

1

.

#
pa

rt
ic

ip
an

ts

Statement: I can honestly
justify hours spent on
components.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

3

.

3

.

5

. 0. 0.

6

.

#
pa

rt
ic

ip
an

ts

Statement: Towards
customers hours spent on
components can be justified
in good fashion.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.0.

6

.

8

. 0. 0.

3

.

#
pa

rt
ic

ip
an

ts

134 Appendix C. Questionnaire

Statement: Everyone
should be able to modify
components as their own
responsibility.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

10

.0.

3

.

2

.

10

.

2

. 0.

#
pa

rt
ic

ip
an

ts

Statement: A contact
person for each component is
required in order to have
clear lines of communication.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

5

.

10

.
1
.

12

.

3

.
1

. 0. 0.

#
pa

rt
ic

ip
an

ts

Statement: A simple but
clear communication policy
for component updates would
be an improvement.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

5

.

10

.

2

.

13

.
1

.
1

. 0. 0.

#
pa

rt
ic

ip
an

ts

135

Statement: There is enough
awareness about the
responsibilities of working
with components.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.

0

.
2

.

4

.

6

.

8

.

10

.1.

9

.

4

. 1. 1. 1.

#
pa

rt
ic

ip
an

ts

Statement: Components
which I use are often updated
by others outside my project
team.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

4

.

6

.

4

.

1

. 0.

2

.

#
pa

rt
ic

ip
an

ts

Statement: When I push a
modification to a component
I’m certain that no defect is
introduced in another
application.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.0.

1

.

4

.

8

.

1

.

3

.

#
pa

rt
ic

ip
an

ts

136 Appendix C. Questionnaire

Statement: When I push a
modification to a component
I’m certain of the impact for
other applications.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.0.

2

.

4

.

7

.

1

.

3

.

#
pa

rt
ic

ip
an

ts

Statement: At FinCare a
platform is put into
production too soon, with
too many open issues.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.0.

6

.

4

.

6

. 0.

1

.

#
pa

rt
ic

ip
an

ts

Statement: Components at
FinCare are reusable and
directly employable in other
projects.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

3

.

7

.

4

.

2

. 0.

1

.

#
pa

rt
ic

ip
an

ts

137

Statement: At FinCare
refactoring and code cleaning
is pushed forward or
postponed a lot.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

4

.

4

.

5

.

4

. 0. 0.

#
pa

rt
ic

ip
an

ts

Statement: Modifications
on components are always
done by the same person.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

1

.

4

.

2

.

6

. 0.

4

.

#
pa

rt
ic

ip
an

ts

Statement: I know who to
notify when I modify a
component.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.0.

4

.

2

.

6

. 0.

4

.

#
pa

rt
ic

ip
an

ts

138 Appendix C. Questionnaire

Statement: I always notify
the correct people when
modifying a component.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.0.

4

.

3

.

5

. 0.

5

.

#
pa

rt
ic

ip
an

ts

Statement: When a
component is modified,
people inform each other
well.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.0.

4

.

4

.

8

. 0.

1

.

#
pa

rt
ic

ip
an

ts

Statement: When a
component is modified I have
enough time in advance to
deal with the potential
impact of the change.

...
..

Tota
lly

ag
ree

.

Agre
e

.

Neu
tra

l

.

Disa
gre

e

.

Tota
lly

dis
ag

ree

.

Doe
s no

t ap
ply

.0 .

2

.

4

.

6

.

8

.

1

.

8

.

3

.

4

. 0.

1

.

#
pa

rt
ic

ip
an

ts

Bibliography

Bass, L., Clements, P., and Kazman, R. (2003). Software architecture in practice. Addison-
Wesley Professional.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for exploring
and manipulating networks.

Beckhaus, A., Karg, L., and Neumann, D. (2010). The impact of collaboration network structure
on issue tracking’s process efficiency at a large business software vendor. In System Sciences
(HICSS), 2010 43rd Hawaii International Conference on, pages 1–10. IEEE.

Bosch, J. (2000). Design and use of software architectures: adopting and evolving a product-line
approach. Addison-Wesley Professional.

Bosch, J. (2001). Software product lines: organizational alternatives. In Proceedings of the 23rd
International Conference on Software Engineering, pages 91–100. IEEE Computer Society.

Breivold, H., Larsson, S., and Land, R. (2008). Migrating industrial systems towards software
product lines: Experiences and observations through case studies. In Software Engineering
and Advanced Applications, 2008. SEAA’08. 34th Euromicro Conference, pages 232–239.
IEEE.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, A.,
Nord, R., Ozkaya, I., et al. (2010). Managing technical debt in software-reliant systems. In
Proceedings of the FSE/SDP workshop on Future of software engineering research, pages
47–52. ACM.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. (2005). Towards a taxonomy of
software change. Journal of Software Maintenance and Evolution: Research and Practice,
17(5):309–332.

