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Abstract

In this thesis JML* (an extension for JML used by the static verification tool KeY) is used
to formalize the behavior of several interfaces and classes, part of the Java Collections
Framework. For these specifications several specification styles were used, e.g., making
use of model fields, ghost fields, pure methods and abstract data types, which aids in
getting an understanding of which style would contribute to better understandability,
extensibility and verifiability of JML* specifications. After specifying several interfaces
and classes, a large part of the specifications has been verified with KeY.

To see whether the specifications made are understandable, a group of people only famil-
iar with basic JML has been asked to fill out a questionnaire. The questionnaire asked
whether certain methods – that represent the overall style of specifications done – would
be verifiable. Most of the answers provided, suggested that not just the specifications
provided, but JML in general is not straightforward to understand, e.g., people have the
idea specifications are not verifiable when they do not cover the complete behavior of a
method, and additionally the use of model fields as well as invariants is not completely
clear. The use of abstract data types (i.e., sequences) as well as framing of methods –
specifying the set of locations that might be changed by a method – did not cause a lot
of additional confusion for the participants in general.

To validate findings about understandability, extensibility and verifiability, a group of
experts in the fields of JML* and KeY (i.e., the KeY developers) have been asked to fill
out a questionnaire. Depending on one’s experience it might be the case that a specific
construct is better for understandability as well as extensibility than the other. All
things considered, ghost fields seem to be worse for understandability and extensibility
compared to other constructs as they need to update state for every method that affects
them. Ghost fields are, however, easier for verifiability though, since – at least for KeY –
they can be treated like actual code. Higher forms of abstraction, i.e., using model fields
or model methods seem to be more problematic for verification as they can be very
complex, and verification tools need to be provided with manual instantiations to reason
about them. Moreover, higher abstraction also leads to improved understandability and
extensibility.
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Introduction

Nowadays software is mingled in almost every aspect of life, from non-critical - but still
important - software on a mobile phone, up to highly critical software for automotive
and medical applications. For safety critical systems it is important that software does
not contain bugs that can do harm or cause serious losses, i.e., costs lives, money or
time.

One of the most cited bugs is that of the Ariane 5 launcher [26]. On June 4th 1996 the
first flight of the Ariane 5 launcher ended in a crash. Within 40 seconds after lift-off
the Ariane 5 deflected its flight path, broke up, and exploded. The primary cause of the
crash was an overflow exception when converting the horizontal bias variable, and the
lack of protection of the conversion of this variable. This eventually ceased the system
responsible for calculating angles and velocities, and transmitting findings about altitude
and movements to the on-board computer that executes the flight program and controls
the steering mechanism, i.e., in case of an exception this system was programmed to be
shutdown. As the backup system had identical software, it also got an overflow exception
at a certain point and was shutdown too. Thereupon the launcher disintegrated and
ended up in destruction, as designed.

That bugs like the one just described are not wanted is obvious, i.e., they have large
expenses in money and time. To prevent this kind of bugs from happening, many
studies have been performed. This thesis focusses on the direction of formally specifying
behavior of an Application Programming Interface and verifying these specifications with
a interactive verifier. Programs build on these Application Programming Interfaces can
take advantage of the specifications, since these programs only need to specify additional
behavior and have less proof obligations when being verified. This makes it less likely
that bugs will occur in these programs.
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Introduction

API specification

An Application Programming Interface (API) can be used as a foundation for program-
mers to build programs on. Müller indicates some technical problems of APIs in [32].
He mentions that clients have to rely on documentation that tends to be imprecise and
incomplete. Especially proprietary APIs – APIs for specific devices - tend to be that
way as the company behind the API does not want to burn their fingers by providing too
much detail about their implementation. Another problem is that there are no quality
certifications for libraries available yet, and companies might not see the importance of
good documentation.

As many programmers use APIs as the foundation of their software, there is a need for
precise specifications. Three benefits one gets when formal specifications are applied to
APIs – and next verified – are:

• Ambiguity or inconsistency that comes with normal documentation will disappear.
This way, a programmer exactly knows what to expect from a specific method.

• Secondly, the programmer has the guarantee that the API will behave like specified
since specifications have been verified.

• Costs and time can be spared on developing software, as only the programmer’s
own code has to be verified, i.e., the API is guaranteed to be correct. Programmers
can use existing specifications and complement them for their own programs to
also prove these programs correct.

Several attempts on verifying selected parts of the Java API have been performed. In
[16, 33, 37] two attempts on specifying and verifying the Java Collection interface and
Iterator interface have been performed. Peters as well as Huisman describe that they
encountered unclear specifications in the informal specification. Furthermore, Peters
had problems with the selected verifier tool KeY [5], in that the tool could not handle
JML specifications like \sum, \min and \max at the time.

That it is possible to verify a complete API is shown by Mostowski, who presents a
formally verified reference implementation of the Java Card API in [31]. The complete
implementation has been first formally specified and next verified with KeY. Mostowski
describes that only minor interactions were needed due to loop invariants that KeY could
not prove itself. Although KeY can cope with the verification of the Java Card API, this
does not mean that it is also possible to use KeY’s power to verify part of the Java API,
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Introduction

because the Java Card API is substantially smaller and simpler than the full regular
Java API.

Goals

The main goal of this master thesis is to gain inside in the understandability, extensibility
and verifiability aspects of specifications written in JML* – an extension to JML used
by KeY for modular static verification.

One of the most used parts of the Java API is the Java Collections Framework. Any
substantial program made in Java will at least use a few of its classes. It has two root
interfaces, Collection and Map with a number of sub-interfaces, abstract classes and
classes. There will always be something that fits the needs of the programmer, and
if that is not the case a programmer can easily extend a class or implement a specific
interface.

This led to the following concrete goals of this master thesis;

1. Provide specifications for selected parts of the Java Collections Framework, and
hereby gain insight on different specification constructs of JML* for understand-
ability and extensibility.

2. Verifiy the specifications made, and hereby gain insight on different specification
constructs of JML* for verifiability.

3. Validate the findings of the first two goals.

To accomplish the last goal, questionnaires have been made to retrieve information about
understandability of the specifications made, and, understandability, extensibility and
verifiability of JML* specifications in general. The different specifications constructs
considered for this thesis are;

• ghost fields;

• model fields;

• abstract data types (e.g., sequences);

• pure methods; and,

• model methods.
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Contributions

Concretely, this thesis describes the following contributions:

• a specification of selected parts of the Java Collections Framework;

• a verification of most part of the specifications made;

• an evaluation of the understandability of the specifications made;

• an evaluation of different specification styles (e.g., model and ghost fields) on

– understandability;

– extensibility; and

– verifiability.

Thesis outline

The first part of this thesis describes the background of this study, i.e., what kind of tools
do we have on writing working and correct programs. The basics of JML, and a derivative
– called JML* – will be explained. Several techniques will be treated that use JML – or
the derivative – to achieve checking and/or verifying correctness of specifications.

In the second part of the thesis the contributions are described. First, specifications
for selected parts of several interfaces from the Java Collections Framework have been
described in Chapter2, as well as providing alternative ways of writing some of these
specifications. Chapter 3 discusses the verification of some classes based on the inter-
face described in Chapter 2, after describing the usage of the tool KeY and encountered
limitations during the verification. Additionally, both chapters describe findings about
understandability, extensibility and verifiability of the different JML* specification con-
structs used.

The last part of the thesis provides an evaluation of the contributions. First Chapter
4 provides the approach that led to two questionnaires, i.e., one to retrieve information
about the understandability of the created and verified specification, and one to vali-
date the results found about understandability, extensibility and verifiability of JML*
specification constructs. Chapter 5 provides the results and discussion of the two ques-
tionnaires. After which the final chapter presents conclusions and provide directions of
future work.
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1. Making software better

Several techniques have been conceived to rule out bugs in software. This thesis focusses
on programs written in Java, a popular mainstream object-oriented language. Therefore,
tools and specification languages for Java are given as an example, however similar tools
and specification languages do exist, for example, for C# (NUnit [17], Pex [39], Spec#
and Boogie [2]). This part of the thesis describes the background of this study, i.e.,
what influence do we have on writing working and correct programs, and explains where
KeY comes from and what it is. Also, the basics of JML and a derivative of JML – called
JML* that is used by KeY – are explained. Several techniques are treated that use JML
– or the derivative – to check and/or verify the correctness of the specifications.

This chapter briefly describes unit testing in Section 1.1, Section 1.2 continues by ex-
plaining the basics of JML, which are used in Section 1.3 to describe several techniques
to prevent bugs in software.

1.1. Unit testing

One of the most popular techniques for preventing bugs in software is unit testing, where
every unit of code, i.e., a class or group of classes, is exposed to a series of tests, and
results of invocations of methods are compared to expected results of these methods given
an input. The technique gets its popularity due to the easiness of use for programmers,
however, the technique – in general – lacks completeness of code coverage, and cannot
be relied upon for safety critical systems. For Java there exists JUnit [4] – a unit testing
framework for Java – and Hamcrest [36], that provides a matcher library to make writing
unit tests easier. Another testing framework for Java is TestNG [6], which is inspired
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1. Making software better

by JUnit, but introduces additional functionality to make it more powerful and easier
to use.

1.2. JML

The Java Modeling Language (JML) is a specification language for Java, and allows one
to formaly specify the behavior of Java code. JML is an outgrowth of the principle of
Design by Contract (DbC) introduced by Bertrand Meyer for the Eiffel programming
language in 1986 [28]. With DbC the behavior of the components of a program are
formally described by a so-called contract. A contract describes for each method under
what conditions it may be called, and what is guaranteed about the return value and
side-effects of a method call. This way a user can study a component’s contract, which
explains exactly what the component expects and does. Implementers are free to choose
any implementation for components, as long as they adhere to the component’s contract.

JML has become a large language when several projects [5, 40, 14, 27] – that targeted
tool-support for the verification of Java programs – started supporting it. Because JML
is a large language, not all language constructs and their semantics are totally agreed
upon. Tools that support JML therefore support only a subset of the language. To
prevent losing perspective, several levels of the language have been defined. There exist
four basic levels, from level 0 – which contains the most common constructs of JML,
for which the semantics are well understood – up to and including level 3, where each
level extends on the previous level. Furthermore, there is level C for concurrent features
and level X for experimental features, that might end up in one of the basic levels at
a later stage. Tools that support JML are expected to support at least level 0. More
information on all levels that have been defined can be found in Section 2.9 of the JML
Reference Manual [24]. This thesis first explains basic features of JML – which are part
of the first levels – and next addresses additional features used in the specifications later
on.

JML specifications can be added to Java files with a special comment-like style. Namely,
lines starting with //@ for single line JML specifications and lines starting with /*@ and
ending with */ for multi-line specifications. Often you will also see lines starting with @
between the first and last multi-line JML specification, and @*/ for ending a multi-line
specification. This is not required but helps in providing a clear seperation between
specification and normal comments.
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1.2. JML

As JML is added to source code in a comment-like style, it is ignored by the Java
compiler, so it is only there to formally relate specifications with a program. Tools
that support JML can use these formal specifications to either validate properties at
runtime, or verify whether specifications comply with the source code statically, i.e.,
without executing the source code. In Section 1.3 examples of these tools are discussed.

1.2.1. Method contracts

A method contract specifies the behavior of a method with pre- and postconditions.
Preconditions should hold before invoking a method and specify for instance restrictions
on the arguments of the method, or in what state an object should be. A precondition
on a method could be that an argument of type integer is restricted with a lower and an
upper bound. In JML, the keyword requires is followed by a precondition expression.
Postconditions specify guarantees about the method, and describe how the object’s
state is changed by the method, or what the expected return value of a method is.
Postcondition expressions are preceded by the JML keyword ensures, and are only
guaranteed when the corresponding precondition holds.

Pre- and postconditions in JML are basically just Java expressions of Boolean type. The
expressions should not have side effects and may not terminate exceptionally. The idea
behind this is that specifications are written in a language familiar to the programmer,
so that writing specifications has a low threshold and reading them is not difficult.
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1. Making software better

1 public interface Employee {
2
3 public static final int maxYearSalary = 193000;
4 public static final int ret i rementAge = 67 ;
5
6 //@ ensures \ r e s u l t == getAge () >= 67;
7 /∗@ pure ∗/ public boolean ret i rementEarned ( ) ;
8
9 //@ ensures \ r e s u l t >= 0;

10 /∗@ pure ∗/ public int getAge ( ) ;
11
12 //@ r e q u i r e s ! ret irementEarned () ;
13 //@ ensures \ r e s u l t > 0 && \ r e s u l t <= maxYearSalary ;
14 /∗@ pure ∗/ public int ge tSa la ry ( ) ;
15
16 //@ r e q u i r e s inc > 0 && inc <= maxYearSalary ;
17 //@ r e q u i r e s g e t Sa l a r y ( ) + inc <= maxYearSalary ;
18 //@ ensures g e tSa l a r y ( ) == \ o ld ( g e tSa l a r y ( ) ) + inc ;
19 public void i n c r ea s eYearSa la ry ( int i n c ) ;
20 }

Listing 1.1: JML specified interface Employee

An example of JML

Listing 1.1 provides an example specified with basic JML for the methods in the interface
Employee. Different aspects of the specifications are explained in detail below.

• retirementEarned specifies that one has earned a retirement when one is above
the age of 67.

• The specification of getAge defines that its return value should always be greater
than or equal to 0.

• The method getSalary only specifies what should be guaranteed when the Employee
has not yet earned its retirement, namely the Employee should then have a salary
greater than zero and less than or equal to the maxYearSalary.

• increaseYearSalary(double inc) specifies that the argument inc should be
positive and less than or equal to the maxYearSalary. Also, when the amount
is added to the salary it should not exceed the maxYearSalary. When the pre-
condition holds the postcondition states that the return value of getSalary will
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1.2. JML

now hold the value of inc added to the result of getSalary before invocation of
the increaseYearSalary method. To allow reasoning about the pre-state of an
object the JML operator \old(e) is used, where e is an expression evaluated in
the context of the pre-state.

The methods retirementEarned, getAge and getSalary are all specified with the key-
word pure. This means that these methods are not allowed to have any side effects, the
state allocated before the method call may not change. However, this needs elaboration
as it does not exclude that methods create new objects and instantiate them. Techni-
cally speaking it is even possible to change a heap location (i.e., memory operated on
by the method) during the flow of a method and changing it back to its pre-state before
the method is finished, which will not result in non-purity of the method. Only pure
methods are allowed to be part of a specification expression. In JML, pure methods
do not change the part of the heap memory known prior to the invocation. However,
they are allowed to create fresh objects on the heap and assign to fresh locations that
belong to them. In a subsection on purity – see page 29 – an additional form of purity
is explained.

A solution to completely specify changes made by a method is described in Section 1.3.3
when the idea of dynamic frames is explained . To denote the return value of a method,
JML uses the reserved keyword \result.

Although not used in the example above, reference values are implicitly assumed to be
non-null in JML. When one needs the fact that these values may be null, the dedicated
JML keyword nullable must be used.

Comprehension constructs

Besides traditional side-effect-free Java expressions, and pure methods – which can be
used for predicates in the specifications – JML defines additional constructs. \old and
\result are two of them, as explained above. Also worth mentioning are the constructs
\forall, \exists, \sum, \min, and \max. The \forall and \exists constructs can,
e.g., be used for stating that an argument of a method needs an ordered array like so;
//@ r e q u i r e s (\ f o r a l l i n t i ; 0 < i && i < a . l e n g t h ; a [ i −1] <= a [ i ] ) ;
public void ar rayMod i f i ca t i on ( int [ ] a ) { . . .

Listing 1.2: Example usage of \forall

or the same restriction making use of \exists;
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1. Making software better

//@ r e q u i r e s ! ( \ e x i s t s i n t i ; 0 < i && i < a . l e n g t h ; a [ i −1] > a [ i ] ) ;
public void ar rayMod i f i ca t i on ( int [ ] a ) { . . .

Listing 1.3: Example usage of \exists

Summing and counting can be done with \sum. E.g., \sum can be used to check whether
there is an equal amount of positive and negative numbers in an array;
//@ ensures \ r e s u l t <==> (\sum i n t i ; 0 < i && i < a . l e n g t h ; a [ i ] > 0 ? 1

: 0) == (\sum i n t i ; 0 < i && i < a . l e n g t h ; a [ i ] < 0 ? 1 : 0) ;
public boolean equalPosNegAmount ( int [ ] a ) { . . .

Listing 1.4: Example usage of \sum

Lastly, \min and \max work similar to \sum and could, e.g., be used for finding the
lowest and highest value in an array. \exists and \forall both have a boolean re-
sult as opposed to \sum, \min, and \max which produce an integer. As the attentive
reader might have seen, an additional logical operator was introduced, namely logical
equivalence <==>. Together with implication ==> they complement the standard logical
operators from Java. JML does not differentiate between the use of | and ||, or & and
&&. In Java | and & are bitwise operators and have different semantics. For clarity this
thesis uses the || and && variants.

Specification declarations

Specifications seen so far, are so called lightweight specifications, i.e., they do not contain
any of the following keywords behavior, normal_behavior or exceptional_behavior
which are heavyweight specifications. With normal_behavior and exceptional_behavior
one can specify that under certain conditions a method will always terminate without an
exception or will always terminate with some specific exception under some condition,
respectively. With behavior, normal and exceptional behavior can be combined.

Heavyweight specifications tell JML that the method specification is intended to be
complete, as opposed to lightweight specifications which tell JML that the specifica-
tion is incomplete and only contains some of what the specifier had in mind. When
one uses lightweight specifications omitting the clauses requires, ensures or signals
for a method results in the default specification of \not_specified. The meaning of
\not_specified may vary between different usage of JML specifications, i.e., it is pos-
sible that one static checker1 translates requires \not_specified to requires true

1Static checking will be described in section 1.3.2
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1.2. JML

and another to requires false.

Exceptions

The keyword signals can be used in conjunction with an exception type and an ex-
pression. When a particular exception – the one between parentheses – is thrown,
the condition expressed by the expression should hold. An example is given for an
ArithmeticException for a method that calculates a division. If the method throws
the exception it must be the case that b == 0;

1 //@ ensures \ r e s u l t == a/b ;
2 //@ s i gna l s_on ly Ari thmet icExcept ion ;
3 //@ s i g n a l s ( Ar i thmet icExcept ion e ) b == 0;
4 public float divideBy ( int a , int b) {
5 return a/b ;
6 }

Listing 1.5: Example usage of signals

For lightweight specifications the signals clause defaults to \not_specified and the
heavyweight specification to (Exception) true, i.e., it is always possible that there
will be an exception. The signals_only keyword is used to indicate which exceptions
may occur during execution of the method. When omitted, the specification defaults to
the exceptions given by the throws clause, for both light- and heavyweight specifications.
For heavyweight specifications the signals and signals_only clauses only apply for
behavior and exceptional_behavior.

Behaviors of a method can be combined in different ways, namely specifying behavior
of the method with behavior, which entails both exceptional and normal behavior, or
separating and combining them with the keyword also. The difference is illustrated in
Listing 1.6 and Listing 1.7;

1 /∗@
2 @ p u b l i c normal_behavior
3 @ r e q u i r e s b != 0 ;
4 @ ensures \ r e s u l t == a/b ;
5 @ a l s o
6 @ p u b l i c excep t i ona l_behav io r
7 @ signa l s_on ly Ari thmet icExcept ion ;
8 @ s i g n a l s ( Ar i thmet icExcept ion e ) b == 0;
9 @∗/

13



1. Making software better

10 public float divideBy ( int a , int b) {
11 return a/b ;
12 }

Listing 1.6: Example usage of combining normal with exceptional behavior

The same can be specified using only behavior;
1 /∗@
2 @ p u b l i c behav ior
3 @ ensures \ r e s u l t == a/b ;
4 @ signa l s_on ly Ari thmet icExcept ion ;
5 @ s i g n a l s ( Ar i thmet icExcept ion e ) b == 0;
6 @∗/
7 public float divideBy ( int a , int b) {
8 return a/b ;
9 }

Listing 1.7: Example usage of behavior

The difference is that with behavior, when the requires clause holds, the method can
either end normally or exceptionally. When the method ends exceptionally, it should be
the case that b == 0.

Note that, in general it is possible to transform preconditions to postconditions. In
Listing 1.6 the precondition of the normal behavior can be moved to the postcondition by
changing the postcondition to (b != 0) ==> \result == a/b. This thesis attempts to
keep pre- and postconditions separated, and only uses the later if it improves readability.

Specifications for constructors

Constructors are somewhat different from regular methods in that they do not have a
pre-state, i.e., the object does not yet exist. That is why a precondition of a constructor
can only put restrictions on the arguments of the constructor. The postcondition of a
constructor will typically relate the object state to the constructor’s parameters.

1 //@ r e q u i r e s age > 0 && age < 67;
2 //@ r e q u i r e s s a l a r y > 0 && s a l a r y <= maxYearSalary ;
3 //@ ensures getAge () == age ;
4 //@ ensures g e tSa l a r y ( ) == s a l a r y ;
5 CEmployee ( int age , double s a l a r y ) {
6 this . age = age ;
7 this . s a l a r y = s a l a r y ;

14



1.2. JML

8 }

Listing 1.8: A constructor for the class CEmployee

For example, Listing 1.8 shows a possible constructor specification for the class CEmployee
that implements the aforementioned interface Employee. The preconditions only specify
restrictions on the arguments age and salary of the constructor method.

1.2.2. Class specifications

The specification of the interface Employee above makes an implicit assumption about
the property of getSalary that should hold throughout, namely the salary should al-
ways lay within the range of zero and maxYearSalary. Any method in Employee, or
implementation of Employee might potentially break this property when it is not ex-
plicitly mentioned in the method contracts. This means every method should add a
requires and ensures clause like;

//@ r e q u i r e s g e t Sa l a r y > 0 && ge tSa l a r y ( ) <= maxYearSalary ;
//@ ensures g e tSa l a r y > 0 && ge tSa l a r y ( ) <= maxYearSalary ;
public void someMethod ( . . ) { . .

Listing 1.9: The burden of repeating yourself

To overcome the burden that specifications could get very large this way, and make it
possible to describe additional properties over the lifetime of an object, JML provides
class-level specifications. These class-level specifications, such as invariants, constraints
and initially clauses specify properties over the objects internal state and describe the
object’s restrictions over time. Listing 1.9 shows an example where the pre- and post-
condition of the method could be replaced with an invariant.

Invariants

An object invariant is a predicate that specifies a condition that should hold on all visible
states of the object. Visible states are all states in which either a method call to the
object starts or terminates. Object invariants can be used to remove the overhead of
adding requires and ensures clauses for each method in a class, as they are implicitly
added to the method contracts. Constructors are a little different in that they only need
to ensure that the invariant is established in the post-state of the method. Invariants
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have the neat feature that one does not need to write the same pre- and postconditions for
every method. Invariants also contribute to a nice separation of concerns, i.e., invariants
are inherited by subclasses. This way any method that overrides a method from a
superclass, or methods added to a subclass, also needs to respect the invariant. An
example invariant for the Employee interface would be the following;
//@ i n v a r i a n t g e tSa l a r y ( ) > 0 && ge tSa l a r y ( ) <= maxYearSalary ;

Listing 1.10: Example usage of invariant

One exception where invariants do not need to hold is for so-called helper methods or
helper constructors, which are private methods that aid methods that can be called by
the programmer. These methods are annotated with the JML keyword helper.

Initially clauses

Initially clauses are like object invariants, only instead of specifying properties about
every state, initially clauses specify what should hold in a state after creation of an
object. Each non-helper constructor of an object has to establish the predicate specified
by the initially clause. Like invariants, initially clauses can also be specified differently,
namely by adding the wanted conditions to every postcondition of all the non-helper
constructors. Using initially clauses will ensure that also subclasses, and any additional
constructors specified in subclasses respect the initially clause.

Constraints

Constraints limit changes to an object. A constraint for the Employee interface could
be that an employee is only allowed to increase in age. This could be specified like;
//@ c o n s t r a i n t \ o ld ( getAge () ) < getAge () ;

Listing 1.11: Example usage of constraint

However, this specification would be too strict. It should be possible to respect any
constraint without actually changing the object’s state. In particular, this means that
also any pure method should be able to adhere to the specification. Therefore, the
specification above should be changed to;
//@ c o n s t r a i n t \ o ld ( getAge () ) <= getAge () ;

Listing 1.12: Better usage of constraint
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This way the method getSalary also adheres to the specification. Obviously the method
getSalary should not change the age of an employee.

Variable declarations

Until this point, specifications did not specify anything about the values of an object’s
instance variables. Usually, these are declared private, and private elements cannot
be accessed within the specifications. For specifications we need instance variables to
be either public or protected. Whenever it is not possible or inconvenient to specify
methods with pure get-methods, JML provides the option to make instance variables
spec_public or spec_protected. This way, instance variable names can be utilized –
without the need of pure-get methods to address them – by specifying the visibility of
the instance variables for specifications.

Just like reference values within a method contract, fields can be specified with non_null
or nullable. When omitted, fields are declared non_null implicitly.

Model and ghost variables

Model and ghost variables are specification-only variables, and do not occur during ex-
ecution of a program. Model variables provide an abstract representation of an object’s
state. If the underlying state of a model variable changes, implicitly the model variable
also changes. This relationship is often captured with an explicit translation. Speci-
fications for model variables are split into two parts, specifying the type of the model
field and specifying what it represents. Listing 1.13 shows an example of a model field
isSquare that represents whether or not the rectangle is a square by comparing length
and width of Rectangle.

1 public class Rectangle {
2
3 public int l ength ;
4 public int width ;
5
6 //@ model p r i v a t e boo lean i sSquare ;
7 //@ r e p r e s e n t s i sSquare = l e n g t h == width ;
8
9 . . .

10 }

Listing 1.13: Example usage of a model field
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Ghost variables extend the state by providing additional information that cannot be
directly related to the state of the object. Ghost variables are often used to keep track
of events that have happened on an object, e.g., which methods have been invoked, and
how often. An example is given in Listing 1.14, where the ghost variable countA, counts
the invocations of methodA. The corresponding JML construct set, can update ghost
variables.

1 //@ ghos t p u b l i c i n t countA
2 //@ i n i t i a l l y countA == 0;
3
4 public void methodA ( . . ) {
5 //@ s e t countA = countA + 1;
6 . .
7 }

Listing 1.14: Example usage of a ghost field

Inheritance of specifications

In JML subclasses inherit class-level specifications, e.g., invariants, initially clauses and
constraints. Method specifications are also inherited, which means that every class that
implements an interface or extends another class has to respectively respect the interface
or its superclass. Any additional specification made in a subclass or implementing class
is implicitly combined (with also) with its inherited specifications.

