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Management Samenvatting 

Achtergrond 
Nederlandse ziekenhuizen worden gedwongen om hun beperkte middelen zo 

efficiënt mogelijk in te zetten. Een van deze middelen is de beddencapaciteit van 

ziekenhuizen. Een optimale opnameplanning gebruikt de beddencapaciteit zo 

efficiënt mogelijk. Om een dergelijke planning te krijgen, zijn vroege voorspellingen 

van het verwachte ontslagmoment van patiënten nodig. Verwachte 

ontslagmomenten kunnen worden voorspeld wanneer de verwachte duur van 

opnames bekend is. Met andere woorden, voorspellingen van de verwachte ligduur 

bij opname zijn nodig. In deze studie is de ligduur gedefinieerd als het aantal (halve) 

dagen dat een patiënt is opgenomen in het ziekenhuis gedurende een opname. Het 

nauwkeurig voorspellen van ligduur bij opname is een uitdaging door de grote 

variantie in ziekteverloop.  

Het Emma Kinderziekenhuis (EKZ) wat onderdeel is van het Academisch Medisch 

Centrum Amsterdam (AMC) ervaart problemen met het voorspellen van ligduur bij 

opname. Interviews met het management van de afdelingen van het EKZ hebben 

uitgewezen dat ligduur momenteel niet consequent wordt voorspeld en 

geregistreerd. Wanneer de ligduur voorspeld wordt, is deze gebaseerd op de 

medische ervaring van de arts. Artsen geven aan dat zij 20% van de opnames 

onvoorspelbaar achten door de grote variantie in ziekteverloop. In dit onderzoek is 

daarom een prototype van een generiek voorspelmodel ontwikkeld dat de 

verwachte ligduur nauwkeurig voorspeld op basis van historische data. Daarnaast is 

de nauwkeurigheid van ligduur voorspellingen die door artsen gemaakt worden, 

gemeten. 

Methode 
Het voorspelmodel is gebaseerd op multiple regressie. Regressieanalyse bepaalt het 

verklarend vermogen van onafhankelijke variabelen op een afhankelijke 

uitkomstvariabele. Regressieanalyse heeft homogene groepen van voldoende 

grootte nodig om statistische significantie van onafhankelijke variabelen aan te 

tonen. 

Het voorspelmodel bestaat uit een ligduur verklarend model en een toepassing op 

prospectieve data. Het verklarend model bestaat uit vier stappen. Ten eerste 

worden de opnames in de dataset gegroepeerd op diagnose. Ten tweede worden de 

groepen samengevoegd in klassen wanneer ze statistisch vergelijkbaar zijn om aan 

minimale groepsgrootte voor regressieanalyse te kunnen voldoen. Ten derde voert 

het model regressieanalyse uit op alle gevormde klassen. Ten vierde wordt voor elke 

klasse een ligduurformule gecreëerd op basis van de door regressie aangetoonde 

voorspellende variabelen. De toepassing op prospectieve data voorspelt de ligduur 

van nieuwe opnames door de opname te koppelen aan de juiste ligduurformule. 
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Resultaten  
Niet alle voorgestelde voorspellers van ligduur uit de literatuur waren beschikbaar 

in de EKZ dataset (bijv. het gewicht van de patiënt en de aanwezigheid van een 

nevendiagnose). Dit kwam door moeilijkheden wat betreft het koppelen van 

verschillende databases in het EKZ. De locatie waarvandaan de patiënt is 

opgenomen (bijv. vanuit huis, ander ziekenhuis of spoedeisende hulp) en het 

opnamespecialisme bleken het grootste voorspellende vermogen voor ligduur te 

hebben in de EKZ dataset. Geslacht en opnamedag (weekdag of weekenddag) waren 

de slechtste voorspellers van ligduur. 

Het voorspelmodel kon 40.7% van de opnames uit de test set voorspellen. De 

overige opnames waren niet te voorspellen omdat er te weinig opnames per 

diagnose in de training set zaten. De gemiddelde absolute afwijking tussen de 

voorspellingen van het model en de geobserveerde ligduur was 91.7%. Dit is een 

verbetering ten opzichte van de gemiddelde absolute afwijking tussen de 

voorspellingen van artsen en de geobserveerde ligduur. Deze was 147.6%. 

Conclusie 
Het ontwikkelde voorspelmodel kan de ligduur van patiënten die opgenomen zijn in 

het EKZ nauwkeuriger voorspellen dan dat artsen dat kunnen gebaseerd op hun 

medische ervaring. Desalniettemin is het aantal opnames wat te voorspellen is met 

het model gelimiteerd.  

Aanbevelingen 
Vanwege de grote gemiddelde absolute afwijking tussen de voorspellingen van het 

model en de geobserveerde ligduur wordt het nog niet aanbevolen om de 

opnameplanning in het EKZ te baseren op de ligduurvoorspellingen van het model. 

De dataset moet eerst meer opnames bevatten en meer voorspellende variabelen 

voor de ligduur. Daarmee kan de nauwkeurigheid van de voorspellingen vergroot 

worden. Door het generieke karakter van het voorspelmodel is het gemakkelijk om 

nieuwe of aangepaste datasets te analyseren.  
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Management Summary 

Background 
Hospitals in the Netherlands are forced to use their scarce resources as efficient as 

possible. One of these resources is the hospital bed capacity. An optimal admission 

planning uses hospital bed capacity as efficient as possible. In order to achieve such 

a planning, early predictions of the expected discharge moment of patients are 

needed. Expected discharge moments can be predicted if the expected duration of 

admissions is known. In other words, predictions of the expected length of stay 

(LOS) at admission are required. In this study, LOS is defined as the number of 

(semi-) days a patient is admitted to the hospital during an admission. Due to large 

variety in clinical course, it is a challenge to accurately predict LOS at admission.   

The Emma Children’s Hospital (ECH) of the Academic Medical Center Amsterdam 

(AMC) experiences difficulties in predicting LOS at admission. Interviews with the 

management of the ECH wards showed that LOS is currently not consequently 

predicted and registered. Prediction, when possible, is based on the physician’s 

medical experience. Physicians stated that they perceive 20% of the admissions as 

unpredictable due to large variation in clinical course. This research therefore aims 

to develop a prototype of a generic prediction tool that accurately predicts expected 

LOS based on historical data. Additionally, the accuracy of the LOS predictions made 

by physicians is measured. 

Method 
The prediction tool developed in this study was based on multiple regression. 

Regression analysis determines the predictive capacity of independent variables on 

a dependent outcome variable. It requires homogenous groups of sufficient size to 

prove statistical significance of the independent variables.  

The prediction tool consists of an LOS explanatory model and an application to 

prospective data. The explanatory model consists of four steps. First, admissions in 

the dataset are grouped on diagnosis. Second, groups are aggregated into classes 

when statistically comparable to meet minimally required class sizes for regression 

analysis. Third, the model performs regression analysis on all formed classes. 

Fourth, an LOS formula for each class based on the proven predictor variables 

resulting from regression analysis is created. The application to prospective data 

predicts the LOS for new admissions by matching the admission with the correct 

LOS formula. 

Results 
Not all proposed LOS predictor variables in literature were available in the ECH 

dataset (e.g. the weight of the patient and the presence of a secondary diagnosis). 

This was due to difficulties in combining various databases in the ECH. The location 

from where the patient was admitted (e.g. home, other hospital, ER) and the 

admission specialism had the highest predictive power on LOS. Gender and 

admission day (weekday or weekend day) were the poorest predictors of LOS. 
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The LOS prediction tool was able to predict the LOS of 40.7% of the admissions in 

the test set. The rest of the admissions were not predictable since too few 

admissions per diagnosis were available in the training set. Average absolute 

deviation between the tool’s predictions and observed LOS was 91.7%. This is an 

improvement in comparison to the average absolute deviation between the 

physician’s predictions and observed LOS, which was 147.6%. 

Conclusion 
The developed LOS prediction tool can predict the LOS of patients admitted to the 

ECH with higher accuracy than physicians can based on their medical experience. 

However, the number of admissions for which the tool can predict LOS, is limited.   

Recommendations 
Due to the large average absolute deviation between the tool’s predictions and 

observed LOS, it is not yet recommended to base the admission planning of the ECH 

on LOS predictions made by the tool. The dataset first needs to be enlarged and 

more influencing LOS variables need to be included in order to increase the accuracy 

of the predictions. Due to the generic character of the prediction tool, new or 

enlarged datasets are easily analyzed.  
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1 Introduction 
The demand for health care continuously rises due to demographic developments 

and improved access to health care. Due to these developments and changes in the 

Dutch financial reimbursement system, hospitals are forced to use their scarce 

resources as efficient as possible. One of these resources is the hospital bed capacity. 

An optimal admission planning uses hospital bed capacity as efficient as possible. 

Early predictions of the expected discharge moment of patients are needed to 

achieve such a planning. Expected discharge moments can be predicted if the 

expected duration of admissions is known. In other words, predictions of the 

expected length of stay (LOS) at admission are required. In this study, LOS is defined 

as the number of (semi-) days a patient is admitted to the hospital during an 

admission. Due to large variety in clinical course it is a challenge to accurately 

predict LOS at admission.  

Besides enabling efficient admission planning, prediction of LOS at admission could 

lead to LOS reduction. LOS prediction would provide an incentive to work towards a 

patient’s discharge. Literature has shown that this could already lead to a reduction 

in LOS [1]. Additionally, discrepancies between expected and actual LOS can be 

mapped with LOS predicted. By removing or modifying the causes of these 

discrepancies, LOS reduction could be realized. LOS reduction leads to a higher 

number of treated patients and therefore an increase in the average income for each 

bed per day [2]. Additionally, it can improve the quality of care (assuming that the 

patient’s medical condition allows discharge) and patient satisfaction [3, 4]. Caminiti 

et al. and Panis et al. concluded that over 20% of hospital bed use in the studied 

hospitals was unnecessary due to organizational delay; implying a waste of 

resources and an increase of patient iatrogenic risk1 [3, 4]. The different research 

contexts of the studied hospitals give rise to the expectation this phenomenon 

applies to many hospitals and that therefore part of LOS with organizational cause 

can be reduced. An expected disadvantage of LOS reduction could be the raise in 

number of undesired readmissions. Literature does not confirm this disadvantage 

[5, 6].  

Additionally, LOS predictions can be used to better prepare patients for their 

discharge. Communicating a predicted discharge date to patients has proven to have 

a positive influence on their hospital experience [7]. Highly valued hospital 

experiences are desirable as they are increasingly recognized as a pillar of quality in 

healthcare [8]. 

Since hospitals currently experience difficulties with predicting expected LOS, this 

research aims to develop a prototype of a generic prediction tool that accurately 

predicts LOS based on historical data.   

1.1 Research context 
The overall objective of this research is to develop a prediction tool that is 

generically applicable. However, to limit the scope of this research and to evaluate 

                                                           
1 inadvertent adverse effect or complication resulting from medical treatment or advice 
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the usefulness of the tool, the tool is primarily developed for and tested in the Emma 

Children’s Hospital (ECH) of the Academic Medical Centre Amsterdam (AMC).  

1.1.1 Academic Medical Centre Amsterdam (AMC) 

The AMC was founded in 1983 after a merger between two hospitals from the 

Amsterdam city center and the medical faculty of the University of Amsterdam 

(UvA). The ECH was incorporated five years later. The AMC is one of the eight 

academic medical centers in the Netherlands; besides the treatment of patients, it 

also carries out a great deal of medical research and provides medical education. 

Currently, the AMC has ten divisions supported centrally by corporate staff and 

facility services. The total number of employees is approximately 7.000 [9].  

In 2011, almost 390.000 patients received treatment in the outpatient 

department, around 31.000 patients received treatment in the day care unit and 

30.000 patients were admitted in the clinic. The average LOS was 6,7 nursing 

days2 [11].   

In 2011, the AMC started an improvement program called SLIM to achieve quality 

improvements and cost reductions. One of the AMC’s targets for 2013 was to 

reduce the LOS by 10% compared to 2012 [12]. The SLIM program is executed by 

the departments Finance & Control and KPI (Kwaliteit en Proces Innovatie). KPI 

acts as an internal consultant department and aims to redesign and improve the 

hospital’s processes while maintaining or improving the quality of care.  

1.1.2 Emma Children’s Hospital 

The ECH has an outpatient department with a daycare unit and an inpatient 

department. The inpatient department consists of six nursing wards. There are 

three age-related wards: Infants (<1 year), Older Children (1-12 years), and 

Teenagers (> 12 years). Additionally, there are four specialized wards: Pediatric 

Oncology, Pediatric Intensive Care, Neonatal Intensive Care and Pediatric 

Surgery.  

1.2 Problem statement 
For this research, the following problem statement is formulated:  

The lack of knowledge concerning the expected LOS at patients’ admission 

results in unnecessary prolonged stays in the hospital. This is accompanied by 

possible reduced quality of care, negative influence on the patient’s experience 

and unnecessary costs. 