Chapman, M. and van der Merwe, A. (2008). Contemplating systematic software reuse in a
project-centric company. In Proceedings of the 2008 annual research conference of the South
African Institute of Computer Scientists and Information Technologists on IT research in
developing countries: riding the wave of technology, pages 16–26. ACM.

Charette, R. (1989). Software engineering risk analysis and management.

de Jonge, M. (2005). Build-level components. Software Engineering, IEEE Transactions on,
31(7):588–600.

139

140 Bibliography

de Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F. (2007). Supporting collaborative
software development through the visualization of socio-technical dependencies. In Proceed-
ings of the 2007 international ACM conference on Supporting group work, pages 147–156.
ACM.

Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagappan, N., and Aho, A.
(2008). Do crosscutting concerns cause defects? Software Engineering, IEEE Transactions
on, 34(4):497–515.

Faraj, S. and Sproull, L. (2000). Coordinating expertise in software development teams. Man-
agement science, 46(12):1554–1568.

Ferreira, S., Collofello, J., Shunk, D., and Mackulak, G. (2009). Understanding the effects of
requirements volatility in software engineering by using analytical modeling and software
process simulation. Journal of Systems and Software, 82(10):1568–1577.

Ferreira, S., Shunk, D., Collofello, J., Mackulak, G., and Dueck, A. (2011). Reducing the risk of
requirements volatility: findings from an empirical survey. Journal of Software Maintenance
and Evolution: Research and Practice, 23(5):375–393.

Fichman, R. G. and Kemerer, C. F. (2001). Incentive compatibility and systematic software
reuse. Journal of Systems and Software, 57(1):45–60.

Flick, U. (2009). An introduction to qualitative research. Sage Publications Ltd.

Gall, H., Hajek, K., and Jazayeri, M. (1998). Detection of logical coupling based on product
release history. In Software Maintenance, 1998. Proceedings. International Conference on,
pages 190–198. IEEE.

Garcia, V., Lucrédio, D., Alvaro, A., De Almeida, E., de Mattos Fortes, R., de Lemos Meira, S.,
and Recife, P. (2007). Towards a maturity model for a reuse incremental adoption. In the
Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS 2007),
Campinas, São Paulo, Brazil. Citeseer.

Ghanam, Y., Maurer, F., and Abrahamsson, P. (2012). Making the leap to a software platform
strategy: Issues and challenges. Information and Software Technology.

Gupta, A., Cruzes, D., Shull, F., Conradi, R., Rønneberg, H., and Landre, E. (2010). An
examination of change profiles in reusable and non-reusable software systems. Journal of
Software Maintenance and Evolution: Research and Practice, 22(5):359–380.

Han, J. and Kamber, M. (2006). Data mining: concepts and techniques. Morgan Kaufmann.

Han, W. and Huang, S. (2007). An empirical analysis of risk components and performance on
software projects. Journal of Systems and Software, 80(1):42–50.

Hanssen, G. (2011). Agile software product line engineering: enabling factors. Software: Practice
and Experience, 41(8):883–897.

Hanssen, G. and Fægri, T. (2008). Process fusion: An industrial case study on agile software
product line engineering. Journal of Systems and Software, 81(6):843–854.

Kagdi, H., Maletic, J., and Sharif, B. (2007). Mining software repositories for traceability links.
In Program Comprehension, 2007. ICPC’07. 15th IEEE International Conference on, pages
145–154. IEEE.

Bibliography 141

Larman, C. and Vodde, B. (2009). Scaling lean & agile development. Organization, 230:11.

Lehnert, S. (2011). A review of software change impact analysis. http://www.db-thueringen.
de/servlets/DocumentServlet?id=19544. Accessed August 20, 2012.

Lindlof, T. and Taylor, B. (2002). Qualitative communication research methods. Sage Publica-
tions.

Lucrédio, D., dos Santos Brito, K., Alvaro, A., Garcia, V., de Almeida, E., de Mattos Fortes, R.,
and Meira, S. (2008). Software reuse: The brazilian industry scenario. Journal of Systems
and Software, 81(6):996–1013.

McGee, S., G. D. (2011). Software requirements change taxonomy: Evaluation by case study.
pages 25–34.

McGee, S. and Greer, D. (2009). A software requirements change source taxonomy. In Software
Engineering Advances, 2009. ICSEA’09. Fourth International Conference on, pages 51–58.
IEEE.

Mietzner, R., Metzger, A., Leymann, F., and Pohl, K. (2009). Variability modeling to support
customization and deployment of multi-tenant-aware software as a service applications.
In Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems, pages 18–25. IEEE Computer Society.