1.2.3. Further reading

At this point the reader should be familiar with the basis of JML. However, as mentioned
earlier there is a lot more to say about JML, other constructs will be explained when
needed for specifications, or for better understanding of this thesis. When one wants
to know more about JML, the reader is advised to take a look at the JML Reference
Manual [24] or one of the following papers [23, 22, 35].

1.3. JML and verification

Chalin et al. [8] mention two approaches to verification, namely runtime assertion check-
ing and static verification. Static verification can be further classified into static checking
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and static verification.

1.3.1. Runtime assertion checking

With runtime assertion checking source code is checked during program execution, viola-
tions noticed by the checker are reported back to the user. A fundamental problem with
runtime assertion checking is that it cannot be used for all applications – as the program
actually needs to be executed to get feedback – whereby checking, e.g., a driverless car
would be problematic. Although common programming mistakes can be found easily
with this technique, code coverage is limited. To be sure that the program behaves cor-
rectly for all its executions, the programmer still needs to deal with practically an infinite
amount of test cases for substantial programs. The main runtime assertion checking tool
for JML is jmlc [10]. JMLUnit [21] can be used to generate JUnit tests automatically
for JML annotated Java code. JMLUnitNG [43] generates TestNG tests automatically.
JMLUnitNG has also been substantially improved over JMLUnit in terms of supported
features (e.g., data generators) and performance.

1.3.2. Static checking

To reason about programs – without the need of executing them – program logics have
been developed. Floyd was the first to introduce the concept of pre- and postconditions
to reason about program logic in such a non-executional way. In 1969, this led Hoare to
come up with a set of rules to reason about programs [15]. These rules, and variations
of these rules, are often called Hoare logic. Static checking, which is one step further
than assertion checking, makes use of this technique. A JML annotated Java program
is compiled and checked for correctness using an automated theorem prover.

In Java the most popular static checking tool is ESC/Java2 which stands for Extended
Static Checking tool for Java [19]. The tool aids in providing the programmer with
feedback about runtime exceptions and violations that are likely to occur.

Loop invariants

Loop invariants are used to guide a static checker or verifier when checking correctness
of a method. Listing 1.15 shows an example of a Java method contains annotated with
JML, that searches for a given int and returns true when the array contains the int.
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1 /∗@ r e q u i r e s a != n u l l ;
2 @ ensures \ r e s u l t ==
3 (\ e x i s t s i n t i ; 0 <= i && i < a . l e n g t h ; a [ i ] == v a l ) ;
4 @∗/
5 public boolean conta in s ( int [ ] a , int va l ) {
6 boolean found = false ;
7 int i = 0 ;
8 /∗@ loop_invar ian t found ==
9 @ (\ e x i s t s i n t j ; 0 <= j && j < i ; a [ j ] == v a l ) ;

10 @ loop_invar ian t 0 <= i && i <= a . l e n g t h ;
11 @ loop_invar ian t a != n u l l ;
12 @∗/
13 while ( i < a . l ength && ! found ) {
14 if ( a [ i ] == val ) found = true ;
15 i ++;
16 }
17 return found ;
18 }

Listing 1.15: Example of JML loop invariants

Loop invariants are predicates that should be preserved by every iteration of the loop.
Loop invariants are needed to abstract from the loop, like method specifications do for
the method body. Tools like ESC/Java2 can find loop invariants automatically when
they are simple, but most of the time the user should specify them as tools are not able
to find them.

1.3.3. Static verification

To actually give guarantees that code is correct, another category of tools is needed,
i.e., verification tools. With enough specifications attached, correctness of a program
could be formally verified, i.e., proven that the source code complies to the formal
specification. A few program verification tools that support JML are KeY [5], JACK
[9] and Jive [29]. However, proving correctness might not always be feasible due to
incomplete tool support. For example Java generics are still poorly covered in almost
any verification tool, while Java already supports generics since 2004 with Java 5. To
cope with this fact, generics are stripped out and wherever possible, specifications are
added to describe restrictions on these types. The specifications discussed later on in this
thesis are verified with the static verifier KeY. KeY is chosen here since it is a standalone
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prover for Java which has some additions to JML to make modular verification easier.
The tool can handle most of Java 1.4. Besides that KeY can cope with additional JML
constructs, KeY is also actively developed. Furthermore, since this thesis is supervised
by one of the developers of the tool, KeY is an obvious choice.

A few constructs that KeY can cope with besides the standard JML covered so far are ex-
plained below: dynamic frames, abstract data types, model fields and an additional form
of purity that is more strict. Prior to that, data groups are explained, which is JML’s de-
fault way of specifying frames over non-static heap locations. Although dynamic frames,
data abstraction and purity are terms not strictly bound to KeY, KeY-specific imple-
mentations are explained below. The extended version of JML that KeY uses is called
JML*.

Data groups

For modular static verification, where individual program parts are checked for correct-
ness, i.e., without considering the program as a whole, demands on specifications as well
as the specification languages are higher than for example for runtime checking. One
important aspect when modular static verification is done, is specifying the memory
frame operated on. Frame is the part of a state operated on when executing a program.

One way to specify framing is by using data groups. Data groups can be used in JML’s
assignable clauses to state which part of the heap is affected by a method. When model
fields are being used in JML for assignable clauses, they are used as data groups [38],
references to a set of memory locations. In JML, model fields can be used to abstractly
represent data which will be evaluated to a value, but at the same time also represent
data groups which will be evaluated to a set of locations. Data group interpretations
for model fields are defined by declaring locations to be part of a data group with the
keyword in. The in annotation must be placed directly after the declaration of the
field to be added. It is called static inclusion when a field of object x becomes part of a
data group for object x. However, when fields of another object become part of a data
group, this is dynamic inclusion, which can be accomplished with the keywords maps
and \into. An example of both, static and dynamic inclusion, is given in Listing 1.16.

1 public interface L i s t {
2 //@ p u b l i c model in s tance JMLDataGroup f o o t p r i n t ;
3 . . .
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4 }
5
6 public class ArrayList implements L i s t {
7 private /∗@ n u l l a b l e @∗/ Object [ ] array = new Object [ 1 0 ] ; //@ in

f o o t p r i n t ;
8 //@ maps array [ ∗ ] \ i n t o f o o t p r i n t ;
9 . . .

10 }

Listing 1.16: Data group example

The ArrayList implementation has a model field footprint used as a data group,
declared in List. ArrayList does a static inclusion for the object array and a dynamic
inclusion for the elements in array. The dynamic inclusion might have been placed at
another place in the code, and does not necessarily have to come after the object from
which fields will be included. The type JMLDataGroup object is part of JML’s model
library. The JML model class library is a result of the goal to stay as close to Java as
possible. Therefore, e.g., mathematical notions or data groups are not introduced in the
language itself as additional primitive types, but come with a library of so-called model
classes. In this library, mathemathical concepts are sneaked in by modelling them as
regular Java classes.

One of the major shortfalls using data groups is that most tool support for static/runtime
checking is minimal. Those tools that do support data groups most of the time only
support static inclusion. Dynamic inclusion is only formalised in Coq [25] at the moment.
Furthermore, semantics of assignable classes differ greatly between different tools [25].

Dynamic frames

Kassios [18] proposes a solution for framing in the presence of data abstraction and
calls it dynamic frames. With data abstraction, internal structure of program data is
hidden by using getter methods and abstract data types, e.g., sequences that represent
the actual data. Using dynamic frames it is possible to specify which set of memory
locations is accessed or changed when executing a method. Furthermore, dynamic frames
state that executing a method on one object does not necessarily change the state of
another object.

In JML* a dynamic frame only represents a set of memory locations. Dynamic frames
are called dynamic in the sense that they can evolve over time and simplify inheritance
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of specifications [42]. An example of a simplification one may get, is when one provides
a footprint for a Collection, which can then be used for implementing classes. For
example, an ArrayList or a LinkedList can now use this footprint to specify by which
locations they are framed. An implementation of an ArrayList will specify this footprint
as its array, all locations in that array – array[*] – and the size of the list, as opposed
to a LinkedList which will have a footprint containing all nodes and the size. Here the
footprint can be specified as size in AbstractCollection, whereupon LinkedList
and ArrayList get a revised specification.

The operations set membership, set union and set intersection are all defined for dynamic
frames. Furthermore Kassios also describes a preservation operation, a modification op-
eration and a swinging pivot requirement. The preservation operator, indicated with Ξf

holds true if no execution changes frame f . ∆f , the modification operator holds true
when the execution only changes frame f . The swinging pivot requirement Λf is satisfied
when frame f did not increase in any other way than allocation of new memory. With
frame f , and m a specification variable – which could be a model field for instance, f

frames m means that when the values in f does not change, then also m does not change.
When f frames itself, it means that when no values in f change, f itself does not change
either. Dynamic frames, as described here, can be seen as a proper implementation of
data groups with sound logical theories.

Using dynamic frames with JML* has the benefit that location sets and model fields
can be decoupled. This way data groups and data groups inclusions are not needed
for specification. Data groups are used in JML to accomplish similar specifications but
have a few shortcomings compared to dynamic frames. One of these shortcomings is
that dynamic inclusions complicate modular reasoning about data groups significantly.
Without using additional measures, it is not possible to determine locally whether a
given location may be part of a given data group, as an applicable dynamic inclusion
might occur in any subclass of the class or interface that declared the model field [42].
Another great advantage of dynamic frames is that it is already supported by KeY,
which makes it possible to statically check programs annotated with dynamic frames.

JML* introduces additional specification operators and a primitive type called \locset.
With \locset a set of memory locations can be specified. Dynamic frames in JML*
are instances of model and ghost fields with type \locset. \singleton(o.f) holds
the singleton set of the (ghost) field f of object o. \subset(s1, s2), \intersect(s1,
s2), \set_minus(s1, s2), \set_union(s1, s2) and \disjoint(s1, s2) can all be
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JML* mathematical meaning
\subset(s1, s2) s1 ⊆ s2

\disjoint(s1, s2) s1 ∩ s2 = ∅
\intersect(s1, s2) s1 ∩ s2
\set_minus(s1, s2) s1 \ s2
\set_union(s1, s2) s1 ∪ s2

Table 1.1.: Mathematical meaning

used in JML* and have the mathematical meaning shown in Table 1.1, where s1 and s2
represent location sets. The expressions \subset(s1, s2) and \disjoint(s1, s2) are
boolean expressions. \intersect(s1, s2), \set_minus(s1, s2) and \set_union(s1,
s2) result in a new set representation.

Below one can find an example that uses dynamic frames for the interface of a Coordinate
and implementation thereof. Afterwards a few additional specification constructs used
in the example will be explained.

1 interface Coordinate {
2 //@ p u b l i c model i n t h ;
3 //@ p u b l i c model i n t v ;
4 //@ p u b l i c model \ l o c s e t f o o t p r i n t ;
5 //@ p u b l i c a c c e s s i b l e h : f o o t p r i n t ;
6 //@ p u b l i c a c c e s s i b l e v : f o o t p r i n t ;
7 //@ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
8
9 //@ a s s i g n a b l e f o o t p r i n t ;

10 //@ ensures h == hor ;
11 //@ ensures v == ver ;
12 //@ ensures \new_elems_fresh ( f o o t p r i n t ) ;
13 void se tCoord inate ( int hor , int ver ) ;
14
15 //@ a c c e s s i b l e f o o t p r i n t ;
16 //@ ensures \ r e s u l t == h ;
17 int /∗@ pure @∗/ getX ( ) ;
18
19 //@ a c c e s s i b l e f o o t p r i n t ;
20 //@ ensures \ r e s u l t == v ;
21 int /∗@ pure @∗/ getY ( ) ;
22 }
23
24 class CoordImpl implements Coordinate {
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25 private int x ; //@ r e p r e s e n t s h = x ;
26 private int y ; //@ r e p r e s e n t s v = y ;
27 //@ r e p r e s e n t s f o o t p r i n t = x , y ;
28
29 //@ ensures \ f r e s h ( f o o t p r i n t ) ;
30 public /∗@ pure @∗/ CoordImpl ( ) { . . }
31
32 . .
33 }

Listing 1.17: Example that makes use of dynamic frames

In Coordinate first some model fields are declared, a frame is created, the model fields
v and h get framed by the footprint and thereafter the footprint gets framed by itself.
Framing in JML* is done with accessible m:f and has the meaning f frames m. The
setCoordinate method indicates the method makes changes to the footprint with the
assignable clause. \new_elems_fresh states that all members of footprint belong to
freshly created objects, or were already part of the footprint, which is the case here as h
and v were already part of the footprint. The construct \new_elems_fresh represents
the swinging pivot requirement. The accessible clause in getX and getY tells that
these methods read from the set of locations within footprint.

The implementation CoordImpl first defines represents clauses for h and v. Next the
footprint gets specified as holding both the locations of x and y. The ensures for the
constructor introduces another operator, \fresh(footprint) which tells locations in
footprint were not allocated before the constructor call.

Assume CoordImpl is a straightforward implementation of Coordinate. A program that
makes use of CoordImpl will benefit from this specification when verified. Consider the
following main method;

1 public static void main ( St r ing [ ] a rgs ) {
2 Coordinate c1 = new CoordImpl ( ) ;
3 Coordinate c2 = new CoordImpl ( ) ;
4 c1 . se tCoord inate (1 , 2) ;
5 c2 . se tCoord inate (4 , 5) ;
6 //@ a s s e r t c1 . getX () == 1;
7 }

Listing 1.18: Example program making use of dynamic frames

When this program is being verified, the verifier can see that c1 and c2 have distinct
footprints. Furthermore, when the method setCoordinate is called on c1 and c2 the
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verifier sees that respectively the footprint of c1 and c2 will be changed and the assertion
c1.getX()==1 passes.

An example where dynamic frames are very useful is for the method retainAll(Collection
c) in the interface Collection (Section 2.1.13). This method removes all the elements
from the collection operated on that are not in c. This means that, if c equals the
collection operated on, it should return the collection before the call, and if that is not
the case elements in c that are not in the collection itself should be removed. Like
the informal behavior, also the formal specifications can distinguish between the case
where c is the collection itself or not – with two normal_behavior specifications. The
distinguishing is done with JML’s requires clause.
// @ r e q u i r e s t h i s == c | | f o o t p r i n t == c . f o o t p r i n t ;

// @ r e q u i r e s \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;

Listing 1.19: Distinguishing requires clauses

Listing 1.19 shows the two different requires clauses. The first requires clause de-
scribes the case where the footprints are the same, hence the collections are equal. The
second clause does the opposite and state that the collections should be disjoint.

Abstact data types

Sequences are an example of abstract data types, which are used to abstract from an
implementation. This is accomplished by specifying the structure of an object as a known
mathematical structure. For example, sequences can be used to capture the structure
of a collection or a hierarchical structure like trees. Sequences, like in mathematics, are
ordered lists of objects and can be used as JML model or ghost fields for KeY.

KeY supports the \seq data type with the operations \seq_empty, \seq_singleton(obj),
\seq_concat(s1, s2), \seq_sub(seq, from, to) , \seq_reverse(s1) and \indexOf(s1,
obj), where s1 and s2 are sequences. Also, seq[x] can be used to return the value of
the object at index x and seq.length to get the length of the sequence. The construct
\seq_empty can be used to indicate an empty sequence. With \seq_singleton(obj)
one can indicate a single object obj as sequence with one element. To concatenate two
sequences \seq_concat(s1, s2) can be used, with two sequences that should be con-
catenated. The construct \seq_sub(seq, from, to) can be used like substring works
on Java String objects, to get only that part of a sequence, where from and to are
included. The construct \seq_reverse(s1) will result in the reversal of a sequence s1.
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1 public final class Tree {
2 int value ;
3 /∗@ n u l l a b l e @∗/ Tree l e f t ;
4 /∗@ n u l l a b l e @∗/ Tree r i g h t ;
5
6 /∗@ i n v a r i a n t l e f t == n u l l <==> r i g h t == n u l l ;
7 @ i n v a r i a n t l e f t != n u l l ==> ( l e f t . \ inv && r i g h t . \ inv ) ;
8 @
9 @ ghos t i n t h e i g h t ;

10 @ i n v a r i a n t h e i g h t >= 0;
11 @ i n v a r i a n t l e f t != n u l l ==>
12 @ h e i g h t > l e f t . h e i g h t && h e i g h t > r i g h t . h e i g h t ;
13 @
14 @ ghos t \ seq va l u e s ;
15 @ i n v a r i a n t va l u e s == \ seq_concat (\ s eq_s ing l e t on ( va lue ) , ( l e f t==n u l l )
16 ? \seq_empty : \ seq_concat ( l e f t . va lues , r i g h t . v a l u e s ) ) ;
17 @∗/
18
19 /∗@ normal_behavior
20 @ ensures (\ f o r a l l i n t z ;
21 \ indexOf ( va lues , z ) != −1; z <= \ r e s u l t ) ;
22 @ ensures \ indexOf ( va lues , \ r e s u l t ) != −1;
23 @ measured_by h e i g h t ;
24 @ s t r i c t l y _ p u r e
25 @∗/
26 int max ( ) {
27 int r e s = value ;
28 if ( l e f t != null ) {
29 r e s = maxHelper ( res , l e f t . max( ) , r i g h t . max( ) ) ;
30 }
31 return r e s ;
32 }
33
34 /∗@ normal_behavior
35 @ ensures \ r e s u l t >= x ;
36 @ ensures \ r e s u l t >= y ;
37 @ ensures \ r e s u l t >= z ;
38 @ ensures \ r e s u l t == x
39 | | \ r e s u l t == y
40 | | \ r e s u l t == z ;
41 @ s t r i c t l y _ p u r e he l p e r
42 @∗/
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43 int maxHelper ( int x , int y , int z ) {
44 if ( x > y )
45 return ( x > z ? x : z ) ;
46 else
47 return ( y > z ? y : z ) ;
48 }
49 . . .
50 }

Listing 1.20: Example usage of sequences

The example class Tree in Listing 1.20 illustrates a scenario where sequences can be used.
The sequence values contains every value of all its subtrees, expressed by the invariant
for values. The postconditions for the method max() expresses that the return value
should be contained within the sequence values, and every value in values should
be less than or equal to the return value of the method. As the method max() makes
recursive calls, there is an additional measured_by clause, which states that every call
to the function, the value height should strictly decrease each time the method is
invoked by itself. Constructors and methods that modify the Tree should contain the
specification operation set to update the representation – values – accordingly.

Besides sequences, KeY has also the option to extend the tool with other constructs.
Rules can be added to the language to also support other mathematical properties. For
instance KeY can be extended to have an understanding of sets or maps. Version 2.0.0 of
KeY actually comes with constructs for sets built in, however, these are not yet officially
part of the constructs that KeY supports. These constructs start with \dl_ and may
not be part of future versions of KeY. The \dl stands for dynamic logic, more about
dynamic logic can be found at Section 3.1.2.

The Tree class above could be easily modified to use the set constructs, however, then
no duplicates elements are allowed. In Table 1.2 the replacements needed in comparison
to using sequences are emphasized.

Sequences are more appropriate when indices are needed, whereas sets might be used
when one demands more abstraction. With sets it is not possible to have duplicates,
whereas with sequences this is no problem.
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sequence representation set representation
ghost \seq values ghost \set values

\seq_singleton(Object) \dl_single(Object)
\seq_empty \dl_emptySet()

\seq_concat(s1, s2) \dl_cup(s1, s2)
\indexOf(s, Object) != -1 \dl_contains(s, Object)

Table 1.2.: Comparison between sequence and set representation

Model methods

Although not completely supported, KeY allows the use of model methods for spec-
ification. Model methods are essentially KeY’s way of declaring and using abstract
predicates. For this thesis it is enough to know that model methods are yet another
specification constructs, that allows for further abstraction. Model methods – like reg-
ular methods – can have arguments but, can only be used for specification and do not
change heap locations. Since model methods are in an experimental state they have not
been used for specification and verification in this thesis.

Purity

Besides the purity modifier in standard JML, KeY introduces additional notations to
specify a different kind of purity. As opposed to the modifier pure in standard JML,
which allows heap modifications by creating fresh objects on the heap and to assign to
these fresh locations, KeY comes with representations for so-called strictly pure methods,
i.e., where methods do not modify the heap at all. In Listing 1.21 three different ways
of specifying strictly purity are given;

1 /∗@ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
2 @∗/
3 int s t r i c t lyPureMethod ( ) { . . . }
4
5 /∗@ s t r i c t l y _ p u r e @∗/ int anotherStr ict lyPureMethod ( ) { . . . }
6
7 /∗@ ensures \dl_heap () == \ o ld (\ dl_heap ) ) ;
8 @∗/
9 in f ina lS t r i c t l yPureMethod ( ) { . . . }

Listing 1.21: Strict purity
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The first method uses the new keyword \strictly_nothing, the second method uses
a newly introduced modifier keyword strictly_pure, and finally, the last specification
is done with an ensures clause which tells that the heap before and after invocation of
the method should be the same. The three specifications are equivalent.

1.4. Discussion

Since unit testing is not enough for all projects, specification languages like JML arose
to be precise about the behavior of a program. These specification languages are used
together with several kind of tools, e.g., runtime checkers, static checkers and verification
tools. Verification tools use data groups, dynamic frames and purity to allow one to
specify the heap locations a program operates on. The downside of data groups is that
they are minimally implemented. KeY uses dynamic frames – which can be seen as a
proper implementation of data groups with sound logical theories – and strict purity
to formally capture change of heap locations. Abstract data types can be used to
make higher-level specifications, e.g., instead of specifying precise behavior, behavior
is captured by an abstract representation. The next part of this thesis will use the
specification constructs described in this chapter to formally specify behavior of parts
of the Java Collections Framework.
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2. Specifications

This chapter describes specifications made for the interfaces Collection, List, Iterator
and ListIterator. Section 2.5 concludes the chapter with findings made during the
elaboration of aforementioned interfaces. Specifications described in this part are based
on earlier findings of Peters’s work [33] and try to improve wherever possible. Therefore,
first Peter’s work was stripped and data abstraction is used to represent the actual collec-
tion, instead of using a query method to get an array representation. Another difference
is the fact that the specifications in this thesis use the annotation of strictly_pure
whenever possible. Since KeY – the tool used for verification later on – does not support
generics, these have been stripped out. Specifications are based on Java 7u6 Build b241

and the documentation located at http://docs.oracle.com/javase/7/docs/api/.

The interfaces Collection, List, Iterator and ListIterator all have a dedicated
section describing their formal specifications. Each section starts with general specifica-
tions that state invariants, constraints and abstract representations of the corresponding
interface. After the general specification, specifications about the methods the interface
contains are described. Each section starts with an informal part describing behavior,
followed by the formal specification using JML* and an explanation where necessary.

The interfaces described in the following chapters are chosen since they are the basic
interfaces for the Java Collections Framework of which selected parts are verified. Figure
2.1a provides the interfaces for the collection classes. The left part of the figure shows
the iterator interfaces, which can be returned by a collection to iterate over the collec-
tion. Figure 2.1b shows the collection classes based on the list part. The specifications
described in this chapter are the latest version, as used for verification in Chapter 3.
The arrows in the figures indicate that an interface extends from another interface.

1Publicly available at http://jdk7.java.net/source.html
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(a) Collection interfaces

(b) List hierarchy

Figure 2.1.: Hierarchy of part of the Java Collections Framework
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2.1. Collection specifications

This section describes the specifications for the interface Collection located at
java.util.Collection. First class-level specifications about Collection will be ex-
plained, afterwhich the remainder of the section will explain the specification of methods
from the Collection interface.

2.1.1. Class-level specifications

From the informal description it can be seen that the Collection interface is the root
interface for the collection hierarchy. A collection represents a group of objects, known
as its elements. Possible restrictions on collection implementations are whether or not it
is allowed to have duplicate elements, null elements and whether or not elements should
be ordered within the collection.

Methods that modify a collection are specified to throw an UnsupportedOperation-
Exception when the collection operated on does not provide support for the given
operation. However, it is not required that they throw an UnsupportedOperation-
Exception if the invocation would have no effect on the collection. Additionally a
NullPointerException or ClassCastException could be thrown whenever there is an
attempt to add an ineligible element to the collection. This is the case when the collection
does not allow null elements and there is an attempt to add null to the collection, or
when there is an attempt to add an object that is not a (sub)type of the type which the
collection contains.

Several formal specifications can be deduced from these informal specifications, which
are provided in Listing 2.1 and are described in the remainder of this section.

1 //@ p u b l i c in s tance model boo lean addSupported ;
2 //@ p u b l i c a c c e s s i b l e addSupported : \ noth ing ;
3 //@ p u b l i c in s tance model boo lean removeSupported ;
4 //@ p u b l i c a c c e s s i b l e removeSupported : \ noth ing ;
5 //@ p u b l i c in s tance model boo lean c l earSuppor t ed ;
6 //@ p u b l i c a c c e s s i b l e c l earSuppor t ed : \ noth ing ;
7
8 /∗@ p u b l i c model in s tance \ l o c s e t f o o t p r i n t ;
9 @ p u b l i c a c c e s s i b l e \ inv : f o o t p r i n t ;

10 @ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
11 @
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12 @ p u b l i c model in s tance boo lean suppor tNul lE lements ;
13 @ p u b l i c model in s tance boo lean suppor tDup l i ca t e s ;
14 @ p u b l i c model in s tance boo lean elementsHaveOrder ;
15 @ p u b l i c a c c e s s i b l e suppor tNul lE lements : \ noth ing ;
16 @ p u b l i c a c c e s s i b l e suppor tDup l i ca t e s : \ noth ing ;
17 @ p u b l i c a c c e s s i b l e elementsHaveOrder : \ noth ing ;
18 @
19 @ p u b l i c n u l l a b l e ghos t in s tance \ seq repr ;
20 @
21 @ p u b l i c model in s tance i n t seqLength ;
22 @ p u b l i c a c c e s s i b l e seqLength : f o o t p r i n t ;
23 @ p u b l i c in s tance i n v a r i a n t seqLength >= 0;
24 @ p u b l i c in s tance i n v a r i a n t seqLength == repr . l e n g t h ;
25 @
26 @ p u b l i c model in s tance boo lean sor t ed ;
27 @ p u b l i c a c c e s s i b l e so r t ed : f o o t p r i n t ;
28 @ p u b l i c r e p r e s e n t s so r t ed = true ;
29 @ p u b l i c in s tance i n v a r i a n t elementsHaveOrder ==> sor t ed ;
30 @
31 @ p u b l i c model in s tance boo lean noNul lElements ;
32 @ p u b l i c a c c e s s i b l e noNul lElements : f o o t p r i n t ;
33 @ p u b l i c r e p r e s e n t s noNul lElements =
34 (\ f o r a l l i n t i ; 0 <= i && i < seqLength ; repr [ i ] != n u l l ) ;
35 @ p u b l i c in s tance i n v a r i a n t
36 ! suppor tNul lE lements ==> noNul lElements ;
37 @
38 @ p u b l i c in s tance i n v a r i a n t ! suppor tDup l i ca t e s ==> (
39 \ f o r a l l i n t i ; 0 <= i && i < s i z e ( ) ;
40 \ indexOf (\ seq_concat (\ seq_sub ( repr , 0 , i ) ,
41 \ seq_sub ( repr , i +1, s i z e ( ) ) ) , repr [ i ] ) == −1) ;
42 @∗/

Listing 2.1: Class-level specifications for the interface Collection

The model field footprint defines a dynamic frame. The boolean model fields are not
framed, footprint and \inv – which is a model field that represents all invariants –
are framed by footprint. Several boolean properties are specified about Collection.
A model field seq is used to represent the collection and seqLength indicates the size
of the collection. A boolean flag sorted can be used to represent whether all elements
are ordered, normally this would be done by specifying the ordering over elements in the
collection with the method compareTo for comparable objects, however, as explained
later on page 76 and on page 77 compareTo cannot be used as restrictions were needed
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on objects. The invariant about supportNullElements states that it should not be
the case that there exists a null value in the collection when null elements are not
supported. The last invariant states that it should not be the case that there exists a
second object equal to one of the other elements from the collection. This is defined as
taking all elements in front and after the element checked for, combining them, and then
check if the result still contains the element left out.