1.3 Framework for Planning and Control 
To demarcate the scope of this research, the framework for planning and control of 

Hans et al. is used [13]. The framework is build up by four managerial areas and four 

levels of hierarchical decomposition which results in sixteen areas of planning and 

control, see Figure 1.  

                                                           
2 A nursing day is a charged calendar day that pertains to the period between admission and discharge 
of a hospital stay. Both the admission day (under the restriction that admission occurred before 8PM) 
and the discharge day are marked as a charged calendar day. [10] 
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Figure 1: Example application of the framework for health care planning and control to a 
general hospital [13], with in blue the focus of this research highlighted. 

Resource capacity planning addresses the dimensioning, planning, scheduling, 

monitoring and control of renewable resources. LOS prediction, and indirectly LOS 

reduction, influences the admission, discharge and overall bed planning and is 

therefore located in the area of resource capacity planning.  

The hierarchical decomposition level of the research is more difficult to define, 

considering LOS prediction can be used on all four levels. On the strategic level, a 

prediction can be made of the expected number of patients in the upcoming year 

and their respective LOS, based on historical data. This influences the decisions 

taken regarding the case mix of the hospital and/or the capacity dimensioning. With 

the expected LOS known, the necessary amount of staff can be predicted. This 

corresponds to the tactical level on which LOS predictions can be used. On an 

operational level, the tool influences discharge planning of the patient and overall 

patient planning of the ward [14].  

To define the scope of this research, the choice to focus on the level of operational 

planning is made. Operational planning involves short-term decision making related 

to the execution of the health care delivery process [14]. Considering that the tool 

will predict LOS at admission, the time horizon of the tool is short. This corresponds 

with the operational level of the framework. The timing of the prediction 

immediately influences the patient planning of the ward, which corresponds to the 

online operational level. In addition, LOS predictions influence the offline 

operational process of discharge planning. Therefore, the tool is both located at the 

offline and online operational level, as highlighted in Figure 1.       

1.4 Research objective and research questions 
Based on the problem stated in section 1.2, the following research objective is 

formulated:   

Development of a generic prediction tool prototype which accurately predicts 

the individual hospital LOS, based on patient characteristics and organizational 

factors known at admission. 
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Six research questions are formulated to attain this objective. The sequence of the 

research questions forms the outline of this thesis.  

Chapter 2 How is LOS currently predicted at the AMC and at other Dutch 

hospitals? 

a. How is LOS currently predicted at the AMC? 

b. How accurate are the current LOS predictions of the AMC? 

c. How is LOS currently predicted at other hospitals? 

  
Chapter 3 What prediction models and influencing variables of LOS are known 

in literature? 

a. What models are known in literature to predict LOS? 

b. What variables found in literature influence LOS? 

  
Chapter 4 How can an LOS prediction tool be developed? 

a. How is LOS predicted based on available influencing 

variables? 

b. How are LOS predictions translated in a tool for practice? 

  
Chapter 5 

Chapter 6 

 

How can the developed prediction tool be applied to the ECH? 

a. Which variables influence the LOS of patients admitted to the 

ECH? 

b. How effective is the tool in practice? 

Chapter 7 What can be concluded from this research? 

a. What are recommendations for future research? 

b. What adjustments need to be made in the current processes 

at the ECH to implement the tool in practice? 
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2 Current Length of Stay prediction 
To identify the current state of LOS prediction, both the AMC (section 2.1) and two 

other Dutch hospitals (section 2.2) are analyzed by means of interviewing 

personnel.  

2.1 LOS prediction at the AMC 
To describe current LOS prediction in the AMC, two departments are evaluated: the 

ECH (section 2.1.1) and the Geriatrics department (section 2.1.2). The ECH is chosen 

considering that it is the target group in this research; Geriatrics is analyzed since it 

already performed research on LOS prediction.  

2.1.1 LOS prediction in the Emma Children’s Hospital 

Interviews with the management of the ECH wards showed that the expected LOS 

is currently not consequently predicted and/or registered. The admission 

planner stated that patients are currently scheduled based on a fixed number of 

admissions, independently of the expected LOS of present patients. Predictions 

are rarely used for planning purposes and the discharge process is not based on 

expected LOS.  

Physicians state that they can predict the LOS for around 80% of admissions, at 

admission. Current LOS prediction usually takes place in the physician’s mind by 

considering the age and weight of the patient, (primary and secondary) 

diagnosis, required treatment and the patient’s history. The predictions are often 

not registered on paper. The accuracy of the physicians’ predictions is therefore 

unclear. The other 20% of the admissions is perceived as unpredictable due to 

the large variety in clinical course.  

Different opinions regarding LOS prediction tools exist. Multiple wards would 

like to use a tool, in order to help predict the “unpredictable” group of admissions 

and to achieve consequent LOS registration. The counterargument most 

commonly stated relates to the opinion that physicians can already predict LOS, 

based on their medical experience. To measure the added value of an LOS 

prediction tool, the accuracy of LOS predictions made by physicians needed to be 

evaluated. See the next paragraph for the setup and results of this measurement.  

Setup physicians’ predictions 

In response to the results of the interviews, a retrospective study concerning the 

accuracy of physicians’ LOS predictions was performed. Physicians predicted LOS 

retrospectively to allow for a large number of admissions predicted in a relative 

short timeframe. Also, this setup required minimal time investment of the 

participating physicians. Justification for this setup was confirmed by an AMC 

clinical epidemiologist.  

Case descriptions of historic patients were developed to predict LOS 

retrospectively. Presented data in the case descriptions included the patient’s 

gender, age and diagnosis, admission day, code and ward, and whether an acute 

or elective admission was concerned. The inability to assess the patient in person 
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and having restricted information complicated the prediction of LOS; hence 

participants were asked for rough estimates of LOS.  

A power analysis [10] was conducted to determine the number of required cases 

(admissions to be predicted) to achieve statistical significance. The minimum 

number of participating physicians was set to three by weighing the influence of 

the number of physicians in relation to the number of required cases. Other input 

values were chosen in collaboration with the clinical epidemiologist. The power 

analysis resulted in a required number of 31 cases (See Appendix B for the input 

and output values of the power analysis). 

A collaborating pediatrician proposed 31 frequently occurring diagnoses in 

pediatric patients. With these diagnoses, specific admissions were selected from 

data. One case for each diagnosis was chosen based on having an LOS around the 

average and showing logical values for the other parameters (e.g. admission from 

the Emergency Room always corresponds with an acute admission). In this way, 

‘average’ cases were selected to enhance the feasibility of prediction. 

Physicians were selected by the collaborating pediatrician. Selection was based 

on the level of experience and willingness to participate. Physicians who 

regularly act as attending physician were invited to participate as they are 

responsible for LOS predictions in practice. 

Results physicians’ predictions 

Five attending physicians participated in the study. The assumption was made 

that all participants had a similar amount of medical experience. The results 

show that the average absolute deviation between predicted and observed LOS 

was 147.6%, see Table 1. The lowest absolute average deviation of a physician 

was 83.9% while the highest absolute average deviation was 256.9%. These 

results are compared with the prediction tool’s results in section 6.2. 

Physician Average absolute 
deviation 

1 83,9% 

2 99,1% 

3 150,4% 

4 256,9% 

Total average 147,6% 
Table 1: Average absolute deviation between observed LOS and physicians' predictions. 

2.1.2 LOS prediction at Geriatrics 

In 2011 Geriatrics set up a project to safeguard the provision of high quality care 

around discharge [15]. The goals of this project involved (1) improving the 

healthcare process around discharge, (2) increasing patient safety around 

discharge, and (3) increasing patient satisfaction around discharge.  

One way to achieve these goals involved predicting the expected discharge date 

for 80% of the patients within 48 hours after admission. The expected discharge 

date is formed by the admission date plus the expected LOS. To support LOS 

prediction, a discharge matrix was developed, see Table 2. This matrix includes 
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five diagnostic groups3 which cover 80% of the diagnoses of admitted patients. 

The expected LOS for each of these groups, expressed as the median4 LOS, is 

calculated for three age groups and is based on 640 patients admitted in the 

period between 2006 and 2008. The majority of patients had multiple co-

morbidities [15].   

Age 

Diagnostic group 
65-74 
years 

75-84 
years 

≥ 85  
years 

Infection 6 8 10 

Malignancy 8 8 * 

Water and electrolyte disturbance 10 7 9 

Gastrointestinal problems 4 6 6 

Cardio Vascular condition 5 7 8 

Table 2: Discharge matrix Geriatrics, translated from Dutch [15]. The numbers express the 
median expected LOS in days. 
* no reliable median due to small number of patients 

Since the second half of 2011, LOS is predicted using the discharge matrix. The 

LOS predictions are daily discussed and adjusted if needed, during the physicians’ 

rounds.  

Results Geriatrics LOS predictions 

Preliminary evaluation of the results showed that around 80% of the predicted 

discharge dates were achieved. The LOS of patients admitted after the 

introduction of the discharge matrix (posttest) seems to be longer than the LOS 

of patients admitted before the introduction (baseline measurement). The 

Geriatrics researcher expects this to be due to the fact that patients with an LOS 

shorter than 48 hours are excluded from analysis5. If using the discharge matrix 

results in LOS reduction, more patients have an LOS shorter than 48 hours. As a 

result, more admissions are excluded from the analysis. The average LOS is then 

excessively influenced by the longer LOSs. Further analysis must be performed to 

substantiate this statement.  

Improvements in the discharge process due to LOS predictions are experienced 

by the Geriatrics staff. There is more awareness regarding a patient’s discharge 

and corresponding required actions if LOS is predicted. Nevertheless, a peak in 

workload on the day of discharge is still experienced. An area for improvement 

therefore includes spreading out the work across the patient’s stay. This is 

addressed by using the available checklists for discharge [15].  

 

 

                                                           
3
 These groups were formed at the discretion of the Geriatrics researcher. 

4 Geriatrics researcher’s choice to account for skewed LOS data. 
5 The boundary was set to 48 hours since the discharge moment needed to be predicted within 48 
hours after admission. 
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2.2 LOS prediction at other Dutch hospitals 
To determine various ways of LOS prediction, two Dutch hospitals were visited. 

During these visits, LOS prediction and its effects were discussed. The findings from 

the visit to the Albert Schweitzer Hospital in Dordrecht (ASZ) are stated in section 

2.2.1, while the results from the visit to the Isala Clinics situated in Zwolle are 

described in section 2.2.2.  

2.2.1 Albert Schweitzer Hospital (Dordrecht) 

The ASZ in Dordrecht was contacted in response to a news article that stated a 

significant LOS reduction at the ASZ due to implementation of a new system 

based on the Theory of Constraints (ToC) [16]. This theory states that constraints 

determine the performance of a system. A constraint is defined by Goldratt as 

“anything that limits the performance of a system relative to its goal” [17]. In the 

ToC system, constraints are translated into focus points around which a business 

can be organized or improved. The focus points for the ASZ concerned the 

alignment of different departments within a patient’s logistical path.    

The ToC system was implemented in the ASZ three years ago and resulted in an 

average LOS reduction of 2,9 days between 2009 and 2012 [16]. With ToC focus 

lies on LOS by monitoring the logistical process during a patient’s stay. The 

system sends out signals the moment the expected discharge date is exceeded. 

Reasons for delayed discharge must be specified to analyze and dissolve 

bottlenecks.  

The ToC system requires LOS prediction at patient’s admission. Predicting LOS is 

not perceived as a problem; LOS predictions are based on physicians’ medical 

experience. The predictions are considered to be accurate; research into the 

accuracy is not performed.  

The ToC system has led to an increase in the number of patients treated due to 

reduction in LOS. This is accompanied by a more equally distributed workload 

during the patient’s stay considering the acts needed for discharge are planned in 

advance based on the expected discharge date.  

2.2.2 Isala Clinics (Zwolle) 

Since four years, the Isala Clinics predicts LOS for each patient, based on 

diagnosis. The prediction is retrieved from a table containing all diagnoses and 

their expected LOS. The proposed LOS represents the LOS belonging to the 70th 

percentile6 of the data for a specific diagnosis. The Isala Clinics chose this 

percentile by weighing the expected number of prediction adjustments and the 

accuracy of the LOS prediction (for planning purposes). 

During admission planning, the predicted LOS is used to optimally utilize hospital 

capacity. This implies the importance of up-to-date LOS predictions. The LOS is 

adjusted if needed during the daily physician’s rounds. Reasons for adjustment 

are logged to evaluate the causes of prolonged stays.  

                                                           
6
 Definition 70th percentile: 70% of the historical patients with the diagnosis had an LOS shorter or 

equal to the proposed LOS 
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This system is gradually becoming more appreciated by the users considering the 

importance to improve capacity utilization of the wards. It is valued highest at 

wards that experience a shortage of beds as LOS is used to predict the required 

number of personnel. 

 

This chapter showed that the inconsistent prediction and registration of LOS, and the 

inaccuracy of the current predictions in the ECH elicit the possible added value of an 

LOS prediction tool. The chapter also provided possible methods and input parameters 

for the tool. Since these methods and parameters are not comprehensive, additional 

LOS prediction models are reviewed in the next chapter.   
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3 Literature 
This chapter reviews current scientific literature on the prediction of LOS in order to 

gather input for the LOS prediction tool developed in this study. Only literature 

expected to be relevant for this study (estimated by the researcher) is presented.  

