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Summary 
 
     Does cognitive load influence performance in a game-based learning task? Thirty 

students of the department of behavioural sciences were instructed to play with one of two 

versions of a game-based learning task, while cognitive load was measured by 

electroencephalography. One version of the game was tuned to the anticipated skills of the 

participants (LT), while the other was not (HT). Videogame experience and knowledge of 

physics were also taken into account. Performance was defined by changes in conceptual 

knowledge and the number of completed levels within the game-based learning task. This 

study found no indications that cognitive load influences learning outcomes. Results indicate 

that there are no significant changes in conceptual knowledge, and that this does not differ 

between the LT-group and the HT-group. On the other hand, it was found that the number of 

completed levels does differ significantly between conditions. The number of completed 

levels was significantly higher in the LT-group than in the HT-group, which would suggest a 

difference in task-difficulty between the two conditions. Though, statistical analysis found that 

cognitive load is not significantly higher or lower in one of the conditions, and that both theta 

power and alpha power do not significantly change over time. Furthermore, no significant 

correlations were found between cognitive load and performance. Finally, it was found that 

videogame experience and knowledge of physics do not influence the number of completed 

levels. Videogame experience does not influence changes in conceptual knowledge, but 

knowledge of physics does, as can be expected. Both videogame experience and knowledge 

of physics do not significantly influence cognitive load.  
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Introduction 
	  
     PC-based videogames are emerging as an increasingly popular instructional tool in 

education (Burgos, Tattersall & Koper, 2007). It is easy to understand why, since nowadays, 

games play a central role in young people’s lives outside school, holding a special 

fascination and provoking a deep sense of engagement in them (Facer, 2006; Kafai, 2001; 

Kirriemuir & McFarlane, 2004). More and more young people’s intrinsic motivation towards 

games contrasts with their lack of interest in curricular contents (Prensky, 2003). It has even 

been written that the world of games shapes students’ cognitive abilities and expectations 

about learning, making scholastic content and practices seem tedious and meaningless 

(Facer, 2006; Prensky, 2003). This creates a dissonance between formal education and the 

digital, informal learning environments that students experience outside school (Downes, 

1999; Mumtaz, 2001; Oblinger, 2004). However, in recent years, the motivation of games is 

being combined with curricular contents into what Prensky (2003) calls ‘Digital Game-Based 

Learning’ (DGBL). Games that encompass educational objectives and subject matter are 

believed to hold the potential to render learning of academic subjects easier, more learner-

centered, more enjoyable, more interesting, and, thus, more effective (Kafai, 2001; Malone, 

1980; Prensky, 2001). However, the research on DGBL is not without criticism, with a fair 

amount of research showing that instructional games do not always lead to the desired 

motivational properties and instructional gains (Hays, 2005). Given the increasing popularity 

of using videogames for instructional purposes, research has sought to identify factors that 

maximize the effectiveness of this instructional medium. Prior research demonstrates that 

videogame attributes, such as task difficulty, realism, and interactivity, affect learning 

outcomes in game-based learning environments (Belanich, Sibley & Orvis, 2004; Garris, 

Ahlers & Driskell, 2002). For instance, this prior work suggests that in order to be most 

effective, instructional games should present an optimal level of difficulty to learners. This 

optimal range of difficulty can be thought of along the lines of Vygotsky’s zone of proximal 

development, where training should be difficult to the learner, but not beyond his/her 

capability (Vygotsky, 1978). Instructional games that are too easy or too difficult can lead to 

reduced motivation and time on task (Bowman, 1982; Malone, 1980; Malone & Lepper, 1987; 

Paas, Tuovinen, Van Merriënboer & Darabi, 2005; Provenzo, 1991), which, in turn, may 

ultimately result in less positive learning outcomes, such as diminished knowledge or skill 

acquisition and retention (Colquitt, LePine & Noe, 2000; Mathieu, Tannenbaum & Salas, 

1992; Tannenbaum & Yukl, 1992).  
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     With traditional learning a similar attribute has been known to alter learning outcomes. 