Mohagheghi, P. and Conradi, R. (2008). An empirical investigation of software reuse benefits
in a large telecom product. ACM Transactions on Software Engineering and Methodology
(TOSEM), 17(3):13.

Muffatto, M. and Roveda, M. (2002). Product architecture and platforms: a conceptual frame-
work. International Journal of Technology Management, 24(1):1–16.

Munkvold, B., Eim, K., and ØYVIND, S. (2006). A case study of information systems decision-
making: Process characteristics and collaboration technology support. International Jour-
nal of Cooperative Information Systems, 15(02):179–203.

Noor, M., Rabiser, R., and Grünbacher, P. (2008). Agile product line planning: A collaborative
approach and a case study. Journal of Systems and Software, 81(6):868–882.

Nurmuliani, N., Zowghi, D., and Powell, S. (2004). Analysis of requirements volatility during
software development life cycle. In Software Engineering Conference, 2004. Proceedings.
2004 Australian, pages 28–37. IEEE.

Otsuka, J., Kawarabata, K., Iwasaki, T., Uchiba, M., Nakanishi, T., and Hisazumi, K. (2011).
Small inexpensive core asset construction for large gainful product line development: de-
veloping a communication system firmware product line. In Proceedings of the 15th Inter-
national Software Product Line Conference, Volume 2, page 20. ACM.

Perry, D., Siy, H., and Votta, L. (2001). Parallel changes in large-scale software development:
an observational case study. ACM Transactions on Software Engineering and Methodology
(TOSEM), 10(3):308–337.

Pohl, K., Bockle, G., and Van Der Linden, F. (2005). Software product line engineering, vol-
ume 10. Springer.

http://www.db-thueringen.de/servlets/DocumentServlet?id=19544
http://www.db-thueringen.de/servlets/DocumentServlet?id=19544

142 Bibliography

Ponte, D., Rossi, A., and Zamarian, M. (2008). The role of competencies and interests in
developing complex information technology artefacts: The case of a metering system. Open
IT-Based Innovation: Moving Towards Cooperative IT Transfer and Knowledge Diffusion,
pages 291–308.

Ramasubbu, N. and Balan, R. (2010). Evolution of a bluetooth test application product line:
a case study. In Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering, pages 107–116. ACM.

Rothenberger, M. (2003). Project-level reuse factors: Drivers for variation within software
development environments*. Decision sciences, 34(1):83–106.

Schröter, A., Aranda, J., Damian, D., and Kwan, I. (2012). To talk or not to talk: factors that
influence communication around changesets. In Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, pages 1317–1326. ACM.

Scott-Morton, M. (1991). The corporation of the 1990s: Information technology and organiza-
tional transformation. Sloan School of Management, Oxford University Press, New York.

Sherif, K. and Vinze, A. (2003). Barriers to adoption of software reuse: A qualitative study.
Information & Management, 41(2):159–175.

Slyngstad, O., Li, J., Conradi, R., Ronneberg, H., Landre, E., and Wesenberg, H. (2008). The
impact of test driven development on the evolution of a reusable framework of components–
an industrial case study. In Software Engineering Advances, 2008. ICSEA’08. The Third
International Conference on, pages 214–223. IEEE.

Stuckenholz, A. (2005). Component evolution and versioning state of the art. ACM SIGSOFT
Software Engineering Notes, 30(1):7.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component software: beyond object-oriented
programming. Addison-Wesley.

Tang, A., Couwenberg, W., Scheppink, E., de Burgh, N., Deelstra, S., and van Vliet, H. (2010).
Spl migration tensions: an industry experience. In Proceedings of the 2010 Workshop on
Knowledge-Oriented Product Line Engineering, page 3. ACM.

Van der Linden, F. (2001). Software Architectures for Product Families: International Workshop
IW-SAPF-3. Las Palmas de Gran Canaria, Spain, March 15-17, 2000 Proceedings, volume
1951. Springer.

Van Gurp, J. and Bosch, J. (2002). Design erosion: problems and causes. Journal of systems
and software, 61(2):105–119.

van Gurp, J., Prehofer, C., and Bosch, J. (2010). Comparing practices for reuse in integration-
oriented software product lines and large open source software projects. Software: Practice
and Experience, 40(4):285–312.

Wallace, L., Keil, M., and Rai, A. (2004). Understanding software project risk: a cluster analysis.
Information & Management, 42(1):115–125.

Webster, J. and Watson, R. (2002). Analyzing the past to prepare for the future: Writing a
literature review.

Bibliography 143

Williams, B. and Carver, J. (2010). Characterizing software architecture changes: A systematic
review. Information and Software Technology, 52(1):31–51.

Wolfswinkel, J., Furtmueller, E., and Wilderom, C. (2011). Using grounded theory as a method
for rigorously reviewing literature. European Journal of Information Systems.