Literature mainly focuses on LOS explanatory models instead of LOS predictive 

models. The difference between these models concerns the moment of analysis [18]. 

LOS explanatory models aim to explain historical LOS based on variables that are 

available before, during and after discharge. These variables are defined in this 

study as ex-post7 available explanatory variables and LOS analysis proceeds 

retrospectively. LOS predictive models are explanatory models where only variables 

that are known at admission are taken into account. The variables in these models 

are defined as ex-ante8 available explanatory variables and LOS analysis proceeds 

prospectively. Ex-ante available variables are therefore a subset of ex-post available 

variables, see Figure 2. Some variables are not consequently ex-post or ex-ante 

available explanatory variables (e.g. number of disciplines involved). Additionally, 

ex-post available variables that are not ex-ante available variables can sometimes be 

estimated. For example, research concerning the prediction of complications at 

patient level is currently conducted at the AMC [19]. The methods used in 

explanatory and predictive models can be equal, but input and output differs.  

Ex-post 
available variables

Ex-ante 
available variables

Age
Gender

Complications

Need for hom
e care

Secondary diagnosis

Diagnosis

No. previous 
admissions

 

Figure 2: Illustration of ex-post and ex-ante available variables. The stated variables are not 
exhaustive and are categorized dependent on the admission.  

The relation between LOS explanatory models and LOS prediction tools is illustrated 

in Figure 3. An LOS prediction tool consists of an LOS explanatory model with an 

application to prospective data. 

                                                           
7 Latin for ‘after the event’ 
8 Latin for ‘before the event’ 
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LOS explanatory 
model

Ex ante LOS 
explanatory 

variables

Historical data

Filter on ex 
ante 

variables

Application to 
prospective data

LOS prediction tool

New admission LOS prediction

 

Figure 3: LOS prediction flow diagram. The LOS prediction tool is highlighted in blue. See Appendix 
D for the corresponding legend. 

Different types of methods exist to determine the influence of ex-post or ex-ante 

available explanatory variables [20-23]. Various LOS explanatory methods are 

discussed in section 3.1. The ex-post available explanatory variables resulting from 

the described methods are presented in section 3.2. The chapter ends with section 

3.3 that provides the research implications concerning the selected factors from the 

models in literature, applied to the LOS prediction tool developed in this study. 

3.1 LOS explanatory methods 
This section presents the methods used in LOS explanatory models found in 

literature. The section is based on the PhD thesis of M. de Lourdes Guzman Castillo 

[21] by reason of the elaborate systematic research on the topic most recently 

performed. Additional literature is added to extend the findings and to include 

literature applicable to the AMC’s situation. For practicality, the categorization of 

models proposed in [21] is used. Each of these categories is described in the 

following sections.  

3.1.1 Arithmetic methods 

Arithmetic methods compute the average LOS by calculating the mean LOS or the 

median LOS of the log-transformed data to correct for the skewed nature of the 

LOS distribution [21]. The most prominent flaws of these methods concern the 

often overestimation of the average LOS in the case of the mean LOS and the 

underestimation of the average LOS when represented as the median of the log-

transformed data [24]. Also, arithmetic methods assume that all included 

patients will have an identical LOS regardless of their personal characteristics. 
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The heterogeneity in the cohort under study assuredly implies that patient 

characteristics should be taken into account [25, 26]. Despite these flaws, 

arithmetic methods are still the most common methodology used at hospitals due 

to their ease of use [21].   

3.1.2 Statistical methodology 

Linear regression approaches are the most widely used modeling methods [20-

22, 27-29]. As stated in [21], these approaches aim to predict an outcome 

variable based on several covariates. Covariates are defined in the context of LOS 

as the patient’s characteristics and external factors which possibly predict LOS 

(i.e. medical condition, patient age, patient gender, pathological history, etc.). LOS 

data used in linear regression models needs to be log-transformed considering 

the assumption that the input data are normally distributed. 

LOS distributions can best be modeled by a lognormal model [30]. Data analysis 

performed in [21] supported this finding and supplemented it with the advice to 

represent LOS data by a mixture model composed of two or three lognormal 

components combined.  

Different truncation rules for the detection of outliers are compared. Cots et al. 

[31] concluded that the lower and upper boundary for outliers are most 

accurately formed by taking two standard deviations from the geometric mean. 

This truncation rule is supplemented with the advice to substitute the outliers by 

the accepted values closest to the lower and upper boundaries instead of 

eliminating the outliers [24, 30]. 

3.1.3 Finite mixture models 

Quantin et al. [32] tried to find the best distribution to fit LOS data to explain LOS. 

They came to the conclusion that none of the distributions under study 

satisfactorily fit the data due to disparities in patient care and medical practice 

within a diagnosis related group (DRG). They therefore suggested that the 

observed distribution of LOS within a DRG may in fact represent a mixture of 

several different distributions. This type of model is commonly referred to as 

finite mixture models. In these models a continuous variable in a large sample 

consists of two or more clusters of observations (components) with different 

means and perhaps different standard deviations within each cluster. To define 

the clusters within each sample, analysis of covariates is performed to detect 

which covariate is linked to which cluster.  

3.1.4 Data-mining techniques 

Data-mining techniques aim to describe one or more of the variables present in 

data in relation to all the other variables. De Lourdes Guzman Castillo describes 

two types of data-mining techniques for the prediction of LOS: regression-type 

models and classification-type models. Regression-type models, such as 

regression trees, analyze the LOS as a continuous variable and do not assume that 

the underlying relationships between the covariates and LOS are linear. The 

latter forms the difference between the linear regression models described in the 

statistical methods above and this data-mining technique. Classification and 
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regression trees (CART) are the most commonly used regression-type models 

and have proven to be effective in the prediction of LOS [33]. In classification-

type models, the dependent variable in analysis is a discretized version of LOS. 

The originally continuous variable is split into different intervals according to 

specified criteria forming a number of categories. The aim of this method is to 

classify patients into these categories according to their characteristics. The 

challenge with this method is to choose an adequate classification algorithm, 

whose success relies on the particular nature of the data. An extensive study 

performed by Lim et al. concludes that the results between many algorithms 

predicting LOS are sufficiently similar suggesting that other criteria such as the 

interpretability of the data mining method needs to be taken into account [33].  

Azari et al. proposed a multi-tiered data mining approach that employs patient 

clustering to create training sets to train different classification algorithms [23]. 

The criteria for clustering evaluated in [23] concerned the disease condition, 

Charlson index9 and variation in sum of squared errors. The groups were utilized 

to predict LOS by multiple classifiers. Results show that using clustering as a 

precursor to form the training set is preferred over non-clustering based training 

sets. Clustering patients on disease condition and predicting their LOS with the 

JRip algorithm10 resulted in the highest value for prediction accuracy. Berki et al. 

also state that patients need to be grouped before the influence of variables on 

LOS can be identified [36]. 

Conclusion  

In [21], literature regarding current LOS prediction models was reviewed using a 

number of guidelines. These included the ability of the model or method to: 

account for skewness and heavy tails, include covariates, handle small samples 

and the ease of implementation. Also, the clinical or operational meaning, the 

ability to model probabilistic relationships and whether the analytical approach 

had a patient grouping component, were taken into account as requirements.  

Based on these criteria, the models with a case-mix analysis base – finite mixture 

models and data mining techniques – seem to be most suitable to predict LOS in 

public hospitals in Mexico. However, statistical methods are the most widely used 

modelling method due to their ease of use and broad application possibilities. 

  

The four proposed methods formed input for the setup of the LOS prediction tool 

developed in this study. The feasibility of each of the methods when applied to the ECH 

was estimated. Substantiation regarding the used methods in this study’s prediction 

tool is presented in section 3.3. 

 

                                                           
9 Charlson et al. proposed a formal generalization of the diagnosis codes in the form of a categorized 
comorbidity score [34] 
10  See [35] for a description of the JRip algorithm  
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3.2 LOS explanatory variables  
This section describes the ex-post available explanatory variables influencing LOS 

found in literature. Most of the explanatory LOS variables discussed are based on 

research conducted by Tump et al. [20]. This study is chosen as starting point as it is 

the most recent study addressing influencing LOS factors and since it is also 

conducted at the AMC. Additional literature is added to extend the findings. 

Tump et al. collected admission data by performing observations. They conducted 

uni- and multivariable statistical analyses to find significantly explanatory variables 

of LOS. The specific influence of each of the variables is expressed as a percentage by 

which the baseline untransformed LOS is increased or decreased. These percentages 

can solely be used for indicative purposes by reason of Tump’s small study sample. 

The small study sample and an expert’s opinion regarding the results ask for 

recalculation of the influence of LOS explanatory variables. 

Literature [20, 36-39] shows that explanatory LOS variables can be divided into 

patient characteristics and organizational factors. Section 3.2.1 discusses the patient 

characteristics and medical factors, while section 3.2.2 presents the organizational 

factors. 

3.2.1 Patient characteristics and medical factors 

This section addresses patient characteristics that influence LOS. Medical factors, 

such as the diagnosis, are also considered. The first paragraph summarizes the 

explanatory variables found by Tump et al. while the second paragraph presents 

research that verifies these variables and summarizes additional literature.  

Explanatory patient characteristics and medical factors found by Tump et al. 

Tump et al. [20] concluded that the sex, age, associated specialism, risk of 

malnutrition, arisen complications and number of other disciplines involved are 

the patient characteristics that significantly contributed to a patient’s LOS. These 

factors were all independently predictive; no significant interactions between 

factors were found. 

Additional explanatory patient characteristics and medical factors 

Literature confirms the age, gender, involved specialism and presence of 

complications as explanatory variables of LOS [22, 36, 39-41]. Malnutrition was 

confirmed twice [42, 43] and is complemented with sources that state high 

weight/BMI (Body Mass Index) as a prolonging factor of LOS [22, 37, 44].  

Multiple articles state the severity of illness as one of the most influencing 

variables of LOS [23, 36, 37, 39, 45]. Tump et al. did not conclude this in their 

study as the diagnosis was excluded from analysis due to the small study sample.  

Additional explanatory variables of LOS found in literature concerned the 

number of previous hospital admissions [22], the head circumference (in 

neonates) [45] and the presence of a secondary diagnosis (such as obesity, 

respiratory difficulties etc.) [22, 42, 44, 46].  
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3.2.2 Organizational factors 

Literature shows that LOS is often prolonged due to organizational deficiencies 

instead of medical reasons. The first paragraph summarizes the explanatory 

variables found by Tump et al. while the second paragraph presents additional 

organizational factors that explained LOS.  

Explanatory organizational factors found by Tump et al. 

Tump et al. [20] concluded that the need for home care after discharge and the 

involvement of multiple (pediatric) disciplines significantly prolonged LOS. The 

involvement of multiple disciplines is interpreted both as a medical factor and an 

organizational factor. When multiple disciplines are involved, the diagnosis is 

expected to be more complex. Additionally, the involvement of multiple 

disciplines raises the need for organizational alignment between different 

departments which also influences LOS [47].   

Additional explanatory organizational factors 

The need for home care is confirmed as an explanatory variable of LOS in 

literature [38, 48]. Another explaining variable concerned the logistical problems 

in arranging a patient’s transport to home or to another institution after 

discharge [43, 48].  

Two articles state the time and type of admission as LOS explanatory variables 

[36, 49], where the type of admission describes whether a patient is acutely or 

electively admitted. The influence of the time of admission on LOS reflects in the 

fact that during weekends less medical procedures are performed.    

 

Applied to LOS prediction at admission, the influencing LOS variables in predictive 

models are restricted. Only variables that are known at admission can be included. 

Therefore, not all independent variables found in explanatory models can be used in 

the LOS prediction tool developed in this study.  
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3.3 Research implications 
Various LOS explanatory models are presented in section 3.1. These models cannot 

serve as an LOS prediction tool since they explain LOS with the use of ex-post 

available variables. Therefore, a generic LOS prediction tool with an application to 

prospective data is developed in this study. The presented models and explanatory 

LOS variables do serve as inspiration for the LOS prediction tool.  

Two aspects from current LOS explanatory models apply to LOS data in general and 

are therefore relevant for this study. These include performing a natural log 

transformation of LOS data to account for skewness and heavy tails [21-23, 50] and 

substituting outliers [21]. Additionally, data clustering based on diagnosis is applied 

in this study by reason of proven performance in [23, 36] and the expected support 

base amongst users.  

Multiple regression was estimated to be the most suitable method for the LOS 

prediction tool developed in this study regarding its proven performance in 

literature [20-22], expected suitability for automation, its ease of use and its 

applicability to the ECH data. The regression methodology is described in Appendix 

C. 

Section 3.2 presented various ex-post available explanatory variables; see Table 3 

for a complete overview. In models that predict LOS at admission, only ex-ante 

available explanatory variables can be used; a selection is therefore made in the 

second column of Table 3.  