The model fields addSupported, removeSupported and clearSupported are there to
be able to specify exceptional behavior in case an UnsupportedOperationException
should be thrown. This is the same as Peters did in [33].

Alternative specification for supportDuplicates

Another way of specifying what should hold when duplicates are not allowed, is checking
the number of times an element is contained within the collection, which should be equal
to one, in case duplicates are not allowed. Listing 2.2 shows this alternative specification.
The choice whether the alternative should be used at the end depends on which of the
specifications makes verification easier. Both specifications need a little inspection in
order to completely understand what they do.

@ i n v a r i a n t ! supportDupl i cate s ==> (\ f o r a l l int i ;
0 <= i && i < s i z e ( ) ; (\sum int j ; 0 <= j && j < seqLength ;
( repr [ i ] == repr [ j ] && i != j ) ? 1 : 0) == 1) ;

Listing 2.2: Alternative invariant for supportDuplicates

2.1.2. method size

The method size only needs a small amount of specification. The size of a collection
is specified as the length of the sequence, which abstractly represents the collection. As
no changes are made to the collection the method is specified pure. The state of the
colection only depends on footprint, hence a corresponding accessible clause. Listing
2.3 shows the specification of the method size.

1 /∗@ p u b l i c normal_behavior
2 @ a c c e s s i b l e f o o t p r i n t ;
3 @ ensures \ r e s u l t == seqLength ;
4 @∗/
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5 /∗@ pure @∗/ int s i z e ( ) ;

Listing 2.3: Specification of the method size

2.1.3. method isEmpty

The method isEmpty also has a simple specification, i.e., when the size of the collection
is 0 the collection is empty. Furthermore, the method also only accesses footprint and
it can be specified pure. Listing 2.4 shows the specification of the method isEmpty.

1 /∗@ p u b l i c normal_behavior
2 @ a c c e s s i b l e f o o t p r i n t ;
3 @ ensures \ r e s u l t == ( s i z e ( ) == 0) ;
4 @∗/
5 /∗@ pure @∗/ boolean isEmpty ( ) ;

Listing 2.4: Specification of the method isEmpty

2.1.4. method contains(Object o)

The method contains is less trivial. The method should return true if and only
if the collection contains at least one element e such that (o==null ? e==null :
o.equals(e)). When the method throws a ClassCastException – the type of the
specified element is incompatible with the collection – or a NullPointerException -
when the specified element is null and the collection does not permit null elements.

From the informal specifications, the specification in Listing 2.5 is deduced.
1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) ;
3 @ ensures \ r e s u l t == (\ e x i s t s i n t i ; 0 <= i
4 && i < seqLength ; repr [ i ] == o) ;
5 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
6 @ a l s o
7 @ p u b l i c excep t i ona l_behav io r
8 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) ;
9 @ r e q u i r e s ! suppor tNul lE lements && o == n u l l ;

10 @ s i g n a l s ( Nu l lPo in terExcep t ion )
11 ! suppor tNul lE lements && o == n u l l ;
12 @ signa l s_on ly Nu l lPo in terExcep t ion ;
13 @ a s s i g n a b l e \ noth ing ;
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14 @∗/
15 boolean conta in s ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.5: Specification of the method contains(Object o)

The method contains returns true whenever there exists an element o in the col-
lection. A ClassCastException or NullPointerException might be thrown by an
implementing class, however, as explained later (on page 76) ClassCastExceptions are
not considered for now. Furthermore, as these exceptions are optional, a design choice
might be to not trigger a NullPointerException when null elements are not allowed,
but instead just return false.

2.1.5. method iterator

The method iterator returns an Iterator over the elements in the collection. The
informal specification only states that there are no guarantees concerning the order in
which the elements are returned, unless the collection is an instance of some class that
does provide a guarantee. Therefore specifications are kept to a minimum and only state
that the method is pure, only depends on footprint and a number of properties about
the iterator should be set. Explanations about the different properties can be found in
Section 2.3, where specifications about Iterator are explained. The specifications for
the method iterator can be found in Listing 2.6.

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ r e s u l t . p o s i t i o n == −1;
3 @ ensures \ r e s u l t . c o l l e c t i o n == t h i s ;
4 @ ensures \ r e s u l t . \ inv ;
5 @ ensures \ f r e s h (\ r e s u l t ) ;
6 @ a s s i g n a b l e \ noth ing ;
7 @∗/
8 I t e r a t o r i t e r a t o r ( ) ;

Listing 2.6: Specification of the method iterator

2.1.6. method toArray

From the informal specification attached to the API the method toArray the following
specifications are derived. The method should return an array containing all the elements
in the collection. When the collection makes any guarantees about ordering, the returned
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array should adhere to this ordering. Furthermore the returned array will be a freshly
allocated array, any changes made to the array will not result in changes to the collection.

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ t y p e o f (\ r e s u l t ) == \ type ( java . lang . Object [ ] ) ;
3 @ ensures \ r e s u l t != n u l l ;
4 @ ensures \ r e s u l t . l e n g t h == s i z e ( ) ;
5 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < seqLength ;
6 \ r e s u l t [ i ] == repr [ i ] ) ;
7 @ ensures \ f r e s h (\ r e s u l t ) ;
8 @∗/
9 /∗@ pure n u l l a b l e @∗/ Object [ ] toArray ( ) ;

Listing 2.7: Specification of the method toArray

Listing 2.7 shows the specification for the method toArray. The method toArray is
pure and should return a newly created array. The length of the resulting array should
be equal to the size of the collection and all elements should be part of the result. Since
no verification is performed on methods with ordering, this is also not considered here.
When ordering will be introduced later the specification should somehow differentiate
on ordered collections and collections that are not ordered.

2.1.7. method toArray(Object[] a)

The method toArray(Object[] a) is very similar as the method toArray described
above. In particular the calls to toArray(new Object[0]) and toArray() are identical.
toArray(Object[] a), like toArray, returns an array containing all of the elements
in the collection. Furthermore, the runtime type of the returned array is that of a
(the object given as argument). When the collection fits in a, it is returned therein.
Otherwise, a new array is allocated with the runtime type of a with the size of the
collection. When the collection fits a, but a has more elements than the collection, the
first element following the end of the collection will be set to null. Ordering guarantees
should be handled in the same fashion as the method toArray. The method throws an
ArrayStoreException - if the runtime of a is not a supertype of the runtime type of
every element in the collection - or a NullPointerException when a is null.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( a ) == \ type ( java . lang . Object [ ] ) ;
3 @ r e q u i r e s a . l e n g t h >= seqLength ;
4 @ r e q u i r e s a != n u l l ;
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5 @ ensures (\ f o r a l l i n t j ; 0 <= j && j < seqLength ;
6 \ r e s u l t [ j ] == repr [ j ] ) ;
7 @ ensures (a . l e n g t h > seqLength ) ==> a [ seqLength ] == n u l l ;
8 @ ensures \ r e s u l t == a ;
9 @ a s s i g n a b l e a [0 . . seqLength ] ;

10 @ a l s o
11 @ p u b l i c normal_behavior
12 @ r e q u i r e s \ t y p e o f ( a ) == \ type ( java . lang . Object [ ] ) ;
13 @ r e q u i r e s a . l e n g t h < seqLength ;
14 @ r e q u i r e s a != n u l l ;
15 @ ensures (\ f o r a l l i n t j ; 0 <= j && j < seqLength ;
16 \ r e s u l t [ j ] == repr [ j ] ) ;
17 @ ensures \ f r e s h (\ r e s u l t ) && \ r e s u l t . l e n g t h == seqLength ;
18 @ ensures \ t y p e o f (\ r e s u l t ) == \ type ( java . lang . Object [ ] ) ;
19 @ a s s i g n a b l e \ noth ing ;
20 @ a l s o
21 @ p u b l i c excep t i ona l_behav io r
22 @ r e q u i r e s a == n u l l ;
23 @ s i g n a l s ( Nu l lPo in terExcep t ion ) a == n u l l ;
24 @ signa l s_on ly Nu l lPo in terExcep t ion ;
25 @ a s s i g n a b l e \ noth ing ;
26 @∗/
27 /∗@ n u l l a b l e @∗/ Object [ ] toArray ( /∗@ n u l l a b l e @∗/ Object [ ] a ) ;

Listing 2.8: Specification of the method toArray(Object[] a)

The formal specification can be found in Listing 2.8. The normal behavior requires that
the array is not null. The method is allowed to change every element in a. When the
length of a is greater than or equal to seqLength – which represents the size of the
collection – a is used as result of the method call. If a is larger than seqLength the
additional null element is set. If a was too small to fit the collection, a freshly allocated
array with length seqLength is used for the result.

The exceptional behavior specifies when a NullPointerException should be thrown.
No changes to the heap should be made in case of an exception. Again, as described
later (on page 76) there are limitations on what to express about objects, and therefore,
ArrayStoreExceptions are not regarded for this method.
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2.1.8. method add(Object o)

The method add(Object o) is an optional operation, if implemented, it ensures the
collection contains o afterwards. The method returns true if the collection changed as
a result of a call to add(Object o). When a collection does not support duplicates and
o is already a member of the collection the method returns false. Implementations
that support the operation may place limitations on what elements may be added to the
collection. If a collection refuses to add a particular element for any reason other than
that it already contains the element, it must throw an exception rather than returning
false. If this was not the case, the invariant that a collection always contains the
specified element after add(Object o) returns becomes invalid.

The method specifies five possible exceptions. When the add(Object o) operation is
not supported an UnsupportedOperationException should be thrown. If the class of o
prevents it from being added to the collection a ClassCastException should be thrown.
A NullPointerException should be thrown when the collection does not allow null
elements and o is null. An IllegalArgumentException or IllegalStateException
should be thrown when some property prevents o to be added to the collection, or when
o cannot be added because of insertion restrictions at this time, respectively.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) && o .\ inv ;
3 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
4 @ r e q u i r e s ! suppor tDup l i ca t e s ==> ! conta ins (o ) ;
5 @ ensures seqLength == \ o ld ( seqLength ) + 1;
6 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < seqLength −1;
7 repr [ i ] == \ o ld ( repr [ i ] ) ) ;
8 @ ensures repr [ seqLength −1] == o ;
9 @ ensures \ r e s u l t ;

10 @ a s s i g n a b l e f o o t p r i n t ;
11 @ a l s o
12 @ p u b l i c normal_behavior
13 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) && o .\ inv ;
14 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
15 @ r e q u i r e s ! suppor tDup l i ca t e s && conta ins (o ) ;
16 @ ensures ! \ r e s u l t ;
17 @ a s s i g n a b l e \ noth ing ;
18 @ a l s o
19 @ p u b l i c excep t i ona l_behav io r
20 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) ;
21 @ r e q u i r e s ( ! suppor tNul lE lements && o == n u l l ) | | ! addSupported ;
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22 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements && o == n u l l ;
23 @ s i g n a l s ( UnsupportedOperationExcept ion ) ! addSupported ;
24 @ signa l s_on ly Nul lPointerExcept ion , UnsupportedOperationException ,
25 ClassCastExcept ion , I l l ega lArgumentExcept ion ,

I l l e g a l S t a t e E x c e p t i o n ;
26 @ a s s i g n a b l e f o o t p r i n t ;
27 @∗/
28 boolean add ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.9: Specification of the method add

Listing 2.9 gives a formal specification. The specification for the normal behavior should
meet the requirements of o not being null – when null elements are not supported –
and there should not be an element equal to o present in the collection when duplicates
are not supported. The field footprint must be assignable as o needs to be added.
The field seqLength should be incremented, the elements before the call should still
be part of the collection after the call, and additionally o should also be a member of
the collection afterwards. When the above requirements are met, it is still possible that
the method throws an exception due to unknown implementation details. This is the
case for UnsupportedOperationException, IllegalArgumentException and Illegal-
StateException.

When a NullPointerException is being thrown by this method it should be the case
that null elements were not allowed and o equals null, and a ClassCastException is
being thrown if o does not fit the collection – which is the case when o has a different
type the collection expects, as stated earlier this is left out for now.

When the collection does not support duplicates and o is already contained within the
collection this will likely result in an IllegalArgumentException, however, the API
documentation leaves this open for interpretation.

2.1.9. method remove(Object o)

When implemented, the optional method remove(Object o) removes a single instance
of the specified element from the collection if it is present. The method returns true if the
collection is changed by the operation. The method can throw two optional exceptions,
ClassCastException and NullPointerException. A ClassCastException should be
thrown when o is incompatible with the collection and a NullPointerException when
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o is null and the collection does not allow null elements. When the remove operation
is not supported an UnsupportedOperationException should be thrown.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
3 @ r e q u i r e s conta ins (o ) ;
4 @ ensures repr == \ seq_concat (
5 \ seq_sub (\ o ld ( repr ) , 0 , \ indexOf (\ o ld ( repr ) , o ) ) ,
6 \ seq_sub (\ o ld ( repr ) , \ indexOf (\ o ld ( repr ) , o ) , \ o ld ( seqLength ) )
7 ) ;
8 @ ensures seqLength == \ o ld ( seqLength ) − 1 ;
9 @ a s s i g n a b l e f o o t p r i n t ;

10 @ a l s o
11 @ p u b l i c normal_behavior
12 @ r e q u i r e s ! con ta ins (o ) ;
13 @ ensures ! \ r e s u l t ;
14 @ a s s i g n a b l e \ noth ing ;
15 @ a l s o
16 @ p u b l i c excep t i ona l_behav io r
17 @ r e q u i r e s ( ! suppor tNul lE lements && o == n u l l ) | | ! removeSupported ;
18 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements && o == n u l l ;
19 @ s i g n a l s ( UnsupportedOperat ionExcept ion ) ! removeSupported ==> true ;
20 @ signa l s_on ly Nul lPointerExcept ion , UnsupportedOperat ionException ;
21 @ a s s i g n a b l e \ noth ing ;
22 @∗/
23 boolean remove ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.10: Specification of the method remove(Object o)

Listing 2.10 gives the formal specification. The first normal behavior specifies that when
the requirements of not having a null element when null elements are not supported is
met, and there exists an element o in the collection, this will result in a collection with
one element less and a return value true. The new representation of the collection, is a
sequence that exists of the part before and the part after the removed element (which
might both have a length of zero).

An additional specification for normal behavior is specified, which requires that the same
condition is met as before, but this time o should not be a member of the collection. The
return value should be false in this case and no changes should be made to memory.

The method might throw a NullPointerException or UnsupportedOperationException.
A NullPointerException might be thrown when null elements are not allowed and o
equals null, however, this might also result in that the method returns false.
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2.1.10. method containsAll(Collection c)

The method containsAll(Collection c) returns true if the collection contains all
of the elements specified in c. Two optional exceptions might be thrown, ClassCast-
Exception and NullPointerException. As before these should be thrown when either
one (or more) of the types of the elements in c is incompatible, or when c contains one or
more null elements and the collection does not allow null elements. Additionally the
NullPointerException should be thrown when c itself is null, which is not optional.
This nails down to the formal specification in Listing 2.11.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s c != n u l l ;
3 @ r e q u i r e s c .\ inv && \ s u b s e t ( f o o t p r i n t , c . f o o t p r i n t ) &&
4 \ s u b s e t ( c . f o o t p r i n t , f o o t p r i n t ) ;
5 @ ensures \ r e s u l t == true ;
6 @ a c c e s s i b l e f o o t p r i n t , c . f o o t p r i n t ;
7 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
8 @ a l s o
9 @ p u b l i c normal_behavior

10 @ r e q u i r e s c != n u l l ;
11 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;
12 @ r e q u i r e s ! suppor tNul lE lements ==> c . noNul lElements ;
13 @ ensures \ r e s u l t <==> (\ f o r a l l i n t i ; 0 <= i && i < c . seqLength ;
14 (\ e x i s t s i n t j ; 0 <= j && j < seqLength ;
15 ( Object ) repr [ j ] == ( Object ) c . repr [ i ] ) ) ;
16 @ a c c e s s i b l e f o o t p r i n t , c . f o o t p r i n t ;
17 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
18 @ a l s o
19 @ p u b l i c excep t i ona l_behav io r
20 @ s i g n a l s ( Nu l lPo in terExcep t ion ) c == n u l l | |
21 c != n u l l && ( ! suppor tNul lE lements ==> ! c . noNul lElements ) ;
22 @ a s s i g n a b l e \ noth ing ;
23 @∗/
24 boolean con ta i n sA l l ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;

Listing 2.11: Specification of the method cointainsAll(Collection c)

The normal behavior is split into two parts, the first behavior specifies when c is the
collection itself, and the second specification defines behavior when c and the collection
are disjoint. The exception UnsupportedOperationException might be thrown.
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Alternative specification

The ensures part in the first normal behavior specification could also be formulated
making use of the method contains(Object o). This is depicted in Listing 2.12.
@ ensure s \ r e s u l t == (\ f o r a l l int i ; 0 <= i && i < c . seqLength ;

conta in s ( ( Object ) c . r epr [ i ] ) ) ;

Listing 2.12: Alternative specification using contains

Using this alternative makes an inner exists like in Listing 2.11 unnecessary, which
might increase understandability.

2.1.11. method addAll(Collection c)

The method addAll(Collection c) is also an optional operation and adds all of the
elements in c to the collection. The behavior of this operation is undefined when the
collection is modified while the operation is in progress, which implies that adding c
to the collection where c is the collections itself gives undefined behavior. When the
collection changed as a result of the call it returns true. The method could throw
an UnsupportedOperationException, ClassCastException, NullPointerException,
IllegalArgumentException or an IllegalStateException. The ClassCastException
should be thrown when the class of an element of c prevents it from being added to the
collection. A NullPointerException should be thrown when either one of the elements
of c is null and null elements are not allowed by the collection, or c is null itself.
The IllegalArgumentException and IllegalStateException should be thrown when
some property of an element of c prevents it from being added to the collection, or if one
or more of the elements of c could not be added at this time due to insertion restrictions,
respectively.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;
3 @ r e q u i r e s c != n u l l ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> c . noNul lElements ;
5 @ r e q u i r e s addSupported ;
6 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < \ o ld ( seqLength ) ;
7 repr [ i ] == \ o ld ( repr [ i ] ) ) ;
8 @ ensures suppor tDup l i ca t e s ==> (\ f o r a l l i n t j ;
9 \ o ld ( seqLength ) < j && j < \ o ld ( seqLength ) + c . seqLength ;

10 repr [ j ] == c . repr [ j − \ o ld ( seqLength ) ] ) ;
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11 @ ensures seqLength == \ o ld ( seqLength ) + c . seqLength ;
12 @ ensures seqLength > \ o ld ( seqLength ) <==> \ r e s u l t ;
13 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
14 @ a s s i g n a b l e f o o t p r i n t ;
15 @ a l s o
16 @ p u b l i c excep t i ona l_behav io r
17 @ r e q u i r e s ( ! suppor tNul lE lements && ! c . noNul lElements ) | | !

addSupported ;
18 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ( ! suppor tNul lE lements && ! c .

noNul lElements ) ;
19 @ s i g n a l s ( UnsupportedOperationExcept ion ) ! addSupported ;
20 @ signa l s_on ly UnsupportedOperationException , ClassCastExcept ion ,
21 I l l ega lArgumentExcept ion , I l l e g a l S t a t e E x c e p t i o n ,

Nu l lPo in terExcep t ion ;
22 @ a s s i g n a b l e \ noth ing ;
23 @∗/
24 boolean addAll ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;

Listing 2.13: Specification of the method addAll(Collection c)

Listing 2.13 gives a formal specification. The normal behavior up to the ensures part is
identical to what is specified in Section 2.1.10 for the method containsAll(Collection
c). The ensures part first states that every element in the old representation of the
collection should still be in the collection after the operation is performed. Next, it states
that also the elements from c should be in the updated collection, and the method should
return true if and only if the representation after the operation is larger than that is
was before the operation. Freshly allocated memory is used if the collection is updated.
Under certain circumstances specific exceptions might be thrown by implementations of
Collection.

The exceptional behavior consists of a NullPointerException that if being thrown, it
should be case that either c is null, or one or more of c’s elements are null. Addition-
ally, a UnsupportedOperationException, IllegalArgumentException or Illegal-
StateExcption might be thrown, which have no additional formal constraints at this
point.

2.1.12. method removeAll(Collection c)

removeAll(Collection c), an optional operation, removes all of the elements in the
collection that are also contained in c. No elements that are in c will be in the collection
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after the method returns. The method will return true if the collection has changed
by the operation. An UnsupportedOperationException, ClassCastException and
NullPointerException might be thrown by the method, whereby the second is op-
tional. The NullPointerException might optionally be thrown when one of the ele-
ments of c is null, but should be thrown when c itself is null.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;
3 @ r e q u i r e s c != n u l l ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> c . noNul lElements ;
5 @ ensures \ r e s u l t <==> \ o ld ( seqLength ) > seqLength ;
6 @ a s s i g n a b l e f o o t p r i n t ;
7 @ a l s o
8 @ p u b l i c normal_behavior
9 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;

10 @ r e q u i r e s c != n u l l && ! suppor tNul lE lements && ! c . noNul lElements ;
11 @ ensures \ r e s u l t == f a l s e ;
12 @ a c c e s s i b l e f o o t p r i n t , c . f o o t p r i n t ;
13 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
14 @ a l s o
15 @ p u b l i c excep t i ona l_behav io r
16 @ r e q u i r e s ( c == n u l l ) | | ! addSupported | |
17 ( ! suppor tNul lE lements && ! c . noNul lElements ) ;
18 @ s i g n a l s ( Nu l lPo in terExcep t ion ) c == n u l l | |
19 ( ! suppor tNul lE lements && ! c . noNul lElements ) ;
20 @ s i g n a l s ( UnsupportedOperat ionExcept ion ) ! removeSupported ;
21 @ signa l s_on ly UnsupportedOperationException ,
22 ClassCastExcept ion , Nu l lPo in terExcep t ion ;
23 @ a s s i g n a b l e \ noth ing ;
24 @∗/
25 boolean removeAll ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;
26 boolean removeAll ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;

Listing 2.14: Specification of the method removeAll(Collection c)

For the first normal behavior, the ensures part states that there should not be an element
in the collection anymore that is also in c. The second ensures states that the method
should return true if and only if the collection has shrunk because of the operation.

Several exceptions might be thrown. A NullPointerException might be thrown when
one of the elements in c is null or c itself is null. The UnsupportedOperation-
Exception is not further specified.
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Alternative specification

For this method it is also possible to specify what is contained in the collection - after
the method returns - by specifying it using the method contains(Object o). This can
be done as shown in Listing 2.15;
@ ensure s (\ f o r a l l int i ; 0 <= i && i < c . seqLength ;

! conta in s ( ( Object ) c . r epr [ i ] ) ) ;

Listing 2.15: Alternative specification using Contains(Object o)

When the specification is done this way, providing a proof might be easier since the proof
obligation is a little shorter, and KeY may use the method contract of contains(Object o).

2.1.13. method retainAll(Collection c)

The method retainAll(Collection c) is again an optional operation, and therefore
might throw an UnsupportedOperationException when not implemented. Calling the
method will result in removing every element from the collection that is not contained
within c. If the method returns true the collection was modified by the operation.
The method might throw an UnsupportedOperationException, ClassCastException
or NullPointerException. Again, the ClassCastException is optional and the Null-
PointerException might optionally be thrown when one of the elements of c is null,
but should be thrown when c itself is null. When c equals the current collection, the
method should return false and all elements should remain the same.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;
3 @ r e q u i r e s c != n u l l ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> c . noNul lElements ;
5 @ ensures seqLength == (\sum i n t i ; 0 <= i && i < \ o ld ( seqLength ) ;
6 (\ e x i s t s i n t j ; 0 <= j && j < c . seqLength ;
7 ( Object ) c . repr [ j ] == \ o ld ( ( Object ) repr [ i ] ) ) ? 1 : 0) ;
8 @ ensures \ r e s u l t <==> seqLength < \ o ld ( seqLength ) ;
9 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < seqLength ;

10 c . con ta ins ( ( Object ) repr [ i ] ) ) ;
11 @ a s s i g n a b l e f o o t p r i n t ;
12 @ a l s o
13 @ p u b l i c normal_behavior
14 @ r e q u i r e s c .\ inv && \ s u b s e t ( f o o t p r i n t , c . f o o t p r i n t )
15 && \ s u b s e t ( c . f o o t p r i n t , f o o t p r i n t ) ;
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16 @ ensures \ r e s u l t == f a l s e ;
17 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
18 @ a l s o
19 @ p u b l i c excep t i ona l_behav io r
20 @ s i g n a l s ( ClassCastExcept ion ) t rue ;
21 @ s i g n a l s ( Nu l lPo in terExcep t ion ) c == n u l l | |
22 ( ! suppor tNul lE lements && ! c . noNul lElements ) ;
23 @ s i g n a l s ( UnsupportedOperat ionExcept ion ) ! removeSupported ==> true ;
24 @ signa l s_on ly UnsupportedOperationException ,
25 ClassCastExcept ion , Nu l lPo in terExcep t ion ;
26 @ a s s i g n a b l e \ noth ing ;
27 @∗/
28 boolean r e t a i n A l l ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;

Listing 2.16: Specification of the method retainAll(Collection c)

The less obvious ensures clauses for the normal behavior seen in Listing 2.16 should be
seen as follows; every element in c - which is also a member of the collection - is counted
to get the new value for seqLength. The next ensures clause specifies that for every
element in the collection after the operation it must hold, that the element is also part
of c.