The construct of cognitive load has received much attention under the influence of Cognitive 

Load Theory (CLT; Sweller, Van Merriënboer & Paas, 1998). CLT is concerned with the 

development of instructional methods that efficiently use people’s limited cognitive 

processing capacity to stimulate their ability to apply acquired knowledge and skills to new 

situations. Cognitive load can be defined as a multidimensional construct representing the 

load that performing a particular task imposes on the learner’s cognitive system. According to 

the general model the construct has a causal dimension reflecting the interaction between 

task and learner characteristics, and an assessment dimension reflecting the measurable 

concepts of mental load, mental effort, and performance. Mental load is the aspect of 

cognitive load that originates from the interaction between task and subject characteristics. It 

provides an indication of the expected cognitive capacity demands and can be considered as 

an a priori estimate of the cognitive load. Mental effort is the aspect of cognitive load that 

refers to the cognitive capacity that is actually allocated to accommodate the demands 

imposed by the task; thus, it can be considered to reflect the actual cognitive load. 

Performance can be defined in terms of learner’s achievements (Paas, Tuovinen, Tabbers & 

Van Gerven, 2003).  

     CLT is based on a cognitive architecture that consists of a working memory that is limited 

in capacity and time when it comes to holding or processing novel information (Miller 1956; 

Peterson & Peterson, 1959) and a long-term memory with virtually unlimited capacity 

(Sweller et al. 1998). Only 7±2 information elements can be held in working memory, and the 

number decreases when information has to be not only remembered but also processed 

(Cowan, 2001). Thus, the higher the number of interacting information elements a task 

contains, the more difficult it is and the higher the intrinsic load it imposes on working 

memory. However, information that has already been learned, that is, stored in long-term 

memory in the form of cognitive schemata, reduces working memory load because a schema 

can be handled in working memory as a single information element. Therefore, having prior 

knowledge on a task lowers the cognitive load imposed by that task. Moreover, when a task 

or aspects of a task are repeatedly practiced, cognitive schemata become automated, and 

no longer require controlled processing (Shiffrin and Schneider, 1977), which further frees up 

working memory resources. The intrinsic load imposed by a task thus consists of the inherent 

complexity of the content in relation to the learner’s level of expertise. Next to intrinsic load, 

there is load imposed by instructional design of the task: germane and extraneous load. 

Germane load is defined as the cognitive resources required to handle intrinsic cognitive 

load. Germane load occurs when information presentation is designed to encourage 

assimilation or accommodation of new concepts and appropriately challenge the learner. 
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Extraneous load, on the other hand, is the unnecessary mental burden that is caused by 

cognitively inappropriate design and presentation of information; in other words, cognitive 

processes that induce extraneous load do not contribute to learning (Sweller, 2010).  

     Since the 1990s this interaction between information structures and cognitive architecture 

has begun to emerge as an explicit field of study for instructional designers and researchers 

(Paas, Renkl & Sweller, 2004). In 1998, CLT had been used almost exclusively to study 

instruction intended to decrease extraneous cognitive load. In contrast, recent work 

examines instructional methods that affect intrinsic and germane cognitive load rather than 

extraneous load. With good reason, extraneous cognitive load and intrinsic cognitive load are 

additive. Whether extraneous cognitive load presents students with a problem depends, in 

part, on the intrinsic load: if intrinsic load is high, extraneous cognitive load must be lowered; 

if intrinsic load is low, a high extraneous cognitive load due to an inadequate instructional 

design may not be harmful because the total cognitive load is within working memory limits 

(Sweller & Van Merriënboer, 2005). This total cognitive load is highly influential on learning, 

as total load cannot exceed the working memory resources available if learning is to occur 

(Paas, Renkl & Sweller, 2003). Many studies have found that tasks that require less total 

cognitive load predict more efficient learning because they require less training time and less 

mental effort to attain the same or better learning and transfer performance (Paas et. al., 

2003). It is proposed that learners’ behavior in a certain learning condition is more efficient if 

their performance is higher than might be expected on the basis of their invested mental 

effort, and/or their invested mental effort is lower than might be expected on the basis of their 

performance. High task performance associated with low effort is called high-instructional 

efficiency, whereas low task performance with high effort is called low-instructional efficiency 

(Paas & Van Merriënboer, 1993).  

     An important part of CLT has been to find ways to measure cognitive load. This is not 

easy because of its multidimensional character. Two classes of techniques for assessing 

cognitive load can be identified; namely, techniques that use subjective indices (rating 

scales) and techniques that use physiological indices (e.g., pupil diameter and heart-rate 

variability). In adopting subjective measures, two assumptions are made. Firstly, it is 

assumed that learners are able to reflect on their cognitive processes and assess the amount 

of mental effort used during learning tasks. Considerable evidence has supported this 

assumption as subjective measures have been found to be highly reliable, unobtrusive and 

more sensitive than physiological methods (Paas, 1992; Paas & Van Merriënboer, 1994). 