The ex-ante available explanatory variables form possible input for the LOS 

prediction model developed in this study.  

LOS explanatory variable Ex ante available 
variable? 

Article 

Sex Yes [20, 22, 39, 41] 

Age Yes [20, 22, 39-41] 

Weight/BMI Yes [22, 37, 44] 

Associated specialism Yes [20] 

Risk of malnutrition Yes [20, 42, 43] 

Arisen complications No [20, 36] 

Number of other disciplines involved Sometimes [20] 

Severity of illness Yes [36, 37, 39, 45] 

Number of previous hospital admissions Yes [22] 

Head circumference (in neonates) Yes [45] 

Presence of a secondary diagnosis Sometimes [22, 42, 44, 46] 

Need for home care after discharge Sometimes [20, 38, 48] 

Logistical problems in arranging a patient’s 
transport to home or to another institution after 
discharge 

Sometimes [43, 48] 

Time and type of admission Yes [36, 49] 
Table 3: LOS explanatory variables derived from literature 
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4 Model 
This chapter describes the development of the LOS prediction tool. The research 

implications presented in section 3.3 are incorporated in the tool. The model is 

developed in Microsoft Excel for its ease of use and availability of the program in the 

ECH. The built-in formulas in Microsoft Excel are assumed to be reliable.  

Based on the definition of prediction models provided in Chapter 3, the prediction 

tool is based on an explanatory model with an application to prospective data. The 

explanatory model in this study is defined as the computational model and is based 

on multiple linear regression. Regression analysis on historical data produces the 

explanatory LOS variables. For practicality, the explanatory variables are called 

predictors in the model description. The computational model creates LOS formulas 

with these predictors. The application to prospective data is defined as the user 

interface that uses the LOS formulas in order to calculate the expected LOS of a new 

admission entered in the interface. The relation between the two parts of the 

prediction tool is illustrated in Figure 4.  

Computational 
model (4.1)

User interface 
(4.2)

New admission LOS prediction

Historical 
data

 

Figure 4: Illustration of the LOS prediction tool. See Appendix D for the corresponding legend. 

This chapter discusses both parts of the prediction tool: section 4.1 describes the 

computational model while section 4.2 addresses the user interface.  

4.1 Computational model 
The computational model equals the LOS explanatory model in Figure 3. Data 

containing historical admissions form the input for the computational model. The 

dataset needs to be preliminary prepared by the user. This preparation includes 

performing a natural log transformation of LOS. Additionally, desired filters can be 

applied at the user’s discretion. 

The computational model consists of four steps; see the flowchart in Figure 5. The 

first step concerns data preparation performed in the model. In the second step, 

admissions are aggregated into classes to allow regression analysis. The third step 

includes the performance of regression analysis on all formed classes. Fourth and 
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finally, LOS formulas based on the results of the regression analyses are created. All 

steps are described in the following sections.  

Input
4. Create LOS 

formulas for every 
class

3. Perform 
regression analysis 

on classes

2. Group 
admissions 
into classes

Output

Computational Model

1. Data 
preparation

 

Figure 5: Flowchart of the computational model. See Appendix D for the corresponding legend. 

4.1.1 Data preparation 

The first step in the computational model involves data preparation. This step 

consists of four sub steps, see Figure 6. The dataset variables are prepared for 

admission aggregation and regression analysis. The admissions are then initially 

grouped based on the chosen grouping criterion. With the set requirements for 

primary, secondary and unpredictable classes, the formed classes are typified. 

Finally outlier analysis is performed on the data be reason of proven 

performance in literature (see Chapter 3). All steps are discussed in the following 

paragraphs. 

1. Data preparation

1a. Typify dataset 
variables

1b. Group admissions 
based on chosen 

criterion

1c. Typify classes based 
on chosen requirements 

for PC, SC, UC

1d. Perform 
outlier analysis

 

Figure 6: Flowchart step 1: Data preparation. PC: Primary Class, SC: Secondary Class, UC: 
Unpredictable Class. See Appendix D for the corresponding legend. 

1a. Typify the dataset variables 

In order to group the admissions and perform regression analysis, the user needs 

to typify all variables in the dataset. Variable types are: a negligible variable, the 

outcome variable, a basic variable, a predictor or the grouping criterion.  

All variables typified as negligible variables are neglected by the model. 

The outcome variable concerns the log transformed LOS.  

The basic variables are formed by the admission year and the admission number. 

Combination of these values corresponds to unique admissions to ensure that 

each admission is traceable.  

Predictor variables are the independent variables that will be used in multiple 

regression analysis. Different subtypes for predictor variables exist: 

dichotomous, categorical or continuous. Suggestions for predictor variables are 

given in Table 3 (section 3.3). Discontinuous variables need to be redefined in 

dichotomous variables or categorical variables with the smallest amount of 

option values possible. As a result, the smallest number of variables is formed. 
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This ensures that as many variables as possible can be incorporated in the model, 

which enlarges the chance of a better prediction model.  

The grouping criterion forms the basis of the admission aggregation. To select the 

grouping criterion, the variance in LOS and the number of admissions within a 

group need to be analyzed. The ideal group criterion yields minimal variance 

within a group, maximal variance between groups and as many admissions per 

group as possible. With minimal variance and a maximal number of admissions 

within a group, the model can accurately predict LOS for new patients having the 

same group criterion value (e.g. diagnosis). With a maximal variance in LOS 

between groups, distinct classes are generated. This benefits the accuracy of the 

predictions. The choice for grouping criterion is based on the user’s assessment. 

The group criterion should not be a continuous variable since every unique value 

will create its own group. This results in multiple groups consisting of only one 

admission. Group aggregation cannot occur with one admission per group. Few 

new admissions will then be predictable considering that the model only predicts 

LOS for groups with a minimal number of historical admissions (see sub step 1c). 

1b. Group admissions based on chosen criterion 

To all unique values of the chosen grouping criterion, a class is assigned (e.g. if 

the diagnosis is the grouping criterion, all present diagnoses get assigned a class). 

The model then matches each admission with its corresponding class.  

1c. Typify classes based on chosen requirements for primary and unpredictable 

classes 

This sub step typifies the formed classes to specify whether or not the model will 

be able to predict the LOS of the class. There are three types of classes: primary, 

secondary and unpredictable classes. The model only creates LOS formulas for 

primary classes considering the requirements for regression explained in section 

4.1.3. Unpredictable classes never become predictable in the model. Secondary 

classes only become predictable if they are aggregated with a primary class. The 

user needs to choose the required number of admissions for primary and 

unpredictable classes, see Figure 7. 

UC SC PC

Number of admissions 
in a class

Choice x1 Choice x2

N < x1 x1 ≤ N < x2 N ≥ x2

 

Figure 7: Representation of the user’s choices regarding class types. N: number of admissions 
in a class, UC: unpredictable class, SC: secondary class, PC: primary class, x1: requirement for 
unpredictable classes, x2: requirement for primary classes. 

Primary classes 

The choice for primary classes must be based on the number of predictor 

variables included in regression analysis. A large number of predictors require 

a large number of admissions within a group. The rule of thumb for this choice 
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states that 10 admissions are needed to test one predictor variable [51]. When 

the requirement is set too high, the model will only be able to create LOS 

formulas for few classes. On the contrary, when the requirement is set too low, 

the model can include few predictor variables. This decreases the accuracy of 

the LOS predictions. The requirement for primary classes is illustrated in 

Figure 7 as choice   .  

Unpredictable classes 

The LOS of a class that contains few admissions cannot be generalized due to 

the high level of coincidence. The user needs to choose the accepted influence 

of coincidence by setting the required number of admissions for a class to 

possibly become predictable. Classes containing fewer admissions than 

required are labeled as unpredictable and are excluded in the model. The 

requirement for unpredictable classes is illustrated in Figure 7 as choice   . 

Secondary classes 

Secondary classes contain a number of admissions equal to or greater than the 

requirement for unpredictable classes, and fewer admissions than the 

requirement for primary classes.  

1d. Perform outlier analysis 

Outliers within classes are detected and substituted in order to purify the data 

[21]. More classes will be suitable for aggregation after outlier analysis and 

therefore the LOS of more admissions will become predictable.  

An outlier is defined as a value outside the outlier interval. The outlier interval is 

formed by a lower and upper bound, of which the formulas [21] are defined as: 

                     (4.1) 

                     (4.2) 

with  

      lower bound of the outlier interval; 

      upper bound of the outlier interval; 

          average log transformed LOS of the class; 

    standard deviation of the log transformed LOS of the class. 

 

An outlier is substituted by the existing value closest to the lower or upper 

boundary, see Figure 8.  



28 
 

Min. LOS Max. LOS

LBOI UBOI

2 SD 2 SD

 

Figure 8: Visualization of outlier analysis. LB: lower bound, OI: outlier interval, UB: upper 
bound, μ: average value, SD: standard deviation. 

4.1.2 Group admissions 

The classes formed in section 4.1.1 are aggregated to satisfy minimal sample 

sizes required for regression analyses (see section 4.1.3). Also, data clustering is 

proven to be effective in literature [23, 36]. Grouping admissions into classes 

involves two sub steps, see Figure 9. The sequence of the steps ensures that the 

most homogenous groups possible are formed. This improves the accuracy of 

LOS predictions.  

2. Group admissions into classes

2a. Aggregate PCs when 
statistically comparable

2b. Add SCs to PCs when 
statistically comparable

 

Figure 9: Flowchart step 2: group admissions into classes. See Appendix D for the 
corresponding legend. PC: primary class, SC: secondary class. 

2a. Aggregate primary classes when statistically comparable 

Primary classes are statistically comparable when the confidence interval11 (CI) 

of one primary class falls into the confidence interval of another primary class 

[51]. We chose to set the level of confidence to 95% as it is the most often used 

confidence level in practice. 

The confidence interval is formed by a lower and upper bound, defined as: 

 
    

              (    
 

 
    

√   

) (4.3) 

 
    

              (    
 

 
    

√   

) 
(4.4) 

with  

    
    lower bound of the confidence interval for primary class   ; 

    
    upper bound of the confidence interval for primary class   ;  

                                                           
11 Field, A.: “For a given statistic calculated for a sample of observations (e.g. the mean), the confidence 
interval is a range of values around that statistic that are believed to contain, with a certain probability 
(e.g. 95%), the true value of that statistic (i.e. the population value).” [51]  
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          average log transformed LOS of primary class   ; 

    

 

 z-score corresponding to the probability value   for the confidence interval;  

    standard deviation of the log transformed LOS of primary class   ;  

     number of admissions in primary class    [51]. 

When two primary classes are comparable, the primary class with the narrowest 

CI is added to the other primary class. The CI of the aggregated primary class is 

then recalculated and this procedure is repeated until all possible primary classes 

are aggregated. If a primary class can be aggregated with multiple other primary 

classes, the choice for aggregation is based on the smallest difference between 

the boundaries of the CIs of the primary class in dispute and the CIs of the 

possibilities.  

2b. Add secondary classes to primary classes when statistically comparable 

Once all primary classes are aggregated where possible, the model checks 

whether the typified secondary classes can be added to one or multiple primary 

classes. Aggregation occurs based on the same principle used to aggregate 

primary classes, described in sub step 2a.  

4.1.3 Regression analysis 

Regression analysis is conducted for the primary classes created in step 1 and 2. 

Multiple linear regression was chosen based on its proven performance in 

research [5, 21, 22, 49] and its ease of use [50, 52]. A high ease of use 

corresponds with a high chance of acceptance and usability of the technology in 

practice [53]. 

Prior to regression, predictors must be transformed and selected. The 

computational model uses the standard Excel formula for linear regression. Five 

steps are involved in the process of regression analysis, see Figure 10.  

3. Perform regression analysis on classes

3a. Prepare 
predictors

3b. Analyze 
predictors and 

conduct pre-selection

3d. Prepare 
regression

3c. Select 
predictors

3e. Conduct multiple 
linear backward 

regression

 

Figure 10: Flowchart step 3: Perform regression analysis on classes. See Appendix D for the 
corresponding legend. 

3a. Predictors preparation 

To serve as predictors in regression, variables need to be continuous or 

dichotomous. Therefore, all categorical predictors defined in step 1a are 

translated into dummy variables (see Appendix C). 

3b. Predictors analysis and pre-selection 

A prerequisite for multiple regression includes the non-existence of 

multicollinearity12. Multicollinearity exists if the absolute correlation between 

                                                           
12

 Multicollinearity exists when predictors (approximately) measure the same effect. [54] 
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two predictors is equal to or larger than 0.9 [51, 54]. A correlation matrix is 

therefore made. In the existence of multicollinearity, one of the predictors is 

chosen based on the largest individual influence on the outcome variable. This 

influence is determined by performing univariate regression analysis13.  

3c. Predictors selection 

The number of predictors that can be included in multiple regression depends on 

the number of cases in the class. Ten cases per predictor are needed to prove a 

predictor’s influence on the outcome variable with statistical significance [51]. If 

the number of predictors left exceeds the number of allowed predictors, the 

model selects predictors based on the univariate analysis conducted in step 3b. 