When c equals the collection, i.e., footprints of both c and the collection are a subset of
each otherthe method should return false, the collection being unmodified.

2.1.14. method clear

The method clear is also an optional operation, it may throw an UnsupportedOperation-
Exception when not implemented. A call to clear results in the collection being empty.

1 /∗@ p u b l i c normal_behavior
2 @ ensures seqLength == 0;
3 @ ensures repr == \seq_empty ;
4 @ a s s i g n a b l e f o o t p r i n t ;
5 @ a l s o
6 @ p u b l i c excep t i ona l_behav io r
7 @ r e q u i r e s ! c l earSuppor t ed ;
8 @ s i g n a l s ( UnsupportedOperat ionExcept ion )
9 ! c l earSuppor t ed ==> true ;

10 @ signa l s_on ly UnsupportedOperationExcept ion ;
11 @ a s s i g n a b l e \ noth ing ;
12 @∗/
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13 void c l e a r ( ) ;

Listing 2.17: Specification of the method clear

As can be seen in Listing 2.17, the only post-condition the method has, is that seqLength
will be equal to 0 afterwards.

2.1.15. Discussion

The representation of a collection is specified as a sequence. However, using a represen-
tation of a set would make the specification higher-level. The choice of using a sequence
for data abstraction here has the following reason; subtyping a collection with a rep-
resentation of a set would mean that also a list should be represented by a sequence,
or otherwise, additional specifications should be added for the subclasses in a way that
both representation for a set aswell as a sequence would be correct. To overcome the
burden of having multiple specifications for representations, sequences are chosen as they
seem to be usable for all kind of collections, i.e., they allow duplicates, null values, and
ordering – although not considered – can be simulated by adding and removing from
the representation the right way.

2.2. List specifications

This section describes the specifications for the interface List located at java.util.List.
First the class-level specifications about List will be explained, afterwhich the specifi-
cation of methods from the List interface will be explained. The specifications in this
section for the methods in List, only consist of the methods that were not yet specified
in the interface Collection, or were specified but has additional stipulations put on
them by the List interface.

2.2.1. Class-level specifications

From the informal description it can be seen that the List interface is an extension
on the root interface Collection. A list is an ordered Collection, which means that
a programmer has precise control over where in a list an element should be inserted
or removed. Lists typically allow duplicates and multiple null elements. The informal
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description of the interface List places a note on the acceptance of having lists that have
themselves as an element - which is allowed - as the methods equals and hashCode are
no longer well defined on such lists. The only additional specification at the interface
level is specified in the listing below.

1 //@ p u b l i c in s tance model boo lean se tSuppor ted ;
2 //@ p u b l i c a c c e s s i b l e se tSuppor ted : \ noth ing ;
3
4 /∗@ p u b l i c r e p r e s e n t s suppor tNul lE lements = true ;
5 @ p u b l i c r e p r e s e n t s suppor tDup l i ca t e s = true ;
6 @ p u b l i c r e p r e s e n t s elementsHaveOrder = f a l s e ;
7 // @ p u b l i c model n u l l a b l e in s tance L i s t pa r en tL i s t ;
8 // @ p u b l i c model in s tance i n t s t a r t I n d e x ;
9 // @ p u b l i c r e p r e s e n t s pa r en tL i s t = n u l l ;

10 @∗/

Listing 2.18: Class-level specifications

Besides previous supported boolean model fields, the List interface introduces set-
Supported. In case sublists are used several additional specifications are needed, e.g.,
model fields for a startIndex and a parentList. At the moment they are not supported
by the specifications, and no verifications have been performed using subLists for this
study. In case they would be implemented, every method gets additional specifications
in case there is a parentList or not, i.e., if parentList is null or not. Default values
for supportNullElements, supportDuplicates and elementsHaveOrder are set here
as well.

2.2.2. method add(Object o)

The add(Object o) in List gives the additional specification that o should be placed at
the end of the List when added. See section 2.1.8 for the specifications of add(Object
o) as specified by Collection. Since already at the collection level seq is built up this
way, no additional specifications are needed here.

2.2.3. method remove(Object o)

The method remove(Object o) is also already specified for Collection (Section 2.1.9)
and has some additional specification details for List. That is, when o is removed from
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a list it should be the first occurrence found in that list. The additional specification
needed can be found in Listing 2.19.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
3 @ ensures con ta ins (o ) ==>
4 (\ r e s u l t && seqLength == \ o ld ( seqLength )−1
5 && repr == \ seq_concat (
6 \ seq_sub (\ o ld ( repr ) , 0 , indexOf (o ) ) ,
7 \ seq_sub (\ o ld ( repr ) , indexOf (o )+1, \ o ld ( seqLength ) )
8 )
9 ) ;

10 @ ensures ! con ta ins (o ) ==>
11 ( ! \ r e s u l t && seqLength == \ o ld ( seqLength )
12 && repr == \ o ld ( repr ) ) ;
13 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
14 @ a s s i g n a b l e f o o t p r i n t ;
15 @∗/
16 boolean remove ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.19: Specification of the method remove(Object o)

2.2.4. method addAll(int index, Collection c)

The method addAll(int index, Collection c) places additional postconditions on
the method addAll(Collection c). Namely, this time the elements in c should be
inserted starting at index of list, whereby old locations starting at index should be
shifted to the right. As the method is not specified before it should contain the full
specification, therefore also the NullPointerException and the additional IndexOut-
OfBoundException are considered.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s index >= 0 && index <= seqLength ;
3 @ r e q u i r e s c .\ inv && \ d i s j o i n t ( f o o t p r i n t , c . f o o t p r i n t ) ;
4 @ r e q u i r e s c != n u l l ;
5 @ r e q u i r e s ! suppor tNul lE lements ==> c . noNul lElements ;
6 @ r e q u i r e s addSupported ;
7 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < index ;
8 repr [ i ] == \ o ld ( repr [ i ] ) ) ;
9 @ ensures suppor tDup l i ca t e s ==> (\ f o r a l l i n t j ;

10 0 <= j && j < c . seqLength ; repr [ index + j ] == c . repr [ j ] ) ;
11 @ ensures suppor tDup l i ca t e s ==> (\ f o r a l l i n t k ;

53



2. Specifications

12 c . seqLength + index <= k && k < seqLength ;
13 repr [ k ] == \ o ld ( repr [ k − index ] ) ) ;
14 @ ensures seqLength == \ o ld ( seqLength ) + c . seqLength ;
15 @ ensures seqLength > \ o ld ( seqLength ) <==> \ r e s u l t ;
16 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
17 @ a s s i g n a b l e f o o t p r i n t ;
18 @ a l s o
19 @ p u b l i c excep t i ona l_behav io r
20 @ r e q u i r e s ( ! suppor tNul lE lements && ! c . noNul lElements ) | | !

addSupported ;
21 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ( ! suppor tNul lE lements && ! c .

noNul lElements ) ;
22 @ s i g n a l s ( UnsupportedOperat ionExcept ion ) ! addSupported ;
23 @ signa l s_on ly UnsupportedOperationException , ClassCastExcept ion ,
24 I l l ega lArgumentExcept ion , IndexOutOfBoundsException ;
25 @ a s s i g n a b l e \ noth ing ;
26 @∗/
27 boolean addAll ( int index , /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) ;

Listing 2.20: Specification of the method addAll(int index, Collection c)

Listing 2.20 provides a specification. In case index lays outside the bounds of the list, an
exceptional behavior has been specified for the conditions that should hold when either
an IndexOutOfBoundsException or NullPointerException should be thrown.

2.2.5. method get(int index)

The method get(int index) returns the element located at index of the list. When
index lays outside the bounds of the list an IndexOutOfBoundsException should be
thrown. The Listing below specifies this behavior.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s index >= 0 && index < seqLength ;
3 @ ensures \ r e s u l t == repr [ index ] ;
4 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
5 @ a l s o
6 @ p u b l i c excep t i ona l_behav io r
7 @ r e q u i r e s index < 0 | | index >= seqLength ;
8 @ s i g n a l s ( IndexOutOfBoundsException ) t rue ;
9 @ a s s i g n a b l e \ noth ing ;

10 @∗/
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11 /∗@ n u l l a b l e @∗/ Object get ( int index ) ;

Listing 2.21: Specification of the method get(int index)

2.2.6. method set(int index, Object element)

The method set(int index, Object element) is an optional operation. When im-
plemented it should replace the element specified at position index with element, and
return the element located at index before the operation was performed. Possible ex-
ceptions for this method are UnsupportedOperationException, ClassCastException,
NullPointerException, IllegalArgumentException and IndexOutOfBoundsException.
The ClassCastException should be thrown when the class of element prevents it from
being added to the list. IllegalArgumentException should be thrown when some
property of element prevents it from being added to the list. UnsupportedOperation-
Exception, NullPointerException and IndexOutOfBoundsException should be thrown
when the method is not implemented, element is null and the list prohibits null ele-
ments being added, or index lays not within the bounds of the list, respectively. Listing
2.22 specifies this behavior.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( e lement ) == \ type ( Object ) ;
3 @ r e q u i r e s index >= 0 && index < seqLength ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> ( element != n u l l ) ;
5 @ ensures repr [ index ] == element ;
6 @ ensures \ r e s u l t == \ o ld ( repr [ index ] ) ;
7 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
8 @ a s s i g n a b l e f o o t p r i n t ;
9 @ a l s o

10 @ p u b l i c excep t i ona l_behav io r
11 @ r e q u i r e s index < 0 | | index >= seqLength | |
12 ( ! suppor tNul lE lements && element == n u l l ) | | ! s e tSuppor ted ;
13 @ s i g n a l s ( IndexOutOfBoundsException ) index < 0
14 | | index >= seqLength ;
15 @ s i g n a l s ( Nu l lPo in terExcep t ion )
16 ! suppor tNul lE lements ==> element == n u l l ;
17 @ s i g n a l s ( UnsupportedOperationExcept ion ) ! se tSuppor ted ==> true ;
18 @ signa l s_on ly UnsupportedOperationException , ClassCastExcept ion ,
19 I l l ega lArgumentExcept ion , IndexOutOfBoundsException ,
20 Nul lPo in terExcep t ion ;
21 @ a s s i g n a b l e \ noth ing ;
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22 @∗/
23 /∗@ n u l l a b l e @∗/ Object s e t ( int index , /∗@ n u l l a b l e @∗/ Object element ) ;

Listing 2.22: Specification of the method set(int index, Object element)

The normal behavior specifies, when index is within bounds of the list and element
is not null when null elements are not allowed, the element at index should become
element, fresh memory is allocated, and the method returns the element at index
before the operation. One of the following exceptions might be thrown; Unsupported-
OperationException, ClassCastException, IllegalArgumentException, IndexOut-
OfBoundsException or NullPointerException. Only IndexOutOfBoundsException
and NullPointerException have strict rules on when they should be thrown.

Alternative specification

Lines five and six of the above listing could alternatively be specified with get(index)
instead of repr[index].

2.2.7. method add(int index, Object element)

The method add(int index, Object element) is again an optional operation. The
method inserts element at location index when implemented. All – if any – elements
starting from index shift one location to the right. The same exceptions apply to this
method as with the method set(int index, Object element) specified in Section
2.22, and are therefore not repeated here. Listing 2.23 gives a formal specification.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( e lement ) == \ type ( java . lang . Object ) ;
3 @ r e q u i r e s index >= 0 && index <= seqLength ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> ( element != n u l l ) ;
5 @ r e q u i r e s ! suppor tDup l i ca t e s ==> ! conta ins ( e lement ) ;
6 @ ensures seqLength == \ o ld ( seqLength ) + 1;
7 @ ensures repr == \ seq_concat (
8 \ seq_concat (
9 \ seq_sub (\ o ld ( repr ) , 0 , index ) ,

10 \ seq_s ing l e t on ( element )
11 ) ,
12 \ seq_sub (\ o ld ( repr ) , index , \ o ld ( seqLength ) )
13 ) ;
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14 @ a s s i g n a b l e f o o t p r i n t ;
15 @ a l s o
16 @ p u b l i c excep t i ona l_behav io r
17 @ r e q u i r e s \ t y p e o f ( e lement ) == \ type ( java . lang . Object ) ;
18 @ s i g n a l s ( IndexOutOfBoundsException ) index < 0 | | index > seqLength ;
19 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements && element ==

n u l l ;
20 @ s i g n a l s ( UnsupportedOperationExcept ion ) ! addSupported ;
21 @ signa l s_on ly UnsupportedOperationException ,
22 ClassCastExcept ion , I l l ega lArgumentExcept ion ,
23 IndexOutOfBoundsException , Nu l lPo in terExcep t ion ;
24 @ a s s i g n a b l e \ noth ing ;
25 @∗/
26 void add ( int index , /∗@ n u l l a b l e @∗/ Object element ) ;

Listing 2.23: Specification of the method add(int index, Object element)

2.2.8. method remove(int index)

The method remove(int index) removes the element at index of the list, when imple-
mented. Any element located after index, shifts one element to the left. The method
returns the element located at index before the operation was performed. Two excep-
tional cases exist, triggered when either the method is not implemented, or when the
given index is out of bounds of the list, which should throw either an Unsupported-
OperationException or IndexOutOfBoundsException.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s index >= 0 && index < seqLength ;
3 @ ensures repr == \ seq_concat (
4 \ seq_sub (\ o ld ( repr ) , 0 , index ) ,
5 \ seq_sub (\ o ld ( repr ) , index +1, \ o ld ( seqLength ) )
6 ) ;
7 @ ensures seqLength == \ o ld ( seqLength )−1;
8 @ ensures \ r e s u l t == \ o ld ( g e t ( index ) ) ;
9 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;

10 @ a s s i g n a b l e f o o t p r i n t ;
11 @ a l s o
12 @ p u b l i c excep t i ona l_behav io r
13 @ r e q u i r e s index < 0 | | index > seqLength | | ! removeSupported ;
14 @ s i g n a l s ( IndexOutOfBoundsException ) index < 0 | | index > seqLength ;
15 @ s i g n a l s ( UnsupportedOperationExcept ion ) ! removeSupported ==> true ;
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16 @ signa l s_on ly UnsupportedOperationException ,
IndexOutOfBoundsException ;

17 @ a s s i g n a b l e f o o t p r i n t ;
18 @∗/
19 /∗@ n u l l a b l e @∗/ Object remove ( int index ) ;

Listing 2.24: Specification of the method remove(int index)

Listing 2.24 shows a formal specification. When the requirements are met, the post-
conditions of the normal behavior specify that old elements before index should still be
there after the operation is performed, the indexes after index should contain the ele-
ments previously located an index higher, the total length of the list should be decreased
by one, the result is the element previously located at index and modifications should
be done with freshly allocated memory.

The exceptional behavior specifies that an IndexOutOfBoundsException should be
thrown when the index lays outside the bounds of the list.

2.2.9. method indexOf(Object o)

The method indexOf(Object o) returns the index of the first occurrence of o in the list,
and returns -1 if o does not occur in the list. A NullPointerExcepion might optionally
be thrown if o is null, and the list does not allow null elements.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( Object ) ;
3 @ ensures (\ f o r a l l i n t k ; 0 <= k && k < seqLength ; repr [ k ] != o)
4 ==> \ r e s u l t == −1;
5 @ ensures (\ e x i s t s i n t k ; 0 <= k && k < seqLength ; repr [ k ] == o)
6 ==> (\ r e s u l t >= 0 && \ r e s u l t < seqLength && repr [\ r e s u l t ] == o) ;
7 @ ensures ! ( \ e x i s t s i n t k ; 0 <= k && k < \ r e s u l t ; repr [ k ] == o) ;
8 @ a s s i g n a b l e \ noth ing ;
9 @ p u b l i c excep t i ona l_behav io r

10 @ r e q u i r e s ! suppor tNul lE lements && o == n u l l ;
11 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements && o == n u l l ;
12 @ signa l s_on ly Nu l lPo in terExcep t ion ;
13 @ a s s i g n a b l e \ noth ing ;
14 @∗/
15 int indexOf ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.25: Specification of the method indexOf(Object o)
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2.2.10. method lastIndexOf(Object o)

The method lastIndexOf(Object o) is very similar to the method specified in the
previous section. The only difference is that this method returns the last index instead
of the first index where o occurs in the list. A formal specification can be found below.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
3 @ ensures (\ f o r a l l i n t k ; 0 <= k && k < seqLength ; repr [ k ] != o)
4 ==> \ r e s u l t == −1;
5 @ ensures (\ e x i s t s i n t k ; 0 <= k && k < seqLength ; repr [ k ] == o)
6 ==> (\ r e s u l t >= 0 && \ r e s u l t < seqLength && repr [\ r e s u l t ] == o) ;
7 @ ensures ! ( \ e x i s t s i n t k ; \ r e s u l t < k && k < seqLength ; repr [ k ] == o)

;
8 @ a s s i g n a b l e \ noth ing ;
9 @ a l s o

10 @ p u b l i c excep t i ona l_behav io r
11 @ r e q u i r e s ! suppor tNul lE lements && o == n u l l ;
12 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements && o == n u l l ;
13 @ signa l s_on ly Nu l lPo in terExcep t ion ;
14 @ a s s i g n a b l e \ noth ing ;
15 @∗/
16 int l a s t IndexOf ( /∗@ n u l l a b l e @∗/ Object o ) ;

Listing 2.26: Specification of the method lastIndexOf(Object o)

Alternative specification

The ensures part could also be specified like depicted in Listing 2.27.

@ ensure s \ r e s u l t == (\max int i ; 0 <= i && i < seqLength ;
( ( Object ) repr [ i ] == o ) ? i : −1) ;

Listing 2.27: Alternative specification for \result

However, as explained later, this was not allowed by KeY at this point (see page 84).

2.2.11. method listIterator

The method listIterator returns a ListIterator over the elements in the list. Spec-
ifications are kept to a minimum and only state that the method is pure, footprint
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needs to be accessible and a number of properties about the iterator should be set.
Explanations about the different properties can be found in Section 2.4, where specifica-
tions of ListIterator are explained. The specifications for the method iterator can
be found in Listing 2.28 below.

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ r e s u l t . c o l l e c t i o n == t h i s ;
3 @ ensures \ r e s u l t . p o s i t i o n == −1;
4 @ ensures \ f r e s h (\ r e s u l t ) ;
5 @∗/
6 /∗@ pure @∗/ L i s t I t e r a t o r l i s t I t e r a t o r ( ) ;

Listing 2.28: Specification of the method listIterator

2.2.12. method listIterator(int index)

listIterator(int index) also returns a ListIterator over the elements in the list,
this time starting at index. The method should throw an exception when index is
not within bounds of the list. A formal specification can be found below. Explana-
tions about the different properties can be found in Section 2.4, where specifications, of
ListIterator are explained.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s index >= 0 && index < seqLength ;
3 @ ensures \ r e s u l t . c o l l e c t i o n == t h i s ;
4 @ ensures \ r e s u l t . p o s i t i o n == index −1;
5 @ ensures \ f r e s h (\ r e s u l t ) ;
6 @ a l s o
7 @ p u b l i c excep t i ona l_behav io r
8 @ r e q u i r e s index < 0 | | index >= seqLength ;
9 @ s i g n a l s ( IndexOutOfBoundsException ) index < 0 | | index >= seqLength ;

10 @ signa l s_on ly IndexOutOfBoundsException ;
11 @∗/
12 /∗@ pure @∗/ L i s t I t e r a t o r l i s t I t e r a t o r ( int index ) ;

Listing 2.29: Specification of the method listIterator(int index)
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2.3. Iterator specifications

At java.util.Iterator the interface Iterator can be found, for which specifications
in JML* are described in this section. First class-level specifications about Iterator
wil be explained, then the specification of methods from the Iterator interface will be
explained. The discussion at the end of this section describes an alternative approach
to specify behavior of Iterator found in literature.

2.3.1. Class-level specifications

An iterator is used to iterate over a collection. Besides iterating, iterators allow the caller
to remove elements from underlying collection during the iteration. However, removing
elements is only allowed when either the iterator has just been constructed, or a call to
next() has been performed and no subsequent calls to remove() have been performed.

Several formal specifications can be deduced from these informal specifications, which
are provided in Listing 2.30 and are described in the remainder of this section.

1 //@ p u b l i c model in s tance \ l o c s e t f o o t p r i n t ;
2 //@ p u b l i c a c c e s s i b l e \ inv : f o o t p r i n t ;
3 //@ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
4
5 /// @ p u b l i c ghos t in s tance Object curren tOb jec t ;
6 /// @ p u b l i c in s tance i n v a r i a n t curren tOb jec t . e qua l s (
7 /// ( Object ) c o l l e c t i o n . repr [ p o s i t i o n ] ) ;
8
9 //@ p u b l i c in s tance i n v a r i a n t c o l l e c t i o n != n u l l && c o l l e c t i o n .\ inv ;

10 //@ p u b l i c in s tance i n v a r i a n t p o s i t i o n >= −1 && p o s i t i o n <= seqLength ;
11
12 /∗@ p u b l i c model in s tance boo lean al lowChange ;
13 @ p u b l i c model in s tance i n t p o s i t i o n ;
14 @ p u b l i c model in s tance boo lean modi f icat ionOkay ;
15 @ p u b l i c ghos t in s tance C o l l e c t i o n c o l l e c t i o n ;
16 @ p u b l i c a c c e s s i b l e al lowChange : f o o t p r i n t ;
17 @ p u b l i c a c c e s s i b l e p o s i t i o n : f o o t p r i n t ;
18 @ p u b l i c model in s tance i n t seqLength ;
19 @ p u b l i c a c c e s s i b l e seqLength : f o o t p r i n t ;
20 @∗/

Listing 2.30: Class-level specifications for the interface Iterator
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The first few lines define a dynamic frame with the name footprint. The ghost instance
currentObject – as a comment here – is used to hold the current element the iterator has
and is used to cover requirements for the method remove(), however, this ghost instance
was not possible to use as the equals methods could not be used as intended (see Section
3.1.3). The model field modificationOkay was introduced, represents whether in the
current state of the object it is allowed to remove or add an object.

The ghost instances allowRemove and position are used to allow to specify whether
or not it is allowed to remove an element, and at what position the iterator is at,
respectively. The model instance collection is used to represent the underlying col-
lection. Next, framing conditions are specified, and an additional model instance int
seqLength is added to directly represent the size of collection.

2.3.2. method hasNext()

The method hasNext() returns true if the underlying collection has more elements. As
shown below, this method only needs a few lines of specifications.

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ r e s u l t <==> p o s i t i o n < seqLength −1;
3 @∗/
4 /∗@ s t r i c t l y _ p u r e @∗/ boolean hasNext ( ) ;

Listing 2.31: Specification of the method hasNext()

2.3.3. method next()

This method returns the next element in the iteration if the iterator has a next element,
and throws an NoSuchElementException if there is no next element. Listing 2.32 gives
a formal specification.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s modi f icat ionOkay ;
3 @ r e q u i r e s p o s i t i o n < seqLength − 1 ;
4 @ ensures p o s i t i o n == \ o ld ( p o s i t i o n ) + 1;
5 @ ensures al lowChange == true ;
6 @ ensures \ r e s u l t == c o l l e c t i o n . repr [ p o s i t i o n ] ;
7 @ a s s i g n a b l e f o o t p r i n t ;
8 @ a l s o
9 @ p u b l i c excep t i ona l_behav io r
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10 @ r e q u i r e s p o s i t i o n >= seqLength − 1 | | ! modi f icat ionOkay ;
11 @ s i g n a l s ( NoSuchElementException nsee ) p o s i t i o n >= seqLength − 1 ;
12 @ s i g n a l s ( ConcurrentModi f ica t ionExcept ion ) ! modi f icat ionOkay ;
13 @ signa l s_on ly NoSuchElementException , ConcurrentModi f ica t ionExcept ion

;
14 @ a s s i g n a b l e \ noth ing ;
15 @∗/
16 /∗@ n u l l a b l e @∗/ Object next ( ) ;

Listing 2.32: Specification of the method next()

Based on the current position of the iterator, it could be seen whether the method should
return an actual object, or there is no next element. When this method is called – and
returns an Object – the remove() method may be called next, that is why allowRemove
is ensured to be true afterwards. A NoSuchElementException should be thrown when
position of the iterator is greater than or equal to the size of the collection the iterator
is iterating over.

2.3.4. method remove()

If implemented, the method remove() removes from the underlying collection the last
element returned by the iterator. It is not allowed to call this method more than once
after a call to next(). The API documentation states that behavior of an iterator is
unspecified if the underlying collection is modified while the iteration is in progress in
any other way other than by calling this method, i.e., by directly modifying the collection
or another iterator. A formal specification can be found in Listing 2.33.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s p o s i t i o n >= 0 && p o s i t i o n < seqLength ;
3 @ r e q u i r e s al lowChange && modi f icat ionOkay ;
4 @ ensures seqLength == \ o ld ( seqLength ) − 1 ;
5 @ ensures c o l l e c t i o n . repr == \ seq_concat (
6 \ seq_sub ( c o l l e c t i o n . repr , 0 , p o s i t i o n − 1) ,
7 \ seq_sub ( c o l l e c t i o n . repr , p o s i t i o n + 1 , \ o ld ( c o l l e c t i o n .

seqLength ) − 1)
8 ) ;
9 @ ensures al lowChange == f a l s e ;

10 @ a s s i g n a b l e f o o t p r i n t ;
11 @ a l s o
12 @ p u b l i c excep t i ona l_behav io r
13 @ r e q u i r e s ! al lowChange ;
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14 @ s i g n a l s ( I l l e g a l S t a t e E x c e p t i o n ) ! al lowChange ;
15 @ signa l s_on ly I l l e g a l S t a t e E x c e p t i o n , UnsupportedOperationExcept ion ;
16 @ a s s i g n a b l e \ noth ing ;
17 @∗/
18 void remove ( ) ;

Listing 2.33: Specification of the method remove()

Clearly, the method should throw an IllegalStateException when a call to remove()
is done when not allowed. When allowed the method should remove the element at
position of the iterator.