Secondly, it is assumed that there is a direct relation between the subjective measures and 

actual cognitive load. However, finding evidence for this assumption is problematic. It is 
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unclear how this mental effort relates to actual cognitive load. Physiological measures, such 

as heart rate and pupil dilation only have an indirect causal link to cognitive load. For 

example, high cognitive load may lead to high stress in an individual, which may lead to 

changes in heart rate, as may the individual’s emotional response to the learning materials. A 

promising direct method of measuring load, however, is the use of neuroimaging techniques 

(Brünken, Plass & Leutner, 2003). 

     Within the spectrum of neuroimaging techniques one effective method to measure 

cognitive load is electroencephalography (EEG). EEG can noninvasively measure brain 

activity via electrodes that are placed on the scalp, unlike other techniques, which require 

subjects to lie in restricted positions, or to ingest hazardous materials. The measured brain 

activity varies predictably in response to changing levels of cognitive stimuli (Anderson & 

Bratman, 2008; Klimesch, 1999). The raw EEG signal is composed of voltage fluctuations in 

various frequencies, which are assumed to reflect information representation and transfer 

within and across neuronal assemblies (Klimesch, Schack & Sauseng, 2005). Several 

researchers have repeatedly observed that the activity of two powerbands of the raw EEG, 

alpha and theta, are related to task difficulty or cognitive load in a variety of task demands. 

These studies have found that frontal theta EEG activity increased and posterior alpha 

activity decreased with increasing cognitive load (Gevins, Smith, McEvoy & Yu, 1997; Gevins 

et. al., 1998; Stipacek, Grabner, Neuper, Fink & Neubauer, 2003). An amusing, yet 

interesting, description of alpha blocking was provided in an early study by Penfield and 

Jasper (1954) for Einstein who showed continuous alpha rhythm while conducting complex 

but for him fairly automatic, mathematical operations. Suddenly, Einstein’s alpha waves 

dropped out. He reported that he had found a mistake in the calculation he had made the day 

before. Sterman, Mann, Kaiser and Suyenobu (1994) analyzed EEG data obtained from 15 

Air Force pilots during air refueling and landing exercises performed in an advanced 

technology aircraft simulator and found a progressive suppression of alpha with increasing 

amounts of cognitive load. Gevins et al. (1997) examined changes in cortical activity during 

spatial and verbal working memory tasks in eight participants and observed lower alpha 

activity in the difficult as compared with the easy task version. In addition, theta activity 

increased in magnitude with higher task difficulty. These results suggest that alpha and theta 

oscillations are differentially related to task difficulty. As task difficulty increases, alpha 

activity decreases (desynchronize), whereas theta activity increases (synchronize). 

According to Klimesch, Sauseng and Hanslmayr (2007) the desynchronization of alpha 

reflects the gradual release of inhibition associated with the emergence of complex 

spreading activation processes. In contrast, the frontal theta rhythm has been noted to 

increase in strength as tasks require more focused attention (Gevins et al.,1979 a,b,c; 
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Miyata, Tanaka & Hono, 1990; Yamamoto & Matsuoka, 1990; Gundel & Wilson, 1992). 

     It is clear that cognitive load can influence learning outcomes tremendously with 

traditional learning methods (Salomon, 1983; Paas et. al., 2005), which makes it interesting 

to investigate whether the same effect can be observed with the instructional method of 

DGBL. However, much of the existing body of research on cognitive load focuses on 

materials that are either text based or a combination of text and images (e.g. Brunken, Plass, 

& Leutner, 2004; Carlson, Chandler & Sweller, 2003), while much less is known about 

cognitive load in DGBL or even more broadly, cognitive load in multimedia learning. In an 

article by Greitzer, Kuchar and Huston (2007) it is stated that “ experiential/discovery-based 

approaches to computer-based training (which includes DGBL) impose a higher cognitive 

load on the learner”, though they fail to explain why. According to Kiili (2005) the main 

problem of multimedia learning materials is that the working memory capacity of learners is 

often overloaded due to inappropriate ways of presentation, because the rich multimedia 

elements create unnecessary extraneous cognitive load. Unfortunately empirical evidence to 

support the statement is lacking. This study will aim to investigate whether cognitive load 

influences learning outcomes in a game-based learning task by researching the relationship 

between performance and the amount of cognitive load demanded by the task. Videogame 

experience and knowledge of physics will also be taken into account. Cognitive load will be 

measured by EEG, promoting the direct, objective measurement of cognitive load in a 

complex learning process.  