The predictors with the smallest significant influence on the outcome variable are 

eliminated.  

3d. Regression preparation 

The model creates a regression table as input for the standard Excel formula for 

linear regression. The regression table starts with the (aggregated) class 

numbers, the admission year and number, and the outcome variable. 

Subsequently, the selected predictors are included in the table.  

3e. Multiple linear backward regression 

The model starts by including all selected predictors in the regression procedure. 

The standard Excel formula for linear regression results in a matrix built up as 

follows: 

 

[
 
 
 
 
 

             
                    

     

   

            ]
 
 
 
 
 

   

 

 

(4.5) 

with 

    regression coefficient for the independent variable   ;   

   number of independent variables in analysis; 

   intercept of the line; 

     standard error for the coefficients             ; 

     standard error for the constant  ; 

    explained variance of the model; 

     standard error for the estimated outcome variable  ; 

   F-statistic to determine the level of coincidence;  

    number of degrees of freedom; 

       explained Sum of Squares; 

         residual Sum of Squares (retrieved from help file Microsoft Excel 2010). 

   

The model eliminates independent variables step by step based on their 

significance value (p-value). Each significance value is compared against the 

                                                           
13 Linear regression with one predictor variable. [51]  
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removal criterion of       [50]. From all non-significant variables, the variable 

that makes the smallest contribution to the dependent variable is eliminated. This 

elimination process is repeated with the remaining variables until all 

independent variables in the model make a significant contribution to the 

dependent variable. 

4.1.4 Resulting LOS formulas 

The model creates an LOS formula for each primary class based on the results of 

multiple regression performed in section 4.1.3. The results include the regression 

coefficients of the predictor variables (            ) and the intercept ( ). With 

these values, LOS formulas such as equation 3.1 are created. A table containing 

these results is made to serve as input for the user model, see Table 4.  

Class                 
1 0.4 2 0 -4 1 
2      
n-1      
n      

Table 4: Setup of LOS formulas table serving as input for user model containing an example 

Each index number of a regression coefficient corresponds to a specific predictor 

variable (e.g.    could be the regression coefficient corresponding to the 

predictor variable ‘gender’).  

The LOS formula of the example presented in Table 4 would equal: 
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4.2 User interface 
The user interface is a spreadsheet in Microsoft Excel that predicts the expected LOS 

corresponding to an inserted admission with associated predictor values. The user 

interface presents the influencing predictor variables for the admission in dispute 

and the expected LOS, expressed in (semi-)days. Possible users of the interface 

concern the attending physician, admission planner or head nurse. The interface 

consists of five steps; see the flowchart in Figure 11.  

1. Insert 
group 

criterion 
value of new 

admission

Start
5. Present 
predicted 

LOS 
End

Formulas from 
computational 

model

User Interface

3. Fill input 
fields

2. Model matches 
admission class and 
presents input field 

for required 
variables

4. Calculate 
LOS

 

Figure 11: Flowchart of the user interface. See Appendix D for the corresponding legend. 

4.2.1 Select group criterion value of new admission 

Input for the user model includes the group criterion value of the new admission. 

Every group criterion value belongs to a class formed in the computational 

model. The user can choose from a proposed list with all existing values. 

4.2.2 Match admission with LOS formula 

The model matches the selected group criterion value with its corresponding 

class. The LOS formula of that class is then derived.  

4.2.3 Fill input fields 

Each LOS formula contains specific predictor variables. The user is asked to 

insert the required predictor values to calculate LOS.    

4.2.4 Calculate LOS 

With the required predictor values, the predicted LOS for the admission is 

calculated. 

4.2.5 Present predicted LOS 

The calculated expected LOS in (semi-)days is presented to the user. The user can 

copy the predicted LOS to the patient’s admission form and adjust it when 

necessary (at user’s discretion).  
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5 Results 
This chapter presents the results of the model applied to the ECH. A description of 

the data and the user’s choices is presented in section 5.1. Section 5.2 discusses the 

results of the computational model while section 5.3 presents the results of the user 

interface.  

5.1 Emma Children’s Hospital data 
The ECH data were retrieved from the databases LOCATI and DBC_DS14. These 

databases were combined in Microsoft Access to retrieve as many explanatory 

variables as possible. Missing explanatory variables from literature included: 

- Arisen complications; 

- Head circumference (in neonates); 

- Involvement of multiple (pediatric) disciplines; 

- Logistical problems in arranging a patient’s transport to home or to another 

institution after discharge; 

- Need for home care after discharge; 

- Number of other disciplines involved; 

- Number of previous hospital admissions; 

- Presence of a secondary diagnosis; 

- Risk of malnutrition;  

- Weight/BMI. 

These variables could not be retrieved due to difficulties in combining various 

databases present in the AMC.  

Data between 01/01/2012 and 10/06/2013 were available. Earlier admissions 

could not be included due to differences in diagnosis registration. Data were divided 

into a training set containing 80% of the data and a test set containing the other 

20%, as suggested in [51]. The training set formed the input for the computational 

model. The test set was used to test the accuracy of the application to prospective 

data.   

Using Microsoft Access, two filters were applied to the data, see Table 5.  

Variable Filter 1 Filter 2 

Age         

Admission date 01/01/2012 – 10/06/2013 01/01/2012 – 10/06/2013 

Admission code Clinical admission Clinical admission 

Admission ward Pediatric wards 
 

Women’s wards 

Diagnosis description        
   
          

       
   
          

Discharge ward Pediatric wards 
 

Women’s wards 

LOS in hours                   
Table 5: Applied filters to ECH data. 

                                                           
14 These databases are part of the current electronic patient file ZIS. The database DBC_DS contains 
diagnosis treatment combinations (in Dutch: DBC) corresponding to hospital diagnoses.  
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The difference between filter 1 and filter 2 concerns the restrictions set for the age 

of the patient and the admission and discharge ward. Filter 1 was applied to ensure 

that only pediatric admissions were included in the dataset. Filter 2 ensured that 

admissions of newborns were included15 and admissions of teenage mothers were 

excluded. Teenage mother admissions were excluded since the required care is 

assumed to be adult care. General wards were excluded to avoid possible difference 

in LOS with organizational cause. To ensure that admissions with missing diagnosis 

were excluded, the diagnosis description was set not to equal zero or to be empty. 

Additionally, the diagnosis description ‘Traject’ (Dutch) was excluded for its unclear 

content. LOS was set to a minimum of two hours in both filters as diagnosis-

treatment combinations and corresponding diagnosis description are only assigned 

to admissions that minimally endure two hours.   

5.2 Results computational model 
This section presents the results of the computational model applied to the training 

set. The setup of this section follows the steps of the computational model, see 

Figure 12. Section 5.2.1 starts with the results of the data preparation.  

Input
4. Create LOS 

formulas for every 
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3. Perform 
regression analysis 

on classes

2. Group 
admissions 
into classes

Output

Computational Model

1. Data 
preparation

 

Figure 12: Flowchart of the computational model. See Appendix D for the corresponding legend. 

5.2.1 Results data preparation 

The input table included 23 variables; see Table 6 for an overview of the 

variables in the training set and corresponding type. The diagnosis description 

was selected as grouping criterion. This choice was based on an analysis of 

various aggregation options, see Figure 13.  

Aggregation options
- Ward
- Specialism
- Diagnosis
- Diagnosis-treatment combination

Decrease in LOS variance
Decrease in no. admissions/group

 

Figure 13: Choosing the optimal grouping criterion. 

The analyzed aggregation options included the admission ward, specialism, 

diagnosis and diagnosis-treatment combination. The analysis showed that the 

diagnosis description was the highest level for which variation in LOS was still 

acceptable (based on the researcher’s assessment).  

 

                                                           
15

 Newborns can be admitted to obstetrics or the maternity ward.   
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Variable Abbreviation Type 

Patient number  Negligible variable 

Gender 
- Man (1) 

- Woman (0) 

 Predictor: dichotomous 

Date of Birth  Negligible variable 

Age  Predictor: continuous 

Admission year adm_year Basic variable 

Admission number adm_nr Basic variable 

Admission day 
- Weekend day (1) 

- Weekday (0) 

adm_day Predictor: dichotomous 

Start date  Negligible variable 

Admission source 
- Delivery room AMC 
- Emergency Room 
- General Practitioner 
- Home 
- Hospital birth AMC 
- List 
- Other 
- Other hospital 

- Outpatient Clinic 

 
 

adm_source 
DR 
ER 
GP 
HOME 
HB 
LIST 
OTHER 
OH 
OC 

Predictor: categorical  

Admission type 
- Acute (1) 

- Elective (0) 

adm_type Predictor: dichotomous 

Admission ward 
- Gynecology 
- Infants & Pediatric Surgery 
- Maternity ward 
- Neonatal Intensive Care  
- Obstetrics 
- Older Children 
- Pediatric Oncology 
- Pediatric Intensive Care 

- Teenagers 

adm_ward 
GYN 
I&PS 
MW 
NIC 
OBS 
OLCH 
PO 
PIC 
TEEN 

Predictor: categorical 

Admission specialism 
- General pediatrics 
- General surgery 
- Neonatology 
- Pediatric cardiology 
- Pediatric endocrinology 
- Pediatric gastroenterology 
- Pediatric hematology/ immunology 
- Pediatric nephrology 
- Pediatric neurology 
- Pediatric oncology 
- Pediatric otolaryngology  
- Pediatric plastic surgery 
- Pediatric pulmonology 
- Pediatric surgery 

- Traumatology 

adm_spec 
GPED 
GSUR 
NEO 
PC 
PEC 
PGE 
PHI 
PNEP 
PNEU 
POC 
POT 
PPS 
PPUL 
PS 
TRA 

Predictor: categorical  

Discharge ward  Negligible variable 

LOS (hr)  Negligible variable 

LOS (day)  Negligible variable 

Ln(LOS(day))  Outcome variable 

AGB specialism  Negligible variable 

Diagnosis code  Negligible variable 

Diagnosis description  Grouping criterion 

Health product code  Negligible variable 

Health product description  Negligible variable 

Diagnosis description hospital  Negligible variable 

1st treatment description hospital  Negligible variable 

Table 6: Variables present in the training set and assigned types. 
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A primary class was defined as a class containing 40 or more admissions in order 

to ensure that minimally half of the existing predictor variables could be included 

in regression analysis. This choice was made at the researcher’s discretion by 

balancing the importance of the number of predictable diagnoses and the 

expectable accuracy of the predictions. Classes were typified as unpredictable 

when they attained less than 10 admissions. This choice was based on the 

statement that at least 10 admissions are needed to prove a predictor’s 

significance. The choices imply that classes with a number of admissions between 

10 and 40 were defined as secondary classes. 

Summary of the variables 

Number of present variables 23 

 Outcome variable 1  

 Basic variables 2  

 Grouping criterion 1  

 Predictors 
(cont.* 1, dich.† 3, cat‡. 2) 

6  

 Number of negligible variables 13  
Table 7: Summary of the training set variables 
* Continuous predictor 
† Dichotomous predictor 
‡ Categorical predictor 

Initial grouping of the admissions based on present diagnoses resulted in 472 

classes. These included 23 primary classes, 61 secondary classes and 388 

unpredictable classes, see Table 8. Outlier analysis resulted in 92 classes 

containing outliers (19.5%). 

Summary of initial classes Nclass %class Nadmissions %admissions 

Number of classes 472 100 % 4849 100% 

 Primary classes 23 4.9 % 2513 51.8 % 

 Secondary classes 61 12.9 % 1269 26.2 % 

 Unpredictable classes 388 82.2 % 1067 22.0 % 
Table 8: Summary of the initial classes formed 

Primary classes formed 4.9% of the dataset. These classes contained 51.8% of all 

admissions. This implies that the model was able to predict 51.8% of the 

admissions.  

5.2.2 Results admissions grouping 

Initial classes were formed after the data preparation. In the second step of the 

model, possibilities for aggregation of the initial classes were explored (see 

Figure 14). 
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Figure 14: Flowchart of the computational model. See Appendix D for the corresponding legend. 
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The primary groups were compared to check for statistical comparability. In 

total, six aggregations occurred within the primary classes. Results showed that 

aggregation resulted in smaller standard deviations and narrower confidence 

intervals for all aggregated classes. Hence, more homogeneous groups were 

formed.  

Subsequently, the secondary classes were compared with the primary classes to 

check for statistical comparability. One aggregation occurred. Table 9 presents 

the properties of the primary classes after aggregation.  