2.3.5. Discussion

Cok describes specifying Java iterators with JML in [19], based on Java 1.5. His solution
addresses the additional requirement that only behavior of single access by an iterator is
defined by introducing specifications for the time methods were being called. A model
method isValid() checks whether no modifications were done after the iterator has
been created, and returns true if that is the case. Model fields lastModifiedTime
and iteratorTime are used to specify the time a collection was modified and when
an iterator was created, respectively. For this to work, every method that structurally
changes a collection should have additional specifications that state an update of the
field lastModifiedTime. Construction of a new iterator should also update the last-
ModifiedTime field, this way already existing iterators get a result of false for a call
to isValid() and therefore behavior is unspecified.

Using this approach would require a lot of additional specifications, as every method
that makes structural changes to the collection should update the lastModifiedTime,
add a model method isValid() and an additional field iteratorTime would be needed.
Therefore, the approach taken here makes use of a single ghost instance that reflects the
Object at position after a call to next. Furthermore, the method remove() has only
specified behavior when the ghost field equals the current object at position.

2.4. ListIterator specifications

This section describes the specifications for the interface ListIterator located at
java.util.ListIterator.
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2.4.1. method hasPrevious()

The method hasPrevious() has very similar behavior as the method hasNext(). There
is only a previous element if position is greater than 0. Listing 2.34 gives a formal
specification.

1 /∗@ p u b l i c normal_behavior
2 @ ensures ( p o s i t i o n > 0) <==> \ r e s u l t ;
3 @∗/
4 /∗@ s t r i c t l y _ p u r e @∗/ boolean hasPrevious ( ) ;

Listing 2.34: Specification of the method hasPrevious()

2.4.2. method previous()

Like hasPrevious() is the opposite of hasNext(), previous() is the opposite of next().
The method returns the previous element in the list the iterator operates on, and moves
the cursor position backwards. When there is no previous element – and this method is
called – a NoSuchElementException should be thrown.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s p o s i t i o n > 0;
3 @ ensures \ r e s u l t == c o l l e c t i o n . repr [ p o s i t i o n ] ;
4 @ ensures p o s i t i o n == \ o ld ( p o s i t i o n ) − 1 ;
5 @ ensures al lowChange == true ;
6 @ a s s i g n a b l e f o o t p r i n t ;
7 @ a l s o
8 @ p u b l i c excep t i ona l_behav io r
9 @ r e q u i r e s p o s i t i o n <= 0;

10 @ s i g n a l s ( NoSuchElementException ) p o s i t i o n <= 0;
11 @ a s s i g n a b l e \ noth ing ;
12 @∗/
13 /∗@ n u l l a b l e @∗/ Object prev ious ( ) ;

Listing 2.35: Specification of the method previous()

Listing 2.35 specifies formal behavior of the method previous(). Normal behavior
states that the result should hold the value of the representation for list at position
of the pre-state, position is decremented and allowRemove is true afterwards.
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2.4.3. method nextIndex()

The method nextIndex() is new for the ListIterator and returns the index of the
element that would be returned by a subsequent call to next(). When the iterator is
at the end of the list, this method will return the size of the list. Listing 2.36 specifies
formal behavior for nextIndex().

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ r e s u l t == (( p o s i t i o n + 1 <= seqLength )
3 ? p o s i t i o n + 1 : seqLength ) ;
4 @∗/
5 /∗@ s t r i c t l y _ p u r e @∗/ int nextIndex ( ) ;

Listing 2.36: Specification of the method nextIndex()

The method nextIndex() has only normal behavior which is specified with seqLength
that represents the size of list. If the new value of position will be less than or
equal to the size of list, that value will be returned, otherwise, the size of list will be
returned.

2.4.4. method previousIndex()

The method previousIndex() returns the element that would be returned by a subse-
quent call to previous(). The method returns -1 if the list iterator is at the beginning
of the list. Formal behavior is specified in Listing 2.37.

1 /∗@ p u b l i c normal_behavior
2 @ ensures \ r e s u l t == p o s i t i o n ;
3 @∗/
4 /∗@ s t r i c t l y _ p u r e @∗/ int prev ious Index ( ) ;

Listing 2.37: Specification of the method previousIndex()

The normal behavior specified is similar to that of nextIndex().

2.4.5. method set(Object e)

The method set(Object e) replaces the last element returned by next() or previous()
with e. The operation is optional and throws an UnsupportedOperationException if
the method is not implemented. Normal behavior is only possible if neither a call

66



2.4. ListIterator specifications

to remove() nor add(Object e) have been made after the last call to next() or
previous(). The method throws a ClassCastException if the class of e prevents
it from being added to this list. A IllegalArgumentException or IllegalState-
Exception is thrown if some propery of e prevents it from being added to this list, or
if a call to set(Object e) was not allowed at this time, respectively. Listing 2.38 gives
a formal specification.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( e ) == \ type ( java . lang . Object ) ;
3 @ r e q u i r e s al lowChange ;
4 @ ensures al lowChange == f a l s e ;
5 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < p o s i t i o n ;
6 \ o ld ( c o l l e c t i o n . repr [ i ] ) == c o l l e c t i o n . repr [ i ] ) ;
7 @ ensures c o l l e c t i o n . repr [ p o s i t i o n ] == e ;
8 @ ensures (\ f o r a l l i n t i ; p o s i t i o n < i && i < seqLength ;
9 \ o ld ( c o l l e c t i o n . repr [ i ] ) == c o l l e c t i o n . repr [ i ] ) ;

10 @ ensures \new_elems_fresh ( c o l l e c t i o n . f o o t p r i n t ) ;
11 @ a s s i g n a b l e c o l l e c t i o n . f o o t p r i n t ;
12 @ a l s o
13 @ p u b l i c excep t i ona l_behav io r
14 @ r e q u i r e s \ t y p e o f ( e ) == \ type ( java . lang . Object ) ;
15 @ r e q u i r e s ! al lowChange ;
16 @ s i g n a l s ( I l l e g a l S t a t e E x c e p t i o n ) ! al lowChange ;
17 @ signa l s_on ly UnsupportedOperationException ,
18 ClassCastExcept ion , I l l ega lArgumentExcept ion ,
19 I l l e g a l S t a t e E x c e p t i o n ;
20 @ a s s i g n a b l e \ noth ing ;
21 @∗/
22 void s e t ( /∗@ n u l l a b l e @∗/ Object e ) ;

Listing 2.38: Specification of the method set(Object e)

When allowRemove is true, the normal behavior states that this value should be falsified
afterwards, old elements of the list at other positions than position should remain the
same, and currentObject as well as the representation of list at position should
have been updated.

If a IllegalStateException is being thrown, it should be the case that allowRemove
was false when set(Object e) was called.
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2.4.6. method add(Object e)

If implemented, the method add(Object e) inserts e in the list the iterator operates on.
e is inserted immediately before the element that would be returned by next(), if any,
and after the element that would be returned by previous(), if any. A call to method
add(Object e) will increase the values returned by nextIndex() or previousIndex()
by one. Besides an UnsupportedOperationException being thrown when the method
is not implemented, a ClassCastException or IllegalArgumentException might also
be thrown by this method. A ClassCastException will be thrown in case the class of
e prevents it from being added to the list, and an IllegalArgumentException will be
thrown if some property of e prevents it from being added to the list. Listing 2.39 gives
a formal specification.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( e ) == \ type ( java . lang . Object ) ;
3 @ r e q u i r e s c o l l e c t i o n . addSupported ;
4 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < p o s i t i o n ;
5 \ o ld ( c o l l e c t i o n . repr [ i ] ) == c o l l e c t i o n . repr [ i ] ) ;
6 @ ensures c o l l e c t i o n . repr [ p o s i t i o n ] == e ;
7 @ ensures (\ f o r a l l i n t i ; p o s i t i o n < i && i < seqLength ;
8 \ o ld ( c o l l e c t i o n . repr [ i ] ) == c o l l e c t i o n . repr [ i +1]) ;
9 @ ensures p o s i t i o n == \ o ld ( p o s i t i o n ) + 1;

10 @ ensures \new_elems_fresh ( c o l l e c t i o n . f o o t p r i n t ) ;
11 @ a s s i g n a b l e c o l l e c t i o n . f o o t p r i n t ;
12 @ a l s o
13 @ p u b l i c excep t i ona l_behav io r
14 @ r e q u i r e s \ t y p e o f ( e ) == \ type ( java . lang . Object ) ;
15 @ r e q u i r e s ! modi f icat ionOkay | | ! c o l l e c t i o n . addSupported ;
16 @ s i g n a l s ( ConcurrentModi f ica t ionExcept ion ) ! modi f icat ionOkay ;
17 @ s i g n a l s ( UnsupportedOperat ionExcept ion )
18 ! c o l l e c t i o n . addSupported ;
19 @ signa l s_on ly UnsupportedOperationException ,
20 ConcurrentModi f icat ionExcept ion , ClassCastExcept ion ,
21 I l l ega lArgumentExcept ion , IndexOutOfBoundsException ;
22 @ a s s i g n a b l e \ noth ing ;
23 @∗/
24 void add ( /∗@ n u l l a b l e @∗/ Object e ) ;

Listing 2.39: Specification of the method add(Object e)

Normal specifications state that allowRemove should be true to be applicable. After
the method returns, allowRemove should be false, old elements before position in the
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representation of list should be the same afterwards, the element added should be at the
position of position before the method was called, and all elements following the newly
inserted element should still be in the representation of list, but with incremented
position.

2.5. Findings

Loading the specifications this chapter into KeY gives no problems. Note that loading the
four interfaces above does give problems when not also loading the mentioned Exception
classes in the exceptional behaviors. One needs to provide dummy implementations for
these Exception classes to let KeY pass loading, i.e., these classes should be in the same
directory as the four interfaces.

Several methods described in previous sections have alternative ways of specifying them
(see 2.1.1, 2.1.10, 2.1.12 and 2.2.10). Most of the time this boils down to describing
methods with already formalized methods, e.g., using contains(Object) to describe
the behavior of containsAll(Collection c).

Often it is also possible to interchange ghost fields – an extension of state, model fields
– an abstraction of state – and model methods – an extension to model fields – with
each other [11]. Strictly taken it would not be fine to use ghost fields here, as the spec-
ifications are about interfaces, and ghost fields use JML set operations within method
bodies to update state. Which means ghost fields would be conceptually wrong. How-
ever, this is not a problem for static checking, and would only result in failure using a
runtime checker. The intended use of a model field is as a means to hold an abstract
representation of the state of an object; in a concrete class each model field would be
provided a representation. Model fields are fine to use within an interface, but also
need a concrete representation if used for runtime checking. Finally, model methods
are an alternate way of providing the functionality of a model field. Model methods
can be either directly given an implementation at the interface level, or later on at the
implementing classes of the interfaces. Unfortunately, model methods are not yet part
of KeY’s core functionality and therefore left out for now.

At several locations in the specifications model fields for ordering and duplication of
elements are used, first at the class-level specification and later on at methods that
structurally modify a collection. However, the specifications of these fields are not
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always complete. This is on purpose, and could be expanded whenever collection im-
plementations that actually need information about ordering or duplication need to be
verified.
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This chapter describes the verification of the specifications described in the previous
chapter. Since interfaces themselves cannot be proved correct statically, verification is
performed on the implementing (abstract) classes. Since only selected parts of the Java
Collections Framework are verified, it can only be stated that these parts of the specified
interfaces can be considered correct.

Before diving into the sample verifications in Section 3.2, a little background of KeY,
how to use the KeY tool, and some limitations encountered during the verification will
be discussed in Section 3.1.

3.1. KeY

KeY is a standalone prover and can statically verify JML*-annotated Java in a modular
way, supporting a large part of Java 1.4. This chapter explains how KeY was used for
modular static verification of Java for this project, explains the basic mechanisms of
the tool, and discusses limitations encountered during verification. Furthermore, the
approach taken for verification is explained in Section 3.1.4 on page 79.

3.1.1. Usage of KeY

When one starts KeY, the first thing to do is to load the JML*-annotated Java code.
When no syntactic and semantic problems with the specifications are found, a contract
for the behavior of a method, or dependency condition (see dynamic frames on page 22)
can be chosen for verification. The proof obligation for normal or exceptional behav-
ior of a method contains the chosen method, a pre- and postcondition, a modification
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clause and a termination clause. A framing condition contains a precondition and a
dependency clause. Once the proof obligation is loaded, the clauses from the obligations
are transformed into first-order predicate logic with executional code fragments (also see
Section 3.1.2 on the facing page), and one can either interactively prove the obligations
by hand or let KeY try to prove the obligations automatically. Proving these obligations
automatically is sometimes also possible using Satisfiability Modulo Theories (SMT)
solvers. SMT solvers are able to reason over first-order theories and provide a verdict
whether some first-order logic formula is valid, false – providing a counter example – or
unknown [3]. However, most of the time one is more likely to prove obligations with
KeY itself since the SMT solvers can only reason about a subset of what KeY itself can
reason about, which was recommended by the KeY developers. KeY, however, does not
provide counter examples, now it can utilise counter examples from SMT solvers.

KeY for this project

For the verification of selected parts of the Java Collections Framework – constantly –
the latest nightly build of KeY was used, which is the current development version of
KeY. Using the latest build gives benefits as well as drawbacks, e.g., new features will
get introduced here first and bugs fixed sooner, but at the same time every iteration
may introduce new bugs. Furthermore, semantics of features might slightly change
or features can get removed over time. For example, a change in semantics is the
specification construct \seq_sub(sequence, lower, upper), which selects part of a
sequence (also see abstract data types on page 26) and now behaves the same as the
method subList, i.e., the lower bounds is included, but the upper bound is excluded,
whereas before the upper bound was included as well. Note that the method subList
was not yet considered for this thesis. The operation \dl_array2seq which transformed
an array to a sequence was – although still present in an example that comes with KeY–
unfortunately is not part of the latest builds anymore.

Running a local copy of KeY as opposed to running KeY from its webpage1 makes it easier
to spot a bug in the tool itself, since the command line from which KeY gets invoked
displays the exceptions that KeY throws. This way, when an exception is thrown, the
source code could be slightly modified and compiled again to gain more insight in what
KeY has a problem with. Information on running KeY can be found on the same section

1http://www.key-project.org/download/
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of the KeY website where additionally information on supported features can be found,
and especially feature differences between the latest releases.

3.1.2. Basic mechanism of KeY

Loading JML*-annotated Java source into KeY results in a transformation from anno-
tated source to proof obligations. These proof obligations consists of formulas whose
logical validity corresponds with the correctness of the Java source code with respect
to the specification. The logic used for that is called dynamic logic, an extension of
first-order predicate logic, that uses modal operators which contain executable program
fragments of some programming language [42]. In case of KeY the programming lan-
guage is a large subset of Java 1.4, hence the logic is called Java Dynamic Logic or
JavaDL. A feature of KeY is that it can transform JavaDL – with state updates – to
formulas in first-order predicate logic with symbolic execution. Which means that the
problem gets reduced to proving the logical validity of this logic with built-in theories,
either by KeY itself or SMT solvers as explained in the previous section.

Modal logic introduces modal operators to propositional logic, namely box � and dia-
mond ♦ [7]. When doing model checking, e.g., using Linear Temporal Logic (LTL), �p

means for all future states the proposition p should hold, and ♦q that at some future
state q should hold [1]. In dynamic logic, as used by KeY, their usage is a little different.
The box and diamond operators are still present, only this time they surround the body
of a method that needs to be proved, i.e., [b] p and 〈b〉 q where p and q stand for one
or more properties and b for the body of some method in Java. Since sequential Java
programs are deterministic it means either that b terminates or not, hence there is one
or no final state. For the box expression this means that either b does not terminate and
nothing has to hold for this specific expression, or b does terminate and p should hold,
often indicated as partial correctness. For the diamond expression it should additionally
hold that b terminates, often indicated with total correctness.

Dynamic logic is a generalisation of Hoare logic [15]. The formula p =⇒ [b] q, where
p and q are first-order formulas, has the same meaning as the Hoare triple {p}b{q}. If
b is executed and terminates, and p holds in the pre-state, q should hold in the post-
state. In contrast to Hoare logic, dynamic logic is closed under logical operators, i.e.,
including the modal operators [b] and 〈b〉 [42]. That dynamic logic is closed under
logical operators means that statements in dynamic logic can be combined in bigger
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formulas with arbitrary propositional operators or quantifiers, and even into nestings of
formulas [34].

3.1.3. Encountered limitations

Several limitations have been encountered during verification, some of which are also
mentioned on the KeY website, i.e., the limitations on set statements (same page)
and the \old expression (on page 75). In the subsections below these limitations are
addressed, explained how they were dealed with in this project and what this means for
verification and specification.

set statements

The set statement in JML makes it possible to update the state of ghost fields. In
KeY when used in a method body, set may not be the last statement of a code block,
since otherwise KeY will ignore the statement. To bypass this problem – when the
expression is actually used and is also the last statement of a block – an empty block
statement can be inserted just after the statement. Using this technique might slightly
reduce readability of the code. Verification or specification will not be different compared
to when the set statement was actually working without adding an additional empty
block statement.

\min and \max expressions

Although supported in the latest builds, the \min and \max expressions, which in JML
go over a certain range and find respectively a minimum or maximum value on some
expression, did not completely work as expected. A problem revealed itself when trying
to use \min to find the minimum value where an object occurs in an array. Since when
the object was not found in the array -1 should be returned, an expression very similar
to the following was used (\min int i; 0 <= i && i < a.length; (a[i] == obj)
? i : -1). The specificaton did not get loaded into KeY giving an error about the
last part of the expression, which compares a[i] with obj and returns either i or -1.
Probably, having complex expressions inside the \min or \max construct are not yet part
of KeY’s features. A solution to bypass this problem in this case was to use different
specification constructs, i.e., the specification in Listing 3.1 is used.
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1 @ ensure s (\ f o r a l l int k ; 0 <= k &&
2 k <= seqLength −1; repr [ k ] != o ) ==> \ r e s u l t == −1;
3 @ ensure s (\ e x i s t s int k ; 0 <= k &&
4 k <= seqLength −1; repr [ k ] == o ) ==> (\ r e s u l t >= 0
5 && \ r e s u l t < seqLength && repr [ \ r e s u l t ] == o ) ;
6 @ ensure s ! ( \ e x i s t s int k ; 0 < k &&
7 k <= \ r e s u l t ; r epr [ k ] == o ) ;

Listing 3.1: \min and \max alternative

The first clause states that when the o is not in the array, -1 should be the result. The
second clause states that when o is in the range of the array, the result should be as
well, and furthermore, the result should also have the specific index where the array has
the value o. The last clause makes sure that when there is more than one index which
applies, the value of the array is o, it is indeed the minimum index which applies that
is returned.

When one needs to use an inner expression for the \min or \max constructs, one should
either make sure it is supported at the current build or use a different specification to
express roughly the same. Replacing a \min construct the way described will decrease
understandability of the specifications, i.e., it takes more time to understand what the
specification actually does. However, verification possibly gets easier, instead of one
relatively hard \min construct, three easier forall/exists constructs are used. Another
option would be to use model methods, whereby potentially understandability as well
as difficulty of verification can benefit. For example, using a slightly modified version
of the specification above for the body of the model method, and giving it a name like
minIndex(Object o). Understandability will increase as the name suggests what the
method does, and verification gets easier as explained before.

\old expression

The \old expression has the limitation that it cannot be used to reason about the
arguments of a method from within the method, e.g., when used for specifying the
behavior of loops. Essentially the problem is that some methods work on arguments
directly and change them. KeY, however, assumes they would never change. This
problem can be bypassed by copying this argument to an inner local variable. After
providing an additional local variable, a loop can reason about this variable instead
of the argument provided by the method. Of course, specifications should not alter
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source code, but at this point there is no other way to work around this limitation. In
principle verification gets a little harder, since you should know this limitation when
using KeY and apply this solution, as otherwise it is not obvious why verification is not
working. An example is provided in Section 3.7 on page 88 where lines 15 and 16 are
added.

Sequences

The data abstraction of sequences used by KeY has the limitation that it is relatively
new to the tool, and not everything one expects to work for it is implemented yet. An
example is the remove operation – which could remove an index from a sequence. Since
this operation is not yet implemented, one has to use a considerably bigger expression,
i.e., express the remove operation by using subsequences and concatenation of these
sequences. Addition can be specified in a similar way. The downside of this is that
specifications get more complicated, hence understandability decreases. Difficulty of
verification largely depends on the actual implementation of the remove operation. If
the implementation directly translates to the aforementioned, difficulty of verification
will stay the same.

Generics

As mentioned before, at the time being KeY supports a large subset of Java 1.4. There-
fore – since generics needed to be removed from source – specifications about type
restrictions that are related to generics are hard to make, and maybe even harder to ver-
ify at this point. Moreover, certain specification constructs like \elemtype and \TYPE
[23] are not possible to use yet. This is why ClassCastExceptions are not considered.
Normally a ClassCastException should be thrown when, e.g., a certain object is not
allowed to be added to the collection as it is not a subclass of the elements of the collec-
tion. However, there is no way of storing information of the types of the elements in the
collection. To prevent that a ClassCastException could actually be thrown, restric-
tions are made on the types of, e.g., the array with elements in ArrayList and objects
that are added/removed. Making changes like these largely limits the expressiveness of
the specifications, but also makes verification easier.

Since only little can be specified about types at this point, it was needed to put re-
strictions on the types of objects used in implementations. Here the choice has been
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made to only allow Object, and Object[] as runtime types of respectively Object and
Object[]. For instance the elementData array has the following restriction;
\typeof(elementData) == \type(java.lang.Object[]).

With this restriction, it is at this point not possible to do, e.g., reasoning about ordered
elements, since therefore objects should be instanceof Comparable, and plain objects
are not instances of this or any other interface. More problems might reveal itself
when a specific collection implementation requires an IllegalArgumentException to be
thrown, e.g., when trying to add a certain element that does not satisfy a condition on the
object. Although verification in general gets easier, specifications loses expressiveness.

Abstract classes

For abstract classes, KeY only allows static methods to be statically verified. This means
that methods that have an actual implementation, but are part of an abstract class, are
not subject to verification. When one wants to verify these non-abstract methods, one
should extend the abstract class – and not override these methods – and next verify
these methods for the class. For verification – in the end – the difficulty stays the same
compared to verifying normal methods, however, it is more work to write additional
classes and to get to a point where verification is actually possible.

Inner classes

Another problem encountered during the project is that KeY was not able to reason
about inner classes. To make verification possible, inner classes have been made regular
classes of the project, i.e., inner classes were extracted, constructor methods needed to
be adjusted slightly and references within the classes were updated. If specifications of
inner classes would work, extraction of these inner classes would not be necessary, but
otherwise not much changes.

The methods equals and compareTo

Certain methods use the method equals from object. Object is one of the classes
that KeY uses an own implementation for, the class is provided and a few specifica-
tions are given. However, the method equals only got the annotation that it is pure,
which was not enough for this project. As a first try, specifications were added for
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the equals method according to the informal specifications, i.e., the equals method
should be reflexive, symmetric, transitive, consistent and for any non-null value of x,
x.equals(null) should return false. This was done in the following way;

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s o b j e c t != n u l l ;
3 @ ensures t h i s . e qua l s ( t h i s ) ;
4 @ ensures (\ f o r a l l Object o1 ;
5 t h i s . e qua l s ( o1 ) <==> o1 . e qua l s ( t h i s ) ) ;
6 @ ensures (\ f o r a l l Object o1 ; (\ f o r a l l Object o2 ;
7 t h i s . e qua l s ( o1 ) && o1 . e qua l s ( o2 )
8 ==> o2 . e qua l s ( t h i s ) ) ) ;
9 @ a l s o

10 @ r e q u i r e s o b j e c t == n u l l ;
11 @ ensures ! \ r e s u l t ;
12 @∗/
13 public /∗@ pure @∗/ boolean equa l s ( /∗@ n u l l a b l e @∗/ Object ob j e c t )

Listing 3.2: Contract for method Equals

After compiling KeY again with the added specifications, methods that uses the equals
method in it were still not able to close open goals of the proof. The forall constructs
only introduced a lot of additional complexity. Changing the specification of the method
using the following ensures clause \result == (this == object) and specifying that
object is nullable did not do the trick either. Changing the method specification this
way basically removes the equivalence relation conditions, and only checks for object
references. In case the method calls to equals are replaced in place with ==, methods
are able to pass verification. The difference might come from the fact that the method
equals is not specified as strictly_pure but just as pure, which places additional
stipulations on verifcation. A downside of using this workaround as a solution is that
methods that use the method equals all need to be changed for verification, and the
expressiveness of the behavior is limited this way.

Similar reasoning holds for the method compareTo from the interface Comparable. This
method is also provided by KeY itself, and this time has no specification at all. The
method is used in the specification of the Collection interface, to make it possible to
specify that an collection is ordered. Since – in the end – no class that uses ordering
is being verified, the condition of the model field elementsHaveOrder has been sim-
plified to represent false. Otherwise, KeY was not able to prove the specification of
elementsHaveOrder as it seems to need more information on compareTo (also see the
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specifications on page 35).

Exceptional behavior

This limitation is not specific to KeY and will be exposed by all verification tools that
handle state changes for exceptional behavior. Just like normal behavior, exceptional
behavior uses the assignable clause to specify changes to the heap. When inspecting
an interface that explains occurence of exceptions, nothing is stated about modified heap
in case an exception is thrown. Therefore, one could expect that in case of an exception
the heap would stay the same. This is however not always the case, e.g., the Array-
List uses a variable modCount that counts the modifications performed on the object
and is updated on every method that structurally modifies the object, even in case an
exception has occured. Since modCount might also change on exceptional behavior, the
assignable clause cannot be set to \nothing or \strictly_nothing for the exceptional
behavior of these methods. To make it possible to specify the changes on the heap at
interface level, either a different location set – beside footprint – or footprint itself
should be provided as the assignable clause. Using footprint has the disadvantage
that it overestimates the changes on the heap, and therefore will introduce difficulties
for methods that need to use the specification. Both solutions make specifications less
understandable, since one would expect exceptional behavior does not change heap loca-
tions. At least, when looking at informal specifications. However, both solutions make
specifications verifiable and also improve extensibility, since locsets can be different
for every implementation.

3.1.4. Verification approach

Several techniques are used to do verification systematically. The methods used are
based on recommendations by a KeY developer and experimentation of using different
settings. In general, the following approach is used. When a method behavior is loaded
into KeY first finish symbolic execution – a proof macro – is performed, which evaluates
the methods body as far as possible, i.e., depending on the proof search strategy options
set, leaving a proof without executional code – if search strategy options allowed it to
fully execute the source symbolically.

For this project the following search strategy options are used;
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• proof splitting is set to delayed, which makes sure unnecessary proof splitting is
limited, i.e., first other expansions are performed resulting in less goals in proofs.