	Preface
	Management summary
	List of figures
	List of tables
	Introduction
	Project background
	Definitions
	What is a product platform?
	What is a software component?
	What is a shared codebase?
	What is a SaaS delivery model?
	Summary

	Project scope
	The project's case: health care claims platform
	Codebase dependencies
	Product-line strategy
	Growth strategy of Topicus
	Summary

	Problem statement
	Relevancy for Topicus
	Unit A
	Unit B
	Unit D
	Summary of issues

	Project objectives
	Research questions

	Research approach
	Introduction
	What is the risk of a changing requirement?
	Risks in general
	Software project risks
	Requirements risks
	Defining requirement changes
	Software changes
	Requirement changes

	Requirements change risks and project performance
	Project outcome
	Project life-cycle
	Design erosion

	Conclusion

	What is working on a shared codebase?
	Development structures
	Project-driven development
	Component-driven development
	Product-driven development
	Feature-driven development

	Shared codebases challenges
	Challenges of working with a shared codebase
	Impact analysis

	Research approach
	Research questions
	Research construct

	Conclusion

	Literature study of case studies
	Introduction
	Research approach
	Define scope
	Identify fields of research
	Define search terms
	Search
	Filter out doubles
	Cut down sample based on title+abstract
	Cut down sample based on full text

	Results
	Volatile market
	Client influence
	Market pressure
	Business strategy
	Ambiguity
	Scope
	Scattered functionality
	Development of reusable components
	Communication and knowledge sharing
	Experience in reuse
	Adoption a PLE approach

	Derived risks
	Risk of operating in a volatile market
	Risk of stakeholder influence
	Risk of time-to-market pressure
	Risk of evolving standards
	Risk of political aspects
	Risk of business philosophy focusing on short-term goals
	Risk of business value thinking
	Risk of prioritizing of mainstream product
	Risk of changing the business strategy
	Risk of reusing immature components
	Risk of unclear requirements
	Risk of different interpretations of artifacts
	Risk of goal ambiguity
	Risk of scope widening
	Risk of scattered functionality
	Risk of delocalized plans/documents
	Risk of iteratively changing reuse components
	Risk of changes in product line assets at the product level
	Risk of enhancement to a cross-cutting concern
	Risk of component granularity
	Risk of circular dependencies
	Risk of non-standardized configuration interfaces
	Risk of early binding of build-level dependencies
	Risk of making a composition by hand
	Risk of making an application/component reusable
	Risk of heterogeneous communication
	Risk of centralization in group based collaboration networks
	Risk of reuse experience level

	Conclusion

	Interviews
	Introduction
	Goals
	Designing the interview
	Why interviews?
	Interview type
	Interpreting data

	Interview protocol
	Shared codebases challenges and requirements change
	Heuristic
	Interview questions

	BTOPP-model
	The interviewed business units
	Unit A
	Unit B
	Unit C

	Interview results
	Unit A
	Business
	Organization
	Process
	People
	Technology

	Summary unit A
	Issues
	Solutions or best practices
	Desires

	Unit B: issues
	Business
	Organization
	Responsible person
	Process
	People
	Technology

	Unit B: solutions
	Business
	Organization
	Process
	People
	Technology
	Testing

	Summary unit B
	Issues
	Solutions or best practices
	Desires

	Unit C
	Business
	Organization
	Process
	People
	Technology

	Summary unit C
	Issues
	Solutions
	Desires

	Conclusion

	Casestudy: risks at FinCare
	Introduction
	Bottom-up codebase analysis
	FinCare Products
	Teams and responsibilities
	Development process
	Architecture of FinCareClaim
	Technical architecture
	Modules, components, packages and libraries
	Visualizing the repositories
	Conclusions

	Relevant risks
	Introduction
	Discussion of risks

	Conclusion

	Finding suitable mitigation approaches
	Introduction
	Mapping solutions/best practices to shortlist
	Discussion of mitigation approaches
	Questionnaire
	Dealing with technical implications
	Versioning
	Testing
	Impact analysis
	Producer-consumer
	Recommendations for FinCare
	Recommendations for Topicus

	Dealing with organizational culture
	Propagation of positive attitude towards reusable assets
	Support from top management
	Recommendations for FinCare
	Recommendations for Topicus

	Dealing with communication and collaboration
	Social self-regulation of codebase
	Contact person for components
	Communication
	Knowledge sharing
	Project structures
	Recommendations for FinCare
	Recommendations for Topicus

	Conclusion

	Conclusion
	Answering the problem statement
	Things you already can implement tomorrow
	Things to implement in the long term
	Scientific relevancy
	Validity

	Appendices
	Challenges versus change characteristics
	Interview protocol
	Questionnaire
	Bibliography