Class N Mu_Ln(LOS)* sd_Ln(LOS)† CI_Ln(LOS)‡ 

273 581 1.264 0.788 0.064 

471 70 0.615 0.294 0.069 

162 80 0.447 0.328 0.072 

67 74 0.650 0.352 0.080 

220 507 1.493 0.959 0.083 

404 66 -0.065 0.479 0.116 

73 67 -0.178 0.513 0.123 

88 186 1.002 0.918 0.132 

164 149 1.220 0.825 0.133 

39 96 1.157 0.703 0.141 

399 72 0.760 0.631 0.146 

193 127 0.816 0.839 0.146 

285 114 1.079 0.963 0.177 

332 77 1.426 0.823 0.184 

329 98 1.383 0.944 0.187 

24 91 1.100 0.927 0.190 

309 70 2.182 1.497 0.351 

Table 9: Primary class properties after aggregation, sorted by confidence interval. Diagnosis 
description in Dutch.  
* Average log transformed LOS 
† Standard deviation of log transformed LOS 
‡ Confidence interval of log transformed LOS 

With the aggregation completed, totals for the various classes were calculated, 

see Table 10. The 17 (aggregated) primary classes contained 24 diagnoses. This 

corresponded with 52.1% of all admissions being predictable.  

 No. classes Admissions Percentage 

Total 472 4849 100 % 

Predictable 
Primary classes 
Aggregated secondary classes 

24 
23 

1 

2525 
2513 

12 

52.1 % 
51.8 % 

0.3 % 

Unpredictable   
Typified unpredictable classes  
Non-aggregated secondary classes 

448 
388 

60 

2324 
1067 
1257 

47.9 % 
22.0 % 
25.9 % 

Table 10: Totals of the aggregation of admissions. 
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5.2.3 Results regression analysis 

In the third step of the model, regression analysis was performed on the 

remaining primary classes (see Figure 15). 

Input
4. Create LOS 

formulas for every 
class

3. Perform 
regression analysis 

on classes

2. Group 
admissions 
into classes

Output

Computational Model

1. Data 
preparation

 

Figure 15: Flowchart of the computational model. See Appendix D for the corresponding legend. 

Regression analysis started with preparing the predictors. If needed, predictors 

were selected based on multicollinearity and univariate analysis. In the ECH data, 

multicollinearity occurred in eight of the 17 primary classes, see Table 11.  

 

Class Selected predictor Eliminated predictor 

88 Admission specialism: Neonatology Admission source: Hospital birth 
AMC 

88 Admission specialism: Neonatology Admission ward: Obstetrics 

162 Age Admission ward: Teenagers 

164 Admission specialism: General 
pediatrics 

Admission ward: Pediatric Intensive 
Care 

309 Admission source: Hospital birth 
AMC 

Admission ward: Obstetrics 

309 Admission source: Hospital birth 
AMC 

Admission specialism: Neonatology 

329 Admission specialism: Neonatology Admission source: Hospital birth 
AMC 

329 Admission specialism: Neonatology Admission ward: Obstetrics 

332 Admission specialism: Pediatric 
nephrology 

Admission source: Outpatient Clinic 

404 Admission specialism: Pediatric 
pulmonology 

Admission source: Outpatient Clinic 

471 Age Admission ward: Teenagers 
Table 11: Occurred multicollinearity in primary classes. 

Multicollinearity was detected six times between the variables ‘Neonatology’, 

‘Hospital birth AMC’ and ‘Obstetrics’. In class 88 and 329, the correlation between 

these three variables was one. Therefore, selection of one of the variables was 

arbitrary and occurred based on the sequence of appearance in the data. The 

variables ‘Age’ and ‘Teenagers’ were strongly correlated twice, resulting in 

multicollinearity. Multicollinearity also occurred between ‘General Pediatrics’ 

and ‘Pediatric Intensive Care’. Finally, ‘Outpatient Clinic’ showed multicollinearity 

once with ‘Pediatric nephrology’ and once with ‘Pediatric pulmonology’.  

Seven variables in the dataset were typified as predictors (user’s choice, see 

Table 6). This implies that selection of predictors was required when classes 

contained less than 70 admissions. (As stated in section 5.2.1, at least 10 

admissions are needed to prove a predictor’s significance.) Selection occurred 

twice. The predictors ‘Admission type’ and ‘Age’ were eliminated. 
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The remaining predictors were included in regression analysis. In the backward 

stepwise selection procedure, predictors were eliminated based on their p-value. 

The selection procedure was repeated until all predictors left had a significant 

influence on LOS. The eliminated predictors are presented in Table 12. A 

maximum of six iterations were needed to eliminate all non-significant 

predictors. On average, four of the seven predictors were eliminated in the 

backward stepwise selection procedure.  

Table 12: Eliminated predictors in multiple regression analysis. 

  

Class Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 

24 Gender Adm_day - - - - 

39 Age Adm_type Adm_day - - - 

67 Adm_ward Age Adm_type Gender Adm_day - 

73 Adm_ward Adm_day Adm_spec - - - 

88 Adm_source Adm_ward Adm_type Adm_day Gender Age 

162 Adm_day Adm_type Gender - - - 

164 Adm_type Gender Adm_spec Adm_source Adm_day - 

193 Adm_ward Adm_day Adm_spec Gender Age Adm_type 

220 Age Gender Adm_type Adm_day - - 

273 Adm_spec Age Adm_day Adm_type - - 

285 Adm_spec Gender Adm_ward Adm_day - - 

309 Adm_spec Age Adm_day Adm_ward Gender - 

329 Gender Adm_ward Adm_source Adm_day Adm_type - 

332 Age Adm_source Gender Adm_type Adm_day - 

399 Adm_ward Gender Age Adm_type - - 

404 Adm_ward Adm_day Gender - - - 

471 Adm_ward Adm_source Gender Age Adm_type Adm_day 
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5.2.4 Resulting LOS formulas 

The fourth and final step of the computational model involved creation of the 

resulting LOS formulas (see Figure 16). 
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Figure 16: Flowchart of the computational model. See Appendix D for the corresponding legend. 

The LOS formulas were created with the remaining predictor variables as 

explained in section 4.1.4. In one of the classes, all predictors were eliminated (As 

stated in section 5.2.3). No LOS formula was created for this class and the 

admissions in this class could not be predicted. The end totals (Table 13) 

therefore differ from the totals presented in Table 10. 

 No. classes Admissions Percentage 

Total 472 4849 100 % 

Predictable 
Primary classes 
Aggregated secondary classes 

23 
 22 

1 

2455 
 2443 

12 

50.6 % 
50.4 % 

0.2 % 

Unpredictable   
Typified unpredictable classes  
Non-aggregated secondary classes 
Non-predictable primary classes 

 449 
388 

60 

1 

2394 
1067 
1257 

70 

49.4 % 
22.0 % 
25.9 % 

1.5 % 

Table 13: End totals of the classes in the dataset. 

Table 14 presents the remaining LOS formulas. The accuracy of the LOS formulas 

was expressed in the percentage of variance in LOS that can be explained by the 

predictor values (R2). R2 was one of the output variables of the standard Excel 

formula for regression (section 4.1.3). Average R2 of all primary classes was 

25.4%.  
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Table 14: LOS formulas. See Table 6 for abbreviations. 
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404 0.53 0.98 0.43 -0.66 -1.18 -0.90

67 0.52 1.42 -0.55 0.07 -0.86 0.16

309 0.52 1.29 -0.88 2.12 1.92 -0.62 1.41 1.99

24 0.40 -0.72 0.08 0.62 1.27 0.98 1.12 2.16 1.90 0.68 1.58

39 0.39 1.55 -0.28 0.08 0.26 -0.36 0.75 0.44 0.98 0.83 -0.14 -1.06 -0.72

73 0.30 -0.27 -0.26 0.04 0.84 0.90

285 0.23 0.03 0.04 0.89 -1.58 -0.17 0.14 0.91

332 0.22 2.30 -0.24 0.45 0.85 1.83 0.49 -1.44

193 0.22 0.95 0.59 0.57 -0.36 0.89

162 0.22 2.86 -0.17 0.74 0.32 0.18 -2.27 -2.65 -2.55

399 0.14 -1.32 1.50 1.05 0.97 1.15 1.06

220 0.12 -0.58 -0.17 0.33 -0.26 0.66 0.11 -0.39 1.70 1.16 1.89 1.19 -0.65 -0.84 2.55 0.40

329 0.08 3.03 -0.04 -2.11 -1.56

164 0.06 1.41 -0.04 -0.55 0.65 0.41

273 0.06 1.10 0.19 0.09 -0.20 0.05 0.73 0.03 -0.05 -0.02 1.57 0.61

88 0.05 1.85 -0.68 -1.12 -0.83 -1.17
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5.3 Results user interface 
The 20% most recent admissions available in the ECH dataset were used to test the 

user interface. The test set contained 1212 admissions. The LOS of these admissions 

is predicted by matching the diagnosis with existing diagnoses in the training set. 

LOS predictions were only made for those admissions that had a diagnosis that was 

assigned to a predictable class. Table 15 summarizes the results of the test set. 

Test set characteristics N % 

Admissions in test set 1212 100% 

Predictable admissions in test set 468 38.6% 

Average absolute deviation of predictions 2.6 days 91.7% 
Table 15: Summary of the test set results. 

Table 15 shows that the LOS of 38.6% of the admissions in the dataset was 

predicted. The other 61.4% were admissions with diagnoses that could not be 

predicted by the tool. The average absolute deviation between observed and 

predicted LOS was 2.6 days. Average absolute deviation in percentage was 

calculated to correct for the relative length of LOS. The absolute average deviation 

between observed and predicted LOS in percentages was 91.7%. 

The results specified per class are presented in Table 16. The percentage explained 

variance (R2) retrieved from the computational model, is presented for each class to 

compare the explanatory power with the predictive power of the model. High 

average absolute deviations correspond with inaccurate LOS predictions and vice 

versa.  

Class no. adm* R2† av_abs_dev_day‡ av_abs_dev_%× 

404 33 0.53 0.6 76% 

67 18 0.52 0.3 31% 

309 16 0.52 11.6 491% 

24 2 0.40 4.0 103% 

39 84 0.39 1.8 47% 

73 20 0.30 1.1 65% 

285 22 0.23 2.6 54% 

332 16 0.22 2.2 113% 

193 28 0.22 0.9 72% 

162 18 0.22 0.9 43% 

399 13 0.14 0.8 103% 

220 135 0.12 3.6 87% 

329 25 0.08 2.2 151% 

164 1 0.06 1.5 150% 

273 13 0.06 2.5 66% 

88 24 0.05 4.0 122% 

Table 16: Average absolute deviation between predicted and observed LOS, expressed in days 
and in percentage. The table is sorted on explained variance, R2. 
*: number of predicted admissions in the class 
†: percentage of variance in LOS that can be explained by the model 
‡: average absolute deviation expressed in days 
×: average absolute deviation expressed in percentage 
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A histogram was made to check the distribution of occurring average deviations in 

percentage considering that extreme values strongly influence average deviation 

(see Figure 17). Negative average deviations correspond with overestimation of LOS 

by the model. LOS was overestimated by the model for 64% of the admissions in the 

test set.  

 

Figure 17: Histogram of occurring deviations between predicted and observed LOS. 
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6 Interpretation of the results 
This chapter addresses the interpretation of the results presented in Chapter 5. 

Corresponding recommendations to improve the results are included in the 

sections. The chapter is divided in the interpretation and recommendations 

regarding the computational model (section 6.1) and the interpretation and 

recommendations regarding the user interface (section 6.2).  

6.1 Interpretation results computational model 
In this section, the results of the computational model are interpreted. Section 6.1.1 

discusses the data preparation, section 6.1.2 discusses the grouping of admissions 

and section 6.1.3 discusses the regression analysis.  

6.1.1 Interpretation results data preparation 

The accuracy of LOS predictions is expected to improve when as many 

independent variables as possible can be included in the dataset. Inclusion in the 

dataset does not directly mean inclusion in the LOS formulas; the model will 

determine whether these variables indeed significantly influence LOS. Not all 

variables suggested in literature were available in the ECH dataset. The IT 

infrastructure of the ECH therefore needs to be adjusted. The weight of the 

patient, possible secondary diagnoses and the need for homecare after discharge 

are expected to have the most added value as they are most often proved in 

literature as LOS predictors (see section 3.3).  

R6.1 

Include as many independent variables as possible in the 

dataset to improve the accuracy of the predictions 

(priority: weight of the patient, secondary diagnoses and 

need for homecare)  

 

 

The requirements for primary and unpredictable classes related to the number of 

admissions per group criterion value. The chosen requirements in this case study 

resulted in 51.8% of the admissions belonging to a primary class for which the 

model created LOS formulas. A sensitivity analysis was conducted to determine 

the influence of the primary class requirement on the percentage of admissions 

predictable and the accuracy of the admissions, see Figure 18.  
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Figure 18: Sensitivity analysis of the requirement for primary classes. PC: primary class. 

The number of predictable diagnoses was expected to increase while the 

accuracy was expected to decrease when the required number for primary 

classes was lowered. Figure 18 confirms this expectation.   

It is recommended to expand the requirements with a maximum allowable 

confidence interval (CI) once more data are gathered. Narrow confidence 

intervals yield homogeneous classes which improves the accuracy of LOS 

prediction. This expansion was not applied to the ECH dataset due to its small 

size.  

R6.2 
Expand the requirement for primary classes with a 

maximum allowable CI to improve the accuracy of the 
predictions 

 

 

The variety in the ECH dataset and its limited size are expected to cause the 

limited percentage of predictable admissions. The number of predictable 

diagnoses, and therefore admissions, is expected to increase when more 

admissions per class are included in the dataset. The effect of dataset size on the 

outcomes of the model was analyzed by running the model for two different 

datasets, see Table 17.  