• Loop treatment is set to none, which makes sure symbolic execution stops when a
loop is encountered. This is particularly useful as loops create three proof obliga-
tions;

– initially the invariants should hold;

– the body of the loop should preserve the invariant; and,

– an obligation that continues execution of the code after the loop.

• Often one of the proof obligations has problems closing automatically, as specifica-
tions are hard to get right for loop invariants, i.e., especially when you do not have
a lot of experience with them. It is also possible to set loop treatment to expand,
which ignores the loop invariants and expand the loop symbolically. In case a loop
has a fixed number of iterations, expand might be the preferable option to set.

• Method treatment is set to use the method contract. It makes no sense for modular
static proving to also expand methods used by the current method.

• Query treatment is set to restricted, which ensures queries in the specification are
rewritten according to the method treatment, and a specific ordering on which
query to treat next is used. Furthermore, specific occurences that may cause an
infinite loop in the proof are not further expanded. This setting also results in less
goals to prove.

Next, the proof goals that are still open are tried to close one by one, by chosing close
provable goals below after selecting a goal. Close provable goals below is another macro
that makes it possible to roll back the proof to the point where the macro was triggered.
When all goals close the behavior and the framing is proven. It is, however, still possible
that loops were not yet expanded, this is where a little interaction is needed, the loop
needs to be selected and the step loop invariant should be chosen, after which the three
aforementioned goals will replace the one goal the last step was performed on. Proving
continues as described before, trying to close the goals one by one, starting with finish
symbolic execution.

When a certain goal did not close, the goal underwent a close inspection on what partic-
ular aspect makes the goal not closable. Often this resulted in that a slight modification
to the specifications was needed, but other times it was not that obvious what actu-
ally causes problems. In case it was not obvious, and the method was quite large, the
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method was truncated and verification was done on a simplified method – of course up-
dating specifications accordingly. Next, incrementally, parts were added back in, until
the complete method was verified.

Sometimes it happens that proof obligations were so large that they were not able to
be closed automatically. However, often large parts of the antecedent – part before the
implication arrow, i.e., the assumptions – are unnecessary to proof the consequent. To
make it possible to prove these larger goals as well, the part of the antecedent not needed
to prove the consequent was hidden from the goal.

3.2. Example verifications

Working on this thesis, methods and dependency conditions from the classes Abstract-
Collection, ArrayList, AL_Itr and AL_ListItr (e.g., the Iterator and ListIterator
classes extracted from ArrayList) underwent verification. From these methods 49 out
of 54 – 91 percent – passed verification, and from the dependency conditions all 19 con-
ditions passed verification. From the non-passing methods, the method bachRemove did
not pass verification as it used a for each loop, not usable at the moment, as ArrayList
did not inherit from Iterable directly, as was needed to be able to use the for each
construct in KeY. A few methods from AL_Itr and AL_ListItr, namely, remove, add,
previous and set were also not able to pass verification. It is not clear why exactly
this is the case, but it seems to be related with possible insufficient invariants for the
classes themselves, such that not enough information about heap locations is provided.
That this is probably the case can be deduced from the fact that other methods from
these classes had similar problems before they were able to pass verification.

Furthermore, some particular methods were harder or more interesting to get verified.
The sections below will describe the harder and more interesting methods, i.e., the
methods that did not close easily because they needed more interaction with KeY. The
specifications the method got from interfaces above – and are relevant here – are added
for convenience. The first section starts with a general remark on nullable values and
type restrictions, which were used a lot in this project and can cause problems when not
used correctly.

All specifications made for this thesis can be found on Bitbucket2, anyone who is inter-
ested in using or improving the specifications is invited to fork or clone the repository.

2https://bitbucket.org/Outlay_JPtW/jml-annotations
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Note that additional comments are provided that can aid in improving the specifications.

nullable values and type restrictions

For this project, nullable values were needed at a lot of locations in the specification.
When a method could return, has an argument or uses an object or array of objects
special care should be taken. Most of the time when you want to specify a condition on
objects, you also want to make a distinction whether an object is null or not. However,
JML defaults to having fields, arguments and return values to be non_null. In certain
cases this is fine, but sometimes you want to be able to specify a little more. That is, for
referencing arrays non_null is deep, which means that non_null can be used to state
that elements from the array should not be null either.

For instance, the field elementData (an array) used by the ArrayList class itself should
not be null, as this would throw exceptions at locations where they should not be
thrown. However, the elements of elementData should allow null values as the Array-
List allows null elements. To make this possible, elementData should be specified to
be nullable, which makes it both the array and the possible elements of the array could
be null. Next, elementData itself should be restricted to not be null. An invariant
that states this property should be put in the ArrayList class. Also, see the section
about generics on page 76 that provides type restrictions for Object and Object[].

ArrayList(Collection c)

The constructor method ArrayList(Collection c) creates an ArrayList based on a
Collection c, using the toArray method to retrieve elements that needs to be added to
the newly created ArrayList. Furthermore, the method sets the size of the ArrayList.

This constructor method was a bit problematic as the collection c is abstract and there-
fore nothing concrete is known about the representation for seqLength and repr, i.e.,
respectively the model and ghost field used for specifications by collections (as described
on page 35). The specifications of Collection states that the method size() returns
seqLength, but seqLength itself has no representation. This means it is not possible
to use set repr = c.repr to update the representation. Furthermore, repr is used
to represent the elements that are in a collection, but could be used differently when
ordering is needed on some specific implementation of collection. The two invariants in
ArrayList shown in Listing 3.3 are unable to be proved since repr is not known.
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@ public i n s t ance i n v a r i a n t (\ f o r a l l int i ;
0 <= i && i < repr . l ength ; repr [ i ] == elementData [ i ] ) ;

@ public i n s t ance i n v a r i a n t s i z e == repr . l ength ;

Listing 3.3: Invariants for ArrayList

To make it possible to verify the constructor method, it was needed to let KeY know how
the mapping corresponds with the underlying elements. This was done by introducing
a loop which updates values in the sequence representation of the ArrayList. Again,
putting additional code in your methods is not preferable. However, there was no other
way, as no specification construct that makes mapping the values to a sequence construct
directly exists. The complete verified specification can be found in Listing 3.4.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s c != n u l l ;
3 @ r e q u i r e s c .\ inv ;
4 @ ensures elementData . l e n g t h == c . s i z e ( ) ;
5 @ ensures s i z e == elementData . l e n g t h ;
6 @ ensures \ f r e s h ( f o o t p r i n t ) ;
7 @ a s s i g n a b l e f o o t p r i n t ;
8 @∗/
9 public ArrayList ( /∗@ n u l l a b l e @∗/ C o l l e c t i o n c ) {

10 elementData = c . toArray ( ) ;
11 s i z e = elementData . l ength ;
12
13 //@ s e t repr = \seq_empty ;
14
15 int i = 0 ;
16 /∗@ loop_invar ian t 0 <= i && i <= elementData . l e n g t h ;
17 @ loop_invar ian t (\ f o r a l l i n t j ; 0 <= j && j < i ;
18 ( Object ) repr [ j ] == ( Object ) elementData [ j ] ) ;
19 @ loop_invar ian t repr . l e n g t h == i ;
20 @ a s s i g n a b l e repr ;
21 @ decrease s elementData . l e n g t h − i ;
22 @∗/
23 while ( i < elementData . l ength ) {
24 //@ s e t repr = \ seq_concat ( repr ,
25 //@ \ seq_s ing l e t on ( elementData [ i ] ) ) ;
26 i ++;
27 }
28 }

Listing 3.4: Specification of ArrayList(Collection c)
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Since additional specification is needed for the added while loop, understandability will
decrease, as it will take a little longer to understand what is going on. A more ele-
gant solution, making use of model methods (see the description on page 29) might be
preferable in the future.

lastIndexOf(Object o)

The method lastIndexOf(Object o) has a few interesting points which made it harder
to prove. The method checks, depending whether the argument o is null or an actual
object, if an object is contained within the ArrayList. Since KeY has the construct
\indexOf, which returns the index of an object in a sequence – when you provide it
with a sequence and an object to search for – and \seq_reverse which you provide
with a sequence and reverses the order of elements in the sequence this seemed trivial;
because it could be specified like this: \result == (\indexOf(seq, o)== -1 ? -1 :
seqLength - \indexOf(\seqReverse(seq), o)). This was not the case, using these
two constructs KeY still left a few open goals, having trouble with the \seq_reverse con-
struct it seemed, as very similar use without \seq_reverse worked for indexOf(Object
o). Therefore, another way of specifying the same was tried, i.e., searching for a maxi-
mum value over an array with the \max construct, giving -1 if the current object is not
the one being searched for, or the current index if it is. However, this expression was
not able to load into KeY and an additional way had to be found. See the workaround
described on page 74.

Additionaly, the tool had problems with the equals method as described on page 77.
Replacing equals with == solved this. As a final note, the decreasing clause and
\forall loop invariant were a little harder to specify, since they reversed the normal
way of reasoning for loop invariants and decreasing clauses. The verified specifications
can be found in the listing below;

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s ! suppor tNul lE lements ==> (o != n u l l ) ;
3 @ ensures (\ f o r a l l i n t k ; 0 <= k &&
4 k <= seqLength −1; repr [ k ] != o) ==> \ r e s u l t == −1;
5 @ ensures (\ e x i s t s i n t k ; 0 <= k &&
6 k <= seqLength −1; repr [ k ] == o) ==> (\ r e s u l t >= 0
7 && \ r e s u l t < seqLength && repr [\ r e s u l t ] == o) ;
8 @ ensures ! ( \ e x i s t s i n t k ; \ r e s u l t < k &&
9 k <= seqLength −1; repr [ k ] == o) ;
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10 @ a s s i g n a b l e \ noth ing ;
11 @ a l s o
12 @ p u b l i c excep t i ona l_behav io r
13 @ r e q u i r e s ! suppor tNul lE lements && o == n u l l ;
14 @ s i g n a l s ( Nu l lPo in terExcep t ion )
15 ! suppor tNul lE lements && o == n u l l ;
16 @ signa l s_on ly Nu l lPo in terExcep t ion ;
17 @ a s s i g n a b l e \ noth ing ;
18 @∗/
19 public int l a s t IndexOf ( Object o ) {
20 if ( o == null ) {
21
22 /∗@ loop_invar ian t −1 <= i && i <= s i z e −1;
23 @ loop_invar ian t (\ f o r a l l i n t j ; i < j &&
24 j <= s i z e − 1 ; repr [ j ] != o) ;
25 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
26 @ decreas ing i + 1;
27 @∗/
28 for ( int i = s i z e −1; i >= 0 ; i−−)
29 if ( elementData [ i ] == null )
30 return i ;
31 } else {
32
33 /∗@ loop_invar ian t −1 <= i && i <= s i z e −1;
34 @ loop_invar ian t (\ f o r a l l i n t j ; i < j &&
35 j <= s i z e − 1 ; repr [ j ] != o) ;
36 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
37 @ decreas ing i + 1;
38 @∗/
39 for ( int i = s i z e −1; i >= 0 ; i−−)
40 // i f ( o . e qua l s ( elementData [ i ] ) )
41 if ( o == elementData [ i ] )
42 return i ;
43 }
44 return −1;
45 }

Listing 3.5: Specification of lastIndexOf(Object o)

Since understandability increases when similar methods also have similar specifications,
the method indexOf has been changed accordingly, i.e., also using three ensures clauses
to specify the minimum index that should be returned. Of course, changing the last
ensures clause with one that checks there does not exist an index with a lower index –
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instead of a higher one. Again, model methods might increase understandability when
they are available. For verification itself, difficulty decreases, e.g., less steps are needed
to prove the goal, and the obligation splits in smaller proof obligations.

set(int index, Object element)

The method set, which sets an element on the given index of a list and returns the
element on that index before the invocation illustrates the way sequences are used.
Namely, by using concatenation. A single element is added by first making a singleton
sequence from it and next concatenating it with the old elements. The old elements are
selected by making two subsequences from the original sequence; one subsequence for
the part before and are for the part after the index that needs the element to be replaced.
Naturally, you want this update to be done as follows; set repr[i] = element, which is
however not the way sequences work. That it does not work this way is because repr[i]
is basically a shortcut for the statement \seq_get(repr, i), which returns the element
at i for the sequence repr, whereas repr[i] = element would mean repr is an array
that updates index i with element. Sequences work this way because sequences are
pure, and sequences are a stateless data type that operate by value only. The verified
specification can be found in Listing 3.6.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s \ t y p e o f ( e lement ) == \ type ( Object ) ;
3 @ r e q u i r e s index >= 0 && index < seqLength ;
4 @ r e q u i r e s ! suppor tNul lE lements ==> ( element != n u l l ) ;
5 @ ensures repr [ index ] == element ;
6 @ ensures \ r e s u l t == \ o ld ( repr [ index ] ) ;
7 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
8 @ a s s i g n a b l e f o o t p r i n t ;
9 @ a l s o

10 @ p u b l i c excep t i ona l_behav io r
11 @ r e q u i r e s index < 0 | | index >= seqLength | | ! s e tSuppor ted
12 | | ( ! suppor tNul lE lements && element == n u l l ) ;
13 @ s i g n a l s ( IndexOutOfBoundsException )
14 index < 0 | | index >= seqLength ;
15 @ s i g n a l s ( Nu l lPo in terExcep t ion ) ! suppor tNul lE lements
16 ==> element == n u l l ;
17 @ s i g n a l s ( UnsupportedOperat ionExcept ion )
18 ! s e tSuppor ted ==> true ;
19 @ signa l s_on ly UnsupportedOperationException ,
20 ClassCastExcept ion , I l l ega lArgumentExcept ion ,
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21 IndexOutOfBoundsException , Nu l lPo in terExcep t ion ;
22 @ a s s i g n a b l e \ noth ing ;
23 @∗/
24 /∗@ n u l l a b l e @∗/ Object s e t ( int index , /∗@ n u l l a b l e @∗/ Object element ) ;
25 rangeCheck ( index ) ;
26
27 Object oldValue = elementData ( index ) ;
28 elementData [ index ] = element ;
29
30 /∗@ s e t repr = \ seq_concat (
31 \ seq_concat (\ seq_sub ( repr , 0 , index ) , \ s eq_s ing l e t on ( element ) ) ,
32 \ seq_sub ( repr , index + 1 , seqLength )
33 ) ;
34 @∗/
35 return oldValue ;
36 }

Listing 3.6: Specification of set(int index, Object element)

Although it is logical that setting values on an array-like-style does not work for se-
quences, understandability of specifications decreases because of this fact. Model meth-
ods might improve understandability, e.g., a model method seqSet(sequence, int,
object) would be clearer and the implementation could be the same – or very similar
– to the specification above which uses \seq_concat.

finishToArray(Object[] r, Iterator it)

The method finishToArray(Object[] r, Iterator it), which can be found in the
class AbstractCollection is a helper method which will – given an Object[] r and
Iterator it – make sure the array r will be updated with the final values that it
still has to provide for it. This method was particularly hard to get verified since it
used several methods that needed to be correct as well before it was possible to get this
method verified, i.e., hasNext from iterator, copyOf from the Arrays class and huge-
Capacity from AbstractCollection itself. Note that, in the listing below the class
Arrays is called SelfArrays. This change has been made to know KeY was actually
using the correct specifications for the copyOf method and not silently used its own
ones.

The hardest part was to get the loop_invariant specification correct. Initially it was
even not possible at all, since it was unclear KeY could not use the \old construct to
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refer to the arguments of the method too. Trying to automatically solve the obligations
by KeY resulted in a freezing system due to memory consumption. After finding out
the current approach was not working because of the \old construct, additional local
variables were introduced that could aid with the verification. After providing enough
loop_invariants KeY was able to proof the method. The implementation of finish-
ToArray with specification used for the verification can be found in Listing 3.7.

1 /∗@ p u b l i c normal_behavior
2 @ r e q u i r e s r . l e n g t h + ( i t . seqLength − i t . p o s i t i o n + 1)
3 < MAX_ARRAY_SIZE;
4 @ r e q u i r e s i t != n u l l && i t . \ inv ;
5 @ r e q u i r e s r != n u l l ;
6 @ r e q u i r e s \ d i s j o i n t ( i t . f o o t p r i n t , r [ ∗ ] ) ;
7 @ ensures \ r e s u l t == r | | \ f r e s h (\ r e s u l t ) ;
8 @ a s s i g n a b l e i t . f o o t p r i n t ;
9 @∗/

10 /∗@ he l p e r @∗/ private static /∗@ n u l l a b l e @∗/ Object [ ]
11 f in i shToArray ( /∗@ n u l l a b l e @∗/ Object [ ] r , I t e r a t o r i t ) {
12
13 int i = r . l ength ;
14
15 Object [ ] tmp_r = r ; /// added
16 int cap = tmp_r . l ength ; /// added
17
18 /∗@ loop_invar ian t \ f r e s h ( tmp_r) | | tmp_r == r ;
19 @ loop_invar ian t tmp_r != n u l l ;
20 @ loop_invar ian t i <= cap && cap <= tmp_r . l e n g t h && i >= r . l e n g t h ;
21 @ loop_invar ian t i < MAX_ARRAY_SIZE;
22 @ loop_invar ian t i t . c o l l e c t i o n . f o o t p r i n t ==
23 \ o ld ( i t . c o l l e c t i o n . f o o t p r i n t ) ;
24 @ loop_invar ian t i t . \ inv ;
25 @ a s s i g n a b l e i t . f o o t p r i n t ;
26 @ decrease s i t . seqLength − i t . p o s i t i o n ;
27 @∗/
28 while ( i t . hasNext ( ) ) {
29 cap = tmp_r . l ength ; /// r −> tmp_r
30 if ( i == cap ) {
31 int newCap = cap + ( cap / 2) + 1 ;
32 // over f low−concious code
33 if (newCap − MAX_ARRAY_SIZE > 0)
34 newCap = hugeCapacity ( cap + 1) ;
35 tmp_r = Se l fAr rays . copyOf (tmp_r , newCap) ; /// r −> tmp_r
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36 }
37 tmp_r [ i ++] = ( Object ) i t . next ( ) ; /// r −> tmp_r
38 }
39 // trim i f o v e r a l l o c a t e d
40 return ( i == tmp_r . l ength ) ? tmp_r : Se l fAr rays . copyOf (tmp_r , i ) ;
41 }

Listing 3.7: Specification of finishToArray(Object[] r, Iterator it)

remove(int index), add(int index, Object element) and alike

Some methods, i.e., remove(int index), add(int index, Object element), add-
All(Collection c), and addAll(int index, Collection c) which all make struc-
tural changes to the ArrayList object were hard to prove initially. The methods have
in common that they all make use of the method arraycopy. That they were so hard to
prove came from the fact that after returning from one of these methods – of course –
the invariants still needed to hold. Most of the invariants were easily proved. However,
the following invariant was problematic;

1
2 (\ f o r a l l int i ; 0 <= i && i < repr . l ength ; repr [ i ] == elementData [ i ] )

Listing 3.8: Problematic invariant

The invariant states that the ghost field repr – a representation sequence of the ArrayList
object – has to hold the same values as the underlying array elementData. Below the
difficulty will be explained based on the add(int index, Object element) method
which adds an element to the given index of the ArrayList and makes sure that all old
elements starting from index move an index further. Since other specifications of the
method are at this point not relevant they are left out in the listing below;

1 public void add ( int index , Object element ) {
2 rangeCheckForAdd ( index ) ;
3 ensureCapac i ty In te rna l ( s i z e + 1) ;
4 Se l fSystem . arraycopy ( elementData , index , elementData , index + 1 , s i z e −

index ) ;
5 elementData [ index ] = element ;
6
7 /∗@ s e t repr = \ seq_concat (
8 \ seq_concat (\ seq_sub ( repr , 0 , index ) , \ s eq_s ing l e t on ( element ) ) ,
9 \ seq_sub ( repr , index , s i z e ) ) ;
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10 @∗/
11
12 s i z e ++;
13 }

Listing 3.9: The method add(int index, Object element)

The set specification updates the sequence repr by adding \seq_singleton(element)
to the sequence. At the moment this is done by concatenating the part of the sequence
before index, the element that should be placed, and the part after index.

In case the given index was equal to the size of the ArrayList, there was no problem,
since this is basically the same as the add(Object element) method, which was already
proven. However, in case index has another value, the method arraycopy seemed to
prohibit KeY from closing all goals. A close inspection of the goals revealed a problem,
updating of the elementData array was not going as expected, i.e., instead of using an
old and new state of elementData for updating each index, the current state was used
for both sides of the update statement. The problem had to be at the specification of
arraycopy, which was indeed the case. Listing 3.10 shows the normal_behavior of the
arraycopy method (without the requires clauses) before and after the correction.

1 // BEFORE CORRECTION
2 /∗@ p u b l i c normal_behavior
3 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < l e n g t h ;
4 de s t [ destPos + i ] == src [ srcPos + i ] ) ;
5 @ a s s i g n a b l e de s t [ destPos . . destPos + l e n g t h −1];
6 @∗/
7 native public static void arraycopy ( /∗@ n u l l a b l e @∗/ Object [ ] s rc , int

srcPos ,
8 /∗@ n u l l a b l e @∗/ Object [ ] dest , int destPos , int l ength ) ;
9

10 // AFTER CORRECTION
11 /∗@ p u b l i c normal_behavior
12 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < l e n g t h ;
13 de s t [ destPos + i ] == \ o ld ( s rc [ srcPos + i ] ) ) ;
14 @ a s s i g n a b l e de s t [ destPos . . destPos + l e n g t h −1];
15 @∗/
16 native public static void arraycopy ( /∗@ n u l l a b l e @∗/ Object [ ] s rc , int

srcPos ,
17 /∗@ n u l l a b l e @∗/ Object [ ] dest , int destPos , int l ength ) ;

Listing 3.10: The method add(int index, Object element)
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After correction the \old construct is used to specify the updated elements. Since
initially the idea had not come to mind that src and dest arrays could be the same,
this was not taken into account before.

Note that the method arraycopy is native and therefore verification of arraycopy itself
is not possible, otherwise, verification of the method had shown the problem earlier. It
is, however, possible to provide a (simple) Java implementation and verify this imple-
mentation.

Solving this problem however, was not all that was needed to let KeY close all open
goals. It seemed KeY has some difficulties closing goals automatically that make use of
forall and exists constructs. In order to close these goals the user has to instantiate
these forall and exists for the current goal with the right variables that occur in the
goal. The variable used for instantiation should be taken from the consequent part of
the open goal, and next instantiate a forall in the antecedent of the goal. This is not
always straightforward, and due to large proof obligations it might still take a while
before KeY is able to close the goal.

repr as model vs. ghost

To see what difference it makes to specification and verification, repr – a sequence
used to map the ArrayList object on – has been declared both as a model and as a
ghost field. Two minimalistic classes based on the ArrayList class are created that
only contain a constructor method, size and add(Object o). Appendix A provides the
implementations as well as the specification for the method copyof from Arrays which
both implementations use.

For specification the most obvious difference between the implementations are that the
model field needs only a represents construct to specify the representation, while the
ghost fields need to be updated with the JML set construct for every change on the
elements the list contains. Further ghost fields also need additional invariants to state
what the elements of the sequence should hold, and what the length of repr is. This
means that the model representation is a lot more brief, which will increase understand-
ability of the specification. Furthermore, this means that when extending a class with
additional methods, effort is needed only for the implementation using the ghost field.

However, doing verification using \such_that to make a model field binding causes dif-
ficulties. Every time a method changes repr the user should provide a representation –
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in this case of a sequence – that corresponds with the update in the method body, essen-
tially a set statement but in the proof and not the code. For the implementation that
uses a ghost representation KeY was able to close all goals automatically. Whenever a
method makes a more complex change which also affects repr, giving a representation
for the model field will also be more difficult. However, when using a ghost represen-
tation, verifications also gets more difficult as can be seen in the previous section using
sequences on page 89.

Findings

Undergoing verification, several specifications stood out that complicated verification,
i.e., invariants or ensures clauses that used \forall and \exists constructs, as well as
model fields specifying a binding with the \such_that construct. In case model fields
could use the direct represents construct, they are easier to use than ghost fields,
i.e., verification would not be any different, but specifications are much shorter which
makes understandability better. For extensibility, model fields are preferred over ghost
fields, since for ghost fields it is necessary to include specifications in the body of a
method to preserve invariants. The use of sequences for specification provides a nice
addition to former specification styles, in that they can be used to extend the state of an
object, or used to provide a shorter representation. Therefore, sequences are considered
to improve extensibility, however, understandability could at this point be improved as
only minimal operations can be performed on sequences which causes the specifications
to be longer.

Pure methods can also be used to specify method behavior in certain cases, which
might be preferable for understandability. For example, after some method it might
be necessary to ensure an element is part of a collection. This can be done by using a
pure method contains, but also using an expression or a model method. The downside
of using a pure method opposed to another representation lies in verification, whereby
lookup is needed and either unfolding of the method or applying a corresponding contract
needs to be performed. In case there are multiple contracts, this leaves a lot of additional
goals in the proof tree, some of which might be hard to close.

Finally, model methods – although not yet supported – aid in keeping specifications
understandable, i.e., they can provide complex expressions and next be used by their
names in method contracts. The downside is that people should be familiar with the
concept of model methods, and verification might be horrible since it is yet one further
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abstraction compared with model fields, however, this is only speculation.

A final note, the findings here are all based on the workings of KeY, which means
verification might differ when using another static verification tool. The findings about
understandability might also differ for model methods and abstract data types (e.g.,
sequences), since these may or may not be implemented by other tools, and if they are
implemented, they might be implemented in a different manner.
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4. Evaluation

This chapter describes the approach taken to get more insight in understandability of the
specifications made, and understandability, extendibility and verificability for different
specification constructs that can be used in JML* in general. First the road to the final
questionnaires will be explained in Section 4.1, after which the design of the two distinct
questionnaires will be explained in the remainder of this chapter.

4.1. Road to the questionnaires

First, understandability of specification and programming languages in general has been
investigated. Barros et al. [12] found that for the Object Constraint Language (OCL
[41]), which is a different formal specification language, understandability decreases when
nested quantifiers are used, several constructs are used to describe the same behavior, or
distinctions in specifications are made based on the actual type of, e.g., the parameters
of a method. These results were found after first indicating possible constructs that
might decrease understandability, and next doing an experimental study that evaluated
the usefulness of refactoring these constructs. The results of the study indicated that the
former constructs have a negative impact on both correctness and the time necessary to
understand constraints written in OCL. Of course, OCL is not the same as JML*, but for
the specifications done for this project the stumbling blocks for OCL understandability
have been avoided here as well. In [20] two rules are stated about understandability
for programming languages, i.e., smaller languages are easier to understand than bigger
languages, and closely related languages are easier to understand than distantly related
languages. The second part makes a lot of sense for JML as method contracts are
designed to be familiar to Java programmers (see also Section 1.2.1 on page 9). However,
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both rules cannot be used to derive statements about JML* specifications. Keeping
specifications minimal could help, but that is not supported by any research. Misra
and Akman [30] indicate that complexity and therefore understandability of code in an
object oriented language depends on the architecture of methods and attributes in this
code, and that time and effort spent on understanding code plays an important role in
understandability.