     The game-based learning task used in this study is an educational game, called Space 

Challenge, designed by Hoevenaar and Koops (2012). The game was developed to form a 

basis for the conceptual change of knowledge regarding Newtonian mechanics by offering an 

alternative experience. Two versions of the game were designed, a Loose Timing version 

(LT) and a Hard Timing version (HT). The degree of difficulty of the LT-version is tuned to the 

anticipated skills of the participants whereas the degree of difficulty of the HT-version is 

higher than the anticipated skills of the participants. It is thus expected that cognitive load will 

be higher in the HT-version than in the LT-version. Performance is defined by measuring 

changes in conceptual knowledge and by assessing the number of completed levels within 

the game.  

 

    In line with prior research, it is expected that as cognitive load increases, performance will 

decrease. More specifically, it is expected that an increase in theta EEG activity and a 

decrease in alpha activity, which indicates an increased cognitive load, is related to a 

decrease in performance. It is expected that alpha power synchronization is positively 
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correlated with performance, whereas the opposite holds true for the theta band. At the 

beginning of the task, it is expected that alpha power will decrease while theta power 

increases. Furthermore it is expected that cognitive load will be higher in the HT-version of 

the game, than in the LT-version and that performance will be lower in the HT-version. 

Finally, it is expected that videogame experience and knowledge of physics will facilitate 

learning by decreasing cognitive load and thus increasing performance.  
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Method 
 
Participants 
	  
     The experiment was conducted with 30 participants, 10 males and 20 females. 

Participants were students of the department of behavioural sciences who received course-

credits for their participation. At the beginning of the experiment all participants gave their 

informed consent. Their age ranged between 18 and 32 years with a mean age of 22 

(SD=3.63). No special requirements for participation had to be met. 

Game-based learning task 
	  
     The game-based learning task used in this experiment is an educational game, called 

Space Challenge, designed by Hoevenaar and Koops (2012). The game was developed to 

form a basis for the conceptual change of knowledge regarding Newtonian mechanics by 

offering an alternative experience. The game is about a spaceship in a frictionless 

environment and allows players to explore the concepts of Newtonian mechanics in a 

powerful way, offering a contrast to everyday experiences (Hoevenaar & Koops, 2012). In 

the game participants maneuver a spaceship through a 2D maze. The mission is to collect all 

diamonds in each level. Each level can be finished by hovering completely still over a stop 

sign. Walls, mines, and debris, which are present in some of the levels, have to be avoided.  

 

 

 

 

 

 

Figure 1: Screenshot Space Challenge 
 

 

      The levels in the game increase in difficulty. In Levels 1 and 2, the participants must 

accelerate and stop along a straight line, both with and without friction. Levels 3 and 4 

involve maneuvering the spaceship along a curved path, both with and without friction. 
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Levels 5 and 6 incorporate more complex maneuvers and narrow pathways. Level 7 

combines these basic movements in a more complex environment with an increasing 

number of obstacles. The increase in difficulty is maintained throughout consecutive levels. 

     Two versions of the game were designed, a Loose Timing version (LT) and a hard timing 

version (HT). The degree of difficulty of the LT-version is tuned to the anticipated skills of the 

participants whereas the degree of difficulty of the HT-version is higher than the anticipated 

skills of the participants. The two versions only differ in the amount of time, fuel and health 

given to the player. The game-design and all other game elements are similar.  

Behavioral measures 
	  

	  	  	  	  	  Performance was defined by measuring changes in conceptual knowledge and by 

assessing the number of completed levels within the game. To assess changes in 

conceptual knowledge the Force Concept Inventory was used. The Force Concept Inventory 

is a 30-item multiple-choice test, designed to measure conceptual knowledge regarding 

Newtonian mechanics. It forces participants to choose between correct scientific answers 

and many common intuitive alternatives. For a review of validity and reliability see Hestenes, 

Wells and Swackhamer (1992). The test was administered before and after the game-based 

learning task. Furthermore participants were asked to fill in a short questionnaire to establish 

age, gaming experience and self-reported knowledge of Newtonian mechanics. 

 

 
Figure 2: A question of the Force Concept Inventory 
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Design and procedure  
	  
     This study has a between-subjects design. First participants were asked to finish the 

questionnaire and the Force Concept Inventory. After which an electrode cap was placed on 

the participant’s scalp. Participants were then randomly assigned to either the LT- or the HT-

version of the game-based learning task and were asked to play with the game for 30 

minutes while EEG-recordings were made. Afterwards subjects were once again asked to fill 

in the Force Concept Inventory.  