Values Dataset 1 
(Jan. – Dec. 2012) 

Dataset 2 
(Jan. 2012 – June 2013) 

Number of classes 438 515 

Average R2 * 22.4 % 17.6 % 

% predictable admissions 51.5 % 60.9 % 
Table 17: Comparison of datasets with different sizes to analyze the influence of dataset size 
on LOS predictions.  
* Percentage explained variance 

The average explained variance was lower in Dataset 2. This is due to the fact 

that the variance in LOS can increase when more data per class is available. This 

is certainly expectable when the enlargement of the dataset is proportionally 

large. The percentage of admissions predictable by the model is higher for 

Dataset 2. This is in line with the expectations.  
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The tradeoff between the accuracy of the predictions and the number of 

predictable admissions is a challenge. When the predictions are used for planning 

purposes, accuracy is essential. The percentage of admissions predictable is most 

important when the goal is to focus on discharge since focus on discharge is also 

achieved by less correct LOS predictions at admission. It is recommended to use 

the model for planning purposes when the dataset is enlarged since predictions 

are more valuable when they are based on large datasets (low level of 

coincidence). In the ECH dataset, more historical admissions could not be 

included due to difficulties with different diagnosis registration types.  

R6.3 

Enlarge the ECH dataset by translating the different 

diagnosis registration types or waiting for future 

admissions to predict a higher percentage of admissions 

and to improve the accuracy of the predictions  

 

 

6.1.2 Interpretation results admission grouping 

Admissions were grouped before multiple regression in order to increase the 

number of predictable classes. Admissions were aggregated when statistically 

comparable. In the ECH dataset, only one secondary class was aggregated with a 

primary class (with the chosen requirements for class types). Other aggregation 

policies should therefore be explored. For example, clinical relevance could be 

incorporated by fixed aggregation of diagnoses based on an expert’s opinion (e.g. 

physician). The impact of various aggregation criteria was not determined in this 

study due to time deficiency.  

R6.4 Explore other aggregation policies in order to increase 
the number of predictable classes  

 

 

A consistent relation between a class’ explained variance (R2) and whether or not 

the class was aggregated was not detected. Therefore, it is not clear whether 

aggregation of classes was desired in the ECH dataset. 

6.1.3 Interpretation results regression analysis 

Independent variables were eliminated during regression analysis when they had 

no significant influence on LOS. The number of eliminations per variable shows 

the predictive power of each variable, see Table 18. The variable ‘Admission day’ 

was eliminated in all but one of the classes, implying that ‘Admission day’ was a 

poor predictor of LOS for the ECH dataset. The influence of the admission day 

was expected to be low since 58% of the admissions were elective. In planning 

elective admissions, the weekend is taken into account to prevent unnecessary 

prolonged stays. The variable ‘Gender’ predicted LOS poorly as well. This was not 

expected since Tump et al.[20] concluded that the baseline LOS increased by 22% 

for males. The difference in explanatory power of gender is assumed to be caused 

by the difference in the size of the dataset used (Tump: n=142, this study: 

n=4849). The variables ‘Admission source’ and ‘Admission specialism’ had the 
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highest predictive power on LOS. Various studies confirm their relationship with 

LOS [20, 55, 56]. 

Variable No. times eliminated 

Adm_day 16 

Adm_source 5 

Adm_spec 6 

Adm_type 12 

Adm_ward 10 

Age 10 

Gender 14 
Table 18: Summary of the number of times variables got eliminated during regression 
analysis. 

The selection of predictors influenced the accurateness of LOS predictions. In 

eight of the 17 primary classes, multicollinearity was detected. Multicollinearity 

was expected to occur between ‘Neonatology’, ‘Hospital birth AMC’ and 

‘Obstetrics’ due to the logical combination of values. Additionally, 

multicollinearity was expected between ‘Admission type’ and ‘Admission source: 

ER’, and ‘Admission type’ and ‘Admission day’. Patients admitted from the ER are 

acute patients and elective admissions generally do not occur in the weekend. 

The reason for absence of multicollinearity is expected to be caused by 

unjustified value registration. If an admission is registered and the type of 

admission is not specifically selected by the health professional, the default value 

of the variable is included (elective). Unjustified value registration can be 

prevented by removing default values in registration databases and by obligating 

the health professional to select the correct value. 

R6.5 Remove default values in registration systems to prevent 
unjustified values   

 

 

The selection of predictors during multiple regression (Table 12) showed that 

few existing predictors significantly influenced LOS. This endorses the need for 

more independent predictor variables, as recommended in R6.1. 

6.1.4 Interpretation results LOS formulas 

The accurateness of the LOS formulas is expressed in the percentage explained 

variance, R2. Six of the 16 LOS formulas for the predictable primary classes had 

an R2 under 20%. The low predictive power in these classes is expected to be due 

to the broadly defined diagnoses pertaining to these classes. It is therefore 

recommended to choose a more detailed grouping criterion (e.g. a more specified 

diagnosis) when dataset size allows. This matches the instruction regarding the 

grouping criterion in section 4.1.1. 

R6.6 Choose a more detailed grouping criterion when dataset 
size allows to improve the accuracy of the predictions 
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The average R2 of this study (25.4%) was compared with results from models in 

literature to get an indication of relative performance, see Table 19. Important to 

note is that the number of available independent variables was restricted in this 

study since only ex-ante available variables were taken into account (see chapter 

3). Therefore, the average R2 of this study was expected to be lower than the 

average R2 of the explanatory models from literature. 

Research Average R2 

Van Houdenhoven et al. [22] 34.0% 

De Lourdes Guzman Castillo [21] 17.5% 

Tump et al. [20] 47.6% 
Table 19: Average explained variance of LOS explanatory models in literature. 

The model developed in this study performed better than the model developed in 

[21]. This is expected to be caused by the specificity of the dataset; the dataset 

used in this study was limited to pediatric admissions, while in [21] a complete 

hospital’s dataset was used. 

6.2 Interpretation results user interface 
Predictions were made using a test set to determine the predictive ability of the LOS 

prediction tool. The ability was assessed by the percentage of admissions 

predictable and the deviation between predicted and observed LOS.  

In the training set, 51.8% of all admissions belonged to a primary class for which an 

LOS formula was created. These formulas were used to predict the admissions in the 

test set. For 40.7% of the admissions in the test set, LOS was predicted by the tool. 

This decrease is expected to be partly due to the relative small training set: 43 of the 

259 diagnoses in the test set did not occur in the training set. This corresponded 

with 4.7% of the admissions. The remaining difference (6.4%) is expected to be due 

to the characteristics of the test set.  

Regarding the accuracy of the predictions, it was expected that admissions matching 

with classes with a high R2, would be predicted more accurately than classes with a 

low R2. The results (Table 16) showed that this expectation was not met. Class 309 

(corresponding to the diagnosis ‘other cardiac diseases’) had the largest average 

absolute deviation (491%), while having an R2 of 51.6% in the computational model. 

This large average absolute deviation was analyzed by running the computational 

model for the complete dataset (training set + test set). Results showed that the R2 

for the same diagnosis in this new dataset was 43.6%, implying a decrease of 8%. 

Therefore, it can be concluded that the admissions in the test set were not a 

representative sample of the training set.  

The average absolute deviation between observed LOS and LOS predicted by the 

tool was 91.7%. In comparison, the average absolute deviation between observed 

LOS and LOS predicted by physicians was 147.6%. This implies that the tool’s 

predictions are more accurate than the physician’s predictions. However, both 

predictions still deviate strongly from the observed LOS.  
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7 Conclusion 
The objective of this research was to develop a generic prediction tool prototype 

which accurately predicts the individual hospital LOS, based on patient 

characteristics and organizational factors known at admission. 

This research demonstrates that the developed LOS prediction tool can predict the 

LOS of patients admitted to the ECH with higher accuracy than physicians can based 

on their medical experience. Average absolute deviation between the tool’s 

predictions and observed LOS was 91.7%. This is an improvement in comparison to 

the average absolute deviation between the physician’s predictions and observed 

LOS, which was 147.6%.  

The prediction tool consists of an LOS explanatory model and an application to 

prospective data. In that way, LOS predictions of new admissions are based on the 

LOS of comparable historical admissions. The accuracy of the predictions is 

therefore dependent on the accuracy of the explanatory model (expressed in R2). 

Average R2 of the model was 25.4%.   

Two limitations of the ECH training dataset restricted the performance of the tool. 

First, due to the training set size, the model could only predict the LOS of 40.7% of 

the admissions in the test set. The rest of the admissions were not predictable since 

too few admissions per diagnosis were available. Second, the number of present 

influencing LOS variables in the ECH training set was restricted. Seven proposed 

variables in literature were not available in the training set (e.g. the weight of the 

patient and the presence of a secondary diagnosis). This was due to difficulties in 

combining various databases in the ECH. The location from where the patient was 

admitted (e.g. home, other hospital, ER) and the admission specialism had the 

highest predictive power on LOS. Gender and admission day (weekday or weekend 

day) were the poorest predictors of LOS.  

Due to the large average absolute deviation between the tool’s predictions and 

observed LOS, it is not yet recommended to base the admission planning of the ECH 

on LOS predictions made by the tool. The dataset first needs to be enlarged and 

more influencing LOS variables need to be included in order to increase the accuracy 

of the predictions. Due to the generic character of the prediction tool, new or 

enlarged datasets are easily analyzed.  
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7.1 General discussion 
In the development of the LOS prediction tool, multiple choices were made. These 

choices are discussed in this section and recommendations are presented where 

applicable.  

The choice to base the LOS prediction tool on multiple regression was made for its 

proven performance in literature, expected suitability for automation, its ease of use 

and its applicability to the ECH data. The expected suitability for automation turned 

out to be unjustified. Regression analysis is generally performed manually and the 

researcher’s knowledge influences the results. For example, the researcher manually 

includes predictors when clinically relevant, independent of the outcomes of the 

univariate analysis (see section 4.1.3). Automating these choices is time consuming 

and sometimes not even possible. Multiple assumptions had to be made to be able to 

complete the model and the influence of these assumptions is unclear. It is therefore 

interesting to analyze the difference in outcome between manually conducted 

statistical analyses and automated analyses in order to possibly correct the 

assumptions and improve the accuracy of the predictions.  

R7.1 
Analyze the difference in outcome between manually 

conducted statistical analyses and automated analyses 
to possibly improve the accuracy of the predictions 

 

 
An example of one of these assumptions concerns the selection of predictor 

variables when the number of typified predictors exceeds the number of allowed 

predictors in regression analysis (section 4.1.3). This selection is based on 

univariate analysis. In manually performed univariate analysis, clinical relevant 

variables are included independent of their significance. Reason for this includes the 

fact that it is possible that the model excludes variables that do not have individual 

significant influence but do have significant value in combination with other 

variables. In this study, the choice was made to select predictors purely based on 

their statistical relevance in order to create an automatic tool and to prevent 

subjectivity.  

The choice to aggregate classes was enforced by the choice for multiple regression 

and the characteristics of the ECH dataset. Ultimately, the aggregation of classes 

resulted in one extra diagnosis becoming predictable by the model. It is therefore 

recommended to analyze the effect of class aggregation in other datasets. With the 

results, the choice to whether or not keep class aggregation in the model can be 

made. When class aggregation does not result in extra admissions becoming 

predictable by the model, aggregation should be eliminated as it increases the 

standard deviation of one of the classes involved in aggregation. 

R7.2 

Analyze the effect of class aggregation in other datasets 
to get more validated results on whether or not class 

aggregation is suitable to enlarge the number of 
predictable admissions 
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7.2 Recommendations for future research 
The prediction tool is only tested on the dataset of the ECH. To assure the 

effectiveness of the tool, LOS predictions based on other datasets should be made. It 

is suggested to apply the tool to other departments of the AMC and to other Dutch 

hospitals. The tool is expected to perform best in regional hospitals since more 

standard care is provided. This results in fewer occurring diagnoses and more 

admissions per diagnosis. However, the added value of the prediction tool is 

expected to be biggest in academic hospitals predictions are more difficult to make. 

R7.3 Run the model on different datasets to assure the tool’s 
effectiveness 

 

The model could be expanded with a functionality to predict discharge during the 

patient’s stay. That way, the LOS could for example be predicted every day based on 

the patient’s health status. To incorporate such a function, variables that influence 

the LOS during a stay must be determined. Diagnostic values such as blood levels 

and the oxygen saturation level are expected to be good predictors of LOS during a 

patient’s stay (derived from the conducted interviews). 

R7.4 Include diagnostic variables in the model to predict 
discharge during a patient’s stay 

 

 

The tool could be used as an aid to evenly spread the workload of personnel during a 

patient’s stay. To achieve this, required actions per diagnosis need to be mapped and 

incorporated. Per day, the tool could then suggest required actions to achieve the 

predicted discharge date. We think this is only possible for standard actions since 

almost every admission proceeds differently. 