To get more insights in understandability of the specifications made for this thesis, two
approaches come to mind. A first approach is performing a questionnaire about part
of the verified methods and ask people whether methods should indeed be able to pass
verification. Of course, to make it more interesting also a few modifications should be
inserted that do not pass verification. For each method the participants should motivate
their answer, i.e., especially in case a participant has the feeling a method should not
pass verification. The second approach would be to let a group of participants extend
part of the specifications made during this project for a different implementing class,
e.g., a LinkedList and let them answer questions on what parts are more difficult and
which are easier. This way – since being able to extend some specification you first need
to understand the original specification – one is able to determine whether the original
specifications are understandable. Both of the approaches have advantages as well as
disadvantages. The former approach cannot provide information whether all specifica-
tions are correct, whereas the second approach needs participants that are – at least
– familiar with JML* to the extent of being able to work with it. The advantage of
the first approach is that people familiar with the basics of JML already could provide
useful feedback on understandability, which is a far larger group than people familiar
with JML*. Furthermore, to make it more likely that people are willing to participate,
it should not take too long to complete the questionnaire/assignment. Therefore the
choice for the first approach has been made. The design of the understandability ques-
tionnaire is described in Section 4.2. Since participants should not have more than a
basic knowledge of JML, students that followed the course System Validation at the
University of Twente – which among other things teaches students to specify Java with
JML – are chosen as a target audience.

As JML* leans itself to use different specification styles to specify the same behavior
– using ghost fields, model fields, model methods, pure methods and abstract data
types – this is also an interesting aspect where understandability, extendability and
verifiability can differ. Taking an additional questionnaire could give more insight on
these aspects. Since this time, specific constructs for specification are addressed, and
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some of them are KeY-specific, as target audience the KeY developers are selected. For all
aforementioned constructs, opinions on understandability, extendibility and verifiability
should be retreived. The design of the questionnaire is described in Section 4.3.

Both questionnaires were available from Monday 29th of July until Saturday 10th of
August 2013 and participants were addressed by e-mail. For the understandability ques-
tionnaire this means personal addressing to 70 students that participated in the System
Validation course in the year 2012. For the specification styles questionnaire an invi-
tation was sent to a central KeY developers e-mail address. Halfway a reminder for
participation was sent. The goal was to get at least 20 per cent participation from the
invitations.

Since both questionnaires were taken in a holiday period, additional measures were
needed to get enough participants. By the end of the second week the questionnaires
were open 7 (out of about 20) people participated in the specification styles questionnaire
and only 5 (out of about 70) people particiated in the understandability questionnaire.
For the specification styles this meant the goal of 20 per cent was reached, however, the
understandability questionnaire still needed nine participants to reach the goal. Since
a lot of people were probably on vacation, the deadline of the understandability ques-
tionnaire was extended by a week and a more personal approach to obtain participants
was used, which helped to get enough participants. Another problem with the under-
standability questionnaire is that people who followed the System Validation course
were asked to fill out the questionnaire. Some of these people might have graduated
already and therefore they possibly cannot use their e-mail accounts from the university
anymore.

4.2. Understandability questionnaire

For the understandability questionnaire, seven methods are provided in an accompanying
file with JML* specifications attached, also found in Appendix C. The questionnaire asks
for each of the methods whether it should pass verification or not, with an additional
field to provide a motivation why a method did not pass, or a comment in case it
passes. This way it is also possible to express doubt or to tell that a specification is
hard to understand. This was also mentioned in the description of the questionnaire.
The questions are ordered in such a way that the difficulty of the questions increases,
i.e., shorter specifications or specifications that do not use other methods come prior to
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larger specifications or specifications that use other methods to describe the behavior.
At the end of the questionnaire it is asked to fill out time spent. The methods used for
the questionnaire represent the general specification style used throughout the project,
and are only slightly modified to include only minimal specifications/methods needed
for the questionnaire. The questionnaire should take around 15 minutes to complete.
The participants are asked not to be concerned about coding style or having multiple
classes in one file. Furthermore, potential overflow of integer values, as well as Out-
OfMemoryExceptions need not to be considered for the questions, and the participants
may assume the correctness of the copyof method (see Appendix C). Additionally it is
given that the specifications load succesfully – there are no syntax errors – and minor
changes were made to make some specifications fail verification, shortly to be described.
Listing C.1 shows the file provided to the participants for answering the questionnaire.
To make it easier for participants to see which method and question belong together,
each method is preceded by a comment.

Before changing any of the specifications, it has been checked that all methods are
still verifiable. After which two minimal changes were done to the specifications for
method 4 (clear) and method 7 (indexOf). For method 4 the loop invariant has
been changed from (\forall int j; 0 =< j && j < i; elementData[j] == null)
to one leaving out the specification for the 0-index, additionally a post-condition that
could not be satified is added, i.e., one that states all elements in elementData should
be null afterwards. For method 7 the second post-condition is changed; a negation
operator is added in front.

4.3. Specification styles questionnaire

The specification styles questionnaire is divided in a three page questionnaire, and is
designed to take about 10 minutes to complete. The first two pages consider only
questions regarding the specifications, whereas the third page considers verification. For
the different specification styles distinguished for this research, i.e., using ghost fields,
model fields, pure methods, abstract data types (e.g, sequences), abstract predicates
(model methods), it is asked whether understandability, extensibility and verifiability
improves or not. Participants may choose among a five-point scale or give the answer
not applicable, and are asked to motivate their answer. Answers should all be based on
the participants experience working with verification tools until the questionnaire.

100



4.3. Specification styles questionnaire

The first page asks about perceived understandability of different specification styles.
Participants should compare several styles with the general (perceived) understandability
of specifications. The five-point scale for the answers on this page range from far better
to far worse and have a neutral answer (no difference) in the middle. An example
question looks as follows; ’Ghost fields’ make understandability of specifications.., after
which a dropdown menu for the answer is provided and a field for motivation can be
found.

The second page asks about perceived extensibility of different specification styles. Par-
ticipants should compare several styles with the general (perceived) extensibility of speci-
fications. Extensibility is explained as follows; when different specification styles are used
for, e.g., some basic implementation class, how well can they be used by an extending
class of this basic implementation. The same five-point scale as on the first page is used.
The questions are similar to the ones on the first page, but this time state extensibility
instead of understandability.

The third and last page of the questionnaire asked about perceived difficulty of verifica-
tions using the different specification styles. Of course, answers should again be given
based on the participants experience working with verification tools until the question-
naire. This time the answers on the five-point scale range from much easier to much
harder. The questions differ only little from the other pages and are similar to; ’Ghost
fields’ make verification.., after which a dropdown for the answer is given.

With the answers of the participants it is possible to (in)validate findings described
earlier in this thesis, and give possible (additional) explanations why specific specification
styles are better for certain criteria than others. The questions for this questionnaire
can also be found in Appendix B.
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This chapter provides and dicusses the results of the questionnaires described in the
previous chapter. First Section 5.1 goes through and discusses the results of the under-
standability questionnaire. Next, Section 5.2 goes through and discusses the results of
the specification styles questionnaire.

5.1. Understandability questionnaire

At the end of the extended period, 14 (out of 70) people participated in the under-
standability questionnaire, which means the goal of 20 per cent has been reached just.
Below the results are described, followed by a discussion. For each question there is a
corresponding method. Question x asks whether method x should pass verification. The
methods can be found in Appendix C.

Results and discussion

Figure 5.1a provides the answers given to the understandability questionnaire questions
that asked about whether verification would pass or not for seven methods. Not whether
the answer yes or no was given is graphically represented, but if the answer was indeed
correct. An average of 2.3 wrong answers was given, which means just over 70 per cent
of the questions are correctly answered. The correct and incorrect answers provided by
each participant are represented by Figure 5.1b.

Although mentioned in the introduction of the questionnaire that adjustment were made
to falsify one or more of the method specifications, two participants answered that all
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Figure 5.1.: Provided answers

methods would pass verification. As stated in the previous chapter, adjustments are
made such that the methods for question four and seven would not pass verification.

In the sections below for every question the given answers and motivation are provided,
followed by a short discussion about the question. Finally, the results of the time spent
is provided and dicussed.

Question 1

Four participants answered that the constructor method – method for question 1 – was
not correct. Three out of four motivations stated that either the exceptional behavior
was not covered, or specifications were incomplete. One participant motivated that size
would be undefined, and therefore the method would not pass verification.

It is interesting that participants answered that there was no exceptional behavior or
specifications were incomplete, and therefore answered the specification was incorrect, as
up front the question ’is the specification valid, considering the implementation based on
your experienced intuition?’ was asked. The motivation that size would be undefined,
could be explained as that the participant either did not know Java would set default
values, or otherwise an assumption that annotations should be added to also specify this
behavior of Java.

Question 2

The method for question 2, which retrieves the element at a certain index is falsely
assumed not verifiable by two participants. Both answers are motivated by the statement
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that seqLength does not necessarily has to have the same value as size.

Since both times the same motivation is provided, it is possible that the participants
did either not understand model fields, or did not find the specification that stated
represents seqLength = size.

Question 3

For the third question, it is asked whether the method trimToSize would pass verifica-
tion. Three participants incorrectly answered that verification would not pass. Motiva-
tions provided are; uncertainty of the post-condition repr == \old(repr) for the first
behavior as repr was not understood, wrong requires clause as a participant believes it
is only possible to have size < elementData.length, or a not understood specification
of copyOf.

The motivation that repr == \old(repr) could not hold afterwards is interesting as
the specification would not have been needed in the first place, i.e., the assignable clause
does not state that repr can change. Since no further explanation is given, it is not clear
what exactly makes the participant assume this post-condition is incorrect. The second
motivation basically states that the second behavior is not needed, or unreachable, which
would falsify the verification of the method, that is not the case, however. Why the
copyOf method is hard to understand is not explained, it might be that the specification
is too long.

Question 4

The fourth method (clear) should not pass verification, six out of eight participants
indeed identified that there was a problem with the specification. From the participants
that thought the specifications are just fine, one participant explained it was unclear
what decreasing size - i means. Another participant does not get the point why
the post-condition states that all elements in elementData are null, but thinks it is fine
anyway. A third participant answered that the loop invariant should be different and
include the 0-index element. Several motivations were given in case a participant indi-
cated the method would not pass verification. One participant described both problems,
i.e., it cannot be proven that all elements of elementData are null afterwards, and the
loop should also include the 0-index element. The other participants all indicated one
of the two problems.
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Although two participants gave the right answer why the method should fail, they indi-
cated that the method should pass verification anyway, which is strange.

Question 5

For the fifth question, it is asked whether the method set would pass verification.
Three participants incorrectly answered the method would not pass verification. One
participant thinks the method should not pass in case \old(size) < \old(seqLength),
another participant believes elementData should be assignable, and a last motivation
states the set repr specification is not understood.

The first motivation basically boils down to the representation of seqLength, which
is either overlooked or not understood – by the same person as before. Furthermore,
the idea of having a footprint is not completely clear, as elementData is part of the
footprint and therefore assignable. Also (at least) one of the operations on sequences is
not clear, while \seq_empty did not seem to cause any problem for the participants.

Question 6

Question 6 asked whether the method add should pass verificaton, six out of 14 partici-
pants thought it did not, which is however not the case. Several participants indicated
the assignable clause is incorrect and should contain elementData and elementData[*].
Again, the same participant answered that the combination of using size and seqLength
will give problems, and therefore the method will not pass verification. Also, the same
participant that answered the set construction for repr was not understandable in ques-
tion 5, gave the same motivation for question 6.

Clearly, not all participants understand how the \locset is used to define a footprint.
Additionally, sequences and model fields are not completely understood either.

Question 7

The question about the last method, i.e., indexOf where the method was modified and
does not pass verification anymore was correctly identified as having an incorrect spec-
ification by six participants. Actually eight participants answered the method would
fail verification, but two participants gave an incorrect motiviation. One of the motiva-
tions stated that size and seqLength would cause problems, and the other motivation

106



5.1. Understandability questionnaire

that not enough is known about repr. The correctly answered (and motivated) ques-
tions stated that having the exclamation mark in front of the second ensures clause fails
verification, which is exactly the case.

Time spent

Participants were asked upfront to record time spent on the questionnaire. Most partici-
pants needed more than 20 minutes as indicated in Figure 5.2. Six out of 14 participants
needed less time to complete the questionnaire.

1      
2      

3      8      

Time spent

5-10 min

10-15 min

15-20 min

20+ min

Figure 5.2.: Time spent distribution

In Table 5.1 it is indicated how much time it took each participant to fill out the
questionnaire, furthermore it is indicated which of the provided answers are incorrectly
answered by each participant.

From this table, it seemed that spending more than 20 minutes trying to correctly
answering the questionnaire contributed to having a better understanding of the ques-
tionnaire. Two exceptions might be participants 1 and 14 who basically answered all
questions with yes. Although it seemed they understood the specifications, it might also
be the case that they only quickly scanned the methods for possible flaws, and could
not find any. However, some of the specifications are JML* specific, not thought at
the System Validation course, which makes it doubtful whether the participants were
seriously participating.
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participant time spent incorrect answers provided
1 10-15 4, 7
2 20+ -
3 10-15 3, 4, 6, 7
4 20+ 7
5 15-20 4, 6, 7
6 20+ 2, 4, 5, 6
7 20+ 1, 6, 7
8 20+ 1, 3, 4
9 20+ -
10 20+ -
11 20+ 1, 4
12 15-20 1, 4, 5, 6
13 15-20 2, 3, 5, 6
14 5-10 4, 7

Table 5.1.: Time spent and provided incorrect answers

Some of the participants explained, either by the questionnaire or in person, that they
spent plenty more time than they could indicate via the answering field of the question-
naire, namely 30 to 35 minutes. This gives the idea, that when one is more familiar with
JML specifications, one is also quicker at understanding them. An estimated time of 15
minutes was given for filling out the questionnaire, which was obviously not enough for
most of the participants. Furthermore, some of the people that were asked to participate
gave the answer they were not familiar with JML or that they did not finish the System
Validation course yet, and therefore were also not able to participate. Furthermore,
some of the motivations contain a remark that the difference between \nothing and
\strictly_nothing was not clear. The requirements e.\inv and \typeof(element)
was also not understood by all participants. However, differences between in purity,
invariants as a single group and the \typeof(element) construct are not taught on
the System Validation course. This tells two things, i.e., an abstract memory model is
difficult to understand, and in general abstraction is not easy.

The possibility that participants were not participating seriously, together with the
fact that filling out the questionnaire took more time than expected, as well as a few
points indicated by the participants that were not clear, i.e., the relation of seqLength
and size, assignable clauses using a footprint, and sequences, give an indication that
specifications using JML (or JML*) are not really understandable for people only just
starting with JML. This is at least the case when JML specifications are used for any
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substantial Java class, i.e., the specifications here could at some points be a little harder
than they might be in general when being taught, however, for any substantial Java
class, specifications might and probably will be much more complicated.

5.2. Specification styles questionnaire

For the specification styles questionnaire, seven members of the KeY development team
participated. Since the questionnaire is basically divided into three parts, there are three
subsections, i.e., one for the understandability, extensibility and one for verifiability.
Each of these sections is divided in two parts again, each providing the answers the
participants gave, and a reflection.

Understandability

The first part of the questionnaire asked about influence of JML* specifications on
understandability. Figure 5.3 shows for several specification styles the answers given
on perceived improvement or worsening for understandability by the expert users. The
figure shows that abstract data types (e.g., sequences) score better on understandability.
Motivation given by the experts is that abstract data types allow to abstract away from
actual Java representations, which makes reasoning and problem understanding easier,
and in case of linked structures, technicalities are removed. The only downside given is
one has to be familiar with the concept.

Besides abstract data types also model methods, pure methods and model fields are
considered generally positive regarding understandability. Model fields are declaritive
expressions which can be used to abbreviate complex structures and repeating expres-
sions, and also have less overhead compared to ghost fields according to the experts.
Pure methods make it possible to query anything that is also possible in Java itself,
while guaranteeing no state changes have occured. Model methods or abstract predi-
cates can be used to avoid complicated expressions that are used repeatedly and express
the same thing. Furthermore, they make it possible to combine the advantages of model
fields, abstract data types and pure methods. A possible downside given is that when
they are used a lot they can be overwhelming. In case the expert users chose not appli-
cable this was because that they did not use model methods themselves, or because they
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Figure 5.3.: Understandability results

were not sure if they would improve understandability. However, the overall motiviation
given was still positive.

Regarding ghost fields participants were less positive. Their motivation is that additional
elements are needed in specification, the specification has to be kept consistent with
executed code, and specifying this way is error prone. As a positive motivation, the fact
that ghost fields aid in formulating facts explicitly that are only implicitly in the code
is given. Furthermore, the motivation that the usage is more like actual programming
is given.

Reflection

It seems the expert users have a similar conception as described in the last chapters.
Ghost fields being a little harder for understandability as additional measures have to
be taken, i.e., updating the state for any method that is linked with the ghost field,
whereas other specification styles do not have this need. Something not mentioned in
the motivation explicitly is the need of invariants to restrict the ghost fields somehow.

Also, pure methods are a little lower on the understandability scale than model fields
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and abstract data types here, as they possibly provide distinguishing behavior based on,
e.g., the arguments of a method, whereas the other specifications are stricter.

The motivation given for model methods make it sound logical they would increase
understandability for specifications, however, this is something that still needs to be
checked later on when model methods are completely supported.

Extensibility

The second part of the questionnaire asked about influence of JML* specifications on
extensibility. Figure 5.4 shows for several specification styles the answers given on per-
ceived improvement or worsening for extensibility by the expert users. Compared to
the understandability results, the results given by the experts are very similar, but
slightly less positive for all specification styles. Ghost fields are considered worse than
other specification styles for extensibility. However, the results are a bit misleading, i.e.,
considering the given motivations. One of the experts has only little experience with
extensibility of JML* and therefore answered all questions with not applicable. Another
participant did not get the idea that any of the specification styles contributes to better
or worse extensibility, and therefore answered all questions with no difference.

Starting with ghost fields, the argument of having to update ghost fields in the bodies
of methods of extending classes is given as argument for worsening extensibility. The
argument given in favor of ghost fields is that they make it possible to extend the state
of a class. Additionally one participant answered this question with not applicable, with
a motivation of having no experience with it.

For model fields the arguments given for improved extensibility is that model fields
provide abstraction from state, and there is no need to worry about implementation
details. Furthermore, it is possible to specify properties about a model field already
at the interface level whereafter implementing classes can indicate the way a model
field represents a certain property. As a disadvantage a participant indicated represents
clauses of model fields may be overriden in JML.

The argumentation given for pure methods is that they abbreviate from object state like
model fields, whereby additionally implementations can be overriden by subclasses.

Abstract data types are considered better for extensibility since higher abstraction is in
favor of extensibility, and only the connection between an abstract data type and source
needs to be established for an extending class. Some participants indicated doubts in the
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Figure 5.4.: Extensibility results

motivations, since implementing classes of some interface may need different abstract
data types, e.g., a set or some ordered queue implementing a collection might need a
different abstract data type.

Since model methods are not yet part of KeY two more participants answered with
not applicable, as they had no experience with model methods. The remaining two
answers are considerably positive based on expectations. A motivation given is that one
idea behind model methods is to bring full specification inheritance that has the same
flexibility as implementation inheritance, which should clearly make them extensible.

Reflection

Although participants provided similar motivation for some of the answers for the same
question, the answers were different. This might be related to how much participants
actually use a specific specification style. Using one specification style (more) often
might give the perception one style is better in a certain aspect than another.

An interesting motivation is given for the question about how much model fields improve
or worsen extensibility, whereby it is stated that represents clauses of model fields may
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be overridden, which actually caused a loading problem in KeY during the project. It
might be the case that this was actually possible at a certain version of the tool.

From the answers given for abstract data types, it seems that it might be the case that
is not just the usage of abstract data types, but more likely the context in which they
are used that affects extensibility. This would explain the motivation of providing a
connection between abstract data types and source that improves extensibility, which
would be the case when using an abstract data type together with a model field.

The overall result of ghost fields being the least extensible specification construct was
also the perception during the project.

Verifiability

The last part of the questionnaire asked about influence of JML* specifications on veri-
fiability. Figure 5.5 shows for several specification styles the answers given on perceived
difficulty of verification by the expert users. This time, model fields scores worst and
abstract data types scores best.

Figure 5.5.: Verifiability results

To start with abstract data types, the expert users were quite positive regarding ver-
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ifiability of abstract data types. However, verification might become harder, which is
motivated with the argument that another entity is introduced in the proof. Motivation
for easier verification explains that proofs will become smaller due to a higher level of
abstraction. Furthermore, dealing with reachability is easier compared to dealing with
reachability on reference structures. The level of easiness also depends on provided proof
automation for abstract data types, which lacks in certain aspects at the moment, e.g.,
concatenation of sequences and reasoning about sequences within sequences might be
problematic at the time being.

For pure methods and ghost fields, opinions are somewhat divided to whether it con-
tributes to making verification either easier or harder. For ghost fields the argument of
having more heap changes states that it contributes to harder verifiable proofs. Others
state, since ghost fields are very similar to symbolic code execution that verification
becomes easier, whereas yet another participant provides this reason stating verifiability
will not be affected compared to the general complexity of verification.

That pure methods make verification easier is only motivated by one of three answers,
stating structure is introduced for the proof using this specification style. Participants
that indicate pure methods complicate verification back their answers by stating method
resolution and lookup is needed, and that either unfoloding of the method body or
applying a corresponding contract is necessary. One participant answered no difference
and motivates that it actually depends on the difficulty of the contract. Additionally
a problem is that the quantifier instantiation in KeY does not work if the quantified
formula contains a pure method.

Model fields make verification according to all but one expert harder. The motivation
given for the answer that verification will be easier states that model fields should be
handled the right way to help. Furthermore, they help abstracting complicated issues.
Several motivations are given in case either the answer harder or much harder was given.
Depends clauses as well as using a difficult representation for model fields involving the
usage of a \such_that construct, e.g., in case of a recursive representation, seem to
be the hardest parts of model fields. Two participants were not able to indicate what
actually makes usage of model fields harder for verification.

On model methods the experts differ widely in opinion. One expert states model methods
bring structure in the proof like pure methods, and thereby are also strictly pure, making
model methods much easier for verification. The participants that answered proofs would
be easier basically state that this is the case for certain usage of model methods, i.e.,
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in case they are used with lemmata. These lemmata are basically the contracts model
methods themselves can have. This is somewhat backed by the participant that answered
no difference and gives the motivation that it depends on the usage as application of
contracts come with an overhead which makes the proof situation harder to understand.
Additionally, quantifier instantiation does also not work for model methods. Again, in
case of usage with recursive structures difficulty largely increases.

Reflection

During the project several specification styles have been used, and different styles seemed
better for specific usage, e.g., in most situations ghost fields suffice, but in case it is
possible model fields were nicer, as they provide additional abstraction and less overhead
maintaining as no set statements are needed. It was not always possible to use model
fields however, e.g., the repr field as a model field made use of the \such_that construct
necessary, which made proving not possible in the end.

During the project model methods were not yet at a usable stage. When sequences
were used for the ArrayList, this indeed gave a bit harder to prove specifications when
concatenation was used.

115





6. Conclusions

This thesis explored and specifies selected parts of the Java Collections Framework us-
ing JML*, and statically verifying these specifications using KeY. Different specification
styles and constructs are used to see what the effects are on understandability, exten-
sibility and verifiability. These effects are also evaluated by asking expert users (i.e.,
KeY developers) about their findings and experiences using JML* and KeY for veri-
fication in the past years. Furthermore, feedback about the understandability of the
specifications made in this project was also gathered by means of a questionnaire – filled
out by participants that only have a basic understanding of JML.

In this chapter, first it is discussed how the contributions achieve the goals set out in the
introduction part of the thesis, and how results are evaluated. Next, overall limitations
are indicated. Finally, possible directions for further research are discussed.

6.1. Goals and contributions

The introduction of this thesis described the goals to achieve with this thesis. In this
section, it is described how the contributions of this thesis achieve these goals.

Specifying selected parts of the JCF to gain insight on
understandability and extensibility

The first goal of this thesis is to gain insight on understandability and extensibility by
specifying selected parts of the Java Collections Framework.
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Chapter 2 describes the specifications made for several interfaces (i.e., Collection,
List, Iterator and ListIterator) as well as specifications needed for the implement-
ing classes ArrayList and the iterator used by the ArrayList. The specifications are
based on the informal specifications of the Java API. Modifications have been performed
to strip out generics, as at the time no tool could properly cope with generics. Further-
more, inner classes were extracted and made first class citizens as KeY was not able to
reason about inner classes as support is broken at the moment. Here, it was found that
ghost fields need additional specifications, i.e., invariants to specify restrictions as well
as updating the state of the ghost fields, and therefore make understandability and ex-
tensibility worse. The opposite holds for the more abstract specifications of model fields.
Pure methods seems to be the most understandable and extensible way of specifying.
In case model methods would be usable, they would provide even more abstraction
than model fields and probably further improve understandability and extensibility of
specifications. Abstract data types provide a nice way to reason abstractly about imple-
mentations, however, they could be improved by, e.g., providing additional operations
like add and remove for sequences.

Verifying selected parts of the JCF to gain insight into
understandability

The second goal of the thesis is to gain insight into verifiability by verifying selected
parts of the Java Collections Framework.

Chapter 3 first descibes how KeY was used to perform static modular verification on the
specifications made, next, provides limitations for verification, and discusses difficulties
encountered when doing verification. Among a few other limitations, it was not possible
to use the full expressiveness of \min and \max constructs (see Section 3.1.3 on page 74)
– as it was not possible to count different values depending on a complex inner expres-
sion – or provide meaningful specifications for the methods equals and compareTo (see
Section 3.1.3). Furthermore, specifications seem to be harder to verify when \forall
and \exists constructs are used. Additionally, it was found that using model fields
might be particularly hard in case the \such_that construct was needed to specify
what the model field should represent. The easiest construct for verification seems to be
ghost fields, as they are very similar compared to regular fields in Java. Under certain
conditions it was not possible to use pure methods for specification, after evaluation by
expert users this seems to be caused by the fact that pure methods cannot yet be used
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together with \forall or \exists constructs.