EEG-recording 

     The electrode montage consisted of 61 Ag/AgCl electrodes located in an electrode cap 

according to the international 10–10 system. Two Ag/AgCl electrodes were placed 2 cm 

above and 2 cm below the left eye to record vertical electrooculogram (EOG) and two 

electrodes were positioned at 1 cm external to the outer canthus of each eye for horizontal 

EOG recording. A ground electrode was placed on the forehead. Electrode impedances were 

kept below 20 kΩ. Signals were recorded digitally at a sampling frequency of 500 Hz. Fast 

Fourier Transforms were made offline. The distinguished powerbands were: theta (4-7 Hz) 

and alpha (8-12 Hz). Artifacts were corrected by using the built in algorithms of the software 

program Vision Analyzer 2.0 by Brainproducts. For each measurement, the spectral content 

was computed for epochs of 5.12 seconds of the EEG, bad intervals were skipped. The 

spectral power values of subjects 1, 5, 9 and 30 were left out of statistical analysis because 

the EEG recordings contained too many artifacts.  

 

 
Figure 3: International 10-10 System of EEG Electrode Placement 
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Results 
 
Performance 
 
     A repeated-measures analysis of variance was performed in SPSS to assess changes in 

conceptual knowledge and the effects of condition on this change. Results indicate that there 

are no significant changes in conceptual knowledge, F(1,28)= 0.69; p>0.05, and that this 

does not differ between the LT-group and the HT-group F(1,28)= 0.69; p>0.05. On the other 

hand, an analysis of variance showed that the number of completed levels does differ 

significantly between conditions, F(1,24)=19.01;p<0.01. The number of completed levels was 

significantly higher in the LT-group (M=8.36; SD=0.41) than in the HT-group (M=5.75; 

SD=0.44), which might mean that there is a difference in task-difficulty between the two 

conditions.  

Cognitive Load 
 
     To investigate whether cognitive load influences performance, firstly, it was assessed at 

which recording sites alpha and theta power was most prominent. Mean theta power was 

most prominent at: Fpz (M=0.27; SD=0.21), AF7(M=0.30; SD=0.28), FP1 (M=0.29; SD=0.27) 

and F7 (M=0.22; SD=0.21). For alpha, mean activity was highest at: PO8 (M=0.13; 

SD=0.08), O1 (M=0.10; SD=0.05), Oz (M=0.10; SD=0.05) and O2 (M=0.11; SD=0.06). 

These electrodes were used in further statistical analysis.  

 

       

           

Figure 4: Topographical Mapping of Mean Theta and Alpha power 
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     A test of variance was conducted to see if cognitve load would differ between the 

conditions. Results show that both theta power, F(1,24)=0.04; p>0.05, and alpha power, 

F(1,24)=3.17; p>0.05, do not significantly differ between the HT- and LT-version. Thus, 

cognitive load is not significantly higher or lower in one of the conditions. To explore whether 

cognitive load changes during the course of the task eight segments of the EEG were 

analysed. Epochs 1, 50, 100, 150, 200, 250, 300, and 350 were analysed. A repeated-

measures analysis of variance showed that both theta power, F(7,17)=1.31; p>0.05, and 

alpha power, F(7,17)=1.01; p>0.05, did not significantly change over time.  Finally, a test of 

variance showed that cognitive load does not significantly alter performance; cognitive load 

does not influence changes in conceptual knowledge, F(18,4)=0.59; p>0.05, nor the number 

of completed levels, F(12,4)=0.57; p>0.05.  

Correlations    
      

     To further examine the relationship between cognitive load and performance correlations 

were computed, using Pearson’s Correlation Coefficient. Results merely show that alpha and 

theta power are highly correlated, r=0.52; p<0.01, as can be expected considering their 

proximity in frequency. None of the other correlations were found to be significant.  

Behavioral measures     
      

     To test the hypothesis that videogame experience and knowledge of physics would 

facilitate learning, by decreasing cognitive load and thus increasing performance, an analysis 

of variance was performed. Results show that both videogame experience, F(8,15)=0.80; 

p>0.05, and knowledge of physics, F(1,15)=1.36; p>0.05, do not significantly influence the 

number of levels completed. Furthermore, results show that videogame experience does not 

significantly influence conceptual knowledge, F(8,15)=0.98; p>0.05, while knowledge of 

physics does, F(1.15)=5.55; p<0.05. Pairwise comparisons using Bonferroni show that 

conceptual knowledge is higher when participants have knowledge of physics (MD=5.65; 

SD=2.49). To test whether cognitive load would be influenced by videogame experience and 

knowledge of physics another test of variance was conducted. Results show that both 

videogame experience, F(16,30)=0.89; p>0.05, and knowledge of physics, F(2,14)=0.03; 

p>0.05, do not significantly influence cognitive load.  