R7.5 
Incorporate suggestions for required actions during a 

patient’s stay in the tool to evenly spread workload 
during a patient’s stay 

 

 

Additional to the previous recommendation, the tool could be used as an aid to 

evenly spread the workload between personnel on a ward. Currently, personnel get 

a number of patients assigned. With an estimation of the intensity of care of patients, 

patients could be assigned more evenly amongst personnel. Research regarding the 

estimation of the intensity of care is currently conducted at the AMC.  

R7.6 
Incorporate the intensity of care of patients in the tool 
(when possible) to evenly spread workload between 

personnel 
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7.3 Implementation advice 
This section discusses recommendations to achieve implementation of the tool in 

the ECH.  

Interviews with the management of the ECH wards showed that LOS prediction does 

not occur consequently. To achieve focus on discharge, starting at admission, LOS 

predictions for all admissions are required. It is therefore recommended to make 

LOS prediction mandatory. Consequent LOS prediction is only feasible if the digital 

databases that register LOS actively ask for LOS prediction when LOS is not 

predicted. Continuation then only becomes possible once LOS is predicted. The user 

can use the prediction tool to get support in predicting LOS.  

R7.7 

Make digital databases actively ask for an LOS prediction if 

LOS prediction is not registered to achieve consequent LOS 

prediction 

 

 

In the ECH, expected LOS is currently registered in multiple digital locations. These 

include the digital planning board, the electronic patient file and the database 

OKplus. Confusion and unclear responsibilities occur due to these possibilities. One 

digital location should therefore be designated for registering LOS predictions.  

In the short-term, it is recommended to declare the digital planning board as the 

designated location for LOS registration. All personnel involved have access to this 

program and it is easy to use. Due to the absence of connections between some of 

the AMC’s databases, manual copying of LOS predictions is required to register LOS 

in all databases. Recommendations include identifying the databases to which LOS 

predictions must be copied and making individuals explicitly responsible.  

In the long-term, it is recommended to register LOS in the AMC’s new electronic 

patient file. This system, called Epic (implemented by the project ‘EPD VUmc AMC’ 

(EVA)), is expected to be implemented mid-2015. By using Epic, LOS registration 

will occur consistently AMC-wide. Possibilities to connect the LOS prediction tool 

with EVA are currently explored. With a digital connection, LOS prediction could be 

automated based on inserted admission characteristics. It should be noted that the 

predicted LOS is a suggestion and that the user can adjust the prediction at his or 

her discretion.   

R7.8 Assign one designated digital location to register LOS in 
order to achieve consistent LOS prediction 

 

 

The goal of the project is to achieve an optimal admission planning. Therefore, 

predictions of expected LOS are needed at admission. It is important that the people 

who implement the tool, clearly communicate this goal. Communication plays an 

important role in the implementation of technology [57]. Creating a support base 

amongst the users of the tool is a prerequisite for successful implementation. 

Additional to the goal, the method and usage of the tool should be communicated to 
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the users. The short description of the method of the prediction tool and training 

instructions are presented in Appendix E.   

R7.9 
Discuss the goal, method and instruction of the prediction 

tool with the users to increase the chance of successful 
implementation 

 

 

The LOS formulas form the basis of the LOS predictions. Since there is no “live” 

connection between the computational model and the electronic patient file, new 

historical admissions are not automatically included in the creation of the LOS 

formulas. Therefore, predictions are not always based on the largest dataset 

possible. The computational model should be executed every two months. It is 

estimated that, based on historical data, at least one admission per diagnosis occurs 

in two months. Extracting the new dataset and running the model is expected to take 

around 30 minutes.  

R7.10 Update the tool every two months to keep the predictions 
up to date 
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Appendix A  

List of interviewees 
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Appendix B 
 

Power analysis Value 

Input Test type 2-sided  

 Type confidence interval 1 group 

 Expected intra-class correlation 0.7 

 Distance from correlation to limit 0.15 

 Number of measurements/raters 3 

   

Output Required number of cases 31 
Table 20: Input and output values of the conducted power analysis performed in nQuery. 
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Appendix C 

Multiple linear regression  

In [21, 22], multiple regression is used to create formulas to calculate LOS 

predictions. Regression is the most widely used method for prediction models [21] 

and is therefore described in this section. The description is based on [50, 51].  

Multiple regression analyses are used to build association and prediction models. 

Association models estimate the relation between an outcome variable and one 

central determinant. Prediction models focus on accurately predicting an outcome 

variable based on a set of possible independent variables. In the formulation of 

prediction models, the goal is to find the best prediction using the simplest model 

possible. By not including all possible independent variables, the standard error of 

the prediction becomes smaller.     

Two types of regression exist; linear and logistic regression. Linear regression is 

used when the outcome variable is a continuous variable, while logistic regression is 

used when dealing with a categorical or dichotomous16 outcome variable. In this 

study, linear regression is used since LOS is a continuous outcome variable.  

In linear regression, a linear equation is fit to the data in the way that the squared 

differences between the line and the actual data points are minimized: minimizing 

the Total Sum of Squares,    . The linear equation has the form of 

 
  ∑    

 

 

    (3.1) 

where   represents the outcome (dependent) variable,     represents the 

regression coefficient for the independent variable   ,    represents the number of 

independent variables  and    represents the intercept of the line. 

Inaccuracy of the line always exists and is expressed by the sum of differences 

between each observed data point and the predicted value, the Residual Sum of 

Squares,    .  

To assess the goodness of fit of the line, the explained variance,   , is used: 

 
    

   

   
  (3.2) 

where the Model Sum of Squares,    , represents the reduction in the accuracy of 

the model resulting from fitting the regression model to the data, 

             (3.3) 

and     equals the Total Sum of Squares. 

                                                           
16 Variables that equal 0 or 1 
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There are three methods of regression, each including another way of selecting the 

independent variables. This research uses the backward stepwise method since the 

selection is based on a purely mathematical criterion – and therefore suitable for 

programming – and suppressor effects17 are taken into account. 

Backward stepwise method 

The backward stepwise selection method places all independent variables in the 

model and eliminates variables based on their significance value (p-value). Each 

significance value is compared against a removal criterion. The variable that makes 

the smallest non-significant contribution to the dependent variable is eliminated. 

This procedure is repeated until all independent variables in the model make a 

significant contribution to the dependent variable.  

After conducting multiple linear backward regression, all regression coefficients of 

the independent variables that significantly contribute to the outcome variable, are 

clear. With the coefficients and intercept value, the formula to predict the outcome 

variable can be composed.  

Dummy variables for categorical predictors 

Variables that serve as independent prediction variables in regression need to be 

continuous or dichotomous. Categorical variables cannot be included in their 

original form as regression analysis treats all independent prediction variables as 

numerical18. To overcome this restriction, dummy variables that equal 0 or 1 are 

created to represent the absence or presence of some categorical effect. The 

regression coefficients of dummy variables represent the increase or decrease in the 

outcome variable in proportion to a reference criterion. One of the options of the 

categorical variable therefore presents the ‘0’ in all dummy variables. The choice of 

reference criterion is arbitrary. To illustrate the principle of dummies, an example is 

given: 

Suppose we have variable X that influences outcome variable Y. Variable X is a 

categorical variable that can take on the values A, B or C. Variable X needs to be 

translated into two dummy variables: 

Options Cat_X_x1_B Cat_X_x2_C 

A 0 0 

B 1 0 

C 0 1 

 

All dummy variables for a specific categorical predictor need to be kept together in 

analysis since they do not have intrinsic meaning of their own. When one of the 

dummy variables is eliminated in the backward stepwise method, all dummy 

variables representing the same categorical predictor need to be eliminated.  

  
                                                           
17 “Suppressor effects occur when an independent variable has a significant effect but only when 
another variable is held constant. The forward stepwise method is more likely to exclude independent 
variables involved in suppressor effects.”[51] 
18 Interval or ratio scale variables whose values present an order. 
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Appendix D 

Flowchart legend 
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Appendix E 

Implementation instructions 
This section presents instructions to implement the prediction tool in practice. The 

instructions form part of the implementation advice presented in Chapter 0. 

Short tool description 
The tool creates LOS formulas for classes of admissions. These classes are based on 

diagnosis. For each class, the influence of admission characteristics (e.g. age, gender) 

is evaluated. The characteristics that significantly influence LOS are incorporated in 

the LOS formula. 

Training instructions 
The user instructions depend on the way LOS is registered. We present instructions 

for both the short-term and long-term scenario.  

Short-term scenario 

If the short-term scenario is applied, the user needs to insert the patient’s diagnosis 

in the user model. The tool then matches the diagnosis with its corresponding class 

and the LOS formula is retrieved. The tool displays the admission characteristics 

influencing LOS and the user is asked to insert values of these characteristics. With 

all values known, the tool calculates the predicted LOS and presents it to the user. 

The user can then copy this prediction to the designated database (optionally after 

adjustment).  

Long-term scenario 

If the long-term scenario is applied and a digital connection between the prediction 

tool and EVA exists, the user instructions slightly differ. When the user inserts the 

patient’s diagnosis in EVA, the corresponding class and LOS formula are 

automatically retrieved. Since all admission characteristics are inserted in EVA, the 

tool will automatically retrieve the required characteristics, calculate LOS and 

present the prediction in the designated place in EVA. The user can still adjust the 

prediction at his or her discretion.    
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Appendix F 

Instruction manual computational model 
This manual provides instructions to use the computational model. The user needs 

to make multiple choices during the model execution. These choices are based on 

the user’s assessment. Input and background regarding the choices is given in the 

following sections.  

1. Supply  input table 

Variables that the user expects to influence LOS need to be included in the input 

table. Suggestions for predictor variables are given in Table 3, section 3.4. 

Discontinuous variables need to be redefined in dichotomous or categorical 

variables with the smallest amount of option values when possible, to improve the 

accuracy of the model.  

2. Apply lognormal transformation to LOS 

Lognormal transformation of LOS needs to be applied to predict LOS using multiple 

regression. The log transformed LOS needs to be included in the input table.  

3. Run model 

The model is started by clicking the ‘START’ button. The model directly asks the user 

to make choices regarding variable types and class requirements. These choices are 

explained in the following steps.   

4. Choose variable types 

The possible variable types include the outcome variable, a basic variable, a 

predictor, a negligible variable or the grouping criterion.  

The outcome variable of the LOS prediction tool is the log transformed LOS.  

The basic variables are formed by the admission year and number. Combination of 

these values corresponds to unique admissions to ensure that each admission is 

traceable.  

Predictor variables are the variables expected to influence the outcome variable. 

Different subtypes for predictor variables exist: dichotomous, categorical or 

continuous.  

All variables typified as negligible variables are neglected in the model.  

The grouping criterion forms the basis of the admission aggregation. The variance in 

LOS and the number of admissions within a group need to be balanced to make this 

choice. The ideal group criterion yields minimal variance within a group, maximal 

variance between groups and as many admissions per group as possible. With a 

minimal variance and many admissions within a group, the model can accurately 

predict LOS for new patients having the same group criterion value (e.g. diagnosis). 

With a maximal variance in LOS between groups, distinct classes are generated. This 

benefits the accuracy of the predictions. The group criterion must be a categorical 
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variable. This to ensure that the model creates a limited amount of classes and 

aggregation of classes can possibly occur.   

5. Choose requirements for class types 

There are three types of classes possible in the model: primary, unpredictable and 

secondary classes. The model only creates LOS formulas for primary classes 

considering the requirements for regression explained in section 4.1.3. 

Unpredictable classes never become predictable in the model. Secondary classes 

only become predictable if they are aggregated with a primary class. The user needs 

to choose the required number of admissions for primary and unpredictable classes. 

Primary classes 

The choice for primary classes must be based on the number of predictor 

variables included in regression analysis. A large number of predictors requires a 

large number of admissions within a group. The rule of thumb for this choice 

states that 10 admissions are needed to test one predictor variable [51]. When 

the required number of admissions for a class to be a primary class is set too 

high, the model will only be able to create LOS formulas for few classes. On the 

contrary, when the required number of admissions is set too low, the model can 

include few predictor variables. This decreases the accuracy of the LOS 

predictions. The requirement for primary classes is illustrated in Figure 14 as 

choice   .  

Unpredictable classes 

The LOS of a class that contains few admissions cannot be generalized due to the 

high level of coincidence. The user needs to choose the accepted influence of 

coincidence by setting the required number of admissions for a class to possibly 

become predictable. Classes containing fewer admissions than required are 

labeled as unpredictable and are excluded in the model. The requirement for 

unpredictable classes is illustrated in Figure 14 as choice   . 

Secondary classes 

Secondary classes contain a number of admissions equal to or greater than the 

requirement for unpredictable classes, and fewer admissions than the 

requirement for primary classes.  

UC SC PC

Number of admissions 
in a class

Choice x1 Choice x2

N < x1 x1 ≤ N < x2 N ≥ x2

 

6. Resume model 

Resume the model by clicking the ‘CONTINUE’ button. The model runs the rest of the 

steps and results in a table containing the LOS formulas for the primary classes.  