Evaluation

After specifying and verifying selected parts of the Java Collections Framework, the
results found needed to be evaluated. Therefore, two questionnaires were made. First, a
questionnaire to see if the specifications made are understandable for people only familiar
with basic JML. And second, a questionnaire to see if the perceived understandability,
extensibility and verifiability for different specifications constructs is also perceived by
expert KeY users.

The questionnaire about the understandability of the specifications made, indicated that,
primarly, JML itself was not always well understood, and not just the additional speci-
fications used by JML*. For example, people have the perception that specifications are
not verifiable when they do not cover the complete behavior of a method. Furthermore,
the use of model fields as well as invariants is not completely clear. The use of abstract
data types (i.e., sequences) as well as framing of methods – specifying the set of loca-
tions that might be changed by a method – did not cause a lot of additional confusion
for the participants in general.

The second questionnaire, that asked about perceived understandability, extensibility
and verifiability by expert users, indicated that the findings during specification and
verification are very similar. The expert users, in general, also state that ghost fields
are easier for verification, and that depending on the difficulty of pure methods these
can be either easier or harder to verify. Additionally the motivation is provided that
pure methods cannot be used within \forall or \exists constructs yet. Furthermore,
model fields are indicated as potentially harder for verification, e.g., in case of rep-
resenting recursive structures or a \such_that representation. Understandability and
extensibility, is also by the expert users indicated better in case of a higher abstraction,
i.e., model fields and abstract data types should provide better understandability and
extensibility in general. A final note, depending on the participant, answers differ since
one has more experience with one construct compared to another construct.
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6.2. Limitations

Not limited to the use of KeY – probably verification tools in general – have a steep
learning curve, i.e., it is hard to start using them and know what they can and cannot
do. At this point, KeY and similar tools, are not ready for incorporating them for
business (e.g., by software development companies) and their use is limited to academic
research. Although the support of verification tool increases, only little verification has
been performed on API’s, not to mention frameworks that are used on top of API’s. Not
only is there a steep learning curve, but also only a small group of people is able to use
verification tools at this point. This means there needs to be a large shift in software
engineering, will software verification become part of the process of any substantial
software product in the near future.

6.3. Future work

In this section several directions for further research towards gaining insight on under-
standability, extensibility and verifiability of JML* specifications are indicated.

Specification and verification: Only a limited amount of specifications and verifica-
tions could be examined, it would be interesting to cover bigger parts of the Java
Collections Framework in the future and provide more complete specifications.
Furthermore, it would be nice if there was no need to make inner classes first class
citizens anymore.

Introduction of generics: For this thesis, several adjustments to the source were needed
to cope with the fact it was not possible to handle generics, i.e., specifications
cannot be type parametric. It would be nice to have this in the future, which
would probably aid a lot in making specifications more understandable as well as
extensible.

Concurrency: During the project concurrency is not taken into consideration, as JML*
and JML do not support concurrent execution of Java (yet), however, this would
be an interesting aspect to look at next. Especially in case the Java Collections
Framework of Java 8 will be considered, as the framework will then be optimized
for concurrent execution using lambda expressions, e.g., to filter and map col-
lections [13]. However, this will probably introduce further problems regarding
understandability and verifiability of specifications.
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Understandability of specifications: It would be nice to gain more insight in what actu-
ally make specifications hard to understand. The understandability questionnaire
indicated that invariants and model fields are not well understood. Maybe inter-
viewing people, instead of letting them take a questionnaire, would aid in providing
more precise results in what makes JML specifications difficult to understand.

Abstract Data Types: Abstract data types provided a nice way to abstract from im-
plementations. Future work could consist of exploring additional constructs, i.e.,
besides location sets and sequences, that could aid making specifications more
understandable. Also, it could be explored how the existing abstract data types
could be changed to make them contribute more to a better understanding of
specifications.

Model Methods: Model methods were not completely implemented, and therefore not
yet used for specification and verification. It would be nice to explore whether
model methods could improve on the understandability, extensibility and verifia-
bility of specifications.

Incorporating Static Verification for Business: Another interesting project for future
work would be to explore what would be needed to make it possible to eventually
incorporate static verification into software development.
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Appendices





A. repr as model vs ghost

In Listing A.1 and Listing A.2, two minimalistic implementations are provided to un-
derstand the differences between abstract data representation with a model field versus
a representation with a ghost field. Furthermore, a specification for the copyof method
from Arrays – used by the implementations – is provided in Listing A.3.

1 public class GhostList {
2
3 /∗@ p u b l i c model in s tance \ l o c s e t f o o t p r i n t ;
4 @ p u b l i c a c c e s s i b l e \ inv : f o o t p r i n t ;
5 @ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
6 @
7 @ p u b l i c model in s tance i n t seqLength ;
8 @ p u b l i c in s tance i n v a r i a n t seqLength >= 0;
9 @ p u b l i c a c c e s s i b l e seqLength : f o o t p r i n t ;

10 @
11 @ p u b l i c ghos t in s tance \ seq repr ;
12 @ p u b l i c r e p r e s e n t s f o o t p r i n t = count , elems , elems [ ∗ ] , repr ;
13 @ p u b l i c r e p r e s e n t s seqLength = count ;
14 @
15 @ p u b l i c in s tance i n v a r i a n t (\ f o r a l l i n t i ; 0 <= i && i < repr . l e n g t h ;
16 repr [ i ] == elems [ i ] ) ;
17 @ p u b l i c in s tance i n v a r i a n t seqLength == repr . l e n g t h ;
18 @ p u b l i c in s tance i n v a r i a n t seqLength <= elems . l e n g t h ;
19 @
20 @ p u b l i c in s tance i n v a r i a n t elems != n u l l ;
21 @ p u b l i c in s tance i n v a r i a n t \ t y p e o f ( elems ) ==
22 \ type ( java . lang . Object [ ] ) ;
23 @∗/
24
25 int count ;
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26 /∗@ n u l l a b l e @∗/ Object [ ] e lems ;
27
28 /∗@ p u b l i c normal_behavior
29 @ ensures count == 0;
30 @ ensures repr == \seq_empty ;
31 @ a s s i g n a b l e f o o t p r i n t ;
32 @∗/
33 public GhostList ( ) {
34 //@ s e t repr = \seq_empty ;
35 count = 0 ;
36 elems = new Object [ 0 ] ;
37 }
38
39 /∗@ p u b l i c normal_behavior
40 @ ensures \ r e s u l t == seqLength ;
41 @∗/
42 /∗@ s t r i c t l y _ p u r e @∗/ public int s i z e ( ) {
43 return count ;
44 }
45
46 /∗@ p u b l i c normal_behavior
47 @ ensures seqLength == \ o ld ( seqLength ) + 1;
48 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < \ o ld ( seqLength ) ;
49 ( Object ) repr [ i ] == ( Object ) (\ o ld ( repr [ i ] ) ) ) ;
50 @ ensures ( Object ) repr [\ o ld ( seqLength ) ] == o ;
51 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
52 @ a s s i g n a b l e f o o t p r i n t ;
53 @∗/
54 public void add ( /∗@ n u l l a b l e @∗/ Object o ) {
55 //@ s e t repr = \ seq_concat ( repr , \ s eq_s ing l e t on (o ) ) ;
56 elems = Arrays . copyOf ( elems , count + 1) ;
57 elems [ count++] = o ;
58 }
59
60 }

Listing A.1: Data representation using a ghost field

1 public class ModelList {
2
3 /∗@ p u b l i c model in s tance \ l o c s e t f o o t p r i n t ;
4 @ p u b l i c a c c e s s i b l e \ inv : f o o t p r i n t ;
5 @ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
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6 @
7 @ p u b l i c model in s tance i n t seqLength ;
8 @ p u b l i c in s tance i n v a r i a n t seqLength >= 0;
9 @ p u b l i c a c c e s s i b l e seqLength : f o o t p r i n t ;

10 @
11 @ p u b l i c model in s tance \ seq repr ;
12 @ p u b l i c a c c e s s i b l e repr : f o o t p r i n t ;
13 @
14 @ p u b l i c r e p r e s e n t s f o o t p r i n t = count , elems , elems [ ∗ ] ;
15 @ p u b l i c r e p r e s e n t s seqLength = count ;
16 @
17 @ p u b l i c in s tance i n v a r i a n t seqLength <= elems . l e n g t h ;
18 @ p u b l i c in s tance i n v a r i a n t elems != n u l l ;
19 @
20 @ p u b l i c r e p r e s e n t s repr \ such_that
21 (\ f o r a l l i n t i ; 0 <= i && i < count ;
22 ( Object ) repr [ i ] == ( Object ) elems [ i ] ) ;
23 @
24 @ p u b l i c in s tance i n v a r i a n t \ t y p e o f ( elems ) ==
25 \ type ( java . lang . Object [ ] ) ;
26 @∗/
27
28 int count ;
29 /∗@ n u l l a b l e @∗/ Object [ ] e lems ;
30
31 /∗@ p u b l i c normal_behavior
32 @ ensures count == 0;
33 @ a s s i g n a b l e f o o t p r i n t ;
34 @∗/
35 public ModelList ( ) {
36 count = 0 ;
37 elems = new Object [ 0 ] ;
38 }
39
40 /∗@ p u b l i c normal_behavior
41 @ ensures \ r e s u l t == seqLength ;
42 @∗/
43 /∗@ s t r i c t l y _ p u r e @∗/ public int s i z e ( ) {
44 return count ;
45 }
46
47 /∗@ p u b l i c normal_behavior
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48 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( java . lang . Object ) ;
49 @ ensures seqLength == \ o ld ( seqLength ) + 1;
50 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < \ o ld ( seqLength ) ;
51 ( Object ) repr [ i ] == ( Object ) (\ o ld ( repr [ i ] ) ) ) ;
52 @ ensures ( Object ) repr [\ o ld ( seqLength ) ] == o ;
53 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
54 @ a s s i g n a b l e f o o t p r i n t ;
55 @∗/
56 public void add ( /∗@ n u l l a b l e @∗/ Object o ) {
57 elems = Arrays . copyOf ( elems , count + 1) ; // OutOfMemoryError
58 elems [ count++] = o ;
59 }
60
61 }

Listing A.2: Data representation using a model field

1 class Arrays {
2
3 /∗@ p u b l i c normal_behavior
4 @ r e q u i r e s o r i g i n a l != n u l l ;
5 @ r e q u i r e s newLength >= 0;
6 @ r e q u i r e s \ t y p e o f ( o r i g i n a l ) == \ type ( java . lang . Object [ ] ) ;
7 @ ensures \ t y p e o f (\ r e s u l t ) == \ type ( java . lang . Object [ ] ) ;
8 @ ensures newLength < o r i g i n a l . l e n g t h ==>
9 (\ f o r a l l i n t i ; 0 <= i && i < newLength ;

10 \ r e s u l t [ i ] == o r i g i n a l [ i ] ) ;
11 @ ensures newLength >= o r i g i n a l . l e n g t h ==>
12 (\ f o r a l l i n t i ; 0 <= i && i < o r i g i n a l . l e n g t h ;
13 \ r e s u l t [ i ] == o r i g i n a l [ i ] ) ;
14 @ ensures newLength > o r i g i n a l . l e n g t h ==>
15 (\ f o r a l l i n t i ; o r i g i n a l . l e n g t h <= i && i < newLength ;
16 \ r e s u l t [ i ] == n u l l ) ;
17 @ ensures \ r e s u l t . l e n g t h == newLength ;
18 @ ensures \ f r e s h (\ r e s u l t ) ;
19 @ ensures \ r e s u l t != n u l l ;
20 @ a s s i g n a b l e \ noth ing ;
21 @ a l s o
22 @ p u b l i c excep t i ona l_behav io r
23 @ r e q u i r e s ( newLength < 0) | | ( o r i g i n a l == n u l l ) ;
24 @ s i g n a l s ( Negat iveArraySizeExcept ion ) newLength < 0;
25 @ s i g n a l s ( Nu l lPo in terExcep t ion ) o r i g i n a l == n u l l ;
26 @ signa l s_on ly Negat iveArraySizeExcept ion , Nu l lPo in terExcep t ion ;
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27 @ a s s i g n a b l e \ noth ing ;
28 @∗/
29 native public static /∗@ n u l l a b l e @∗/ Object [ ]
30 copyOf ( /∗@ n u l l a b l e @∗/ Object [ ] o r i g i n a l , int newLength ) ;
31
32 }

Listing A.3: Specification of the method copyof
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B. Questions for specification styles
questionnaire

The questionnaire for specifications styles was divided into three pages, i.e., one for
understandability, extensibility and verifiability. For each question the participant was
asked to provide a motivation.

Understandability questions;

• ’Ghost fields’ make understandability of specifications ..

• ’Model fields’ make understandability of specifications ..

• ’Pure methods’ make understandability of specifications ..

• ’Abstract data types’ (e.g., sequences) make understandability of specifications ..

• ’Abstract predicates’ (model methods) make understandability of specifications ..

Participants could answer the questions with the following multiple choice answers;

• far worse, worse, no difference, better, far better or (not applicable).

Extensibility questions;

• ’Ghost fields’ make extensibility of specifications ..

• ’Model fields’ make extensibility of specifications ..

• ’Pure methods’ make extensibility of specifications ..

• ’Abstract data types’ (e.g., sequences) make extensibility of specifications ..

• ’Abstract predicates’ (model methods) make extensibility of specifications ..

Participants could answer the questions with the following multiple choice answers;
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• far worse, worse, no difference, better, far better or (not applicable).

Verifiability questions;

• ’Ghost fields’ make verification ..

• ’Model fields’ make verification ..

• ’Pure methods’ make verification ..

• ’Abstract data types’ (e.g., sequences) make verification ..

• ’Abstract predicates’ (model methods) make verification ..

Participants could answer the questions with the following multiple choice answers;

• much harder, harder, no difference, easier, much easier or (not applicable).
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C. Accompanying file for questionnaire

The understandability questionnaire used an accompanying file, provided in Listing C.1.

1 class Se l fAr rays {
2
3 /∗@ p u b l i c normal_behavior
4 @ r e q u i r e s o r i g i n a l != n u l l ;
5 @ r e q u i r e s newLength >= 0;
6 @ r e q u i r e s \ t y p e o f ( o r i g i n a l ) == \ type ( java . lang . Object [ ] ) ;
7 @ ensures \ t y p e o f (\ r e s u l t ) == \ type ( java . lang . Object [ ] ) ;
8 @ ensures newLength < o r i g i n a l . l e n g t h ==>
9 (\ f o r a l l i n t i ; 0 <= i && i < newLength ;

10 \ r e s u l t [ i ] == o r i g i n a l [ i ] ) ;
11 @ ensures newLength >= o r i g i n a l . l e n g t h ==>
12 (\ f o r a l l i n t i ; 0 <= i && i < o r i g i n a l . l e n g t h ;
13 \ r e s u l t [ i ] == o r i g i n a l [ i ] ) ;
14 @ ensures newLength > o r i g i n a l . l e n g t h ==>
15 (\ f o r a l l i n t i ; o r i g i n a l . l e n g t h <= i && i < newLength ;
16 \ r e s u l t [ i ] == n u l l ) ;
17 @ ensures \ r e s u l t . l e n g t h == newLength ;
18 @ ensures \ f r e s h (\ r e s u l t ) ;
19 @ ensures \ r e s u l t != n u l l ;
20 @ a s s i g n a b l e \ noth ing ;
21 @ a l s o
22 @ p u b l i c excep t i ona l_behav io r
23 @ r e q u i r e s ( newLength < 0) | | ( o r i g i n a l == n u l l ) ;
24 @ s i g n a l s ( Negat iveArraySizeExcept ion ) newLength < 0;
25 @ s i g n a l s ( Nu l lPo in terExcep t ion ) o r i g i n a l == n u l l ;
26 @ signa l s_on ly Negat iveArraySizeExcept ion , Nu l lPo in terExcep t ion ;
27 @ a s s i g n a b l e \ noth ing ;
28 @∗/
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29 native public static /∗@ n u l l a b l e @∗/ Object [ ]
30 copyOf ( /∗@ n u l l a b l e @∗/ Object [ ] o r i g i n a l , int newLength ) ;
31 }
32
33 public class ArrayList {
34
35 /∗@ p u b l i c model in s tance \ l o c s e t f o o t p r i n t ;
36 @ p u b l i c a c c e s s i b l e \ inv : f o o t p r i n t ;
37 @ p u b l i c a c c e s s i b l e f o o t p r i n t : f o o t p r i n t ;
38 @
39 @ p u b l i c n u l l a b l e ghos t in s tance \ seq repr ;
40 @ p u b l i c model in s tance i n t seqLength ;
41 @ p u b l i c a c c e s s i b l e seqLength : f o o t p r i n t ;
42 @
43 @ r e p r e s e n t s f o o t p r i n t = elementData , elementData [ ∗ ] , s i z e , modCount ,

repr ;
44 @
45 @ p u b l i c in s tance i n v a r i a n t (\ f o r a l l i n t i ; 0 <= i && i < repr . l e n g t h ;
46 repr [ i ] == elementData [ i ] ) ;
47 @ p u b l i c r e p r e s e n t s seqLength = s i z e ;
48 @
49 @ p u b l i c in s tance i n v a r i a n t s i z e == repr . l e n g t h ;
50 @ p u b l i c in s tance i n v a r i a n t seqLength <= elementData . l e n g t h ;
51 @ p u b l i c in s tance i n v a r i a n t \ t y p e o f ( elementData ) ==
52 \ type ( java . lang . Object [ ] ) ;
53 @ p u b l i c in s tance i n v a r i a n t modCount >= 0;
54 @ p u b l i c in s tance i n v a r i a n t s i z e >= 0;
55 @∗/
56
57 private Object [ ] /∗@ spec_pub l i c n u l l a b l e @∗/ elementData ;
58 //@ p u b l i c in s tance i n v a r i a n t elementData != n u l l ;
59
60 protected int /∗@ spec_pub l i c @∗/ modCount = 0 ;
61 /∗@ spec_pub l i c @∗/ protected int s i z e ;
62
63 // ////////////
64 /∗ Method 1 ∗/
65 // ////////////
66
67 /∗@ p u b l i c normal_behavior
68 @ r e q u i r e s i n i t i a l C a p a c i t y >= 0;
69 @ ensures elementData . l e n g t h == i n i t i a l C a p a c i t y ;
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70 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < seqLength ;
71 elementData [ i ] == n u l l ) ;
72 @ ensures repr == \seq_empty ;
73 @ ensures \ f r e s h ( f o o t p r i n t ) ;
74 @ a s s i g n a b l e f o o t p r i n t ;
75 @∗/
76 public ArrayList ( int i n i t i a l C a p a c i t y ) {
77 if ( i n i t i a l C a p a c i t y < 0)
78 throw new I l l ega lArgumentExcept ion ( ) ;
79
80 this . elementData = new Object [ i n i t i a l C a p a c i t y ] ;
81 //@ s e t repr = \seq_empty ;
82 {}
83 }
84
85 // ////////////
86 /∗ Method 2 ∗/
87 // ////////////
88
89 /∗@ p u b l i c normal_behavior
90 @ r e q u i r e s index >= 0 && index < seqLength ;
91 @ ensures \ r e s u l t == repr [ index ] ;
92 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
93 @ a l s o
94 @ p u b l i c excep t i ona l_behav io r
95 @ r e q u i r e s index < 0 | | index >= seqLength ;
96 @ s i g n a l s ( IndexOutOfBoundsException ) t rue ;
97 @ a s s i g n a b l e \ noth ing ;
98 @∗/
99 /∗@ n u l l a b l e @∗/ public Object get ( int index ) {

100 if ( index >= s i z e | | index < 0)
101 throw new IndexOutOfBoundsException ( ) ;
102
103 return elementData [ index ] ;
104 }
105
106 // ////////////
107 /∗ Method 3 ∗/
108 // ////////////
109
110 /∗@ p u b l i c normal_behavior
111 @ r e q u i r e s s i z e < elementData . l e n g t h ;
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112 @ ensures modCount == \ o ld (modCount ) + 1;
113 @ ensures elementData . l e n g t h == s i z e ;
114 @ ensures repr == \ o ld ( repr ) ;
115 @ a s s i g n a b l e elementData , modCount ;
116 @ a l s o
117 @ p u b l i c normal_behavior
118 @ r e q u i r e s s i z e >= elementData . l e n g t h ;
119 @ ensures modCount == \ o ld (modCount ) + 1;
120 @ ensures repr == \ o ld ( repr ) ;
121 @ a s s i g n a b l e modCount ;
122 @∗/
123 public void tr imToSize ( ) {
124 modCount++;
125 int oldCapacity = elementData . l ength ;
126 if ( s i z e < oldCapacity ) {
127 elementData = Se l fAr rays . copyOf ( elementData , s i z e ) ;
128 }
129 }
130
131 // ////////////
132 /∗ Method 4 ∗/
133 // ////////////
134
135 /∗@ p u b l i c normal_behavior
136 @ ensures modCount == \ o ld (modCount ) + 1;
137 @ ensures s i z e == 0;
138 @ ensures repr == \seq_empty ;
139 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < elementData . l e n g t h ;
140 elementData [ i ] == n u l l ) ;
141 @ a s s i g n a b l e elementData [ ∗ ] , repr , s i z e , modCount ;
142 @∗/
143 public void c l e a r ( ) {
144 modCount++;
145
146 int i = 0 ;
147 /∗@ loop_invar ian t 0 <= i && i <= s i z e ;
148 @ loop_invar ian t (\ f o r a l l i n t j ; 0 < j && j < i ;
149 elementData [ j ] == n u l l ) ;
150 @ a s s i g n a b l e elementData [ ∗ ] ;
151 @ decreas ing s i z e − i ;
152 @∗/
153 while ( i < s i z e ) {
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154 elementData [ i ] = null ;
155 i ++;
156 }
157
158 //@ s e t repr = \seq_empty ;
159 s i z e = 0 ;
160 }
161
162 // ////////////
163 /∗ Method 5 ∗/
164 // ////////////
165
166 /∗@ p u b l i c normal_behavior
167 @ r e q u i r e s \ t y p e o f ( e lement ) == \ type ( Object ) ;
168 @ r e q u i r e s index >= 0 && index < seqLength ;
169 @ ensures repr [ index ] == element ;
170 @ ensures \ r e s u l t == \ o ld ( repr [ index ] ) ;
171 @ ensures \new_elems_fresh ( f o o t p r i n t ) ;
172 @ a s s i g n a b l e f o o t p r i n t ;
173 @ a l s o
174 @ p u b l i c excep t i ona l_behav io r
175 @ r e q u i r e s index < 0 | | index >= seqLength ;
176 @ s i g n a l s ( IndexOutOfBoundsException )
177 index < 0 | | index >= seqLength ;
178 @ signa l s_on ly IndexOutOfBoundsException ;
179 @ a s s i g n a b l e \ noth ing ;
180 @∗/
181 public /∗@ n u l l a b l e @∗/ Object s e t ( int index ,
182 /∗@ n u l l a b l e @∗/ Object element ) {
183 if ( index >= s i z e | | index < 0)
184 throw new IndexOutOfBoundsException ( ) ;
185
186 Object oldValue = elementData [ index ] ;
187 elementData [ index ] = element ;
188
189 /∗@ s e t repr = \ seq_concat (
190 \ seq_concat (\ seq_sub ( repr , 0 , index ) , \ s eq_s ing l e t on ( element ) ) ,
191 \ seq_sub ( repr , index + 1 , seqLength )
192 ) ;
193 @∗/
194
195 return oldValue ;
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196 }
197
198 // ////////////
199 /∗ Method 6 ∗/
200 // ////////////
201
202 /∗@ p u b l i c normal_behavior
203 @ r e q u i r e s \ t y p e o f ( e ) == \ type ( java . lang . Object ) && e .\ inv ;
204 @ ensures seqLength == \ o ld ( seqLength ) + 1;
205 @ ensures (\ f o r a l l i n t i ; 0 <= i && i < seqLength −1;
206 repr [ i ] == \ o ld ( repr [ i ] ) ) ;
207 @ ensures repr [ seqLength −1] == e ;
208 @ ensures \ r e s u l t ;
209 @ a s s i g n a b l e f o o t p r i n t ;
210 @∗/
211 boolean add ( /∗@ n u l l a b l e @∗/ Object e ) {
212 elementData = Se l fAr rays . copyOf ( elementData , s i z e + 1) ;
213 elementData [ s i z e ++] = e ;
214 //@ s e t repr = \ seq_concat ( repr , \ s eq_s ing l e t on ( e ) ) ;
215 {}
216 return true ;
217 }
218
219 // ////////////
220 /∗ Method 7 ∗/
221 // ////////////
222
223 /∗@ p u b l i c normal_behavior
224 @ r e q u i r e s \ t y p e o f ( o ) == \ type ( Object ) && o .\ inv ;
225 @ ensures (\ f o r a l l i n t k ; 0 <= k && k <= seqLength −1; repr [ k ] != o)
226 ==> \ r e s u l t == −1;
227 @ ensures ! ( \ e x i s t s i n t k ; 0 <= k && k <= seqLength −1; repr [ k ] == o)
228 ==> (\ r e s u l t >= 0 && \ r e s u l t < seqLength && repr [\ r e s u l t ] == o) ;
229 @ ensures ! ( \ e x i s t s i n t k ; 0 <= k && k < \ r e s u l t ; repr [ k ] == o) ;
230 @ a s s i g n a b l e \ noth ing ;
231 @∗/
232 public int indexOf ( /∗@ n u l l a b l e @∗/ Object o ) {
233
234 if ( o == null ) {
235
236 /∗@ loop_invar ian t 0 <= i && i <= s i z e ;
237 @ loop_invar ian t (\ f o r a l l i n t j ; 0 <= j && j < i ; repr [ j ] != o) ;
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238 @ a s s i g n a b l e \ s t r i c t l y _ n o t h i n g ;
239 @ decreas ing s i z e − i ;
240 @∗/
241 for ( int i = 0 ; i < s i z e ; i++)
242 if ( elementData [ i ] == null )
243 return i ;
244 } else {
245 /∗@ loop_invar ian t 0 <= i && i <= s i z e ;
246 @ loop_invar ian t (\ f o r a l l i n t j ; 0 <= j && j < i ; repr [ j ] != o) ;
247 @ a s s i g n a b l e \ noth ing ;
248 @ decreas ing s i z e − i ;
249 @∗/
250 for ( int i = 0 ; i < s i z e ; i++)
251 if ( o == elementData [ i ] )
252 return i ;
253 }
254 return −1;
255 }
256
257 }

Listing C.1: Accompanying file for the understandability questionnaire
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