 
     Finally, correlations were computed between knowledge of physics, videogame 

experience, performance, and cognitive load. As expected, only the correlation between 

knowledge of physics and conceptual knowledge was significant, r=-0.55; p<0.01. 
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Discussion  
 

     The aim of this study was to investigate whether cognitive load would influence 

performance in a game-based learning task and, more broadly, to establish whether 

cognitive load should be considered as a variable in maximizing the effectiveness of game-

based learning outcomes. This study found no indications that cognitive load influences 

learning outcomes in a game-based learning task. However, cognitive load was not 

successfully manipulated. It was expected that cognitive load would be higher in the HT-

version of the game than in the LT-version of the game, but statistical analysis found that 

cognitive load was not significantly higher or lower in one of the conditions. Furthermore, the 

electrode impedances of the EEG-recordings were fairly high (< 20 Ω). Thus, the 

measurement of cognitive load was not as reliable as it could have been. On the construct of 

performance, results indicate that there are no significant changes in conceptual knowledge. 

This might have something to do with the effectiveness of the game-based learning task. The 

effectiveness of the game-based learning task, designed by Hoevenaar and Koops (2012), 

has not been sufficiently validated. Though in the research by Hoevenaar and Koops ‘Space 

Challenge’ proved to be an effective tool in teaching newtonian mechanics, their participants 

played the game as part of their physics classes, with additional instructions on newtonian 

mechanics from their teacher. Furthermore, the Force Concept Inventory was used to 

measure changes in conceptual knowledge, by administering the test before and after the 

game-based learning task. However, results of the second administration may have been 

influenced by fatigue and lack of motivation, since the test is quite long and demands a fair 

amount of focused attention.  

     All in all this study has not succeeded in establishing whether cognitive load influences 

learning outcomes in a game-based learning task. Though, by making a step towards a 

broader application of CLT, by researching it’s influence in DGBL, this study will hopefully 

inspire more research on how cognitive load influences learning in DGBL, as there are many 

gaps to be filled. For instance, research is needed on the origin of cognitive load in game-

based tasks. As discussed earlier some researchers state that the main problem of 

multimedia learning materials is that the working memory capacity of learners is often 

overloaded due to inappropriate ways of presentation, whilst the rich multimedia elements 

create unnecessary extraneous cognitive load (Kiili, 2005). If this is the case designing 

strategies need to be made, with educational theories in mind. Some steps in this direction 

have already been made. To overcome the limited capacity problem Mayer (2001) presented 

a cognitive theory of multimedia learning that assumes that working memory includes limited 

channels for both visual and auditory (verbal) processing. Mayer has primarily examined 
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different presentation formats in order to reduce the extraneous cognitive load of learning 

materials. Although this modality effect, assuming that working memory capacity may be 

increased by the use of visual, auditory and haptic information processing channels 

simultaneously, might be valuable, it is important to notice that while graphics and sounds 

may attract the player the gameplay keeps the player engaged. Thus, a challenging task of 

educational game design is to find a balance between attractive elements and educational 

objectives in order to optimize the possibility of players experiencing flow while learning the 

relevant skills and information provided by the game. 

     However, the reduction of the extraneous cognitive load by an ideal instructional format 

does not guarantee that all free cognitive resources will be allocated to a deeper knowledge 

construction process (Bannert, 2002). Unused working memory capacity should be used by 

optimizing the germane cognitive load, by stimulating the player to process the problems 

provided more deeply. According to Kirschner (2002) the approach of encouraging learners 

to engage in appropriate cognitive processing can only work if the total cognitive load of 

instructional design is within working memory limits. If a learner's cognitive system is 

overloaded, it might impact negatively on learning.  

     In summary, research is needed to establish whether controlling cognitive load can 

maximize the effectiveness of DGBL. Is so, cognitive load, be it intrinsic, extraneous or 

germane, should be optimized, perhaps by cutting down irrelevant multimedia elements or by 

applying the modality effect, ultimately providing usable user interfaces and challenges that 

support knowledge construction.   
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